if_wpi.c revision 191956
1/*-
2 * Copyright (c) 2006,2007
3 *	Damien Bergamini <damien.bergamini@free.fr>
4 *	Benjamin Close <Benjamin.Close@clearchain.com>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19#define VERSION "20071127"
20
21#include <sys/cdefs.h>
22__FBSDID("$FreeBSD: head/sys/dev/wpi/if_wpi.c 191956 2009-05-10 02:44:19Z thompsa $");
23
24/*
25 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26 *
27 * The 3945ABG network adapter doesn't use traditional hardware as
28 * many other adaptors do. Instead at run time the eeprom is set into a known
29 * state and told to load boot firmware. The boot firmware loads an init and a
30 * main  binary firmware image into SRAM on the card via DMA.
31 * Once the firmware is loaded, the driver/hw then
32 * communicate by way of circular dma rings via the the SRAM to the firmware.
33 *
34 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35 * The 4 tx data rings allow for prioritization QoS.
36 *
37 * The rx data ring consists of 32 dma buffers. Two registers are used to
38 * indicate where in the ring the driver and the firmware are up to. The
39 * driver sets the initial read index (reg1) and the initial write index (reg2),
40 * the firmware updates the read index (reg1) on rx of a packet and fires an
41 * interrupt. The driver then processes the buffers starting at reg1 indicating
42 * to the firmware which buffers have been accessed by updating reg2. At the
43 * same time allocating new memory for the processed buffer.
44 *
45 * A similar thing happens with the tx rings. The difference is the firmware
46 * stop processing buffers once the queue is full and until confirmation
47 * of a successful transmition (tx_intr) has occurred.
48 *
49 * The command ring operates in the same manner as the tx queues.
50 *
51 * All communication direct to the card (ie eeprom) is classed as Stage1
52 * communication
53 *
54 * All communication via the firmware to the card is classed as State2.
55 * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56 * firmware. The bootstrap firmware and runtime firmware are loaded
57 * from host memory via dma to the card then told to execute. From this point
58 * on the majority of communications between the driver and the card goes
59 * via the firmware.
60 */
61
62#include <sys/param.h>
63#include <sys/sysctl.h>
64#include <sys/sockio.h>
65#include <sys/mbuf.h>
66#include <sys/kernel.h>
67#include <sys/socket.h>
68#include <sys/systm.h>
69#include <sys/malloc.h>
70#include <sys/queue.h>
71#include <sys/taskqueue.h>
72#include <sys/module.h>
73#include <sys/bus.h>
74#include <sys/endian.h>
75#include <sys/linker.h>
76#include <sys/firmware.h>
77
78#include <machine/bus.h>
79#include <machine/resource.h>
80#include <sys/rman.h>
81
82#include <dev/pci/pcireg.h>
83#include <dev/pci/pcivar.h>
84
85#include <net/bpf.h>
86#include <net/if.h>
87#include <net/if_arp.h>
88#include <net/ethernet.h>
89#include <net/if_dl.h>
90#include <net/if_media.h>
91#include <net/if_types.h>
92
93#include <net80211/ieee80211_var.h>
94#include <net80211/ieee80211_radiotap.h>
95#include <net80211/ieee80211_regdomain.h>
96
97#include <netinet/in.h>
98#include <netinet/in_systm.h>
99#include <netinet/in_var.h>
100#include <netinet/ip.h>
101#include <netinet/if_ether.h>
102
103#include <dev/wpi/if_wpireg.h>
104#include <dev/wpi/if_wpivar.h>
105
106#define WPI_DEBUG
107
108#ifdef WPI_DEBUG
109#define DPRINTF(x)	do { if (wpi_debug != 0) printf x; } while (0)
110#define DPRINTFN(n, x)	do { if (wpi_debug & n) printf x; } while (0)
111#define	WPI_DEBUG_SET	(wpi_debug != 0)
112
113enum {
114	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
115	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
116	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
117	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
118	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
119	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
120	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
121	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
122	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
123	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
124	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
125	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
126	WPI_DEBUG_ANY		= 0xffffffff
127};
128
129static int wpi_debug = 1;
130SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
131TUNABLE_INT("debug.wpi", &wpi_debug);
132
133#else
134#define DPRINTF(x)
135#define DPRINTFN(n, x)
136#define WPI_DEBUG_SET	0
137#endif
138
139struct wpi_ident {
140	uint16_t	vendor;
141	uint16_t	device;
142	uint16_t	subdevice;
143	const char	*name;
144};
145
146static const struct wpi_ident wpi_ident_table[] = {
147	/* The below entries support ABG regardless of the subid */
148	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
149	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
150	/* The below entries only support BG */
151	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
152	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
153	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
154	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
155	{ 0, 0, 0, NULL }
156};
157
158static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
159		    const char name[IFNAMSIZ], int unit, int opmode,
160		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
161		    const uint8_t mac[IEEE80211_ADDR_LEN]);
162static void	wpi_vap_delete(struct ieee80211vap *);
163static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
164		    void **, bus_size_t, bus_size_t, int);
165static void	wpi_dma_contig_free(struct wpi_dma_info *);
166static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
167static int	wpi_alloc_shared(struct wpi_softc *);
168static void	wpi_free_shared(struct wpi_softc *);
169static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
170static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
171static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
172static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
173		    int, int);
174static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
175static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
176static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
177			    const uint8_t mac[IEEE80211_ADDR_LEN]);
178static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
179static void	wpi_mem_lock(struct wpi_softc *);
180static void	wpi_mem_unlock(struct wpi_softc *);
181static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
182static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
183static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
184		    const uint32_t *, int);
185static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
186static int	wpi_alloc_fwmem(struct wpi_softc *);
187static void	wpi_free_fwmem(struct wpi_softc *);
188static int	wpi_load_firmware(struct wpi_softc *);
189static void	wpi_unload_firmware(struct wpi_softc *);
190static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
191static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
192		    struct wpi_rx_data *);
193static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
194static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
195static void	wpi_notif_intr(struct wpi_softc *);
196static void	wpi_intr(void *);
197static uint8_t	wpi_plcp_signal(int);
198static void	wpi_watchdog(void *);
199static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
200		    struct ieee80211_node *, int);
201static void	wpi_start(struct ifnet *);
202static void	wpi_start_locked(struct ifnet *);
203static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
204		    const struct ieee80211_bpf_params *);
205static void	wpi_scan_start(struct ieee80211com *);
206static void	wpi_scan_end(struct ieee80211com *);
207static void	wpi_set_channel(struct ieee80211com *);
208static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
209static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
210static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
211static void	wpi_read_eeprom(struct wpi_softc *,
212		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
213static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
214static void	wpi_read_eeprom_group(struct wpi_softc *, int);
215static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
216static int	wpi_wme_update(struct ieee80211com *);
217static int	wpi_mrr_setup(struct wpi_softc *);
218static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
219static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
220#if 0
221static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
222#endif
223static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
224static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
225static int	wpi_scan(struct wpi_softc *);
226static int	wpi_config(struct wpi_softc *);
227static void	wpi_stop_master(struct wpi_softc *);
228static int	wpi_power_up(struct wpi_softc *);
229static int	wpi_reset(struct wpi_softc *);
230static void	wpi_hwreset(void *, int);
231static void	wpi_rfreset(void *, int);
232static void	wpi_hw_config(struct wpi_softc *);
233static void	wpi_init(void *);
234static void	wpi_init_locked(struct wpi_softc *, int);
235static void	wpi_stop(struct wpi_softc *);
236static void	wpi_stop_locked(struct wpi_softc *);
237
238static void	wpi_newassoc(struct ieee80211_node *, int);
239static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
240		    int);
241static void	wpi_calib_timeout(void *);
242static void	wpi_power_calibration(struct wpi_softc *, int);
243static int	wpi_get_power_index(struct wpi_softc *,
244		    struct wpi_power_group *, struct ieee80211_channel *, int);
245#ifdef WPI_DEBUG
246static const char *wpi_cmd_str(int);
247#endif
248static int wpi_probe(device_t);
249static int wpi_attach(device_t);
250static int wpi_detach(device_t);
251static int wpi_shutdown(device_t);
252static int wpi_suspend(device_t);
253static int wpi_resume(device_t);
254
255
256static device_method_t wpi_methods[] = {
257	/* Device interface */
258	DEVMETHOD(device_probe,		wpi_probe),
259	DEVMETHOD(device_attach,	wpi_attach),
260	DEVMETHOD(device_detach,	wpi_detach),
261	DEVMETHOD(device_shutdown,	wpi_shutdown),
262	DEVMETHOD(device_suspend,	wpi_suspend),
263	DEVMETHOD(device_resume,	wpi_resume),
264
265	{ 0, 0 }
266};
267
268static driver_t wpi_driver = {
269	"wpi",
270	wpi_methods,
271	sizeof (struct wpi_softc)
272};
273
274static devclass_t wpi_devclass;
275
276DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
277
278static const uint8_t wpi_ridx_to_plcp[] = {
279	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
280	/* R1-R4 (ral/ural is R4-R1) */
281	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
282	/* CCK: device-dependent */
283	10, 20, 55, 110
284};
285static const uint8_t wpi_ridx_to_rate[] = {
286	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
287	2, 4, 11, 22 /*CCK */
288};
289
290
291static int
292wpi_probe(device_t dev)
293{
294	const struct wpi_ident *ident;
295
296	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
297		if (pci_get_vendor(dev) == ident->vendor &&
298		    pci_get_device(dev) == ident->device) {
299			device_set_desc(dev, ident->name);
300			return 0;
301		}
302	}
303	return ENXIO;
304}
305
306/**
307 * Load the firmare image from disk to the allocated dma buffer.
308 * we also maintain the reference to the firmware pointer as there
309 * is times where we may need to reload the firmware but we are not
310 * in a context that can access the filesystem (ie taskq cause by restart)
311 *
312 * @return 0 on success, an errno on failure
313 */
314static int
315wpi_load_firmware(struct wpi_softc *sc)
316{
317	const struct firmware *fp;
318	struct wpi_dma_info *dma = &sc->fw_dma;
319	const struct wpi_firmware_hdr *hdr;
320	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
321	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
322	int error;
323
324	DPRINTFN(WPI_DEBUG_FIRMWARE,
325	    ("Attempting Loading Firmware from wpi_fw module\n"));
326
327	WPI_UNLOCK(sc);
328
329	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
330		device_printf(sc->sc_dev,
331		    "could not load firmware image 'wpifw'\n");
332		error = ENOENT;
333		WPI_LOCK(sc);
334		goto fail;
335	}
336
337	fp = sc->fw_fp;
338
339	WPI_LOCK(sc);
340
341	/* Validate the firmware is minimum a particular version */
342	if (fp->version < WPI_FW_MINVERSION) {
343	    device_printf(sc->sc_dev,
344			   "firmware version is too old. Need %d, got %d\n",
345			   WPI_FW_MINVERSION,
346			   fp->version);
347	    error = ENXIO;
348	    goto fail;
349	}
350
351	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
352		device_printf(sc->sc_dev,
353		    "firmware file too short: %zu bytes\n", fp->datasize);
354		error = ENXIO;
355		goto fail;
356	}
357
358	hdr = (const struct wpi_firmware_hdr *)fp->data;
359
360	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
361	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
362
363	rtextsz = le32toh(hdr->rtextsz);
364	rdatasz = le32toh(hdr->rdatasz);
365	itextsz = le32toh(hdr->itextsz);
366	idatasz = le32toh(hdr->idatasz);
367	btextsz = le32toh(hdr->btextsz);
368
369	/* check that all firmware segments are present */
370	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
371		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
372		device_printf(sc->sc_dev,
373		    "firmware file too short: %zu bytes\n", fp->datasize);
374		error = ENXIO; /* XXX appropriate error code? */
375		goto fail;
376	}
377
378	/* get pointers to firmware segments */
379	rtext = (const uint8_t *)(hdr + 1);
380	rdata = rtext + rtextsz;
381	itext = rdata + rdatasz;
382	idata = itext + itextsz;
383	btext = idata + idatasz;
384
385	DPRINTFN(WPI_DEBUG_FIRMWARE,
386	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
387	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
388	     (le32toh(hdr->version) & 0xff000000) >> 24,
389	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
390	     (le32toh(hdr->version) & 0x0000ffff),
391	     rtextsz, rdatasz,
392	     itextsz, idatasz, btextsz));
393
394	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
395	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
396	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
397	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
398	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
399
400	/* sanity checks */
401	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
402	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
403	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
404	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
405	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
406	    (btextsz & 3) != 0) {
407		device_printf(sc->sc_dev, "firmware invalid\n");
408		error = EINVAL;
409		goto fail;
410	}
411
412	/* copy initialization images into pre-allocated DMA-safe memory */
413	memcpy(dma->vaddr, idata, idatasz);
414	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
415
416	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
417
418	/* tell adapter where to find initialization images */
419	wpi_mem_lock(sc);
420	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
421	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
422	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
423	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
424	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
425	wpi_mem_unlock(sc);
426
427	/* load firmware boot code */
428	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
429	    device_printf(sc->sc_dev, "Failed to load microcode\n");
430	    goto fail;
431	}
432
433	/* now press "execute" */
434	WPI_WRITE(sc, WPI_RESET, 0);
435
436	/* wait at most one second for the first alive notification */
437	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
438		device_printf(sc->sc_dev,
439		    "timeout waiting for adapter to initialize\n");
440		goto fail;
441	}
442
443	/* copy runtime images into pre-allocated DMA-sage memory */
444	memcpy(dma->vaddr, rdata, rdatasz);
445	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
446	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
447
448	/* tell adapter where to find runtime images */
449	wpi_mem_lock(sc);
450	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
451	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
452	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
453	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
454	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
455	wpi_mem_unlock(sc);
456
457	/* wait at most one second for the first alive notification */
458	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
459		device_printf(sc->sc_dev,
460		    "timeout waiting for adapter to initialize2\n");
461		goto fail;
462	}
463
464	DPRINTFN(WPI_DEBUG_FIRMWARE,
465	    ("Firmware loaded to driver successfully\n"));
466	return error;
467fail:
468	wpi_unload_firmware(sc);
469	return error;
470}
471
472/**
473 * Free the referenced firmware image
474 */
475static void
476wpi_unload_firmware(struct wpi_softc *sc)
477{
478
479	if (sc->fw_fp) {
480		WPI_UNLOCK(sc);
481		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
482		WPI_LOCK(sc);
483		sc->fw_fp = NULL;
484	}
485}
486
487static int
488wpi_attach(device_t dev)
489{
490	struct wpi_softc *sc = device_get_softc(dev);
491	struct ifnet *ifp;
492	struct ieee80211com *ic;
493	int ac, error, supportsa = 1;
494	uint32_t tmp;
495	const struct wpi_ident *ident;
496	uint8_t macaddr[IEEE80211_ADDR_LEN];
497
498	sc->sc_dev = dev;
499
500	if (bootverbose || WPI_DEBUG_SET)
501	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
502
503	/*
504	 * Some card's only support 802.11b/g not a, check to see if
505	 * this is one such card. A 0x0 in the subdevice table indicates
506	 * the entire subdevice range is to be ignored.
