if_wpi.c revision 178704
1/*-
2 * Copyright (c) 2006,2007
3 *	Damien Bergamini <damien.bergamini@free.fr>
4 *	Benjamin Close <Benjamin.Close@clearchain.com>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19#define VERSION "20071127"
20
21#include <sys/cdefs.h>
22__FBSDID("$FreeBSD: head/sys/dev/wpi/if_wpi.c 178704 2008-05-01 04:55:00Z thompsa $");
23
24/*
25 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26 *
27 * The 3945ABG network adapter doesn't use traditional hardware as
28 * many other adaptors do. Instead at run time the eeprom is set into a known
29 * state and told to load boot firmware. The boot firmware loads an init and a
30 * main  binary firmware image into SRAM on the card via DMA.
31 * Once the firmware is loaded, the driver/hw then
32 * communicate by way of circular dma rings via the the SRAM to the firmware.
33 *
34 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35 * The 4 tx data rings allow for prioritization QoS.
36 *
37 * The rx data ring consists of 32 dma buffers. Two registers are used to
38 * indicate where in the ring the driver and the firmware are up to. The
39 * driver sets the initial read index (reg1) and the initial write index (reg2),
40 * the firmware updates the read index (reg1) on rx of a packet and fires an
41 * interrupt. The driver then processes the buffers starting at reg1 indicating
42 * to the firmware which buffers have been accessed by updating reg2. At the
43 * same time allocating new memory for the processed buffer.
44 *
45 * A similar thing happens with the tx rings. The difference is the firmware
46 * stop processing buffers once the queue is full and until confirmation
47 * of a successful transmition (tx_intr) has occurred.
48 *
49 * The command ring operates in the same manner as the tx queues.
50 *
51 * All communication direct to the card (ie eeprom) is classed as Stage1
52 * communication
53 *
54 * All communication via the firmware to the card is classed as State2.
55 * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56 * firmware. The bootstrap firmware and runtime firmware are loaded
57 * from host memory via dma to the card then told to execute. From this point
58 * on the majority of communications between the driver and the card goes
59 * via the firmware.
60 */
61
62#include <sys/param.h>
63#include <sys/sysctl.h>
64#include <sys/sockio.h>
65#include <sys/mbuf.h>
66#include <sys/kernel.h>
67#include <sys/socket.h>
68#include <sys/systm.h>
69#include <sys/malloc.h>
70#include <sys/queue.h>
71#include <sys/taskqueue.h>
72#include <sys/module.h>
73#include <sys/bus.h>
74#include <sys/endian.h>
75#include <sys/linker.h>
76#include <sys/firmware.h>
77
78#include <machine/bus.h>
79#include <machine/resource.h>
80#include <sys/rman.h>
81
82#include <dev/pci/pcireg.h>
83#include <dev/pci/pcivar.h>
84
85#include <net/bpf.h>
86#include <net/if.h>
87#include <net/if_arp.h>
88#include <net/ethernet.h>
89#include <net/if_dl.h>
90#include <net/if_media.h>
91#include <net/if_types.h>
92
93#include <net80211/ieee80211_var.h>
94#include <net80211/ieee80211_radiotap.h>
95#include <net80211/ieee80211_regdomain.h>
96
97#include <netinet/in.h>
98#include <netinet/in_systm.h>
99#include <netinet/in_var.h>
100#include <netinet/ip.h>
101#include <netinet/if_ether.h>
102
103#include <dev/wpi/if_wpireg.h>
104#include <dev/wpi/if_wpivar.h>
105
106#define WPI_DEBUG
107
108#ifdef WPI_DEBUG
109#define DPRINTF(x)	do { if (wpi_debug != 0) printf x; } while (0)
110#define DPRINTFN(n, x)	do { if (wpi_debug & n) printf x; } while (0)
111
112enum {
113	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
114	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
115	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
116	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
117	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
118	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
119	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
120	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
121	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
122	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
123	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
124	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
125	WPI_DEBUG_ANY		= 0xffffffff
126};
127
128int wpi_debug = 0;
129SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
130
131#else
132#define DPRINTF(x)
133#define DPRINTFN(n, x)
134#endif
135
136struct wpi_ident {
137	uint16_t	vendor;
138	uint16_t	device;
139	uint16_t	subdevice;
140	const char	*name;
141};
142
143static const struct wpi_ident wpi_ident_table[] = {
144	/* The below entries support ABG regardless of the subid */
145	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
146	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
147	/* The below entries only support BG */
148	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945AB"  },
149	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945AB"  },
150	{ 0x8086, 0x4222, 0x1014, "Intel(R) PRO/Wireless 3945AB"  },
151	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945AB"  },
152	{ 0, 0, 0, NULL }
153};
154
155static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
156		    const char name[IFNAMSIZ], int unit, int opmode,
157		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
158		    const uint8_t mac[IEEE80211_ADDR_LEN]);
159static void	wpi_vap_delete(struct ieee80211vap *);
160static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
161		    void **, bus_size_t, bus_size_t, int);
162static void	wpi_dma_contig_free(struct wpi_dma_info *);
163static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
164static int	wpi_alloc_shared(struct wpi_softc *);
165static void	wpi_free_shared(struct wpi_softc *);
166static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
167static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
168static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
169static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
170		    int, int);
171static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
172static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
173static struct	ieee80211_node *wpi_node_alloc(struct ieee80211_node_table *);
174static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
175static void	wpi_mem_lock(struct wpi_softc *);
176static void	wpi_mem_unlock(struct wpi_softc *);
177static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
178static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
179static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
180		    const uint32_t *, int);
181static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
182static int	wpi_alloc_fwmem(struct wpi_softc *);
183static void	wpi_free_fwmem(struct wpi_softc *);
184static int	wpi_load_firmware(struct wpi_softc *);
185static void	wpi_unload_firmware(struct wpi_softc *);
186static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
187static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
188		    struct wpi_rx_data *);
189static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
190static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
191static void	wpi_notif_intr(struct wpi_softc *);
192static void	wpi_intr(void *);
193static void	wpi_ops(void *, int);
194static uint8_t	wpi_plcp_signal(int);
195static int	wpi_queue_cmd(struct wpi_softc *, int, int, int);
196static void	wpi_watchdog(void *);
197static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
198		    struct ieee80211_node *, int);
199static void	wpi_start(struct ifnet *);
200static void	wpi_start_locked(struct ifnet *);
201static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
202		    const struct ieee80211_bpf_params *);
203static void	wpi_scan_start(struct ieee80211com *);
204static void	wpi_scan_end(struct ieee80211com *);
205static void	wpi_set_channel(struct ieee80211com *);
206static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
207static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
208static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
209static void	wpi_read_eeprom(struct wpi_softc *);
210static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
211static void	wpi_read_eeprom_group(struct wpi_softc *, int);
212static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
213static int	wpi_wme_update(struct ieee80211com *);
214static int	wpi_mrr_setup(struct wpi_softc *);
215static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
216static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
217#if 0
218static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
219#endif
220static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
221static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
222static int	wpi_scan(struct wpi_softc *);
223static int	wpi_config(struct wpi_softc *);
224static void	wpi_stop_master(struct wpi_softc *);
225static int	wpi_power_up(struct wpi_softc *);
226static int	wpi_reset(struct wpi_softc *);
227static void	wpi_hw_config(struct wpi_softc *);
228static void	wpi_init(void *);
229static void	wpi_init_locked(struct wpi_softc *, int);
230static void	wpi_stop(struct wpi_softc *);
231static void	wpi_stop_locked(struct wpi_softc *);
232
233static void	wpi_newassoc(struct ieee80211_node *, int);
234static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
235		    int);
236static void	wpi_calib_timeout(void *);
237static void	wpi_power_calibration(struct wpi_softc *, int);
238static int	wpi_get_power_index(struct wpi_softc *,
239		    struct wpi_power_group *, struct ieee80211_channel *, int);
240static const char *wpi_cmd_str(int);
241static int wpi_probe(device_t);
242static int wpi_attach(device_t);
243static int wpi_detach(device_t);
244static int wpi_shutdown(device_t);
245static int wpi_suspend(device_t);
246static int wpi_resume(device_t);
247
248
249static device_method_t wpi_methods[] = {
250	/* Device interface */
251	DEVMETHOD(device_probe,		wpi_probe),
252	DEVMETHOD(device_attach,	wpi_attach),
253	DEVMETHOD(device_detach,	wpi_detach),
254	DEVMETHOD(device_shutdown,	wpi_shutdown),
255	DEVMETHOD(device_suspend,	wpi_suspend),
256	DEVMETHOD(device_resume,	wpi_resume),
257
258	{ 0, 0 }
259};
260
261static driver_t wpi_driver = {
262	"wpi",
263	wpi_methods,
264	sizeof (struct wpi_softc)
265};
266
267static devclass_t wpi_devclass;
268
269DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
270
271static const uint8_t wpi_ridx_to_plcp[] = {
272	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
273	/* R1-R4 (ral/ural is R4-R1) */
274	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
275	/* CCK: device-dependent */
276	10, 20, 55, 110
277};
278static const uint8_t wpi_ridx_to_rate[] = {
279	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
280	2, 4, 11, 22 /*CCK */
281};
282
283
284static int
285wpi_probe(device_t dev)
286{
287	const struct wpi_ident *ident;
288
289	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
290		if (pci_get_vendor(dev) == ident->vendor &&
291		    pci_get_device(dev) == ident->device) {
292			device_set_desc(dev, ident->name);
293			return 0;
294		}
295	}
296	return ENXIO;
297}
298
299/**
300 * Load the firmare image from disk to the allocated dma buffer.
