if_wpi.c revision 207554
1/*-
2 * Copyright (c) 2006,2007
3 *	Damien Bergamini <damien.bergamini@free.fr>
4 *	Benjamin Close <Benjamin.Close@clearchain.com>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19#define VERSION "20071127"
20
21#include <sys/cdefs.h>
22__FBSDID("$FreeBSD: head/sys/dev/wpi/if_wpi.c 207554 2010-05-03 07:32:50Z sobomax $");
23
24/*
25 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26 *
27 * The 3945ABG network adapter doesn't use traditional hardware as
28 * many other adaptors do. Instead at run time the eeprom is set into a known
29 * state and told to load boot firmware. The boot firmware loads an init and a
30 * main  binary firmware image into SRAM on the card via DMA.
31 * Once the firmware is loaded, the driver/hw then
32 * communicate by way of circular dma rings via the the SRAM to the firmware.
33 *
34 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35 * The 4 tx data rings allow for prioritization QoS.
36 *
37 * The rx data ring consists of 32 dma buffers. Two registers are used to
38 * indicate where in the ring the driver and the firmware are up to. The
39 * driver sets the initial read index (reg1) and the initial write index (reg2),
40 * the firmware updates the read index (reg1) on rx of a packet and fires an
41 * interrupt. The driver then processes the buffers starting at reg1 indicating
42 * to the firmware which buffers have been accessed by updating reg2. At the
43 * same time allocating new memory for the processed buffer.
44 *
45 * A similar thing happens with the tx rings. The difference is the firmware
46 * stop processing buffers once the queue is full and until confirmation
47 * of a successful transmition (tx_intr) has occurred.
48 *
49 * The command ring operates in the same manner as the tx queues.
50 *
51 * All communication direct to the card (ie eeprom) is classed as Stage1
52 * communication
53 *
54 * All communication via the firmware to the card is classed as State2.
55 * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56 * firmware. The bootstrap firmware and runtime firmware are loaded
57 * from host memory via dma to the card then told to execute. From this point
58 * on the majority of communications between the driver and the card goes
59 * via the firmware.
60 */
61
62#include <sys/param.h>
63#include <sys/sysctl.h>
64#include <sys/sockio.h>
65#include <sys/mbuf.h>
66#include <sys/kernel.h>
67#include <sys/socket.h>
68#include <sys/systm.h>
69#include <sys/malloc.h>
70#include <sys/queue.h>
71#include <sys/taskqueue.h>
72#include <sys/module.h>
73#include <sys/bus.h>
74#include <sys/endian.h>
75#include <sys/linker.h>
76#include <sys/firmware.h>
77
78#include <machine/bus.h>
79#include <machine/resource.h>
80#include <sys/rman.h>
81
82#include <dev/pci/pcireg.h>
83#include <dev/pci/pcivar.h>
84
85#include <net/bpf.h>
86#include <net/if.h>
87#include <net/if_arp.h>
88#include <net/ethernet.h>
89#include <net/if_dl.h>
90#include <net/if_media.h>
91#include <net/if_types.h>
92
93#include <net80211/ieee80211_var.h>
94#include <net80211/ieee80211_radiotap.h>
95#include <net80211/ieee80211_regdomain.h>
96#include <net80211/ieee80211_ratectl.h>
97
98#include <netinet/in.h>
99#include <netinet/in_systm.h>
100#include <netinet/in_var.h>
101#include <netinet/ip.h>
102#include <netinet/if_ether.h>
103
104#include <dev/wpi/if_wpireg.h>
105#include <dev/wpi/if_wpivar.h>
106
107#define WPI_DEBUG
108
109#ifdef WPI_DEBUG
110#define DPRINTF(x)	do { if (wpi_debug != 0) printf x; } while (0)
111#define DPRINTFN(n, x)	do { if (wpi_debug & n) printf x; } while (0)
112#define	WPI_DEBUG_SET	(wpi_debug != 0)
113
114enum {
115	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
116	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
117	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
118	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
119	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
120	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
121	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
122	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
123	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
124	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
125	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
126	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
127	WPI_DEBUG_ANY		= 0xffffffff
128};
129
130static int wpi_debug = 0;
131SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
132TUNABLE_INT("debug.wpi", &wpi_debug);
133
134#else
135#define DPRINTF(x)
136#define DPRINTFN(n, x)
137#define WPI_DEBUG_SET	0
138#endif
139
140struct wpi_ident {
141	uint16_t	vendor;
142	uint16_t	device;
143	uint16_t	subdevice;
144	const char	*name;
145};
146
147static const struct wpi_ident wpi_ident_table[] = {
148	/* The below entries support ABG regardless of the subid */
149	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
150	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
151	/* The below entries only support BG */
152	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
153	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
154	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
155	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
156	{ 0, 0, 0, NULL }
157};
158
159static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
160		    const char name[IFNAMSIZ], int unit, int opmode,
161		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
162		    const uint8_t mac[IEEE80211_ADDR_LEN]);
163static void	wpi_vap_delete(struct ieee80211vap *);
164static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
165		    void **, bus_size_t, bus_size_t, int);
166static void	wpi_dma_contig_free(struct wpi_dma_info *);
167static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
168static int	wpi_alloc_shared(struct wpi_softc *);
169static void	wpi_free_shared(struct wpi_softc *);
170static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
171static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
172static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
173static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
174		    int, int);
175static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
176static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
177static void	wpi_newassoc(struct ieee80211_node *, int);
178static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
179static void	wpi_mem_lock(struct wpi_softc *);
180static void	wpi_mem_unlock(struct wpi_softc *);
181static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
182static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
183static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
184		    const uint32_t *, int);
185static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
186static int	wpi_alloc_fwmem(struct wpi_softc *);
187static void	wpi_free_fwmem(struct wpi_softc *);
188static int	wpi_load_firmware(struct wpi_softc *);
189static void	wpi_unload_firmware(struct wpi_softc *);
190static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
191static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
192		    struct wpi_rx_data *);
193static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
194static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
195static void	wpi_notif_intr(struct wpi_softc *);
196static void	wpi_intr(void *);
197static uint8_t	wpi_plcp_signal(int);
198static void	wpi_watchdog(void *);
199static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
200		    struct ieee80211_node *, int);
201static void	wpi_start(struct ifnet *);
202static void	wpi_start_locked(struct ifnet *);
203static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
204		    const struct ieee80211_bpf_params *);
205static void	wpi_scan_start(struct ieee80211com *);
206static void	wpi_scan_end(struct ieee80211com *);
207static void	wpi_set_channel(struct ieee80211com *);
208static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
209static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
210static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
211static void	wpi_read_eeprom(struct wpi_softc *,
212		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
213static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
214static void	wpi_read_eeprom_group(struct wpi_softc *, int);
215static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
216static int	wpi_wme_update(struct ieee80211com *);
217static int	wpi_mrr_setup(struct wpi_softc *);
218static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
219static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
220#if 0
221static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
222#endif
223static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
224static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
225static int	wpi_scan(struct wpi_softc *);
226static int	wpi_config(struct wpi_softc *);
227static void	wpi_stop_master(struct wpi_softc *);
228static int	wpi_power_up(struct wpi_softc *);
229static int	wpi_reset(struct wpi_softc *);
230static void	wpi_hwreset(void *, int);
231static void	wpi_rfreset(void *, int);
232static void	wpi_hw_config(struct wpi_softc *);
233static void	wpi_init(void *);
234static void	wpi_init_locked(struct wpi_softc *, int);
235static void	wpi_stop(struct wpi_softc *);
236static void	wpi_stop_locked(struct wpi_softc *);
237
238static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
239		    int);
240static void	wpi_calib_timeout(void *);
241static void	wpi_power_calibration(struct wpi_softc *, int);
242static int	wpi_get_power_index(struct wpi_softc *,
243		    struct wpi_power_group *, struct ieee80211_channel *, int);
244#ifdef WPI_DEBUG
245static const char *wpi_cmd_str(int);
246#endif
247static int wpi_probe(device_t);
248static int wpi_attach(device_t);
249static int wpi_detach(device_t);
250static int wpi_shutdown(device_t);
251static int wpi_suspend(device_t);
252static int wpi_resume(device_t);
253
254
255static device_method_t wpi_methods[] = {
256	/* Device interface */
257	DEVMETHOD(device_probe,		wpi_probe),
258	DEVMETHOD(device_attach,	wpi_attach),
259	DEVMETHOD(device_detach,	wpi_detach),
260	DEVMETHOD(device_shutdown,	wpi_shutdown),
261	DEVMETHOD(device_suspend,	wpi_suspend),
262	DEVMETHOD(device_resume,	wpi_resume),
263
264	{ 0, 0 }
265};
266
267static driver_t wpi_driver = {
268	"wpi",
269	wpi_methods,
270	sizeof (struct wpi_softc)
271};
272
273static devclass_t wpi_devclass;
274
275DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
276
277static const uint8_t wpi_ridx_to_plcp[] = {
278	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
279	/* R1-R4 (ral/ural is R4-R1) */
280	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
281	/* CCK: device-dependent */
282	10, 20, 55, 110
283};
284static const uint8_t wpi_ridx_to_rate[] = {
285	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
286	2, 4, 11, 22 /*CCK */
287};
288
289
290static int
291wpi_probe(device_t dev)
292{
293	const struct wpi_ident *ident;
294
295	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
296		if (pci_get_vendor(dev) == ident->vendor &&
297		    pci_get_device(dev) == ident->device) {
298			device_set_desc(dev, ident->name);
299			return 0;
300		}
301	}
302	return ENXIO;
303}
304
305/**
306 * Load the firmare image from disk to the allocated dma buffer.
307 * we also maintain the reference to the firmware pointer as there
308 * is times where we may need to reload the firmware but we are not
309 * in a context that can access the filesystem (ie taskq cause by restart)
310 *
311 * @return 0 on success, an errno on failure
312 */
313static int
314wpi_load_firmware(struct wpi_softc *sc)
315{
316	const struct firmware *fp;
317	struct wpi_dma_info *dma = &sc->fw_dma;
318	const struct wpi_firmware_hdr *hdr;
319	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
320	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
321	int error;
322
323	DPRINTFN(WPI_DEBUG_FIRMWARE,
324	    ("Attempting Loading Firmware from wpi_fw module\n"));
325
326	WPI_UNLOCK(sc);
327
328	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
329		device_printf(sc->sc_dev,
330		    "could not load firmware image 'wpifw'\n");
331		error = ENOENT;
332		WPI_LOCK(sc);
333		goto fail;
334	}
335
336	fp = sc->fw_fp;
337
338	WPI_LOCK(sc);
339
340	/* Validate the firmware is minimum a particular version */
341	if (fp->version < WPI_FW_MINVERSION) {
342	    device_printf(sc->sc_dev,
343			   "firmware version is too old. Need %d, got %d\n",
344			   WPI_FW_MINVERSION,
345			   fp->version);
346	    error = ENXIO;
347	    goto fail;
348	}
349
350	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
351		device_printf(sc->sc_dev,
352		    "firmware file too short: %zu bytes\n", fp->datasize);
353		error = ENXIO;
354		goto fail;
355	}
356
357	hdr = (const struct wpi_firmware_hdr *)fp->data;
358
359	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
360	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
361
362	rtextsz = le32toh(hdr->rtextsz);
363	rdatasz = le32toh(hdr->rdatasz);
364	itextsz = le32toh(hdr->itextsz);
365	idatasz = le32toh(hdr->idatasz);
366	btextsz = le32toh(hdr->btextsz);
367
368	/* check that all firmware segments are present */
369	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
370		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
371		device_printf(sc->sc_dev,
372		    "firmware file too short: %zu bytes\n", fp->datasize);
373		error = ENXIO; /* XXX appropriate error code? */
374		goto fail;
375	}
376
377	/* get pointers to firmware segments */
378	rtext = (const uint8_t *)(hdr + 1);
379	rdata = rtext + rtextsz;
380	itext = rdata + rdatasz;
381	idata = itext + itextsz;
382	btext = idata + idatasz;
383
384	DPRINTFN(WPI_DEBUG_FIRMWARE,
385	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
386	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
387	     (le32toh(hdr->version) & 0xff000000) >> 24,
388	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
389	     (le32toh(hdr->version) & 0x0000ffff),
390	     rtextsz, rdatasz,
391	     itextsz, idatasz, btextsz));
392
393	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
394	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
395	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
396	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
397	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
398
399	/* sanity checks */
400	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
401	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
402	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
403	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
404	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
405	    (btextsz & 3) != 0) {
406		device_printf(sc->sc_dev, "firmware invalid\n");
407		error = EINVAL;
408		goto fail;
409	}
410
411	/* copy initialization images into pre-allocated DMA-safe memory */
412	memcpy(dma->vaddr, idata, idatasz);
413	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
414
415	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
416
417	/* tell adapter where to find initialization images */
418	wpi_mem_lock(sc);
419	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
420	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
421	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
422	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
423	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
424	wpi_mem_unlock(sc);
425
426	/* load firmware boot code */
427	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
428	    device_printf(sc->sc_dev, "Failed to load microcode\n");
429	    goto fail;
430	}
431
432	/* now press "execute" */
433	WPI_WRITE(sc, WPI_RESET, 0);
434
435	/* wait at most one second for the first alive notification */
436	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
437		device_printf(sc->sc_dev,
438		    "timeout waiting for adapter to initialize\n");
439		goto fail;
440	}
441
442	/* copy runtime images into pre-allocated DMA-sage memory */
443	memcpy(dma->vaddr, rdata, rdatasz);
444	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
445	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
446
447	/* tell adapter where to find runtime images */
448	wpi_mem_lock(sc);
449	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
450	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
451	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
452	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
453	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
454	wpi_mem_unlock(sc);
455
456	/* wait at most one second for the first alive notification */
457	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
458		device_printf(sc->sc_dev,
459		    "timeout waiting for adapter to initialize2\n");
460		goto fail;
461	}
462
463	DPRINTFN(WPI_DEBUG_FIRMWARE,
464	    ("Firmware loaded to driver successfully\n"));
465	return error;
466fail:
467	wpi_unload_firmware(sc);
468	return error;
469}
470
471/**
472 * Free the referenced firmware image
473 */
474static void
475wpi_unload_firmware(struct wpi_softc *sc)
476{
477
478	if (sc->fw_fp) {
479		WPI_UNLOCK(sc);
480		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
481		WPI_LOCK(sc);
482		sc->fw_fp = NULL;
483	}
484}
485
486static int
487wpi_attach(device_t dev)
488{
489	struct wpi_softc *sc = device_get_softc(dev);
490	struct ifnet *ifp;
491	struct ieee80211com *ic;
492	int ac, error, supportsa = 1;
493	uint32_t tmp;
494	const struct wpi_ident *ident;
495	uint8_t macaddr[IEEE80211_ADDR_LEN];
496
497	sc->sc_dev = dev;
498
499	if (bootverbose || WPI_DEBUG_SET)
500	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
501
502	/*
503	 * Some card's only support 802.11b/g not a, check to see if
504	 * this is one such card. A 0x0 in the subdevice table indicates
505	 * the entire subdevice range is to be ignored.