507	 */
508	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
509		if (ident->subdevice &&
510		    pci_get_subdevice(dev) == ident->subdevice) {
511		    supportsa = 0;
512		    break;
513		}
514	}
515
516	/* Create the tasks that can be queued */
517	TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc);
518	TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc);
519
520	WPI_LOCK_INIT(sc);
521
522	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
523	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
524
525	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
526		device_printf(dev, "chip is in D%d power mode "
527		    "-- setting to D0\n", pci_get_powerstate(dev));
528		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
529	}
530
531	/* disable the retry timeout register */
532	pci_write_config(dev, 0x41, 0, 1);
533
534	/* enable bus-mastering */
535	pci_enable_busmaster(dev);
536
537	sc->mem_rid = PCIR_BAR(0);
538	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
539	    RF_ACTIVE);
540	if (sc->mem == NULL) {
541		device_printf(dev, "could not allocate memory resource\n");
542		error = ENOMEM;
543		goto fail;
544	}
545
546	sc->sc_st = rman_get_bustag(sc->mem);
547	sc->sc_sh = rman_get_bushandle(sc->mem);
548
549	sc->irq_rid = 0;
550	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
551	    RF_ACTIVE | RF_SHAREABLE);
552	if (sc->irq == NULL) {
553		device_printf(dev, "could not allocate interrupt resource\n");
554		error = ENOMEM;
555		goto fail;
556	}
557
558	/*
559	 * Allocate DMA memory for firmware transfers.
560	 */
561	if ((error = wpi_alloc_fwmem(sc)) != 0) {
562		printf(": could not allocate firmware memory\n");
563		error = ENOMEM;
564		goto fail;
565	}
566
567	/*
568	 * Put adapter into a known state.
569	 */
570	if ((error = wpi_reset(sc)) != 0) {
571		device_printf(dev, "could not reset adapter\n");
572		goto fail;
573	}
574
575	wpi_mem_lock(sc);
576	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
577	if (bootverbose || WPI_DEBUG_SET)
578	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
579
580	wpi_mem_unlock(sc);
581
582	/* Allocate shared page */
583	if ((error = wpi_alloc_shared(sc)) != 0) {
584		device_printf(dev, "could not allocate shared page\n");
585		goto fail;
586	}
587
588	/* tx data queues  - 4 for QoS purposes */
589	for (ac = 0; ac < WME_NUM_AC; ac++) {
590		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
591		if (error != 0) {
592		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
593		    goto fail;
594		}
595	}
596
597	/* command queue to talk to the card's firmware */
598	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
599	if (error != 0) {
600		device_printf(dev, "could not allocate command ring\n");
601		goto fail;
602	}
603
604	/* receive data queue */
605	error = wpi_alloc_rx_ring(sc, &sc->rxq);
606	if (error != 0) {
607		device_printf(dev, "could not allocate Rx ring\n");
608		goto fail;
609	}
610
611	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
612	if (ifp == NULL) {
613		device_printf(dev, "can not if_alloc()\n");
614		error = ENOMEM;
615		goto fail;
616	}
617	ic = ifp->if_l2com;
618
619	ic->ic_ifp = ifp;
620	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
621	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
622
623	/* set device capabilities */
624	ic->ic_caps =
625		  IEEE80211_C_STA		/* station mode supported */
626		| IEEE80211_C_MONITOR		/* monitor mode supported */
627		| IEEE80211_C_TXPMGT		/* tx power management */
628		| IEEE80211_C_SHSLOT		/* short slot time supported */
629		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
630		| IEEE80211_C_WPA		/* 802.11i */
631/* XXX looks like WME is partly supported? */
632#if 0
633		| IEEE80211_C_IBSS		/* IBSS mode support */
634		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
635		| IEEE80211_C_WME		/* 802.11e */
636		| IEEE80211_C_HOSTAP		/* Host access point mode */
637#endif
638		;
639
640	/*
641	 * Read in the eeprom and also setup the channels for
642	 * net80211. We don't set the rates as net80211 does this for us
643	 */
644	wpi_read_eeprom(sc, macaddr);
645
646	if (bootverbose || WPI_DEBUG_SET) {
647	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
648	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
649			  sc->type > 1 ? 'B': '?');
650	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
651			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
652	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
653			  supportsa ? "does" : "does not");
654
655	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
656	       what sc->rev really represents - benjsc 20070615 */
657	}
658
659	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
660	ifp->if_softc = sc;
661	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
662	ifp->if_init = wpi_init;
663	ifp->if_ioctl = wpi_ioctl;
664	ifp->if_start = wpi_start;
665	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
666	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
667	IFQ_SET_READY(&ifp->if_snd);
668
669	ieee80211_ifattach(ic, macaddr);
670	/* override default methods */
671	ic->ic_node_alloc = wpi_node_alloc;
672	ic->ic_newassoc = wpi_newassoc;
673	ic->ic_raw_xmit = wpi_raw_xmit;
674	ic->ic_wme.wme_update = wpi_wme_update;
675	ic->ic_scan_start = wpi_scan_start;
676	ic->ic_scan_end = wpi_scan_end;
677	ic->ic_set_channel = wpi_set_channel;
678	ic->ic_scan_curchan = wpi_scan_curchan;
679	ic->ic_scan_mindwell = wpi_scan_mindwell;
680
681	ic->ic_vap_create = wpi_vap_create;
682	ic->ic_vap_delete = wpi_vap_delete;
683
684	bpfattach(ifp, DLT_IEEE802_11_RADIO,
685	    sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap));
686
687	sc->sc_rxtap_len = sizeof sc->sc_rxtap;
688	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
689	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
690
691	sc->sc_txtap_len = sizeof sc->sc_txtap;
692	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
693	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
694
695	/*
696	 * Hook our interrupt after all initialization is complete.
697	 */
698	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
699	    NULL, wpi_intr, sc, &sc->sc_ih);
700	if (error != 0) {
701		device_printf(dev, "could not set up interrupt\n");
702		goto fail;
703	}
704
705	if (bootverbose)
706		ieee80211_announce(ic);
707#ifdef XXX_DEBUG
708	ieee80211_announce_channels(ic);
709#endif
710	return 0;
711
712fail:	wpi_detach(dev);
713	return ENXIO;
714}
715
716static int
717wpi_detach(device_t dev)
718{
719	struct wpi_softc *sc = device_get_softc(dev);
720	struct ifnet *ifp = sc->sc_ifp;
721	struct ieee80211com *ic = ifp->if_l2com;
722	int ac;
723
724	ieee80211_draintask(ic, &sc->sc_restarttask);
725	ieee80211_draintask(ic, &sc->sc_radiotask);
726
727	if (ifp != NULL) {
728		wpi_stop(sc);
729		callout_drain(&sc->watchdog_to);
730		callout_drain(&sc->calib_to);
731		bpfdetach(ifp);
732		ieee80211_ifdetach(ic);
733	}
734
735	WPI_LOCK(sc);
736	if (sc->txq[0].data_dmat) {
737		for (ac = 0; ac < WME_NUM_AC; ac++)
738			wpi_free_tx_ring(sc, &sc->txq[ac]);
739
740		wpi_free_tx_ring(sc, &sc->cmdq);
741		wpi_free_rx_ring(sc, &sc->rxq);
742		wpi_free_shared(sc);
743	}
744
745	if (sc->fw_fp != NULL) {
746		wpi_unload_firmware(sc);
747	}
748
749	if (sc->fw_dma.tag)
750		wpi_free_fwmem(sc);
751	WPI_UNLOCK(sc);
752
753	if (sc->irq != NULL) {
754		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
755		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
756	}
757
758	if (sc->mem != NULL)
759		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
760
761	if (ifp != NULL)
762		if_free(ifp);
763
764	WPI_LOCK_DESTROY(sc);
765
766	return 0;
767}
768
769static struct ieee80211vap *
770wpi_vap_create(struct ieee80211com *ic,
771	const char name[IFNAMSIZ], int unit, int opmode, int flags,
772	const uint8_t bssid[IEEE80211_ADDR_LEN],
773	const uint8_t mac[IEEE80211_ADDR_LEN])
774{
775	struct wpi_vap *wvp;
776	struct ieee80211vap *vap;
777
778	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
779		return NULL;
780	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
781	    M_80211_VAP, M_NOWAIT | M_ZERO);
782	if (wvp == NULL)
783		return NULL;
784	vap = &wvp->vap;
785	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
786	/* override with driver methods */
787	wvp->newstate = vap->iv_newstate;
788	vap->iv_newstate = wpi_newstate;
789
790	ieee80211_amrr_init(&wvp->amrr, vap,
791	    IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
792	    IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD,
793	    500 /*ms*/);
794
795	/* complete setup */
796	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
797	ic->ic_opmode = opmode;
798	return vap;
799}
800
801static void
802wpi_vap_delete(struct ieee80211vap *vap)
803{
804	struct wpi_vap *wvp = WPI_VAP(vap);
805
806	ieee80211_amrr_cleanup(&wvp->amrr);
807	ieee80211_vap_detach(vap);
808	free(wvp, M_80211_VAP);
809}
810
811static void
812wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
813{
814	if (error != 0)
815		return;
816
817	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
818
819	*(bus_addr_t *)arg = segs[0].ds_addr;
820}
821
822/*
823 * Allocates a contiguous block of dma memory of the requested size and
824 * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
825 * allocations greater than 4096 may fail. Hence if the requested alignment is
826 * greater we allocate 'alignment' size extra memory and shift the vaddr and
827 * paddr after the dma load. This bypasses the problem at the cost of a little
828 * more memory.
829 */
830static int
831wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
832    void **kvap, bus_size_t size, bus_size_t alignment, int flags)
833{
834	int error;
835	bus_size_t align;
836	bus_size_t reqsize;
837
838	DPRINTFN(WPI_DEBUG_DMA,
839	    ("Size: %zd - alignment %zd\n", size, alignment));
840
841	dma->size = size;
842	dma->tag = NULL;
843
844	if (alignment > 4096) {
845		align = PAGE_SIZE;
846		reqsize = size + alignment;
847	} else {
848		align = alignment;
849		reqsize = size;
850	}
851	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
852	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
853	    NULL, NULL, reqsize,
854	    1, reqsize, flags,
855	    NULL, NULL, &dma->tag);
856	if (error != 0) {
857		device_printf(sc->sc_dev,
858		    "could not create shared page DMA tag\n");
859		goto fail;
860	}
861	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
862	    flags | BUS_DMA_ZERO, &dma->map);
863	if (error != 0) {
864		device_printf(sc->sc_dev,
865		    "could not allocate shared page DMA memory\n");
866		goto fail;
867	}
868
869	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
870	    reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
871
872	/* Save the original pointers so we can free all the memory */
873	dma->paddr = dma->paddr_start;
874	dma->vaddr = dma->vaddr_start;
875
876	/*
877	 * Check the alignment and increment by 4096 until we get the
878	 * requested alignment. Fail if can't obtain the alignment
879	 * we requested.