301 * we also maintain the reference to the firmware pointer as there
302 * is times where we may need to reload the firmware but we are not
303 * in a context that can access the filesystem (ie taskq cause by restart)
304 *
305 * @return 0 on success, an errno on failure
306 */
307static int
308wpi_load_firmware(struct wpi_softc *sc)
309{
310	const struct firmware *fp;
311	struct wpi_dma_info *dma = &sc->fw_dma;
312	const struct wpi_firmware_hdr *hdr;
313	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
314	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
315	int error;
316
317	DPRINTFN(WPI_DEBUG_FIRMWARE,
318	    ("Attempting Loading Firmware from wpi_fw module\n"));
319
320	WPI_UNLOCK(sc);
321
322	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
323		device_printf(sc->sc_dev,
324		    "could not load firmware image 'wpifw'\n");
325		error = ENOENT;
326		WPI_LOCK(sc);
327		goto fail;
328	}
329
330	fp = sc->fw_fp;
331
332	WPI_LOCK(sc);
333
334	/* Validate the firmware is minimum a particular version */
335	if (fp->version < WPI_FW_MINVERSION) {
336	    device_printf(sc->sc_dev,
337			   "firmware version is too old. Need %d, got %d\n",
338			   WPI_FW_MINVERSION,
339			   fp->version);
340	    error = ENXIO;
341	    goto fail;
342	}
343
344	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
345		device_printf(sc->sc_dev,
346		    "firmware file too short: %zu bytes\n", fp->datasize);
347		error = ENXIO;
348		goto fail;
349	}
350
351	hdr = (const struct wpi_firmware_hdr *)fp->data;
352
353	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
354	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
355
356	rtextsz = le32toh(hdr->rtextsz);
357	rdatasz = le32toh(hdr->rdatasz);
358	itextsz = le32toh(hdr->itextsz);
359	idatasz = le32toh(hdr->idatasz);
360	btextsz = le32toh(hdr->btextsz);
361
362	/* check that all firmware segments are present */
363	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
364		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
365		device_printf(sc->sc_dev,
366		    "firmware file too short: %zu bytes\n", fp->datasize);
367		error = ENXIO; /* XXX appropriate error code? */
368		goto fail;
369	}
370
371	/* get pointers to firmware segments */
372	rtext = (const uint8_t *)(hdr + 1);
373	rdata = rtext + rtextsz;
374	itext = rdata + rdatasz;
375	idata = itext + itextsz;
376	btext = idata + idatasz;
377
378	DPRINTFN(WPI_DEBUG_FIRMWARE,
379	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
380	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
381	     (le32toh(hdr->version) & 0xff000000) >> 24,
382	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
383	     (le32toh(hdr->version) & 0x0000ffff),
384	     rtextsz, rdatasz,
385	     itextsz, idatasz, btextsz));
386
387	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
388	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
389	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
390	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
391	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
392
393	/* sanity checks */
394	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
395	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
396	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
397	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
398	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
399	    (btextsz & 3) != 0) {
400		device_printf(sc->sc_dev, "firmware invalid\n");
401		error = EINVAL;
402		goto fail;
403	}
404
405	/* copy initialization images into pre-allocated DMA-safe memory */
406	memcpy(dma->vaddr, idata, idatasz);
407	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
408
409	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
410
411	/* tell adapter where to find initialization images */
412	wpi_mem_lock(sc);
413	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
414	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
415	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
416	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
417	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
418	wpi_mem_unlock(sc);
419
420	/* load firmware boot code */
421	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
422	    device_printf(sc->sc_dev, "Failed to load microcode\n");
423	    goto fail;
424	}
425
426	/* now press "execute" */
427	WPI_WRITE(sc, WPI_RESET, 0);
428
429	/* wait at most one second for the first alive notification */
430	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
431		device_printf(sc->sc_dev,
432		    "timeout waiting for adapter to initialize\n");
433		goto fail;
434	}
435
436	/* copy runtime images into pre-allocated DMA-sage memory */
437	memcpy(dma->vaddr, rdata, rdatasz);
438	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
439	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
440
441	/* tell adapter where to find runtime images */
442	wpi_mem_lock(sc);
443	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
444	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
445	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
446	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
447	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
448	wpi_mem_unlock(sc);
449
450	/* wait at most one second for the first alive notification */
451	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
452		device_printf(sc->sc_dev,
453		    "timeout waiting for adapter to initialize2\n");
454		goto fail;
455	}
456
457	DPRINTFN(WPI_DEBUG_FIRMWARE,
458	    ("Firmware loaded to driver successfully\n"));
459	return error;
460fail:
461	wpi_unload_firmware(sc);
462	return error;
463}
464
465/**
466 * Free the referenced firmware image
467 */
468static void
469wpi_unload_firmware(struct wpi_softc *sc)
470{
471
472	if (sc->fw_fp) {
473		WPI_UNLOCK(sc);
474		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
475		WPI_LOCK(sc);
476		sc->fw_fp = NULL;
477	}
478}
479
480static int
481wpi_attach(device_t dev)
482{
483	struct wpi_softc *sc = device_get_softc(dev);
484	struct ifnet *ifp;
485	struct ieee80211com *ic;
486	int ac, error, supportsa = 1;
487	uint32_t tmp;
488	const struct wpi_ident *ident;
489
490	sc->sc_dev = dev;
491
492	if (bootverbose || wpi_debug)
493	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
494
495	/*
496	 * Some card's only support 802.11b/g not a, check to see if
497	 * this is one such card. A 0x0 in the subdevice table indicates
498	 * the entire subdevice range is to be ignored.
499	 */
500	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
501		if (ident->subdevice &&
502		    pci_get_subdevice(dev) == ident->subdevice) {
503		    supportsa = 0;
504		    break;
505		}
506	}
507
508	/*
509	 * Create the taskqueues used by the driver. Primarily
510	 * sc_tq handles most the task
511	 */
512	sc->sc_tq = taskqueue_create("wpi_taskq", M_NOWAIT | M_ZERO,
513	    taskqueue_thread_enqueue, &sc->sc_tq);
514	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
515	    device_get_nameunit(dev));
516
517	/* Create the tasks that can be queued */
518	TASK_INIT(&sc->sc_opstask, 0, wpi_ops, sc);
519
520	WPI_LOCK_INIT(sc);
521	WPI_CMD_LOCK_INIT(sc);
522
523	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
524	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
525
526	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
527		device_printf(dev, "chip is in D%d power mode "
528		    "-- setting to D0\n", pci_get_powerstate(dev));
529		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
530	}
531
532	/* disable the retry timeout register */
533	pci_write_config(dev, 0x41, 0, 1);
534
535	/* enable bus-mastering */
536	pci_enable_busmaster(dev);
537
538	sc->mem_rid = PCIR_BAR(0);
539	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
540	    RF_ACTIVE);
541	if (sc->mem == NULL) {
542		device_printf(dev, "could not allocate memory resource\n");
543		error = ENOMEM;
544		goto fail;
545	}
546
547	sc->sc_st = rman_get_bustag(sc->mem);
548	sc->sc_sh = rman_get_bushandle(sc->mem);
549
550	sc->irq_rid = 0;
551	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
552	    RF_ACTIVE | RF_SHAREABLE);
553	if (sc->irq == NULL) {
554		device_printf(dev, "could not allocate interrupt resource\n");
555		error = ENOMEM;
556		goto fail;
557	}
558
559	/*
560	 * Allocate DMA memory for firmware transfers.
561	 */
562	if ((error = wpi_alloc_fwmem(sc)) != 0) {
563		printf(": could not allocate firmware memory\n");
564		error = ENOMEM;
565		goto fail;
566	}
567
568	/*
569	 * Put adapter into a known state.