506	 */
507	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
508		if (ident->subdevice &&
509		    pci_get_subdevice(dev) == ident->subdevice) {
510		    supportsa = 0;
511		    break;
512		}
513	}
514
515	/* Create the tasks that can be queued */
516	TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc);
517	TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc);
518
519	WPI_LOCK_INIT(sc);
520
521	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
522	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
523
524	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
525		device_printf(dev, "chip is in D%d power mode "
526		    "-- setting to D0\n", pci_get_powerstate(dev));
527		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
528	}
529
530	/* disable the retry timeout register */
531	pci_write_config(dev, 0x41, 0, 1);
532
533	/* enable bus-mastering */
534	pci_enable_busmaster(dev);
535
536	sc->mem_rid = PCIR_BAR(0);
537	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
538	    RF_ACTIVE);
539	if (sc->mem == NULL) {
540		device_printf(dev, "could not allocate memory resource\n");
541		error = ENOMEM;
542		goto fail;
543	}
544
545	sc->sc_st = rman_get_bustag(sc->mem);
546	sc->sc_sh = rman_get_bushandle(sc->mem);
547
548	sc->irq_rid = 0;
549	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
550	    RF_ACTIVE | RF_SHAREABLE);
551	if (sc->irq == NULL) {
552		device_printf(dev, "could not allocate interrupt resource\n");
553		error = ENOMEM;
554		goto fail;
555	}
556
557	/*
558	 * Allocate DMA memory for firmware transfers.
559	 */
560	if ((error = wpi_alloc_fwmem(sc)) != 0) {
561		printf(": could not allocate firmware memory\n");
562		error = ENOMEM;
563		goto fail;
564	}
565
566	/*
567	 * Put adapter into a known state.
568	 */
569	if ((error = wpi_reset(sc)) != 0) {
570		device_printf(dev, "could not reset adapter\n");
571		goto fail;
572	}
573
574	wpi_mem_lock(sc);
575	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
576	if (bootverbose || WPI_DEBUG_SET)
577	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
578
579	wpi_mem_unlock(sc);
580
581	/* Allocate shared page */
582	if ((error = wpi_alloc_shared(sc)) != 0) {
583		device_printf(dev, "could not allocate shared page\n");
584		goto fail;
585	}
586
587	/* tx data queues  - 4 for QoS purposes */
588	for (ac = 0; ac < WME_NUM_AC; ac++) {
589		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
590		if (error != 0) {
591		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
592		    goto fail;
593		}
594	}
595
596	/* command queue to talk to the card's firmware */
597	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
598	if (error != 0) {
599		device_printf(dev, "could not allocate command ring\n");
600		goto fail;
601	}
602
603	/* receive data queue */
604	error = wpi_alloc_rx_ring(sc, &sc->rxq);
605	if (error != 0) {
606		device_printf(dev, "could not allocate Rx ring\n");
607		goto fail;
608	}
609
610	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
611	if (ifp == NULL) {
612		device_printf(dev, "can not if_alloc()\n");
613		error = ENOMEM;
614		goto fail;
615	}
616	ic = ifp->if_l2com;
617
618	ic->ic_ifp = ifp;
619	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
620	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
621
622	/* set device capabilities */
623	ic->ic_caps =
624		  IEEE80211_C_STA		/* station mode supported */
625		| IEEE80211_C_MONITOR		/* monitor mode supported */
626		| IEEE80211_C_TXPMGT		/* tx power management */
627		| IEEE80211_C_SHSLOT		/* short slot time supported */
628		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
629		| IEEE80211_C_WPA		/* 802.11i */
630/* XXX looks like WME is partly supported? */
631#if 0
632		| IEEE80211_C_IBSS		/* IBSS mode support */
633		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
634		| IEEE80211_C_WME		/* 802.11e */
635		| IEEE80211_C_HOSTAP		/* Host access point mode */
636#endif
637		;
638
639	/*
640	 * Read in the eeprom and also setup the channels for
641	 * net80211. We don't set the rates as net80211 does this for us
642	 */
643	wpi_read_eeprom(sc, macaddr);
644
645	if (bootverbose || WPI_DEBUG_SET) {
646	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
647	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
648			  sc->type > 1 ? 'B': '?');
649	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
650			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
651	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
652			  supportsa ? "does" : "does not");
653
654	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
655	       what sc->rev really represents - benjsc 20070615 */
656	}
657
658	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
659	ifp->if_softc = sc;
660	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
661	ifp->if_init = wpi_init;
662	ifp->if_ioctl = wpi_ioctl;
663	ifp->if_start = wpi_start;
664	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
665	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
666	IFQ_SET_READY(&ifp->if_snd);
667
668	ieee80211_ifattach(ic, macaddr);
669	/* override default methods */
670	ic->ic_raw_xmit = wpi_raw_xmit;
671	ic->ic_newassoc = wpi_newassoc;
672	ic->ic_wme.wme_update = wpi_wme_update;
673	ic->ic_scan_start = wpi_scan_start;
674	ic->ic_scan_end = wpi_scan_end;
675	ic->ic_set_channel = wpi_set_channel;
676	ic->ic_scan_curchan = wpi_scan_curchan;
677	ic->ic_scan_mindwell = wpi_scan_mindwell;
678
679	ic->ic_vap_create = wpi_vap_create;
680	ic->ic_vap_delete = wpi_vap_delete;
681
682	ieee80211_radiotap_attach(ic,
683	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
684		WPI_TX_RADIOTAP_PRESENT,
685	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
686		WPI_RX_RADIOTAP_PRESENT);
687
688	/*
689	 * Hook our interrupt after all initialization is complete.
690	 */
691	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
692	    NULL, wpi_intr, sc, &sc->sc_ih);
693	if (error != 0) {
694		device_printf(dev, "could not set up interrupt\n");
695		goto fail;
696	}
697
698	if (bootverbose)
699		ieee80211_announce(ic);
700#ifdef XXX_DEBUG
701	ieee80211_announce_channels(ic);
702#endif
703	return 0;
704
705fail:	wpi_detach(dev);
706	return ENXIO;
707}
708
709static int
710wpi_detach(device_t dev)
711{
712	struct wpi_softc *sc = device_get_softc(dev);
713	struct ifnet *ifp = sc->sc_ifp;
714	struct ieee80211com *ic;
715	int ac;
716
717	if (ifp != NULL) {
718		ic = ifp->if_l2com;
719
720		ieee80211_draintask(ic, &sc->sc_restarttask);
721		ieee80211_draintask(ic, &sc->sc_radiotask);
722		wpi_stop(sc);
723		callout_drain(&sc->watchdog_to);
724		callout_drain(&sc->calib_to);
725		ieee80211_ifdetach(ic);
726	}
727
728	WPI_LOCK(sc);
729	if (sc->txq[0].data_dmat) {
730		for (ac = 0; ac < WME_NUM_AC; ac++)
731			wpi_free_tx_ring(sc, &sc->txq[ac]);
732
733		wpi_free_tx_ring(sc, &sc->cmdq);
734		wpi_free_rx_ring(sc, &sc->rxq);
735		wpi_free_shared(sc);
736	}
737
738	if (sc->fw_fp != NULL) {
739		wpi_unload_firmware(sc);
740	}
741
742	if (sc->fw_dma.tag)
743		wpi_free_fwmem(sc);
744	WPI_UNLOCK(sc);
745
746	if (sc->irq != NULL) {
747		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
748		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
749	}
750
751	if (sc->mem != NULL)
752		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
753
754	if (ifp != NULL)
755		if_free(ifp);
756
757	WPI_LOCK_DESTROY(sc);
758
759	return 0;
760}
761
762static struct ieee80211vap *
763wpi_vap_create(struct ieee80211com *ic,
764	const char name[IFNAMSIZ], int unit, int opmode, int flags,
765	const uint8_t bssid[IEEE80211_ADDR_LEN],
766	const uint8_t mac[IEEE80211_ADDR_LEN])
767{
768	struct wpi_vap *wvp;
769	struct ieee80211vap *vap;
770
771	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
772		return NULL;
773	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
774	    M_80211_VAP, M_NOWAIT | M_ZERO);
775	if (wvp == NULL)
776		return NULL;
777	vap = &wvp->vap;
778	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
779	/* override with driver methods */
780	wvp->newstate = vap->iv_newstate;
781	vap->iv_newstate = wpi_newstate;
782
783	ieee80211_ratectl_init(vap);
784	/* complete setup */
785	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
786	ic->ic_opmode = opmode;
787	return vap;
788}
789
790static void
791wpi_vap_delete(struct ieee80211vap *vap)
792{
793	struct wpi_vap *wvp = WPI_VAP(vap);
794
795	ieee80211_ratectl_deinit(vap);
796	ieee80211_vap_detach(vap);
797	free(wvp, M_80211_VAP);
798}
799
800static void
801wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
802{
803	if (error != 0)
804		return;
805
806	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
807
808	*(bus_addr_t *)arg = segs[0].ds_addr;
809}
810
811/*
812 * Allocates a contiguous block of dma memory of the requested size and
813 * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
814 * allocations greater than 4096 may fail. Hence if the requested alignment is
815 * greater we allocate 'alignment' size extra memory and shift the vaddr and
816 * paddr after the dma load. This bypasses the problem at the cost of a little
817 * more memory.
818 */
819static int
820wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
821    void **kvap, bus_size_t size, bus_size_t alignment, int flags)
822{
823	int error;
824	bus_size_t align;
825	bus_size_t reqsize;
826
827	DPRINTFN(WPI_DEBUG_DMA,
828	    ("Size: %zd - alignment %zd\n", size, alignment));
829
830	dma->size = size;
831	dma->tag = NULL;
832
833	if (alignment > 4096) {
834		align = PAGE_SIZE;
835		reqsize = size + alignment;
836	} else {
837		align = alignment;
838		reqsize = size;
839	}
840	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
841	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
842	    NULL, NULL, reqsize,
843	    1, reqsize, flags,
844	    NULL, NULL, &dma->tag);
845	if (error != 0) {
846		device_printf(sc->sc_dev,
847		    "could not create shared page DMA tag\n");
848		goto fail;
849	}
850	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
851	    flags | BUS_DMA_ZERO, &dma->map);
852	if (error != 0) {
853		device_printf(sc->sc_dev,
854		    "could not allocate shared page DMA memory\n");
855		goto fail;
856	}
857
858	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
859	    reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
860
861	/* Save the original pointers so we can free all the memory */
862	dma->paddr = dma->paddr_start;
863	dma->vaddr = dma->vaddr_start;
864
865	/*
866	 * Check the alignment and increment by 4096 until we get the
867	 * requested alignment. Fail if can't obtain the alignment
868	 * we requested.
869	 */
870	if ((dma->paddr & (alignment -1 )) != 0) {
871		int i;
872
873		for (i = 0; i < alignment / 4096; i++) {
874			if ((dma->paddr & (alignment - 1 )) == 0)
875				break;
876			dma->paddr += 4096;
877			dma->vaddr += 4096;
878		}
879		if (i == alignment / 4096) {
880			device_printf(sc->sc_dev,
881			    "alignment requirement was not satisfied\n");
882			goto fail;
883		}
884	}
885
886	if (error != 0) {
887		device_printf(sc->sc_dev,
888		    "could not load shared page DMA map\n");
889		goto fail;
890	}
891
892	if (kvap != NULL)
893		*kvap = dma->vaddr;
894
895	return 0;
896
897fail:
898	wpi_dma_contig_free(dma);
899	return error;
900}
901
902static void
903wpi_dma_contig_free(struct wpi_dma_info *dma)
904{
905	if (dma->tag) {
906		if (dma->map != NULL) {
907			if (dma->paddr_start != 0) {
908				bus_dmamap_sync(dma->tag, dma->map,
909				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
910				bus_dmamap_unload(dma->tag, dma->map);
911			}
912			bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
913		}
914		bus_dma_tag_destroy(dma->tag);
915	}
916}
917
918/*
919 * Allocate a shared page between host and NIC.