880	 */
881	if ((dma->paddr & (alignment -1 )) != 0) {
882		int i;
883
884		for (i = 0; i < alignment / 4096; i++) {
885			if ((dma->paddr & (alignment - 1 )) == 0)
886				break;
887			dma->paddr += 4096;
888			dma->vaddr += 4096;
889		}
890		if (i == alignment / 4096) {
891			device_printf(sc->sc_dev,
892			    "alignment requirement was not satisfied\n");
893			goto fail;
894		}
895	}
896
897	if (error != 0) {
898		device_printf(sc->sc_dev,
899		    "could not load shared page DMA map\n");
900		goto fail;
901	}
902
903	if (kvap != NULL)
904		*kvap = dma->vaddr;
905
906	return 0;
907
908fail:
909	wpi_dma_contig_free(dma);
910	return error;
911}
912
913static void
914wpi_dma_contig_free(struct wpi_dma_info *dma)
915{
916	if (dma->tag) {
917		if (dma->map != NULL) {
918			if (dma->paddr_start != 0) {
919				bus_dmamap_sync(dma->tag, dma->map,
920				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
921				bus_dmamap_unload(dma->tag, dma->map);
922			}
923			bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
924		}
925		bus_dma_tag_destroy(dma->tag);
926	}
927}
928
929/*
930 * Allocate a shared page between host and NIC.
931 */
932static int
933wpi_alloc_shared(struct wpi_softc *sc)
934{
935	int error;
936
937	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
938	    (void **)&sc->shared, sizeof (struct wpi_shared),
939	    PAGE_SIZE,
940	    BUS_DMA_NOWAIT);
941
942	if (error != 0) {
943		device_printf(sc->sc_dev,
944		    "could not allocate shared area DMA memory\n");
945	}
946
947	return error;
948}
949
950static void
951wpi_free_shared(struct wpi_softc *sc)
952{
953	wpi_dma_contig_free(&sc->shared_dma);
954}
955
956static int
957wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
958{
959
960	int i, error;
961
962	ring->cur = 0;
963
964	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
965	    (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
966	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
967
968	if (error != 0) {
969		device_printf(sc->sc_dev,
970		    "%s: could not allocate rx ring DMA memory, error %d\n",
971		    __func__, error);
972		goto fail;
973	}
974
975        error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
976	    BUS_SPACE_MAXADDR_32BIT,
977            BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
978            MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
979        if (error != 0) {
980                device_printf(sc->sc_dev,
981		    "%s: bus_dma_tag_create_failed, error %d\n",
982		    __func__, error);
983                goto fail;
984        }
985
986	/*
987	 * Setup Rx buffers.
988	 */
989	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
990		struct wpi_rx_data *data = &ring->data[i];
991		struct mbuf *m;
992		bus_addr_t paddr;
993
994		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
995		if (error != 0) {
996			device_printf(sc->sc_dev,
997			    "%s: bus_dmamap_create failed, error %d\n",
998			    __func__, error);
999			goto fail;
1000		}
1001		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1002		if (m == NULL) {
1003			device_printf(sc->sc_dev,
1004			   "%s: could not allocate rx mbuf\n", __func__);
1005			error = ENOMEM;
1006			goto fail;
1007		}
1008		/* map page */
1009		error = bus_dmamap_load(ring->data_dmat, data->map,
1010		    mtod(m, caddr_t), MJUMPAGESIZE,
1011		    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1012		if (error != 0 && error != EFBIG) {
1013			device_printf(sc->sc_dev,
1014			    "%s: bus_dmamap_load failed, error %d\n",
1015			    __func__, error);
1016			m_freem(m);
1017			error = ENOMEM;	/* XXX unique code */
1018			goto fail;
1019		}
1020		bus_dmamap_sync(ring->data_dmat, data->map,
1021		    BUS_DMASYNC_PREWRITE);
1022
1023		data->m = m;
1024		ring->desc[i] = htole32(paddr);
1025	}
1026	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1027	    BUS_DMASYNC_PREWRITE);
1028	return 0;
1029fail:
1030	wpi_free_rx_ring(sc, ring);
1031	return error;
1032}
1033
1034static void
1035wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1036{
1037	int ntries;
1038
1039	wpi_mem_lock(sc);
1040
1041	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1042
1043	for (ntries = 0; ntries < 100; ntries++) {
1044		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1045			break;
1046		DELAY(10);
1047	}
1048
1049	wpi_mem_unlock(sc);
1050
1051#ifdef WPI_DEBUG
1052	if (ntries == 100 && wpi_debug > 0)
1053		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1054#endif
1055
1056	ring->cur = 0;
1057}
1058
1059static void
1060wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1061{
1062	int i;
1063
1064	wpi_dma_contig_free(&ring->desc_dma);
1065
1066	for (i = 0; i < WPI_RX_RING_COUNT; i++)
1067		if (ring->data[i].m != NULL)
1068			m_freem(ring->data[i].m);
1069}
1070
1071static int
1072wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1073	int qid)
1074{
1075	struct wpi_tx_data *data;
1076	int i, error;
1077
1078	ring->qid = qid;
1079	ring->count = count;
1080	ring->queued = 0;
1081	ring->cur = 0;
1082	ring->data = NULL;
1083
1084	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1085		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1086		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1087
1088	if (error != 0) {
1089	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1090	    goto fail;
1091	}
1092
1093	/* update shared page with ring's base address */
1094	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1095
1096	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1097		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1098		BUS_DMA_NOWAIT);
1099
1100	if (error != 0) {
1101		device_printf(sc->sc_dev,
1102		    "could not allocate tx command DMA memory\n");
1103		goto fail;
1104	}
1105
1106	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1107	    M_NOWAIT | M_ZERO);
1108	if (ring->data == NULL) {
1109		device_printf(sc->sc_dev,
1110		    "could not allocate tx data slots\n");
1111		goto fail;
1112	}
1113
1114	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1115	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1116	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1117	    &ring->data_dmat);
1118	if (error != 0) {
1119		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1120		goto fail;
1121	}
1122
1123	for (i = 0; i < count; i++) {
1124		data = &ring->data[i];
1125
1126		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1127		if (error != 0) {
1128			device_printf(sc->sc_dev,
1129			    "could not create tx buf DMA map\n");
1130			goto fail;
1131		}
1132		bus_dmamap_sync(ring->data_dmat, data->map,
1133		    BUS_DMASYNC_PREWRITE);
1134	}
1135
1136	return 0;
1137
1138fail:
1139	wpi_free_tx_ring(sc, ring);
1140	return error;
1141}
1142
1143static void
1144wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1145{
1146	struct wpi_tx_data *data;
1147	int i, ntries;
1148
1149	wpi_mem_lock(sc);
1150
1151	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1152	for (ntries = 0; ntries < 100; ntries++) {
1153		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1154			break;
1155		DELAY(10);
1156	}
1157#ifdef WPI_DEBUG
1158	if (ntries == 100 && wpi_debug > 0)
1159		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1160		    ring->qid);
1161#endif
1162	wpi_mem_unlock(sc);
1163
1164	for (i = 0; i < ring->count; i++) {
1165		data = &ring->data[i];
1166
1167		if (data->m != NULL) {
1168			bus_dmamap_unload(ring->data_dmat, data->map);
1169			m_freem(data->m);
1170			data->m = NULL;
1171		}
1172	}
1173
1174	ring->queued = 0;
1175	ring->cur = 0;
1176}
1177
1178static void
1179wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1180{
1181	struct wpi_tx_data *data;
1182	int i;
1183
1184	wpi_dma_contig_free(&ring->desc_dma);
1185	wpi_dma_contig_free(&ring->cmd_dma);
1186
1187	if (ring->data != NULL) {
1188		for (i = 0; i < ring->count; i++) {
1189			data = &ring->data[i];
1190
1191			if (data->m != NULL) {
1192				bus_dmamap_sync(ring->data_dmat, data->map,
1193				    BUS_DMASYNC_POSTWRITE);
1194				bus_dmamap_unload(ring->data_dmat, data->map);
1195				m_freem(data->m);
1196				data->m = NULL;
1197			}
1198		}
1199		free(ring->data, M_DEVBUF);
1200	}
1201
1202	if (ring->data_dmat != NULL)
1203		bus_dma_tag_destroy(ring->data_dmat);
1204}
1205
1206static int
1207wpi_shutdown(device_t dev)
1208{
1209	struct wpi_softc *sc = device_get_softc(dev);
1210
1211	WPI_LOCK(sc);
1212	wpi_stop_locked(sc);
1213	wpi_unload_firmware(sc);
1214	WPI_UNLOCK(sc);
1215
1216	return 0;
1217}
1218
1219static int
1220wpi_suspend(device_t dev)
1221{
1222	struct wpi_softc *sc = device_get_softc(dev);
1223
1224	wpi_stop(sc);
1225	return 0;
1226}
1227
1228static int
1229wpi_resume(device_t dev)
1230{
1231	struct wpi_softc *sc = device_get_softc(dev);
1232	struct ifnet *ifp = sc->sc_ifp;
1233
1234	pci_write_config(dev, 0x41, 0, 1);
1235
1236	if (ifp->if_flags & IFF_UP) {
1237		wpi_init(ifp->if_softc);
1238		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1239			wpi_start(ifp);
1240	}
1241	return 0;
1242}
1243
1244/* ARGSUSED */
1245static struct ieee80211_node *
1246wpi_node_alloc(struct ieee80211vap *vap __unused,
1247	const uint8_t mac[IEEE80211_ADDR_LEN] __unused)
1248{
1249	struct wpi_node *wn;
1250
1251	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1252
1253	return &wn->ni;
1254}
1255
1256/**
1257 * Called by net80211 when ever there is a change to 80211 state machine
1258 */
1259static int
1260wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1261{
1262	struct wpi_vap *wvp = WPI_VAP(vap);
1263	struct ieee80211com *ic = vap->iv_ic;
1264	struct ifnet *ifp = ic->ic_ifp;
1265	struct wpi_softc *sc = ifp->if_softc;
1266	int error;
1267
1268	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1269		ieee80211_state_name[vap->iv_state],
1270		ieee80211_state_name[nstate], sc->flags));
1271
1272	IEEE80211_UNLOCK(ic);
1273	WPI_LOCK(sc);
1274	if (nstate == IEEE80211_S_AUTH) {
1275		/* The node must be registered in the firmware before auth */
1276		error = wpi_auth(sc, vap);
1277		if (error != 0) {
1278			device_printf(sc->sc_dev,
1279			    "%s: could not move to auth state, error %d\n",
1280			    __func__, error);
1281		}
1282	}
1283	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1284		error = wpi_run(sc, vap);
1285		if (error != 0) {
1286			device_printf(sc->sc_dev,
1287			    "%s: could not move to run state, error %d\n",
1288			    __func__, error);
1289		}
1290	}
1291	if (nstate == IEEE80211_S_RUN) {
1292		/* RUN -> RUN transition; just restart the timers */
1293		wpi_calib_timeout(sc);
1294		/* XXX split out rate control timer */
1295	}
1296	WPI_UNLOCK(sc);
1297	IEEE80211_LOCK(ic);
1298	return wvp->newstate(vap, nstate, arg);
1299}
1300
1301/*
1302 * Grab exclusive access to NIC memory.
1303 */
1304static void
1305wpi_mem_lock(struct wpi_softc *sc)
1306{
1307	int ntries;
1308	uint32_t tmp;
1309
1310	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1311	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1312
1313	/* spin until we actually get the lock */
1314	for (ntries = 0; ntries < 100; ntries++) {
1315		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1316			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1317			break;
1318		DELAY(10);
1319	}
1320	if (ntries == 100)
1321		device_printf(sc->sc_dev, "could not lock memory\n");
1322}
1323
1324/*
1325 * Release lock on NIC memory.
1326 */
1327static void
1328wpi_mem_unlock(struct wpi_softc *sc)
1329{
1330	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1331	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1332}
1333
1334static uint32_t
1335wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1336{
1337	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1338	return WPI_READ(sc, WPI_READ_MEM_DATA);
1339}
1340
1341static void
1342wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1343{
1344	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1345	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1346}
1347
1348static void
1349wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1350    const uint32_t *data, int wlen)
1351{
1352	for (; wlen > 0; wlen--, data++, addr+=4)
1353		wpi_mem_write(sc, addr, *data);
1354}
1355
1356/*
1357 * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1358 * using the traditional bit-bang method. Data is read up until len bytes have
1359 * been obtained.
1360 */
1361static uint16_t
1362wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1363{
1364	int ntries;
1365	uint32_t val;
1366	uint8_t *out = data;
1367
1368	wpi_mem_lock(sc);
1369
1370	for (; len > 0; len -= 2, addr++) {
1371		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1372
1373		for (ntries = 0; ntries < 10; ntries++) {
1374			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1375				break;
1376			DELAY(5);
1377		}
1378
1379		if (ntries == 10) {
1380			device_printf(sc->sc_dev, "could not read EEPROM\n");
1381			return ETIMEDOUT;
1382		}
1383
1384		*out++= val >> 16;
1385		if (len > 1)
1386			*out ++= val >> 24;
1387	}
1388
1389	wpi_mem_unlock(sc);
1390
1391	return 0;
1392}
1393
1394/*
1395 * The firmware text and data segments are transferred to the NIC using DMA.
1396 * The driver just copies the firmware into DMA-safe memory and tells the NIC
1397 * where to find it.  Once the NIC has copied the firmware into its internal
1398 * memory, we can free our local copy in the driver.
