if_wpi.c revision 178957
1/*-
2 * Copyright (c) 2006,2007
3 *	Damien Bergamini <damien.bergamini@free.fr>
4 *	Benjamin Close <Benjamin.Close@clearchain.com>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19#define VERSION "20071127"
20
21#include <sys/cdefs.h>
22__FBSDID("$FreeBSD: head/sys/dev/wpi/if_wpi.c 178957 2008-05-12 00:15:30Z sam $");
23
24/*
25 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26 *
27 * The 3945ABG network adapter doesn't use traditional hardware as
28 * many other adaptors do. Instead at run time the eeprom is set into a known
29 * state and told to load boot firmware. The boot firmware loads an init and a
30 * main  binary firmware image into SRAM on the card via DMA.
31 * Once the firmware is loaded, the driver/hw then
32 * communicate by way of circular dma rings via the the SRAM to the firmware.
33 *
34 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35 * The 4 tx data rings allow for prioritization QoS.
36 *
37 * The rx data ring consists of 32 dma buffers. Two registers are used to
38 * indicate where in the ring the driver and the firmware are up to. The
39 * driver sets the initial read index (reg1) and the initial write index (reg2),
40 * the firmware updates the read index (reg1) on rx of a packet and fires an
41 * interrupt. The driver then processes the buffers starting at reg1 indicating
42 * to the firmware which buffers have been accessed by updating reg2. At the
43 * same time allocating new memory for the processed buffer.
44 *
45 * A similar thing happens with the tx rings. The difference is the firmware
46 * stop processing buffers once the queue is full and until confirmation
47 * of a successful transmition (tx_intr) has occurred.
48 *
49 * The command ring operates in the same manner as the tx queues.
50 *
51 * All communication direct to the card (ie eeprom) is classed as Stage1
52 * communication
53 *
54 * All communication via the firmware to the card is classed as State2.
55 * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56 * firmware. The bootstrap firmware and runtime firmware are loaded
57 * from host memory via dma to the card then told to execute. From this point
58 * on the majority of communications between the driver and the card goes
59 * via the firmware.
60 */
61
62#include <sys/param.h>
63#include <sys/sysctl.h>
64#include <sys/sockio.h>
65#include <sys/mbuf.h>
66#include <sys/kernel.h>
67#include <sys/socket.h>
68#include <sys/systm.h>
69#include <sys/malloc.h>
70#include <sys/queue.h>
71#include <sys/taskqueue.h>
72#include <sys/module.h>
73#include <sys/bus.h>
74#include <sys/endian.h>
75#include <sys/linker.h>
76#include <sys/firmware.h>
77
78#include <machine/bus.h>
79#include <machine/resource.h>
80#include <sys/rman.h>
81
82#include <dev/pci/pcireg.h>
83#include <dev/pci/pcivar.h>
84
85#include <net/bpf.h>
86#include <net/if.h>
87#include <net/if_arp.h>
88#include <net/ethernet.h>
89#include <net/if_dl.h>
90#include <net/if_media.h>
91#include <net/if_types.h>
92
93#include <net80211/ieee80211_var.h>
94#include <net80211/ieee80211_radiotap.h>
95#include <net80211/ieee80211_regdomain.h>
96
97#include <netinet/in.h>
98#include <netinet/in_systm.h>
99#include <netinet/in_var.h>
100#include <netinet/ip.h>
101#include <netinet/if_ether.h>
102
103#include <dev/wpi/if_wpireg.h>
104#include <dev/wpi/if_wpivar.h>
105
106#define WPI_DEBUG
107
108#ifdef WPI_DEBUG
109#define DPRINTF(x)	do { if (wpi_debug != 0) printf x; } while (0)
110#define DPRINTFN(n, x)	do { if (wpi_debug & n) printf x; } while (0)
111
112enum {
113	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
114	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
115	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
116	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
117	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
118	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
119	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
120	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
121	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
122	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
123	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
124	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
125	WPI_DEBUG_ANY		= 0xffffffff
126};
127
128int wpi_debug = 0;
129SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
130
131#else
132#define DPRINTF(x)
133#define DPRINTFN(n, x)
134#endif
135
136struct wpi_ident {
137	uint16_t	vendor;
138	uint16_t	device;
139	uint16_t	subdevice;
140	const char	*name;
141};
142
143static const struct wpi_ident wpi_ident_table[] = {
144	/* The below entries support ABG regardless of the subid */
145	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
146	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
147	/* The below entries only support BG */
148	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945AB"  },
149	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945AB"  },
150	{ 0x8086, 0x4222, 0x1014, "Intel(R) PRO/Wireless 3945AB"  },
151	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945AB"  },
152	{ 0, 0, 0, NULL }
153};
154
155static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
156		    const char name[IFNAMSIZ], int unit, int opmode,
157		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
158		    const uint8_t mac[IEEE80211_ADDR_LEN]);
159static void	wpi_vap_delete(struct ieee80211vap *);
160static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
161		    void **, bus_size_t, bus_size_t, int);
162static void	wpi_dma_contig_free(struct wpi_dma_info *);
163static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
164static int	wpi_alloc_shared(struct wpi_softc *);
165static void	wpi_free_shared(struct wpi_softc *);
166static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
167static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
168static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
169static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
170		    int, int);
171static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
172static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
173static struct	ieee80211_node *wpi_node_alloc(struct ieee80211_node_table *);
174static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
175static void	wpi_mem_lock(struct wpi_softc *);
176static void	wpi_mem_unlock(struct wpi_softc *);
177static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
178static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
179static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
180		    const uint32_t *, int);
181static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
182static int	wpi_alloc_fwmem(struct wpi_softc *);
183static void	wpi_free_fwmem(struct wpi_softc *);
184static int	wpi_load_firmware(struct wpi_softc *);
185static void	wpi_unload_firmware(struct wpi_softc *);
186static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
187static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
188		    struct wpi_rx_data *);
189static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
190static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
191static void	wpi_notif_intr(struct wpi_softc *);
192static void	wpi_intr(void *);
193static void	wpi_ops(void *, int);
194static uint8_t	wpi_plcp_signal(int);
195static int	wpi_queue_cmd(struct wpi_softc *, int, int, int);
196static void	wpi_watchdog(void *);
197static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
198		    struct ieee80211_node *, int);
199static void	wpi_start(struct ifnet *);
200static void	wpi_start_locked(struct ifnet *);
201static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
202		    const struct ieee80211_bpf_params *);
203static void	wpi_scan_start(struct ieee80211com *);
204static void	wpi_scan_end(struct ieee80211com *);
205static void	wpi_set_channel(struct ieee80211com *);
206static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
207static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
208static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
209static void	wpi_read_eeprom(struct wpi_softc *);
210static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
211static void	wpi_read_eeprom_group(struct wpi_softc *, int);
212static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
213static int	wpi_wme_update(struct ieee80211com *);
214static int	wpi_mrr_setup(struct wpi_softc *);
215static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
216static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
217#if 0
218static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
219#endif
220static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
221static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
222static int	wpi_scan(struct wpi_softc *);
223static int	wpi_config(struct wpi_softc *);
224static void	wpi_stop_master(struct wpi_softc *);
225static int	wpi_power_up(struct wpi_softc *);
226static int	wpi_reset(struct wpi_softc *);
227static void	wpi_hw_config(struct wpi_softc *);
228static void	wpi_init(void *);
229static void	wpi_init_locked(struct wpi_softc *, int);
230static void	wpi_stop(struct wpi_softc *);
231static void	wpi_stop_locked(struct wpi_softc *);
232
233static void	wpi_newassoc(struct ieee80211_node *, int);
234static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
235		    int);
236static void	wpi_calib_timeout(void *);
237static void	wpi_power_calibration(struct wpi_softc *, int);
238static int	wpi_get_power_index(struct wpi_softc *,
239		    struct wpi_power_group *, struct ieee80211_channel *, int);
240static const char *wpi_cmd_str(int);
241static int wpi_probe(device_t);
242static int wpi_attach(device_t);
243static int wpi_detach(device_t);
244static int wpi_shutdown(device_t);
245static int wpi_suspend(device_t);
246static int wpi_resume(device_t);
247
248
249static device_method_t wpi_methods[] = {
250	/* Device interface */
251	DEVMETHOD(device_probe,		wpi_probe),
252	DEVMETHOD(device_attach,	wpi_attach),
253	DEVMETHOD(device_detach,	wpi_detach),
254	DEVMETHOD(device_shutdown,	wpi_shutdown),
255	DEVMETHOD(device_suspend,	wpi_suspend),
256	DEVMETHOD(device_resume,	wpi_resume),
257
258	{ 0, 0 }
259};
260
261static driver_t wpi_driver = {
262	"wpi",
263	wpi_methods,
264	sizeof (struct wpi_softc)
265};
266
267static devclass_t wpi_devclass;
268
269DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
270
271static const uint8_t wpi_ridx_to_plcp[] = {
272	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
273	/* R1-R4 (ral/ural is R4-R1) */
274	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
275	/* CCK: device-dependent */
276	10, 20, 55, 110
277};
278static const uint8_t wpi_ridx_to_rate[] = {
279	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
280	2, 4, 11, 22 /*CCK */
281};
282
283
284static int
285wpi_probe(device_t dev)
286{
287	const struct wpi_ident *ident;
288
289	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
290		if (pci_get_vendor(dev) == ident->vendor &&
291		    pci_get_device(dev) == ident->device) {
292			device_set_desc(dev, ident->name);
293			return 0;
294		}
295	}
296	return ENXIO;
297}
298
299/**
300 * Load the firmare image from disk to the allocated dma buffer.
301 * we also maintain the reference to the firmware pointer as there
302 * is times where we may need to reload the firmware but we are not
303 * in a context that can access the filesystem (ie taskq cause by restart)
304 *
305 * @return 0 on success, an errno on failure
306 */
307static int
308wpi_load_firmware(struct wpi_softc *sc)
309{
310	const struct firmware *fp;
311	struct wpi_dma_info *dma = &sc->fw_dma;
312	const struct wpi_firmware_hdr *hdr;
313	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
314	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
315	int error;
316
317	DPRINTFN(WPI_DEBUG_FIRMWARE,
318	    ("Attempting Loading Firmware from wpi_fw module\n"));
319
320	WPI_UNLOCK(sc);
321
322	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
323		device_printf(sc->sc_dev,
324		    "could not load firmware image 'wpifw'\n");
325		error = ENOENT;
326		WPI_LOCK(sc);
327		goto fail;
328	}
329
330	fp = sc->fw_fp;
331
332	WPI_LOCK(sc);
333
334	/* Validate the firmware is minimum a particular version */
335	if (fp->version < WPI_FW_MINVERSION) {
336	    device_printf(sc->sc_dev,
337			   "firmware version is too old. Need %d, got %d\n",
338			   WPI_FW_MINVERSION,
339			   fp->version);
340	    error = ENXIO;
341	    goto fail;
342	}
343
344	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
345		device_printf(sc->sc_dev,
346		    "firmware file too short: %zu bytes\n", fp->datasize);
347		error = ENXIO;
348		goto fail;
349	}
350
351	hdr = (const struct wpi_firmware_hdr *)fp->data;
352
353	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
354	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
355
356	rtextsz = le32toh(hdr->rtextsz);
357	rdatasz = le32toh(hdr->rdatasz);
358	itextsz = le32toh(hdr->itextsz);
359	idatasz = le32toh(hdr->idatasz);
360	btextsz = le32toh(hdr->btextsz);
361
362	/* check that all firmware segments are present */
363	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
364		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
365		device_printf(sc->sc_dev,
366		    "firmware file too short: %zu bytes\n", fp->datasize);
367		error = ENXIO; /* XXX appropriate error code? */
368		goto fail;
369	}
370
371	/* get pointers to firmware segments */
372	rtext = (const uint8_t *)(hdr + 1);
373	rdata = rtext + rtextsz;
374	itext = rdata + rdatasz;
375	idata = itext + itextsz;
376	btext = idata + idatasz;
377
378	DPRINTFN(WPI_DEBUG_FIRMWARE,
379	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
380	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
381	     (le32toh(hdr->version) & 0xff000000) >> 24,
382	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
383	     (le32toh(hdr->version) & 0x0000ffff),
384	     rtextsz, rdatasz,
385	     itextsz, idatasz, btextsz));
386
387	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
388	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
389	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
390	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
391	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
392
393	/* sanity checks */
394	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
395	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
396	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
397	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
398	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
399	    (btextsz & 3) != 0) {
400		device_printf(sc->sc_dev, "firmware invalid\n");
401		error = EINVAL;
402		goto fail;
403	}
404
405	/* copy initialization images into pre-allocated DMA-safe memory */
406	memcpy(dma->vaddr, idata, idatasz);
407	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
408
409	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
410
411	/* tell adapter where to find initialization images */
412	wpi_mem_lock(sc);
413	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
414	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
415	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
416	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
417	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
418	wpi_mem_unlock(sc);
419
420	/* load firmware boot code */
421	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
422	    device_printf(sc->sc_dev, "Failed to load microcode\n");
423	    goto fail;
424	}
425
426	/* now press "execute" */
427	WPI_WRITE(sc, WPI_RESET, 0);
428
429	/* wait at most one second for the first alive notification */
430	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
431		device_printf(sc->sc_dev,
432		    "timeout waiting for adapter to initialize\n");
433		goto fail;
434	}
435
436	/* copy runtime images into pre-allocated DMA-sage memory */
437	memcpy(dma->vaddr, rdata, rdatasz);
438	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
439	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
440
441	/* tell adapter where to find runtime images */
442	wpi_mem_lock(sc);
443	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
444	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
445	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
446	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
447	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
448	wpi_mem_unlock(sc);
449
450	/* wait at most one second for the first alive notification */
451	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
452		device_printf(sc->sc_dev,
453		    "timeout waiting for adapter to initialize2\n");
454		goto fail;
455	}
456
457	DPRINTFN(WPI_DEBUG_FIRMWARE,
458	    ("Firmware loaded to driver successfully\n"));
459	return error;
460fail:
461	wpi_unload_firmware(sc);
462	return error;
463}
464
465/**
466 * Free the referenced firmware image
467 */
468static void
469wpi_unload_firmware(struct wpi_softc *sc)
470{
471
472	if (sc->fw_fp) {
473		WPI_UNLOCK(sc);
474		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
475		WPI_LOCK(sc);
476		sc->fw_fp = NULL;
477	}
478}
479
480static int
481wpi_attach(device_t dev)
482{
483	struct wpi_softc *sc = device_get_softc(dev);
484	struct ifnet *ifp;
485	struct ieee80211com *ic;
486	int ac, error, supportsa = 1;
487	uint32_t tmp;
488	const struct wpi_ident *ident;
489
490	sc->sc_dev = dev;
491
492	if (bootverbose || wpi_debug)
493	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
494
495	/*
496	 * Some card's only support 802.11b/g not a, check to see if
497	 * this is one such card. A 0x0 in the subdevice table indicates
498	 * the entire subdevice range is to be ignored.