570	 */
571	if ((error = wpi_reset(sc)) != 0) {
572		device_printf(dev, "could not reset adapter\n");
573		goto fail;
574	}
575
576	wpi_mem_lock(sc);
577	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
578	if (bootverbose || wpi_debug)
579	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
580
581	wpi_mem_unlock(sc);
582
583	/* Allocate shared page */
584	if ((error = wpi_alloc_shared(sc)) != 0) {
585		device_printf(dev, "could not allocate shared page\n");
586		goto fail;
587	}
588
589	/* tx data queues  - 4 for QoS purposes */
590	for (ac = 0; ac < WME_NUM_AC; ac++) {
591		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
592		if (error != 0) {
593		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
594		    goto fail;
595		}
596	}
597
598	/* command queue to talk to the card's firmware */
599	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
600	if (error != 0) {
601		device_printf(dev, "could not allocate command ring\n");
602		goto fail;
603	}
604
605	/* receive data queue */
606	error = wpi_alloc_rx_ring(sc, &sc->rxq);
607	if (error != 0) {
608		device_printf(dev, "could not allocate Rx ring\n");
609		goto fail;
610	}
611
612	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
613	if (ifp == NULL) {
614		device_printf(dev, "can not if_alloc()\n");
615		error = ENOMEM;
616		goto fail;
617	}
618	ic = ifp->if_l2com;
619
620	ic->ic_ifp = ifp;
621	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
622	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
623
624	/* set device capabilities */
625	ic->ic_caps =
626		  IEEE80211_C_MONITOR		/* monitor mode supported */
627		| IEEE80211_C_TXPMGT		/* tx power management */
628		| IEEE80211_C_SHSLOT		/* short slot time supported */
629		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
630		| IEEE80211_C_WPA		/* 802.11i */
631/* XXX looks like WME is partly supported? */
632#if 0
633		| IEEE80211_C_IBSS		/* IBSS mode support */
634		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
635		| IEEE80211_C_WME		/* 802.11e */
636		| IEEE80211_C_HOSTAP		/* Host access point mode */
637#endif
638		;
639
640	/*
641	 * Read in the eeprom and also setup the channels for
642	 * net80211. We don't set the rates as net80211 does this for us
643	 */
644	wpi_read_eeprom(sc);
645
646	if (bootverbose || wpi_debug) {
647	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
648	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
649			  sc->type > 1 ? 'B': '?');
650	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
651			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
652	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
653			  supportsa ? "does" : "does not");
654
655	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
656	       what sc->rev really represents - benjsc 20070615 */
657	}
658
659	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
660	ifp->if_softc = sc;
661	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
662	ifp->if_init = wpi_init;
663	ifp->if_ioctl = wpi_ioctl;
664	ifp->if_start = wpi_start;
665	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
666	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
667	IFQ_SET_READY(&ifp->if_snd);
668
669	ieee80211_ifattach(ic);
670	/* override default methods */
671	ic->ic_node_alloc = wpi_node_alloc;
672	ic->ic_newassoc = wpi_newassoc;
673	ic->ic_raw_xmit = wpi_raw_xmit;
674	ic->ic_wme.wme_update = wpi_wme_update;
675	ic->ic_scan_start = wpi_scan_start;
676	ic->ic_scan_end = wpi_scan_end;
677	ic->ic_set_channel = wpi_set_channel;
678	ic->ic_scan_curchan = wpi_scan_curchan;
679	ic->ic_scan_mindwell = wpi_scan_mindwell;
680
681	ic->ic_vap_create = wpi_vap_create;
682	ic->ic_vap_delete = wpi_vap_delete;
683
684	bpfattach(ifp, DLT_IEEE802_11_RADIO,
685	    sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap));
686
687	sc->sc_rxtap_len = sizeof sc->sc_rxtap;
688	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
689	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
690
691	sc->sc_txtap_len = sizeof sc->sc_txtap;
692	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
693	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
694
695	/*
696	 * Hook our interrupt after all initialization is complete.
697	 */
698	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
699	    NULL, wpi_intr, sc, &sc->sc_ih);
700	if (error != 0) {
701		device_printf(dev, "could not set up interrupt\n");
702		goto fail;
703	}
704
705	if (bootverbose)
706		ieee80211_announce(ic);
707#ifdef XXX_DEBUG
708	ieee80211_announce_channels(ic);
709#endif
710	return 0;
711
712fail:	wpi_detach(dev);
713	return ENXIO;
714}
715
716static int
717wpi_detach(device_t dev)
718{
719	struct wpi_softc *sc = device_get_softc(dev);
720	struct ifnet *ifp = sc->sc_ifp;
721	struct ieee80211com *ic = ifp->if_l2com;
722	int ac;
723
724	if (ifp != NULL) {
725		wpi_stop(sc);
726		callout_drain(&sc->watchdog_to);
727		callout_drain(&sc->calib_to);
728		bpfdetach(ifp);
729		ieee80211_ifdetach(ic);
730	}
731
732	WPI_LOCK(sc);
733	if (sc->txq[0].data_dmat) {
734		for (ac = 0; ac < WME_NUM_AC; ac++)
735			wpi_free_tx_ring(sc, &sc->txq[ac]);
736
737		wpi_free_tx_ring(sc, &sc->cmdq);
738		wpi_free_rx_ring(sc, &sc->rxq);
739		wpi_free_shared(sc);
740	}
741
742	if (sc->fw_fp != NULL) {
743		wpi_unload_firmware(sc);
744	}
745
746	if (sc->fw_dma.tag)
747		wpi_free_fwmem(sc);
748	WPI_UNLOCK(sc);
749
750	if (sc->irq != NULL) {
751		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
752		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
753	}
754
755	if (sc->mem != NULL)
756		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
757
758	if (ifp != NULL)
759		if_free(ifp);
760
761	taskqueue_free(sc->sc_tq);
762
763	WPI_LOCK_DESTROY(sc);
764	WPI_CMD_LOCK_DESTROY(sc);
765
766	return 0;
767}
768
769static struct ieee80211vap *
770wpi_vap_create(struct ieee80211com *ic,
771	const char name[IFNAMSIZ], int unit, int opmode, int flags,
772	const uint8_t bssid[IEEE80211_ADDR_LEN],
773	const uint8_t mac[IEEE80211_ADDR_LEN])
774{
775	struct wpi_vap *wvp;
776	struct ieee80211vap *vap;
777
778	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
779		return NULL;
780	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
781	    M_80211_VAP, M_NOWAIT | M_ZERO);
782	if (wvp == NULL)
783		return NULL;
784	vap = &wvp->vap;
785	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
786	/* override with driver methods */
787	wvp->newstate = vap->iv_newstate;
788	vap->iv_newstate = wpi_newstate;
789
790	ieee80211_amrr_init(&wvp->amrr, vap,
791	    IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
792	    IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD,
793	    500 /*ms*/);
794
795	/* complete setup */
796	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
797	ic->ic_opmode = opmode;
798	return vap;
799}
800
801static void
802wpi_vap_delete(struct ieee80211vap *vap)
803{
804	struct wpi_vap *wvp = WPI_VAP(vap);
805
806	ieee80211_amrr_cleanup(&wvp->amrr);
807	ieee80211_vap_detach(vap);
808	free(wvp, M_80211_VAP);
809}
810
811static void
812wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
813{
814	if (error != 0)
815		return;
816
817	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
818
819	*(bus_addr_t *)arg = segs[0].ds_addr;
820}
821
822/*
823 * Allocates a contiguous block of dma memory of the requested size and
824 * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
825 * allocations greater than 4096 may fail. Hence if the requested alignment is
826 * greater we allocate 'alignment' size extra memory and shift the vaddr and
827 * paddr after the dma load. This bypasses the problem at the cost of a little
828 * more memory.
829 */
830static int
831wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
832    void **kvap, bus_size_t size, bus_size_t alignment, int flags)
833{
834	int error;
835	bus_size_t align;
836	bus_size_t reqsize;
837
838	DPRINTFN(WPI_DEBUG_DMA,
839	    ("Size: %zd - alignment %zd\n", size, alignment));
840
841	dma->size = size;
842	dma->tag = NULL;
843
844	if (alignment > 4096) {
845		align = PAGE_SIZE;
846		reqsize = size + alignment;
847	} else {
848		align = alignment;
849		reqsize = size;
850	}
851	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
852	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
853	    NULL, NULL, reqsize,
854	    1, reqsize, flags,
855	    NULL, NULL, &dma->tag);
856	if (error != 0) {
857		device_printf(sc->sc_dev,
858		    "could not create shared page DMA tag\n");
859		goto fail;
860	}
861	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
862	    flags | BUS_DMA_ZERO, &dma->map);
863	if (error != 0) {
864		device_printf(sc->sc_dev,
865		    "could not allocate shared page DMA memory\n");
866		goto fail;
867	}
868
869	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
870	    reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
871
872	/* Save the original pointers so we can free all the memory */
873	dma->paddr = dma->paddr_start;
874	dma->vaddr = dma->vaddr_start;
875
876	/*
877	 * Check the alignment and increment by 4096 until we get the
878	 * requested alignment. Fail if can't obtain the alignment
879	 * we requested.
880	 */
881	if ((dma->paddr & (alignment -1 )) != 0) {
882		int i;
883
884		for (i = 0; i < alignment / 4096; i++) {
885			if ((dma->paddr & (alignment - 1 )) == 0)
886				break;
887			dma->paddr += 4096;
888			dma->vaddr += 4096;
889		}
890		if (i == alignment / 4096) {
891			device_printf(sc->sc_dev,
892			    "alignment requirement was not satisfied\n");
893			goto fail;
894		}
895	}
896
897	if (error != 0) {
898		device_printf(sc->sc_dev,
899		    "could not load shared page DMA map\n");
900		goto fail;
901	}
902
903	if (kvap != NULL)
904		*kvap = dma->vaddr;
905
906	return 0;
907
908fail:
909	wpi_dma_contig_free(dma);
910	return error;
911}
912
913static void
914wpi_dma_contig_free(struct wpi_dma_info *dma)
915{
916	if (dma->tag) {
917		if (dma->map != NULL) {
918			if (dma->paddr_start != 0) {
919				bus_dmamap_sync(dma->tag, dma->map,
920				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
921				bus_dmamap_unload(dma->tag, dma->map);
922			}
923			bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
924		}
925		bus_dma_tag_destroy(dma->tag);
926	}
927}
928
929/*
930 * Allocate a shared page between host and NIC.