1399 */
1400static int
1401wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1402{
1403	int error, ntries;
1404
1405	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1406
1407	size /= sizeof(uint32_t);
1408
1409	wpi_mem_lock(sc);
1410
1411	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1412	    (const uint32_t *)fw, size);
1413
1414	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1415	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1416	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1417
1418	/* run microcode */
1419	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1420
1421	/* wait while the adapter is busy copying the firmware */
1422	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1423		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1424		DPRINTFN(WPI_DEBUG_HW,
1425		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1426		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1427		if (status & WPI_TX_IDLE(6)) {
1428			DPRINTFN(WPI_DEBUG_HW,
1429			    ("Status Match! - ntries = %d\n", ntries));
1430			break;
1431		}
1432		DELAY(10);
1433	}
1434	if (ntries == 1000) {
1435		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1436		error = ETIMEDOUT;
1437	}
1438
1439	/* start the microcode executing */
1440	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1441
1442	wpi_mem_unlock(sc);
1443
1444	return (error);
1445}
1446
1447static void
1448wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1449	struct wpi_rx_data *data)
1450{
1451	struct ifnet *ifp = sc->sc_ifp;
1452	struct ieee80211com *ic = ifp->if_l2com;
1453	struct wpi_rx_ring *ring = &sc->rxq;
1454	struct wpi_rx_stat *stat;
1455	struct wpi_rx_head *head;
1456	struct wpi_rx_tail *tail;
1457	struct ieee80211_node *ni;
1458	struct mbuf *m, *mnew;
1459	bus_addr_t paddr;
1460	int error;
1461
1462	stat = (struct wpi_rx_stat *)(desc + 1);
1463
1464	if (stat->len > WPI_STAT_MAXLEN) {
1465		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1466		ifp->if_ierrors++;
1467		return;
1468	}
1469
1470	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1471	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1472
1473	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1474	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1475	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1476	    (uintmax_t)le64toh(tail->tstamp)));
1477
1478	/* discard Rx frames with bad CRC early */
1479	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1480		DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1481		    le32toh(tail->flags)));
1482		ifp->if_ierrors++;
1483		return;
1484	}
1485	if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1486		DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1487		    le16toh(head->len)));
1488		ifp->if_ierrors++;
1489		return;
1490	}
1491
1492	/* XXX don't need mbuf, just dma buffer */
1493	mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1494	if (mnew == NULL) {
1495		DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1496		    __func__));
1497		ifp->if_ierrors++;
1498		return;
1499	}
1500	error = bus_dmamap_load(ring->data_dmat, data->map,
1501	    mtod(mnew, caddr_t), MJUMPAGESIZE,
1502	    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1503	if (error != 0 && error != EFBIG) {
1504		device_printf(sc->sc_dev,
1505		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1506		m_freem(mnew);
1507		ifp->if_ierrors++;
1508		return;
1509	}
1510	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1511
1512	/* finalize mbuf and swap in new one */
1513	m = data->m;
1514	m->m_pkthdr.rcvif = ifp;
1515	m->m_data = (caddr_t)(head + 1);
1516	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1517
1518	data->m = mnew;
1519	/* update Rx descriptor */
1520	ring->desc[ring->cur] = htole32(paddr);
1521
1522	if (bpf_peers_present(ifp->if_bpf)) {
1523		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1524
1525		tap->wr_flags = 0;
1526		tap->wr_chan_freq =
1527			htole16(ic->ic_channels[head->chan].ic_freq);
1528		tap->wr_chan_flags =
1529			htole16(ic->ic_channels[head->chan].ic_flags);
1530		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1531		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1532		tap->wr_tsft = tail->tstamp;
1533		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1534		switch (head->rate) {
1535		/* CCK rates */
1536		case  10: tap->wr_rate =   2; break;
1537		case  20: tap->wr_rate =   4; break;
1538		case  55: tap->wr_rate =  11; break;
1539		case 110: tap->wr_rate =  22; break;
1540		/* OFDM rates */
1541		case 0xd: tap->wr_rate =  12; break;
1542		case 0xf: tap->wr_rate =  18; break;
1543		case 0x5: tap->wr_rate =  24; break;
1544		case 0x7: tap->wr_rate =  36; break;
1545		case 0x9: tap->wr_rate =  48; break;
1546		case 0xb: tap->wr_rate =  72; break;
1547		case 0x1: tap->wr_rate =  96; break;
1548		case 0x3: tap->wr_rate = 108; break;
1549		/* unknown rate: should not happen */
1550		default:  tap->wr_rate =   0;
1551		}
1552		if (le16toh(head->flags) & 0x4)
1553			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1554
1555		bpf_mtap2(ifp->if_bpf, tap, sc->sc_rxtap_len, m);
1556	}
1557
1558	WPI_UNLOCK(sc);
1559
1560	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1561	if (ni != NULL) {
1562		(void) ieee80211_input(ni, m, stat->rssi, 0, 0);
1563		ieee80211_free_node(ni);
1564	} else
1565		(void) ieee80211_input_all(ic, m, stat->rssi, 0, 0);
1566
1567	WPI_LOCK(sc);
1568}
1569
1570static void
1571wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1572{
1573	struct ifnet *ifp = sc->sc_ifp;
1574	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1575	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1576	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1577	struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1578
1579	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1580	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1581	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1582	    le32toh(stat->status)));
1583
1584	/*
1585	 * Update rate control statistics for the node.
1586	 * XXX we should not count mgmt frames since they're always sent at
1587	 * the lowest available bit-rate.
1588	 * XXX frames w/o ACK shouldn't be used either
1589	 */
1590	wn->amn.amn_txcnt++;
1591	if (stat->ntries > 0) {
1592		DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1593		wn->amn.amn_retrycnt++;
1594	}
1595
1596	/* XXX oerrors should only count errors !maxtries */
1597	if ((le32toh(stat->status) & 0xff) != 1)
1598		ifp->if_oerrors++;
1599	else
1600		ifp->if_opackets++;
1601
1602	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1603	bus_dmamap_unload(ring->data_dmat, txdata->map);
1604	/* XXX handle M_TXCB? */
1605	m_freem(txdata->m);
1606	txdata->m = NULL;
1607	ieee80211_free_node(txdata->ni);
1608	txdata->ni = NULL;
1609
1610	ring->queued--;
1611
1612	sc->sc_tx_timer = 0;
1613	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1614	wpi_start_locked(ifp);
1615}
1616
1617static void
1618wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1619{
1620	struct wpi_tx_ring *ring = &sc->cmdq;
1621	struct wpi_tx_data *data;
1622
1623	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1624				 "type=%s len=%d\n", desc->qid, desc->idx,
1625				 desc->flags, wpi_cmd_str(desc->type),
1626				 le32toh(desc->len)));
1627
1628	if ((desc->qid & 7) != 4)
1629		return;	/* not a command ack */
1630
1631	data = &ring->data[desc->idx];
1632
1633	/* if the command was mapped in a mbuf, free it */
1634	if (data->m != NULL) {
1635		bus_dmamap_unload(ring->data_dmat, data->map);
1636		m_freem(data->m);
1637		data->m = NULL;
1638	}
1639
1640	sc->flags &= ~WPI_FLAG_BUSY;
1641	wakeup(&ring->cmd[desc->idx]);
1642}
1643
1644static void
1645wpi_notif_intr(struct wpi_softc *sc)
1646{
1647	struct ifnet *ifp = sc->sc_ifp;
1648	struct ieee80211com *ic = ifp->if_l2com;
1649	struct wpi_rx_desc *desc;
1650	struct wpi_rx_data *data;
1651	uint32_t hw;
1652
1653	hw = le32toh(sc->shared->next);
1654	while (sc->rxq.cur != hw) {
1655		data = &sc->rxq.data[sc->rxq.cur];
1656		desc = (void *)data->m->m_ext.ext_buf;
1657
1658		DPRINTFN(WPI_DEBUG_NOTIFY,
1659			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1660			  desc->qid,
1661			  desc->idx,
1662			  desc->flags,
1663			  desc->type,
1664			  le32toh(desc->len)));
1665
1666		if (!(desc->qid & 0x80))	/* reply to a command */
1667			wpi_cmd_intr(sc, desc);
1668
1669		switch (desc->type) {
1670		case WPI_RX_DONE:
1671			/* a 802.11 frame was received */
1672			wpi_rx_intr(sc, desc, data);
1673			break;
1674
1675		case WPI_TX_DONE:
1676			/* a 802.11 frame has been transmitted */
1677			wpi_tx_intr(sc, desc);
1678			break;
1679
1680		case WPI_UC_READY:
1681		{
1682			struct wpi_ucode_info *uc =
1683				(struct wpi_ucode_info *)(desc + 1);
1684
1685			/* the microcontroller is ready */
1686			DPRINTF(("microcode alive notification version %x "
1687				"alive %x\n", le32toh(uc->version),
1688				le32toh(uc->valid)));
1689
1690			if (le32toh(uc->valid) != 1) {
1691				device_printf(sc->sc_dev,
1692				    "microcontroller initialization failed\n");
1693				wpi_stop_locked(sc);
1694			}
1695			break;
1696		}
1697		case WPI_STATE_CHANGED:
1698		{
1699			uint32_t *status = (uint32_t *)(desc + 1);
1700
1701			/* enabled/disabled notification */
1702			DPRINTF(("state changed to %x\n", le32toh(*status)));
1703
1704			if (le32toh(*status) & 1) {
1705				device_printf(sc->sc_dev,
1706				    "Radio transmitter is switched off\n");
1707				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1708				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1709				/* Disable firmware commands */
1710				WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1711			}
1712			break;
1713		}
1714		case WPI_START_SCAN:
1715		{
1716#ifdef WPI_DEBUG
1717			struct wpi_start_scan *scan =
1718				(struct wpi_start_scan *)(desc + 1);
1719#endif
1720
1721			DPRINTFN(WPI_DEBUG_SCANNING,
1722				 ("scanning channel %d status %x\n",
1723			    scan->chan, le32toh(scan->status)));
1724			break;
1725		}
1726		case WPI_STOP_SCAN:
1727		{
1728#ifdef WPI_DEBUG
1729			struct wpi_stop_scan *scan =
1730				(struct wpi_stop_scan *)(desc + 1);
1731#endif
1732			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1733
1734			DPRINTFN(WPI_DEBUG_SCANNING,
1735			    ("scan finished nchan=%d status=%d chan=%d\n",
1736			     scan->nchan, scan->status, scan->chan));
1737
1738			sc->sc_scan_timer = 0;
1739			ieee80211_scan_next(vap);
1740			break;
1741		}
1742		case WPI_MISSED_BEACON:
1743		{
1744			struct wpi_missed_beacon *beacon =
1745				(struct wpi_missed_beacon *)(desc + 1);
1746			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1747
1748			if (le32toh(beacon->consecutive) >=
1749			    vap->iv_bmissthreshold) {
1750				DPRINTF(("Beacon miss: %u >= %u\n",
1751					 le32toh(beacon->consecutive),
1752					 vap->iv_bmissthreshold));
1753				ieee80211_beacon_miss(ic);
1754			}
1755			break;
1756		}
1757		}
1758
1759		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1760	}
1761
1762	/* tell the firmware what we have processed */
1763	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1764	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1765}
1766
1767static void
1768wpi_intr(void *arg)
1769{
1770	struct wpi_softc *sc = arg;
1771	uint32_t r;
1772
1773	WPI_LOCK(sc);
1774
1775	r = WPI_READ(sc, WPI_INTR);
1776	if (r == 0 || r == 0xffffffff) {
1777		WPI_UNLOCK(sc);
1778		return;
1779	}
1780
1781	/* disable interrupts */
1782	WPI_WRITE(sc, WPI_MASK, 0);
1783	/* ack interrupts */
1784	WPI_WRITE(sc, WPI_INTR, r);
1785
1786	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1787		struct ifnet *ifp = sc->sc_ifp;
1788		struct ieee80211com *ic = ifp->if_l2com;
1789		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1790
1791		device_printf(sc->sc_dev, "fatal firmware error\n");
1792		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1793				"(Hardware Error)"));
1794		if (vap != NULL)
1795			ieee80211_cancel_scan(vap);
1796		ieee80211_runtask(ic, &sc->sc_restarttask);
1797		sc->flags &= ~WPI_FLAG_BUSY;
1798		WPI_UNLOCK(sc);
1799		return;
1800	}
1801
1802	if (r & WPI_RX_INTR)
1803		wpi_notif_intr(sc);
1804
1805	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1806		wakeup(sc);
1807
1808	/* re-enable interrupts */
1809	if (sc->sc_ifp->if_flags & IFF_UP)
1810		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1811
1812	WPI_UNLOCK(sc);
1813}
1814
1815static uint8_t
1816wpi_plcp_signal(int rate)
1817{
1818	switch (rate) {
1819	/* CCK rates (returned values are device-dependent) */
1820	case 2:		return 10;
1821	case 4:		return 20;
1822	case 11:	return 55;
1823	case 22:	return 110;
1824
1825	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1826	/* R1-R4 (ral/ural is R4-R1) */
1827	case 12:	return 0xd;
1828	case 18:	return 0xf;
1829	case 24:	return 0x5;
1830	case 36:	return 0x7;
1831	case 48:	return 0x9;
1832	case 72:	return 0xb;
1833	case 96:	return 0x1;
1834	case 108:	return 0x3;
1835
1836	/* unsupported rates (should not get there) */
1837	default:	return 0;
1838	}
1839}
1840
1841/* quickly determine if a given rate is CCK or OFDM */
1842#define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1843
1844/*
1845 * Construct the data packet for a transmit buffer and acutally put
1846 * the buffer onto the transmit ring, kicking the card to process the
1847 * the buffer.