920 */
921static int
922wpi_alloc_shared(struct wpi_softc *sc)
923{
924	int error;
925
926	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
927	    (void **)&sc->shared, sizeof (struct wpi_shared),
928	    PAGE_SIZE,
929	    BUS_DMA_NOWAIT);
930
931	if (error != 0) {
932		device_printf(sc->sc_dev,
933		    "could not allocate shared area DMA memory\n");
934	}
935
936	return error;
937}
938
939static void
940wpi_free_shared(struct wpi_softc *sc)
941{
942	wpi_dma_contig_free(&sc->shared_dma);
943}
944
945static int
946wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
947{
948
949	int i, error;
950
951	ring->cur = 0;
952
953	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
954	    (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
955	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
956
957	if (error != 0) {
958		device_printf(sc->sc_dev,
959		    "%s: could not allocate rx ring DMA memory, error %d\n",
960		    __func__, error);
961		goto fail;
962	}
963
964        error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
965	    BUS_SPACE_MAXADDR_32BIT,
966            BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
967            MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
968        if (error != 0) {
969                device_printf(sc->sc_dev,
970		    "%s: bus_dma_tag_create_failed, error %d\n",
971		    __func__, error);
972                goto fail;
973        }
974
975	/*
976	 * Setup Rx buffers.
977	 */
978	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
979		struct wpi_rx_data *data = &ring->data[i];
980		struct mbuf *m;
981		bus_addr_t paddr;
982
983		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
984		if (error != 0) {
985			device_printf(sc->sc_dev,
986			    "%s: bus_dmamap_create failed, error %d\n",
987			    __func__, error);
988			goto fail;
989		}
990		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
991		if (m == NULL) {
992			device_printf(sc->sc_dev,
993			   "%s: could not allocate rx mbuf\n", __func__);
994			error = ENOMEM;
995			goto fail;
996		}
997		/* map page */
998		error = bus_dmamap_load(ring->data_dmat, data->map,
999		    mtod(m, caddr_t), MJUMPAGESIZE,
1000		    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1001		if (error != 0 && error != EFBIG) {
1002			device_printf(sc->sc_dev,
1003			    "%s: bus_dmamap_load failed, error %d\n",
1004			    __func__, error);
1005			m_freem(m);
1006			error = ENOMEM;	/* XXX unique code */
1007			goto fail;
1008		}
1009		bus_dmamap_sync(ring->data_dmat, data->map,
1010		    BUS_DMASYNC_PREWRITE);
1011
1012		data->m = m;
1013		ring->desc[i] = htole32(paddr);
1014	}
1015	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1016	    BUS_DMASYNC_PREWRITE);
1017	return 0;
1018fail:
1019	wpi_free_rx_ring(sc, ring);
1020	return error;
1021}
1022
1023static void
1024wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1025{
1026	int ntries;
1027
1028	wpi_mem_lock(sc);
1029
1030	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1031
1032	for (ntries = 0; ntries < 100; ntries++) {
1033		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1034			break;
1035		DELAY(10);
1036	}
1037
1038	wpi_mem_unlock(sc);
1039
1040#ifdef WPI_DEBUG
1041	if (ntries == 100 && wpi_debug > 0)
1042		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1043#endif
1044
1045	ring->cur = 0;
1046}
1047
1048static void
1049wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1050{
1051	int i;
1052
1053	wpi_dma_contig_free(&ring->desc_dma);
1054
1055	for (i = 0; i < WPI_RX_RING_COUNT; i++)
1056		if (ring->data[i].m != NULL)
1057			m_freem(ring->data[i].m);
1058}
1059
1060static int
1061wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1062	int qid)
1063{
1064	struct wpi_tx_data *data;
1065	int i, error;
1066
1067	ring->qid = qid;
1068	ring->count = count;
1069	ring->queued = 0;
1070	ring->cur = 0;
1071	ring->data = NULL;
1072
1073	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1074		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1075		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1076
1077	if (error != 0) {
1078	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1079	    goto fail;
1080	}
1081
1082	/* update shared page with ring's base address */
1083	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1084
1085	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1086		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1087		BUS_DMA_NOWAIT);
1088
1089	if (error != 0) {
1090		device_printf(sc->sc_dev,
1091		    "could not allocate tx command DMA memory\n");
1092		goto fail;
1093	}
1094
1095	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1096	    M_NOWAIT | M_ZERO);
1097	if (ring->data == NULL) {
1098		device_printf(sc->sc_dev,
1099		    "could not allocate tx data slots\n");
1100		goto fail;
1101	}
1102
1103	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1104	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1105	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1106	    &ring->data_dmat);
1107	if (error != 0) {
1108		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1109		goto fail;
1110	}
1111
1112	for (i = 0; i < count; i++) {
1113		data = &ring->data[i];
1114
1115		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1116		if (error != 0) {
1117			device_printf(sc->sc_dev,
1118			    "could not create tx buf DMA map\n");
1119			goto fail;
1120		}
1121		bus_dmamap_sync(ring->data_dmat, data->map,
1122		    BUS_DMASYNC_PREWRITE);
1123	}
1124
1125	return 0;
1126
1127fail:
1128	wpi_free_tx_ring(sc, ring);
1129	return error;
1130}
1131
1132static void
1133wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1134{
1135	struct wpi_tx_data *data;
1136	int i, ntries;
1137
1138	wpi_mem_lock(sc);
1139
1140	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1141	for (ntries = 0; ntries < 100; ntries++) {
1142		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1143			break;
1144		DELAY(10);
1145	}
1146#ifdef WPI_DEBUG
1147	if (ntries == 100 && wpi_debug > 0)
1148		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1149		    ring->qid);
1150#endif
1151	wpi_mem_unlock(sc);
1152
1153	for (i = 0; i < ring->count; i++) {
1154		data = &ring->data[i];
1155
1156		if (data->m != NULL) {
1157			bus_dmamap_unload(ring->data_dmat, data->map);
1158			m_freem(data->m);
1159			data->m = NULL;
1160		}
1161	}
1162
1163	ring->queued = 0;
1164	ring->cur = 0;
1165}
1166
1167static void
1168wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1169{
1170	struct wpi_tx_data *data;
1171	int i;
1172
1173	wpi_dma_contig_free(&ring->desc_dma);
1174	wpi_dma_contig_free(&ring->cmd_dma);
1175
1176	if (ring->data != NULL) {
1177		for (i = 0; i < ring->count; i++) {
1178			data = &ring->data[i];
1179
1180			if (data->m != NULL) {
1181				bus_dmamap_sync(ring->data_dmat, data->map,
1182				    BUS_DMASYNC_POSTWRITE);
1183				bus_dmamap_unload(ring->data_dmat, data->map);
1184				m_freem(data->m);
1185				data->m = NULL;
1186			}
1187		}
1188		free(ring->data, M_DEVBUF);
1189	}
1190
1191	if (ring->data_dmat != NULL)
1192		bus_dma_tag_destroy(ring->data_dmat);
1193}
1194
1195static int
1196wpi_shutdown(device_t dev)
1197{
1198	struct wpi_softc *sc = device_get_softc(dev);
1199
1200	WPI_LOCK(sc);
1201	wpi_stop_locked(sc);
1202	wpi_unload_firmware(sc);
1203	WPI_UNLOCK(sc);
1204
1205	return 0;
1206}
1207
1208static int
1209wpi_suspend(device_t dev)
1210{
1211	struct wpi_softc *sc = device_get_softc(dev);
1212
1213	wpi_stop(sc);
1214	return 0;
1215}
1216
1217static int
1218wpi_resume(device_t dev)
1219{
1220	struct wpi_softc *sc = device_get_softc(dev);
1221	struct ifnet *ifp = sc->sc_ifp;
1222
1223	pci_write_config(dev, 0x41, 0, 1);
1224
1225	if (ifp->if_flags & IFF_UP) {
1226		wpi_init(ifp->if_softc);
1227		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1228			wpi_start(ifp);
1229	}
1230	return 0;
1231}
1232
1233/**
1234 * Called by net80211 when ever there is a change to 80211 state machine
1235 */
1236static int
1237wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1238{
1239	struct wpi_vap *wvp = WPI_VAP(vap);
1240	struct ieee80211com *ic = vap->iv_ic;
1241	struct ifnet *ifp = ic->ic_ifp;
1242	struct wpi_softc *sc = ifp->if_softc;
1243	int error;
1244
1245	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1246		ieee80211_state_name[vap->iv_state],
1247		ieee80211_state_name[nstate], sc->flags));
1248
1249	IEEE80211_UNLOCK(ic);
1250	WPI_LOCK(sc);
1251	if (nstate == IEEE80211_S_AUTH) {
1252		/* The node must be registered in the firmware before auth */
1253		error = wpi_auth(sc, vap);
1254		if (error != 0) {
1255			device_printf(sc->sc_dev,
1256			    "%s: could not move to auth state, error %d\n",
1257			    __func__, error);
1258		}
1259	}
1260	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1261		error = wpi_run(sc, vap);
1262		if (error != 0) {
1263			device_printf(sc->sc_dev,
1264			    "%s: could not move to run state, error %d\n",
1265			    __func__, error);
1266		}
1267	}
1268	if (nstate == IEEE80211_S_RUN) {
1269		/* RUN -> RUN transition; just restart the timers */
1270		wpi_calib_timeout(sc);
1271		/* XXX split out rate control timer */
1272	}
1273	WPI_UNLOCK(sc);
1274	IEEE80211_LOCK(ic);
1275	return wvp->newstate(vap, nstate, arg);
1276}
1277
1278/*
1279 * Grab exclusive access to NIC memory.
1280 */
1281static void
1282wpi_mem_lock(struct wpi_softc *sc)
1283{
1284	int ntries;
1285	uint32_t tmp;
1286
1287	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1288	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1289
1290	/* spin until we actually get the lock */
1291	for (ntries = 0; ntries < 100; ntries++) {
1292		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1293			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1294			break;
1295		DELAY(10);
1296	}
1297	if (ntries == 100)
1298		device_printf(sc->sc_dev, "could not lock memory\n");
1299}
1300
1301/*
1302 * Release lock on NIC memory.
1303 */
1304static void
1305wpi_mem_unlock(struct wpi_softc *sc)
1306{
1307	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1308	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1309}
1310
1311static uint32_t
1312wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1313{
1314	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1315	return WPI_READ(sc, WPI_READ_MEM_DATA);
1316}
1317
1318static void
1319wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1320{
1321	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1322	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1323}
1324
1325static void
1326wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1327    const uint32_t *data, int wlen)
1328{
1329	for (; wlen > 0; wlen--, data++, addr+=4)
1330		wpi_mem_write(sc, addr, *data);
1331}
1332
1333/*
1334 * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1335 * using the traditional bit-bang method. Data is read up until len bytes have
1336 * been obtained.
1337 */
1338static uint16_t
1339wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1340{
1341	int ntries;
1342	uint32_t val;
1343	uint8_t *out = data;
1344
1345	wpi_mem_lock(sc);
1346
1347	for (; len > 0; len -= 2, addr++) {
1348		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1349
1350		for (ntries = 0; ntries < 10; ntries++) {
1351			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1352				break;
1353			DELAY(5);
1354		}
1355
1356		if (ntries == 10) {
1357			device_printf(sc->sc_dev, "could not read EEPROM\n");
1358			return ETIMEDOUT;
1359		}
1360
1361		*out++= val >> 16;
1362		if (len > 1)
1363			*out ++= val >> 24;
1364	}
1365
1366	wpi_mem_unlock(sc);
1367
1368	return 0;
1369}
1370
1371/*
1372 * The firmware text and data segments are transferred to the NIC using DMA.
1373 * The driver just copies the firmware into DMA-safe memory and tells the NIC
1374 * where to find it.  Once the NIC has copied the firmware into its internal
1375 * memory, we can free our local copy in the driver.
