if_wpi.c revision 188582
1/*-
2 * Copyright (c) 2006,2007
3 *	Damien Bergamini <damien.bergamini@free.fr>
4 *	Benjamin Close <Benjamin.Close@clearchain.com>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19#define VERSION "20071127"
20
21#include <sys/cdefs.h>
22__FBSDID("$FreeBSD: head/sys/dev/wpi/if_wpi.c 188582 2009-02-13 16:17:05Z sam $");
23
24/*
25 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26 *
27 * The 3945ABG network adapter doesn't use traditional hardware as
28 * many other adaptors do. Instead at run time the eeprom is set into a known
29 * state and told to load boot firmware. The boot firmware loads an init and a
30 * main  binary firmware image into SRAM on the card via DMA.
31 * Once the firmware is loaded, the driver/hw then
32 * communicate by way of circular dma rings via the the SRAM to the firmware.
33 *
34 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35 * The 4 tx data rings allow for prioritization QoS.
36 *
37 * The rx data ring consists of 32 dma buffers. Two registers are used to
38 * indicate where in the ring the driver and the firmware are up to. The
39 * driver sets the initial read index (reg1) and the initial write index (reg2),
40 * the firmware updates the read index (reg1) on rx of a packet and fires an
41 * interrupt. The driver then processes the buffers starting at reg1 indicating
42 * to the firmware which buffers have been accessed by updating reg2. At the
43 * same time allocating new memory for the processed buffer.
44 *
45 * A similar thing happens with the tx rings. The difference is the firmware
46 * stop processing buffers once the queue is full and until confirmation
47 * of a successful transmition (tx_intr) has occurred.
48 *
49 * The command ring operates in the same manner as the tx queues.
50 *
51 * All communication direct to the card (ie eeprom) is classed as Stage1
52 * communication
53 *
54 * All communication via the firmware to the card is classed as State2.
55 * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56 * firmware. The bootstrap firmware and runtime firmware are loaded
57 * from host memory via dma to the card then told to execute. From this point
58 * on the majority of communications between the driver and the card goes
59 * via the firmware.
60 */
61
62#include <sys/param.h>
63#include <sys/sysctl.h>
64#include <sys/sockio.h>
65#include <sys/mbuf.h>
66#include <sys/kernel.h>
67#include <sys/socket.h>
68#include <sys/systm.h>
69#include <sys/malloc.h>
70#include <sys/queue.h>
71#include <sys/taskqueue.h>
72#include <sys/module.h>
73#include <sys/bus.h>
74#include <sys/endian.h>
75#include <sys/linker.h>
76#include <sys/firmware.h>
77
78#include <machine/bus.h>
79#include <machine/resource.h>
80#include <sys/rman.h>
81
82#include <dev/pci/pcireg.h>
83#include <dev/pci/pcivar.h>
84
85#include <net/bpf.h>
86#include <net/if.h>
87#include <net/if_arp.h>
88#include <net/ethernet.h>
89#include <net/if_dl.h>
90#include <net/if_media.h>
91#include <net/if_types.h>
92
93#include <net80211/ieee80211_var.h>
94#include <net80211/ieee80211_radiotap.h>
95#include <net80211/ieee80211_regdomain.h>
96
97#include <netinet/in.h>
98#include <netinet/in_systm.h>
99#include <netinet/in_var.h>
100#include <netinet/ip.h>
101#include <netinet/if_ether.h>
102
103#include <dev/wpi/if_wpireg.h>
104#include <dev/wpi/if_wpivar.h>
105
106#define WPI_DEBUG
107
108#ifdef WPI_DEBUG
109#define DPRINTF(x)	do { if (wpi_debug != 0) printf x; } while (0)
110#define DPRINTFN(n, x)	do { if (wpi_debug & n) printf x; } while (0)
111#define	WPI_DEBUG_SET	(wpi_debug != 0)
112
113enum {
114	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
115	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
116	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
117	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
118	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
119	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
120	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
121	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
122	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
123	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
124	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
125	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
126	WPI_DEBUG_ANY		= 0xffffffff
127};
128
129static int wpi_debug = 1;
130SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
131TUNABLE_INT("debug.wpi", &wpi_debug);
132
133#else
134#define DPRINTF(x)
135#define DPRINTFN(n, x)
136#define WPI_DEBUG_SET	0
137#endif
138
139struct wpi_ident {
140	uint16_t	vendor;
141	uint16_t	device;
142	uint16_t	subdevice;
143	const char	*name;
144};
145
146static const struct wpi_ident wpi_ident_table[] = {
147	/* The below entries support ABG regardless of the subid */
148	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
149	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
150	/* The below entries only support BG */
151	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
152	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
153	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
154	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
155	{ 0, 0, 0, NULL }
156};
157
158static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
159		    const char name[IFNAMSIZ], int unit, int opmode,
160		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
161		    const uint8_t mac[IEEE80211_ADDR_LEN]);
162static void	wpi_vap_delete(struct ieee80211vap *);
163static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
164		    void **, bus_size_t, bus_size_t, int);
165static void	wpi_dma_contig_free(struct wpi_dma_info *);
166static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
167static int	wpi_alloc_shared(struct wpi_softc *);
168static void	wpi_free_shared(struct wpi_softc *);
169static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
170static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
171static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
172static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
173		    int, int);
174static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
175static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
176static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
177			    const uint8_t mac[IEEE80211_ADDR_LEN]);
178static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
179static void	wpi_mem_lock(struct wpi_softc *);
180static void	wpi_mem_unlock(struct wpi_softc *);
181static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
182static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
183static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
184		    const uint32_t *, int);
185static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
186static int	wpi_alloc_fwmem(struct wpi_softc *);
187static void	wpi_free_fwmem(struct wpi_softc *);
188static int	wpi_load_firmware(struct wpi_softc *);
189static void	wpi_unload_firmware(struct wpi_softc *);
190static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
191static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
192		    struct wpi_rx_data *);
193static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
194static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
195static void	wpi_bmiss(void *, int);
196static void	wpi_notif_intr(struct wpi_softc *);
197static void	wpi_intr(void *);
198static void	wpi_ops(void *, int);
199static uint8_t	wpi_plcp_signal(int);
200static int	wpi_queue_cmd(struct wpi_softc *, int, int, int);
201static void	wpi_watchdog(void *);
202static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
203		    struct ieee80211_node *, int);
204static void	wpi_start(struct ifnet *);
205static void	wpi_start_locked(struct ifnet *);
206static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
207		    const struct ieee80211_bpf_params *);
208static void	wpi_scan_start(struct ieee80211com *);
209static void	wpi_scan_end(struct ieee80211com *);
210static void	wpi_set_channel(struct ieee80211com *);
211static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
212static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
213static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
214static void	wpi_read_eeprom(struct wpi_softc *);
215static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
216static void	wpi_read_eeprom_group(struct wpi_softc *, int);
217static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
218static int	wpi_wme_update(struct ieee80211com *);
219static int	wpi_mrr_setup(struct wpi_softc *);
220static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
221static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
222#if 0
223static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
224#endif
225static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
226static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
227static int	wpi_scan(struct wpi_softc *);
228static int	wpi_config(struct wpi_softc *);
229static void	wpi_stop_master(struct wpi_softc *);
230static int	wpi_power_up(struct wpi_softc *);
231static int	wpi_reset(struct wpi_softc *);
232static void	wpi_hw_config(struct wpi_softc *);
233static void	wpi_init(void *);
234static void	wpi_init_locked(struct wpi_softc *, int);
235static void	wpi_stop(struct wpi_softc *);
236static void	wpi_stop_locked(struct wpi_softc *);
237
238static void	wpi_newassoc(struct ieee80211_node *, int);
239static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
240		    int);
241static void	wpi_calib_timeout(void *);
242static void	wpi_power_calibration(struct wpi_softc *, int);
243static int	wpi_get_power_index(struct wpi_softc *,
244		    struct wpi_power_group *, struct ieee80211_channel *, int);
245#ifdef WPI_DEBUG
246static const char *wpi_cmd_str(int);
247#endif
248static int wpi_probe(device_t);
249static int wpi_attach(device_t);
250static int wpi_detach(device_t);
251static int wpi_shutdown(device_t);
252static int wpi_suspend(device_t);
253static int wpi_resume(device_t);
254
255
256static device_method_t wpi_methods[] = {
257	/* Device interface */
258	DEVMETHOD(device_probe,		wpi_probe),
259	DEVMETHOD(device_attach,	wpi_attach),
260	DEVMETHOD(device_detach,	wpi_detach),
261	DEVMETHOD(device_shutdown,	wpi_shutdown),
262	DEVMETHOD(device_suspend,	wpi_suspend),
263	DEVMETHOD(device_resume,	wpi_resume),
264
265	{ 0, 0 }
266};
267
268static driver_t wpi_driver = {
269	"wpi",
270	wpi_methods,
271	sizeof (struct wpi_softc)
272};
273
274static devclass_t wpi_devclass;
275
276DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
277
278static const uint8_t wpi_ridx_to_plcp[] = {
279	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
280	/* R1-R4 (ral/ural is R4-R1) */
281	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
282	/* CCK: device-dependent */
283	10, 20, 55, 110
284};
285static const uint8_t wpi_ridx_to_rate[] = {
286	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
287	2, 4, 11, 22 /*CCK */
288};
289
290
291static int
292wpi_probe(device_t dev)
293{
294	const struct wpi_ident *ident;
295
296	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
297		if (pci_get_vendor(dev) == ident->vendor &&
298		    pci_get_device(dev) == ident->device) {
299			device_set_desc(dev, ident->name);
300			return 0;
301		}
302	}
303	return ENXIO;
304}
305
306/**
307 * Load the firmare image from disk to the allocated dma buffer.
308 * we also maintain the reference to the firmware pointer as there
309 * is times where we may need to reload the firmware but we are not
310 * in a context that can access the filesystem (ie taskq cause by restart)
311 *
312 * @return 0 on success, an errno on failure
313 */
314static int
315wpi_load_firmware(struct wpi_softc *sc)
316{
317	const struct firmware *fp;
318	struct wpi_dma_info *dma = &sc->fw_dma;
319	const struct wpi_firmware_hdr *hdr;
320	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
321	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
322	int error;
323
324	DPRINTFN(WPI_DEBUG_FIRMWARE,
325	    ("Attempting Loading Firmware from wpi_fw module\n"));
326
327	WPI_UNLOCK(sc);
328
329	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
330		device_printf(sc->sc_dev,
331		    "could not load firmware image 'wpifw'\n");
332		error = ENOENT;
333		WPI_LOCK(sc);
334		goto fail;
335	}
336
337	fp = sc->fw_fp;
338
339	WPI_LOCK(sc);
340
341	/* Validate the firmware is minimum a particular version */
342	if (fp->version < WPI_FW_MINVERSION) {
343	    device_printf(sc->sc_dev,
344			   "firmware version is too old. Need %d, got %d\n",
345			   WPI_FW_MINVERSION,
346			   fp->version);
347	    error = ENXIO;
348	    goto fail;
349	}
350
351	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
352		device_printf(sc->sc_dev,
353		    "firmware file too short: %zu bytes\n", fp->datasize);
354		error = ENXIO;
355		goto fail;
356	}
357
358	hdr = (const struct wpi_firmware_hdr *)fp->data;
359
360	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
361	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
362
363	rtextsz = le32toh(hdr->rtextsz);
364	rdatasz = le32toh(hdr->rdatasz);
365	itextsz = le32toh(hdr->itextsz);
366	idatasz = le32toh(hdr->idatasz);
367	btextsz = le32toh(hdr->btextsz);
368
369	/* check that all firmware segments are present */
370	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
371		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
372		device_printf(sc->sc_dev,
373		    "firmware file too short: %zu bytes\n", fp->datasize);
374		error = ENXIO; /* XXX appropriate error code? */
375		goto fail;
376	}
377
378	/* get pointers to firmware segments */
379	rtext = (const uint8_t *)(hdr + 1);
380	rdata = rtext + rtextsz;
381	itext = rdata + rdatasz;
382	idata = itext + itextsz;
383	btext = idata + idatasz;
384
385	DPRINTFN(WPI_DEBUG_FIRMWARE,
386	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
387	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
388	     (le32toh(hdr->version) & 0xff000000) >> 24,
389	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
390	     (le32toh(hdr->version) & 0x0000ffff),
391	     rtextsz, rdatasz,
392	     itextsz, idatasz, btextsz));
393
394	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
395	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
396	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
397	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
398	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
399
400	/* sanity checks */
401	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
402	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
403	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
404	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
405	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
406	    (btextsz & 3) != 0) {
407		device_printf(sc->sc_dev, "firmware invalid\n");
408		error = EINVAL;
409		goto fail;
410	}
411
412	/* copy initialization images into pre-allocated DMA-safe memory */
413	memcpy(dma->vaddr, idata, idatasz);
414	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
415
416	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
417
418	/* tell adapter where to find initialization images */
419	wpi_mem_lock(sc);
420	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
421	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
422	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
423	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
424	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
425	wpi_mem_unlock(sc);
426
427	/* load firmware boot code */
428	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
429	    device_printf(sc->sc_dev, "Failed to load microcode\n");
430	    goto fail;
431	}
432
433	/* now press "execute" */
434	WPI_WRITE(sc, WPI_RESET, 0);
435
436	/* wait at most one second for the first alive notification */
437	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
438		device_printf(sc->sc_dev,
439		    "timeout waiting for adapter to initialize\n");
440		goto fail;
441	}
442
443	/* copy runtime images into pre-allocated DMA-sage memory */
444	memcpy(dma->vaddr, rdata, rdatasz);
445	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
446	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
447
448	/* tell adapter where to find runtime images */
449	wpi_mem_lock(sc);
450	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
451	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
452	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
453	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
454	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
455	wpi_mem_unlock(sc);
456
457	/* wait at most one second for the first alive notification */
458	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
459		device_printf(sc->sc_dev,
460		    "timeout waiting for adapter to initialize2\n");
461		goto fail;
462	}
463
464	DPRINTFN(WPI_DEBUG_FIRMWARE,
465	    ("Firmware loaded to driver successfully\n"));
466	return error;
467fail:
468	wpi_unload_firmware(sc);
469	return error;
470}
471
472/**
473 * Free the referenced firmware image
474 */
475static void
476wpi_unload_firmware(struct wpi_softc *sc)
477{
478
479	if (sc->fw_fp) {
480		WPI_UNLOCK(sc);
481		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
482		WPI_LOCK(sc);
483		sc->fw_fp = NULL;
484	}
485}
486
487static int
488wpi_attach(device_t dev)
489{
490	struct wpi_softc *sc = device_get_softc(dev);
491	struct ifnet *ifp;
492	struct ieee80211com *ic;
493	int ac, error, supportsa = 1;
494	uint32_t tmp;
495	const struct wpi_ident *ident;
496
497	sc->sc_dev = dev;
498
499	if (bootverbose || WPI_DEBUG_SET)
500	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
501
502	/*
503	 * Some card's only support 802.11b/g not a, check to see if
504	 * this is one such card. A 0x0 in the subdevice table indicates
505	 * the entire subdevice range is to be ignored.