1848 */
1849static int
1850wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1851	int ac)
1852{
1853	struct ieee80211vap *vap = ni->ni_vap;
1854	struct ifnet *ifp = sc->sc_ifp;
1855	struct ieee80211com *ic = ifp->if_l2com;
1856	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1857	struct wpi_tx_ring *ring = &sc->txq[ac];
1858	struct wpi_tx_desc *desc;
1859	struct wpi_tx_data *data;
1860	struct wpi_tx_cmd *cmd;
1861	struct wpi_cmd_data *tx;
1862	struct ieee80211_frame *wh;
1863	const struct ieee80211_txparam *tp;
1864	struct ieee80211_key *k;
1865	struct mbuf *mnew;
1866	int i, error, nsegs, rate, hdrlen, ismcast;
1867	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1868
1869	desc = &ring->desc[ring->cur];
1870	data = &ring->data[ring->cur];
1871
1872	wh = mtod(m0, struct ieee80211_frame *);
1873
1874	hdrlen = ieee80211_hdrsize(wh);
1875	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1876
1877	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1878		k = ieee80211_crypto_encap(ni, m0);
1879		if (k == NULL) {
1880			m_freem(m0);
1881			return ENOBUFS;
1882		}
1883		/* packet header may have moved, reset our local pointer */
1884		wh = mtod(m0, struct ieee80211_frame *);
1885	}
1886
1887	cmd = &ring->cmd[ring->cur];
1888	cmd->code = WPI_CMD_TX_DATA;
1889	cmd->flags = 0;
1890	cmd->qid = ring->qid;
1891	cmd->idx = ring->cur;
1892
1893	tx = (struct wpi_cmd_data *)cmd->data;
1894	tx->flags = htole32(WPI_TX_AUTO_SEQ);
1895	tx->timeout = htole16(0);
1896	tx->ofdm_mask = 0xff;
1897	tx->cck_mask = 0x0f;
1898	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1899	tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1900	tx->len = htole16(m0->m_pkthdr.len);
1901
1902	if (!ismcast) {
1903		if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1904		    !cap->cap_wmeParams[ac].wmep_noackPolicy)
1905			tx->flags |= htole32(WPI_TX_NEED_ACK);
1906		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1907			tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1908			tx->rts_ntries = 7;
1909		}
1910	}
1911	/* pick a rate */
1912	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1913	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1914		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1915		/* tell h/w to set timestamp in probe responses */
1916		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1917			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1918		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1919		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1920			tx->timeout = htole16(3);
1921		else
1922			tx->timeout = htole16(2);
1923		rate = tp->mgmtrate;
1924	} else if (ismcast) {
1925		rate = tp->mcastrate;
1926	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1927		rate = tp->ucastrate;
1928	} else {
1929		(void) ieee80211_amrr_choose(ni, &WPI_NODE(ni)->amn);
1930		rate = ni->ni_txrate;
1931	}
1932	tx->rate = wpi_plcp_signal(rate);
1933
1934	/* be very persistant at sending frames out */
1935#if 0
1936	tx->data_ntries = tp->maxretry;
1937#else
1938	tx->data_ntries = 15;		/* XXX way too high */
1939#endif
1940
1941	if (bpf_peers_present(ifp->if_bpf)) {
1942		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1943		tap->wt_flags = 0;
1944		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1945		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1946		tap->wt_rate = rate;
1947		tap->wt_hwqueue = ac;
1948		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1949			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1950
1951		bpf_mtap2(ifp->if_bpf, tap, sc->sc_txtap_len, m0);
1952	}
1953
1954	/* save and trim IEEE802.11 header */
1955	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1956	m_adj(m0, hdrlen);
1957
1958	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
1959	    &nsegs, BUS_DMA_NOWAIT);
1960	if (error != 0 && error != EFBIG) {
1961		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1962		    error);
1963		m_freem(m0);
1964		return error;
1965	}
1966	if (error != 0) {
1967		/* XXX use m_collapse */
1968		mnew = m_defrag(m0, M_DONTWAIT);
1969		if (mnew == NULL) {
1970			device_printf(sc->sc_dev,
1971			    "could not defragment mbuf\n");
1972			m_freem(m0);
1973			return ENOBUFS;
1974		}
1975		m0 = mnew;
1976
1977		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
1978		    m0, segs, &nsegs, BUS_DMA_NOWAIT);
1979		if (error != 0) {
1980			device_printf(sc->sc_dev,
1981			    "could not map mbuf (error %d)\n", error);
1982			m_freem(m0);
1983			return error;
1984		}
1985	}
1986
1987	data->m = m0;
1988	data->ni = ni;
1989
1990	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1991	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
1992
1993	/* first scatter/gather segment is used by the tx data command */
1994	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1995	    (1 + nsegs) << 24);
1996	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1997	    ring->cur * sizeof (struct wpi_tx_cmd));
1998	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
1999	for (i = 1; i <= nsegs; i++) {
2000		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
2001		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
2002	}
2003
2004	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2005	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2006	    BUS_DMASYNC_PREWRITE);
2007
2008	ring->queued++;
2009
2010	/* kick ring */
2011	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2012	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2013
2014	return 0;
2015}
2016
2017/**
2018 * Process data waiting to be sent on the IFNET output queue
2019 */
2020static void
2021wpi_start(struct ifnet *ifp)
2022{
2023	struct wpi_softc *sc = ifp->if_softc;
2024
2025	WPI_LOCK(sc);
2026	wpi_start_locked(ifp);
2027	WPI_UNLOCK(sc);
2028}
2029
2030static void
2031wpi_start_locked(struct ifnet *ifp)
2032{
2033	struct wpi_softc *sc = ifp->if_softc;
2034	struct ieee80211_node *ni;
2035	struct mbuf *m;
2036	int ac;
2037
2038	WPI_LOCK_ASSERT(sc);
2039
2040	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2041		return;
2042
2043	for (;;) {
2044		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2045		if (m == NULL)
2046			break;
2047		ac = M_WME_GETAC(m);
2048		if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2049			/* there is no place left in this ring */
2050			IFQ_DRV_PREPEND(&ifp->if_snd, m);
2051			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2052			break;
2053		}
2054		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2055		if (wpi_tx_data(sc, m, ni, ac) != 0) {
2056			ieee80211_free_node(ni);
2057			ifp->if_oerrors++;
2058			break;
2059		}
2060		sc->sc_tx_timer = 5;
2061	}
2062}
2063
2064static int
2065wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2066	const struct ieee80211_bpf_params *params)
2067{
2068	struct ieee80211com *ic = ni->ni_ic;
2069	struct ifnet *ifp = ic->ic_ifp;
2070	struct wpi_softc *sc = ifp->if_softc;
2071
2072	/* prevent management frames from being sent if we're not ready */
2073	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2074		m_freem(m);
2075		ieee80211_free_node(ni);
2076		return ENETDOWN;
2077	}
2078	WPI_LOCK(sc);
2079
2080	/* management frames go into ring 0 */
2081	if (sc->txq[0].queued > sc->txq[0].count - 8) {
2082		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2083		m_freem(m);
2084		WPI_UNLOCK(sc);
2085		ieee80211_free_node(ni);
2086		return ENOBUFS;		/* XXX */
2087	}
2088
2089	ifp->if_opackets++;
2090	if (wpi_tx_data(sc, m, ni, 0) != 0)
2091		goto bad;
2092	sc->sc_tx_timer = 5;
2093	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2094
2095	WPI_UNLOCK(sc);
2096	return 0;
2097bad:
2098	ifp->if_oerrors++;
2099	WPI_UNLOCK(sc);
2100	ieee80211_free_node(ni);
2101	return EIO;		/* XXX */
2102}
2103
2104static int
2105wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2106{
2107	struct wpi_softc *sc = ifp->if_softc;
2108	struct ieee80211com *ic = ifp->if_l2com;
2109	struct ifreq *ifr = (struct ifreq *) data;
2110	int error = 0, startall = 0;
2111
2112	switch (cmd) {
2113	case SIOCSIFFLAGS:
2114		WPI_LOCK(sc);
2115		if ((ifp->if_flags & IFF_UP)) {
2116			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2117				wpi_init_locked(sc, 0);
2118				startall = 1;
2119			}
2120		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2121			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2122			wpi_stop_locked(sc);
2123		WPI_UNLOCK(sc);
2124		if (startall)
2125			ieee80211_start_all(ic);
2126		break;
2127	case SIOCGIFMEDIA:
2128		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2129		break;
2130	case SIOCGIFADDR:
2131		error = ether_ioctl(ifp, cmd, data);
2132		break;
2133	default:
2134		error = EINVAL;
2135		break;
2136	}
2137	return error;
2138}
2139
2140/*
2141 * Extract various information from EEPROM.
2142 */
2143static void
2144wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2145{
2146	int i;
2147
2148	/* read the hardware capabilities, revision and SKU type */
2149	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2150	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2151	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2152
2153	/* read the regulatory domain */
2154	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2155
2156	/* read in the hw MAC address */
2157	wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2158
2159	/* read the list of authorized channels */
2160	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2161		wpi_read_eeprom_channels(sc,i);
2162
2163	/* read the power level calibration info for each group */
2164	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2165		wpi_read_eeprom_group(sc,i);
2166}
2167
2168/*
2169 * Send a command to the firmware.
2170 */
2171static int
2172wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2173{
2174	struct wpi_tx_ring *ring = &sc->cmdq;
2175	struct wpi_tx_desc *desc;
2176	struct wpi_tx_cmd *cmd;
2177
2178#ifdef WPI_DEBUG
2179	if (!async) {
2180		WPI_LOCK_ASSERT(sc);
2181	}
2182#endif
2183
2184	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2185		    async));
2186
2187	if (sc->flags & WPI_FLAG_BUSY) {
2188		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2189		    __func__, code);
2190		return EAGAIN;
2191	}
2192	sc->flags|= WPI_FLAG_BUSY;
2193
2194	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2195	    code, size));
2196
2197	desc = &ring->desc[ring->cur];
2198	cmd = &ring->cmd[ring->cur];
2199
2200	cmd->code = code;
2201	cmd->flags = 0;
2202	cmd->qid = ring->qid;
2203	cmd->idx = ring->cur;
2204	memcpy(cmd->data, buf, size);
2205
2206	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2207	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2208		ring->cur * sizeof (struct wpi_tx_cmd));
2209	desc->segs[0].len  = htole32(4 + size);
2210
2211	/* kick cmd ring */
2212	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2213	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2214
2215	if (async) {
2216		sc->flags &= ~ WPI_FLAG_BUSY;
2217		return 0;
2218	}
2219
2220	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2221}
2222
2223static int
2224wpi_wme_update(struct ieee80211com *ic)
2225{
2226#define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2227#define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2228	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2229	const struct wmeParams *wmep;
2230	struct wpi_wme_setup wme;
2231	int ac;
2232
2233	/* don't override default WME values if WME is not actually enabled */
2234	if (!(ic->ic_flags & IEEE80211_F_WME))
2235		return 0;
2236
2237	wme.flags = 0;
2238	for (ac = 0; ac < WME_NUM_AC; ac++) {
2239		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2240		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2241		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2242		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2243		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2244
2245		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2246		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2247		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2248	}
2249	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2250#undef WPI_USEC
2251#undef WPI_EXP2
2252}
2253
2254/*
2255 * Configure h/w multi-rate retries.
2256 */
2257static int
2258wpi_mrr_setup(struct wpi_softc *sc)
2259{
2260	struct ifnet *ifp = sc->sc_ifp;
2261	struct ieee80211com *ic = ifp->if_l2com;
2262	struct wpi_mrr_setup mrr;
2263	int i, error;
2264
2265	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2266
2267	/* CCK rates (not used with 802.11a) */
2268	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2269		mrr.rates[i].flags = 0;
2270		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2271		/* fallback to the immediate lower CCK rate (if any) */
2272		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2273		/* try one time at this rate before falling back to "next" */
2274		mrr.rates[i].ntries = 1;
2275	}
2276
2277	/* OFDM rates (not used with 802.11b) */
2278	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2279		mrr.rates[i].flags = 0;
2280		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2281		/* fallback to the immediate lower OFDM rate (if any) */
2282		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2283		mrr.rates[i].next = (i == WPI_OFDM6) ?
2284		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2285			WPI_OFDM6 : WPI_CCK2) :
2286		    i - 1;
2287		/* try one time at this rate before falling back to "next" */
2288		mrr.rates[i].ntries = 1;
2289	}
2290
2291	/* setup MRR for control frames */
2292	mrr.which = htole32(WPI_MRR_CTL);
2293	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2294	if (error != 0) {
2295		device_printf(sc->sc_dev,
2296		    "could not setup MRR for control frames\n");
2297		return error;
2298	}
2299
2300	/* setup MRR for data frames */
2301	mrr.which = htole32(WPI_MRR_DATA);
2302	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2303	if (error != 0) {
2304		device_printf(sc->sc_dev,
2305		    "could not setup MRR for data frames\n");
2306		return error;
2307	}
2308
2309	return 0;
2310}
2311
2312static void
2313wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2314{
2315	struct wpi_cmd_led led;
2316
2317	led.which = which;
2318	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2319	led.off = off;
2320	led.on = on;
2321
2322	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2323}
2324
2325static void
2326wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2327{
2328	struct wpi_cmd_tsf tsf;
2329	uint64_t val, mod;
2330
2331	memset(&tsf, 0, sizeof tsf);
2332	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2333	tsf.bintval = htole16(ni->ni_intval);
2334	tsf.lintval = htole16(10);
2335
2336	/* compute remaining time until next beacon */
2337	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2338	mod = le64toh(tsf.tstamp) % val;
2339	tsf.binitval = htole32((uint32_t)(val - mod));
2340
2341	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2342		device_printf(sc->sc_dev, "could not enable TSF\n");
2343}
2344
2345#if 0
2346/*
2347 * Build a beacon frame that the firmware will broadcast periodically in
2348 * IBSS or HostAP modes.