499	 */
500	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
501		if (ident->subdevice &&
502		    pci_get_subdevice(dev) == ident->subdevice) {
503		    supportsa = 0;
504		    break;
505		}
506	}
507
508	/*
509	 * Create the taskqueues used by the driver. Primarily
510	 * sc_tq handles most the task
511	 */
512	sc->sc_tq = taskqueue_create("wpi_taskq", M_NOWAIT | M_ZERO,
513	    taskqueue_thread_enqueue, &sc->sc_tq);
514	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
515	    device_get_nameunit(dev));
516
517	/* Create the tasks that can be queued */
518	TASK_INIT(&sc->sc_opstask, 0, wpi_ops, sc);
519
520	WPI_LOCK_INIT(sc);
521	WPI_CMD_LOCK_INIT(sc);
522
523	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
524	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
525
526	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
527		device_printf(dev, "chip is in D%d power mode "
528		    "-- setting to D0\n", pci_get_powerstate(dev));
529		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
530	}
531
532	/* disable the retry timeout register */
533	pci_write_config(dev, 0x41, 0, 1);
534
535	/* enable bus-mastering */
536	pci_enable_busmaster(dev);
537
538	sc->mem_rid = PCIR_BAR(0);
539	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
540	    RF_ACTIVE);
541	if (sc->mem == NULL) {
542		device_printf(dev, "could not allocate memory resource\n");
543		error = ENOMEM;
544		goto fail;
545	}
546
547	sc->sc_st = rman_get_bustag(sc->mem);
548	sc->sc_sh = rman_get_bushandle(sc->mem);
549
550	sc->irq_rid = 0;
551	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
552	    RF_ACTIVE | RF_SHAREABLE);
553	if (sc->irq == NULL) {
554		device_printf(dev, "could not allocate interrupt resource\n");
555		error = ENOMEM;
556		goto fail;
557	}
558
559	/*
560	 * Allocate DMA memory for firmware transfers.
561	 */
562	if ((error = wpi_alloc_fwmem(sc)) != 0) {
563		printf(": could not allocate firmware memory\n");
564		error = ENOMEM;
565		goto fail;
566	}
567
568	/*
569	 * Put adapter into a known state.
570	 */
571	if ((error = wpi_reset(sc)) != 0) {
572		device_printf(dev, "could not reset adapter\n");
573		goto fail;
574	}
575
576	wpi_mem_lock(sc);
577	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
578	if (bootverbose || wpi_debug)
579	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
580
581	wpi_mem_unlock(sc);
582
583	/* Allocate shared page */
584	if ((error = wpi_alloc_shared(sc)) != 0) {
585		device_printf(dev, "could not allocate shared page\n");
586		goto fail;
587	}
588
589	/* tx data queues  - 4 for QoS purposes */
590	for (ac = 0; ac < WME_NUM_AC; ac++) {
591		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
592		if (error != 0) {
593		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
594		    goto fail;
595		}
596	}
597
598	/* command queue to talk to the card's firmware */
599	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
600	if (error != 0) {
601		device_printf(dev, "could not allocate command ring\n");
602		goto fail;
603	}
604
605	/* receive data queue */
606	error = wpi_alloc_rx_ring(sc, &sc->rxq);
607	if (error != 0) {
608		device_printf(dev, "could not allocate Rx ring\n");
609		goto fail;
610	}
611
612	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
613	if (ifp == NULL) {
614		device_printf(dev, "can not if_alloc()\n");
615		error = ENOMEM;
616		goto fail;
617	}
618	ic = ifp->if_l2com;
619
620	ic->ic_ifp = ifp;
621	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
622	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
623
624	/* set device capabilities */
625	ic->ic_caps =
626		  IEEE80211_C_STA		/* station mode supported */
627		| IEEE80211_C_MONITOR		/* monitor mode supported */
628		| IEEE80211_C_TXPMGT		/* tx power management */
629		| IEEE80211_C_SHSLOT		/* short slot time supported */
630		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
631		| IEEE80211_C_WPA		/* 802.11i */
632/* XXX looks like WME is partly supported? */
633#if 0
634		| IEEE80211_C_IBSS		/* IBSS mode support */
635		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
636		| IEEE80211_C_WME		/* 802.11e */
637		| IEEE80211_C_HOSTAP		/* Host access point mode */
638#endif
639		;
640
641	/*
642	 * Read in the eeprom and also setup the channels for
643	 * net80211. We don't set the rates as net80211 does this for us
644	 */
645	wpi_read_eeprom(sc);
646
647	if (bootverbose || wpi_debug) {
648	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
649	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
650			  sc->type > 1 ? 'B': '?');
651	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
652			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
653	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
654			  supportsa ? "does" : "does not");
655
656	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
657	       what sc->rev really represents - benjsc 20070615 */
658	}
659
660	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
661	ifp->if_softc = sc;
662	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
663	ifp->if_init = wpi_init;
664	ifp->if_ioctl = wpi_ioctl;
665	ifp->if_start = wpi_start;
666	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
667	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
668	IFQ_SET_READY(&ifp->if_snd);
669
670	ieee80211_ifattach(ic);
671	/* override default methods */
672	ic->ic_node_alloc = wpi_node_alloc;
673	ic->ic_newassoc = wpi_newassoc;
674	ic->ic_raw_xmit = wpi_raw_xmit;
675	ic->ic_wme.wme_update = wpi_wme_update;
676	ic->ic_scan_start = wpi_scan_start;
677	ic->ic_scan_end = wpi_scan_end;
678	ic->ic_set_channel = wpi_set_channel;
679	ic->ic_scan_curchan = wpi_scan_curchan;
680	ic->ic_scan_mindwell = wpi_scan_mindwell;
681
682	ic->ic_vap_create = wpi_vap_create;
683	ic->ic_vap_delete = wpi_vap_delete;
684
685	bpfattach(ifp, DLT_IEEE802_11_RADIO,
686	    sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap));
687
688	sc->sc_rxtap_len = sizeof sc->sc_rxtap;
689	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
690	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
691
692	sc->sc_txtap_len = sizeof sc->sc_txtap;
693	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
694	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
695
696	/*
697	 * Hook our interrupt after all initialization is complete.
698	 */
699	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
700	    NULL, wpi_intr, sc, &sc->sc_ih);
701	if (error != 0) {
702		device_printf(dev, "could not set up interrupt\n");
703		goto fail;
704	}
705
706	if (bootverbose)
707		ieee80211_announce(ic);
708#ifdef XXX_DEBUG
709	ieee80211_announce_channels(ic);
710#endif
711	return 0;
712
713fail:	wpi_detach(dev);
714	return ENXIO;
715}
716
717static int
718wpi_detach(device_t dev)
719{
720	struct wpi_softc *sc = device_get_softc(dev);
721	struct ifnet *ifp = sc->sc_ifp;
722	struct ieee80211com *ic = ifp->if_l2com;
723	int ac;
724
725	if (ifp != NULL) {
726		wpi_stop(sc);
727		callout_drain(&sc->watchdog_to);
728		callout_drain(&sc->calib_to);
729		bpfdetach(ifp);
730		ieee80211_ifdetach(ic);
731	}
732
733	WPI_LOCK(sc);
734	if (sc->txq[0].data_dmat) {
735		for (ac = 0; ac < WME_NUM_AC; ac++)
736			wpi_free_tx_ring(sc, &sc->txq[ac]);
737
738		wpi_free_tx_ring(sc, &sc->cmdq);
739		wpi_free_rx_ring(sc, &sc->rxq);
740		wpi_free_shared(sc);
741	}
742
743	if (sc->fw_fp != NULL) {
744		wpi_unload_firmware(sc);
745	}
746
747	if (sc->fw_dma.tag)
748		wpi_free_fwmem(sc);
749	WPI_UNLOCK(sc);
750
751	if (sc->irq != NULL) {
752		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
753		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
754	}
755
756	if (sc->mem != NULL)
757		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
758
759	if (ifp != NULL)
760		if_free(ifp);
761
762	taskqueue_free(sc->sc_tq);
763
764	WPI_LOCK_DESTROY(sc);
765	WPI_CMD_LOCK_DESTROY(sc);
766
767	return 0;
768}
769
770static struct ieee80211vap *
771wpi_vap_create(struct ieee80211com *ic,
772	const char name[IFNAMSIZ], int unit, int opmode, int flags,
773	const uint8_t bssid[IEEE80211_ADDR_LEN],
774	const uint8_t mac[IEEE80211_ADDR_LEN])
775{
776	struct wpi_vap *wvp;
777	struct ieee80211vap *vap;
778
779	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
780		return NULL;
781	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
782	    M_80211_VAP, M_NOWAIT | M_ZERO);
783	if (wvp == NULL)
784		return NULL;
785	vap = &wvp->vap;
786	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
787	/* override with driver methods */
788	wvp->newstate = vap->iv_newstate;
789	vap->iv_newstate = wpi_newstate;
790
791	ieee80211_amrr_init(&wvp->amrr, vap,
792	    IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
793	    IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD,
794	    500 /*ms*/);
795
796	/* complete setup */
797	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
798	ic->ic_opmode = opmode;
799	return vap;
800}
801
802static void
803wpi_vap_delete(struct ieee80211vap *vap)
804{
805	struct wpi_vap *wvp = WPI_VAP(vap);
806
807	ieee80211_amrr_cleanup(&wvp->amrr);
808	ieee80211_vap_detach(vap);
809	free(wvp, M_80211_VAP);
810}
811
812static void
813wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
814{
815	if (error != 0)
816		return;
817
818	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
819
820	*(bus_addr_t *)arg = segs[0].ds_addr;
821}
822
823/*
824 * Allocates a contiguous block of dma memory of the requested size and
825 * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
826 * allocations greater than 4096 may fail. Hence if the requested alignment is
827 * greater we allocate 'alignment' size extra memory and shift the vaddr and
828 * paddr after the dma load. This bypasses the problem at the cost of a little
829 * more memory.
830 */
831static int
832wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
833    void **kvap, bus_size_t size, bus_size_t alignment, int flags)
834{
835	int error;
836	bus_size_t align;
837	bus_size_t reqsize;
838
839	DPRINTFN(WPI_DEBUG_DMA,
840	    ("Size: %zd - alignment %zd\n", size, alignment));
841
842	dma->size = size;
843	dma->tag = NULL;
844
845	if (alignment > 4096) {
846		align = PAGE_SIZE;
847		reqsize = size + alignment;
848	} else {
849		align = alignment;
850		reqsize = size;
851	}
852	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
853	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
854	    NULL, NULL, reqsize,
855	    1, reqsize, flags,
856	    NULL, NULL, &dma->tag);
857	if (error != 0) {
858		device_printf(sc->sc_dev,
859		    "could not create shared page DMA tag\n");
860		goto fail;
861	}
862	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
863	    flags | BUS_DMA_ZERO, &dma->map);
864	if (error != 0) {
865		device_printf(sc->sc_dev,
866		    "could not allocate shared page DMA memory\n");
867		goto fail;
868	}
869
870	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
871	    reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
872
873	/* Save the original pointers so we can free all the memory */
874	dma->paddr = dma->paddr_start;
875	dma->vaddr = dma->vaddr_start;
876
877	/*
878	 * Check the alignment and increment by 4096 until we get the
879	 * requested alignment. Fail if can't obtain the alignment
880	 * we requested.
881	 */
882	if ((dma->paddr & (alignment -1 )) != 0) {
883		int i;
884
885		for (i = 0; i < alignment / 4096; i++) {
886			if ((dma->paddr & (alignment - 1 )) == 0)
887				break;
888			dma->paddr += 4096;
889			dma->vaddr += 4096;
890		}
891		if (i == alignment / 4096) {
892			device_printf(sc->sc_dev,
893			    "alignment requirement was not satisfied\n");
894			goto fail;
895		}
896	}
897
898	if (error != 0) {
899		device_printf(sc->sc_dev,
900		    "could not load shared page DMA map\n");
901		goto fail;
902	}
903
904	if (kvap != NULL)
905		*kvap = dma->vaddr;
906
907	return 0;
908
909fail:
910	wpi_dma_contig_free(dma);
911	return error;
912}
913
914static void
915wpi_dma_contig_free(struct wpi_dma_info *dma)
916{
917	if (dma->tag) {
918		if (dma->map != NULL) {
919			if (dma->paddr_start != 0) {
920				bus_dmamap_sync(dma->tag, dma->map,
921				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
922				bus_dmamap_unload(dma->tag, dma->map);
923			}
924			bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
925		}
926		bus_dma_tag_destroy(dma->tag);
927	}
928}
929
930/*
931 * Allocate a shared page between host and NIC.