506	 */
507	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
508		if (ident->subdevice &&
509		    pci_get_subdevice(dev) == ident->subdevice) {
510		    supportsa = 0;
511		    break;
512		}
513	}
514
515	/*
516	 * Create the taskqueues used by the driver. Primarily
517	 * sc_tq handles most the task
518	 */
519	sc->sc_tq = taskqueue_create("wpi_taskq", M_NOWAIT | M_ZERO,
520	    taskqueue_thread_enqueue, &sc->sc_tq);
521	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
522	    device_get_nameunit(dev));
523
524	/* Create the tasks that can be queued */
525	TASK_INIT(&sc->sc_opstask, 0, wpi_ops, sc);
526	TASK_INIT(&sc->sc_bmiss_task, 0, wpi_bmiss, sc);
527
528	WPI_LOCK_INIT(sc);
529	WPI_CMD_LOCK_INIT(sc);
530
531	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
532	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
533
534	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
535		device_printf(dev, "chip is in D%d power mode "
536		    "-- setting to D0\n", pci_get_powerstate(dev));
537		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
538	}
539
540	/* disable the retry timeout register */
541	pci_write_config(dev, 0x41, 0, 1);
542
543	/* enable bus-mastering */
544	pci_enable_busmaster(dev);
545
546	sc->mem_rid = PCIR_BAR(0);
547	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
548	    RF_ACTIVE);
549	if (sc->mem == NULL) {
550		device_printf(dev, "could not allocate memory resource\n");
551		error = ENOMEM;
552		goto fail;
553	}
554
555	sc->sc_st = rman_get_bustag(sc->mem);
556	sc->sc_sh = rman_get_bushandle(sc->mem);
557
558	sc->irq_rid = 0;
559	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
560	    RF_ACTIVE | RF_SHAREABLE);
561	if (sc->irq == NULL) {
562		device_printf(dev, "could not allocate interrupt resource\n");
563		error = ENOMEM;
564		goto fail;
565	}
566
567	/*
568	 * Allocate DMA memory for firmware transfers.
569	 */
570	if ((error = wpi_alloc_fwmem(sc)) != 0) {
571		printf(": could not allocate firmware memory\n");
572		error = ENOMEM;
573		goto fail;
574	}
575
576	/*
577	 * Put adapter into a known state.
578	 */
579	if ((error = wpi_reset(sc)) != 0) {
580		device_printf(dev, "could not reset adapter\n");
581		goto fail;
582	}
583
584	wpi_mem_lock(sc);
585	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
586	if (bootverbose || WPI_DEBUG_SET)
587	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
588
589	wpi_mem_unlock(sc);
590
591	/* Allocate shared page */
592	if ((error = wpi_alloc_shared(sc)) != 0) {
593		device_printf(dev, "could not allocate shared page\n");
594		goto fail;
595	}
596
597	/* tx data queues  - 4 for QoS purposes */
598	for (ac = 0; ac < WME_NUM_AC; ac++) {
599		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
600		if (error != 0) {
601		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
602		    goto fail;
603		}
604	}
605
606	/* command queue to talk to the card's firmware */
607	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
608	if (error != 0) {
609		device_printf(dev, "could not allocate command ring\n");
610		goto fail;
611	}
612
613	/* receive data queue */
614	error = wpi_alloc_rx_ring(sc, &sc->rxq);
615	if (error != 0) {
616		device_printf(dev, "could not allocate Rx ring\n");
617		goto fail;
618	}
619
620	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
621	if (ifp == NULL) {
622		device_printf(dev, "can not if_alloc()\n");
623		error = ENOMEM;
624		goto fail;
625	}
626	ic = ifp->if_l2com;
627
628	ic->ic_ifp = ifp;
629	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
630	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
631
632	/* set device capabilities */
633	ic->ic_caps =
634		  IEEE80211_C_STA		/* station mode supported */
635		| IEEE80211_C_MONITOR		/* monitor mode supported */
636		| IEEE80211_C_TXPMGT		/* tx power management */
637		| IEEE80211_C_SHSLOT		/* short slot time supported */
638		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
639		| IEEE80211_C_WPA		/* 802.11i */
640/* XXX looks like WME is partly supported? */
641#if 0
642		| IEEE80211_C_IBSS		/* IBSS mode support */
643		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
644		| IEEE80211_C_WME		/* 802.11e */
645		| IEEE80211_C_HOSTAP		/* Host access point mode */
646#endif
647		;
648
649	/*
650	 * Read in the eeprom and also setup the channels for
651	 * net80211. We don't set the rates as net80211 does this for us
652	 */
653	wpi_read_eeprom(sc);
654
655	if (bootverbose || WPI_DEBUG_SET) {
656	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
657	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
658			  sc->type > 1 ? 'B': '?');
659	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
660			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
661	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
662			  supportsa ? "does" : "does not");
663
664	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
665	       what sc->rev really represents - benjsc 20070615 */
666	}
667
668	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
669	ifp->if_softc = sc;
670	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
671	ifp->if_init = wpi_init;
672	ifp->if_ioctl = wpi_ioctl;
673	ifp->if_start = wpi_start;
674	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
675	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
676	IFQ_SET_READY(&ifp->if_snd);
677
678	ieee80211_ifattach(ic);
679	/* override default methods */
680	ic->ic_node_alloc = wpi_node_alloc;
681	ic->ic_newassoc = wpi_newassoc;
682	ic->ic_raw_xmit = wpi_raw_xmit;
683	ic->ic_wme.wme_update = wpi_wme_update;
684	ic->ic_scan_start = wpi_scan_start;
685	ic->ic_scan_end = wpi_scan_end;
686	ic->ic_set_channel = wpi_set_channel;
687	ic->ic_scan_curchan = wpi_scan_curchan;
688	ic->ic_scan_mindwell = wpi_scan_mindwell;
689
690	ic->ic_vap_create = wpi_vap_create;
691	ic->ic_vap_delete = wpi_vap_delete;
692
693	bpfattach(ifp, DLT_IEEE802_11_RADIO,
694	    sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap));
695
696	sc->sc_rxtap_len = sizeof sc->sc_rxtap;
697	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
698	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
699
700	sc->sc_txtap_len = sizeof sc->sc_txtap;
701	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
702	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
703
704	/*
705	 * Hook our interrupt after all initialization is complete.
706	 */
707	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
708	    NULL, wpi_intr, sc, &sc->sc_ih);
709	if (error != 0) {
710		device_printf(dev, "could not set up interrupt\n");
711		goto fail;
712	}
713
714	if (bootverbose)
715		ieee80211_announce(ic);
716#ifdef XXX_DEBUG
717	ieee80211_announce_channels(ic);
718#endif
719	return 0;
720
721fail:	wpi_detach(dev);
722	return ENXIO;
723}
724
725static int
726wpi_detach(device_t dev)
727{
728	struct wpi_softc *sc = device_get_softc(dev);
729	struct ifnet *ifp = sc->sc_ifp;
730	struct ieee80211com *ic = ifp->if_l2com;
731	int ac;
732
733	if (ifp != NULL) {
734		wpi_stop(sc);
735		callout_drain(&sc->watchdog_to);
736		callout_drain(&sc->calib_to);
737		bpfdetach(ifp);
738		ieee80211_ifdetach(ic);
739	}
740
741	WPI_LOCK(sc);
742	if (sc->txq[0].data_dmat) {
743		for (ac = 0; ac < WME_NUM_AC; ac++)
744			wpi_free_tx_ring(sc, &sc->txq[ac]);
745
746		wpi_free_tx_ring(sc, &sc->cmdq);
747		wpi_free_rx_ring(sc, &sc->rxq);
748		wpi_free_shared(sc);
749	}
750
751	if (sc->fw_fp != NULL) {
752		wpi_unload_firmware(sc);
753	}
754
755	if (sc->fw_dma.tag)
756		wpi_free_fwmem(sc);
757	WPI_UNLOCK(sc);
758
759	if (sc->irq != NULL) {
760		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
761		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
762	}
763
764	if (sc->mem != NULL)
765		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
766
767	if (ifp != NULL)
768		if_free(ifp);
769
770	taskqueue_free(sc->sc_tq);
771
772	WPI_LOCK_DESTROY(sc);
773	WPI_CMD_LOCK_DESTROY(sc);
774
775	return 0;
776}
777
778static struct ieee80211vap *
779wpi_vap_create(struct ieee80211com *ic,
780	const char name[IFNAMSIZ], int unit, int opmode, int flags,
781	const uint8_t bssid[IEEE80211_ADDR_LEN],
782	const uint8_t mac[IEEE80211_ADDR_LEN])
783{
784	struct wpi_vap *wvp;
785	struct ieee80211vap *vap;
786
787	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
788		return NULL;
789	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
790	    M_80211_VAP, M_NOWAIT | M_ZERO);
791	if (wvp == NULL)
792		return NULL;
793	vap = &wvp->vap;
794	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
795	/* override with driver methods */
796	wvp->newstate = vap->iv_newstate;
797	vap->iv_newstate = wpi_newstate;
798
799	ieee80211_amrr_init(&wvp->amrr, vap,
800	    IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
801	    IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD,
802	    500 /*ms*/);
803
804	/* complete setup */
805	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
806	ic->ic_opmode = opmode;
807	return vap;
808}
809
810static void
811wpi_vap_delete(struct ieee80211vap *vap)
812{
813	struct wpi_vap *wvp = WPI_VAP(vap);
814
815	ieee80211_amrr_cleanup(&wvp->amrr);
816	ieee80211_vap_detach(vap);
817	free(wvp, M_80211_VAP);
818}
819
820static void
821wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
822{
823	if (error != 0)
824		return;
825
826	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
827
828	*(bus_addr_t *)arg = segs[0].ds_addr;
829}
830
831/*
832 * Allocates a contiguous block of dma memory of the requested size and
833 * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
834 * allocations greater than 4096 may fail. Hence if the requested alignment is
835 * greater we allocate 'alignment' size extra memory and shift the vaddr and
836 * paddr after the dma load. This bypasses the problem at the cost of a little
837 * more memory.
838 */
839static int
840wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
841    void **kvap, bus_size_t size, bus_size_t alignment, int flags)
842{
843	int error;
844	bus_size_t align;
845	bus_size_t reqsize;
846
847	DPRINTFN(WPI_DEBUG_DMA,
848	    ("Size: %zd - alignment %zd\n", size, alignment));
849
850	dma->size = size;
851	dma->tag = NULL;
852
853	if (alignment > 4096) {
854		align = PAGE_SIZE;
855		reqsize = size + alignment;
856	} else {
857		align = alignment;
858		reqsize = size;
859	}
860	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
861	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
862	    NULL, NULL, reqsize,
863	    1, reqsize, flags,
864	    NULL, NULL, &dma->tag);
865	if (error != 0) {
866		device_printf(sc->sc_dev,
867		    "could not create shared page DMA tag\n");
868		goto fail;
869	}
870	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
871	    flags | BUS_DMA_ZERO, &dma->map);
872	if (error != 0) {
873		device_printf(sc->sc_dev,
874		    "could not allocate shared page DMA memory\n");
875		goto fail;
876	}
877
878	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
879	    reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
880
881	/* Save the original pointers so we can free all the memory */
882	dma->paddr = dma->paddr_start;
883	dma->vaddr = dma->vaddr_start;
884
885	/*
886	 * Check the alignment and increment by 4096 until we get the
887	 * requested alignment. Fail if can't obtain the alignment
888	 * we requested.
889	 */
890	if ((dma->paddr & (alignment -1 )) != 0) {
891		int i;
892
893		for (i = 0; i < alignment / 4096; i++) {
894			if ((dma->paddr & (alignment - 1 )) == 0)
895				break;
896			dma->paddr += 4096;
897			dma->vaddr += 4096;
898		}
899		if (i == alignment / 4096) {
900			device_printf(sc->sc_dev,
901			    "alignment requirement was not satisfied\n");
902			goto fail;
903		}
904	}
905
906	if (error != 0) {
907		device_printf(sc->sc_dev,
908		    "could not load shared page DMA map\n");
909		goto fail;
910	}
911
912	if (kvap != NULL)
913		*kvap = dma->vaddr;
914
915	return 0;
916
917fail:
918	wpi_dma_contig_free(dma);
919	return error;
920}
921
922static void
923wpi_dma_contig_free(struct wpi_dma_info *dma)
924{
925	if (dma->tag) {
926		if (dma->map != NULL) {
927			if (dma->paddr_start != 0) {
928				bus_dmamap_sync(dma->tag, dma->map,
929				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
930				bus_dmamap_unload(dma->tag, dma->map);
931			}
932			bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
933		}
934		bus_dma_tag_destroy(dma->tag);
935	}
936}
937
938/*
939 * Allocate a shared page between host and NIC.