2349 */
2350static int
2351wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2352{
2353	struct ifnet *ifp = sc->sc_ifp;
2354	struct ieee80211com *ic = ifp->if_l2com;
2355	struct wpi_tx_ring *ring = &sc->cmdq;
2356	struct wpi_tx_desc *desc;
2357	struct wpi_tx_data *data;
2358	struct wpi_tx_cmd *cmd;
2359	struct wpi_cmd_beacon *bcn;
2360	struct ieee80211_beacon_offsets bo;
2361	struct mbuf *m0;
2362	bus_addr_t physaddr;
2363	int error;
2364
2365	desc = &ring->desc[ring->cur];
2366	data = &ring->data[ring->cur];
2367
2368	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2369	if (m0 == NULL) {
2370		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2371		return ENOMEM;
2372	}
2373
2374	cmd = &ring->cmd[ring->cur];
2375	cmd->code = WPI_CMD_SET_BEACON;
2376	cmd->flags = 0;
2377	cmd->qid = ring->qid;
2378	cmd->idx = ring->cur;
2379
2380	bcn = (struct wpi_cmd_beacon *)cmd->data;
2381	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2382	bcn->id = WPI_ID_BROADCAST;
2383	bcn->ofdm_mask = 0xff;
2384	bcn->cck_mask = 0x0f;
2385	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2386	bcn->len = htole16(m0->m_pkthdr.len);
2387	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2388		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2389	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2390
2391	/* save and trim IEEE802.11 header */
2392	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2393	m_adj(m0, sizeof (struct ieee80211_frame));
2394
2395	/* assume beacon frame is contiguous */
2396	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2397	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2398	if (error != 0) {
2399		device_printf(sc->sc_dev, "could not map beacon\n");
2400		m_freem(m0);
2401		return error;
2402	}
2403
2404	data->m = m0;
2405
2406	/* first scatter/gather segment is used by the beacon command */
2407	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2408	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2409		ring->cur * sizeof (struct wpi_tx_cmd));
2410	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2411	desc->segs[1].addr = htole32(physaddr);
2412	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2413
2414	/* kick cmd ring */
2415	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2416	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2417
2418	return 0;
2419}
2420#endif
2421
2422static int
2423wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2424{
2425	struct ieee80211com *ic = vap->iv_ic;
2426	struct ieee80211_node *ni = vap->iv_bss;
2427	struct wpi_node_info node;
2428	int error;
2429
2430
2431	/* update adapter's configuration */
2432	sc->config.associd = 0;
2433	sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2434	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2435	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2436	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2437		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2438		    WPI_CONFIG_24GHZ);
2439	}
2440	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2441		sc->config.cck_mask  = 0;
2442		sc->config.ofdm_mask = 0x15;
2443	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2444		sc->config.cck_mask  = 0x03;
2445		sc->config.ofdm_mask = 0;
2446	} else {
2447		/* XXX assume 802.11b/g */
2448		sc->config.cck_mask  = 0x0f;
2449		sc->config.ofdm_mask = 0x15;
2450	}
2451
2452	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2453		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2454	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2455		sizeof (struct wpi_config), 1);
2456	if (error != 0) {
2457		device_printf(sc->sc_dev, "could not configure\n");
2458		return error;
2459	}
2460
2461	/* configuration has changed, set Tx power accordingly */
2462	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2463		device_printf(sc->sc_dev, "could not set Tx power\n");
2464		return error;
2465	}
2466
2467	/* add default node */
2468	memset(&node, 0, sizeof node);
2469	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2470	node.id = WPI_ID_BSS;
2471	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2472	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2473	node.action = htole32(WPI_ACTION_SET_RATE);
2474	node.antenna = WPI_ANTENNA_BOTH;
2475	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2476	if (error != 0)
2477		device_printf(sc->sc_dev, "could not add BSS node\n");
2478
2479	return (error);
2480}
2481
2482static int
2483wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2484{
2485	struct ieee80211com *ic = vap->iv_ic;
2486	struct ieee80211_node *ni = vap->iv_bss;
2487	int error;
2488
2489	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2490		/* link LED blinks while monitoring */
2491		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2492		return 0;
2493	}
2494
2495	wpi_enable_tsf(sc, ni);
2496
2497	/* update adapter's configuration */
2498	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2499	/* short preamble/slot time are negotiated when associating */
2500	sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2501	    WPI_CONFIG_SHSLOT);
2502	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2503		sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2504	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2505		sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2506	sc->config.filter |= htole32(WPI_FILTER_BSS);
2507
2508	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2509
2510	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2511		    sc->config.flags));
2512	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2513		    wpi_config), 1);
2514	if (error != 0) {
2515		device_printf(sc->sc_dev, "could not update configuration\n");
2516		return error;
2517	}
2518
2519	error = wpi_set_txpower(sc, ni->ni_chan, 1);
2520	if (error != 0) {
2521		device_printf(sc->sc_dev, "could set txpower\n");
2522		return error;
2523	}
2524
2525	/* link LED always on while associated */
2526	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2527
2528	/* start automatic rate control timer */
2529	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2530
2531	return (error);
2532}
2533
2534/*
2535 * Send a scan request to the firmware.  Since this command is huge, we map it
2536 * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2537 * much of this code is similar to that in wpi_cmd but because we must manually
2538 * construct the probe & channels, we duplicate what's needed here. XXX In the
2539 * future, this function should be modified to use wpi_cmd to help cleanup the
2540 * code base.
2541 */
2542static int
2543wpi_scan(struct wpi_softc *sc)
2544{
2545	struct ifnet *ifp = sc->sc_ifp;
2546	struct ieee80211com *ic = ifp->if_l2com;
2547	struct ieee80211_scan_state *ss = ic->ic_scan;
2548	struct wpi_tx_ring *ring = &sc->cmdq;
2549	struct wpi_tx_desc *desc;
2550	struct wpi_tx_data *data;
2551	struct wpi_tx_cmd *cmd;
2552	struct wpi_scan_hdr *hdr;
2553	struct wpi_scan_chan *chan;
2554	struct ieee80211_frame *wh;
2555	struct ieee80211_rateset *rs;
2556	struct ieee80211_channel *c;
2557	enum ieee80211_phymode mode;
2558	uint8_t *frm;
2559	int nrates, pktlen, error, i, nssid;
2560	bus_addr_t physaddr;
2561
2562	desc = &ring->desc[ring->cur];
2563	data = &ring->data[ring->cur];
2564
2565	data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2566	if (data->m == NULL) {
2567		device_printf(sc->sc_dev,
2568		    "could not allocate mbuf for scan command\n");
2569		return ENOMEM;
2570	}
2571
2572	cmd = mtod(data->m, struct wpi_tx_cmd *);
2573	cmd->code = WPI_CMD_SCAN;
2574	cmd->flags = 0;
2575	cmd->qid = ring->qid;
2576	cmd->idx = ring->cur;
2577
2578	hdr = (struct wpi_scan_hdr *)cmd->data;
2579	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2580
2581	/*
2582	 * Move to the next channel if no packets are received within 5 msecs
2583	 * after sending the probe request (this helps to reduce the duration
2584	 * of active scans).
2585	 */
2586	hdr->quiet = htole16(5);
2587	hdr->threshold = htole16(1);
2588
2589	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2590		/* send probe requests at 6Mbps */
2591		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2592
2593		/* Enable crc checking */
2594		hdr->promotion = htole16(1);
2595	} else {
2596		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2597		/* send probe requests at 1Mbps */
2598		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2599	}
2600	hdr->tx.id = WPI_ID_BROADCAST;
2601	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2602	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2603
2604	memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2605	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2606	for (i = 0; i < nssid; i++) {
2607		hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2608		hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2609		memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2610		    hdr->scan_essids[i].esslen);
2611#ifdef WPI_DEBUG
2612		if (wpi_debug & WPI_DEBUG_SCANNING) {
2613			printf("Scanning Essid: ");
2614			ieee80211_print_essid(hdr->scan_essids[i].essid,
2615			    hdr->scan_essids[i].esslen);
2616			printf("\n");
2617		}
2618#endif
2619	}
2620
2621	/*
2622	 * Build a probe request frame.  Most of the following code is a
2623	 * copy & paste of what is done in net80211.
2624	 */
2625	wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2626	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2627		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2628	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2629	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2630	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2631	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2632	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2633	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2634
2635	frm = (uint8_t *)(wh + 1);
2636
2637	/* add essid IE, the hardware will fill this in for us */
2638	*frm++ = IEEE80211_ELEMID_SSID;
2639	*frm++ = 0;
2640
2641	mode = ieee80211_chan2mode(ic->ic_curchan);
2642	rs = &ic->ic_sup_rates[mode];
2643
2644	/* add supported rates IE */
2645	*frm++ = IEEE80211_ELEMID_RATES;
2646	nrates = rs->rs_nrates;
2647	if (nrates > IEEE80211_RATE_SIZE)
2648		nrates = IEEE80211_RATE_SIZE;
2649	*frm++ = nrates;
2650	memcpy(frm, rs->rs_rates, nrates);
2651	frm += nrates;
2652
2653	/* add supported xrates IE */
2654	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2655		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2656		*frm++ = IEEE80211_ELEMID_XRATES;
2657		*frm++ = nrates;
2658		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2659		frm += nrates;
2660	}
2661
2662	/* setup length of probe request */
2663	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2664
2665	/*
2666	 * Construct information about the channel that we
2667	 * want to scan. The firmware expects this to be directly
2668	 * after the scan probe request
2669	 */
2670	c = ic->ic_curchan;
2671	chan = (struct wpi_scan_chan *)frm;
2672	chan->chan = ieee80211_chan2ieee(ic, c);
2673	chan->flags = 0;
2674	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2675		chan->flags |= WPI_CHAN_ACTIVE;
2676		if (nssid != 0)
2677			chan->flags |= WPI_CHAN_DIRECT;
2678	}
2679	chan->gain_dsp = 0x6e; /* Default level */
2680	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2681		chan->active = htole16(10);
2682		chan->passive = htole16(ss->ss_maxdwell);
2683		chan->gain_radio = 0x3b;
2684	} else {
2685		chan->active = htole16(20);
2686		chan->passive = htole16(ss->ss_maxdwell);
2687		chan->gain_radio = 0x28;
2688	}
2689
2690	DPRINTFN(WPI_DEBUG_SCANNING,
2691	    ("Scanning %u Passive: %d\n",
2692	     chan->chan,
2693	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2694
2695	hdr->nchan++;
2696	chan++;
2697
2698	frm += sizeof (struct wpi_scan_chan);
2699#if 0
2700	// XXX All Channels....
2701	for (c  = &ic->ic_channels[1];
2702	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2703		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2704			continue;
2705
2706		chan->chan = ieee80211_chan2ieee(ic, c);
2707		chan->flags = 0;
2708		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2709		    chan->flags |= WPI_CHAN_ACTIVE;
2710		    if (ic->ic_des_ssid[0].len != 0)
2711			chan->flags |= WPI_CHAN_DIRECT;
2712		}
2713		chan->gain_dsp = 0x6e; /* Default level */
2714		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2715			chan->active = htole16(10);
2716			chan->passive = htole16(110);
2717			chan->gain_radio = 0x3b;
2718		} else {
2719			chan->active = htole16(20);
2720			chan->passive = htole16(120);
2721			chan->gain_radio = 0x28;
2722		}
2723
2724		DPRINTFN(WPI_DEBUG_SCANNING,
2725			 ("Scanning %u Passive: %d\n",
2726			  chan->chan,
2727			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2728
2729		hdr->nchan++;
2730		chan++;
2731
2732		frm += sizeof (struct wpi_scan_chan);
2733	}
2734#endif
2735
2736	hdr->len = htole16(frm - (uint8_t *)hdr);
2737	pktlen = frm - (uint8_t *)cmd;
2738
2739	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2740	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2741	if (error != 0) {
2742		device_printf(sc->sc_dev, "could not map scan command\n");
2743		m_freem(data->m);
2744		data->m = NULL;
2745		return error;
2746	}
2747
2748	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2749	desc->segs[0].addr = htole32(physaddr);
2750	desc->segs[0].len  = htole32(pktlen);
2751
2752	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2753	    BUS_DMASYNC_PREWRITE);
2754	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2755
2756	/* kick cmd ring */
2757	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2758	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2759
2760	sc->sc_scan_timer = 5;
2761	return 0;	/* will be notified async. of failure/success */
2762}
2763
2764/**
2765 * Configure the card to listen to a particular channel, this transisions the
2766 * card in to being able to receive frames from remote devices.