931 */
932static int
933wpi_alloc_shared(struct wpi_softc *sc)
934{
935	int error;
936
937	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
938	    (void **)&sc->shared, sizeof (struct wpi_shared),
939	    PAGE_SIZE,
940	    BUS_DMA_NOWAIT);
941
942	if (error != 0) {
943		device_printf(sc->sc_dev,
944		    "could not allocate shared area DMA memory\n");
945	}
946
947	return error;
948}
949
950static void
951wpi_free_shared(struct wpi_softc *sc)
952{
953	wpi_dma_contig_free(&sc->shared_dma);
954}
955
956static int
957wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
958{
959
960	int i, error;
961
962	ring->cur = 0;
963
964	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
965	    (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
966	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
967
968	if (error != 0) {
969		device_printf(sc->sc_dev,
970		    "%s: could not allocate rx ring DMA memory, error %d\n",
971		    __func__, error);
972		goto fail;
973	}
974
975        error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
976	    BUS_SPACE_MAXADDR_32BIT,
977            BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
978            MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
979        if (error != 0) {
980                device_printf(sc->sc_dev,
981		    "%s: bus_dma_tag_create_failed, error %d\n",
982		    __func__, error);
983                goto fail;
984        }
985
986	/*
987	 * Setup Rx buffers.
988	 */
989	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
990		struct wpi_rx_data *data = &ring->data[i];
991		struct mbuf *m;
992		bus_addr_t paddr;
993
994		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
995		if (error != 0) {
996			device_printf(sc->sc_dev,
997			    "%s: bus_dmamap_create failed, error %d\n",
998			    __func__, error);
999			goto fail;
1000		}
1001		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1002		if (m == NULL) {
1003			device_printf(sc->sc_dev,
1004			   "%s: could not allocate rx mbuf\n", __func__);
1005			error = ENOMEM;
1006			goto fail;
1007		}
1008		/* map page */
1009		error = bus_dmamap_load(ring->data_dmat, data->map,
1010		    mtod(m, caddr_t), MJUMPAGESIZE,
1011		    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1012		if (error != 0 && error != EFBIG) {
1013			device_printf(sc->sc_dev,
1014			    "%s: bus_dmamap_load failed, error %d\n",
1015			    __func__, error);
1016			m_freem(m);
1017			error = ENOMEM;	/* XXX unique code */
1018			goto fail;
1019		}
1020		bus_dmamap_sync(ring->data_dmat, data->map,
1021		    BUS_DMASYNC_PREWRITE);
1022
1023		data->m = m;
1024		ring->desc[i] = htole32(paddr);
1025	}
1026	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1027	    BUS_DMASYNC_PREWRITE);
1028	return 0;
1029fail:
1030	wpi_free_rx_ring(sc, ring);
1031	return error;
1032}
1033
1034static void
1035wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1036{
1037	int ntries;
1038
1039	wpi_mem_lock(sc);
1040
1041	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1042
1043	for (ntries = 0; ntries < 100; ntries++) {
1044		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1045			break;
1046		DELAY(10);
1047	}
1048
1049	wpi_mem_unlock(sc);
1050
1051#ifdef WPI_DEBUG
1052	if (ntries == 100)
1053		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1054#endif
1055
1056	ring->cur = 0;
1057}
1058
1059static void
1060wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1061{
1062	int i;
1063
1064	wpi_dma_contig_free(&ring->desc_dma);
1065
1066	for (i = 0; i < WPI_RX_RING_COUNT; i++)
1067		if (ring->data[i].m != NULL)
1068			m_freem(ring->data[i].m);
1069}
1070
1071static int
1072wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1073	int qid)
1074{
1075	struct wpi_tx_data *data;
1076	int i, error;
1077
1078	ring->qid = qid;
1079	ring->count = count;
1080	ring->queued = 0;
1081	ring->cur = 0;
1082	ring->data = NULL;
1083
1084	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1085		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1086		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1087
1088	if (error != 0) {
1089	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1090	    goto fail;
1091	}
1092
1093	/* update shared page with ring's base address */
1094	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1095
1096	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1097		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1098		BUS_DMA_NOWAIT);
1099
1100	if (error != 0) {
1101		device_printf(sc->sc_dev,
1102		    "could not allocate tx command DMA memory\n");
1103		goto fail;
1104	}
1105
1106	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1107	    M_NOWAIT | M_ZERO);
1108	if (ring->data == NULL) {
1109		device_printf(sc->sc_dev,
1110		    "could not allocate tx data slots\n");
1111		goto fail;
1112	}
1113
1114	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1115	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1116	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1117	    &ring->data_dmat);
1118	if (error != 0) {
1119		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1120		goto fail;
1121	}
1122
1123	for (i = 0; i < count; i++) {
1124		data = &ring->data[i];
1125
1126		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1127		if (error != 0) {
1128			device_printf(sc->sc_dev,
1129			    "could not create tx buf DMA map\n");
1130			goto fail;
1131		}
1132		bus_dmamap_sync(ring->data_dmat, data->map,
1133		    BUS_DMASYNC_PREWRITE);
1134	}
1135
1136	return 0;
1137
1138fail:
1139	wpi_free_tx_ring(sc, ring);
1140	return error;
1141}
1142
1143static void
1144wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1145{
1146	struct wpi_tx_data *data;
1147	int i, ntries;
1148
1149	wpi_mem_lock(sc);
1150
1151	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1152	for (ntries = 0; ntries < 100; ntries++) {
1153		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1154			break;
1155		DELAY(10);
1156	}
1157#ifdef WPI_DEBUG
1158	if (ntries == 100)
1159		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1160		    ring->qid);
1161#endif
1162	wpi_mem_unlock(sc);
1163
1164	for (i = 0; i < ring->count; i++) {
1165		data = &ring->data[i];
1166
1167		if (data->m != NULL) {
1168			bus_dmamap_unload(ring->data_dmat, data->map);
1169			m_freem(data->m);
1170			data->m = NULL;
1171		}
1172	}
1173
1174	ring->queued = 0;
1175	ring->cur = 0;
1176}
1177
1178static void
1179wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1180{
1181	struct wpi_tx_data *data;
1182	int i;
1183
1184	wpi_dma_contig_free(&ring->desc_dma);
1185	wpi_dma_contig_free(&ring->cmd_dma);
1186
1187	if (ring->data != NULL) {
1188		for (i = 0; i < ring->count; i++) {
1189			data = &ring->data[i];
1190
1191			if (data->m != NULL) {
1192				bus_dmamap_sync(ring->data_dmat, data->map,
1193				    BUS_DMASYNC_POSTWRITE);
1194				bus_dmamap_unload(ring->data_dmat, data->map);
1195				m_freem(data->m);
1196				data->m = NULL;
1197			}
1198		}
1199		free(ring->data, M_DEVBUF);
1200	}
1201
1202	if (ring->data_dmat != NULL)
1203		bus_dma_tag_destroy(ring->data_dmat);
1204}
1205
1206static int
1207wpi_shutdown(device_t dev)
1208{
1209	struct wpi_softc *sc = device_get_softc(dev);
1210
1211	WPI_LOCK(sc);
1212	wpi_stop_locked(sc);
1213	wpi_unload_firmware(sc);
1214	WPI_UNLOCK(sc);
1215
1216	return 0;
1217}
1218
1219static int
1220wpi_suspend(device_t dev)
1221{
1222	struct wpi_softc *sc = device_get_softc(dev);
1223
1224	wpi_stop(sc);
1225	return 0;
1226}
1227
1228static int
1229wpi_resume(device_t dev)
1230{
1231	struct wpi_softc *sc = device_get_softc(dev);
1232	struct ifnet *ifp = sc->sc_ifp;
1233
1234	pci_write_config(dev, 0x41, 0, 1);
1235
1236	if (ifp->if_flags & IFF_UP) {
1237		wpi_init(ifp->if_softc);
1238		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1239			wpi_start(ifp);
1240	}
1241	return 0;
1242}
1243
1244/* ARGSUSED */
1245static struct ieee80211_node *
1246wpi_node_alloc(struct ieee80211_node_table *ic)
1247{
1248	struct wpi_node *wn;
1249
1250	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1251
1252	return &wn->ni;
1253}
1254
1255/**
1256 * Called by net80211 when ever there is a change to 80211 state machine
1257 */
1258static int
1259wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1260{
1261	struct wpi_vap *wvp = WPI_VAP(vap);
1262	struct ieee80211com *ic = vap->iv_ic;
1263	struct ifnet *ifp = ic->ic_ifp;
1264	struct wpi_softc *sc = ifp->if_softc;
1265	int error;
1266
1267	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1268		ieee80211_state_name[vap->iv_state],
1269		ieee80211_state_name[nstate], sc->flags));
1270
1271	if (nstate == IEEE80211_S_AUTH) {
1272		/* Delay the auth transition until we can update the firmware */
1273		error = wpi_queue_cmd(sc, WPI_AUTH, arg, WPI_QUEUE_NORMAL);
1274		return (error != 0 ? error : EINPROGRESS);
1275	}
1276	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1277		/* set the association id first */
1278		error = wpi_queue_cmd(sc, WPI_RUN, arg, WPI_QUEUE_NORMAL);
1279		return (error != 0 ? error : EINPROGRESS);
1280	}
1281	if (nstate == IEEE80211_S_RUN) {
1282		/* RUN -> RUN transition; just restart the timers */
1283		wpi_calib_timeout(sc);
1284		/* XXX split out rate control timer */
1285	}
1286	return wvp->newstate(vap, nstate, arg);
1287}
1288
1289/*
1290 * Grab exclusive access to NIC memory.