940 */
941static int
942wpi_alloc_shared(struct wpi_softc *sc)
943{
944	int error;
945
946	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
947	    (void **)&sc->shared, sizeof (struct wpi_shared),
948	    PAGE_SIZE,
949	    BUS_DMA_NOWAIT);
950
951	if (error != 0) {
952		device_printf(sc->sc_dev,
953		    "could not allocate shared area DMA memory\n");
954	}
955
956	return error;
957}
958
959static void
960wpi_free_shared(struct wpi_softc *sc)
961{
962	wpi_dma_contig_free(&sc->shared_dma);
963}
964
965static int
966wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
967{
968
969	int i, error;
970
971	ring->cur = 0;
972
973	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
974	    (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
975	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
976
977	if (error != 0) {
978		device_printf(sc->sc_dev,
979		    "%s: could not allocate rx ring DMA memory, error %d\n",
980		    __func__, error);
981		goto fail;
982	}
983
984        error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
985	    BUS_SPACE_MAXADDR_32BIT,
986            BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
987            MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
988        if (error != 0) {
989                device_printf(sc->sc_dev,
990		    "%s: bus_dma_tag_create_failed, error %d\n",
991		    __func__, error);
992                goto fail;
993        }
994
995	/*
996	 * Setup Rx buffers.
997	 */
998	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
999		struct wpi_rx_data *data = &ring->data[i];
1000		struct mbuf *m;
1001		bus_addr_t paddr;
1002
1003		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1004		if (error != 0) {
1005			device_printf(sc->sc_dev,
1006			    "%s: bus_dmamap_create failed, error %d\n",
1007			    __func__, error);
1008			goto fail;
1009		}
1010		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1011		if (m == NULL) {
1012			device_printf(sc->sc_dev,
1013			   "%s: could not allocate rx mbuf\n", __func__);
1014			error = ENOMEM;
1015			goto fail;
1016		}
1017		/* map page */
1018		error = bus_dmamap_load(ring->data_dmat, data->map,
1019		    mtod(m, caddr_t), MJUMPAGESIZE,
1020		    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1021		if (error != 0 && error != EFBIG) {
1022			device_printf(sc->sc_dev,
1023			    "%s: bus_dmamap_load failed, error %d\n",
1024			    __func__, error);
1025			m_freem(m);
1026			error = ENOMEM;	/* XXX unique code */
1027			goto fail;
1028		}
1029		bus_dmamap_sync(ring->data_dmat, data->map,
1030		    BUS_DMASYNC_PREWRITE);
1031
1032		data->m = m;
1033		ring->desc[i] = htole32(paddr);
1034	}
1035	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1036	    BUS_DMASYNC_PREWRITE);
1037	return 0;
1038fail:
1039	wpi_free_rx_ring(sc, ring);
1040	return error;
1041}
1042
1043static void
1044wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1045{
1046	int ntries;
1047
1048	wpi_mem_lock(sc);
1049
1050	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1051
1052	for (ntries = 0; ntries < 100; ntries++) {
1053		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1054			break;
1055		DELAY(10);
1056	}
1057
1058	wpi_mem_unlock(sc);
1059
1060#ifdef WPI_DEBUG
1061	if (ntries == 100 && wpi_debug > 0)
1062		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1063#endif
1064
1065	ring->cur = 0;
1066}
1067
1068static void
1069wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1070{
1071	int i;
1072
1073	wpi_dma_contig_free(&ring->desc_dma);
1074
1075	for (i = 0; i < WPI_RX_RING_COUNT; i++)
1076		if (ring->data[i].m != NULL)
1077			m_freem(ring->data[i].m);
1078}
1079
1080static int
1081wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1082	int qid)
1083{
1084	struct wpi_tx_data *data;
1085	int i, error;
1086
1087	ring->qid = qid;
1088	ring->count = count;
1089	ring->queued = 0;
1090	ring->cur = 0;
1091	ring->data = NULL;
1092
1093	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1094		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1095		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1096
1097	if (error != 0) {
1098	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1099	    goto fail;
1100	}
1101
1102	/* update shared page with ring's base address */
1103	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1104
1105	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1106		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1107		BUS_DMA_NOWAIT);
1108
1109	if (error != 0) {
1110		device_printf(sc->sc_dev,
1111		    "could not allocate tx command DMA memory\n");
1112		goto fail;
1113	}
1114
1115	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1116	    M_NOWAIT | M_ZERO);
1117	if (ring->data == NULL) {
1118		device_printf(sc->sc_dev,
1119		    "could not allocate tx data slots\n");
1120		goto fail;
1121	}
1122
1123	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1124	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1125	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1126	    &ring->data_dmat);
1127	if (error != 0) {
1128		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1129		goto fail;
1130	}
1131
1132	for (i = 0; i < count; i++) {
1133		data = &ring->data[i];
1134
1135		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1136		if (error != 0) {
1137			device_printf(sc->sc_dev,
1138			    "could not create tx buf DMA map\n");
1139			goto fail;
1140		}
1141		bus_dmamap_sync(ring->data_dmat, data->map,
1142		    BUS_DMASYNC_PREWRITE);
1143	}
1144
1145	return 0;
1146
1147fail:
1148	wpi_free_tx_ring(sc, ring);
1149	return error;
1150}
1151
1152static void
1153wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1154{
1155	struct wpi_tx_data *data;
1156	int i, ntries;
1157
1158	wpi_mem_lock(sc);
1159
1160	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1161	for (ntries = 0; ntries < 100; ntries++) {
1162		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1163			break;
1164		DELAY(10);
1165	}
1166#ifdef WPI_DEBUG
1167	if (ntries == 100 && wpi_debug > 0)
1168		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1169		    ring->qid);
1170#endif
1171	wpi_mem_unlock(sc);
1172
1173	for (i = 0; i < ring->count; i++) {
1174		data = &ring->data[i];
1175
1176		if (data->m != NULL) {
1177			bus_dmamap_unload(ring->data_dmat, data->map);
1178			m_freem(data->m);
1179			data->m = NULL;
1180		}
1181	}
1182
1183	ring->queued = 0;
1184	ring->cur = 0;
1185}
1186
1187static void
1188wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1189{
1190	struct wpi_tx_data *data;
1191	int i;
1192
1193	wpi_dma_contig_free(&ring->desc_dma);
1194	wpi_dma_contig_free(&ring->cmd_dma);
1195
1196	if (ring->data != NULL) {
1197		for (i = 0; i < ring->count; i++) {
1198			data = &ring->data[i];
1199
1200			if (data->m != NULL) {
1201				bus_dmamap_sync(ring->data_dmat, data->map,
1202				    BUS_DMASYNC_POSTWRITE);
1203				bus_dmamap_unload(ring->data_dmat, data->map);
1204				m_freem(data->m);
1205				data->m = NULL;
1206			}
1207		}
1208		free(ring->data, M_DEVBUF);
1209	}
1210
1211	if (ring->data_dmat != NULL)
1212		bus_dma_tag_destroy(ring->data_dmat);
1213}
1214
1215static int
1216wpi_shutdown(device_t dev)
1217{
1218	struct wpi_softc *sc = device_get_softc(dev);
1219
1220	WPI_LOCK(sc);
1221	wpi_stop_locked(sc);
1222	wpi_unload_firmware(sc);
1223	WPI_UNLOCK(sc);
1224
1225	return 0;
1226}
1227
1228static int
1229wpi_suspend(device_t dev)
1230{
1231	struct wpi_softc *sc = device_get_softc(dev);
1232
1233	wpi_stop(sc);
1234	return 0;
1235}
1236
1237static int
1238wpi_resume(device_t dev)
1239{
1240	struct wpi_softc *sc = device_get_softc(dev);
1241	struct ifnet *ifp = sc->sc_ifp;
1242
1243	pci_write_config(dev, 0x41, 0, 1);
1244
1245	if (ifp->if_flags & IFF_UP) {
1246		wpi_init(ifp->if_softc);
1247		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1248			wpi_start(ifp);
1249	}
1250	return 0;
1251}
1252
1253/* ARGSUSED */
1254static struct ieee80211_node *
1255wpi_node_alloc(struct ieee80211vap *vap __unused,
1256	const uint8_t mac[IEEE80211_ADDR_LEN] __unused)
1257{
1258	struct wpi_node *wn;
1259
1260	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1261
1262	return &wn->ni;
1263}
1264
1265/**
1266 * Called by net80211 when ever there is a change to 80211 state machine
1267 */
1268static int
1269wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1270{
1271	struct wpi_vap *wvp = WPI_VAP(vap);
1272	struct ieee80211com *ic = vap->iv_ic;
1273	struct ifnet *ifp = ic->ic_ifp;
1274	struct wpi_softc *sc = ifp->if_softc;
1275	int error;
1276
1277	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1278		ieee80211_state_name[vap->iv_state],
1279		ieee80211_state_name[nstate], sc->flags));
1280
1281	if (nstate == IEEE80211_S_AUTH) {
1282		/* Delay the auth transition until we can update the firmware */
1283		error = wpi_queue_cmd(sc, WPI_AUTH, arg, WPI_QUEUE_NORMAL);
1284		return (error != 0 ? error : EINPROGRESS);
1285	}
1286	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1287		/* set the association id first */
1288		error = wpi_queue_cmd(sc, WPI_RUN, arg, WPI_QUEUE_NORMAL);
1289		return (error != 0 ? error : EINPROGRESS);
1290	}
1291	if (nstate == IEEE80211_S_RUN) {
1292		/* RUN -> RUN transition; just restart the timers */
1293		wpi_calib_timeout(sc);
1294		/* XXX split out rate control timer */
1295	}
1296	return wvp->newstate(vap, nstate, arg);
1297}
1298
1299/*
1300 * Grab exclusive access to NIC memory.
1301 */
1302static void
1303wpi_mem_lock(struct wpi_softc *sc)
1304{
1305	int ntries;
1306	uint32_t tmp;
1307
1308	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1309	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1310
1311	/* spin until we actually get the lock */
1312	for (ntries = 0; ntries < 100; ntries++) {
1313		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1314			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1315			break;
1316		DELAY(10);
1317	}
1318	if (ntries == 100)
1319		device_printf(sc->sc_dev, "could not lock memory\n");
1320}
1321
1322/*
1323 * Release lock on NIC memory.
1324 */
1325static void
1326wpi_mem_unlock(struct wpi_softc *sc)
1327{
1328	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1329	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1330}
1331
1332static uint32_t
1333wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1334{
1335	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1336	return WPI_READ(sc, WPI_READ_MEM_DATA);
1337}
1338
1339static void
1340wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1341{
1342	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1343	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1344}
1345
1346static void
1347wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1348    const uint32_t *data, int wlen)
1349{
1350	for (; wlen > 0; wlen--, data++, addr+=4)
1351		wpi_mem_write(sc, addr, *data);
1352}
1353
1354/*
1355 * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1356 * using the traditional bit-bang method. Data is read up until len bytes have
1357 * been obtained.
1358 */
1359static uint16_t
1360wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1361{
1362	int ntries;
1363	uint32_t val;
1364	uint8_t *out = data;
1365
1366	wpi_mem_lock(sc);
1367
1368	for (; len > 0; len -= 2, addr++) {
1369		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1370
1371		for (ntries = 0; ntries < 10; ntries++) {
1372			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1373				break;
1374			DELAY(5);
1375		}
1376
1377		if (ntries == 10) {
1378			device_printf(sc->sc_dev, "could not read EEPROM\n");
1379			return ETIMEDOUT;
1380		}
1381
1382		*out++= val >> 16;
1383		if (len > 1)
1384			*out ++= val >> 24;
1385	}
1386
1387	wpi_mem_unlock(sc);
1388
1389	return 0;
1390}
1391
1392/*
1393 * The firmware text and data segments are transferred to the NIC using DMA.
1394 * The driver just copies the firmware into DMA-safe memory and tells the NIC
1395 * where to find it.  Once the NIC has copied the firmware into its internal
1396 * memory, we can free our local copy in the driver.
1397 */
1398static int
1399wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1400{
1401	int error, ntries;
1402
1403	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1404
1405	size /= sizeof(uint32_t);
1406
1407	wpi_mem_lock(sc);
1408
1409	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1410	    (const uint32_t *)fw, size);
1411
1412	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1413	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1414	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1415
1416	/* run microcode */
1417	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1418
1419	/* wait while the adapter is busy copying the firmware */
1420	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1421		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1422		DPRINTFN(WPI_DEBUG_HW,
1423		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1424		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1425		if (status & WPI_TX_IDLE(6)) {
1426			DPRINTFN(WPI_DEBUG_HW,
1427			    ("Status Match! - ntries = %d\n", ntries));
1428			break;
1429		}
1430		DELAY(10);
1431	}
1432	if (ntries == 1000) {
1433		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1434		error = ETIMEDOUT;
1435	}
1436
1437	/* start the microcode executing */
1438	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1439
1440	wpi_mem_unlock(sc);
1441
1442	return (error);
1443}
1444
1445static void
1446wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1447	struct wpi_rx_data *data)
1448{
1449	struct ifnet *ifp = sc->sc_ifp;
1450	struct ieee80211com *ic = ifp->if_l2com;
1451	struct wpi_rx_ring *ring = &sc->rxq;
1452	struct wpi_rx_stat *stat;
1453	struct wpi_rx_head *head;
1454	struct wpi_rx_tail *tail;
1455	struct ieee80211_node *ni;
1456	struct mbuf *m, *mnew;
1457	bus_addr_t paddr;
1458	int error;
1459
1460	stat = (struct wpi_rx_stat *)(desc + 1);
1461
1462	if (stat->len > WPI_STAT_MAXLEN) {
1463		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1464		ifp->if_ierrors++;
1465		return;
1466	}
1467
1468	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1469	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1470
1471	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1472	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1473	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1474	    (uintmax_t)le64toh(tail->tstamp)));
1475
1476	/* XXX don't need mbuf, just dma buffer */
1477	mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1478	if (mnew == NULL) {
1479		DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1480		    __func__));
1481		ifp->if_ierrors++;
1482		return;
1483	}
1484	error = bus_dmamap_load(ring->data_dmat, data->map,
1485	    mtod(mnew, caddr_t), MJUMPAGESIZE,
1486	    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1487	if (error != 0 && error != EFBIG) {
1488		device_printf(sc->sc_dev,
1489		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1490		m_freem(mnew);
1491		ifp->if_ierrors++;
1492		return;
1493	}
1494	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1495
1496	/* finalize mbuf and swap in new one */
1497	m = data->m;
1498	m->m_pkthdr.rcvif = ifp;
1499	m->m_data = (caddr_t)(head + 1);
1500	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1501
1502	data->m = mnew;
1503	/* update Rx descriptor */
1504	ring->desc[ring->cur] = htole32(paddr);
1505
1506	if (bpf_peers_present(ifp->if_bpf)) {
1507		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1508
1509		tap->wr_flags = 0;
1510		tap->wr_chan_freq =
1511			htole16(ic->ic_channels[head->chan].ic_freq);
1512		tap->wr_chan_flags =
1513			htole16(ic->ic_channels[head->chan].ic_flags);
1514		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1515		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1516		tap->wr_tsft = tail->tstamp;
1517		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1518		switch (head->rate) {
1519		/* CCK rates */
1520		case  10: tap->wr_rate =   2; break;
1521		case  20: tap->wr_rate =   4; break;
1522		case  55: tap->wr_rate =  11; break;
1523		case 110: tap->wr_rate =  22; break;
1524		/* OFDM rates */
1525		case 0xd: tap->wr_rate =  12; break;
1526		case 0xf: tap->wr_rate =  18; break;
1527		case 0x5: tap->wr_rate =  24; break;
1528		case 0x7: tap->wr_rate =  36; break;
1529		case 0x9: tap->wr_rate =  48; break;
1530		case 0xb: tap->wr_rate =  72; break;
1531		case 0x1: tap->wr_rate =  96; break;
1532		case 0x3: tap->wr_rate = 108; break;
1533		/* unknown rate: should not happen */
1534		default:  tap->wr_rate =   0;
1535		}
1536		if (le16toh(head->flags) & 0x4)
1537			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1538
1539		bpf_mtap2(ifp->if_bpf, tap, sc->sc_rxtap_len, m);
1540	}
1541
1542	WPI_UNLOCK(sc);
1543
1544	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1545	if (ni != NULL) {
1546		(void) ieee80211_input(ni, m, stat->rssi, 0, 0);
1547		ieee80211_free_node(ni);
1548	} else
1549		(void) ieee80211_input_all(ic, m, stat->rssi, 0, 0);
1550
1551	WPI_LOCK(sc);
1552}
1553
1554static void
1555wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1556{
1557	struct ifnet *ifp = sc->sc_ifp;
1558	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1559	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1560	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1561	struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1562
1563	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1564	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1565	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1566	    le32toh(stat->status)));
1567
1568	/*
1569	 * Update rate control statistics for the node.