932 */
933static int
934wpi_alloc_shared(struct wpi_softc *sc)
935{
936	int error;
937
938	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
939	    (void **)&sc->shared, sizeof (struct wpi_shared),
940	    PAGE_SIZE,
941	    BUS_DMA_NOWAIT);
942
943	if (error != 0) {
944		device_printf(sc->sc_dev,
945		    "could not allocate shared area DMA memory\n");
946	}
947
948	return error;
949}
950
951static void
952wpi_free_shared(struct wpi_softc *sc)
953{
954	wpi_dma_contig_free(&sc->shared_dma);
955}
956
957static int
958wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
959{
960
961	int i, error;
962
963	ring->cur = 0;
964
965	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
966	    (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
967	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
968
969	if (error != 0) {
970		device_printf(sc->sc_dev,
971		    "%s: could not allocate rx ring DMA memory, error %d\n",
972		    __func__, error);
973		goto fail;
974	}
975
976        error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
977	    BUS_SPACE_MAXADDR_32BIT,
978            BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
979            MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
980        if (error != 0) {
981                device_printf(sc->sc_dev,
982		    "%s: bus_dma_tag_create_failed, error %d\n",
983		    __func__, error);
984                goto fail;
985        }
986
987	/*
988	 * Setup Rx buffers.
989	 */
990	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
991		struct wpi_rx_data *data = &ring->data[i];
992		struct mbuf *m;
993		bus_addr_t paddr;
994
995		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
996		if (error != 0) {
997			device_printf(sc->sc_dev,
998			    "%s: bus_dmamap_create failed, error %d\n",
999			    __func__, error);
1000			goto fail;
1001		}
1002		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1003		if (m == NULL) {
1004			device_printf(sc->sc_dev,
1005			   "%s: could not allocate rx mbuf\n", __func__);
1006			error = ENOMEM;
1007			goto fail;
1008		}
1009		/* map page */
1010		error = bus_dmamap_load(ring->data_dmat, data->map,
1011		    mtod(m, caddr_t), MJUMPAGESIZE,
1012		    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1013		if (error != 0 && error != EFBIG) {
1014			device_printf(sc->sc_dev,
1015			    "%s: bus_dmamap_load failed, error %d\n",
1016			    __func__, error);
1017			m_freem(m);
1018			error = ENOMEM;	/* XXX unique code */
1019			goto fail;
1020		}
1021		bus_dmamap_sync(ring->data_dmat, data->map,
1022		    BUS_DMASYNC_PREWRITE);
1023
1024		data->m = m;
1025		ring->desc[i] = htole32(paddr);
1026	}
1027	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1028	    BUS_DMASYNC_PREWRITE);
1029	return 0;
1030fail:
1031	wpi_free_rx_ring(sc, ring);
1032	return error;
1033}
1034
1035static void
1036wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1037{
1038	int ntries;
1039
1040	wpi_mem_lock(sc);
1041
1042	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1043
1044	for (ntries = 0; ntries < 100; ntries++) {
1045		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1046			break;
1047		DELAY(10);
1048	}
1049
1050	wpi_mem_unlock(sc);
1051
1052#ifdef WPI_DEBUG
1053	if (ntries == 100)
1054		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1055#endif
1056
1057	ring->cur = 0;
1058}
1059
1060static void
1061wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1062{
1063	int i;
1064
1065	wpi_dma_contig_free(&ring->desc_dma);
1066
1067	for (i = 0; i < WPI_RX_RING_COUNT; i++)
1068		if (ring->data[i].m != NULL)
1069			m_freem(ring->data[i].m);
1070}
1071
1072static int
1073wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1074	int qid)
1075{
1076	struct wpi_tx_data *data;
1077	int i, error;
1078
1079	ring->qid = qid;
1080	ring->count = count;
1081	ring->queued = 0;
1082	ring->cur = 0;
1083	ring->data = NULL;
1084
1085	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1086		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1087		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1088
1089	if (error != 0) {
1090	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1091	    goto fail;
1092	}
1093
1094	/* update shared page with ring's base address */
1095	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1096
1097	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1098		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1099		BUS_DMA_NOWAIT);
1100
1101	if (error != 0) {
1102		device_printf(sc->sc_dev,
1103		    "could not allocate tx command DMA memory\n");
1104		goto fail;
1105	}
1106
1107	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1108	    M_NOWAIT | M_ZERO);
1109	if (ring->data == NULL) {
1110		device_printf(sc->sc_dev,
1111		    "could not allocate tx data slots\n");
1112		goto fail;
1113	}
1114
1115	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1116	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1117	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1118	    &ring->data_dmat);
1119	if (error != 0) {
1120		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1121		goto fail;
1122	}
1123
1124	for (i = 0; i < count; i++) {
1125		data = &ring->data[i];
1126
1127		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1128		if (error != 0) {
1129			device_printf(sc->sc_dev,
1130			    "could not create tx buf DMA map\n");
1131			goto fail;
1132		}
1133		bus_dmamap_sync(ring->data_dmat, data->map,
1134		    BUS_DMASYNC_PREWRITE);
1135	}
1136
1137	return 0;
1138
1139fail:
1140	wpi_free_tx_ring(sc, ring);
1141	return error;
1142}
1143
1144static void
1145wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1146{
1147	struct wpi_tx_data *data;
1148	int i, ntries;
1149
1150	wpi_mem_lock(sc);
1151
1152	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1153	for (ntries = 0; ntries < 100; ntries++) {
1154		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1155			break;
1156		DELAY(10);
1157	}
1158#ifdef WPI_DEBUG
1159	if (ntries == 100)
1160		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1161		    ring->qid);
1162#endif
1163	wpi_mem_unlock(sc);
1164
1165	for (i = 0; i < ring->count; i++) {
1166		data = &ring->data[i];
1167
1168		if (data->m != NULL) {
1169			bus_dmamap_unload(ring->data_dmat, data->map);
1170			m_freem(data->m);
1171			data->m = NULL;
1172		}
1173	}
1174
1175	ring->queued = 0;
1176	ring->cur = 0;
1177}
1178
1179static void
1180wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1181{
1182	struct wpi_tx_data *data;
1183	int i;
1184
1185	wpi_dma_contig_free(&ring->desc_dma);
1186	wpi_dma_contig_free(&ring->cmd_dma);
1187
1188	if (ring->data != NULL) {
1189		for (i = 0; i < ring->count; i++) {
1190			data = &ring->data[i];
1191
1192			if (data->m != NULL) {
1193				bus_dmamap_sync(ring->data_dmat, data->map,
1194				    BUS_DMASYNC_POSTWRITE);
1195				bus_dmamap_unload(ring->data_dmat, data->map);
1196				m_freem(data->m);
1197				data->m = NULL;
1198			}
1199		}
1200		free(ring->data, M_DEVBUF);
1201	}
1202
1203	if (ring->data_dmat != NULL)
1204		bus_dma_tag_destroy(ring->data_dmat);
1205}
1206
1207static int
1208wpi_shutdown(device_t dev)
1209{
1210	struct wpi_softc *sc = device_get_softc(dev);
1211
1212	WPI_LOCK(sc);
1213	wpi_stop_locked(sc);
1214	wpi_unload_firmware(sc);
1215	WPI_UNLOCK(sc);
1216
1217	return 0;
1218}
1219
1220static int
1221wpi_suspend(device_t dev)
1222{
1223	struct wpi_softc *sc = device_get_softc(dev);
1224
1225	wpi_stop(sc);
1226	return 0;
1227}
1228
1229static int
1230wpi_resume(device_t dev)
1231{
1232	struct wpi_softc *sc = device_get_softc(dev);
1233	struct ifnet *ifp = sc->sc_ifp;
1234
1235	pci_write_config(dev, 0x41, 0, 1);
1236
1237	if (ifp->if_flags & IFF_UP) {
1238		wpi_init(ifp->if_softc);
1239		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1240			wpi_start(ifp);
1241	}
1242	return 0;
1243}
1244
1245/* ARGSUSED */
1246static struct ieee80211_node *
1247wpi_node_alloc(struct ieee80211_node_table *ic)
1248{
1249	struct wpi_node *wn;
1250
1251	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1252
1253	return &wn->ni;
1254}
1255
1256/**
1257 * Called by net80211 when ever there is a change to 80211 state machine
1258 */
1259static int
1260wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1261{
1262	struct wpi_vap *wvp = WPI_VAP(vap);
1263	struct ieee80211com *ic = vap->iv_ic;
1264	struct ifnet *ifp = ic->ic_ifp;
1265	struct wpi_softc *sc = ifp->if_softc;
1266	int error;
1267
1268	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1269		ieee80211_state_name[vap->iv_state],
1270		ieee80211_state_name[nstate], sc->flags));
1271
1272	if (nstate == IEEE80211_S_AUTH) {
1273		/* Delay the auth transition until we can update the firmware */
1274		error = wpi_queue_cmd(sc, WPI_AUTH, arg, WPI_QUEUE_NORMAL);
1275		return (error != 0 ? error : EINPROGRESS);
1276	}
1277	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1278		/* set the association id first */
1279		error = wpi_queue_cmd(sc, WPI_RUN, arg, WPI_QUEUE_NORMAL);
1280		return (error != 0 ? error : EINPROGRESS);
1281	}
1282	if (nstate == IEEE80211_S_RUN) {
1283		/* RUN -> RUN transition; just restart the timers */
1284		wpi_calib_timeout(sc);
1285		/* XXX split out rate control timer */
1286	}
1287	return wvp->newstate(vap, nstate, arg);
1288}
1289
1290/*
1291 * Grab exclusive access to NIC memory.
1292 */
1293static void
1294wpi_mem_lock(struct wpi_softc *sc)
1295{
1296	int ntries;
1297	uint32_t tmp;
1298
1299	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1300	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1301
1302	/* spin until we actually get the lock */
1303	for (ntries = 0; ntries < 100; ntries++) {
1304		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1305			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1306			break;
1307		DELAY(10);
1308	}
1309	if (ntries == 100)
1310		device_printf(sc->sc_dev, "could not lock memory\n");
1311}
1312
1313/*
1314 * Release lock on NIC memory.
1315 */
1316static void
1317wpi_mem_unlock(struct wpi_softc *sc)
1318{
1319	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1320	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1321}
1322
1323static uint32_t
1324wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1325{
1326	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1327	return WPI_READ(sc, WPI_READ_MEM_DATA);
1328}
1329
1330static void
1331wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1332{
1333	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1334	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1335}
1336
1337static void
1338wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1339    const uint32_t *data, int wlen)
1340{
1341	for (; wlen > 0; wlen--, data++, addr+=4)
1342		wpi_mem_write(sc, addr, *data);
1343}
1344
1345/*
1346 * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1347 * using the traditional bit-bang method. Data is read up until len bytes have
1348 * been obtained.
1349 */
1350static uint16_t
1351wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1352{
1353	int ntries;
1354	uint32_t val;
1355	uint8_t *out = data;
1356
1357	wpi_mem_lock(sc);
1358
1359	for (; len > 0; len -= 2, addr++) {
1360		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1361
1362		for (ntries = 0; ntries < 10; ntries++) {
1363			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1364				break;
1365			DELAY(5);
1366		}
1367
1368		if (ntries == 10) {
1369			device_printf(sc->sc_dev, "could not read EEPROM\n");
1370			return ETIMEDOUT;
1371		}
1372
1373		*out++= val >> 16;
1374		if (len > 1)
1375			*out ++= val >> 24;
1376	}
1377
1378	wpi_mem_unlock(sc);
1379
1380	return 0;
1381}
1382
1383/*
1384 * The firmware text and data segments are transferred to the NIC using DMA.
1385 * The driver just copies the firmware into DMA-safe memory and tells the NIC
1386 * where to find it.  Once the NIC has copied the firmware into its internal
1387 * memory, we can free our local copy in the driver.
1388 */
1389static int
1390wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1391{
1392	int error, ntries;
1393
1394	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1395
1396	size /= sizeof(uint32_t);
1397
1398	wpi_mem_lock(sc);
1399
1400	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1401	    (const uint32_t *)fw, size);
1402
1403	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1404	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1405	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1406
1407	/* run microcode */
1408	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1409
1410	/* wait while the adapter is busy copying the firmware */
1411	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1412		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1413		DPRINTFN(WPI_DEBUG_HW,
1414		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1415		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1416		if (status & WPI_TX_IDLE(6)) {
1417			DPRINTFN(WPI_DEBUG_HW,
1418			    ("Status Match! - ntries = %d\n", ntries));
1419			break;
1420		}
1421		DELAY(10);
1422	}
1423	if (ntries == 1000) {
1424		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1425		error = ETIMEDOUT;
1426	}
1427
1428	/* start the microcode executing */
1429	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1430
1431	wpi_mem_unlock(sc);
1432
1433	return (error);
1434}
1435
1436static void
1437wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1438	struct wpi_rx_data *data)
1439{
1440	struct ifnet *ifp = sc->sc_ifp;
1441	struct ieee80211com *ic = ifp->if_l2com;
1442	struct wpi_rx_ring *ring = &sc->rxq;
1443	struct wpi_rx_stat *stat;
1444	struct wpi_rx_head *head;
1445	struct wpi_rx_tail *tail;
1446	struct ieee80211_node *ni;
1447	struct mbuf *m, *mnew;
1448	bus_addr_t paddr;
1449	int error;
1450
1451	stat = (struct wpi_rx_stat *)(desc + 1);
1452
1453	if (stat->len > WPI_STAT_MAXLEN) {
1454		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1455		ifp->if_ierrors++;
1456		return;
1457	}
1458
1459	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1460	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1461
1462	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1463	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1464	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1465	    (uintmax_t)le64toh(tail->tstamp)));
1466
1467	/* XXX don't need mbuf, just dma buffer */
1468	mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1469	if (mnew == NULL) {
1470		DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1471		    __func__));
1472		ic->ic_stats.is_rx_nobuf++;
1473		ifp->if_ierrors++;
1474		return;
1475	}
1476	error = bus_dmamap_load(ring->data_dmat, data->map,
1477	    mtod(mnew, caddr_t), MJUMPAGESIZE,
1478	    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1479	if (error != 0 && error != EFBIG) {
1480		device_printf(sc->sc_dev,
1481		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1482		m_freem(mnew);
1483		ic->ic_stats.is_rx_nobuf++;	/* XXX need stat */
1484		ifp->if_ierrors++;
1485		return;
1486	}
1487	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1488
1489	/* finalize mbuf and swap in new one */
1490	m = data->m;
1491	m->m_pkthdr.rcvif = ifp;
1492	m->m_data = (caddr_t)(head + 1);
1493	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1494
1495	data->m = mnew;
1496	/* update Rx descriptor */
1497	ring->desc[ring->cur] = htole32(paddr);
1498
1499	if (bpf_peers_present(ifp->if_bpf)) {
1500		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1501
1502		tap->wr_flags = 0;
1503		tap->wr_chan_freq =
1504			htole16(ic->ic_channels[head->chan].ic_freq);
1505		tap->wr_chan_flags =
1506			htole16(ic->ic_channels[head->chan].ic_flags);
1507		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1508		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1509		tap->wr_tsft = tail->tstamp;
1510		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1511		switch (head->rate) {
1512		/* CCK rates */
1513		case  10: tap->wr_rate =   2; break;
1514		case  20: tap->wr_rate =   4; break;
1515		case  55: tap->wr_rate =  11; break;
1516		case 110: tap->wr_rate =  22; break;
1517		/* OFDM rates */
1518		case 0xd: tap->wr_rate =  12; break;
1519		case 0xf: tap->wr_rate =  18; break;
1520		case 0x5: tap->wr_rate =  24; break;
1521		case 0x7: tap->wr_rate =  36; break;
1522		case 0x9: tap->wr_rate =  48; break;
1523		case 0xb: tap->wr_rate =  72; break;
1524		case 0x1: tap->wr_rate =  96; break;
1525		case 0x3: tap->wr_rate = 108; break;
1526		/* unknown rate: should not happen */
1527		default:  tap->wr_rate =   0;
1528		}
1529		if (le16toh(head->flags) & 0x4)
1530			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1531
1532		bpf_mtap2(ifp->if_bpf, tap, sc->sc_rxtap_len, m);
1533	}
1534
1535	WPI_UNLOCK(sc);
1536
1537	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1538	if (ni != NULL) {
1539		(void) ieee80211_input(ni, m, stat->rssi, 0, 0);
1540		ieee80211_free_node(ni);
1541	} else
1542		(void) ieee80211_input_all(ic, m, stat->rssi, 0, 0);
1543
1544	WPI_LOCK(sc);
1545}
1546
1547static void
1548wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1549{
1550	struct ifnet *ifp = sc->sc_ifp;
1551	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1552	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1553	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1554	struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1555
1556	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1557	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1558	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1559	    le32toh(stat->status)));
1560
1561	/*
1562	 * Update rate control statistics for the node.