1291 */
1292static void
1293wpi_mem_lock(struct wpi_softc *sc)
1294{
1295	int ntries;
1296	uint32_t tmp;
1297
1298	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1299	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1300
1301	/* spin until we actually get the lock */
1302	for (ntries = 0; ntries < 100; ntries++) {
1303		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1304			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1305			break;
1306		DELAY(10);
1307	}
1308	if (ntries == 100)
1309		device_printf(sc->sc_dev, "could not lock memory\n");
1310}
1311
1312/*
1313 * Release lock on NIC memory.
1314 */
1315static void
1316wpi_mem_unlock(struct wpi_softc *sc)
1317{
1318	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1319	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1320}
1321
1322static uint32_t
1323wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1324{
1325	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1326	return WPI_READ(sc, WPI_READ_MEM_DATA);
1327}
1328
1329static void
1330wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1331{
1332	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1333	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1334}
1335
1336static void
1337wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1338    const uint32_t *data, int wlen)
1339{
1340	for (; wlen > 0; wlen--, data++, addr+=4)
1341		wpi_mem_write(sc, addr, *data);
1342}
1343
1344/*
1345 * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1346 * using the traditional bit-bang method. Data is read up until len bytes have
1347 * been obtained.
1348 */
1349static uint16_t
1350wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1351{
1352	int ntries;
1353	uint32_t val;
1354	uint8_t *out = data;
1355
1356	wpi_mem_lock(sc);
1357
1358	for (; len > 0; len -= 2, addr++) {
1359		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1360
1361		for (ntries = 0; ntries < 10; ntries++) {
1362			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1363				break;
1364			DELAY(5);
1365		}
1366
1367		if (ntries == 10) {
1368			device_printf(sc->sc_dev, "could not read EEPROM\n");
1369			return ETIMEDOUT;
1370		}
1371
1372		*out++= val >> 16;
1373		if (len > 1)
1374			*out ++= val >> 24;
1375	}
1376
1377	wpi_mem_unlock(sc);
1378
1379	return 0;
1380}
1381
1382/*
1383 * The firmware text and data segments are transferred to the NIC using DMA.
1384 * The driver just copies the firmware into DMA-safe memory and tells the NIC
1385 * where to find it.  Once the NIC has copied the firmware into its internal
1386 * memory, we can free our local copy in the driver.
1387 */
1388static int
1389wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1390{
1391	int error, ntries;
1392
1393	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1394
1395	size /= sizeof(uint32_t);
1396
1397	wpi_mem_lock(sc);
1398
1399	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1400	    (const uint32_t *)fw, size);
1401
1402	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1403	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1404	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1405
1406	/* run microcode */
1407	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1408
1409	/* wait while the adapter is busy copying the firmware */
1410	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1411		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1412		DPRINTFN(WPI_DEBUG_HW,
1413		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1414		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1415		if (status & WPI_TX_IDLE(6)) {
1416			DPRINTFN(WPI_DEBUG_HW,
1417			    ("Status Match! - ntries = %d\n", ntries));
1418			break;
1419		}
1420		DELAY(10);
1421	}
1422	if (ntries == 1000) {
1423		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1424		error = ETIMEDOUT;
1425	}
1426
1427	/* start the microcode executing */
1428	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1429
1430	wpi_mem_unlock(sc);
1431
1432	return (error);
1433}
1434
1435static void
1436wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1437	struct wpi_rx_data *data)
1438{
1439	struct ifnet *ifp = sc->sc_ifp;
1440	struct ieee80211com *ic = ifp->if_l2com;
1441	struct wpi_rx_ring *ring = &sc->rxq;
1442	struct wpi_rx_stat *stat;
1443	struct wpi_rx_head *head;
1444	struct wpi_rx_tail *tail;
1445	struct ieee80211_node *ni;
1446	struct mbuf *m, *mnew;
1447	bus_addr_t paddr;
1448	int error;
1449
1450	stat = (struct wpi_rx_stat *)(desc + 1);
1451
1452	if (stat->len > WPI_STAT_MAXLEN) {
1453		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1454		ifp->if_ierrors++;
1455		return;
1456	}
1457
1458	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1459	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1460
1461	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1462	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1463	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1464	    (uintmax_t)le64toh(tail->tstamp)));
1465
1466	/* XXX don't need mbuf, just dma buffer */
1467	mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1468	if (mnew == NULL) {
1469		DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1470		    __func__));
1471		ic->ic_stats.is_rx_nobuf++;
1472		ifp->if_ierrors++;
1473		return;
1474	}
1475	error = bus_dmamap_load(ring->data_dmat, data->map,
1476	    mtod(mnew, caddr_t), MJUMPAGESIZE,
1477	    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1478	if (error != 0 && error != EFBIG) {
1479		device_printf(sc->sc_dev,
1480		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1481		m_freem(mnew);
1482		ic->ic_stats.is_rx_nobuf++;	/* XXX need stat */
1483		ifp->if_ierrors++;
1484		return;
1485	}
1486	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1487
1488	/* finalize mbuf and swap in new one */
1489	m = data->m;
1490	m->m_pkthdr.rcvif = ifp;
1491	m->m_data = (caddr_t)(head + 1);
1492	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1493
1494	data->m = mnew;
1495	/* update Rx descriptor */
1496	ring->desc[ring->cur] = htole32(paddr);
1497
1498	if (bpf_peers_present(ifp->if_bpf)) {
1499		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1500
1501		tap->wr_flags = 0;
1502		tap->wr_chan_freq =
1503			htole16(ic->ic_channels[head->chan].ic_freq);
1504		tap->wr_chan_flags =
1505			htole16(ic->ic_channels[head->chan].ic_flags);
1506		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1507		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1508		tap->wr_tsft = tail->tstamp;
1509		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1510		switch (head->rate) {
1511		/* CCK rates */
1512		case  10: tap->wr_rate =   2; break;
1513		case  20: tap->wr_rate =   4; break;
1514		case  55: tap->wr_rate =  11; break;
1515		case 110: tap->wr_rate =  22; break;
1516		/* OFDM rates */
1517		case 0xd: tap->wr_rate =  12; break;
1518		case 0xf: tap->wr_rate =  18; break;
1519		case 0x5: tap->wr_rate =  24; break;
1520		case 0x7: tap->wr_rate =  36; break;
1521		case 0x9: tap->wr_rate =  48; break;
1522		case 0xb: tap->wr_rate =  72; break;
1523		case 0x1: tap->wr_rate =  96; break;
1524		case 0x3: tap->wr_rate = 108; break;
1525		/* unknown rate: should not happen */
1526		default:  tap->wr_rate =   0;
1527		}
1528		if (le16toh(head->flags) & 0x4)
1529			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1530
1531		bpf_mtap2(ifp->if_bpf, tap, sc->sc_rxtap_len, m);
1532	}
1533
1534	WPI_UNLOCK(sc);
1535
1536	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1537	if (ni != NULL) {
1538		(void) ieee80211_input(ni, m, stat->rssi, 0, 0);
1539		ieee80211_free_node(ni);
1540	} else
1541		(void) ieee80211_input_all(ic, m, stat->rssi, 0, 0);
1542
1543	WPI_LOCK(sc);
1544}
1545
1546static void
1547wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1548{
1549	struct ifnet *ifp = sc->sc_ifp;
1550	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1551	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1552	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1553	struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1554
1555	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1556	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1557	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1558	    le32toh(stat->status)));
1559
1560	/*
1561	 * Update rate control statistics for the node.
1562	 * XXX we should not count mgmt frames since they're always sent at
1563	 * the lowest available bit-rate.