1570	 * XXX we should not count mgmt frames since they're always sent at
1571	 * the lowest available bit-rate.
1572	 * XXX frames w/o ACK shouldn't be used either
1573	 */
1574	wn->amn.amn_txcnt++;
1575	if (stat->ntries > 0) {
1576		DPRINTFN(3, ("%d retries\n", stat->ntries));
1577		wn->amn.amn_retrycnt++;
1578	}
1579
1580	/* XXX oerrors should only count errors !maxtries */
1581	if ((le32toh(stat->status) & 0xff) != 1)
1582		ifp->if_oerrors++;
1583	else
1584		ifp->if_opackets++;
1585
1586	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1587	bus_dmamap_unload(ring->data_dmat, txdata->map);
1588	/* XXX handle M_TXCB? */
1589	m_freem(txdata->m);
1590	txdata->m = NULL;
1591	ieee80211_free_node(txdata->ni);
1592	txdata->ni = NULL;
1593
1594	ring->queued--;
1595
1596	sc->sc_tx_timer = 0;
1597	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1598	wpi_start_locked(ifp);
1599}
1600
1601static void
1602wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1603{
1604	struct wpi_tx_ring *ring = &sc->cmdq;
1605	struct wpi_tx_data *data;
1606
1607	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1608				 "type=%s len=%d\n", desc->qid, desc->idx,
1609				 desc->flags, wpi_cmd_str(desc->type),
1610				 le32toh(desc->len)));
1611
1612	if ((desc->qid & 7) != 4)
1613		return;	/* not a command ack */
1614
1615	data = &ring->data[desc->idx];
1616
1617	/* if the command was mapped in a mbuf, free it */
1618	if (data->m != NULL) {
1619		bus_dmamap_unload(ring->data_dmat, data->map);
1620		m_freem(data->m);
1621		data->m = NULL;
1622	}
1623
1624	sc->flags &= ~WPI_FLAG_BUSY;
1625	wakeup(&ring->cmd[desc->idx]);
1626}
1627
1628static void
1629wpi_bmiss(void *arg, int npending)
1630{
1631	struct wpi_softc *sc = arg;
1632	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1633
1634	ieee80211_beacon_miss(ic);
1635}
1636
1637static void
1638wpi_notif_intr(struct wpi_softc *sc)
1639{
1640	struct ifnet *ifp = sc->sc_ifp;
1641	struct ieee80211com *ic = ifp->if_l2com;
1642	struct wpi_rx_desc *desc;
1643	struct wpi_rx_data *data;
1644	uint32_t hw;
1645
1646	hw = le32toh(sc->shared->next);
1647	while (sc->rxq.cur != hw) {
1648		data = &sc->rxq.data[sc->rxq.cur];
1649		desc = (void *)data->m->m_ext.ext_buf;
1650
1651		DPRINTFN(WPI_DEBUG_NOTIFY,
1652			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1653			  desc->qid,
1654			  desc->idx,
1655			  desc->flags,
1656			  desc->type,
1657			  le32toh(desc->len)));
1658
1659		if (!(desc->qid & 0x80))	/* reply to a command */
1660			wpi_cmd_intr(sc, desc);
1661
1662		switch (desc->type) {
1663		case WPI_RX_DONE:
1664			/* a 802.11 frame was received */
1665			wpi_rx_intr(sc, desc, data);
1666			break;
1667
1668		case WPI_TX_DONE:
1669			/* a 802.11 frame has been transmitted */
1670			wpi_tx_intr(sc, desc);
1671			break;
1672
1673		case WPI_UC_READY:
1674		{
1675			struct wpi_ucode_info *uc =
1676				(struct wpi_ucode_info *)(desc + 1);
1677
1678			/* the microcontroller is ready */
1679			DPRINTF(("microcode alive notification version %x "
1680				"alive %x\n", le32toh(uc->version),
1681				le32toh(uc->valid)));
1682
1683			if (le32toh(uc->valid) != 1) {
1684				device_printf(sc->sc_dev,
1685				    "microcontroller initialization failed\n");
1686				wpi_stop_locked(sc);
1687			}
1688			break;
1689		}
1690		case WPI_STATE_CHANGED:
1691		{
1692			uint32_t *status = (uint32_t *)(desc + 1);
1693
1694			/* enabled/disabled notification */
1695			DPRINTF(("state changed to %x\n", le32toh(*status)));
1696
1697			if (le32toh(*status) & 1) {
1698				device_printf(sc->sc_dev,
1699				    "Radio transmitter is switched off\n");
1700				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1701				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1702				/* Disable firmware commands */
1703				WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1704			}
1705			break;
1706		}
1707		case WPI_START_SCAN:
1708		{
1709#ifdef WPI_DEBUG
1710			struct wpi_start_scan *scan =
1711				(struct wpi_start_scan *)(desc + 1);
1712#endif
1713
1714			DPRINTFN(WPI_DEBUG_SCANNING,
1715				 ("scanning channel %d status %x\n",
1716			    scan->chan, le32toh(scan->status)));
1717			break;
1718		}
1719		case WPI_STOP_SCAN:
1720		{
1721#ifdef WPI_DEBUG
1722			struct wpi_stop_scan *scan =
1723				(struct wpi_stop_scan *)(desc + 1);
1724#endif
1725			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1726
1727			DPRINTFN(WPI_DEBUG_SCANNING,
1728			    ("scan finished nchan=%d status=%d chan=%d\n",
1729			     scan->nchan, scan->status, scan->chan));
1730
1731			sc->sc_scan_timer = 0;
1732			ieee80211_scan_next(vap);
1733			break;
1734		}
1735		case WPI_MISSED_BEACON:
1736		{
1737			struct wpi_missed_beacon *beacon =
1738				(struct wpi_missed_beacon *)(desc + 1);
1739			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1740
1741			if (le32toh(beacon->consecutive) >=
1742			    vap->iv_bmissthreshold) {
1743				DPRINTF(("Beacon miss: %u >= %u\n",
1744					 le32toh(beacon->consecutive),
1745					 vap->iv_bmissthreshold));
1746				taskqueue_enqueue(taskqueue_swi,
1747				    &sc->sc_bmiss_task);
1748			}
1749			break;
1750		}
1751		}
1752
1753		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1754	}
1755
1756	/* tell the firmware what we have processed */
1757	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1758	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1759}
1760
1761static void
1762wpi_intr(void *arg)
1763{
1764	struct wpi_softc *sc = arg;
1765	uint32_t r;
1766
1767	WPI_LOCK(sc);
1768
1769	r = WPI_READ(sc, WPI_INTR);
1770	if (r == 0 || r == 0xffffffff) {
1771		WPI_UNLOCK(sc);
1772		return;
1773	}
1774
1775	/* disable interrupts */
1776	WPI_WRITE(sc, WPI_MASK, 0);
1777	/* ack interrupts */
1778	WPI_WRITE(sc, WPI_INTR, r);
1779
1780	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1781		device_printf(sc->sc_dev, "fatal firmware error\n");
1782		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1783				"(Hardware Error)"));
1784		wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR);
1785		sc->flags &= ~WPI_FLAG_BUSY;
1786		WPI_UNLOCK(sc);
1787		return;
1788	}
1789
1790	if (r & WPI_RX_INTR)
1791		wpi_notif_intr(sc);
1792
1793	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1794		wakeup(sc);
1795
1796	/* re-enable interrupts */
1797	if (sc->sc_ifp->if_flags & IFF_UP)
1798		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1799
1800	WPI_UNLOCK(sc);
1801}
1802
1803static uint8_t
1804wpi_plcp_signal(int rate)
1805{
1806	switch (rate) {
1807	/* CCK rates (returned values are device-dependent) */
1808	case 2:		return 10;
1809	case 4:		return 20;
1810	case 11:	return 55;
1811	case 22:	return 110;
1812
1813	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1814	/* R1-R4 (ral/ural is R4-R1) */
1815	case 12:	return 0xd;
1816	case 18:	return 0xf;
1817	case 24:	return 0x5;
1818	case 36:	return 0x7;
1819	case 48:	return 0x9;
1820	case 72:	return 0xb;
1821	case 96:	return 0x1;
1822	case 108:	return 0x3;
1823
1824	/* unsupported rates (should not get there) */
1825	default:	return 0;
1826	}
1827}
1828
1829/* quickly determine if a given rate is CCK or OFDM */
1830#define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1831
1832/*
1833 * Construct the data packet for a transmit buffer and acutally put
1834 * the buffer onto the transmit ring, kicking the card to process the
1835 * the buffer.