2767 */
2768static int
2769wpi_config(struct wpi_softc *sc)
2770{
2771	struct ifnet *ifp = sc->sc_ifp;
2772	struct ieee80211com *ic = ifp->if_l2com;
2773	struct wpi_power power;
2774	struct wpi_bluetooth bluetooth;
2775	struct wpi_node_info node;
2776	int error;
2777
2778	/* set power mode */
2779	memset(&power, 0, sizeof power);
2780	power.flags = htole32(WPI_POWER_CAM|0x8);
2781	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2782	if (error != 0) {
2783		device_printf(sc->sc_dev, "could not set power mode\n");
2784		return error;
2785	}
2786
2787	/* configure bluetooth coexistence */
2788	memset(&bluetooth, 0, sizeof bluetooth);
2789	bluetooth.flags = 3;
2790	bluetooth.lead = 0xaa;
2791	bluetooth.kill = 1;
2792	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2793	    0);
2794	if (error != 0) {
2795		device_printf(sc->sc_dev,
2796		    "could not configure bluetooth coexistence\n");
2797		return error;
2798	}
2799
2800	/* configure adapter */
2801	memset(&sc->config, 0, sizeof (struct wpi_config));
2802	IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2803	/*set default channel*/
2804	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2805	sc->config.flags = htole32(WPI_CONFIG_TSF);
2806	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2807		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2808		    WPI_CONFIG_24GHZ);
2809	}
2810	sc->config.filter = 0;
2811	switch (ic->ic_opmode) {
2812	case IEEE80211_M_STA:
2813	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2814		sc->config.mode = WPI_MODE_STA;
2815		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2816		break;
2817	case IEEE80211_M_IBSS:
2818	case IEEE80211_M_AHDEMO:
2819		sc->config.mode = WPI_MODE_IBSS;
2820		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2821					     WPI_FILTER_MULTICAST);
2822		break;
2823	case IEEE80211_M_HOSTAP:
2824		sc->config.mode = WPI_MODE_HOSTAP;
2825		break;
2826	case IEEE80211_M_MONITOR:
2827		sc->config.mode = WPI_MODE_MONITOR;
2828		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2829			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2830		break;
2831	}
2832	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2833	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2834	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2835		sizeof (struct wpi_config), 0);
2836	if (error != 0) {
2837		device_printf(sc->sc_dev, "configure command failed\n");
2838		return error;
2839	}
2840
2841	/* configuration has changed, set Tx power accordingly */
2842	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2843	    device_printf(sc->sc_dev, "could not set Tx power\n");
2844	    return error;
2845	}
2846
2847	/* add broadcast node */
2848	memset(&node, 0, sizeof node);
2849	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2850	node.id = WPI_ID_BROADCAST;
2851	node.rate = wpi_plcp_signal(2);
2852	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2853	if (error != 0) {
2854		device_printf(sc->sc_dev, "could not add broadcast node\n");
2855		return error;
2856	}
2857
2858	/* Setup rate scalling */
2859	error = wpi_mrr_setup(sc);
2860	if (error != 0) {
2861		device_printf(sc->sc_dev, "could not setup MRR\n");
2862		return error;
2863	}
2864
2865	return 0;
2866}
2867
2868static void
2869wpi_stop_master(struct wpi_softc *sc)
2870{
2871	uint32_t tmp;
2872	int ntries;
2873
2874	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2875
2876	tmp = WPI_READ(sc, WPI_RESET);
2877	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2878
2879	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2880	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2881		return;	/* already asleep */
2882
2883	for (ntries = 0; ntries < 100; ntries++) {
2884		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2885			break;
2886		DELAY(10);
2887	}
2888	if (ntries == 100) {
2889		device_printf(sc->sc_dev, "timeout waiting for master\n");
2890	}
2891}
2892
2893static int
2894wpi_power_up(struct wpi_softc *sc)
2895{
2896	uint32_t tmp;
2897	int ntries;
2898
2899	wpi_mem_lock(sc);
2900	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2901	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2902	wpi_mem_unlock(sc);
2903
2904	for (ntries = 0; ntries < 5000; ntries++) {
2905		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2906			break;
2907		DELAY(10);
2908	}
2909	if (ntries == 5000) {
2910		device_printf(sc->sc_dev,
2911		    "timeout waiting for NIC to power up\n");
2912		return ETIMEDOUT;
2913	}
2914	return 0;
2915}
2916
2917static int
2918wpi_reset(struct wpi_softc *sc)
2919{
2920	uint32_t tmp;
2921	int ntries;
2922
2923	DPRINTFN(WPI_DEBUG_HW,
2924	    ("Resetting the card - clearing any uploaded firmware\n"));
2925
2926	/* clear any pending interrupts */
2927	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2928
2929	tmp = WPI_READ(sc, WPI_PLL_CTL);
2930	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2931
2932	tmp = WPI_READ(sc, WPI_CHICKEN);
2933	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2934
2935	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2936	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2937
2938	/* wait for clock stabilization */
2939	for (ntries = 0; ntries < 25000; ntries++) {
2940		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2941			break;
2942		DELAY(10);
2943	}
2944	if (ntries == 25000) {
2945		device_printf(sc->sc_dev,
2946		    "timeout waiting for clock stabilization\n");
2947		return ETIMEDOUT;
2948	}
2949
2950	/* initialize EEPROM */
2951	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2952
2953	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2954		device_printf(sc->sc_dev, "EEPROM not found\n");
2955		return EIO;
2956	}
2957	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2958
2959	return 0;
2960}
2961
2962static void
2963wpi_hw_config(struct wpi_softc *sc)
2964{
2965	uint32_t rev, hw;
2966
2967	/* voodoo from the Linux "driver".. */
2968	hw = WPI_READ(sc, WPI_HWCONFIG);
2969
2970	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2971	if ((rev & 0xc0) == 0x40)
2972		hw |= WPI_HW_ALM_MB;
2973	else if (!(rev & 0x80))
2974		hw |= WPI_HW_ALM_MM;
2975
2976	if (sc->cap == 0x80)
2977		hw |= WPI_HW_SKU_MRC;
2978
2979	hw &= ~WPI_HW_REV_D;
2980	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2981		hw |= WPI_HW_REV_D;
2982
2983	if (sc->type > 1)
2984		hw |= WPI_HW_TYPE_B;
2985
2986	WPI_WRITE(sc, WPI_HWCONFIG, hw);
2987}
2988
2989static void
2990wpi_rfkill_resume(struct wpi_softc *sc)
2991{
2992	struct ifnet *ifp = sc->sc_ifp;
2993	struct ieee80211com *ic = ifp->if_l2com;
2994	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2995	int ntries;
2996
2997	/* enable firmware again */
2998	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
2999	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3000
3001	/* wait for thermal sensors to calibrate */
3002	for (ntries = 0; ntries < 1000; ntries++) {
3003		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3004			break;
3005		DELAY(10);
3006	}
3007
3008	if (ntries == 1000) {
3009		device_printf(sc->sc_dev,
3010		    "timeout waiting for thermal calibration\n");
3011		WPI_UNLOCK(sc);
3012		return;
3013	}
3014	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3015
3016	if (wpi_config(sc) != 0) {
3017		device_printf(sc->sc_dev, "device config failed\n");
3018		WPI_UNLOCK(sc);
3019		return;
3020	}
3021
3022	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3023	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3024	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3025
3026	if (vap != NULL) {
3027		if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3028			if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3029				ieee80211_beacon_miss(ic);
3030				wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3031			} else
3032				wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3033		} else {
3034			ieee80211_scan_next(vap);
3035			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3036		}
3037	}
3038
3039	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3040}
3041
3042static void
3043wpi_init_locked(struct wpi_softc *sc, int force)
3044{
3045	struct ifnet *ifp = sc->sc_ifp;
3046	uint32_t tmp;
3047	int ntries, qid;
3048
3049	wpi_stop_locked(sc);
3050	(void)wpi_reset(sc);
3051
3052	wpi_mem_lock(sc);
3053	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3054	DELAY(20);
3055	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3056	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3057	wpi_mem_unlock(sc);
3058
3059	(void)wpi_power_up(sc);
3060	wpi_hw_config(sc);
3061
3062	/* init Rx ring */
3063	wpi_mem_lock(sc);
3064	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3065	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3066	    offsetof(struct wpi_shared, next));
3067	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3068	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3069	wpi_mem_unlock(sc);
3070
3071	/* init Tx rings */
3072	wpi_mem_lock(sc);
3073	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3074	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3075	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3076	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3077	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3078	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3079	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3080
3081	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3082	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3083
3084	for (qid = 0; qid < 6; qid++) {
3085		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3086		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3087		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3088	}
3089	wpi_mem_unlock(sc);
3090
3091	/* clear "radio off" and "disable command" bits (reversed logic) */
3092	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3093	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3094	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3095
3096	/* clear any pending interrupts */
3097	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3098
3099	/* enable interrupts */
3100	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3101
3102	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3103	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3104
3105	if ((wpi_load_firmware(sc)) != 0) {
3106	    device_printf(sc->sc_dev,
3107		"A problem occurred loading the firmware to the driver\n");
3108	    return;
3109	}
3110
3111	/* At this point the firmware is up and running. If the hardware
3112	 * RF switch is turned off thermal calibration will fail, though
3113	 * the card is still happy to continue to accept commands, catch
3114	 * this case and schedule a task to watch for it to be turned on.
3115	 */
3116	wpi_mem_lock(sc);
3117	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3118	wpi_mem_unlock(sc);
3119
3120	if (!(tmp & 0x1)) {
3121		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3122		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3123		goto out;
3124	}
3125
3126	/* wait for thermal sensors to calibrate */
3127	for (ntries = 0; ntries < 1000; ntries++) {
3128		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3129			break;
3130		DELAY(10);
3131	}
3132
3133	if (ntries == 1000) {
3134		device_printf(sc->sc_dev,
3135		    "timeout waiting for thermal sensors calibration\n");
3136		return;
3137	}
3138	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3139
3140	if (wpi_config(sc) != 0) {
3141		device_printf(sc->sc_dev, "device config failed\n");
3142		return;
3143	}
3144
3145	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3146	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3147out:
3148	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3149}
3150
3151static void
3152wpi_init(void *arg)
3153{
3154	struct wpi_softc *sc = arg;
3155	struct ifnet *ifp = sc->sc_ifp;
3156	struct ieee80211com *ic = ifp->if_l2com;
3157
3158	WPI_LOCK(sc);
3159	wpi_init_locked(sc, 0);
3160	WPI_UNLOCK(sc);
3161
3162	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3163		ieee80211_start_all(ic);		/* start all vaps */
3164}
3165
3166static void
3167wpi_stop_locked(struct wpi_softc *sc)
3168{
3169	struct ifnet *ifp = sc->sc_ifp;
3170	uint32_t tmp;
3171	int ac;
3172
3173	sc->sc_tx_timer = 0;
3174	sc->sc_scan_timer = 0;
3175	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3176	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3177	callout_stop(&sc->watchdog_to);
3178	callout_stop(&sc->calib_to);
3179
3180
3181	/* disable interrupts */
3182	WPI_WRITE(sc, WPI_MASK, 0);
3183	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3184	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3185	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3186
3187	wpi_mem_lock(sc);
3188	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3189	wpi_mem_unlock(sc);
3190
3191	/* reset all Tx rings */
3192	for (ac = 0; ac < 4; ac++)
3193		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3194	wpi_reset_tx_ring(sc, &sc->cmdq);
3195
3196	/* reset Rx ring */
3197	wpi_reset_rx_ring(sc, &sc->rxq);
3198
3199	wpi_mem_lock(sc);
3200	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3201	wpi_mem_unlock(sc);
3202
3203	DELAY(5);
3204
3205	wpi_stop_master(sc);
3206
3207	tmp = WPI_READ(sc, WPI_RESET);
3208	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3209	sc->flags &= ~WPI_FLAG_BUSY;
3210}
3211
3212static void
3213wpi_stop(struct wpi_softc *sc)
3214{
3215	WPI_LOCK(sc);
3216	wpi_stop_locked(sc);
3217	WPI_UNLOCK(sc);
3218}
3219
3220static void
3221wpi_newassoc(struct ieee80211_node *ni, int isnew)
3222{
3223	struct ieee80211vap *vap = ni->ni_vap;
3224	struct wpi_vap *wvp = WPI_VAP(vap);
3225
3226	ieee80211_amrr_node_init(&wvp->amrr, &WPI_NODE(ni)->amn, ni);
3227}
3228
3229static void
3230wpi_calib_timeout(void *arg)
3231{
3232	struct wpi_softc *sc = arg;
3233	struct ifnet *ifp = sc->sc_ifp;
3234	struct ieee80211com *ic = ifp->if_l2com;
3235	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3236	int temp;
3237
3238	if (vap->iv_state != IEEE80211_S_RUN)
3239		return;
3240
3241	/* update sensor data */
3242	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3243	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3244
3245	wpi_power_calibration(sc, temp);
3246
3247	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3248}
3249
3250/*
3251 * This function is called periodically (every 60 seconds) to adjust output
3252 * power to temperature changes.
3253 */
3254static void
3255wpi_power_calibration(struct wpi_softc *sc, int temp)
3256{
3257	struct ifnet *ifp = sc->sc_ifp;
3258	struct ieee80211com *ic = ifp->if_l2com;
3259	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3260
3261	/* sanity-check read value */
3262	if (temp < -260 || temp > 25) {
3263		/* this can't be correct, ignore */
3264		DPRINTFN(WPI_DEBUG_TEMP,
3265		    ("out-of-range temperature reported: %d\n", temp));
3266		return;
3267	}
3268
3269	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3270
3271	/* adjust Tx power if need be */
3272	if (abs(temp - sc->temp) <= 6)
3273		return;
3274
3275	sc->temp = temp;
3276
3277	if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3278		/* just warn, too bad for the automatic calibration... */
3279		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3280	}
3281}
3282
3283/**
3284 * Read the eeprom to find out what channels are valid for the given
3285 * band and update net80211 with what we find.