1563	 * XXX we should not count mgmt frames since they're always sent at
1564	 * the lowest available bit-rate.
1565	 * XXX frames w/o ACK shouldn't be used either
1566	 */
1567	wn->amn.amn_txcnt++;
1568	if (stat->ntries > 0) {
1569		DPRINTFN(3, ("%d retries\n", stat->ntries));
1570		wn->amn.amn_retrycnt++;
1571	}
1572
1573	/* XXX oerrors should only count errors !maxtries */
1574	if ((le32toh(stat->status) & 0xff) != 1)
1575		ifp->if_oerrors++;
1576	else
1577		ifp->if_opackets++;
1578
1579	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1580	bus_dmamap_unload(ring->data_dmat, txdata->map);
1581	/* XXX handle M_TXCB? */
1582	m_freem(txdata->m);
1583	txdata->m = NULL;
1584	ieee80211_free_node(txdata->ni);
1585	txdata->ni = NULL;
1586
1587	ring->queued--;
1588
1589	sc->sc_tx_timer = 0;
1590	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1591	wpi_start_locked(ifp);
1592}
1593
1594static void
1595wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1596{
1597	struct wpi_tx_ring *ring = &sc->cmdq;
1598	struct wpi_tx_data *data;
1599
1600	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1601				 "type=%s len=%d\n", desc->qid, desc->idx,
1602				 desc->flags, wpi_cmd_str(desc->type),
1603				 le32toh(desc->len)));
1604
1605	if ((desc->qid & 7) != 4)
1606		return;	/* not a command ack */
1607
1608	data = &ring->data[desc->idx];
1609
1610	/* if the command was mapped in a mbuf, free it */
1611	if (data->m != NULL) {
1612		bus_dmamap_unload(ring->data_dmat, data->map);
1613		m_freem(data->m);
1614		data->m = NULL;
1615	}
1616
1617	sc->flags &= ~WPI_FLAG_BUSY;
1618	wakeup(&ring->cmd[desc->idx]);
1619}
1620
1621static void
1622wpi_notif_intr(struct wpi_softc *sc)
1623{
1624	struct ifnet *ifp = sc->sc_ifp;
1625	struct ieee80211com *ic = ifp->if_l2com;
1626	struct wpi_rx_desc *desc;
1627	struct wpi_rx_data *data;
1628	uint32_t hw;
1629
1630	hw = le32toh(sc->shared->next);
1631	while (sc->rxq.cur != hw) {
1632		data = &sc->rxq.data[sc->rxq.cur];
1633		desc = (void *)data->m->m_ext.ext_buf;
1634
1635		DPRINTFN(WPI_DEBUG_NOTIFY,
1636			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1637			  desc->qid,
1638			  desc->idx,
1639			  desc->flags,
1640			  desc->type,
1641			  le32toh(desc->len)));
1642
1643		if (!(desc->qid & 0x80))	/* reply to a command */
1644			wpi_cmd_intr(sc, desc);
1645
1646		switch (desc->type) {
1647		case WPI_RX_DONE:
1648			/* a 802.11 frame was received */
1649			wpi_rx_intr(sc, desc, data);
1650			break;
1651
1652		case WPI_TX_DONE:
1653			/* a 802.11 frame has been transmitted */
1654			wpi_tx_intr(sc, desc);
1655			break;
1656
1657		case WPI_UC_READY:
1658		{
1659			struct wpi_ucode_info *uc =
1660				(struct wpi_ucode_info *)(desc + 1);
1661
1662			/* the microcontroller is ready */
1663			DPRINTF(("microcode alive notification version %x "
1664				"alive %x\n", le32toh(uc->version),
1665				le32toh(uc->valid)));
1666
1667			if (le32toh(uc->valid) != 1) {
1668				device_printf(sc->sc_dev,
1669				    "microcontroller initialization failed\n");
1670				wpi_stop_locked(sc);
1671			}
1672			break;
1673		}
1674		case WPI_STATE_CHANGED:
1675		{
1676			uint32_t *status = (uint32_t *)(desc + 1);
1677
1678			/* enabled/disabled notification */
1679			DPRINTF(("state changed to %x\n", le32toh(*status)));
1680
1681			if (le32toh(*status) & 1) {
1682				device_printf(sc->sc_dev,
1683				    "Radio transmitter is switched off\n");
1684				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1685				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1686				/* Disable firmware commands */
1687				WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1688			}
1689			break;
1690		}
1691		case WPI_START_SCAN:
1692		{
1693			struct wpi_start_scan *scan =
1694				(struct wpi_start_scan *)(desc + 1);
1695
1696			DPRINTFN(WPI_DEBUG_SCANNING,
1697				 ("scanning channel %d status %x\n",
1698			    scan->chan, le32toh(scan->status)));
1699			break;
1700		}
1701		case WPI_STOP_SCAN:
1702		{
1703			struct wpi_stop_scan *scan =
1704				(struct wpi_stop_scan *)(desc + 1);
1705			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1706
1707			DPRINTFN(WPI_DEBUG_SCANNING,
1708			    ("scan finished nchan=%d status=%d chan=%d\n",
1709			     scan->nchan, scan->status, scan->chan));
1710
1711			sc->sc_scan_timer = 0;
1712			ieee80211_scan_next(vap);
1713			break;
1714		}
1715		case WPI_MISSED_BEACON:
1716		{
1717			struct wpi_missed_beacon *beacon =
1718				(struct wpi_missed_beacon *)(desc + 1);
1719			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1720
1721			if (le32toh(beacon->consecutive) >=
1722			    vap->iv_bmissthreshold) {
1723				DPRINTF(("Beacon miss: %u >= %u\n",
1724					 le32toh(beacon->consecutive),
1725					 vap->iv_bmissthreshold));
1726				ieee80211_beacon_miss(ic);
1727			}
1728			break;
1729		}
1730		}
1731
1732		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1733	}
1734
1735	/* tell the firmware what we have processed */
1736	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1737	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1738}
1739
1740static void
1741wpi_intr(void *arg)
1742{
1743	struct wpi_softc *sc = arg;
1744	uint32_t r;
1745
1746	WPI_LOCK(sc);
1747
1748	r = WPI_READ(sc, WPI_INTR);
1749	if (r == 0 || r == 0xffffffff) {
1750		WPI_UNLOCK(sc);
1751		return;
1752	}
1753
1754	/* disable interrupts */
1755	WPI_WRITE(sc, WPI_MASK, 0);
1756	/* ack interrupts */
1757	WPI_WRITE(sc, WPI_INTR, r);
1758
1759	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1760		device_printf(sc->sc_dev, "fatal firmware error\n");
1761		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1762				"(Hardware Error)"));
1763		wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR);
1764		sc->flags &= ~WPI_FLAG_BUSY;
1765		WPI_UNLOCK(sc);
1766		return;
1767	}
1768
1769	if (r & WPI_RX_INTR)
1770		wpi_notif_intr(sc);
1771
1772	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1773		wakeup(sc);
1774
1775	/* re-enable interrupts */
1776	if (sc->sc_ifp->if_flags & IFF_UP)
1777		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1778
1779	WPI_UNLOCK(sc);
1780}
1781
1782static uint8_t
1783wpi_plcp_signal(int rate)
1784{
1785	switch (rate) {
1786	/* CCK rates (returned values are device-dependent) */
1787	case 2:		return 10;
1788	case 4:		return 20;
1789	case 11:	return 55;
1790	case 22:	return 110;
1791
1792	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1793	/* R1-R4 (ral/ural is R4-R1) */
1794	case 12:	return 0xd;
1795	case 18:	return 0xf;
1796	case 24:	return 0x5;
1797	case 36:	return 0x7;
1798	case 48:	return 0x9;
1799	case 72:	return 0xb;
1800	case 96:	return 0x1;
1801	case 108:	return 0x3;
1802
1803	/* unsupported rates (should not get there) */
1804	default:	return 0;
1805	}
1806}
1807
1808/* quickly determine if a given rate is CCK or OFDM */
1809#define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1810
1811/*
1812 * Construct the data packet for a transmit buffer and acutally put
1813 * the buffer onto the transmit ring, kicking the card to process the
1814 * the buffer.