1376 */
1377static int
1378wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1379{
1380	int error, ntries;
1381
1382	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1383
1384	size /= sizeof(uint32_t);
1385
1386	wpi_mem_lock(sc);
1387
1388	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1389	    (const uint32_t *)fw, size);
1390
1391	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1392	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1393	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1394
1395	/* run microcode */
1396	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1397
1398	/* wait while the adapter is busy copying the firmware */
1399	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1400		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1401		DPRINTFN(WPI_DEBUG_HW,
1402		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1403		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1404		if (status & WPI_TX_IDLE(6)) {
1405			DPRINTFN(WPI_DEBUG_HW,
1406			    ("Status Match! - ntries = %d\n", ntries));
1407			break;
1408		}
1409		DELAY(10);
1410	}
1411	if (ntries == 1000) {
1412		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1413		error = ETIMEDOUT;
1414	}
1415
1416	/* start the microcode executing */
1417	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1418
1419	wpi_mem_unlock(sc);
1420
1421	return (error);
1422}
1423
1424static void
1425wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1426	struct wpi_rx_data *data)
1427{
1428	struct ifnet *ifp = sc->sc_ifp;
1429	struct ieee80211com *ic = ifp->if_l2com;
1430	struct wpi_rx_ring *ring = &sc->rxq;
1431	struct wpi_rx_stat *stat;
1432	struct wpi_rx_head *head;
1433	struct wpi_rx_tail *tail;
1434	struct ieee80211_node *ni;
1435	struct mbuf *m, *mnew;
1436	bus_addr_t paddr;
1437	int error;
1438
1439	stat = (struct wpi_rx_stat *)(desc + 1);
1440
1441	if (stat->len > WPI_STAT_MAXLEN) {
1442		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1443		ifp->if_ierrors++;
1444		return;
1445	}
1446
1447	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1448	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1449
1450	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1451	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1452	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1453	    (uintmax_t)le64toh(tail->tstamp)));
1454
1455	/* discard Rx frames with bad CRC early */
1456	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1457		DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1458		    le32toh(tail->flags)));
1459		ifp->if_ierrors++;
1460		return;
1461	}
1462	if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1463		DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1464		    le16toh(head->len)));
1465		ifp->if_ierrors++;
1466		return;
1467	}
1468
1469	/* XXX don't need mbuf, just dma buffer */
1470	mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1471	if (mnew == NULL) {
1472		DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1473		    __func__));
1474		ifp->if_ierrors++;
1475		return;
1476	}
1477	error = bus_dmamap_load(ring->data_dmat, data->map,
1478	    mtod(mnew, caddr_t), MJUMPAGESIZE,
1479	    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1480	if (error != 0 && error != EFBIG) {
1481		device_printf(sc->sc_dev,
1482		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1483		m_freem(mnew);
1484		ifp->if_ierrors++;
1485		return;
1486	}
1487	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1488
1489	/* finalize mbuf and swap in new one */
1490	m = data->m;
1491	m->m_pkthdr.rcvif = ifp;
1492	m->m_data = (caddr_t)(head + 1);
1493	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1494
1495	data->m = mnew;
1496	/* update Rx descriptor */
1497	ring->desc[ring->cur] = htole32(paddr);
1498
1499	if (ieee80211_radiotap_active(ic)) {
1500		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1501
1502		tap->wr_flags = 0;
1503		tap->wr_chan_freq =
1504			htole16(ic->ic_channels[head->chan].ic_freq);
1505		tap->wr_chan_flags =
1506			htole16(ic->ic_channels[head->chan].ic_flags);
1507		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1508		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1509		tap->wr_tsft = tail->tstamp;
1510		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1511		switch (head->rate) {
1512		/* CCK rates */
1513		case  10: tap->wr_rate =   2; break;
1514		case  20: tap->wr_rate =   4; break;
1515		case  55: tap->wr_rate =  11; break;
1516		case 110: tap->wr_rate =  22; break;
1517		/* OFDM rates */
1518		case 0xd: tap->wr_rate =  12; break;
1519		case 0xf: tap->wr_rate =  18; break;
1520		case 0x5: tap->wr_rate =  24; break;
1521		case 0x7: tap->wr_rate =  36; break;
1522		case 0x9: tap->wr_rate =  48; break;
1523		case 0xb: tap->wr_rate =  72; break;
1524		case 0x1: tap->wr_rate =  96; break;
1525		case 0x3: tap->wr_rate = 108; break;
1526		/* unknown rate: should not happen */
1527		default:  tap->wr_rate =   0;
1528		}
1529		if (le16toh(head->flags) & 0x4)
1530			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1531	}
1532
1533	WPI_UNLOCK(sc);
1534
1535	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1536	if (ni != NULL) {
1537		(void) ieee80211_input(ni, m, stat->rssi, 0);
1538		ieee80211_free_node(ni);
1539	} else
1540		(void) ieee80211_input_all(ic, m, stat->rssi, 0);
1541
1542	WPI_LOCK(sc);
1543}
1544
1545static void
1546wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1547{
1548	struct ifnet *ifp = sc->sc_ifp;
1549	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1550	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1551	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1552	struct ieee80211_node *ni = txdata->ni;
1553	struct ieee80211vap *vap = ni->ni_vap;
1554	int retrycnt = 0;
1555
1556	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1557	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1558	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1559	    le32toh(stat->status)));
1560
1561	/*
1562	 * Update rate control statistics for the node.
1563	 * XXX we should not count mgmt frames since they're always sent at
1564	 * the lowest available bit-rate.
1565	 * XXX frames w/o ACK shouldn't be used either
1566	 */
1567	if (stat->ntries > 0) {
1568		DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1569		retrycnt = 1;
1570	}
1571	ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
1572	    &retrycnt, NULL);
1573
1574	/* XXX oerrors should only count errors !maxtries */
1575	if ((le32toh(stat->status) & 0xff) != 1)
1576		ifp->if_oerrors++;
1577	else
1578		ifp->if_opackets++;
1579
1580	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1581	bus_dmamap_unload(ring->data_dmat, txdata->map);
1582	/* XXX handle M_TXCB? */
1583	m_freem(txdata->m);
1584	txdata->m = NULL;
1585	ieee80211_free_node(txdata->ni);
1586	txdata->ni = NULL;
1587
1588	ring->queued--;
1589
1590	sc->sc_tx_timer = 0;
1591	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1592	wpi_start_locked(ifp);
1593}
1594
1595static void
1596wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1597{
1598	struct wpi_tx_ring *ring = &sc->cmdq;
1599	struct wpi_tx_data *data;
1600
1601	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1602				 "type=%s len=%d\n", desc->qid, desc->idx,
1603				 desc->flags, wpi_cmd_str(desc->type),
1604				 le32toh(desc->len)));
1605
1606	if ((desc->qid & 7) != 4)
1607		return;	/* not a command ack */
1608
1609	data = &ring->data[desc->idx];
1610
1611	/* if the command was mapped in a mbuf, free it */
1612	if (data->m != NULL) {
1613		bus_dmamap_unload(ring->data_dmat, data->map);
1614		m_freem(data->m);
1615		data->m = NULL;
1616	}
1617
1618	sc->flags &= ~WPI_FLAG_BUSY;
1619	wakeup(&ring->cmd[desc->idx]);
1620}
1621
1622static void
1623wpi_notif_intr(struct wpi_softc *sc)
1624{
1625	struct ifnet *ifp = sc->sc_ifp;
1626	struct ieee80211com *ic = ifp->if_l2com;
1627	struct wpi_rx_desc *desc;
1628	struct wpi_rx_data *data;
1629	uint32_t hw;
1630
1631	hw = le32toh(sc->shared->next);
1632	while (sc->rxq.cur != hw) {
1633		data = &sc->rxq.data[sc->rxq.cur];
1634		desc = (void *)data->m->m_ext.ext_buf;
1635
1636		DPRINTFN(WPI_DEBUG_NOTIFY,
1637			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1638			  desc->qid,
1639			  desc->idx,
1640			  desc->flags,
1641			  desc->type,
1642			  le32toh(desc->len)));
1643
1644		if (!(desc->qid & 0x80))	/* reply to a command */
1645			wpi_cmd_intr(sc, desc);
1646
1647		switch (desc->type) {
1648		case WPI_RX_DONE:
1649			/* a 802.11 frame was received */
1650			wpi_rx_intr(sc, desc, data);
1651			break;
1652
1653		case WPI_TX_DONE:
1654			/* a 802.11 frame has been transmitted */
1655			wpi_tx_intr(sc, desc);
1656			break;
1657
1658		case WPI_UC_READY:
1659		{
1660			struct wpi_ucode_info *uc =
1661				(struct wpi_ucode_info *)(desc + 1);
1662
1663			/* the microcontroller is ready */
1664			DPRINTF(("microcode alive notification version %x "
1665				"alive %x\n", le32toh(uc->version),
1666				le32toh(uc->valid)));
1667
1668			if (le32toh(uc->valid) != 1) {
1669				device_printf(sc->sc_dev,
1670				    "microcontroller initialization failed\n");
1671				wpi_stop_locked(sc);
1672			}
1673			break;
1674		}
1675		case WPI_STATE_CHANGED:
1676		{
1677			uint32_t *status = (uint32_t *)(desc + 1);
1678
1679			/* enabled/disabled notification */
1680			DPRINTF(("state changed to %x\n", le32toh(*status)));
1681
1682			if (le32toh(*status) & 1) {
1683				device_printf(sc->sc_dev,
1684				    "Radio transmitter is switched off\n");
1685				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1686				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1687				/* Disable firmware commands */
1688				WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1689			}
1690			break;
1691		}
1692		case WPI_START_SCAN:
1693		{
1694#ifdef WPI_DEBUG
1695			struct wpi_start_scan *scan =
1696				(struct wpi_start_scan *)(desc + 1);
1697#endif
1698
1699			DPRINTFN(WPI_DEBUG_SCANNING,
1700				 ("scanning channel %d status %x\n",
1701			    scan->chan, le32toh(scan->status)));
1702			break;
1703		}
1704		case WPI_STOP_SCAN:
1705		{
1706#ifdef WPI_DEBUG
1707			struct wpi_stop_scan *scan =
1708				(struct wpi_stop_scan *)(desc + 1);
1709#endif
1710			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1711
1712			DPRINTFN(WPI_DEBUG_SCANNING,
1713			    ("scan finished nchan=%d status=%d chan=%d\n",
1714			     scan->nchan, scan->status, scan->chan));
1715
1716			sc->sc_scan_timer = 0;
1717			ieee80211_scan_next(vap);
1718			break;
1719		}
1720		case WPI_MISSED_BEACON:
1721		{
1722			struct wpi_missed_beacon *beacon =
1723				(struct wpi_missed_beacon *)(desc + 1);
1724			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1725
1726			if (le32toh(beacon->consecutive) >=
1727			    vap->iv_bmissthreshold) {
1728				DPRINTF(("Beacon miss: %u >= %u\n",
1729					 le32toh(beacon->consecutive),
1730					 vap->iv_bmissthreshold));
1731				ieee80211_beacon_miss(ic);
1732			}
1733			break;
1734		}
1735		}
1736
1737		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1738	}
1739
1740	/* tell the firmware what we have processed */
1741	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1742	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1743}
1744
1745static void
1746wpi_intr(void *arg)
1747{
1748	struct wpi_softc *sc = arg;
1749	uint32_t r;
1750
1751	WPI_LOCK(sc);
1752
1753	r = WPI_READ(sc, WPI_INTR);
1754	if (r == 0 || r == 0xffffffff) {
1755		WPI_UNLOCK(sc);
1756		return;
1757	}
1758
1759	/* disable interrupts */
1760	WPI_WRITE(sc, WPI_MASK, 0);
1761	/* ack interrupts */
1762	WPI_WRITE(sc, WPI_INTR, r);
1763
1764	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1765		struct ifnet *ifp = sc->sc_ifp;
1766		struct ieee80211com *ic = ifp->if_l2com;
1767		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1768
1769		device_printf(sc->sc_dev, "fatal firmware error\n");
1770		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1771				"(Hardware Error)"));
1772		if (vap != NULL)
1773			ieee80211_cancel_scan(vap);
1774		ieee80211_runtask(ic, &sc->sc_restarttask);
1775		sc->flags &= ~WPI_FLAG_BUSY;
1776		WPI_UNLOCK(sc);
1777		return;
1778	}
1779
1780	if (r & WPI_RX_INTR)
1781		wpi_notif_intr(sc);
1782
1783	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1784		wakeup(sc);
1785
1786	/* re-enable interrupts */
1787	if (sc->sc_ifp->if_flags & IFF_UP)
1788		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1789
1790	WPI_UNLOCK(sc);
1791}
1792
1793static uint8_t
1794wpi_plcp_signal(int rate)
1795{
1796	switch (rate) {
1797	/* CCK rates (returned values are device-dependent) */
1798	case 2:		return 10;
1799	case 4:		return 20;
1800	case 11:	return 55;
1801	case 22:	return 110;
1802
1803	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1804	/* R1-R4 (ral/ural is R4-R1) */
1805	case 12:	return 0xd;
1806	case 18:	return 0xf;
1807	case 24:	return 0x5;
1808	case 36:	return 0x7;
1809	case 48:	return 0x9;
1810	case 72:	return 0xb;
1811	case 96:	return 0x1;
1812	case 108:	return 0x3;
1813
1814	/* unsupported rates (should not get there) */
1815	default:	return 0;
1816	}
1817}
1818
1819/* quickly determine if a given rate is CCK or OFDM */
1820#define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1821
1822/*
1823 * Construct the data packet for a transmit buffer and acutally put
1824 * the buffer onto the transmit ring, kicking the card to process the
1825 * the buffer.