1564	 * XXX frames w/o ACK shouldn't be used either
1565	 */
1566	wn->amn.amn_txcnt++;
1567	if (stat->ntries > 0) {
1568		DPRINTFN(3, ("%d retries\n", stat->ntries));
1569		wn->amn.amn_retrycnt++;
1570	}
1571
1572	/* XXX oerrors should only count errors !maxtries */
1573	if ((le32toh(stat->status) & 0xff) != 1)
1574		ifp->if_oerrors++;
1575	else
1576		ifp->if_opackets++;
1577
1578	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1579	bus_dmamap_unload(ring->data_dmat, txdata->map);
1580	/* XXX handle M_TXCB? */
1581	m_freem(txdata->m);
1582	txdata->m = NULL;
1583	ieee80211_free_node(txdata->ni);
1584	txdata->ni = NULL;
1585
1586	ring->queued--;
1587
1588	sc->sc_tx_timer = 0;
1589	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1590	wpi_start_locked(ifp);
1591}
1592
1593static void
1594wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1595{
1596	struct wpi_tx_ring *ring = &sc->cmdq;
1597	struct wpi_tx_data *data;
1598
1599	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1600				 "type=%s len=%d\n", desc->qid, desc->idx,
1601				 desc->flags, wpi_cmd_str(desc->type),
1602				 le32toh(desc->len)));
1603
1604	if ((desc->qid & 7) != 4)
1605		return;	/* not a command ack */
1606
1607	data = &ring->data[desc->idx];
1608
1609	/* if the command was mapped in a mbuf, free it */
1610	if (data->m != NULL) {
1611		bus_dmamap_unload(ring->data_dmat, data->map);
1612		m_freem(data->m);
1613		data->m = NULL;
1614	}
1615
1616	sc->flags &= ~WPI_FLAG_BUSY;
1617	wakeup(&ring->cmd[desc->idx]);
1618}
1619
1620static void
1621wpi_notif_intr(struct wpi_softc *sc)
1622{
1623	struct ifnet *ifp = sc->sc_ifp;
1624	struct ieee80211com *ic = ifp->if_l2com;
1625	struct wpi_rx_desc *desc;
1626	struct wpi_rx_data *data;
1627	uint32_t hw;
1628
1629	hw = le32toh(sc->shared->next);
1630	while (sc->rxq.cur != hw) {
1631		data = &sc->rxq.data[sc->rxq.cur];
1632		desc = (void *)data->m->m_ext.ext_buf;
1633
1634		DPRINTFN(WPI_DEBUG_NOTIFY,
1635			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1636			  desc->qid,
1637			  desc->idx,
1638			  desc->flags,
1639			  desc->type,
1640			  le32toh(desc->len)));
1641
1642		if (!(desc->qid & 0x80))	/* reply to a command */
1643			wpi_cmd_intr(sc, desc);
1644
1645		switch (desc->type) {
1646		case WPI_RX_DONE:
1647			/* a 802.11 frame was received */
1648			wpi_rx_intr(sc, desc, data);
1649			break;
1650
1651		case WPI_TX_DONE:
1652			/* a 802.11 frame has been transmitted */
1653			wpi_tx_intr(sc, desc);
1654			break;
1655
1656		case WPI_UC_READY:
1657		{
1658			struct wpi_ucode_info *uc =
1659				(struct wpi_ucode_info *)(desc + 1);
1660
1661			/* the microcontroller is ready */
1662			DPRINTF(("microcode alive notification version %x "
1663				"alive %x\n", le32toh(uc->version),
1664				le32toh(uc->valid)));
1665
1666			if (le32toh(uc->valid) != 1) {
1667				device_printf(sc->sc_dev,
1668				    "microcontroller initialization failed\n");
1669				wpi_stop_locked(sc);
1670			}
1671			break;
1672		}
1673		case WPI_STATE_CHANGED:
1674		{
1675			uint32_t *status = (uint32_t *)(desc + 1);
1676
1677			/* enabled/disabled notification */
1678			DPRINTF(("state changed to %x\n", le32toh(*status)));
1679
1680			if (le32toh(*status) & 1) {
1681				device_printf(sc->sc_dev,
1682				    "Radio transmitter is switched off\n");
1683				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1684				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1685				/* Disable firmware commands */
1686				WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1687			}
1688			break;
1689		}
1690		case WPI_START_SCAN:
1691		{
1692			struct wpi_start_scan *scan =
1693				(struct wpi_start_scan *)(desc + 1);
1694
1695			DPRINTFN(WPI_DEBUG_SCANNING,
1696				 ("scanning channel %d status %x\n",
1697			    scan->chan, le32toh(scan->status)));
1698			break;
1699		}
1700		case WPI_STOP_SCAN:
1701		{
1702			struct wpi_stop_scan *scan =
1703				(struct wpi_stop_scan *)(desc + 1);
1704			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1705
1706			DPRINTFN(WPI_DEBUG_SCANNING,
1707			    ("scan finished nchan=%d status=%d chan=%d\n",
1708			     scan->nchan, scan->status, scan->chan));
1709
1710			sc->sc_scan_timer = 0;
1711			ieee80211_scan_next(vap);
1712			break;
1713		}
1714		case WPI_MISSED_BEACON:
1715		{
1716			struct wpi_missed_beacon *beacon =
1717				(struct wpi_missed_beacon *)(desc + 1);
1718			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1719
1720			if (le32toh(beacon->consecutive) >=
1721			    vap->iv_bmissthreshold) {
1722				DPRINTF(("Beacon miss: %u >= %u\n",
1723					 le32toh(beacon->consecutive),
1724					 vap->iv_bmissthreshold));
1725				ieee80211_beacon_miss(ic);
1726			}
1727			break;
1728		}
1729		}
1730
1731		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1732	}
1733
1734	/* tell the firmware what we have processed */
1735	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1736	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1737}
1738
1739static void
1740wpi_intr(void *arg)
1741{
1742	struct wpi_softc *sc = arg;
1743	uint32_t r;
1744
1745	WPI_LOCK(sc);
1746
1747	r = WPI_READ(sc, WPI_INTR);
1748	if (r == 0 || r == 0xffffffff) {
1749		WPI_UNLOCK(sc);
1750		return;
1751	}
1752
1753	/* disable interrupts */
1754	WPI_WRITE(sc, WPI_MASK, 0);
1755	/* ack interrupts */
1756	WPI_WRITE(sc, WPI_INTR, r);
1757
1758	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1759		device_printf(sc->sc_dev, "fatal firmware error\n");
1760		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1761				"(Hardware Error)"));
1762		wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR);
1763		sc->flags &= ~WPI_FLAG_BUSY;
1764		WPI_UNLOCK(sc);
1765		return;
1766	}
1767
1768	if (r & WPI_RX_INTR)
1769		wpi_notif_intr(sc);
1770
1771	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1772		wakeup(sc);
1773
1774	/* re-enable interrupts */
1775	if (sc->sc_ifp->if_flags & IFF_UP)
1776		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1777
1778	WPI_UNLOCK(sc);
1779}
1780
1781static uint8_t
1782wpi_plcp_signal(int rate)
1783{
1784	switch (rate) {
1785	/* CCK rates (returned values are device-dependent) */
1786	case 2:		return 10;
1787	case 4:		return 20;
1788	case 11:	return 55;
1789	case 22:	return 110;
1790
1791	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1792	/* R1-R4 (ral/ural is R4-R1) */
1793	case 12:	return 0xd;
1794	case 18:	return 0xf;
1795	case 24:	return 0x5;
1796	case 36:	return 0x7;
1797	case 48:	return 0x9;
1798	case 72:	return 0xb;
1799	case 96:	return 0x1;
1800	case 108:	return 0x3;
1801
1802	/* unsupported rates (should not get there) */
1803	default:	return 0;
1804	}
1805}
1806
1807/* quickly determine if a given rate is CCK or OFDM */
1808#define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1809
1810/*
1811 * Construct the data packet for a transmit buffer and acutally put
1812 * the buffer onto the transmit ring, kicking the card to process the
1813 * the buffer.