1836 */
1837static int
1838wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1839	int ac)
1840{
1841	struct ieee80211vap *vap = ni->ni_vap;
1842	struct ifnet *ifp = sc->sc_ifp;
1843	struct ieee80211com *ic = ifp->if_l2com;
1844	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1845	struct wpi_tx_ring *ring = &sc->txq[ac];
1846	struct wpi_tx_desc *desc;
1847	struct wpi_tx_data *data;
1848	struct wpi_tx_cmd *cmd;
1849	struct wpi_cmd_data *tx;
1850	struct ieee80211_frame *wh;
1851	const struct ieee80211_txparam *tp;
1852	struct ieee80211_key *k;
1853	struct mbuf *mnew;
1854	int i, error, nsegs, rate, hdrlen, ismcast;
1855	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1856
1857	desc = &ring->desc[ring->cur];
1858	data = &ring->data[ring->cur];
1859
1860	wh = mtod(m0, struct ieee80211_frame *);
1861
1862	hdrlen = ieee80211_hdrsize(wh);
1863	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1864
1865	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1866		k = ieee80211_crypto_encap(ni, m0);
1867		if (k == NULL) {
1868			m_freem(m0);
1869			return ENOBUFS;
1870		}
1871		/* packet header may have moved, reset our local pointer */
1872		wh = mtod(m0, struct ieee80211_frame *);
1873	}
1874
1875	cmd = &ring->cmd[ring->cur];
1876	cmd->code = WPI_CMD_TX_DATA;
1877	cmd->flags = 0;
1878	cmd->qid = ring->qid;
1879	cmd->idx = ring->cur;
1880
1881	tx = (struct wpi_cmd_data *)cmd->data;
1882	tx->flags = htole32(WPI_TX_AUTO_SEQ);
1883	tx->timeout = htole16(0);
1884	tx->ofdm_mask = 0xff;
1885	tx->cck_mask = 0x0f;
1886	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1887	tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1888	tx->len = htole16(m0->m_pkthdr.len);
1889
1890	if (!ismcast) {
1891		if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1892		    !cap->cap_wmeParams[ac].wmep_noackPolicy)
1893			tx->flags |= htole32(WPI_TX_NEED_ACK);
1894		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1895			tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1896			tx->rts_ntries = 7;
1897		}
1898	}
1899	/* pick a rate */
1900	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1901	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1902		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1903		/* tell h/w to set timestamp in probe responses */
1904		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1905			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1906		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1907		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1908			tx->timeout = htole16(3);
1909		else
1910			tx->timeout = htole16(2);
1911		rate = tp->mgmtrate;
1912	} else if (ismcast) {
1913		rate = tp->mcastrate;
1914	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1915		rate = tp->ucastrate;
1916	} else {
1917		(void) ieee80211_amrr_choose(ni, &WPI_NODE(ni)->amn);
1918		rate = ni->ni_txrate;
1919	}
1920	tx->rate = wpi_plcp_signal(rate);
1921
1922	/* be very persistant at sending frames out */
1923#if 0
1924	tx->data_ntries = tp->maxretry;
1925#else
1926	tx->data_ntries = 15;		/* XXX way too high */
1927#endif
1928
1929	if (bpf_peers_present(ifp->if_bpf)) {
1930		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1931		tap->wt_flags = 0;
1932		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1933		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1934		tap->wt_rate = rate;
1935		tap->wt_hwqueue = ac;
1936		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1937			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1938
1939		bpf_mtap2(ifp->if_bpf, tap, sc->sc_txtap_len, m0);
1940	}
1941
1942	/* save and trim IEEE802.11 header */
1943	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1944	m_adj(m0, hdrlen);
1945
1946	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
1947	    &nsegs, BUS_DMA_NOWAIT);
1948	if (error != 0 && error != EFBIG) {
1949		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1950		    error);
1951		m_freem(m0);
1952		return error;
1953	}
1954	if (error != 0) {
1955		/* XXX use m_collapse */
1956		mnew = m_defrag(m0, M_DONTWAIT);
1957		if (mnew == NULL) {
1958			device_printf(sc->sc_dev,
1959			    "could not defragment mbuf\n");
1960			m_freem(m0);
1961			return ENOBUFS;
1962		}
1963		m0 = mnew;
1964
1965		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
1966		    m0, segs, &nsegs, BUS_DMA_NOWAIT);
1967		if (error != 0) {
1968			device_printf(sc->sc_dev,
1969			    "could not map mbuf (error %d)\n", error);
1970			m_freem(m0);
1971			return error;
1972		}
1973	}
1974
1975	data->m = m0;
1976	data->ni = ni;
1977
1978	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1979	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
1980
1981	/* first scatter/gather segment is used by the tx data command */
1982	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1983	    (1 + nsegs) << 24);
1984	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1985	    ring->cur * sizeof (struct wpi_tx_cmd));
1986	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
1987	for (i = 1; i <= nsegs; i++) {
1988		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
1989		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
1990	}
1991
1992	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1993	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1994	    BUS_DMASYNC_PREWRITE);
1995
1996	ring->queued++;
1997
1998	/* kick ring */
1999	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2000	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2001
2002	return 0;
2003}
2004
2005/**
2006 * Process data waiting to be sent on the IFNET output queue
2007 */
2008static void
2009wpi_start(struct ifnet *ifp)
2010{
2011	struct wpi_softc *sc = ifp->if_softc;
2012
2013	WPI_LOCK(sc);
2014	wpi_start_locked(ifp);
2015	WPI_UNLOCK(sc);
2016}
2017
2018static void
2019wpi_start_locked(struct ifnet *ifp)
2020{
2021	struct wpi_softc *sc = ifp->if_softc;
2022	struct ieee80211_node *ni;
2023	struct mbuf *m;
2024	int ac;
2025
2026	WPI_LOCK_ASSERT(sc);
2027
2028	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2029		return;
2030
2031	for (;;) {
2032		IFQ_POLL(&ifp->if_snd, m);
2033		if (m == NULL)
2034			break;
2035		/* no QoS encapsulation for EAPOL frames */
2036		ac = M_WME_GETAC(m);
2037		if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2038			/* there is no place left in this ring */
2039			IFQ_DRV_PREPEND(&ifp->if_snd, m);
2040			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2041			break;
2042		}
2043		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2044		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2045		m = ieee80211_encap(ni, m);
2046		if (m == NULL) {
2047			ieee80211_free_node(ni);
2048			ifp->if_oerrors++;
2049			continue;
2050		}
2051		if (wpi_tx_data(sc, m, ni, ac) != 0) {
2052			ieee80211_free_node(ni);
2053			ifp->if_oerrors++;
2054			break;
2055		}
2056		sc->sc_tx_timer = 5;
2057	}
2058}
2059
2060static int
2061wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2062	const struct ieee80211_bpf_params *params)
2063{
2064	struct ieee80211com *ic = ni->ni_ic;
2065	struct ifnet *ifp = ic->ic_ifp;
2066	struct wpi_softc *sc = ifp->if_softc;
2067
2068	/* prevent management frames from being sent if we're not ready */
2069	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2070		m_freem(m);
2071		ieee80211_free_node(ni);
2072		return ENETDOWN;
2073	}
2074	WPI_LOCK(sc);
2075
2076	/* management frames go into ring 0 */
2077	if (sc->txq[0].queued > sc->txq[0].count - 8) {
2078		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2079		m_freem(m);
2080		WPI_UNLOCK(sc);
2081		ieee80211_free_node(ni);
2082		return ENOBUFS;		/* XXX */
2083	}
2084
2085	ifp->if_opackets++;
2086	if (wpi_tx_data(sc, m, ni, 0) != 0)
2087		goto bad;
2088	sc->sc_tx_timer = 5;
2089	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2090
2091	WPI_UNLOCK(sc);
2092	return 0;
2093bad:
2094	ifp->if_oerrors++;
2095	WPI_UNLOCK(sc);
2096	ieee80211_free_node(ni);
2097	return EIO;		/* XXX */
2098}
2099
2100static int
2101wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2102{
2103	struct wpi_softc *sc = ifp->if_softc;
2104	struct ieee80211com *ic = ifp->if_l2com;
2105	struct ifreq *ifr = (struct ifreq *) data;
2106	int error = 0, startall = 0;
2107
2108	switch (cmd) {
2109	case SIOCSIFFLAGS:
2110		WPI_LOCK(sc);
2111		if ((ifp->if_flags & IFF_UP)) {
2112			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2113				wpi_init_locked(sc, 0);
2114				startall = 1;
2115			}
2116		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2117			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2118			wpi_stop_locked(sc);
2119		WPI_UNLOCK(sc);
2120		if (startall)
2121			ieee80211_start_all(ic);
2122		break;
2123	case SIOCGIFMEDIA:
2124		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2125		break;
2126	case SIOCGIFADDR:
2127		error = ether_ioctl(ifp, cmd, data);
2128		break;
2129	default:
2130		error = EINVAL;
2131		break;
2132	}
2133	return error;
2134}
2135
2136/*
2137 * Extract various information from EEPROM.
2138 */
2139static void
2140wpi_read_eeprom(struct wpi_softc *sc)
2141{
2142	struct ifnet *ifp = sc->sc_ifp;
2143	struct ieee80211com *ic = ifp->if_l2com;
2144	int i;
2145
2146	/* read the hardware capabilities, revision and SKU type */
2147	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2148	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2149	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2150
2151	/* read the regulatory domain */
2152	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2153
2154	/* read in the hw MAC address */
2155	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2156
2157	/* read the list of authorized channels */
2158	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2159		wpi_read_eeprom_channels(sc,i);
2160
2161	/* read the power level calibration info for each group */
2162	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2163		wpi_read_eeprom_group(sc,i);
2164}
2165
2166/*
2167 * Send a command to the firmware.
2168 */
2169static int
2170wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2171{
2172	struct wpi_tx_ring *ring = &sc->cmdq;
2173	struct wpi_tx_desc *desc;
2174	struct wpi_tx_cmd *cmd;
2175
2176#ifdef WPI_DEBUG
2177	if (!async) {
2178		WPI_LOCK_ASSERT(sc);
2179	}
2180#endif
2181
2182	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2183		    async));
2184
2185	if (sc->flags & WPI_FLAG_BUSY) {
2186		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2187		    __func__, code);
2188		return EAGAIN;
2189	}
2190	sc->flags|= WPI_FLAG_BUSY;
2191
2192	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2193	    code, size));
2194
2195	desc = &ring->desc[ring->cur];
2196	cmd = &ring->cmd[ring->cur];
2197
2198	cmd->code = code;
2199	cmd->flags = 0;
2200	cmd->qid = ring->qid;
2201	cmd->idx = ring->cur;
2202	memcpy(cmd->data, buf, size);
2203
2204	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2205	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2206		ring->cur * sizeof (struct wpi_tx_cmd));
2207	desc->segs[0].len  = htole32(4 + size);
2208
2209	/* kick cmd ring */
2210	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2211	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2212
2213	if (async) {
2214		sc->flags &= ~ WPI_FLAG_BUSY;
2215		return 0;
2216	}
2217
2218	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2219}
2220
2221static int
2222wpi_wme_update(struct ieee80211com *ic)
2223{
2224#define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2225#define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2226	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2227	const struct wmeParams *wmep;
2228	struct wpi_wme_setup wme;
2229	int ac;
2230
2231	/* don't override default WME values if WME is not actually enabled */
2232	if (!(ic->ic_flags & IEEE80211_F_WME))
2233		return 0;
2234
2235	wme.flags = 0;
2236	for (ac = 0; ac < WME_NUM_AC; ac++) {
2237		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2238		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2239		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2240		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2241		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2242
2243		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2244		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2245		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2246	}
2247	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2248#undef WPI_USEC
2249#undef WPI_EXP2
2250}
2251
2252/*
2253 * Configure h/w multi-rate retries.
2254 */
2255static int
2256wpi_mrr_setup(struct wpi_softc *sc)
2257{
2258	struct ifnet *ifp = sc->sc_ifp;
2259	struct ieee80211com *ic = ifp->if_l2com;
2260	struct wpi_mrr_setup mrr;
2261	int i, error;
2262
2263	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2264
2265	/* CCK rates (not used with 802.11a) */
2266	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2267		mrr.rates[i].flags = 0;
2268		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2269		/* fallback to the immediate lower CCK rate (if any) */
2270		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2271		/* try one time at this rate before falling back to "next" */
2272		mrr.rates[i].ntries = 1;
2273	}
2274
2275	/* OFDM rates (not used with 802.11b) */
2276	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2277		mrr.rates[i].flags = 0;
2278		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2279		/* fallback to the immediate lower OFDM rate (if any) */
2280		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2281		mrr.rates[i].next = (i == WPI_OFDM6) ?
2282		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2283			WPI_OFDM6 : WPI_CCK2) :
2284		    i - 1;
2285		/* try one time at this rate before falling back to "next" */
2286		mrr.rates[i].ntries = 1;
2287	}
2288
2289	/* setup MRR for control frames */
2290	mrr.which = htole32(WPI_MRR_CTL);
2291	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2292	if (error != 0) {
2293		device_printf(sc->sc_dev,
2294		    "could not setup MRR for control frames\n");
2295		return error;
2296	}
2297
2298	/* setup MRR for data frames */
2299	mrr.which = htole32(WPI_MRR_DATA);
2300	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2301	if (error != 0) {
2302		device_printf(sc->sc_dev,
2303		    "could not setup MRR for data frames\n");
2304		return error;
2305	}
2306
2307	return 0;
2308}
2309
2310static void
2311wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2312{
2313	struct wpi_cmd_led led;
2314
2315	led.which = which;
2316	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2317	led.off = off;
2318	led.on = on;
2319
2320	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2321}
2322
2323static void
2324wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2325{
2326	struct wpi_cmd_tsf tsf;
2327	uint64_t val, mod;
2328
2329	memset(&tsf, 0, sizeof tsf);
2330	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2331	tsf.bintval = htole16(ni->ni_intval);
2332	tsf.lintval = htole16(10);
2333
2334	/* compute remaining time until next beacon */
2335	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2336	mod = le64toh(tsf.tstamp) % val;
2337	tsf.binitval = htole32((uint32_t)(val - mod));
2338
2339	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2340		device_printf(sc->sc_dev, "could not enable TSF\n");
2341}
2342
2343#if 0
2344/*
2345 * Build a beacon frame that the firmware will broadcast periodically in
2346 * IBSS or HostAP modes.
2347 */
2348static int
2349wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2350{
2351	struct ifnet *ifp = sc->sc_ifp;
2352	struct ieee80211com *ic = ifp->if_l2com;
2353	struct wpi_tx_ring *ring = &sc->cmdq;
2354	struct wpi_tx_desc *desc;
2355	struct wpi_tx_data *data;
2356	struct wpi_tx_cmd *cmd;
2357	struct wpi_cmd_beacon *bcn;
2358	struct ieee80211_beacon_offsets bo;
2359	struct mbuf *m0;
2360	bus_addr_t physaddr;
2361	int error;
2362
2363	desc = &ring->desc[ring->cur];
2364	data = &ring->data[ring->cur];
2365
2366	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2367	if (m0 == NULL) {
2368		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2369		return ENOMEM;
2370	}
2371
2372	cmd = &ring->cmd[ring->cur];
2373	cmd->code = WPI_CMD_SET_BEACON;
2374	cmd->flags = 0;
2375	cmd->qid = ring->qid;
2376	cmd->idx = ring->cur;
2377
2378	bcn = (struct wpi_cmd_beacon *)cmd->data;
2379	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2380	bcn->id = WPI_ID_BROADCAST;
2381	bcn->ofdm_mask = 0xff;
2382	bcn->cck_mask = 0x0f;
2383	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2384	bcn->len = htole16(m0->m_pkthdr.len);
2385	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2386		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2387	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2388
2389	/* save and trim IEEE802.11 header */
2390	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2391	m_adj(m0, sizeof (struct ieee80211_frame));
2392
2393	/* assume beacon frame is contiguous */
2394	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2395	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2396	if (error != 0) {
2397		device_printf(sc->sc_dev, "could not map beacon\n");
2398		m_freem(m0);
2399		return error;
2400	}
2401
2402	data->m = m0;
2403
2404	/* first scatter/gather segment is used by the beacon command */
2405	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2406	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2407		ring->cur * sizeof (struct wpi_tx_cmd));
2408	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2409	desc->segs[1].addr = htole32(physaddr);
2410	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2411
2412	/* kick cmd ring */
2413	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2414	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2415
2416	return 0;
2417}
2418#endif
2419
2420static int
2421wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2422{
2423	struct ieee80211com *ic = vap->iv_ic;
2424	struct ieee80211_node *ni = vap->iv_bss;
2425	struct wpi_node_info node;
2426	int error;
2427
2428
2429	/* update adapter's configuration */
2430	sc->config.associd = 0;
2431	sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2432	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2433	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2434	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2435		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2436		    WPI_CONFIG_24GHZ);
2437	}
2438	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2439		sc->config.cck_mask  = 0;
2440		sc->config.ofdm_mask = 0x15;
2441	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2442		sc->config.cck_mask  = 0x03;
2443		sc->config.ofdm_mask = 0;
2444	} else {
2445		/* XXX assume 802.11b/g */
2446		sc->config.cck_mask  = 0x0f;
2447		sc->config.ofdm_mask = 0x15;
2448	}
2449
2450	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2451		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2452	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2453		sizeof (struct wpi_config), 1);
2454	if (error != 0) {
2455		device_printf(sc->sc_dev, "could not configure\n");
2456		return error;
2457	}
2458
2459	/* configuration has changed, set Tx power accordingly */
2460	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2461		device_printf(sc->sc_dev, "could not set Tx power\n");
2462		return error;
2463	}
2464
2465	/* add default node */
2466	memset(&node, 0, sizeof node);
2467	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2468	node.id = WPI_ID_BSS;
2469	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2470	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2471	node.action = htole32(WPI_ACTION_SET_RATE);
2472	node.antenna = WPI_ANTENNA_BOTH;
2473	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2474	if (error != 0)
2475		device_printf(sc->sc_dev, "could not add BSS node\n");
2476
2477	return (error);
2478}
2479
2480static int
2481wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2482{
2483	struct ieee80211com *ic = vap->iv_ic;
2484	struct ieee80211_node *ni = vap->iv_bss;
2485	int error;
2486
2487	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2488		/* link LED blinks while monitoring */
2489		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2490		return 0;
2491	}
2492
2493	wpi_enable_tsf(sc, ni);
2494
2495	/* update adapter's configuration */
2496	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2497	/* short preamble/slot time are negotiated when associating */
2498	sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2499	    WPI_CONFIG_SHSLOT);
2500	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2501		sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2502	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2503		sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2504	sc->config.filter |= htole32(WPI_FILTER_BSS);
2505
2506	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2507
2508	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2509		    sc->config.flags));
2510	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2511		    wpi_config), 1);
2512	if (error != 0) {
2513		device_printf(sc->sc_dev, "could not update configuration\n");
2514		return error;
2515	}
2516
2517	error = wpi_set_txpower(sc, ni->ni_chan, 1);
2518	if (error != 0) {
2519		device_printf(sc->sc_dev, "could set txpower\n");
2520		return error;
2521	}
2522
2523	/* link LED always on while associated */
2524	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2525
2526	/* start automatic rate control timer */
2527	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2528
2529	return (error);
2530}
2531
2532/*
2533 * Send a scan request to the firmware.  Since this command is huge, we map it
2534 * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2535 * much of this code is similar to that in wpi_cmd but because we must manually
2536 * construct the probe & channels, we duplicate what's needed here. XXX In the
2537 * future, this function should be modified to use wpi_cmd to help cleanup the
2538 * code base.