1826 */
1827static int
1828wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1829	int ac)
1830{
1831	struct ieee80211vap *vap = ni->ni_vap;
1832	struct ifnet *ifp = sc->sc_ifp;
1833	struct ieee80211com *ic = ifp->if_l2com;
1834	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1835	struct wpi_tx_ring *ring = &sc->txq[ac];
1836	struct wpi_tx_desc *desc;
1837	struct wpi_tx_data *data;
1838	struct wpi_tx_cmd *cmd;
1839	struct wpi_cmd_data *tx;
1840	struct ieee80211_frame *wh;
1841	const struct ieee80211_txparam *tp;
1842	struct ieee80211_key *k;
1843	struct mbuf *mnew;
1844	int i, error, nsegs, rate, hdrlen, ismcast;
1845	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1846
1847	desc = &ring->desc[ring->cur];
1848	data = &ring->data[ring->cur];
1849
1850	wh = mtod(m0, struct ieee80211_frame *);
1851
1852	hdrlen = ieee80211_hdrsize(wh);
1853	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1854
1855	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1856		k = ieee80211_crypto_encap(ni, m0);
1857		if (k == NULL) {
1858			m_freem(m0);
1859			return ENOBUFS;
1860		}
1861		/* packet header may have moved, reset our local pointer */
1862		wh = mtod(m0, struct ieee80211_frame *);
1863	}
1864
1865	cmd = &ring->cmd[ring->cur];
1866	cmd->code = WPI_CMD_TX_DATA;
1867	cmd->flags = 0;
1868	cmd->qid = ring->qid;
1869	cmd->idx = ring->cur;
1870
1871	tx = (struct wpi_cmd_data *)cmd->data;
1872	tx->flags = htole32(WPI_TX_AUTO_SEQ);
1873	tx->timeout = htole16(0);
1874	tx->ofdm_mask = 0xff;
1875	tx->cck_mask = 0x0f;
1876	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1877	tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1878	tx->len = htole16(m0->m_pkthdr.len);
1879
1880	if (!ismcast) {
1881		if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1882		    !cap->cap_wmeParams[ac].wmep_noackPolicy)
1883			tx->flags |= htole32(WPI_TX_NEED_ACK);
1884		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1885			tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1886			tx->rts_ntries = 7;
1887		}
1888	}
1889	/* pick a rate */
1890	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1891	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1892		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1893		/* tell h/w to set timestamp in probe responses */
1894		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1895			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1896		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1897		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1898			tx->timeout = htole16(3);
1899		else
1900			tx->timeout = htole16(2);
1901		rate = tp->mgmtrate;
1902	} else if (ismcast) {
1903		rate = tp->mcastrate;
1904	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1905		rate = tp->ucastrate;
1906	} else {
1907		(void) ieee80211_ratectl_rate(ni, NULL, 0);
1908		rate = ni->ni_txrate;
1909	}
1910	tx->rate = wpi_plcp_signal(rate);
1911
1912	/* be very persistant at sending frames out */
1913#if 0
1914	tx->data_ntries = tp->maxretry;
1915#else
1916	tx->data_ntries = 15;		/* XXX way too high */
1917#endif
1918
1919	if (ieee80211_radiotap_active_vap(vap)) {
1920		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1921		tap->wt_flags = 0;
1922		tap->wt_rate = rate;
1923		tap->wt_hwqueue = ac;
1924		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1925			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1926
1927		ieee80211_radiotap_tx(vap, m0);
1928	}
1929
1930	/* save and trim IEEE802.11 header */
1931	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1932	m_adj(m0, hdrlen);
1933
1934	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
1935	    &nsegs, BUS_DMA_NOWAIT);
1936	if (error != 0 && error != EFBIG) {
1937		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1938		    error);
1939		m_freem(m0);
1940		return error;
1941	}
1942	if (error != 0) {
1943		/* XXX use m_collapse */
1944		mnew = m_defrag(m0, M_DONTWAIT);
1945		if (mnew == NULL) {
1946			device_printf(sc->sc_dev,
1947			    "could not defragment mbuf\n");
1948			m_freem(m0);
1949			return ENOBUFS;
1950		}
1951		m0 = mnew;
1952
1953		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
1954		    m0, segs, &nsegs, BUS_DMA_NOWAIT);
1955		if (error != 0) {
1956			device_printf(sc->sc_dev,
1957			    "could not map mbuf (error %d)\n", error);
1958			m_freem(m0);
1959			return error;
1960		}
1961	}
1962
1963	data->m = m0;
1964	data->ni = ni;
1965
1966	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1967	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
1968
1969	/* first scatter/gather segment is used by the tx data command */
1970	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1971	    (1 + nsegs) << 24);
1972	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1973	    ring->cur * sizeof (struct wpi_tx_cmd));
1974	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
1975	for (i = 1; i <= nsegs; i++) {
1976		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
1977		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
1978	}
1979
1980	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1981	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1982	    BUS_DMASYNC_PREWRITE);
1983
1984	ring->queued++;
1985
1986	/* kick ring */
1987	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1988	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1989
1990	return 0;
1991}
1992
1993/**
1994 * Process data waiting to be sent on the IFNET output queue
1995 */
1996static void
1997wpi_start(struct ifnet *ifp)
1998{
1999	struct wpi_softc *sc = ifp->if_softc;
2000
2001	WPI_LOCK(sc);
2002	wpi_start_locked(ifp);
2003	WPI_UNLOCK(sc);
2004}
2005
2006static void
2007wpi_start_locked(struct ifnet *ifp)
2008{
2009	struct wpi_softc *sc = ifp->if_softc;
2010	struct ieee80211_node *ni;
2011	struct mbuf *m;
2012	int ac;
2013
2014	WPI_LOCK_ASSERT(sc);
2015
2016	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2017		return;
2018
2019	for (;;) {
2020		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2021		if (m == NULL)
2022			break;
2023		ac = M_WME_GETAC(m);
2024		if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2025			/* there is no place left in this ring */
2026			IFQ_DRV_PREPEND(&ifp->if_snd, m);
2027			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2028			break;
2029		}
2030		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2031		if (wpi_tx_data(sc, m, ni, ac) != 0) {
2032			ieee80211_free_node(ni);
2033			ifp->if_oerrors++;
2034			break;
2035		}
2036		sc->sc_tx_timer = 5;
2037	}
2038}
2039
2040static int
2041wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2042	const struct ieee80211_bpf_params *params)
2043{
2044	struct ieee80211com *ic = ni->ni_ic;
2045	struct ifnet *ifp = ic->ic_ifp;
2046	struct wpi_softc *sc = ifp->if_softc;
2047
2048	/* prevent management frames from being sent if we're not ready */
2049	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2050		m_freem(m);
2051		ieee80211_free_node(ni);
2052		return ENETDOWN;
2053	}
2054	WPI_LOCK(sc);
2055
2056	/* management frames go into ring 0 */
2057	if (sc->txq[0].queued > sc->txq[0].count - 8) {
2058		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2059		m_freem(m);
2060		WPI_UNLOCK(sc);
2061		ieee80211_free_node(ni);
2062		return ENOBUFS;		/* XXX */
2063	}
2064
2065	ifp->if_opackets++;
2066	if (wpi_tx_data(sc, m, ni, 0) != 0)
2067		goto bad;
2068	sc->sc_tx_timer = 5;
2069	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2070
2071	WPI_UNLOCK(sc);
2072	return 0;
2073bad:
2074	ifp->if_oerrors++;
2075	WPI_UNLOCK(sc);
2076	ieee80211_free_node(ni);
2077	return EIO;		/* XXX */
2078}
2079
2080static int
2081wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2082{
2083	struct wpi_softc *sc = ifp->if_softc;
2084	struct ieee80211com *ic = ifp->if_l2com;
2085	struct ifreq *ifr = (struct ifreq *) data;
2086	int error = 0, startall = 0;
2087
2088	switch (cmd) {
2089	case SIOCSIFFLAGS:
2090		WPI_LOCK(sc);
2091		if ((ifp->if_flags & IFF_UP)) {
2092			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2093				wpi_init_locked(sc, 0);
2094				startall = 1;
2095			}
2096		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2097			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2098			wpi_stop_locked(sc);
2099		WPI_UNLOCK(sc);
2100		if (startall)
2101			ieee80211_start_all(ic);
2102		break;
2103	case SIOCGIFMEDIA:
2104		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2105		break;
2106	case SIOCGIFADDR:
2107		error = ether_ioctl(ifp, cmd, data);
2108		break;
2109	default:
2110		error = EINVAL;
2111		break;
2112	}
2113	return error;
2114}
2115
2116/*
2117 * Extract various information from EEPROM.
2118 */
2119static void
2120wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2121{
2122	int i;
2123
2124	/* read the hardware capabilities, revision and SKU type */
2125	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2126	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2127	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2128
2129	/* read the regulatory domain */
2130	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2131
2132	/* read in the hw MAC address */
2133	wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2134
2135	/* read the list of authorized channels */
2136	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2137		wpi_read_eeprom_channels(sc,i);
2138
2139	/* read the power level calibration info for each group */
2140	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2141		wpi_read_eeprom_group(sc,i);
2142}
2143
2144/*
2145 * Send a command to the firmware.
2146 */
2147static int
2148wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2149{
2150	struct wpi_tx_ring *ring = &sc->cmdq;
2151	struct wpi_tx_desc *desc;
2152	struct wpi_tx_cmd *cmd;
2153
2154#ifdef WPI_DEBUG
2155	if (!async) {
2156		WPI_LOCK_ASSERT(sc);
2157	}
2158#endif
2159
2160	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2161		    async));
2162
2163	if (sc->flags & WPI_FLAG_BUSY) {
2164		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2165		    __func__, code);
2166		return EAGAIN;
2167	}
2168	sc->flags|= WPI_FLAG_BUSY;
2169
2170	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2171	    code, size));
2172
2173	desc = &ring->desc[ring->cur];
2174	cmd = &ring->cmd[ring->cur];
2175
2176	cmd->code = code;
2177	cmd->flags = 0;
2178	cmd->qid = ring->qid;
2179	cmd->idx = ring->cur;
2180	memcpy(cmd->data, buf, size);
2181
2182	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2183	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2184		ring->cur * sizeof (struct wpi_tx_cmd));
2185	desc->segs[0].len  = htole32(4 + size);
2186
2187	/* kick cmd ring */
2188	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2189	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2190
2191	if (async) {
2192		sc->flags &= ~ WPI_FLAG_BUSY;
2193		return 0;
2194	}
2195
2196	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2197}
2198
2199static int
2200wpi_wme_update(struct ieee80211com *ic)
2201{
2202#define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2203#define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2204	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2205	const struct wmeParams *wmep;
2206	struct wpi_wme_setup wme;
2207	int ac;
2208
2209	/* don't override default WME values if WME is not actually enabled */
2210	if (!(ic->ic_flags & IEEE80211_F_WME))
2211		return 0;
2212
2213	wme.flags = 0;
2214	for (ac = 0; ac < WME_NUM_AC; ac++) {
2215		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2216		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2217		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2218		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2219		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2220
2221		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2222		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2223		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2224	}
2225	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2226#undef WPI_USEC
2227#undef WPI_EXP2
2228}
2229
2230/*
2231 * Configure h/w multi-rate retries.
2232 */
2233static int
2234wpi_mrr_setup(struct wpi_softc *sc)
2235{
2236	struct ifnet *ifp = sc->sc_ifp;
2237	struct ieee80211com *ic = ifp->if_l2com;
2238	struct wpi_mrr_setup mrr;
2239	int i, error;
2240
2241	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2242
2243	/* CCK rates (not used with 802.11a) */
2244	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2245		mrr.rates[i].flags = 0;
2246		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2247		/* fallback to the immediate lower CCK rate (if any) */
2248		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2249		/* try one time at this rate before falling back to "next" */
2250		mrr.rates[i].ntries = 1;
2251	}
2252
2253	/* OFDM rates (not used with 802.11b) */
2254	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2255		mrr.rates[i].flags = 0;
2256		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2257		/* fallback to the immediate lower OFDM rate (if any) */
2258		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2259		mrr.rates[i].next = (i == WPI_OFDM6) ?
2260		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2261			WPI_OFDM6 : WPI_CCK2) :
2262		    i - 1;
2263		/* try one time at this rate before falling back to "next" */
2264		mrr.rates[i].ntries = 1;
2265	}
2266
2267	/* setup MRR for control frames */
2268	mrr.which = htole32(WPI_MRR_CTL);
2269	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2270	if (error != 0) {
2271		device_printf(sc->sc_dev,
2272		    "could not setup MRR for control frames\n");
2273		return error;
2274	}
2275
2276	/* setup MRR for data frames */
2277	mrr.which = htole32(WPI_MRR_DATA);
2278	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2279	if (error != 0) {
2280		device_printf(sc->sc_dev,
2281		    "could not setup MRR for data frames\n");
2282		return error;
2283	}
2284
2285	return 0;
2286}
2287
2288static void
2289wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2290{
2291	struct wpi_cmd_led led;
2292
2293	led.which = which;
2294	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2295	led.off = off;
2296	led.on = on;
2297
2298	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2299}
2300
2301static void
2302wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2303{
2304	struct wpi_cmd_tsf tsf;
2305	uint64_t val, mod;
2306
2307	memset(&tsf, 0, sizeof tsf);
2308	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2309	tsf.bintval = htole16(ni->ni_intval);
2310	tsf.lintval = htole16(10);
2311
2312	/* compute remaining time until next beacon */
2313	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2314	mod = le64toh(tsf.tstamp) % val;
2315	tsf.binitval = htole32((uint32_t)(val - mod));
2316
2317	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2318		device_printf(sc->sc_dev, "could not enable TSF\n");
2319}
2320
2321#if 0
2322/*
2323 * Build a beacon frame that the firmware will broadcast periodically in
2324 * IBSS or HostAP modes.