1815 */
1816static int
1817wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1818	int ac)
1819{
1820	struct ieee80211vap *vap = ni->ni_vap;
1821	struct ifnet *ifp = sc->sc_ifp;
1822	struct ieee80211com *ic = ifp->if_l2com;
1823	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1824	struct wpi_tx_ring *ring = &sc->txq[ac];
1825	struct wpi_tx_desc *desc;
1826	struct wpi_tx_data *data;
1827	struct wpi_tx_cmd *cmd;
1828	struct wpi_cmd_data *tx;
1829	struct ieee80211_frame *wh;
1830	const struct ieee80211_txparam *tp;
1831	struct ieee80211_key *k;
1832	struct mbuf *mnew;
1833	int i, error, nsegs, rate, hdrlen, ismcast;
1834	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1835
1836	desc = &ring->desc[ring->cur];
1837	data = &ring->data[ring->cur];
1838
1839	wh = mtod(m0, struct ieee80211_frame *);
1840
1841	hdrlen = ieee80211_hdrsize(wh);
1842	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1843
1844	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1845		k = ieee80211_crypto_encap(ni, m0);
1846		if (k == NULL) {
1847			m_freem(m0);
1848			return ENOBUFS;
1849		}
1850		/* packet header may have moved, reset our local pointer */
1851		wh = mtod(m0, struct ieee80211_frame *);
1852	}
1853
1854	cmd = &ring->cmd[ring->cur];
1855	cmd->code = WPI_CMD_TX_DATA;
1856	cmd->flags = 0;
1857	cmd->qid = ring->qid;
1858	cmd->idx = ring->cur;
1859
1860	tx = (struct wpi_cmd_data *)cmd->data;
1861	tx->flags = htole32(WPI_TX_AUTO_SEQ);
1862	tx->timeout = htole16(0);
1863	tx->ofdm_mask = 0xff;
1864	tx->cck_mask = 0x0f;
1865	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1866	tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1867	tx->len = htole16(m0->m_pkthdr.len);
1868
1869	if (!ismcast) {
1870		if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1871		    !cap->cap_wmeParams[ac].wmep_noackPolicy)
1872			tx->flags |= htole32(WPI_TX_NEED_ACK);
1873		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1874			tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1875			tx->rts_ntries = 7;
1876		}
1877	}
1878	/* pick a rate */
1879	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1880	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1881		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1882		/* tell h/w to set timestamp in probe responses */
1883		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1884			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1885		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1886		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1887			tx->timeout = htole16(3);
1888		else
1889			tx->timeout = htole16(2);
1890		rate = tp->mgmtrate;
1891	} else if (ismcast) {
1892		rate = tp->mcastrate;
1893	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1894		rate = tp->ucastrate;
1895	} else {
1896		(void) ieee80211_amrr_choose(ni, &WPI_NODE(ni)->amn);
1897		rate = ni->ni_txrate;
1898	}
1899	tx->rate = wpi_plcp_signal(rate);
1900
1901	/* be very persistant at sending frames out */
1902#if 0
1903	tx->data_ntries = tp->maxretry;
1904#else
1905	tx->data_ntries = 15;		/* XXX way too high */
1906#endif
1907
1908	if (bpf_peers_present(ifp->if_bpf)) {
1909		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1910		tap->wt_flags = 0;
1911		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1912		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1913		tap->wt_rate = rate;
1914		tap->wt_hwqueue = ac;
1915		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1916			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1917
1918		bpf_mtap2(ifp->if_bpf, tap, sc->sc_txtap_len, m0);
1919	}
1920
1921	/* save and trim IEEE802.11 header */
1922	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1923	m_adj(m0, hdrlen);
1924
1925	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
1926	    &nsegs, BUS_DMA_NOWAIT);
1927	if (error != 0 && error != EFBIG) {
1928		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1929		    error);
1930		m_freem(m0);
1931		return error;
1932	}
1933	if (error != 0) {
1934		/* XXX use m_collapse */
1935		mnew = m_defrag(m0, M_DONTWAIT);
1936		if (mnew == NULL) {
1937			device_printf(sc->sc_dev,
1938			    "could not defragment mbuf\n");
1939			m_freem(m0);
1940			return ENOBUFS;
1941		}
1942		m0 = mnew;
1943
1944		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
1945		    m0, segs, &nsegs, BUS_DMA_NOWAIT);
1946		if (error != 0) {
1947			device_printf(sc->sc_dev,
1948			    "could not map mbuf (error %d)\n", error);
1949			m_freem(m0);
1950			return error;
1951		}
1952	}
1953
1954	data->m = m0;
1955	data->ni = ni;
1956
1957	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1958	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
1959
1960	/* first scatter/gather segment is used by the tx data command */
1961	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1962	    (1 + nsegs) << 24);
1963	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1964	    ring->cur * sizeof (struct wpi_tx_cmd));
1965	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
1966	for (i = 1; i <= nsegs; i++) {
1967		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
1968		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
1969	}
1970
1971	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1972	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1973	    BUS_DMASYNC_PREWRITE);
1974
1975	ring->queued++;
1976
1977	/* kick ring */
1978	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1979	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1980
1981	return 0;
1982}
1983
1984/**
1985 * Process data waiting to be sent on the IFNET output queue
1986 */
1987static void
1988wpi_start(struct ifnet *ifp)
1989{
1990	struct wpi_softc *sc = ifp->if_softc;
1991
1992	WPI_LOCK(sc);
1993	wpi_start_locked(ifp);
1994	WPI_UNLOCK(sc);
1995}
1996
1997static void
1998wpi_start_locked(struct ifnet *ifp)
1999{
2000	struct wpi_softc *sc = ifp->if_softc;
2001	struct ieee80211_node *ni;
2002	struct mbuf *m;
2003	int ac;
2004
2005	WPI_LOCK_ASSERT(sc);
2006
2007	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2008		return;
2009
2010	for (;;) {
2011		IFQ_POLL(&ifp->if_snd, m);
2012		if (m == NULL)
2013			break;
2014		/* no QoS encapsulation for EAPOL frames */
2015		ac = M_WME_GETAC(m);
2016		if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2017			/* there is no place left in this ring */
2018			IFQ_DRV_PREPEND(&ifp->if_snd, m);
2019			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2020			break;
2021		}
2022		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2023		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2024		m = ieee80211_encap(ni, m);
2025		if (m == NULL) {
2026			ieee80211_free_node(ni);
2027			ifp->if_oerrors++;
2028			continue;
2029		}
2030		if (wpi_tx_data(sc, m, ni, ac) != 0) {
2031			ieee80211_free_node(ni);
2032			ifp->if_oerrors++;
2033			break;
2034		}
2035		sc->sc_tx_timer = 5;
2036	}
2037}
2038
2039static int
2040wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2041	const struct ieee80211_bpf_params *params)
2042{
2043	struct ieee80211com *ic = ni->ni_ic;
2044	struct ifnet *ifp = ic->ic_ifp;
2045	struct wpi_softc *sc = ifp->if_softc;
2046
2047	/* prevent management frames from being sent if we're not ready */
2048	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2049		m_freem(m);
2050		ieee80211_free_node(ni);
2051		return ENETDOWN;
2052	}
2053	WPI_LOCK(sc);
2054
2055	/* management frames go into ring 0 */
2056	if (sc->txq[0].queued > sc->txq[0].count - 8) {
2057		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2058		m_freem(m);
2059		WPI_UNLOCK(sc);
2060		ieee80211_free_node(ni);
2061		return ENOBUFS;		/* XXX */
2062	}
2063
2064	ifp->if_opackets++;
2065	if (wpi_tx_data(sc, m, ni, 0) != 0)
2066		goto bad;
2067	sc->sc_tx_timer = 5;
2068	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2069
2070	WPI_UNLOCK(sc);
2071	return 0;
2072bad:
2073	ifp->if_oerrors++;
2074	WPI_UNLOCK(sc);
2075	ieee80211_free_node(ni);
2076	return EIO;		/* XXX */
2077}
2078
2079static int
2080wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2081{
2082	struct wpi_softc *sc = ifp->if_softc;
2083	struct ieee80211com *ic = ifp->if_l2com;
2084	struct ifreq *ifr = (struct ifreq *) data;
2085	int error = 0, startall = 0;
2086
2087	switch (cmd) {
2088	case SIOCSIFFLAGS:
2089		WPI_LOCK(sc);
2090		if ((ifp->if_flags & IFF_UP)) {
2091			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2092				wpi_init_locked(sc, 0);
2093				startall = 1;
2094			}
2095		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2096			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2097			wpi_stop_locked(sc);
2098		WPI_UNLOCK(sc);
2099		if (startall)
2100			ieee80211_start_all(ic);
2101		break;
2102	case SIOCGIFMEDIA:
2103		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2104		break;
2105	case SIOCGIFADDR:
2106		error = ether_ioctl(ifp, cmd, data);
2107		break;
2108	default:
2109		error = EINVAL;
2110		break;
2111	}
2112	return error;
2113}
2114
2115/*
2116 * Extract various information from EEPROM.
2117 */
2118static void
2119wpi_read_eeprom(struct wpi_softc *sc)
2120{
2121	struct ifnet *ifp = sc->sc_ifp;
2122	struct ieee80211com *ic = ifp->if_l2com;
2123	int i;
2124
2125	/* read the hardware capabilities, revision and SKU type */
2126	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2127	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2128	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2129
2130	/* read the regulatory domain */
2131	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2132
2133	/* read in the hw MAC address */
2134	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2135
2136	/* read the list of authorized channels */
2137	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2138		wpi_read_eeprom_channels(sc,i);
2139
2140	/* read the power level calibration info for each group */
2141	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2142		wpi_read_eeprom_group(sc,i);
2143}
2144
2145/*
2146 * Send a command to the firmware.
2147 */
2148static int
2149wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2150{
2151	struct wpi_tx_ring *ring = &sc->cmdq;
2152	struct wpi_tx_desc *desc;
2153	struct wpi_tx_cmd *cmd;
2154
2155#ifdef WPI_DEBUG
2156	if (!async) {
2157		WPI_LOCK_ASSERT(sc);
2158	}
2159#endif
2160
2161	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2162		    async));
2163
2164	if (sc->flags & WPI_FLAG_BUSY) {
2165		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2166		    __func__, code);
2167		return EAGAIN;
2168	}
2169	sc->flags|= WPI_FLAG_BUSY;
2170
2171	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2172	    code, size));
2173
2174	desc = &ring->desc[ring->cur];
2175	cmd = &ring->cmd[ring->cur];
2176
2177	cmd->code = code;
2178	cmd->flags = 0;
2179	cmd->qid = ring->qid;
2180	cmd->idx = ring->cur;
2181	memcpy(cmd->data, buf, size);
2182
2183	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2184	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2185		ring->cur * sizeof (struct wpi_tx_cmd));
2186	desc->segs[0].len  = htole32(4 + size);
2187
2188	/* kick cmd ring */
2189	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2190	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2191
2192	if (async) {
2193		sc->flags &= ~ WPI_FLAG_BUSY;
2194		return 0;
2195	}
2196
2197	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2198}
2199
2200static int
2201wpi_wme_update(struct ieee80211com *ic)
2202{
2203#define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2204#define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2205	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2206	const struct wmeParams *wmep;
2207	struct wpi_wme_setup wme;
2208	int ac;
2209
2210	/* don't override default WME values if WME is not actually enabled */
2211	if (!(ic->ic_flags & IEEE80211_F_WME))
2212		return 0;
2213
2214	wme.flags = 0;
2215	for (ac = 0; ac < WME_NUM_AC; ac++) {
2216		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2217		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2218		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2219		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2220		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2221
2222		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2223		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2224		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2225	}
2226	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2227#undef WPI_USEC
2228#undef WPI_EXP2
2229}
2230
2231/*
2232 * Configure h/w multi-rate retries.
2233 */
2234static int
2235wpi_mrr_setup(struct wpi_softc *sc)
2236{
2237	struct ifnet *ifp = sc->sc_ifp;
2238	struct ieee80211com *ic = ifp->if_l2com;
2239	struct wpi_mrr_setup mrr;
2240	int i, error;
2241
2242	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2243
2244	/* CCK rates (not used with 802.11a) */
2245	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2246		mrr.rates[i].flags = 0;
2247		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2248		/* fallback to the immediate lower CCK rate (if any) */
2249		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2250		/* try one time at this rate before falling back to "next" */
2251		mrr.rates[i].ntries = 1;
2252	}
2253
2254	/* OFDM rates (not used with 802.11b) */
2255	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2256		mrr.rates[i].flags = 0;
2257		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2258		/* fallback to the immediate lower OFDM rate (if any) */
2259		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2260		mrr.rates[i].next = (i == WPI_OFDM6) ?
2261		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2262			WPI_OFDM6 : WPI_CCK2) :
2263		    i - 1;
2264		/* try one time at this rate before falling back to "next" */
2265		mrr.rates[i].ntries = 1;
2266	}
2267
2268	/* setup MRR for control frames */
2269	mrr.which = htole32(WPI_MRR_CTL);
2270	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2271	if (error != 0) {
2272		device_printf(sc->sc_dev,
2273		    "could not setup MRR for control frames\n");
2274		return error;
2275	}
2276
2277	/* setup MRR for data frames */
2278	mrr.which = htole32(WPI_MRR_DATA);
2279	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2280	if (error != 0) {
2281		device_printf(sc->sc_dev,
2282		    "could not setup MRR for data frames\n");
2283		return error;
2284	}
2285
2286	return 0;
2287}
2288
2289static void
2290wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2291{
2292	struct wpi_cmd_led led;
2293
2294	led.which = which;
2295	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2296	led.off = off;
2297	led.on = on;
2298
2299	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2300}
2301
2302static void
2303wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2304{
2305	struct wpi_cmd_tsf tsf;
2306	uint64_t val, mod;
2307
2308	memset(&tsf, 0, sizeof tsf);
2309	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2310	tsf.bintval = htole16(ni->ni_intval);
2311	tsf.lintval = htole16(10);
2312
2313	/* compute remaining time until next beacon */
2314	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2315	mod = le64toh(tsf.tstamp) % val;
2316	tsf.binitval = htole32((uint32_t)(val - mod));
2317
2318	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2319		device_printf(sc->sc_dev, "could not enable TSF\n");
2320}
2321
2322#if 0
2323/*
2324 * Build a beacon frame that the firmware will broadcast periodically in
2325 * IBSS or HostAP modes.
2326 */
2327static int
2328wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2329{
2330	struct ifnet *ifp = sc->sc_ifp;
2331	struct ieee80211com *ic = ifp->if_l2com;
2332	struct wpi_tx_ring *ring = &sc->cmdq;
2333	struct wpi_tx_desc *desc;
2334	struct wpi_tx_data *data;
2335	struct wpi_tx_cmd *cmd;
2336	struct wpi_cmd_beacon *bcn;
2337	struct ieee80211_beacon_offsets bo;
2338	struct mbuf *m0;
2339	bus_addr_t physaddr;
2340	int error;
2341
2342	desc = &ring->desc[ring->cur];
2343	data = &ring->data[ring->cur];
2344
2345	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2346	if (m0 == NULL) {
2347		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2348		return ENOMEM;
2349	}
2350
2351	cmd = &ring->cmd[ring->cur];
2352	cmd->code = WPI_CMD_SET_BEACON;
2353	cmd->flags = 0;
2354	cmd->qid = ring->qid;
2355	cmd->idx = ring->cur;
2356
2357	bcn = (struct wpi_cmd_beacon *)cmd->data;
2358	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2359	bcn->id = WPI_ID_BROADCAST;
2360	bcn->ofdm_mask = 0xff;
2361	bcn->cck_mask = 0x0f;
2362	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2363	bcn->len = htole16(m0->m_pkthdr.len);
2364	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2365		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2366	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2367
2368	/* save and trim IEEE802.11 header */
2369	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2370	m_adj(m0, sizeof (struct ieee80211_frame));
2371
2372	/* assume beacon frame is contiguous */
2373	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2374	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2375	if (error != 0) {
2376		device_printf(sc->sc_dev, "could not map beacon\n");
2377		m_freem(m0);
2378		return error;
2379	}
2380
2381	data->m = m0;
2382
2383	/* first scatter/gather segment is used by the beacon command */
2384	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2385	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2386		ring->cur * sizeof (struct wpi_tx_cmd));
2387	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2388	desc->segs[1].addr = htole32(physaddr);
2389	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2390
2391	/* kick cmd ring */
2392	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2393	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2394
2395	return 0;
2396}
2397#endif
2398
2399static int
2400wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2401{
2402	struct ieee80211com *ic = vap->iv_ic;
2403	struct ieee80211_node *ni = vap->iv_bss;
2404	struct wpi_node_info node;
2405	int error;
2406
2407
2408	/* update adapter's configuration */
2409	sc->config.associd = 0;
2410	sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2411	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2412	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2413	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2414		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2415		    WPI_CONFIG_24GHZ);
2416	}
2417	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2418		sc->config.cck_mask  = 0;
2419		sc->config.ofdm_mask = 0x15;
2420	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2421		sc->config.cck_mask  = 0x03;
2422		sc->config.ofdm_mask = 0;
2423	} else {
2424		/* XXX assume 802.11b/g */
2425		sc->config.cck_mask  = 0x0f;
2426		sc->config.ofdm_mask = 0x15;
2427	}
2428
2429	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2430		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2431	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2432		sizeof (struct wpi_config), 1);
2433	if (error != 0) {
2434		device_printf(sc->sc_dev, "could not configure\n");
2435		return error;
2436	}
2437
2438	/* configuration has changed, set Tx power accordingly */
2439	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2440		device_printf(sc->sc_dev, "could not set Tx power\n");
2441		return error;
2442	}
2443
2444	/* add default node */
2445	memset(&node, 0, sizeof node);
2446	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2447	node.id = WPI_ID_BSS;
2448	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2449	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2450	node.action = htole32(WPI_ACTION_SET_RATE);
2451	node.antenna = WPI_ANTENNA_BOTH;
2452	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2453	if (error != 0)
2454		device_printf(sc->sc_dev, "could not add BSS node\n");
2455
2456	return (error);
2457}
2458
2459static int
2460wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2461{
2462	struct ieee80211com *ic = vap->iv_ic;
2463	struct ieee80211_node *ni = vap->iv_bss;
2464	int error;
2465
2466	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2467		/* link LED blinks while monitoring */
2468		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2469		return 0;
2470	}
2471
2472	wpi_enable_tsf(sc, ni);
2473
2474	/* update adapter's configuration */
2475	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2476	/* short preamble/slot time are negotiated when associating */
2477	sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2478	    WPI_CONFIG_SHSLOT);
2479	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2480		sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2481	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2482		sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2483	sc->config.filter |= htole32(WPI_FILTER_BSS);
2484
2485	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2486
2487	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2488		    sc->config.flags));
2489	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2490		    wpi_config), 1);
2491	if (error != 0) {
2492		device_printf(sc->sc_dev, "could not update configuration\n");
2493		return error;
2494	}
2495
2496	error = wpi_set_txpower(sc, ni->ni_chan, 1);
2497	if (error != 0) {
2498		device_printf(sc->sc_dev, "could set txpower\n");
2499		return error;
2500	}
2501
2502	if (vap->iv_opmode == IEEE80211_M_STA) {
2503		/* fake a join to init the tx rate */
2504		wpi_newassoc(ni, 1);
2505	}
2506
2507	/* link LED always on while associated */
2508	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2509
2510	/* start automatic rate control timer */
2511	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2512
2513	return (error);
2514}
2515
2516/*
2517 * Send a scan request to the firmware.  Since this command is huge, we map it
2518 * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2519 * much of this code is similar to that in wpi_cmd but because we must manually
2520 * construct the probe & channels, we duplicate what's needed here. XXX In the
2521 * future, this function should be modified to use wpi_cmd to help cleanup the
2522 * code base.