2539 */
2540static int
2541wpi_scan(struct wpi_softc *sc)
2542{
2543	struct ifnet *ifp = sc->sc_ifp;
2544	struct ieee80211com *ic = ifp->if_l2com;
2545	struct ieee80211_scan_state *ss = ic->ic_scan;
2546	struct wpi_tx_ring *ring = &sc->cmdq;
2547	struct wpi_tx_desc *desc;
2548	struct wpi_tx_data *data;
2549	struct wpi_tx_cmd *cmd;
2550	struct wpi_scan_hdr *hdr;
2551	struct wpi_scan_chan *chan;
2552	struct ieee80211_frame *wh;
2553	struct ieee80211_rateset *rs;
2554	struct ieee80211_channel *c;
2555	enum ieee80211_phymode mode;
2556	uint8_t *frm;
2557	int nrates, pktlen, error, i, nssid;
2558	bus_addr_t physaddr;
2559
2560	desc = &ring->desc[ring->cur];
2561	data = &ring->data[ring->cur];
2562
2563	data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2564	if (data->m == NULL) {
2565		device_printf(sc->sc_dev,
2566		    "could not allocate mbuf for scan command\n");
2567		return ENOMEM;
2568	}
2569
2570	cmd = mtod(data->m, struct wpi_tx_cmd *);
2571	cmd->code = WPI_CMD_SCAN;
2572	cmd->flags = 0;
2573	cmd->qid = ring->qid;
2574	cmd->idx = ring->cur;
2575
2576	hdr = (struct wpi_scan_hdr *)cmd->data;
2577	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2578
2579	/*
2580	 * Move to the next channel if no packets are received within 5 msecs
2581	 * after sending the probe request (this helps to reduce the duration
2582	 * of active scans).
2583	 */
2584	hdr->quiet = htole16(5);
2585	hdr->threshold = htole16(1);
2586
2587	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2588		/* send probe requests at 6Mbps */
2589		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2590
2591		/* Enable crc checking */
2592		hdr->promotion = htole16(1);
2593	} else {
2594		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2595		/* send probe requests at 1Mbps */
2596		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2597	}
2598	hdr->tx.id = WPI_ID_BROADCAST;
2599	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2600	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2601
2602	memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2603	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2604	for (i = 0; i < nssid; i++) {
2605		hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2606		hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2607		memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2608		    hdr->scan_essids[i].esslen);
2609#ifdef WPI_DEBUG
2610		if (wpi_debug & WPI_DEBUG_SCANNING) {
2611			printf("Scanning Essid: ");
2612			ieee80211_print_essid(hdr->scan_essids[i].essid,
2613			    hdr->scan_essids[i].esslen);
2614			printf("\n");
2615		}
2616#endif
2617	}
2618
2619	/*
2620	 * Build a probe request frame.  Most of the following code is a
2621	 * copy & paste of what is done in net80211.
2622	 */
2623	wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2624	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2625		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2626	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2627	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2628	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2629	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2630	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2631	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2632
2633	frm = (uint8_t *)(wh + 1);
2634
2635	/* add essid IE, the hardware will fill this in for us */
2636	*frm++ = IEEE80211_ELEMID_SSID;
2637	*frm++ = 0;
2638
2639	mode = ieee80211_chan2mode(ic->ic_curchan);
2640	rs = &ic->ic_sup_rates[mode];
2641
2642	/* add supported rates IE */
2643	*frm++ = IEEE80211_ELEMID_RATES;
2644	nrates = rs->rs_nrates;
2645	if (nrates > IEEE80211_RATE_SIZE)
2646		nrates = IEEE80211_RATE_SIZE;
2647	*frm++ = nrates;
2648	memcpy(frm, rs->rs_rates, nrates);
2649	frm += nrates;
2650
2651	/* add supported xrates IE */
2652	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2653		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2654		*frm++ = IEEE80211_ELEMID_XRATES;
2655		*frm++ = nrates;
2656		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2657		frm += nrates;
2658	}
2659
2660	/* setup length of probe request */
2661	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2662
2663	/*
2664	 * Construct information about the channel that we
2665	 * want to scan. The firmware expects this to be directly
2666	 * after the scan probe request
2667	 */
2668	c = ic->ic_curchan;
2669	chan = (struct wpi_scan_chan *)frm;
2670	chan->chan = ieee80211_chan2ieee(ic, c);
2671	chan->flags = 0;
2672	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2673		chan->flags |= WPI_CHAN_ACTIVE;
2674		if (nssid != 0)
2675			chan->flags |= WPI_CHAN_DIRECT;
2676	}
2677	chan->gain_dsp = 0x6e; /* Default level */
2678	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2679		chan->active = htole16(10);
2680		chan->passive = htole16(ss->ss_maxdwell);
2681		chan->gain_radio = 0x3b;
2682	} else {
2683		chan->active = htole16(20);
2684		chan->passive = htole16(ss->ss_maxdwell);
2685		chan->gain_radio = 0x28;
2686	}
2687
2688	DPRINTFN(WPI_DEBUG_SCANNING,
2689	    ("Scanning %u Passive: %d\n",
2690	     chan->chan,
2691	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2692
2693	hdr->nchan++;
2694	chan++;
2695
2696	frm += sizeof (struct wpi_scan_chan);
2697#if 0
2698	// XXX All Channels....
2699	for (c  = &ic->ic_channels[1];
2700	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2701		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2702			continue;
2703
2704		chan->chan = ieee80211_chan2ieee(ic, c);
2705		chan->flags = 0;
2706		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2707		    chan->flags |= WPI_CHAN_ACTIVE;
2708		    if (ic->ic_des_ssid[0].len != 0)
2709			chan->flags |= WPI_CHAN_DIRECT;
2710		}
2711		chan->gain_dsp = 0x6e; /* Default level */
2712		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2713			chan->active = htole16(10);
2714			chan->passive = htole16(110);
2715			chan->gain_radio = 0x3b;
2716		} else {
2717			chan->active = htole16(20);
2718			chan->passive = htole16(120);
2719			chan->gain_radio = 0x28;
2720		}
2721
2722		DPRINTFN(WPI_DEBUG_SCANNING,
2723			 ("Scanning %u Passive: %d\n",
2724			  chan->chan,
2725			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2726
2727		hdr->nchan++;
2728		chan++;
2729
2730		frm += sizeof (struct wpi_scan_chan);
2731	}
2732#endif
2733
2734	hdr->len = htole16(frm - (uint8_t *)hdr);
2735	pktlen = frm - (uint8_t *)cmd;
2736
2737	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2738	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2739	if (error != 0) {
2740		device_printf(sc->sc_dev, "could not map scan command\n");
2741		m_freem(data->m);
2742		data->m = NULL;
2743		return error;
2744	}
2745
2746	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2747	desc->segs[0].addr = htole32(physaddr);
2748	desc->segs[0].len  = htole32(pktlen);
2749
2750	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2751	    BUS_DMASYNC_PREWRITE);
2752	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2753
2754	/* kick cmd ring */
2755	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2756	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2757
2758	sc->sc_scan_timer = 5;
2759	return 0;	/* will be notified async. of failure/success */
2760}
2761
2762/**
2763 * Configure the card to listen to a particular channel, this transisions the
2764 * card in to being able to receive frames from remote devices.
2765 */
2766static int
2767wpi_config(struct wpi_softc *sc)
2768{
2769	struct ifnet *ifp = sc->sc_ifp;
2770	struct ieee80211com *ic = ifp->if_l2com;
2771	struct wpi_power power;
2772	struct wpi_bluetooth bluetooth;
2773	struct wpi_node_info node;
2774	int error;
2775
2776	/* set power mode */
2777	memset(&power, 0, sizeof power);
2778	power.flags = htole32(WPI_POWER_CAM|0x8);
2779	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2780	if (error != 0) {
2781		device_printf(sc->sc_dev, "could not set power mode\n");
2782		return error;
2783	}
2784
2785	/* configure bluetooth coexistence */
2786	memset(&bluetooth, 0, sizeof bluetooth);
2787	bluetooth.flags = 3;
2788	bluetooth.lead = 0xaa;
2789	bluetooth.kill = 1;
2790	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2791	    0);
2792	if (error != 0) {
2793		device_printf(sc->sc_dev,
2794		    "could not configure bluetooth coexistence\n");
2795		return error;
2796	}
2797
2798	/* configure adapter */
2799	memset(&sc->config, 0, sizeof (struct wpi_config));
2800	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2801	/*set default channel*/
2802	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2803	sc->config.flags = htole32(WPI_CONFIG_TSF);
2804	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2805		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2806		    WPI_CONFIG_24GHZ);
2807	}
2808	sc->config.filter = 0;
2809	switch (ic->ic_opmode) {
2810	case IEEE80211_M_STA:
2811	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2812		sc->config.mode = WPI_MODE_STA;
2813		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2814		break;
2815	case IEEE80211_M_IBSS:
2816	case IEEE80211_M_AHDEMO:
2817		sc->config.mode = WPI_MODE_IBSS;
2818		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2819					     WPI_FILTER_MULTICAST);
2820		break;
2821	case IEEE80211_M_HOSTAP:
2822		sc->config.mode = WPI_MODE_HOSTAP;
2823		break;
2824	case IEEE80211_M_MONITOR:
2825		sc->config.mode = WPI_MODE_MONITOR;
2826		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2827			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2828		break;
2829	}
2830	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2831	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2832	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2833		sizeof (struct wpi_config), 0);
2834	if (error != 0) {
2835		device_printf(sc->sc_dev, "configure command failed\n");
2836		return error;
2837	}
2838
2839	/* configuration has changed, set Tx power accordingly */
2840	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2841	    device_printf(sc->sc_dev, "could not set Tx power\n");
2842	    return error;
2843	}
2844
2845	/* add broadcast node */
2846	memset(&node, 0, sizeof node);
2847	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2848	node.id = WPI_ID_BROADCAST;
2849	node.rate = wpi_plcp_signal(2);
2850	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2851	if (error != 0) {
2852		device_printf(sc->sc_dev, "could not add broadcast node\n");
2853		return error;
2854	}
2855
2856	/* Setup rate scalling */
2857	error = wpi_mrr_setup(sc);
2858	if (error != 0) {
2859		device_printf(sc->sc_dev, "could not setup MRR\n");
2860		return error;
2861	}
2862
2863	return 0;
2864}
2865
2866static void
2867wpi_stop_master(struct wpi_softc *sc)
2868{
2869	uint32_t tmp;
2870	int ntries;
2871
2872	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2873
2874	tmp = WPI_READ(sc, WPI_RESET);
2875	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2876
2877	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2878	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2879		return;	/* already asleep */
2880
2881	for (ntries = 0; ntries < 100; ntries++) {
2882		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2883			break;
2884		DELAY(10);
2885	}
2886	if (ntries == 100) {
2887		device_printf(sc->sc_dev, "timeout waiting for master\n");
2888	}
2889}
2890
2891static int
2892wpi_power_up(struct wpi_softc *sc)
2893{
2894	uint32_t tmp;
2895	int ntries;
2896
2897	wpi_mem_lock(sc);
2898	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2899	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2900	wpi_mem_unlock(sc);
2901
2902	for (ntries = 0; ntries < 5000; ntries++) {
2903		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2904			break;
2905		DELAY(10);
2906	}
2907	if (ntries == 5000) {
2908		device_printf(sc->sc_dev,
2909		    "timeout waiting for NIC to power up\n");
2910		return ETIMEDOUT;
2911	}
2912	return 0;
2913}
2914
2915static int
2916wpi_reset(struct wpi_softc *sc)
2917{
2918	uint32_t tmp;
2919	int ntries;
2920
2921	DPRINTFN(WPI_DEBUG_HW,
2922	    ("Resetting the card - clearing any uploaded firmware\n"));
2923
2924	/* clear any pending interrupts */
2925	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2926
2927	tmp = WPI_READ(sc, WPI_PLL_CTL);
2928	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2929
2930	tmp = WPI_READ(sc, WPI_CHICKEN);
2931	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2932
2933	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2934	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2935
2936	/* wait for clock stabilization */
2937	for (ntries = 0; ntries < 25000; ntries++) {
2938		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2939			break;
2940		DELAY(10);
2941	}
2942	if (ntries == 25000) {
2943		device_printf(sc->sc_dev,
2944		    "timeout waiting for clock stabilization\n");
2945		return ETIMEDOUT;
2946	}
2947
2948	/* initialize EEPROM */
2949	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2950
2951	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2952		device_printf(sc->sc_dev, "EEPROM not found\n");
2953		return EIO;
2954	}
2955	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2956
2957	return 0;
2958}
2959
2960static void
2961wpi_hw_config(struct wpi_softc *sc)
2962{
2963	uint32_t rev, hw;
2964
2965	/* voodoo from the Linux "driver".. */