2325 */
2326static int
2327wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2328{
2329	struct ifnet *ifp = sc->sc_ifp;
2330	struct ieee80211com *ic = ifp->if_l2com;
2331	struct wpi_tx_ring *ring = &sc->cmdq;
2332	struct wpi_tx_desc *desc;
2333	struct wpi_tx_data *data;
2334	struct wpi_tx_cmd *cmd;
2335	struct wpi_cmd_beacon *bcn;
2336	struct ieee80211_beacon_offsets bo;
2337	struct mbuf *m0;
2338	bus_addr_t physaddr;
2339	int error;
2340
2341	desc = &ring->desc[ring->cur];
2342	data = &ring->data[ring->cur];
2343
2344	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2345	if (m0 == NULL) {
2346		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2347		return ENOMEM;
2348	}
2349
2350	cmd = &ring->cmd[ring->cur];
2351	cmd->code = WPI_CMD_SET_BEACON;
2352	cmd->flags = 0;
2353	cmd->qid = ring->qid;
2354	cmd->idx = ring->cur;
2355
2356	bcn = (struct wpi_cmd_beacon *)cmd->data;
2357	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2358	bcn->id = WPI_ID_BROADCAST;
2359	bcn->ofdm_mask = 0xff;
2360	bcn->cck_mask = 0x0f;
2361	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2362	bcn->len = htole16(m0->m_pkthdr.len);
2363	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2364		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2365	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2366
2367	/* save and trim IEEE802.11 header */
2368	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2369	m_adj(m0, sizeof (struct ieee80211_frame));
2370
2371	/* assume beacon frame is contiguous */
2372	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2373	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2374	if (error != 0) {
2375		device_printf(sc->sc_dev, "could not map beacon\n");
2376		m_freem(m0);
2377		return error;
2378	}
2379
2380	data->m = m0;
2381
2382	/* first scatter/gather segment is used by the beacon command */
2383	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2384	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2385		ring->cur * sizeof (struct wpi_tx_cmd));
2386	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2387	desc->segs[1].addr = htole32(physaddr);
2388	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2389
2390	/* kick cmd ring */
2391	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2392	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2393
2394	return 0;
2395}
2396#endif
2397
2398static int
2399wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2400{
2401	struct ieee80211com *ic = vap->iv_ic;
2402	struct ieee80211_node *ni = vap->iv_bss;
2403	struct wpi_node_info node;
2404	int error;
2405
2406
2407	/* update adapter's configuration */
2408	sc->config.associd = 0;
2409	sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2410	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2411	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2412	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2413		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2414		    WPI_CONFIG_24GHZ);
2415	}
2416	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2417		sc->config.cck_mask  = 0;
2418		sc->config.ofdm_mask = 0x15;
2419	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2420		sc->config.cck_mask  = 0x03;
2421		sc->config.ofdm_mask = 0;
2422	} else {
2423		/* XXX assume 802.11b/g */
2424		sc->config.cck_mask  = 0x0f;
2425		sc->config.ofdm_mask = 0x15;
2426	}
2427
2428	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2429		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2430	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2431		sizeof (struct wpi_config), 1);
2432	if (error != 0) {
2433		device_printf(sc->sc_dev, "could not configure\n");
2434		return error;
2435	}
2436
2437	/* configuration has changed, set Tx power accordingly */
2438	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2439		device_printf(sc->sc_dev, "could not set Tx power\n");
2440		return error;
2441	}
2442
2443	/* add default node */
2444	memset(&node, 0, sizeof node);
2445	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2446	node.id = WPI_ID_BSS;
2447	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2448	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2449	node.action = htole32(WPI_ACTION_SET_RATE);
2450	node.antenna = WPI_ANTENNA_BOTH;
2451	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2452	if (error != 0)
2453		device_printf(sc->sc_dev, "could not add BSS node\n");
2454
2455	return (error);
2456}
2457
2458static int
2459wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2460{
2461	struct ieee80211com *ic = vap->iv_ic;
2462	struct ieee80211_node *ni = vap->iv_bss;
2463	int error;
2464
2465	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2466		/* link LED blinks while monitoring */
2467		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2468		return 0;
2469	}
2470
2471	wpi_enable_tsf(sc, ni);
2472
2473	/* update adapter's configuration */
2474	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2475	/* short preamble/slot time are negotiated when associating */
2476	sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2477	    WPI_CONFIG_SHSLOT);
2478	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2479		sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2480	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2481		sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2482	sc->config.filter |= htole32(WPI_FILTER_BSS);
2483
2484	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2485
2486	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2487		    sc->config.flags));
2488	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2489		    wpi_config), 1);
2490	if (error != 0) {
2491		device_printf(sc->sc_dev, "could not update configuration\n");
2492		return error;
2493	}
2494
2495	error = wpi_set_txpower(sc, ni->ni_chan, 1);
2496	if (error != 0) {
2497		device_printf(sc->sc_dev, "could set txpower\n");
2498		return error;
2499	}
2500
2501	/* link LED always on while associated */
2502	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2503
2504	/* start automatic rate control timer */
2505	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2506
2507	return (error);
2508}
2509
2510/*
2511 * Send a scan request to the firmware.  Since this command is huge, we map it
2512 * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2513 * much of this code is similar to that in wpi_cmd but because we must manually
2514 * construct the probe & channels, we duplicate what's needed here. XXX In the
2515 * future, this function should be modified to use wpi_cmd to help cleanup the
2516 * code base.
2517 */
2518static int
2519wpi_scan(struct wpi_softc *sc)
2520{
2521	struct ifnet *ifp = sc->sc_ifp;
2522	struct ieee80211com *ic = ifp->if_l2com;
2523	struct ieee80211_scan_state *ss = ic->ic_scan;
2524	struct wpi_tx_ring *ring = &sc->cmdq;
2525	struct wpi_tx_desc *desc;
2526	struct wpi_tx_data *data;
2527	struct wpi_tx_cmd *cmd;
2528	struct wpi_scan_hdr *hdr;
2529	struct wpi_scan_chan *chan;
2530	struct ieee80211_frame *wh;
2531	struct ieee80211_rateset *rs;
2532	struct ieee80211_channel *c;
2533	enum ieee80211_phymode mode;
2534	uint8_t *frm;
2535	int nrates, pktlen, error, i, nssid;
2536	bus_addr_t physaddr;
2537
2538	desc = &ring->desc[ring->cur];
2539	data = &ring->data[ring->cur];
2540
2541	data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2542	if (data->m == NULL) {
2543		device_printf(sc->sc_dev,
2544		    "could not allocate mbuf for scan command\n");
2545		return ENOMEM;
2546	}
2547
2548	cmd = mtod(data->m, struct wpi_tx_cmd *);
2549	cmd->code = WPI_CMD_SCAN;
2550	cmd->flags = 0;
2551	cmd->qid = ring->qid;
2552	cmd->idx = ring->cur;
2553
2554	hdr = (struct wpi_scan_hdr *)cmd->data;
2555	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2556
2557	/*
2558	 * Move to the next channel if no packets are received within 5 msecs
2559	 * after sending the probe request (this helps to reduce the duration
2560	 * of active scans).
2561	 */
2562	hdr->quiet = htole16(5);
2563	hdr->threshold = htole16(1);
2564
2565	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2566		/* send probe requests at 6Mbps */
2567		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2568
2569		/* Enable crc checking */
2570		hdr->promotion = htole16(1);
2571	} else {
2572		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2573		/* send probe requests at 1Mbps */
2574		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2575	}
2576	hdr->tx.id = WPI_ID_BROADCAST;
2577	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2578	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2579
2580	memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2581	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2582	for (i = 0; i < nssid; i++) {
2583		hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2584		hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2585		memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2586		    hdr->scan_essids[i].esslen);
2587#ifdef WPI_DEBUG
2588		if (wpi_debug & WPI_DEBUG_SCANNING) {
2589			printf("Scanning Essid: ");
2590			ieee80211_print_essid(hdr->scan_essids[i].essid,
2591			    hdr->scan_essids[i].esslen);
2592			printf("\n");
2593		}
2594#endif
2595	}
2596
2597	/*
2598	 * Build a probe request frame.  Most of the following code is a
2599	 * copy & paste of what is done in net80211.
2600	 */
2601	wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2602	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2603		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2604	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2605	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2606	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2607	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2608	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2609	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2610
2611	frm = (uint8_t *)(wh + 1);
2612
2613	/* add essid IE, the hardware will fill this in for us */
2614	*frm++ = IEEE80211_ELEMID_SSID;
2615	*frm++ = 0;
2616
2617	mode = ieee80211_chan2mode(ic->ic_curchan);
2618	rs = &ic->ic_sup_rates[mode];
2619
2620	/* add supported rates IE */
2621	*frm++ = IEEE80211_ELEMID_RATES;
2622	nrates = rs->rs_nrates;
2623	if (nrates > IEEE80211_RATE_SIZE)
2624		nrates = IEEE80211_RATE_SIZE;
2625	*frm++ = nrates;
2626	memcpy(frm, rs->rs_rates, nrates);
2627	frm += nrates;
2628
2629	/* add supported xrates IE */
2630	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2631		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2632		*frm++ = IEEE80211_ELEMID_XRATES;
2633		*frm++ = nrates;
2634		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2635		frm += nrates;
2636	}
2637
2638	/* setup length of probe request */
2639	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2640
2641	/*
2642	 * Construct information about the channel that we
2643	 * want to scan. The firmware expects this to be directly
2644	 * after the scan probe request
2645	 */
2646	c = ic->ic_curchan;
2647	chan = (struct wpi_scan_chan *)frm;
2648	chan->chan = ieee80211_chan2ieee(ic, c);
2649	chan->flags = 0;
2650	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2651		chan->flags |= WPI_CHAN_ACTIVE;
2652		if (nssid != 0)
2653			chan->flags |= WPI_CHAN_DIRECT;
2654	}
2655	chan->gain_dsp = 0x6e; /* Default level */
2656	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2657		chan->active = htole16(10);
2658		chan->passive = htole16(ss->ss_maxdwell);
2659		chan->gain_radio = 0x3b;
2660	} else {
2661		chan->active = htole16(20);
2662		chan->passive = htole16(ss->ss_maxdwell);
2663		chan->gain_radio = 0x28;
2664	}
2665
2666	DPRINTFN(WPI_DEBUG_SCANNING,
2667	    ("Scanning %u Passive: %d\n",
2668	     chan->chan,
2669	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2670
2671	hdr->nchan++;
2672	chan++;
2673
2674	frm += sizeof (struct wpi_scan_chan);
2675#if 0
2676	// XXX All Channels....
2677	for (c  = &ic->ic_channels[1];
2678	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2679		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2680			continue;
2681
2682		chan->chan = ieee80211_chan2ieee(ic, c);
2683		chan->flags = 0;
2684		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2685		    chan->flags |= WPI_CHAN_ACTIVE;
2686		    if (ic->ic_des_ssid[0].len != 0)
2687			chan->flags |= WPI_CHAN_DIRECT;
2688		}
2689		chan->gain_dsp = 0x6e; /* Default level */
2690		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2691			chan->active = htole16(10);
2692			chan->passive = htole16(110);
2693			chan->gain_radio = 0x3b;
2694		} else {
2695			chan->active = htole16(20);
2696			chan->passive = htole16(120);
2697			chan->gain_radio = 0x28;
2698		}
2699
2700		DPRINTFN(WPI_DEBUG_SCANNING,
2701			 ("Scanning %u Passive: %d\n",
2702			  chan->chan,
2703			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2704
2705		hdr->nchan++;
2706		chan++;
2707
2708		frm += sizeof (struct wpi_scan_chan);
2709	}
2710#endif
2711
2712	hdr->len = htole16(frm - (uint8_t *)hdr);
2713	pktlen = frm - (uint8_t *)cmd;
2714
2715	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2716	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2717	if (error != 0) {
2718		device_printf(sc->sc_dev, "could not map scan command\n");
2719		m_freem(data->m);
2720		data->m = NULL;
2721		return error;
2722	}
2723
2724	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2725	desc->segs[0].addr = htole32(physaddr);
2726	desc->segs[0].len  = htole32(pktlen);
2727
2728	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2729	    BUS_DMASYNC_PREWRITE);
2730	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2731
2732	/* kick cmd ring */
2733	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2734	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2735
2736	sc->sc_scan_timer = 5;
2737	return 0;	/* will be notified async. of failure/success */
2738}
2739
2740/**
2741 * Configure the card to listen to a particular channel, this transisions the
2742 * card in to being able to receive frames from remote devices.