1814 */
1815static int
1816wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1817	int ac)
1818{
1819	struct ieee80211vap *vap = ni->ni_vap;
1820	struct ifnet *ifp = sc->sc_ifp;
1821	struct ieee80211com *ic = ifp->if_l2com;
1822	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1823	struct wpi_tx_ring *ring = &sc->txq[ac];
1824	struct wpi_tx_desc *desc;
1825	struct wpi_tx_data *data;
1826	struct wpi_tx_cmd *cmd;
1827	struct wpi_cmd_data *tx;
1828	struct ieee80211_frame *wh;
1829	const struct ieee80211_txparam *tp;
1830	struct ieee80211_key *k;
1831	struct mbuf *mnew;
1832	int i, error, nsegs, rate, hdrlen, ismcast;
1833	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1834
1835	desc = &ring->desc[ring->cur];
1836	data = &ring->data[ring->cur];
1837
1838	wh = mtod(m0, struct ieee80211_frame *);
1839
1840	hdrlen = ieee80211_hdrsize(wh);
1841	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1842
1843	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1844		k = ieee80211_crypto_encap(ni, m0);
1845		if (k == NULL) {
1846			m_freem(m0);
1847			return ENOBUFS;
1848		}
1849		/* packet header may have moved, reset our local pointer */
1850		wh = mtod(m0, struct ieee80211_frame *);
1851	}
1852
1853	cmd = &ring->cmd[ring->cur];
1854	cmd->code = WPI_CMD_TX_DATA;
1855	cmd->flags = 0;
1856	cmd->qid = ring->qid;
1857	cmd->idx = ring->cur;
1858
1859	tx = (struct wpi_cmd_data *)cmd->data;
1860	tx->flags = htole32(WPI_TX_AUTO_SEQ);
1861	tx->timeout = htole16(0);
1862	tx->ofdm_mask = 0xff;
1863	tx->cck_mask = 0x0f;
1864	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1865	tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1866	tx->len = htole16(m0->m_pkthdr.len);
1867
1868	if (!ismcast) {
1869		if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1870		    !cap->cap_wmeParams[ac].wmep_noackPolicy)
1871			tx->flags |= htole32(WPI_TX_NEED_ACK);
1872		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1873			tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1874			tx->rts_ntries = 7;
1875		}
1876	}
1877	/* pick a rate */
1878	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1879	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1880		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1881		/* tell h/w to set timestamp in probe responses */
1882		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1883			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1884		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1885		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1886			tx->timeout = htole16(3);
1887		else
1888			tx->timeout = htole16(2);
1889		rate = tp->mgmtrate;
1890	} else if (ismcast) {
1891		rate = tp->mcastrate;
1892	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1893		rate = tp->ucastrate;
1894	} else {
1895		(void) ieee80211_amrr_choose(ni, &WPI_NODE(ni)->amn);
1896		rate = ni->ni_txrate;
1897	}
1898	tx->rate = wpi_plcp_signal(rate);
1899
1900	/* be very persistant at sending frames out */
1901#if 0
1902	tx->data_ntries = tp->maxretry;
1903#else
1904	tx->data_ntries = 15;		/* XXX way too high */
1905#endif
1906
1907	if (bpf_peers_present(ifp->if_bpf)) {
1908		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1909		tap->wt_flags = 0;
1910		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1911		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1912		tap->wt_rate = rate;
1913		tap->wt_hwqueue = ac;
1914		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1915			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1916
1917		bpf_mtap2(ifp->if_bpf, tap, sc->sc_txtap_len, m0);
1918	}
1919
1920	/* save and trim IEEE802.11 header */
1921	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1922	m_adj(m0, hdrlen);
1923
1924	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
1925	    &nsegs, BUS_DMA_NOWAIT);
1926	if (error != 0 && error != EFBIG) {
1927		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1928		    error);
1929		m_freem(m0);
1930		return error;
1931	}
1932	if (error != 0) {
1933		/* XXX use m_collapse */
1934		mnew = m_defrag(m0, M_DONTWAIT);
1935		if (mnew == NULL) {
1936			device_printf(sc->sc_dev,
1937			    "could not defragment mbuf\n");
1938			m_freem(m0);
1939			return ENOBUFS;
1940		}
1941		m0 = mnew;
1942
1943		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
1944		    m0, segs, &nsegs, BUS_DMA_NOWAIT);
1945		if (error != 0) {
1946			device_printf(sc->sc_dev,
1947			    "could not map mbuf (error %d)\n", error);
1948			m_freem(m0);
1949			return error;
1950		}
1951	}
1952
1953	data->m = m0;
1954	data->ni = ni;
1955
1956	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1957	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
1958
1959	/* first scatter/gather segment is used by the tx data command */
1960	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1961	    (1 + nsegs) << 24);
1962	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1963	    ring->cur * sizeof (struct wpi_tx_cmd));
1964	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
1965	for (i = 1; i <= nsegs; i++) {
1966		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
1967		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
1968	}
1969
1970	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1971	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1972	    BUS_DMASYNC_PREWRITE);
1973
1974	ring->queued++;
1975
1976	/* kick ring */
1977	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1978	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1979
1980	return 0;
1981}
1982
1983/**
1984 * Process data waiting to be sent on the IFNET output queue
1985 */
1986static void
1987wpi_start(struct ifnet *ifp)
1988{
1989	struct wpi_softc *sc = ifp->if_softc;
1990
1991	WPI_LOCK(sc);
1992	wpi_start_locked(ifp);
1993	WPI_UNLOCK(sc);
1994}
1995
1996static void
1997wpi_start_locked(struct ifnet *ifp)
1998{
1999	struct wpi_softc *sc = ifp->if_softc;
2000	struct ieee80211_node *ni;
2001	struct mbuf *m;
2002	int ac;
2003
2004	WPI_LOCK_ASSERT(sc);
2005
2006	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2007		return;
2008
2009	for (;;) {
2010		IFQ_POLL(&ifp->if_snd, m);
2011		if (m == NULL)
2012			break;
2013		/* no QoS encapsulation for EAPOL frames */
2014		ac = M_WME_GETAC(m);
2015		if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2016			/* there is no place left in this ring */
2017			IFQ_DRV_PREPEND(&ifp->if_snd, m);
2018			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2019			break;
2020		}
2021		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2022		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2023		m = ieee80211_encap(ni, m);
2024		if (m == NULL) {
2025			ieee80211_free_node(ni);
2026			ifp->if_oerrors++;
2027			continue;
2028		}
2029		if (wpi_tx_data(sc, m, ni, ac) != 0) {
2030			ieee80211_free_node(ni);
2031			ifp->if_oerrors++;
2032			break;
2033		}
2034		sc->sc_tx_timer = 5;
2035	}
2036}
2037
2038static int
2039wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2040	const struct ieee80211_bpf_params *params)
2041{
2042	struct ieee80211com *ic = ni->ni_ic;
2043	struct ifnet *ifp = ic->ic_ifp;
2044	struct wpi_softc *sc = ifp->if_softc;
2045
2046	/* prevent management frames from being sent if we're not ready */
2047	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2048		m_freem(m);
2049		ieee80211_free_node(ni);
2050		return ENETDOWN;
2051	}
2052	WPI_LOCK(sc);
2053
2054	/* management frames go into ring 0 */
2055	if (sc->txq[0].queued > sc->txq[0].count - 8) {
2056		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2057		m_freem(m);
2058		WPI_UNLOCK(sc);
2059		ieee80211_free_node(ni);
2060		return ENOBUFS;		/* XXX */
2061	}
2062
2063	ifp->if_opackets++;
2064	if (wpi_tx_data(sc, m, ni, 0) != 0)
2065		goto bad;
2066	sc->sc_tx_timer = 5;
2067	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2068
2069	WPI_UNLOCK(sc);
2070	return 0;
2071bad:
2072	ifp->if_oerrors++;
2073	WPI_UNLOCK(sc);
2074	ieee80211_free_node(ni);
2075	return EIO;		/* XXX */
2076}
2077
2078static int
2079wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2080{
2081	struct wpi_softc *sc = ifp->if_softc;
2082	struct ieee80211com *ic = ifp->if_l2com;
2083	struct ifreq *ifr = (struct ifreq *) data;
2084	int error = 0, startall = 0;
2085
2086	switch (cmd) {
2087	case SIOCSIFFLAGS:
2088		WPI_LOCK(sc);
2089		if ((ifp->if_flags & IFF_UP)) {
2090			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2091				wpi_init_locked(sc, 0);
2092				startall = 1;
2093			}
2094		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2095			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2096			wpi_stop_locked(sc);
2097		WPI_UNLOCK(sc);
2098		if (startall)
2099			ieee80211_start_all(ic);
2100		break;
2101	case SIOCGIFMEDIA:
2102		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2103		break;
2104	case SIOCGIFADDR:
2105		error = ether_ioctl(ifp, cmd, data);
2106		break;
2107	default:
2108		error = EINVAL;
2109		break;
2110	}
2111	return error;
2112}
2113
2114/*
2115 * Extract various information from EEPROM.
2116 */
2117static void
2118wpi_read_eeprom(struct wpi_softc *sc)
2119{
2120	struct ifnet *ifp = sc->sc_ifp;
2121	struct ieee80211com *ic = ifp->if_l2com;
2122	int i;
2123
2124	/* read the hardware capabilities, revision and SKU type */
2125	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2126	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2127	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2128
2129	/* read the regulatory domain */
2130	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2131
2132	/* read in the hw MAC address */
2133	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2134
2135	/* read the list of authorized channels */
2136	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2137		wpi_read_eeprom_channels(sc,i);
2138
2139	/* read the power level calibration info for each group */
2140	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2141		wpi_read_eeprom_group(sc,i);
2142}
2143
2144/*
2145 * Send a command to the firmware.