2523 */
2524static int
2525wpi_scan(struct wpi_softc *sc)
2526{
2527	struct ifnet *ifp = sc->sc_ifp;
2528	struct ieee80211com *ic = ifp->if_l2com;
2529	struct ieee80211_scan_state *ss = ic->ic_scan;
2530	struct wpi_tx_ring *ring = &sc->cmdq;
2531	struct wpi_tx_desc *desc;
2532	struct wpi_tx_data *data;
2533	struct wpi_tx_cmd *cmd;
2534	struct wpi_scan_hdr *hdr;
2535	struct wpi_scan_chan *chan;
2536	struct ieee80211_frame *wh;
2537	struct ieee80211_rateset *rs;
2538	struct ieee80211_channel *c;
2539	enum ieee80211_phymode mode;
2540	uint8_t *frm;
2541	int nrates, pktlen, error, i, nssid;
2542	bus_addr_t physaddr;
2543
2544	desc = &ring->desc[ring->cur];
2545	data = &ring->data[ring->cur];
2546
2547	data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2548	if (data->m == NULL) {
2549		device_printf(sc->sc_dev,
2550		    "could not allocate mbuf for scan command\n");
2551		return ENOMEM;
2552	}
2553
2554	cmd = mtod(data->m, struct wpi_tx_cmd *);
2555	cmd->code = WPI_CMD_SCAN;
2556	cmd->flags = 0;
2557	cmd->qid = ring->qid;
2558	cmd->idx = ring->cur;
2559
2560	hdr = (struct wpi_scan_hdr *)cmd->data;
2561	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2562
2563	/*
2564	 * Move to the next channel if no packets are received within 5 msecs
2565	 * after sending the probe request (this helps to reduce the duration
2566	 * of active scans).
2567	 */
2568	hdr->quiet = htole16(5);
2569	hdr->threshold = htole16(1);
2570
2571	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2572		/* send probe requests at 6Mbps */
2573		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2574
2575		/* Enable crc checking */
2576		hdr->promotion = htole16(1);
2577	} else {
2578		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2579		/* send probe requests at 1Mbps */
2580		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2581	}
2582	hdr->tx.id = WPI_ID_BROADCAST;
2583	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2584	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2585
2586	memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2587	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2588	for (i = 0; i < nssid; i++) {
2589		hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2590		hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2591		memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2592		    hdr->scan_essids[i].esslen);
2593		if (wpi_debug & WPI_DEBUG_SCANNING) {
2594			printf("Scanning Essid: ");
2595			ieee80211_print_essid(hdr->scan_essids[i].essid,
2596			    hdr->scan_essids[i].esslen);
2597			printf("\n");
2598		}
2599	}
2600
2601	/*
2602	 * Build a probe request frame.  Most of the following code is a
2603	 * copy & paste of what is done in net80211.
2604	 */
2605	wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2606	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2607		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2608	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2609	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2610	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2611	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2612	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2613	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2614
2615	frm = (uint8_t *)(wh + 1);
2616
2617	/* add essid IE, the hardware will fill this in for us */
2618	*frm++ = IEEE80211_ELEMID_SSID;
2619	*frm++ = 0;
2620
2621	mode = ieee80211_chan2mode(ic->ic_curchan);
2622	rs = &ic->ic_sup_rates[mode];
2623
2624	/* add supported rates IE */
2625	*frm++ = IEEE80211_ELEMID_RATES;
2626	nrates = rs->rs_nrates;
2627	if (nrates > IEEE80211_RATE_SIZE)
2628		nrates = IEEE80211_RATE_SIZE;
2629	*frm++ = nrates;
2630	memcpy(frm, rs->rs_rates, nrates);
2631	frm += nrates;
2632
2633	/* add supported xrates IE */
2634	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2635		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2636		*frm++ = IEEE80211_ELEMID_XRATES;
2637		*frm++ = nrates;
2638		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2639		frm += nrates;
2640	}
2641
2642	/* setup length of probe request */
2643	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2644
2645	/*
2646	 * Construct information about the channel that we
2647	 * want to scan. The firmware expects this to be directly
2648	 * after the scan probe request
2649	 */
2650	c = ic->ic_curchan;
2651	chan = (struct wpi_scan_chan *)frm;
2652	chan->chan = ieee80211_chan2ieee(ic, c);
2653	chan->flags = 0;
2654	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2655		chan->flags |= WPI_CHAN_ACTIVE;
2656		if (nssid != 0)
2657			chan->flags |= WPI_CHAN_DIRECT;
2658	}
2659	chan->gain_dsp = 0x6e; /* Default level */
2660	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2661		chan->active = htole16(10);
2662		chan->passive = htole16(ss->ss_maxdwell);
2663		chan->gain_radio = 0x3b;
2664	} else {
2665		chan->active = htole16(20);
2666		chan->passive = htole16(ss->ss_maxdwell);
2667		chan->gain_radio = 0x28;
2668	}
2669
2670	DPRINTFN(WPI_DEBUG_SCANNING,
2671	    ("Scanning %u Passive: %d\n",
2672	     chan->chan,
2673	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2674
2675	hdr->nchan++;
2676	chan++;
2677
2678	frm += sizeof (struct wpi_scan_chan);
2679#if 0
2680	// XXX All Channels....
2681	for (c  = &ic->ic_channels[1];
2682	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2683		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2684			continue;
2685
2686		chan->chan = ieee80211_chan2ieee(ic, c);
2687		chan->flags = 0;
2688		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2689		    chan->flags |= WPI_CHAN_ACTIVE;
2690		    if (ic->ic_des_ssid[0].len != 0)
2691			chan->flags |= WPI_CHAN_DIRECT;
2692		}
2693		chan->gain_dsp = 0x6e; /* Default level */
2694		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2695			chan->active = htole16(10);
2696			chan->passive = htole16(110);
2697			chan->gain_radio = 0x3b;
2698		} else {
2699			chan->active = htole16(20);
2700			chan->passive = htole16(120);
2701			chan->gain_radio = 0x28;
2702		}
2703
2704		DPRINTFN(WPI_DEBUG_SCANNING,
2705			 ("Scanning %u Passive: %d\n",
2706			  chan->chan,
2707			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2708
2709		hdr->nchan++;
2710		chan++;
2711
2712		frm += sizeof (struct wpi_scan_chan);
2713	}
2714#endif
2715
2716	hdr->len = htole16(frm - (uint8_t *)hdr);
2717	pktlen = frm - (uint8_t *)cmd;
2718
2719	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2720	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2721	if (error != 0) {
2722		device_printf(sc->sc_dev, "could not map scan command\n");
2723		m_freem(data->m);
2724		data->m = NULL;
2725		return error;
2726	}
2727
2728	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2729	desc->segs[0].addr = htole32(physaddr);
2730	desc->segs[0].len  = htole32(pktlen);
2731
2732	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2733	    BUS_DMASYNC_PREWRITE);
2734	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2735
2736	/* kick cmd ring */
2737	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2738	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2739
2740	sc->sc_scan_timer = 5;
2741	return 0;	/* will be notified async. of failure/success */
2742}
2743
2744/**
2745 * Configure the card to listen to a particular channel, this transisions the
2746 * card in to being able to receive frames from remote devices.
2747 */
2748static int
2749wpi_config(struct wpi_softc *sc)
2750{
2751	struct ifnet *ifp = sc->sc_ifp;
2752	struct ieee80211com *ic = ifp->if_l2com;
2753	struct wpi_power power;
2754	struct wpi_bluetooth bluetooth;
2755	struct wpi_node_info node;
2756	int error;
2757
2758	/* set power mode */
2759	memset(&power, 0, sizeof power);
2760	power.flags = htole32(WPI_POWER_CAM|0x8);
2761	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2762	if (error != 0) {
2763		device_printf(sc->sc_dev, "could not set power mode\n");
2764		return error;
2765	}
2766
2767	/* configure bluetooth coexistence */
2768	memset(&bluetooth, 0, sizeof bluetooth);
2769	bluetooth.flags = 3;
2770	bluetooth.lead = 0xaa;
2771	bluetooth.kill = 1;
2772	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2773	    0);
2774	if (error != 0) {
2775		device_printf(sc->sc_dev,
2776		    "could not configure bluetooth coexistence\n");
2777		return error;
2778	}
2779
2780	/* configure adapter */
2781	memset(&sc->config, 0, sizeof (struct wpi_config));
2782	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2783	/*set default channel*/
2784	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2785	sc->config.flags = htole32(WPI_CONFIG_TSF);
2786	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2787		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2788		    WPI_CONFIG_24GHZ);
2789	}
2790	sc->config.filter = 0;
2791	switch (ic->ic_opmode) {
2792	case IEEE80211_M_STA:
2793	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2794		sc->config.mode = WPI_MODE_STA;
2795		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2796		break;
2797	case IEEE80211_M_IBSS:
2798	case IEEE80211_M_AHDEMO:
2799		sc->config.mode = WPI_MODE_IBSS;
2800		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2801					     WPI_FILTER_MULTICAST);
2802		break;
2803	case IEEE80211_M_HOSTAP:
2804		sc->config.mode = WPI_MODE_HOSTAP;
2805		break;
2806	case IEEE80211_M_MONITOR:
2807		sc->config.mode = WPI_MODE_MONITOR;
2808		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2809			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2810		break;
2811	}
2812	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2813	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2814	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2815		sizeof (struct wpi_config), 0);
2816	if (error != 0) {
2817		device_printf(sc->sc_dev, "configure command failed\n");
2818		return error;
2819	}
2820
2821	/* configuration has changed, set Tx power accordingly */
2822	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2823	    device_printf(sc->sc_dev, "could not set Tx power\n");
2824	    return error;
2825	}
2826
2827	/* add broadcast node */
2828	memset(&node, 0, sizeof node);
2829	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2830	node.id = WPI_ID_BROADCAST;
2831	node.rate = wpi_plcp_signal(2);
2832	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2833	if (error != 0) {
2834		device_printf(sc->sc_dev, "could not add broadcast node\n");
2835		return error;
2836	}
2837
2838	/* Setup rate scalling */
2839	error = wpi_mrr_setup(sc);
2840	if (error != 0) {
2841		device_printf(sc->sc_dev, "could not setup MRR\n");
2842		return error;
2843	}
2844
2845	return 0;
2846}
2847
2848static void
2849wpi_stop_master(struct wpi_softc *sc)
2850{
2851	uint32_t tmp;
2852	int ntries;
2853
2854	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2855
2856	tmp = WPI_READ(sc, WPI_RESET);
2857	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2858
2859	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2860	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2861		return;	/* already asleep */
2862
2863	for (ntries = 0; ntries < 100; ntries++) {
2864		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2865			break;
2866		DELAY(10);
2867	}
2868	if (ntries == 100) {
2869		device_printf(sc->sc_dev, "timeout waiting for master\n");
2870	}
2871}
2872
2873static int
2874wpi_power_up(struct wpi_softc *sc)
2875{
2876	uint32_t tmp;
2877	int ntries;
2878
2879	wpi_mem_lock(sc);
2880	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2881	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2882	wpi_mem_unlock(sc);
2883
2884	for (ntries = 0; ntries < 5000; ntries++) {
2885		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2886			break;
2887		DELAY(10);
2888	}
2889	if (ntries == 5000) {
2890		device_printf(sc->sc_dev,
2891		    "timeout waiting for NIC to power up\n");
2892		return ETIMEDOUT;
2893	}
2894	return 0;
2895}
2896
2897static int
2898wpi_reset(struct wpi_softc *sc)
2899{
2900	uint32_t tmp;
2901	int ntries;
2902
2903	DPRINTFN(WPI_DEBUG_HW,
2904	    ("Resetting the card - clearing any uploaded firmware\n"));
2905
2906	/* clear any pending interrupts */
2907	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2908
2909	tmp = WPI_READ(sc, WPI_PLL_CTL);
2910	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2911
2912	tmp = WPI_READ(sc, WPI_CHICKEN);
2913	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2914
2915	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2916	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2917
2918	/* wait for clock stabilization */
2919	for (ntries = 0; ntries < 25000; ntries++) {
2920		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2921			break;
2922		DELAY(10);
2923	}
2924	if (ntries == 25000) {
2925		device_printf(sc->sc_dev,
2926		    "timeout waiting for clock stabilization\n");
2927		return ETIMEDOUT;
2928	}
2929
2930	/* initialize EEPROM */
2931	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2932
2933	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2934		device_printf(sc->sc_dev, "EEPROM not found\n");
2935		return EIO;
2936	}
2937	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2938
2939	return 0;
2940}
2941
2942static void
2943wpi_hw_config(struct wpi_softc *sc)
2944{
2945	uint32_t rev, hw;
2946
2947	/* voodoo from the Linux "driver".. */
2948	hw = WPI_READ(sc, WPI_HWCONFIG);