2743 */
2744static int
2745wpi_config(struct wpi_softc *sc)
2746{
2747	struct ifnet *ifp = sc->sc_ifp;
2748	struct ieee80211com *ic = ifp->if_l2com;
2749	struct wpi_power power;
2750	struct wpi_bluetooth bluetooth;
2751	struct wpi_node_info node;
2752	int error;
2753
2754	/* set power mode */
2755	memset(&power, 0, sizeof power);
2756	power.flags = htole32(WPI_POWER_CAM|0x8);
2757	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2758	if (error != 0) {
2759		device_printf(sc->sc_dev, "could not set power mode\n");
2760		return error;
2761	}
2762
2763	/* configure bluetooth coexistence */
2764	memset(&bluetooth, 0, sizeof bluetooth);
2765	bluetooth.flags = 3;
2766	bluetooth.lead = 0xaa;
2767	bluetooth.kill = 1;
2768	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2769	    0);
2770	if (error != 0) {
2771		device_printf(sc->sc_dev,
2772		    "could not configure bluetooth coexistence\n");
2773		return error;
2774	}
2775
2776	/* configure adapter */
2777	memset(&sc->config, 0, sizeof (struct wpi_config));
2778	IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2779	/*set default channel*/
2780	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2781	sc->config.flags = htole32(WPI_CONFIG_TSF);
2782	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2783		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2784		    WPI_CONFIG_24GHZ);
2785	}
2786	sc->config.filter = 0;
2787	switch (ic->ic_opmode) {
2788	case IEEE80211_M_STA:
2789	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2790		sc->config.mode = WPI_MODE_STA;
2791		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2792		break;
2793	case IEEE80211_M_IBSS:
2794	case IEEE80211_M_AHDEMO:
2795		sc->config.mode = WPI_MODE_IBSS;
2796		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2797					     WPI_FILTER_MULTICAST);
2798		break;
2799	case IEEE80211_M_HOSTAP:
2800		sc->config.mode = WPI_MODE_HOSTAP;
2801		break;
2802	case IEEE80211_M_MONITOR:
2803		sc->config.mode = WPI_MODE_MONITOR;
2804		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2805			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2806		break;
2807	default:
2808		device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2809		return EINVAL;
2810	}
2811	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2812	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2813	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2814		sizeof (struct wpi_config), 0);
2815	if (error != 0) {
2816		device_printf(sc->sc_dev, "configure command failed\n");
2817		return error;
2818	}
2819
2820	/* configuration has changed, set Tx power accordingly */
2821	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2822	    device_printf(sc->sc_dev, "could not set Tx power\n");
2823	    return error;
2824	}
2825
2826	/* add broadcast node */
2827	memset(&node, 0, sizeof node);
2828	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2829	node.id = WPI_ID_BROADCAST;
2830	node.rate = wpi_plcp_signal(2);
2831	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2832	if (error != 0) {
2833		device_printf(sc->sc_dev, "could not add broadcast node\n");
2834		return error;
2835	}
2836
2837	/* Setup rate scalling */
2838	error = wpi_mrr_setup(sc);
2839	if (error != 0) {
2840		device_printf(sc->sc_dev, "could not setup MRR\n");
2841		return error;
2842	}
2843
2844	return 0;
2845}
2846
2847static void
2848wpi_stop_master(struct wpi_softc *sc)
2849{
2850	uint32_t tmp;
2851	int ntries;
2852
2853	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2854
2855	tmp = WPI_READ(sc, WPI_RESET);
2856	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2857
2858	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2859	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2860		return;	/* already asleep */
2861
2862	for (ntries = 0; ntries < 100; ntries++) {
2863		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2864			break;
2865		DELAY(10);
2866	}
2867	if (ntries == 100) {
2868		device_printf(sc->sc_dev, "timeout waiting for master\n");
2869	}
2870}
2871
2872static int
2873wpi_power_up(struct wpi_softc *sc)
2874{
2875	uint32_t tmp;
2876	int ntries;
2877
2878	wpi_mem_lock(sc);
2879	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2880	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2881	wpi_mem_unlock(sc);
2882
2883	for (ntries = 0; ntries < 5000; ntries++) {
2884		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2885			break;
2886		DELAY(10);
2887	}
2888	if (ntries == 5000) {
2889		device_printf(sc->sc_dev,
2890		    "timeout waiting for NIC to power up\n");
2891		return ETIMEDOUT;
2892	}
2893	return 0;
2894}
2895
2896static int
2897wpi_reset(struct wpi_softc *sc)
2898{
2899	uint32_t tmp;
2900	int ntries;
2901
2902	DPRINTFN(WPI_DEBUG_HW,
2903	    ("Resetting the card - clearing any uploaded firmware\n"));
2904
2905	/* clear any pending interrupts */
2906	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2907
2908	tmp = WPI_READ(sc, WPI_PLL_CTL);
2909	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2910
2911	tmp = WPI_READ(sc, WPI_CHICKEN);
2912	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2913
2914	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2915	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2916
2917	/* wait for clock stabilization */
2918	for (ntries = 0; ntries < 25000; ntries++) {
2919		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2920			break;
2921		DELAY(10);
2922	}
2923	if (ntries == 25000) {
2924		device_printf(sc->sc_dev,
2925		    "timeout waiting for clock stabilization\n");
2926		return ETIMEDOUT;
2927	}
2928
2929	/* initialize EEPROM */
2930	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2931
2932	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2933		device_printf(sc->sc_dev, "EEPROM not found\n");
2934		return EIO;
2935	}
2936	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2937
2938	return 0;
2939}
2940
2941static void
2942wpi_hw_config(struct wpi_softc *sc)
2943{
2944	uint32_t rev, hw;
2945
2946	/* voodoo from the Linux "driver".. */
2947	hw = WPI_READ(sc, WPI_HWCONFIG);
2948
2949	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2950	if ((rev & 0xc0) == 0x40)
2951		hw |= WPI_HW_ALM_MB;
2952	else if (!(rev & 0x80))
2953		hw |= WPI_HW_ALM_MM;
2954
2955	if (sc->cap == 0x80)
2956		hw |= WPI_HW_SKU_MRC;
2957
2958	hw &= ~WPI_HW_REV_D;
2959	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2960		hw |= WPI_HW_REV_D;
2961
2962	if (sc->type > 1)
2963		hw |= WPI_HW_TYPE_B;
2964
2965	WPI_WRITE(sc, WPI_HWCONFIG, hw);
2966}
2967
2968static void
2969wpi_rfkill_resume(struct wpi_softc *sc)
2970{
2971	struct ifnet *ifp = sc->sc_ifp;
2972	struct ieee80211com *ic = ifp->if_l2com;
2973	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2974	int ntries;
2975
2976	/* enable firmware again */
2977	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
2978	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
2979
2980	/* wait for thermal sensors to calibrate */
2981	for (ntries = 0; ntries < 1000; ntries++) {
2982		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
2983			break;
2984		DELAY(10);
2985	}
2986
2987	if (ntries == 1000) {
2988		device_printf(sc->sc_dev,
2989		    "timeout waiting for thermal calibration\n");
2990		WPI_UNLOCK(sc);
2991		return;
2992	}
2993	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
2994
2995	if (wpi_config(sc) != 0) {
2996		device_printf(sc->sc_dev, "device config failed\n");
2997		WPI_UNLOCK(sc);
2998		return;
2999	}
3000
3001	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3002	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3003	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3004
3005	if (vap != NULL) {
3006		if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3007			if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3008				ieee80211_beacon_miss(ic);
3009				wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3010			} else
3011				wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3012		} else {
3013			ieee80211_scan_next(vap);
3014			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3015		}
3016	}
3017
3018	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3019}
3020
3021static void
3022wpi_init_locked(struct wpi_softc *sc, int force)
3023{
3024	struct ifnet *ifp = sc->sc_ifp;
3025	uint32_t tmp;
3026	int ntries, qid;
3027
3028	wpi_stop_locked(sc);
3029	(void)wpi_reset(sc);
3030
3031	wpi_mem_lock(sc);
3032	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3033	DELAY(20);
3034	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3035	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3036	wpi_mem_unlock(sc);
3037
3038	(void)wpi_power_up(sc);
3039	wpi_hw_config(sc);
3040
3041	/* init Rx ring */
3042	wpi_mem_lock(sc);
3043	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3044	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3045	    offsetof(struct wpi_shared, next));
3046	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3047	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3048	wpi_mem_unlock(sc);
3049
3050	/* init Tx rings */
3051	wpi_mem_lock(sc);
3052	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3053	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3054	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3055	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3056	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3057	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3058	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3059
3060	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3061	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3062
3063	for (qid = 0; qid < 6; qid++) {
3064		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3065		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3066		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3067	}
3068	wpi_mem_unlock(sc);
3069
3070	/* clear "radio off" and "disable command" bits (reversed logic) */
3071	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3072	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3073	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3074
3075	/* clear any pending interrupts */
3076	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3077
3078	/* enable interrupts */
3079	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3080
3081	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3082	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3083
3084	if ((wpi_load_firmware(sc)) != 0) {
3085	    device_printf(sc->sc_dev,
3086		"A problem occurred loading the firmware to the driver\n");
3087	    return;
3088	}
3089
3090	/* At this point the firmware is up and running. If the hardware
3091	 * RF switch is turned off thermal calibration will fail, though
3092	 * the card is still happy to continue to accept commands, catch
3093	 * this case and schedule a task to watch for it to be turned on.
3094	 */
3095	wpi_mem_lock(sc);
3096	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3097	wpi_mem_unlock(sc);
3098
3099	if (!(tmp & 0x1)) {
3100		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3101		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3102		goto out;
3103	}
3104
3105	/* wait for thermal sensors to calibrate */
3106	for (ntries = 0; ntries < 1000; ntries++) {
3107		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3108			break;
3109		DELAY(10);
3110	}
3111
3112	if (ntries == 1000) {
3113		device_printf(sc->sc_dev,
3114		    "timeout waiting for thermal sensors calibration\n");
3115		return;
3116	}
3117	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3118
3119	if (wpi_config(sc) != 0) {
3120		device_printf(sc->sc_dev, "device config failed\n");
3121		return;
3122	}
3123
3124	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3125	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3126out:
3127	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3128}
3129
3130static void
3131wpi_init(void *arg)
3132{
3133	struct wpi_softc *sc = arg;
3134	struct ifnet *ifp = sc->sc_ifp;
3135	struct ieee80211com *ic = ifp->if_l2com;
3136
3137	WPI_LOCK(sc);
3138	wpi_init_locked(sc, 0);
3139	WPI_UNLOCK(sc);
3140
3141	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3142		ieee80211_start_all(ic);		/* start all vaps */
3143}
3144
3145static void
3146wpi_stop_locked(struct wpi_softc *sc)
3147{
3148	struct ifnet *ifp = sc->sc_ifp;
3149	uint32_t tmp;
3150	int ac;
3151
3152	sc->sc_tx_timer = 0;
3153	sc->sc_scan_timer = 0;
3154	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3155	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3156	callout_stop(&sc->watchdog_to);
3157	callout_stop(&sc->calib_to);
3158
3159
3160	/* disable interrupts */
3161	WPI_WRITE(sc, WPI_MASK, 0);
3162	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3163	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3164	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3165
3166	wpi_mem_lock(sc);
3167	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3168	wpi_mem_unlock(sc);
3169
3170	/* reset all Tx rings */
3171	for (ac = 0; ac < 4; ac++)
3172		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3173	wpi_reset_tx_ring(sc, &sc->cmdq);
3174
3175	/* reset Rx ring */
3176	wpi_reset_rx_ring(sc, &sc->rxq);
3177
3178	wpi_mem_lock(sc);
3179	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3180	wpi_mem_unlock(sc);
3181
3182	DELAY(5);
3183
3184	wpi_stop_master(sc);
3185
3186	tmp = WPI_READ(sc, WPI_RESET);
3187	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3188	sc->flags &= ~WPI_FLAG_BUSY;
3189}
3190
3191static void
3192wpi_stop(struct wpi_softc *sc)
3193{
3194	WPI_LOCK(sc);
3195	wpi_stop_locked(sc);
3196	WPI_UNLOCK(sc);
3197}
3198
3199static void
3200wpi_newassoc(struct ieee80211_node *ni, int isnew)
3201{
3202
3203	/* XXX move */
3204	ieee80211_ratectl_node_init(ni);
3205}
3206
3207static void
3208wpi_calib_timeout(void *arg)
3209{
3210	struct wpi_softc *sc = arg;
3211	struct ifnet *ifp = sc->sc_ifp;
3212	struct ieee80211com *ic = ifp->if_l2com;
3213	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3214	int temp;
3215
3216	if (vap->iv_state != IEEE80211_S_RUN)
3217		return;
3218
3219	/* update sensor data */
3220	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3221	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3222
3223	wpi_power_calibration(sc, temp);
3224
3225	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3226}
3227
3228/*
3229 * This function is called periodically (every 60 seconds) to adjust output
3230 * power to temperature changes.
3231 */
3232static void
3233wpi_power_calibration(struct wpi_softc *sc, int temp)
3234{
3235	struct ifnet *ifp = sc->sc_ifp;
3236	struct ieee80211com *ic = ifp->if_l2com;
3237	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3238
3239	/* sanity-check read value */
3240	if (temp < -260 || temp > 25) {
3241		/* this can't be correct, ignore */
3242		DPRINTFN(WPI_DEBUG_TEMP,
3243		    ("out-of-range temperature reported: %d\n", temp));
3244		return;
3245	}
3246
3247	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3248
3249	/* adjust Tx power if need be */
3250	if (abs(temp - sc->temp) <= 6)
3251		return;
3252
3253	sc->temp = temp;
3254
3255	if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3256		/* just warn, too bad for the automatic calibration... */
3257		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3258	}
3259}
3260
3261/**
3262 * Read the eeprom to find out what channels are valid for the given
3263 * band and update net80211 with what we find.