2966	hw = WPI_READ(sc, WPI_HWCONFIG);
2967
2968	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2969	if ((rev & 0xc0) == 0x40)
2970		hw |= WPI_HW_ALM_MB;
2971	else if (!(rev & 0x80))
2972		hw |= WPI_HW_ALM_MM;
2973
2974	if (sc->cap == 0x80)
2975		hw |= WPI_HW_SKU_MRC;
2976
2977	hw &= ~WPI_HW_REV_D;
2978	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2979		hw |= WPI_HW_REV_D;
2980
2981	if (sc->type > 1)
2982		hw |= WPI_HW_TYPE_B;
2983
2984	WPI_WRITE(sc, WPI_HWCONFIG, hw);
2985}
2986
2987static void
2988wpi_rfkill_resume(struct wpi_softc *sc)
2989{
2990	struct ifnet *ifp = sc->sc_ifp;
2991	struct ieee80211com *ic = ifp->if_l2com;
2992	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2993	int ntries;
2994
2995	/* enable firmware again */
2996	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
2997	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
2998
2999	/* wait for thermal sensors to calibrate */
3000	for (ntries = 0; ntries < 1000; ntries++) {
3001		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3002			break;
3003		DELAY(10);
3004	}
3005
3006	if (ntries == 1000) {
3007		device_printf(sc->sc_dev,
3008		    "timeout waiting for thermal calibration\n");
3009		WPI_UNLOCK(sc);
3010		return;
3011	}
3012	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3013
3014	if (wpi_config(sc) != 0) {
3015		device_printf(sc->sc_dev, "device config failed\n");
3016		WPI_UNLOCK(sc);
3017		return;
3018	}
3019
3020	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3021	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3022	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3023
3024	if (vap != NULL) {
3025		if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3026			if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3027				taskqueue_enqueue(taskqueue_swi,
3028				    &sc->sc_bmiss_task);
3029				wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3030			} else
3031				wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3032		} else {
3033			ieee80211_scan_next(vap);
3034			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3035		}
3036	}
3037
3038	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3039}
3040
3041static void
3042wpi_init_locked(struct wpi_softc *sc, int force)
3043{
3044	struct ifnet *ifp = sc->sc_ifp;
3045	uint32_t tmp;
3046	int ntries, qid;
3047
3048	wpi_stop_locked(sc);
3049	(void)wpi_reset(sc);
3050
3051	wpi_mem_lock(sc);
3052	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3053	DELAY(20);
3054	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3055	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3056	wpi_mem_unlock(sc);
3057
3058	(void)wpi_power_up(sc);
3059	wpi_hw_config(sc);
3060
3061	/* init Rx ring */
3062	wpi_mem_lock(sc);
3063	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3064	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3065	    offsetof(struct wpi_shared, next));
3066	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3067	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3068	wpi_mem_unlock(sc);
3069
3070	/* init Tx rings */
3071	wpi_mem_lock(sc);
3072	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3073	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3074	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3075	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3076	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3077	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3078	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3079
3080	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3081	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3082
3083	for (qid = 0; qid < 6; qid++) {
3084		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3085		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3086		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3087	}
3088	wpi_mem_unlock(sc);
3089
3090	/* clear "radio off" and "disable command" bits (reversed logic) */
3091	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3092	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3093	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3094
3095	/* clear any pending interrupts */
3096	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3097
3098	/* enable interrupts */
3099	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3100
3101	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3102	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3103
3104	if ((wpi_load_firmware(sc)) != 0) {
3105	    device_printf(sc->sc_dev,
3106		"A problem occurred loading the firmware to the driver\n");
3107	    return;
3108	}
3109
3110	/* At this point the firmware is up and running. If the hardware
3111	 * RF switch is turned off thermal calibration will fail, though
3112	 * the card is still happy to continue to accept commands, catch
3113	 * this case and schedule a task to watch for it to be turned on.
3114	 */
3115	wpi_mem_lock(sc);
3116	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3117	wpi_mem_unlock(sc);
3118
3119	if (!(tmp & 0x1)) {
3120		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3121		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3122		goto out;
3123	}
3124
3125	/* wait for thermal sensors to calibrate */
3126	for (ntries = 0; ntries < 1000; ntries++) {
3127		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3128			break;
3129		DELAY(10);
3130	}
3131
3132	if (ntries == 1000) {
3133		device_printf(sc->sc_dev,
3134		    "timeout waiting for thermal sensors calibration\n");
3135		return;
3136	}
3137	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3138
3139	if (wpi_config(sc) != 0) {
3140		device_printf(sc->sc_dev, "device config failed\n");
3141		return;
3142	}
3143
3144	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3145	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3146out:
3147	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3148}
3149
3150static void
3151wpi_init(void *arg)
3152{
3153	struct wpi_softc *sc = arg;
3154	struct ifnet *ifp = sc->sc_ifp;
3155	struct ieee80211com *ic = ifp->if_l2com;
3156
3157	WPI_LOCK(sc);
3158	wpi_init_locked(sc, 0);
3159	WPI_UNLOCK(sc);
3160
3161	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3162		ieee80211_start_all(ic);		/* start all vaps */
3163}
3164
3165static void
3166wpi_stop_locked(struct wpi_softc *sc)
3167{
3168	struct ifnet *ifp = sc->sc_ifp;
3169	uint32_t tmp;
3170	int ac;
3171
3172	sc->sc_tx_timer = 0;
3173	sc->sc_scan_timer = 0;
3174	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3175	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3176	callout_stop(&sc->watchdog_to);
3177	callout_stop(&sc->calib_to);
3178
3179
3180	/* disable interrupts */
3181	WPI_WRITE(sc, WPI_MASK, 0);
3182	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3183	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3184	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3185
3186	/* Clear any commands left in the command buffer */
3187	memset(sc->sc_cmd, 0, sizeof(sc->sc_cmd));
3188	memset(sc->sc_cmd_arg, 0, sizeof(sc->sc_cmd_arg));
3189	sc->sc_cmd_cur = 0;
3190	sc->sc_cmd_next = 0;
3191
3192	wpi_mem_lock(sc);
3193	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3194	wpi_mem_unlock(sc);
3195
3196	/* reset all Tx rings */
3197	for (ac = 0; ac < 4; ac++)
3198		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3199	wpi_reset_tx_ring(sc, &sc->cmdq);
3200
3201	/* reset Rx ring */
3202	wpi_reset_rx_ring(sc, &sc->rxq);
3203
3204	wpi_mem_lock(sc);
3205	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3206	wpi_mem_unlock(sc);
3207
3208	DELAY(5);
3209
3210	wpi_stop_master(sc);
3211
3212	tmp = WPI_READ(sc, WPI_RESET);
3213	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3214	sc->flags &= ~WPI_FLAG_BUSY;
3215}
3216
3217static void
3218wpi_stop(struct wpi_softc *sc)
3219{
3220	WPI_LOCK(sc);
3221	wpi_stop_locked(sc);
3222	WPI_UNLOCK(sc);
3223}
3224
3225static void
3226wpi_newassoc(struct ieee80211_node *ni, int isnew)
3227{
3228	struct ieee80211vap *vap = ni->ni_vap;
3229	struct wpi_vap *wvp = WPI_VAP(vap);
3230
3231	ieee80211_amrr_node_init(&wvp->amrr, &WPI_NODE(ni)->amn, ni);
3232}
3233
3234static void
3235wpi_calib_timeout(void *arg)
3236{
3237	struct wpi_softc *sc = arg;
3238	struct ifnet *ifp = sc->sc_ifp;
3239	struct ieee80211com *ic = ifp->if_l2com;
3240	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3241	int temp;
3242
3243	if (vap->iv_state != IEEE80211_S_RUN)
3244		return;
3245
3246	/* update sensor data */
3247	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3248	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3249
3250	wpi_power_calibration(sc, temp);
3251
3252	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3253}
3254
3255/*
3256 * This function is called periodically (every 60 seconds) to adjust output
3257 * power to temperature changes.
3258 */
3259static void
3260wpi_power_calibration(struct wpi_softc *sc, int temp)
3261{
3262	struct ifnet *ifp = sc->sc_ifp;
3263	struct ieee80211com *ic = ifp->if_l2com;
3264	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3265
3266	/* sanity-check read value */
3267	if (temp < -260 || temp > 25) {
3268		/* this can't be correct, ignore */
3269		DPRINTFN(WPI_DEBUG_TEMP,
3270		    ("out-of-range temperature reported: %d\n", temp));
3271		return;
3272	}
3273
3274	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3275
3276	/* adjust Tx power if need be */
3277	if (abs(temp - sc->temp) <= 6)
3278		return;
3279
3280	sc->temp = temp;
3281
3282	if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3283		/* just warn, too bad for the automatic calibration... */
3284		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3285	}
3286}
3287
3288/**
3289 * Read the eeprom to find out what channels are valid for the given
3290 * band and update net80211 with what we find.
3291 */
3292static void
3293wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3294{
3295	struct ifnet *ifp = sc->sc_ifp;
3296	struct ieee80211com *ic = ifp->if_l2com;
3297	const struct wpi_chan_band *band = &wpi_bands[n];
3298	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3299	struct ieee80211_channel *c;
3300	int chan, i, passive;
3301
3302	wpi_read_prom_data(sc, band->addr, channels,
3303	    band->nchan * sizeof (struct wpi_eeprom_chan));
3304
3305	for (i = 0; i < band->nchan; i++) {
3306		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3307			DPRINTFN(WPI_DEBUG_HW,
3308			    ("Channel Not Valid: %d, band %d\n",
3309			     band->chan[i],n));
3310			continue;
3311		}
3312
3313		passive = 0;
3314		chan = band->chan[i];
3315		c = &ic->ic_channels[ic->ic_nchans++];
3316
3317		/* is active scan allowed on this channel? */
3318		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3319			passive = IEEE80211_CHAN_PASSIVE;
3320		}
3321
3322		if (n == 0) {	/* 2GHz band */
3323			c->ic_ieee = chan;
3324			c->ic_freq = ieee80211_ieee2mhz(chan,
3325			    IEEE80211_CHAN_2GHZ);
3326			c->ic_flags = IEEE80211_CHAN_B | passive;
3327
3328			c = &ic->ic_channels[ic->ic_nchans++];
3329			c->ic_ieee = chan;
3330			c->ic_freq = ieee80211_ieee2mhz(chan,
3331			    IEEE80211_CHAN_2GHZ);
3332			c->ic_flags = IEEE80211_CHAN_G | passive;
3333
3334		} else {	/* 5GHz band */
3335			/*
3336			 * Some 3945ABG adapters support channels 7, 8, 11
3337			 * and 12 in the 2GHz *and* 5GHz bands.
3338			 * Because of limitations in our net80211(9) stack,
3339			 * we can't support these channels in 5GHz band.
3340			 * XXX not true; just need to map to proper frequency
3341			 */
3342			if (chan <= 14)
3343				continue;
3344
3345			c->ic_ieee = chan;
3346			c->ic_freq = ieee80211_ieee2mhz(chan,
3347			    IEEE80211_CHAN_5GHZ);
3348			c->ic_flags = IEEE80211_CHAN_A | passive;
3349		}
3350
3351		/* save maximum allowed power for this channel */
3352		sc->maxpwr[chan] = channels[i].maxpwr;
3353
3354#if 0
3355		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3356		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3357		//ic->ic_channels[chan].ic_minpower...
3358		//ic->ic_channels[chan].ic_maxregtxpower...
3359#endif
3360
3361		DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3362		    " passive=%d, offset %d\n", chan, c->ic_freq,
3363		    channels[i].flags, sc->maxpwr[chan],
3364		    (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3365		    ic->ic_nchans));
3366	}
3367}
3368
3369static void
3370wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3371{
3372	struct wpi_power_group *group = &sc->groups[n];
3373	struct wpi_eeprom_group rgroup;
3374	int i;
3375
3376	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3377	    sizeof rgroup);
3378
3379	/* save power group information */
3380	group->chan   = rgroup.chan;
3381	group->maxpwr = rgroup.maxpwr;
3382	/* temperature at which the samples were taken */
3383	group->temp   = (int16_t)le16toh(rgroup.temp);
3384
3385	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3386		    group->chan, group->maxpwr, group->temp));
3387
3388	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3389		group->samples[i].index = rgroup.samples[i].index;
3390		group->samples[i].power = rgroup.samples[i].power;
3391
3392		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3393			    group->samples[i].index, group->samples[i].power));
3394	}
3395}
3396
3397/*
3398 * Update Tx power to match what is defined for channel `c'.