3286 */
3287static void
3288wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3289{
3290	struct ifnet *ifp = sc->sc_ifp;
3291	struct ieee80211com *ic = ifp->if_l2com;
3292	const struct wpi_chan_band *band = &wpi_bands[n];
3293	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3294	struct ieee80211_channel *c;
3295	int chan, i, passive;
3296
3297	wpi_read_prom_data(sc, band->addr, channels,
3298	    band->nchan * sizeof (struct wpi_eeprom_chan));
3299
3300	for (i = 0; i < band->nchan; i++) {
3301		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3302			DPRINTFN(WPI_DEBUG_HW,
3303			    ("Channel Not Valid: %d, band %d\n",
3304			     band->chan[i],n));
3305			continue;
3306		}
3307
3308		passive = 0;
3309		chan = band->chan[i];
3310		c = &ic->ic_channels[ic->ic_nchans++];
3311
3312		/* is active scan allowed on this channel? */
3313		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3314			passive = IEEE80211_CHAN_PASSIVE;
3315		}
3316
3317		if (n == 0) {	/* 2GHz band */
3318			c->ic_ieee = chan;
3319			c->ic_freq = ieee80211_ieee2mhz(chan,
3320			    IEEE80211_CHAN_2GHZ);
3321			c->ic_flags = IEEE80211_CHAN_B | passive;
3322
3323			c = &ic->ic_channels[ic->ic_nchans++];
3324			c->ic_ieee = chan;
3325			c->ic_freq = ieee80211_ieee2mhz(chan,
3326			    IEEE80211_CHAN_2GHZ);
3327			c->ic_flags = IEEE80211_CHAN_G | passive;
3328
3329		} else {	/* 5GHz band */
3330			/*
3331			 * Some 3945ABG adapters support channels 7, 8, 11
3332			 * and 12 in the 2GHz *and* 5GHz bands.
3333			 * Because of limitations in our net80211(9) stack,
3334			 * we can't support these channels in 5GHz band.
3335			 * XXX not true; just need to map to proper frequency
3336			 */
3337			if (chan <= 14)
3338				continue;
3339
3340			c->ic_ieee = chan;
3341			c->ic_freq = ieee80211_ieee2mhz(chan,
3342			    IEEE80211_CHAN_5GHZ);
3343			c->ic_flags = IEEE80211_CHAN_A | passive;
3344		}
3345
3346		/* save maximum allowed power for this channel */
3347		sc->maxpwr[chan] = channels[i].maxpwr;
3348
3349#if 0
3350		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3351		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3352		//ic->ic_channels[chan].ic_minpower...
3353		//ic->ic_channels[chan].ic_maxregtxpower...
3354#endif
3355
3356		DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3357		    " passive=%d, offset %d\n", chan, c->ic_freq,
3358		    channels[i].flags, sc->maxpwr[chan],
3359		    (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3360		    ic->ic_nchans));
3361	}
3362}
3363
3364static void
3365wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3366{
3367	struct wpi_power_group *group = &sc->groups[n];
3368	struct wpi_eeprom_group rgroup;
3369	int i;
3370
3371	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3372	    sizeof rgroup);
3373
3374	/* save power group information */
3375	group->chan   = rgroup.chan;
3376	group->maxpwr = rgroup.maxpwr;
3377	/* temperature at which the samples were taken */
3378	group->temp   = (int16_t)le16toh(rgroup.temp);
3379
3380	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3381		    group->chan, group->maxpwr, group->temp));
3382
3383	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3384		group->samples[i].index = rgroup.samples[i].index;
3385		group->samples[i].power = rgroup.samples[i].power;
3386
3387		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3388			    group->samples[i].index, group->samples[i].power));
3389	}
3390}
3391
3392/*
3393 * Update Tx power to match what is defined for channel `c'.
3394 */
3395static int
3396wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3397{
3398	struct ifnet *ifp = sc->sc_ifp;
3399	struct ieee80211com *ic = ifp->if_l2com;
3400	struct wpi_power_group *group;
3401	struct wpi_cmd_txpower txpower;
3402	u_int chan;
3403	int i;
3404
3405	/* get channel number */
3406	chan = ieee80211_chan2ieee(ic, c);
3407
3408	/* find the power group to which this channel belongs */
3409	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3410		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3411			if (chan <= group->chan)
3412				break;
3413	} else
3414		group = &sc->groups[0];
3415
3416	memset(&txpower, 0, sizeof txpower);
3417	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3418	txpower.channel = htole16(chan);
3419
3420	/* set Tx power for all OFDM and CCK rates */
3421	for (i = 0; i <= 11 ; i++) {
3422		/* retrieve Tx power for this channel/rate combination */
3423		int idx = wpi_get_power_index(sc, group, c,
3424		    wpi_ridx_to_rate[i]);
3425
3426		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3427
3428		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3429			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3430			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3431		} else {
3432			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3433			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3434		}
3435		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3436			    chan, wpi_ridx_to_rate[i], idx));
3437	}
3438
3439	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3440}
3441
3442/*
3443 * Determine Tx power index for a given channel/rate combination.
3444 * This takes into account the regulatory information from EEPROM and the
3445 * current temperature.
3446 */
3447static int
3448wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3449    struct ieee80211_channel *c, int rate)
3450{
3451/* fixed-point arithmetic division using a n-bit fractional part */
3452#define fdivround(a, b, n)      \
3453	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3454
3455/* linear interpolation */
3456#define interpolate(x, x1, y1, x2, y2, n)       \
3457	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3458
3459	struct ifnet *ifp = sc->sc_ifp;
3460	struct ieee80211com *ic = ifp->if_l2com;
3461	struct wpi_power_sample *sample;
3462	int pwr, idx;
3463	u_int chan;
3464
3465	/* get channel number */
3466	chan = ieee80211_chan2ieee(ic, c);
3467
3468	/* default power is group's maximum power - 3dB */
3469	pwr = group->maxpwr / 2;
3470
3471	/* decrease power for highest OFDM rates to reduce distortion */
3472	switch (rate) {
3473		case 72:	/* 36Mb/s */
3474			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3475			break;
3476		case 96:	/* 48Mb/s */
3477			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3478			break;
3479		case 108:	/* 54Mb/s */
3480			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3481			break;
3482	}
3483
3484	/* never exceed channel's maximum allowed Tx power */
3485	pwr = min(pwr, sc->maxpwr[chan]);
3486
3487	/* retrieve power index into gain tables from samples */
3488	for (sample = group->samples; sample < &group->samples[3]; sample++)
3489		if (pwr > sample[1].power)
3490			break;
3491	/* fixed-point linear interpolation using a 19-bit fractional part */
3492	idx = interpolate(pwr, sample[0].power, sample[0].index,
3493	    sample[1].power, sample[1].index, 19);
3494
3495	/*
3496	 *  Adjust power index based on current temperature
3497	 *	- if colder than factory-calibrated: decreate output power
3498	 *	- if warmer than factory-calibrated: increase output power
3499	 */
3500	idx -= (sc->temp - group->temp) * 11 / 100;
3501
3502	/* decrease power for CCK rates (-5dB) */
3503	if (!WPI_RATE_IS_OFDM(rate))
3504		idx += 10;
3505
3506	/* keep power index in a valid range */
3507	if (idx < 0)
3508		return 0;
3509	if (idx > WPI_MAX_PWR_INDEX)
3510		return WPI_MAX_PWR_INDEX;
3511	return idx;
3512
3513#undef interpolate
3514#undef fdivround
3515}
3516
3517/**
3518 * Called by net80211 framework to indicate that a scan
3519 * is starting. This function doesn't actually do the scan,
3520 * wpi_scan_curchan starts things off. This function is more
3521 * of an early warning from the framework we should get ready
3522 * for the scan.
3523 */
3524static void
3525wpi_scan_start(struct ieee80211com *ic)
3526{
3527	struct ifnet *ifp = ic->ic_ifp;
3528	struct wpi_softc *sc = ifp->if_softc;
3529
3530	WPI_LOCK(sc);
3531	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3532	WPI_UNLOCK(sc);
3533}
3534
3535/**
3536 * Called by the net80211 framework, indicates that the
3537 * scan has ended. If there is a scan in progress on the card
3538 * then it should be aborted.
3539 */
3540static void
3541wpi_scan_end(struct ieee80211com *ic)
3542{
3543	/* XXX ignore */
3544}
3545
3546/**
3547 * Called by the net80211 framework to indicate to the driver
3548 * that the channel should be changed
3549 */
3550static void
3551wpi_set_channel(struct ieee80211com *ic)
3552{
3553	struct ifnet *ifp = ic->ic_ifp;
3554	struct wpi_softc *sc = ifp->if_softc;
3555	int error;
3556
3557	/*
3558	 * Only need to set the channel in Monitor mode. AP scanning and auth
3559	 * are already taken care of by their respective firmware commands.
3560	 */
3561	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3562		error = wpi_config(sc);
3563		if (error != 0)
3564			device_printf(sc->sc_dev,
3565			    "error %d settting channel\n", error);
3566	}
3567}
3568
3569/**
3570 * Called by net80211 to indicate that we need to scan the current
3571 * channel. The channel is previously be set via the wpi_set_channel
3572 * callback.
3573 */
3574static void
3575wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3576{
3577	struct ieee80211vap *vap = ss->ss_vap;
3578	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3579	struct wpi_softc *sc = ifp->if_softc;
3580
3581	WPI_LOCK(sc);
3582	if (wpi_scan(sc))
3583		ieee80211_cancel_scan(vap);
3584	WPI_UNLOCK(sc);
3585}
3586
3587/**
3588 * Called by the net80211 framework to indicate
3589 * the minimum dwell time has been met, terminate the scan.
3590 * We don't actually terminate the scan as the firmware will notify
3591 * us when it's finished and we have no way to interrupt it.
3592 */
3593static void
3594wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3595{
3596	/* NB: don't try to abort scan; wait for firmware to finish */
3597}
3598
3599static void
3600wpi_hwreset(void *arg, int pending)
3601{
3602	struct wpi_softc *sc = arg;
3603
3604	WPI_LOCK(sc);
3605	wpi_init_locked(sc, 0);
3606	WPI_UNLOCK(sc);
3607}
3608
3609static void
3610wpi_rfreset(void *arg, int pending)
3611{
3612	struct wpi_softc *sc = arg;
3613
3614	WPI_LOCK(sc);
3615	wpi_rfkill_resume(sc);
3616	WPI_UNLOCK(sc);
3617}
3618
3619/*
3620 * Allocate DMA-safe memory for firmware transfer.
3621 */
3622static int
3623wpi_alloc_fwmem(struct wpi_softc *sc)
3624{
3625	/* allocate enough contiguous space to store text and data */
3626	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3627	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3628	    BUS_DMA_NOWAIT);
3629}
3630
3631static void
3632wpi_free_fwmem(struct wpi_softc *sc)
3633{
3634	wpi_dma_contig_free(&sc->fw_dma);
3635}
3636
3637/**
3638 * Called every second, wpi_watchdog used by the watch dog timer
3639 * to check that the card is still alive
3640 */
3641static void
3642wpi_watchdog(void *arg)
3643{
3644	struct wpi_softc *sc = arg;
3645	struct ifnet *ifp = sc->sc_ifp;
3646	struct ieee80211com *ic = ifp->if_l2com;
3647	uint32_t tmp;
3648
3649	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3650
3651	if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3652		/* No need to lock firmware memory */
3653		tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3654
3655		if ((tmp & 0x1) == 0) {
3656			/* Radio kill switch is still off */
3657			callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3658			return;
3659		}
3660
3661		device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3662		ieee80211_runtask(ic, &sc->sc_radiotask);
3663		return;
3664	}
3665
3666	if (sc->sc_tx_timer > 0) {
3667		if (--sc->sc_tx_timer == 0) {
3668			device_printf(sc->sc_dev,"device timeout\n");
3669			ifp->if_oerrors++;
3670			ieee80211_runtask(ic, &sc->sc_restarttask);
3671		}
3672	}
3673	if (sc->sc_scan_timer > 0) {
3674		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3675		if (--sc->sc_scan_timer == 0 && vap != NULL) {
3676			device_printf(sc->sc_dev,"scan timeout\n");
3677			ieee80211_cancel_scan(vap);
3678			ieee80211_runtask(ic, &sc->sc_restarttask);
3679		}
3680	}
3681
3682	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3683		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3684}
3685
3686#ifdef WPI_DEBUG
3687static const char *wpi_cmd_str(int cmd)
3688{
3689	switch (cmd) {
3690	case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3691	case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3692	case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3693	case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3694	case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3695	case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3696	case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3697	case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3698	case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3699	case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3700	case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3701	case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3702	case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3703	case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3704
3705	default:
3706		KASSERT(1, ("Unknown Command: %d\n", cmd));
3707		return "UNKNOWN CMD";	/* Make the compiler happy */
3708	}
3709}
3710#endif
3711
3712MODULE_DEPEND(wpi, pci,  1, 1, 1);
3713MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3714MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3715MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1);
3716