3264 */
3265static void
3266wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3267{
3268	struct ifnet *ifp = sc->sc_ifp;
3269	struct ieee80211com *ic = ifp->if_l2com;
3270	const struct wpi_chan_band *band = &wpi_bands[n];
3271	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3272	struct ieee80211_channel *c;
3273	int chan, i, passive;
3274
3275	wpi_read_prom_data(sc, band->addr, channels,
3276	    band->nchan * sizeof (struct wpi_eeprom_chan));
3277
3278	for (i = 0; i < band->nchan; i++) {
3279		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3280			DPRINTFN(WPI_DEBUG_HW,
3281			    ("Channel Not Valid: %d, band %d\n",
3282			     band->chan[i],n));
3283			continue;
3284		}
3285
3286		passive = 0;
3287		chan = band->chan[i];
3288		c = &ic->ic_channels[ic->ic_nchans++];
3289
3290		/* is active scan allowed on this channel? */
3291		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3292			passive = IEEE80211_CHAN_PASSIVE;
3293		}
3294
3295		if (n == 0) {	/* 2GHz band */
3296			c->ic_ieee = chan;
3297			c->ic_freq = ieee80211_ieee2mhz(chan,
3298			    IEEE80211_CHAN_2GHZ);
3299			c->ic_flags = IEEE80211_CHAN_B | passive;
3300
3301			c = &ic->ic_channels[ic->ic_nchans++];
3302			c->ic_ieee = chan;
3303			c->ic_freq = ieee80211_ieee2mhz(chan,
3304			    IEEE80211_CHAN_2GHZ);
3305			c->ic_flags = IEEE80211_CHAN_G | passive;
3306
3307		} else {	/* 5GHz band */
3308			/*
3309			 * Some 3945ABG adapters support channels 7, 8, 11
3310			 * and 12 in the 2GHz *and* 5GHz bands.
3311			 * Because of limitations in our net80211(9) stack,
3312			 * we can't support these channels in 5GHz band.
3313			 * XXX not true; just need to map to proper frequency
3314			 */
3315			if (chan <= 14)
3316				continue;
3317
3318			c->ic_ieee = chan;
3319			c->ic_freq = ieee80211_ieee2mhz(chan,
3320			    IEEE80211_CHAN_5GHZ);
3321			c->ic_flags = IEEE80211_CHAN_A | passive;
3322		}
3323
3324		/* save maximum allowed power for this channel */
3325		sc->maxpwr[chan] = channels[i].maxpwr;
3326
3327#if 0
3328		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3329		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3330		//ic->ic_channels[chan].ic_minpower...
3331		//ic->ic_channels[chan].ic_maxregtxpower...
3332#endif
3333
3334		DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3335		    " passive=%d, offset %d\n", chan, c->ic_freq,
3336		    channels[i].flags, sc->maxpwr[chan],
3337		    (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3338		    ic->ic_nchans));
3339	}
3340}
3341
3342static void
3343wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3344{
3345	struct wpi_power_group *group = &sc->groups[n];
3346	struct wpi_eeprom_group rgroup;
3347	int i;
3348
3349	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3350	    sizeof rgroup);
3351
3352	/* save power group information */
3353	group->chan   = rgroup.chan;
3354	group->maxpwr = rgroup.maxpwr;
3355	/* temperature at which the samples were taken */
3356	group->temp   = (int16_t)le16toh(rgroup.temp);
3357
3358	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3359		    group->chan, group->maxpwr, group->temp));
3360
3361	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3362		group->samples[i].index = rgroup.samples[i].index;
3363		group->samples[i].power = rgroup.samples[i].power;
3364
3365		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3366			    group->samples[i].index, group->samples[i].power));
3367	}
3368}
3369
3370/*
3371 * Update Tx power to match what is defined for channel `c'.
3372 */
3373static int
3374wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3375{
3376	struct ifnet *ifp = sc->sc_ifp;
3377	struct ieee80211com *ic = ifp->if_l2com;
3378	struct wpi_power_group *group;
3379	struct wpi_cmd_txpower txpower;
3380	u_int chan;
3381	int i;
3382
3383	/* get channel number */
3384	chan = ieee80211_chan2ieee(ic, c);
3385
3386	/* find the power group to which this channel belongs */
3387	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3388		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3389			if (chan <= group->chan)
3390				break;
3391	} else
3392		group = &sc->groups[0];
3393
3394	memset(&txpower, 0, sizeof txpower);
3395	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3396	txpower.channel = htole16(chan);
3397
3398	/* set Tx power for all OFDM and CCK rates */
3399	for (i = 0; i <= 11 ; i++) {
3400		/* retrieve Tx power for this channel/rate combination */
3401		int idx = wpi_get_power_index(sc, group, c,
3402		    wpi_ridx_to_rate[i]);
3403
3404		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3405
3406		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3407			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3408			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3409		} else {
3410			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3411			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3412		}
3413		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3414			    chan, wpi_ridx_to_rate[i], idx));
3415	}
3416
3417	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3418}
3419
3420/*
3421 * Determine Tx power index for a given channel/rate combination.
3422 * This takes into account the regulatory information from EEPROM and the
3423 * current temperature.
3424 */
3425static int
3426wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3427    struct ieee80211_channel *c, int rate)
3428{
3429/* fixed-point arithmetic division using a n-bit fractional part */
3430#define fdivround(a, b, n)      \
3431	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3432
3433/* linear interpolation */
3434#define interpolate(x, x1, y1, x2, y2, n)       \
3435	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3436
3437	struct ifnet *ifp = sc->sc_ifp;
3438	struct ieee80211com *ic = ifp->if_l2com;
3439	struct wpi_power_sample *sample;
3440	int pwr, idx;
3441	u_int chan;
3442
3443	/* get channel number */
3444	chan = ieee80211_chan2ieee(ic, c);
3445
3446	/* default power is group's maximum power - 3dB */
3447	pwr = group->maxpwr / 2;
3448
3449	/* decrease power for highest OFDM rates to reduce distortion */
3450	switch (rate) {
3451		case 72:	/* 36Mb/s */
3452			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3453			break;
3454		case 96:	/* 48Mb/s */
3455			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3456			break;
3457		case 108:	/* 54Mb/s */
3458			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3459			break;
3460	}
3461
3462	/* never exceed channel's maximum allowed Tx power */
3463	pwr = min(pwr, sc->maxpwr[chan]);
3464
3465	/* retrieve power index into gain tables from samples */
3466	for (sample = group->samples; sample < &group->samples[3]; sample++)
3467		if (pwr > sample[1].power)
3468			break;
3469	/* fixed-point linear interpolation using a 19-bit fractional part */
3470	idx = interpolate(pwr, sample[0].power, sample[0].index,
3471	    sample[1].power, sample[1].index, 19);
3472
3473	/*
3474	 *  Adjust power index based on current temperature
3475	 *	- if colder than factory-calibrated: decreate output power
3476	 *	- if warmer than factory-calibrated: increase output power
3477	 */
3478	idx -= (sc->temp - group->temp) * 11 / 100;
3479
3480	/* decrease power for CCK rates (-5dB) */
3481	if (!WPI_RATE_IS_OFDM(rate))
3482		idx += 10;
3483
3484	/* keep power index in a valid range */
3485	if (idx < 0)
3486		return 0;
3487	if (idx > WPI_MAX_PWR_INDEX)
3488		return WPI_MAX_PWR_INDEX;
3489	return idx;
3490
3491#undef interpolate
3492#undef fdivround
3493}
3494
3495/**
3496 * Called by net80211 framework to indicate that a scan
3497 * is starting. This function doesn't actually do the scan,
3498 * wpi_scan_curchan starts things off. This function is more
3499 * of an early warning from the framework we should get ready
3500 * for the scan.
3501 */
3502static void
3503wpi_scan_start(struct ieee80211com *ic)
3504{
3505	struct ifnet *ifp = ic->ic_ifp;
3506	struct wpi_softc *sc = ifp->if_softc;
3507
3508	WPI_LOCK(sc);
3509	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3510	WPI_UNLOCK(sc);
3511}
3512
3513/**
3514 * Called by the net80211 framework, indicates that the
3515 * scan has ended. If there is a scan in progress on the card
3516 * then it should be aborted.
3517 */
3518static void
3519wpi_scan_end(struct ieee80211com *ic)
3520{
3521	/* XXX ignore */
3522}
3523
3524/**
3525 * Called by the net80211 framework to indicate to the driver
3526 * that the channel should be changed
3527 */
3528static void
3529wpi_set_channel(struct ieee80211com *ic)
3530{
3531	struct ifnet *ifp = ic->ic_ifp;
3532	struct wpi_softc *sc = ifp->if_softc;
3533	int error;
3534
3535	/*
3536	 * Only need to set the channel in Monitor mode. AP scanning and auth
3537	 * are already taken care of by their respective firmware commands.
3538	 */
3539	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3540		error = wpi_config(sc);
3541		if (error != 0)
3542			device_printf(sc->sc_dev,
3543			    "error %d settting channel\n", error);
3544	}
3545}
3546
3547/**
3548 * Called by net80211 to indicate that we need to scan the current
3549 * channel. The channel is previously be set via the wpi_set_channel
3550 * callback.
3551 */
3552static void
3553wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3554{
3555	struct ieee80211vap *vap = ss->ss_vap;
3556	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3557	struct wpi_softc *sc = ifp->if_softc;
3558
3559	WPI_LOCK(sc);
3560	if (wpi_scan(sc))
3561		ieee80211_cancel_scan(vap);
3562	WPI_UNLOCK(sc);
3563}
3564
3565/**
3566 * Called by the net80211 framework to indicate
3567 * the minimum dwell time has been met, terminate the scan.
3568 * We don't actually terminate the scan as the firmware will notify
3569 * us when it's finished and we have no way to interrupt it.
3570 */
3571static void
3572wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3573{
3574	/* NB: don't try to abort scan; wait for firmware to finish */
3575}
3576
3577static void
3578wpi_hwreset(void *arg, int pending)
3579{
3580	struct wpi_softc *sc = arg;
3581
3582	WPI_LOCK(sc);
3583	wpi_init_locked(sc, 0);
3584	WPI_UNLOCK(sc);
3585}
3586
3587static void
3588wpi_rfreset(void *arg, int pending)
3589{
3590	struct wpi_softc *sc = arg;
3591
3592	WPI_LOCK(sc);
3593	wpi_rfkill_resume(sc);
3594	WPI_UNLOCK(sc);
3595}
3596
3597/*
3598 * Allocate DMA-safe memory for firmware transfer.
3599 */
3600static int
3601wpi_alloc_fwmem(struct wpi_softc *sc)
3602{
3603	/* allocate enough contiguous space to store text and data */
3604	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3605	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3606	    BUS_DMA_NOWAIT);
3607}
3608
3609static void
3610wpi_free_fwmem(struct wpi_softc *sc)
3611{
3612	wpi_dma_contig_free(&sc->fw_dma);
3613}
3614
3615/**
3616 * Called every second, wpi_watchdog used by the watch dog timer
3617 * to check that the card is still alive
3618 */
3619static void
3620wpi_watchdog(void *arg)
3621{
3622	struct wpi_softc *sc = arg;
3623	struct ifnet *ifp = sc->sc_ifp;
3624	struct ieee80211com *ic = ifp->if_l2com;
3625	uint32_t tmp;
3626
3627	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3628
3629	if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3630		/* No need to lock firmware memory */
3631		tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3632
3633		if ((tmp & 0x1) == 0) {
3634			/* Radio kill switch is still off */
3635			callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3636			return;
3637		}
3638
3639		device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3640		ieee80211_runtask(ic, &sc->sc_radiotask);
3641		return;
3642	}
3643
3644	if (sc->sc_tx_timer > 0) {
3645		if (--sc->sc_tx_timer == 0) {
3646			device_printf(sc->sc_dev,"device timeout\n");
3647			ifp->if_oerrors++;
3648			ieee80211_runtask(ic, &sc->sc_restarttask);
3649		}
3650	}
3651	if (sc->sc_scan_timer > 0) {
3652		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3653		if (--sc->sc_scan_timer == 0 && vap != NULL) {
3654			device_printf(sc->sc_dev,"scan timeout\n");
3655			ieee80211_cancel_scan(vap);
3656			ieee80211_runtask(ic, &sc->sc_restarttask);
3657		}
3658	}
3659
3660	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3661		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3662}
3663
3664#ifdef WPI_DEBUG
3665static const char *wpi_cmd_str(int cmd)
3666{
3667	switch (cmd) {
3668	case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3669	case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3670	case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3671	case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3672	case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3673	case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3674	case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3675	case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3676	case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3677	case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3678	case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3679	case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3680	case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3681	case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3682
3683	default:
3684		KASSERT(1, ("Unknown Command: %d\n", cmd));
3685		return "UNKNOWN CMD";	/* Make the compiler happy */
3686	}
3687}
3688#endif
3689
3690MODULE_DEPEND(wpi, pci,  1, 1, 1);
3691MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3692MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3693