3399 */
3400static int
3401wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3402{
3403	struct ifnet *ifp = sc->sc_ifp;
3404	struct ieee80211com *ic = ifp->if_l2com;
3405	struct wpi_power_group *group;
3406	struct wpi_cmd_txpower txpower;
3407	u_int chan;
3408	int i;
3409
3410	/* get channel number */
3411	chan = ieee80211_chan2ieee(ic, c);
3412
3413	/* find the power group to which this channel belongs */
3414	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3415		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3416			if (chan <= group->chan)
3417				break;
3418	} else
3419		group = &sc->groups[0];
3420
3421	memset(&txpower, 0, sizeof txpower);
3422	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3423	txpower.channel = htole16(chan);
3424
3425	/* set Tx power for all OFDM and CCK rates */
3426	for (i = 0; i <= 11 ; i++) {
3427		/* retrieve Tx power for this channel/rate combination */
3428		int idx = wpi_get_power_index(sc, group, c,
3429		    wpi_ridx_to_rate[i]);
3430
3431		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3432
3433		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3434			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3435			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3436		} else {
3437			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3438			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3439		}
3440		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3441			    chan, wpi_ridx_to_rate[i], idx));
3442	}
3443
3444	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3445}
3446
3447/*
3448 * Determine Tx power index for a given channel/rate combination.
3449 * This takes into account the regulatory information from EEPROM and the
3450 * current temperature.
3451 */
3452static int
3453wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3454    struct ieee80211_channel *c, int rate)
3455{
3456/* fixed-point arithmetic division using a n-bit fractional part */
3457#define fdivround(a, b, n)      \
3458	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3459
3460/* linear interpolation */
3461#define interpolate(x, x1, y1, x2, y2, n)       \
3462	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3463
3464	struct ifnet *ifp = sc->sc_ifp;
3465	struct ieee80211com *ic = ifp->if_l2com;
3466	struct wpi_power_sample *sample;
3467	int pwr, idx;
3468	u_int chan;
3469
3470	/* get channel number */
3471	chan = ieee80211_chan2ieee(ic, c);
3472
3473	/* default power is group's maximum power - 3dB */
3474	pwr = group->maxpwr / 2;
3475
3476	/* decrease power for highest OFDM rates to reduce distortion */
3477	switch (rate) {
3478		case 72:	/* 36Mb/s */
3479			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3480			break;
3481		case 96:	/* 48Mb/s */
3482			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3483			break;
3484		case 108:	/* 54Mb/s */
3485			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3486			break;
3487	}
3488
3489	/* never exceed channel's maximum allowed Tx power */
3490	pwr = min(pwr, sc->maxpwr[chan]);
3491
3492	/* retrieve power index into gain tables from samples */
3493	for (sample = group->samples; sample < &group->samples[3]; sample++)
3494		if (pwr > sample[1].power)
3495			break;
3496	/* fixed-point linear interpolation using a 19-bit fractional part */
3497	idx = interpolate(pwr, sample[0].power, sample[0].index,
3498	    sample[1].power, sample[1].index, 19);
3499
3500	/*
3501	 *  Adjust power index based on current temperature
3502	 *	- if colder than factory-calibrated: decreate output power
3503	 *	- if warmer than factory-calibrated: increase output power
3504	 */
3505	idx -= (sc->temp - group->temp) * 11 / 100;
3506
3507	/* decrease power for CCK rates (-5dB) */
3508	if (!WPI_RATE_IS_OFDM(rate))
3509		idx += 10;
3510
3511	/* keep power index in a valid range */
3512	if (idx < 0)
3513		return 0;
3514	if (idx > WPI_MAX_PWR_INDEX)
3515		return WPI_MAX_PWR_INDEX;
3516	return idx;
3517
3518#undef interpolate
3519#undef fdivround
3520}
3521
3522/**
3523 * Called by net80211 framework to indicate that a scan
3524 * is starting. This function doesn't actually do the scan,
3525 * wpi_scan_curchan starts things off. This function is more
3526 * of an early warning from the framework we should get ready
3527 * for the scan.
3528 */
3529static void
3530wpi_scan_start(struct ieee80211com *ic)
3531{
3532	struct ifnet *ifp = ic->ic_ifp;
3533	struct wpi_softc *sc = ifp->if_softc;
3534
3535	wpi_queue_cmd(sc, WPI_SCAN_START, 0, WPI_QUEUE_NORMAL);
3536}
3537
3538/**
3539 * Called by the net80211 framework, indicates that the
3540 * scan has ended. If there is a scan in progress on the card
3541 * then it should be aborted.
3542 */
3543static void
3544wpi_scan_end(struct ieee80211com *ic)
3545{
3546	struct ifnet *ifp = ic->ic_ifp;
3547	struct wpi_softc *sc = ifp->if_softc;
3548
3549	wpi_queue_cmd(sc, WPI_SCAN_STOP, 0, WPI_QUEUE_NORMAL);
3550}
3551
3552/**
3553 * Called by the net80211 framework to indicate to the driver
3554 * that the channel should be changed
3555 */
3556static void
3557wpi_set_channel(struct ieee80211com *ic)
3558{
3559	struct ifnet *ifp = ic->ic_ifp;
3560	struct wpi_softc *sc = ifp->if_softc;
3561
3562	/*
3563	 * Only need to set the channel in Monitor mode. AP scanning and auth
3564	 * are already taken care of by their respective firmware commands.
3565	 */
3566	if (ic->ic_opmode == IEEE80211_M_MONITOR)
3567		wpi_queue_cmd(sc, WPI_SET_CHAN, 0, WPI_QUEUE_NORMAL);
3568}
3569
3570/**
3571 * Called by net80211 to indicate that we need to scan the current
3572 * channel. The channel is previously be set via the wpi_set_channel
3573 * callback.
3574 */
3575static void
3576wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3577{
3578	struct ieee80211vap *vap = ss->ss_vap;
3579	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3580	struct wpi_softc *sc = ifp->if_softc;
3581
3582	wpi_queue_cmd(sc, WPI_SCAN_CURCHAN, 0, WPI_QUEUE_NORMAL);
3583}
3584
3585/**
3586 * Called by the net80211 framework to indicate
3587 * the minimum dwell time has been met, terminate the scan.
3588 * We don't actually terminate the scan as the firmware will notify
3589 * us when it's finished and we have no way to interrupt it.
3590 */
3591static void
3592wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3593{
3594	/* NB: don't try to abort scan; wait for firmware to finish */
3595}
3596
3597/**
3598 * The ops function is called to perform some actual work.
3599 * because we can't sleep from any of the ic callbacks, we queue an
3600 * op task with wpi_queue_cmd and have the taskqueue process that task.
3601 * The task that gets cued is a op task, which ends up calling this function.
3602 */
3603static void
3604wpi_ops(void *arg0, int pending)
3605{
3606	struct wpi_softc *sc = arg0;
3607	struct ifnet *ifp = sc->sc_ifp;
3608	struct ieee80211com *ic = ifp->if_l2com;
3609	int cmd, arg, error;
3610	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3611
3612again:
3613	WPI_CMD_LOCK(sc);
3614	cmd = sc->sc_cmd[sc->sc_cmd_cur];
3615	arg = sc->sc_cmd_arg[sc->sc_cmd_cur];
3616
3617	if (cmd == 0) {
3618		/* No more commands to process */
3619		WPI_CMD_UNLOCK(sc);
3620		return;
3621	}
3622	sc->sc_cmd[sc->sc_cmd_cur] = 0; /* free the slot */
3623	sc->sc_cmd_arg[sc->sc_cmd_cur] = 0; /* free the slot */
3624	sc->sc_cmd_cur = (sc->sc_cmd_cur + 1) % WPI_CMD_MAXOPS;
3625	WPI_CMD_UNLOCK(sc);
3626	WPI_LOCK(sc);
3627
3628	DPRINTFN(WPI_DEBUG_OPS,("wpi_ops: command: %d\n", cmd));
3629
3630	switch (cmd) {
3631	case WPI_RESTART:
3632		wpi_init_locked(sc, 0);
3633		WPI_UNLOCK(sc);
3634		return;
3635
3636	case WPI_RF_RESTART:
3637		wpi_rfkill_resume(sc);
3638		WPI_UNLOCK(sc);
3639		return;
3640	}
3641
3642	if (!(sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3643		WPI_UNLOCK(sc);
3644		return;
3645	}
3646
3647	switch (cmd) {
3648	case WPI_SCAN_START:
3649		/* make the link LED blink while we're scanning */
3650		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3651		sc->flags |= WPI_FLAG_SCANNING;
3652		break;
3653
3654	case WPI_SCAN_STOP:
3655		sc->flags &= ~WPI_FLAG_SCANNING;
3656		break;
3657
3658	case WPI_SCAN_CURCHAN:
3659		if (wpi_scan(sc))
3660			ieee80211_cancel_scan(vap);
3661		break;
3662
3663	case WPI_SET_CHAN:
3664		error = wpi_config(sc);
3665		if (error != 0)
3666			device_printf(sc->sc_dev,
3667			    "error %d settting channel\n", error);
3668		break;
3669
3670	case WPI_AUTH:
3671		/* The node must be registered in the firmware before auth */
3672		error = wpi_auth(sc, vap);
3673		WPI_UNLOCK(sc);
3674		if (error != 0) {
3675			device_printf(sc->sc_dev,
3676			    "%s: could not move to auth state, error %d\n",
3677			    __func__, error);
3678			return;
3679		}
3680		IEEE80211_LOCK(ic);
3681		WPI_VAP(vap)->newstate(vap, IEEE80211_S_AUTH, arg);
3682		if (vap->iv_newstate_cb != NULL)
3683			vap->iv_newstate_cb(vap, IEEE80211_S_AUTH, arg);
3684		IEEE80211_UNLOCK(ic);
3685		goto again;
3686
3687	case WPI_RUN:
3688		error = wpi_run(sc, vap);
3689		WPI_UNLOCK(sc);
3690		if (error != 0) {
3691			device_printf(sc->sc_dev,
3692			    "%s: could not move to run state, error %d\n",
3693			    __func__, error);
3694			return;
3695		}
3696		IEEE80211_LOCK(ic);
3697		WPI_VAP(vap)->newstate(vap, IEEE80211_S_RUN, arg);
3698		if (vap->iv_newstate_cb != NULL)
3699			vap->iv_newstate_cb(vap, IEEE80211_S_RUN, arg);
3700		IEEE80211_UNLOCK(ic);
3701		goto again;
3702	}
3703	WPI_UNLOCK(sc);
3704
3705	/* Take another pass */
3706	goto again;
3707}
3708
3709/**
3710 * queue a command for later execution in a different thread.
3711 * This is needed as the net80211 callbacks do not allow
3712 * sleeping, since we need to sleep to confirm commands have
3713 * been processed by the firmware, we must defer execution to
3714 * a sleep enabled thread.
3715 */
3716static int
3717wpi_queue_cmd(struct wpi_softc *sc, int cmd, int arg, int flush)
3718{
3719	WPI_CMD_LOCK(sc);
3720
3721	if (flush) {
3722		memset(sc->sc_cmd, 0, sizeof (sc->sc_cmd));
3723		memset(sc->sc_cmd_arg, 0, sizeof (sc->sc_cmd_arg));
3724		sc->sc_cmd_cur = 0;
3725		sc->sc_cmd_next = 0;
3726	}
3727
3728	if (sc->sc_cmd[sc->sc_cmd_next] != 0) {
3729		WPI_CMD_UNLOCK(sc);
3730		DPRINTF(("%s: command %d dropped\n", __func__, cmd));
3731		return (EBUSY);
3732	}
3733
3734	sc->sc_cmd[sc->sc_cmd_next] = cmd;
3735	sc->sc_cmd_arg[sc->sc_cmd_next] = arg;
3736	sc->sc_cmd_next = (sc->sc_cmd_next + 1) % WPI_CMD_MAXOPS;
3737
3738	taskqueue_enqueue(sc->sc_tq, &sc->sc_opstask);
3739
3740	WPI_CMD_UNLOCK(sc);
3741
3742	return 0;
3743}
3744
3745/*
3746 * Allocate DMA-safe memory for firmware transfer.
3747 */
3748static int
3749wpi_alloc_fwmem(struct wpi_softc *sc)
3750{
3751	/* allocate enough contiguous space to store text and data */
3752	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3753	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3754	    BUS_DMA_NOWAIT);
3755}
3756
3757static void
3758wpi_free_fwmem(struct wpi_softc *sc)
3759{
3760	wpi_dma_contig_free(&sc->fw_dma);
3761}
3762
3763/**
3764 * Called every second, wpi_watchdog used by the watch dog timer
3765 * to check that the card is still alive
3766 */
3767static void
3768wpi_watchdog(void *arg)
3769{
3770	struct wpi_softc *sc = arg;
3771	struct ifnet *ifp = sc->sc_ifp;
3772	uint32_t tmp;
3773
3774	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3775
3776	if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3777		/* No need to lock firmware memory */
3778		tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3779
3780		if ((tmp & 0x1) == 0) {
3781			/* Radio kill switch is still off */
3782			callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3783			return;
3784		}
3785
3786		device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3787		wpi_queue_cmd(sc, WPI_RF_RESTART, 0, WPI_QUEUE_CLEAR);
3788		return;
3789	}
3790
3791	if (sc->sc_tx_timer > 0) {
3792		if (--sc->sc_tx_timer == 0) {
3793			device_printf(sc->sc_dev,"device timeout\n");
3794			ifp->if_oerrors++;
3795			wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR);
3796		}
3797	}
3798	if (sc->sc_scan_timer > 0) {
3799		struct ifnet *ifp = sc->sc_ifp;
3800		struct ieee80211com *ic = ifp->if_l2com;
3801		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3802		if (--sc->sc_scan_timer == 0 && vap != NULL) {
3803			device_printf(sc->sc_dev,"scan timeout\n");
3804			ieee80211_cancel_scan(vap);
3805			wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR);
3806		}
3807	}
3808
3809	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3810		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3811}
3812
3813#ifdef WPI_DEBUG
3814static const char *wpi_cmd_str(int cmd)
3815{
3816	switch (cmd) {
3817	case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3818	case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3819	case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3820	case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3821	case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3822	case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3823	case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3824	case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3825	case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3826	case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3827	case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3828	case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3829	case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3830	case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3831
3832	default:
3833		KASSERT(1, ("Unknown Command: %d\n", cmd));
3834		return "UNKNOWN CMD";	/* Make the compiler happy */
3835	}
3836}
3837#endif
3838
3839MODULE_DEPEND(wpi, pci,  1, 1, 1);
3840MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3841MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3842MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1);
3843