2949
2950	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2951	if ((rev & 0xc0) == 0x40)
2952		hw |= WPI_HW_ALM_MB;
2953	else if (!(rev & 0x80))
2954		hw |= WPI_HW_ALM_MM;
2955
2956	if (sc->cap == 0x80)
2957		hw |= WPI_HW_SKU_MRC;
2958
2959	hw &= ~WPI_HW_REV_D;
2960	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2961		hw |= WPI_HW_REV_D;
2962
2963	if (sc->type > 1)
2964		hw |= WPI_HW_TYPE_B;
2965
2966	WPI_WRITE(sc, WPI_HWCONFIG, hw);
2967}
2968
2969static void
2970wpi_rfkill_resume(struct wpi_softc *sc)
2971{
2972	struct ifnet *ifp = sc->sc_ifp;
2973	struct ieee80211com *ic = ifp->if_l2com;
2974	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2975	int ntries;
2976
2977	/* enable firmware again */
2978	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
2979	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
2980
2981	/* wait for thermal sensors to calibrate */
2982	for (ntries = 0; ntries < 1000; ntries++) {
2983		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
2984			break;
2985		DELAY(10);
2986	}
2987
2988	if (ntries == 1000) {
2989		device_printf(sc->sc_dev,
2990		    "timeout waiting for thermal calibration\n");
2991		WPI_UNLOCK(sc);
2992		return;
2993	}
2994	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
2995
2996	if (wpi_config(sc) != 0) {
2997		device_printf(sc->sc_dev, "device config failed\n");
2998		WPI_UNLOCK(sc);
2999		return;
3000	}
3001
3002	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3003	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3004	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3005
3006	if (vap != NULL) {
3007		if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3008			if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3009				ieee80211_beacon_miss(ic);
3010				wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3011			} else
3012				wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3013		} else {
3014			ieee80211_scan_next(vap);
3015			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3016		}
3017	}
3018
3019	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3020}
3021
3022static void
3023wpi_init_locked(struct wpi_softc *sc, int force)
3024{
3025	struct ifnet *ifp = sc->sc_ifp;
3026	uint32_t tmp;
3027	int ntries, qid;
3028
3029	wpi_stop_locked(sc);
3030	(void)wpi_reset(sc);
3031
3032	wpi_mem_lock(sc);
3033	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3034	DELAY(20);
3035	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3036	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3037	wpi_mem_unlock(sc);
3038
3039	(void)wpi_power_up(sc);
3040	wpi_hw_config(sc);
3041
3042	/* init Rx ring */
3043	wpi_mem_lock(sc);
3044	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3045	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3046	    offsetof(struct wpi_shared, next));
3047	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3048	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3049	wpi_mem_unlock(sc);
3050
3051	/* init Tx rings */
3052	wpi_mem_lock(sc);
3053	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3054	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3055	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3056	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3057	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3058	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3059	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3060
3061	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3062	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3063
3064	for (qid = 0; qid < 6; qid++) {
3065		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3066		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3067		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3068	}
3069	wpi_mem_unlock(sc);
3070
3071	/* clear "radio off" and "disable command" bits (reversed logic) */
3072	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3073	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3074	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3075
3076	/* clear any pending interrupts */
3077	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3078
3079	/* enable interrupts */
3080	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3081
3082	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3083	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3084
3085	if ((wpi_load_firmware(sc)) != 0) {
3086	    device_printf(sc->sc_dev,
3087		"A problem occurred loading the firmware to the driver\n");
3088	    return;
3089	}
3090
3091	/* At this point the firmware is up and running. If the hardware
3092	 * RF switch is turned off thermal calibration will fail, though
3093	 * the card is still happy to continue to accept commands, catch
3094	 * this case and schedule a task to watch for it to be turned on.
3095	 */
3096	wpi_mem_lock(sc);
3097	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3098	wpi_mem_unlock(sc);
3099
3100	if (!(tmp & 0x1)) {
3101		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3102		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3103		goto out;
3104	}
3105
3106	/* wait for thermal sensors to calibrate */
3107	for (ntries = 0; ntries < 1000; ntries++) {
3108		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3109			break;
3110		DELAY(10);
3111	}
3112
3113	if (ntries == 1000) {
3114		device_printf(sc->sc_dev,
3115		    "timeout waiting for thermal sensors calibration\n");
3116		return;
3117	}
3118	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3119
3120	if (wpi_config(sc) != 0) {
3121		device_printf(sc->sc_dev, "device config failed\n");
3122		return;
3123	}
3124
3125	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3126	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3127out:
3128	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3129}
3130
3131static void
3132wpi_init(void *arg)
3133{
3134	struct wpi_softc *sc = arg;
3135	struct ifnet *ifp = sc->sc_ifp;
3136	struct ieee80211com *ic = ifp->if_l2com;
3137
3138	WPI_LOCK(sc);
3139	wpi_init_locked(sc, 0);
3140	WPI_UNLOCK(sc);
3141
3142	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3143		ieee80211_start_all(ic);		/* start all vaps */
3144}
3145
3146static void
3147wpi_stop_locked(struct wpi_softc *sc)
3148{
3149	struct ifnet *ifp = sc->sc_ifp;
3150	uint32_t tmp;
3151	int ac;
3152
3153	sc->sc_tx_timer = 0;
3154	sc->sc_scan_timer = 0;
3155	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3156	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3157	callout_stop(&sc->watchdog_to);
3158	callout_stop(&sc->calib_to);
3159
3160
3161	/* disable interrupts */
3162	WPI_WRITE(sc, WPI_MASK, 0);
3163	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3164	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3165	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3166
3167	/* Clear any commands left in the command buffer */
3168	memset(sc->sc_cmd, 0, sizeof(sc->sc_cmd));
3169	memset(sc->sc_cmd_arg, 0, sizeof(sc->sc_cmd_arg));
3170	sc->sc_cmd_cur = 0;
3171	sc->sc_cmd_next = 0;
3172
3173	wpi_mem_lock(sc);
3174	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3175	wpi_mem_unlock(sc);
3176
3177	/* reset all Tx rings */
3178	for (ac = 0; ac < 4; ac++)
3179		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3180	wpi_reset_tx_ring(sc, &sc->cmdq);
3181
3182	/* reset Rx ring */
3183	wpi_reset_rx_ring(sc, &sc->rxq);
3184
3185	wpi_mem_lock(sc);
3186	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3187	wpi_mem_unlock(sc);
3188
3189	DELAY(5);
3190
3191	wpi_stop_master(sc);
3192
3193	tmp = WPI_READ(sc, WPI_RESET);
3194	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3195	sc->flags &= ~WPI_FLAG_BUSY;
3196}
3197
3198static void
3199wpi_stop(struct wpi_softc *sc)
3200{
3201	WPI_LOCK(sc);
3202	wpi_stop_locked(sc);
3203	WPI_UNLOCK(sc);
3204}
3205
3206static void
3207wpi_newassoc(struct ieee80211_node *ni, int isnew)
3208{
3209	struct ieee80211vap *vap = ni->ni_vap;
3210	struct wpi_vap *wvp = WPI_VAP(vap);
3211
3212	ieee80211_amrr_node_init(&wvp->amrr, &WPI_NODE(ni)->amn, ni);
3213}
3214
3215static void
3216wpi_calib_timeout(void *arg)
3217{
3218	struct wpi_softc *sc = arg;
3219	struct ifnet *ifp = sc->sc_ifp;
3220	struct ieee80211com *ic = ifp->if_l2com;
3221	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3222	int temp;
3223
3224	if (vap->iv_state != IEEE80211_S_RUN)
3225		return;
3226
3227	/* update sensor data */
3228	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3229	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3230
3231	wpi_power_calibration(sc, temp);
3232
3233	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3234}
3235
3236/*
3237 * This function is called periodically (every 60 seconds) to adjust output
3238 * power to temperature changes.
3239 */
3240static void
3241wpi_power_calibration(struct wpi_softc *sc, int temp)
3242{
3243	struct ifnet *ifp = sc->sc_ifp;
3244	struct ieee80211com *ic = ifp->if_l2com;
3245	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3246
3247	/* sanity-check read value */
3248	if (temp < -260 || temp > 25) {
3249		/* this can't be correct, ignore */
3250		DPRINTFN(WPI_DEBUG_TEMP,
3251		    ("out-of-range temperature reported: %d\n", temp));
3252		return;
3253	}
3254
3255	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3256
3257	/* adjust Tx power if need be */
3258	if (abs(temp - sc->temp) <= 6)
3259		return;
3260
3261	sc->temp = temp;
3262
3263	if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3264		/* just warn, too bad for the automatic calibration... */
3265		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3266	}
3267}
3268
3269/**
3270 * Read the eeprom to find out what channels are valid for the given
3271 * band and update net80211 with what we find.
3272 */
3273static void
3274wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3275{
3276	struct ifnet *ifp = sc->sc_ifp;
3277	struct ieee80211com *ic = ifp->if_l2com;
3278	const struct wpi_chan_band *band = &wpi_bands[n];
3279	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3280	int chan, i, offset, passive;
3281
3282	wpi_read_prom_data(sc, band->addr, channels,
3283	    band->nchan * sizeof (struct wpi_eeprom_chan));
3284
3285	for (i = 0; i < band->nchan; i++) {
3286		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3287			DPRINTFN(WPI_DEBUG_HW,
3288			    ("Channel Not Valid: %d, band %d\n",
3289			     band->chan[i],n));
3290			continue;
3291		}
3292
3293		passive = 0;
3294		chan = band->chan[i];
3295		offset = ic->ic_nchans;
3296
3297		/* is active scan allowed on this channel? */
3298		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3299			passive = IEEE80211_CHAN_PASSIVE;
3300		}
3301
3302		if (n == 0) {	/* 2GHz band */
3303			ic->ic_channels[offset].ic_ieee = chan;
3304			ic->ic_channels[offset].ic_freq =
3305			ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
3306			ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_B | passive;
3307			offset++;
3308			ic->ic_channels[offset].ic_ieee = chan;
3309			ic->ic_channels[offset].ic_freq =
3310			ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
3311			ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_G | passive;
3312			offset++;
3313
3314		} else {	/* 5GHz band */
3315			/*
3316			 * Some 3945ABG adapters support channels 7, 8, 11
3317			 * and 12 in the 2GHz *and* 5GHz bands.
3318			 * Because of limitations in our net80211(9) stack,
3319			 * we can't support these channels in 5GHz band.
3320			 * XXX not true; just need to map to proper frequency
3321			 */
3322			if (chan <= 14)
3323				continue;
3324
3325			ic->ic_channels[offset].ic_ieee = chan;
3326			ic->ic_channels[offset].ic_freq =
3327			ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
3328			ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_A | passive;
3329			offset++;
3330		}
3331
3332		/* save maximum allowed power for this channel */
3333		sc->maxpwr[chan] = channels[i].maxpwr;
3334
3335		ic->ic_nchans = offset;
3336
3337#if 0
3338		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3339		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3340		//ic->ic_channels[chan].ic_minpower...
3341		//ic->ic_channels[chan].ic_maxregtxpower...
3342#endif
3343
3344		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d, offset %d\n",
3345			    chan, channels[i].flags, sc->maxpwr[chan], offset));
3346	}
3347}
3348
3349static void
3350wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3351{
3352	struct wpi_power_group *group = &sc->groups[n];
3353	struct wpi_eeprom_group rgroup;
3354	int i;
3355
3356	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3357	    sizeof rgroup);
3358
3359	/* save power group information */
3360	group->chan   = rgroup.chan;
3361	group->maxpwr = rgroup.maxpwr;
3362	/* temperature at which the samples were taken */
3363	group->temp   = (int16_t)le16toh(rgroup.temp);
3364
3365	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3366		    group->chan, group->maxpwr, group->temp));
3367
3368	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3369		group->samples[i].index = rgroup.samples[i].index;
3370		group->samples[i].power = rgroup.samples[i].power;
3371
3372		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3373			    group->samples[i].index, group->samples[i].power));
3374	}
3375}
3376
3377/*
3378 * Update Tx power to match what is defined for channel `c'.
3379 */
3380static int
3381wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3382{
3383	struct ifnet *ifp = sc->sc_ifp;
3384	struct ieee80211com *ic = ifp->if_l2com;
3385	struct wpi_power_group *group;
3386	struct wpi_cmd_txpower txpower;
3387	u_int chan;
3388	int i;
3389
3390	/* get channel number */
3391	chan = ieee80211_chan2ieee(ic, c);
3392
3393	/* find the power group to which this channel belongs */
3394	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3395		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3396			if (chan <= group->chan)
3397				break;
3398	} else
3399		group = &sc->groups[0];
3400
3401	memset(&txpower, 0, sizeof txpower);
3402	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3403	txpower.channel = htole16(chan);
3404
3405	/* set Tx power for all OFDM and CCK rates */
3406	for (i = 0; i <= 11 ; i++) {
3407		/* retrieve Tx power for this channel/rate combination */
3408		int idx = wpi_get_power_index(sc, group, c,
3409		    wpi_ridx_to_rate[i]);
3410
3411		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3412
3413		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3414			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3415			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3416		} else {
3417			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3418			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3419		}
3420		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3421			    chan, wpi_ridx_to_rate[i], idx));
3422	}
3423
3424	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3425}
3426
3427/*
3428 * Determine Tx power index for a given channel/rate combination.
3429 * This takes into account the regulatory information from EEPROM and the
3430 * current temperature.
3431 */
3432static int
3433wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3434    struct ieee80211_channel *c, int rate)
3435{
3436/* fixed-point arithmetic division using a n-bit fractional part */
3437#define fdivround(a, b, n)      \
3438	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3439
3440/* linear interpolation */
3441#define interpolate(x, x1, y1, x2, y2, n)       \
3442	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3443
3444	struct ifnet *ifp = sc->sc_ifp;
3445	struct ieee80211com *ic = ifp->if_l2com;
3446	struct wpi_power_sample *sample;
3447	int pwr, idx;
3448	u_int chan;
3449
3450	/* get channel number */
3451	chan = ieee80211_chan2ieee(ic, c);
3452
3453	/* default power is group's maximum power - 3dB */
3454	pwr = group->maxpwr / 2;
3455
3456	/* decrease power for highest OFDM rates to reduce distortion */
3457	switch (rate) {
3458		case 72:	/* 36Mb/s */
3459			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3460			break;
3461		case 96:	/* 48Mb/s */
3462			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3463			break;
3464		case 108:	/* 54Mb/s */
3465			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3466			break;
3467	}
3468
3469	/* never exceed channel's maximum allowed Tx power */
3470	pwr = min(pwr, sc->maxpwr[chan]);
3471
3472	/* retrieve power index into gain tables from samples */
3473	for (sample = group->samples; sample < &group->samples[3]; sample++)
3474		if (pwr > sample[1].power)
3475			break;
3476	/* fixed-point linear interpolation using a 19-bit fractional part */
3477	idx = interpolate(pwr, sample[0].power, sample[0].index,
3478	    sample[1].power, sample[1].index, 19);
3479
3480	/*
3481	 *  Adjust power index based on current temperature
3482	 *	- if colder than factory-calibrated: decreate output power
3483	 *	- if warmer than factory-calibrated: increase output power
3484	 */
3485	idx -= (sc->temp - group->temp) * 11 / 100;
3486
3487	/* decrease power for CCK rates (-5dB) */
3488	if (!WPI_RATE_IS_OFDM(rate))
3489		idx += 10;
3490
3491	/* keep power index in a valid range */
3492	if (idx < 0)
3493		return 0;
3494	if (idx > WPI_MAX_PWR_INDEX)
3495		return WPI_MAX_PWR_INDEX;
3496	return idx;
3497
3498#undef interpolate
3499#undef fdivround
3500}
3501
3502/**
3503 * Called by net80211 framework to indicate that a scan
3504 * is starting. This function doesn't actually do the scan,
3505 * wpi_scan_curchan starts things off. This function is more
3506 * of an early warning from the framework we should get ready
3507 * for the scan.
3508 */
3509static void
3510wpi_scan_start(struct ieee80211com *ic)
3511{
3512	struct ifnet *ifp = ic->ic_ifp;
3513	struct wpi_softc *sc = ifp->if_softc;
3514
3515	wpi_queue_cmd(sc, WPI_SCAN_START, 0, WPI_QUEUE_NORMAL);
3516}
3517
3518/**
3519 * Called by the net80211 framework, indicates that the
3520 * scan has ended. If there is a scan in progress on the card
3521 * then it should be aborted.
3522 */
3523static void
3524wpi_scan_end(struct ieee80211com *ic)
3525{
3526	struct ifnet *ifp = ic->ic_ifp;
3527	struct wpi_softc *sc = ifp->if_softc;
3528
3529	wpi_queue_cmd(sc, WPI_SCAN_STOP, 0, WPI_QUEUE_NORMAL);
3530}
3531
3532/**
3533 * Called by the net80211 framework to indicate to the driver
3534 * that the channel should be changed
3535 */
3536static void
3537wpi_set_channel(struct ieee80211com *ic)
3538{
3539	struct ifnet *ifp = ic->ic_ifp;
3540	struct wpi_softc *sc = ifp->if_softc;
3541
3542	/*
3543	 * Only need to set the channel in Monitor mode. AP scanning and auth
3544	 * are already taken care of by their respective firmware commands.
3545	 */
3546	if (ic->ic_opmode == IEEE80211_M_MONITOR)
3547		wpi_queue_cmd(sc, WPI_SET_CHAN, 0, WPI_QUEUE_NORMAL);
3548}
3549
3550/**
3551 * Called by net80211 to indicate that we need to scan the current
3552 * channel. The channel is previously be set via the wpi_set_channel
3553 * callback.
3554 */
3555static void
3556wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3557{
3558	struct ieee80211vap *vap = ss->ss_vap;
3559	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3560	struct wpi_softc *sc = ifp->if_softc;
3561
3562	wpi_queue_cmd(sc, WPI_SCAN_CURCHAN, 0, WPI_QUEUE_NORMAL);
3563}
3564
3565/**
3566 * Called by the net80211 framework to indicate
3567 * the minimum dwell time has been met, terminate the scan.
3568 * We don't actually terminate the scan as the firmware will notify
3569 * us when it's finished and we have no way to interrupt it.
3570 */
3571static void
3572wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3573{
3574	/* NB: don't try to abort scan; wait for firmware to finish */
3575}
3576
3577/**
3578 * The ops function is called to perform some actual work.
3579 * because we can't sleep from any of the ic callbacks, we queue an
3580 * op task with wpi_queue_cmd and have the taskqueue process that task.
3581 * The task that gets cued is a op task, which ends up calling this function.
3582 */
3583static void
3584wpi_ops(void *arg0, int pending)
3585{
3586	struct wpi_softc *sc = arg0;
3587	struct ifnet *ifp = sc->sc_ifp;
3588	struct ieee80211com *ic = ifp->if_l2com;
3589	int cmd, arg, error;
3590	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3591
3592again:
3593	WPI_CMD_LOCK(sc);
3594	cmd = sc->sc_cmd[sc->sc_cmd_cur];
3595	arg = sc->sc_cmd_arg[sc->sc_cmd_cur];
3596
3597	if (cmd == 0) {
3598		/* No more commands to process */
3599		WPI_CMD_UNLOCK(sc);
3600		return;
3601	}
3602	sc->sc_cmd[sc->sc_cmd_cur] = 0; /* free the slot */
3603	sc->sc_cmd_arg[sc->sc_cmd_cur] = 0; /* free the slot */
3604	sc->sc_cmd_cur = (sc->sc_cmd_cur + 1) % WPI_CMD_MAXOPS;
3605	WPI_CMD_UNLOCK(sc);
3606	WPI_LOCK(sc);
3607
3608	DPRINTFN(WPI_DEBUG_OPS,("wpi_ops: command: %d\n", cmd));
3609
3610	switch (cmd) {
3611	case WPI_RESTART:
3612		wpi_init_locked(sc, 0);
3613		WPI_UNLOCK(sc);
3614		return;
3615
3616	case WPI_RF_RESTART:
3617		wpi_rfkill_resume(sc);
3618		WPI_UNLOCK(sc);
3619		return;
3620	}
3621
3622	if (!(sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3623		WPI_UNLOCK(sc);
3624		return;
3625	}
3626
3627	switch (cmd) {
3628	case WPI_SCAN_START:
3629		/* make the link LED blink while we're scanning */
3630		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3631		sc->flags |= WPI_FLAG_SCANNING;
3632		break;
3633
3634	case WPI_SCAN_STOP:
3635		sc->flags &= ~WPI_FLAG_SCANNING;
3636		break;
3637
3638	case WPI_SCAN_CURCHAN:
3639		if (wpi_scan(sc))
3640			ieee80211_cancel_scan(vap);
3641		break;
3642
3643	case WPI_SET_CHAN:
3644		error = wpi_config(sc);
3645		if (error != 0)
3646			device_printf(sc->sc_dev,
3647			    "error %d settting channel\n", error);
3648		break;
3649
3650	case WPI_AUTH:
3651		/* The node must be registered in the firmware before auth */
3652		error = wpi_auth(sc, vap);
3653		WPI_UNLOCK(sc);
3654		if (error != 0) {
3655			device_printf(sc->sc_dev,
3656			    "%s: could not move to auth state, error %d\n",
3657			    __func__, error);
3658			return;
3659		}
3660		IEEE80211_LOCK(ic);
3661		WPI_VAP(vap)->newstate(vap, IEEE80211_S_AUTH, arg);
3662		if (vap->iv_newstate_cb != NULL)
3663			vap->iv_newstate_cb(vap, IEEE80211_S_AUTH, arg);
3664		IEEE80211_UNLOCK(ic);
3665		goto again;
3666
3667	case WPI_RUN:
3668		error = wpi_run(sc, vap);
3669		WPI_UNLOCK(sc);
3670		if (error != 0) {
3671			device_printf(sc->sc_dev,
3672			    "%s: could not move to run state, error %d\n",
3673			    __func__, error);
3674			return;
3675		}
3676		IEEE80211_LOCK(ic);
3677		WPI_VAP(vap)->newstate(vap, IEEE80211_S_RUN, arg);
3678		if (vap->iv_newstate_cb != NULL)
3679			vap->iv_newstate_cb(vap, IEEE80211_S_RUN, arg);
3680		IEEE80211_UNLOCK(ic);
3681		goto again;
3682	}
3683	WPI_UNLOCK(sc);
3684
3685	/* Take another pass */
3686	goto again;
3687}
3688
3689/**
3690 * queue a command for later execution in a different thread.
3691 * This is needed as the net80211 callbacks do not allow
3692 * sleeping, since we need to sleep to confirm commands have
3693 * been processed by the firmware, we must defer execution to
3694 * a sleep enabled thread.
3695 */
3696static int
3697wpi_queue_cmd(struct wpi_softc *sc, int cmd, int arg, int flush)
3698{
3699	WPI_CMD_LOCK(sc);
3700
3701	if (flush) {
3702		memset(sc->sc_cmd, 0, sizeof (sc->sc_cmd));
3703		memset(sc->sc_cmd_arg, 0, sizeof (sc->sc_cmd_arg));
3704		sc->sc_cmd_cur = 0;
3705		sc->sc_cmd_next = 0;
3706	}
3707
3708	if (sc->sc_cmd[sc->sc_cmd_next] != 0) {
3709		WPI_CMD_UNLOCK(sc);
3710		DPRINTF(("%s: command %d dropped\n", __func__, cmd));
3711		return (EBUSY);
3712	}
3713
3714	sc->sc_cmd[sc->sc_cmd_next] = cmd;
3715	sc->sc_cmd_arg[sc->sc_cmd_next] = arg;
3716	sc->sc_cmd_next = (sc->sc_cmd_next + 1) % WPI_CMD_MAXOPS;
3717
3718	taskqueue_enqueue(sc->sc_tq, &sc->sc_opstask);
3719
3720	WPI_CMD_UNLOCK(sc);
3721
3722	return 0;
3723}
3724
3725/*
3726 * Allocate DMA-safe memory for firmware transfer.
3727 */
3728static int
3729wpi_alloc_fwmem(struct wpi_softc *sc)
3730{
3731	/* allocate enough contiguous space to store text and data */
3732	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3733	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3734	    BUS_DMA_NOWAIT);
3735}
3736
3737static void
3738wpi_free_fwmem(struct wpi_softc *sc)
3739{
3740	wpi_dma_contig_free(&sc->fw_dma);
3741}
3742
3743/**
3744 * Called every second, wpi_watchdog used by the watch dog timer
3745 * to check that the card is still alive
3746 */
3747static void
3748wpi_watchdog(void *arg)
3749{
3750	struct wpi_softc *sc = arg;
3751	struct ifnet *ifp = sc->sc_ifp;
3752	uint32_t tmp;
3753
3754	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3755
3756	if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3757		/* No need to lock firmware memory */
3758		tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3759
3760		if ((tmp & 0x1) == 0) {
3761			/* Radio kill switch is still off */
3762			callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3763			return;
3764		}
3765
3766		device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3767		wpi_queue_cmd(sc, WPI_RF_RESTART, 0, WPI_QUEUE_CLEAR);
3768		return;
3769	}
3770
3771	if (sc->sc_tx_timer > 0) {
3772		if (--sc->sc_tx_timer == 0) {
3773			device_printf(sc->sc_dev,"device timeout\n");
3774			ifp->if_oerrors++;
3775			wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR);
3776		}
3777	}
3778	if (sc->sc_scan_timer > 0) {
3779		struct ifnet *ifp = sc->sc_ifp;
3780		struct ieee80211com *ic = ifp->if_l2com;
3781		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3782		if (--sc->sc_scan_timer == 0 && vap != NULL) {
3783			device_printf(sc->sc_dev,"scan timeout\n");
3784			ieee80211_cancel_scan(vap);
3785			wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR);
3786		}
3787	}
3788
3789	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3790		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3791}
3792
3793#ifdef WPI_DEBUG
3794static const char *wpi_cmd_str(int cmd)
3795{
3796	switch (cmd) {
3797	case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3798	case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3799	case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3800	case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3801	case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3802	case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3803	case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3804	case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3805	case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3806	case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3807	case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3808	case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3809	case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3810	case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3811
3812	default:
3813		KASSERT(1, ("Unknown Command: %d\n", cmd));
3814		return "UNKNOWN CMD";	/* Make the compiler happy */
3815	}
3816}
3817#endif
3818
3819MODULE_DEPEND(wpi, pci,  1, 1, 1);
3820MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3821MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3822MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1);
3823