2146 */
2147static int
2148wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2149{
2150	struct wpi_tx_ring *ring = &sc->cmdq;
2151	struct wpi_tx_desc *desc;
2152	struct wpi_tx_cmd *cmd;
2153
2154#ifdef WPI_DEBUG
2155	if (!async) {
2156		WPI_LOCK_ASSERT(sc);
2157	}
2158#endif
2159
2160	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2161		    async));
2162
2163	if (sc->flags & WPI_FLAG_BUSY) {
2164		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2165		    __func__, code);
2166		return EAGAIN;
2167	}
2168	sc->flags|= WPI_FLAG_BUSY;
2169
2170	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2171	    code, size));
2172
2173	desc = &ring->desc[ring->cur];
2174	cmd = &ring->cmd[ring->cur];
2175
2176	cmd->code = code;
2177	cmd->flags = 0;
2178	cmd->qid = ring->qid;
2179	cmd->idx = ring->cur;
2180	memcpy(cmd->data, buf, size);
2181
2182	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2183	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2184		ring->cur * sizeof (struct wpi_tx_cmd));
2185	desc->segs[0].len  = htole32(4 + size);
2186
2187	/* kick cmd ring */
2188	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2189	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2190
2191	if (async) {
2192		sc->flags &= ~ WPI_FLAG_BUSY;
2193		return 0;
2194	}
2195
2196	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2197}
2198
2199static int
2200wpi_wme_update(struct ieee80211com *ic)
2201{
2202#define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2203#define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2204	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2205	const struct wmeParams *wmep;
2206	struct wpi_wme_setup wme;
2207	int ac;
2208
2209	/* don't override default WME values if WME is not actually enabled */
2210	if (!(ic->ic_flags & IEEE80211_F_WME))
2211		return 0;
2212
2213	wme.flags = 0;
2214	for (ac = 0; ac < WME_NUM_AC; ac++) {
2215		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2216		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2217		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2218		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2219		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2220
2221		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2222		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2223		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2224	}
2225	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2226#undef WPI_USEC
2227#undef WPI_EXP2
2228}
2229
2230/*
2231 * Configure h/w multi-rate retries.
2232 */
2233static int
2234wpi_mrr_setup(struct wpi_softc *sc)
2235{
2236	struct ifnet *ifp = sc->sc_ifp;
2237	struct ieee80211com *ic = ifp->if_l2com;
2238	struct wpi_mrr_setup mrr;
2239	int i, error;
2240
2241	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2242
2243	/* CCK rates (not used with 802.11a) */
2244	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2245		mrr.rates[i].flags = 0;
2246		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2247		/* fallback to the immediate lower CCK rate (if any) */
2248		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2249		/* try one time at this rate before falling back to "next" */
2250		mrr.rates[i].ntries = 1;
2251	}
2252
2253	/* OFDM rates (not used with 802.11b) */
2254	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2255		mrr.rates[i].flags = 0;
2256		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2257		/* fallback to the immediate lower OFDM rate (if any) */
2258		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2259		mrr.rates[i].next = (i == WPI_OFDM6) ?
2260		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2261			WPI_OFDM6 : WPI_CCK2) :
2262		    i - 1;
2263		/* try one time at this rate before falling back to "next" */
2264		mrr.rates[i].ntries = 1;
2265	}
2266
2267	/* setup MRR for control frames */
2268	mrr.which = htole32(WPI_MRR_CTL);
2269	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2270	if (error != 0) {
2271		device_printf(sc->sc_dev,
2272		    "could not setup MRR for control frames\n");
2273		return error;
2274	}
2275
2276	/* setup MRR for data frames */
2277	mrr.which = htole32(WPI_MRR_DATA);
2278	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2279	if (error != 0) {
2280		device_printf(sc->sc_dev,
2281		    "could not setup MRR for data frames\n");
2282		return error;
2283	}
2284
2285	return 0;
2286}
2287
2288static void
2289wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2290{
2291	struct wpi_cmd_led led;
2292
2293	led.which = which;
2294	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2295	led.off = off;
2296	led.on = on;
2297
2298	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2299}
2300
2301static void
2302wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2303{
2304	struct wpi_cmd_tsf tsf;
2305	uint64_t val, mod;
2306
2307	memset(&tsf, 0, sizeof tsf);
2308	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2309	tsf.bintval = htole16(ni->ni_intval);
2310	tsf.lintval = htole16(10);
2311
2312	/* compute remaining time until next beacon */
2313	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2314	mod = le64toh(tsf.tstamp) % val;
2315	tsf.binitval = htole32((uint32_t)(val - mod));
2316
2317	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2318		device_printf(sc->sc_dev, "could not enable TSF\n");
2319}
2320
2321#if 0
2322/*
2323 * Build a beacon frame that the firmware will broadcast periodically in
2324 * IBSS or HostAP modes.
2325 */
2326static int
2327wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2328{
2329	struct ifnet *ifp = sc->sc_ifp;
2330	struct ieee80211com *ic = ifp->if_l2com;
2331	struct wpi_tx_ring *ring = &sc->cmdq;
2332	struct wpi_tx_desc *desc;
2333	struct wpi_tx_data *data;
2334	struct wpi_tx_cmd *cmd;
2335	struct wpi_cmd_beacon *bcn;
2336	struct ieee80211_beacon_offsets bo;
2337	struct mbuf *m0;
2338	bus_addr_t physaddr;
2339	int error;
2340
2341	desc = &ring->desc[ring->cur];
2342	data = &ring->data[ring->cur];
2343
2344	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2345	if (m0 == NULL) {
2346		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2347		return ENOMEM;
2348	}
2349
2350	cmd = &ring->cmd[ring->cur];
2351	cmd->code = WPI_CMD_SET_BEACON;
2352	cmd->flags = 0;
2353	cmd->qid = ring->qid;
2354	cmd->idx = ring->cur;
2355
2356	bcn = (struct wpi_cmd_beacon *)cmd->data;
2357	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2358	bcn->id = WPI_ID_BROADCAST;
2359	bcn->ofdm_mask = 0xff;
2360	bcn->cck_mask = 0x0f;
2361	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2362	bcn->len = htole16(m0->m_pkthdr.len);
2363	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2364		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2365	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2366
2367	/* save and trim IEEE802.11 header */
2368	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2369	m_adj(m0, sizeof (struct ieee80211_frame));
2370
2371	/* assume beacon frame is contiguous */
2372	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2373	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2374	if (error != 0) {
2375		device_printf(sc->sc_dev, "could not map beacon\n");
2376		m_freem(m0);
2377		return error;
2378	}
2379
2380	data->m = m0;
2381
2382	/* first scatter/gather segment is used by the beacon command */
2383	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2384	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2385		ring->cur * sizeof (struct wpi_tx_cmd));
2386	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2387	desc->segs[1].addr = htole32(physaddr);
2388	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2389
2390	/* kick cmd ring */
2391	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2392	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2393
2394	return 0;
2395}
2396#endif
2397
2398static int
2399wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2400{
2401	struct ieee80211com *ic = vap->iv_ic;
2402	struct ieee80211_node *ni = vap->iv_bss;
2403	struct wpi_node_info node;
2404	int error;
2405
2406
2407	/* update adapter's configuration */
2408	sc->config.associd = 0;
2409	sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2410	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2411	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2412	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2413		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2414		    WPI_CONFIG_24GHZ);
2415	}
2416	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2417		sc->config.cck_mask  = 0;
2418		sc->config.ofdm_mask = 0x15;
2419	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2420		sc->config.cck_mask  = 0x03;
2421		sc->config.ofdm_mask = 0;
2422	} else {
2423		/* XXX assume 802.11b/g */
2424		sc->config.cck_mask  = 0x0f;
2425		sc->config.ofdm_mask = 0x15;
2426	}
2427
2428	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2429		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2430	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2431		sizeof (struct wpi_config), 1);
2432	if (error != 0) {
2433		device_printf(sc->sc_dev, "could not configure\n");
2434		return error;
2435	}
2436
2437	/* configuration has changed, set Tx power accordingly */
2438	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2439		device_printf(sc->sc_dev, "could not set Tx power\n");
2440		return error;
2441	}
2442
2443	/* add default node */
2444	memset(&node, 0, sizeof node);
2445	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2446	node.id = WPI_ID_BSS;
2447	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2448	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2449	node.action = htole32(WPI_ACTION_SET_RATE);
2450	node.antenna = WPI_ANTENNA_BOTH;
2451	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2452	if (error != 0)
2453		device_printf(sc->sc_dev, "could not add BSS node\n");
2454
2455	return (error);
2456}
2457
2458static int
2459wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2460{
2461	struct ieee80211com *ic = vap->iv_ic;
2462	struct ieee80211_node *ni = vap->iv_bss;
2463	int error;
2464
2465	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2466		/* link LED blinks while monitoring */
2467		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2468		return 0;
2469	}
2470
2471	wpi_enable_tsf(sc, ni);
2472
2473	/* update adapter's configuration */
2474	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2475	/* short preamble/slot time are negotiated when associating */
2476	sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2477	    WPI_CONFIG_SHSLOT);
2478	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2479		sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2480	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2481		sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2482	sc->config.filter |= htole32(WPI_FILTER_BSS);
2483
2484	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2485
2486	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2487		    sc->config.flags));
2488	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2489		    wpi_config), 1);
2490	if (error != 0) {
2491		device_printf(sc->sc_dev, "could not update configuration\n");
2492		return error;
2493	}
2494
2495	error = wpi_set_txpower(sc, ni->ni_chan, 1);
2496	if (error != 0) {
2497		device_printf(sc->sc_dev, "could set txpower\n");
2498		return error;
2499	}
2500
2501	if (vap->iv_opmode == IEEE80211_M_STA) {
2502		/* fake a join to init the tx rate */
2503		wpi_newassoc(ni, 1);
2504	}
2505
2506	/* link LED always on while associated */
2507	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2508
2509	/* start automatic rate control timer */
2510	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2511
2512	return (error);
2513}
2514
2515/*
2516 * Send a scan request to the firmware.  Since this command is huge, we map it
2517 * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2518 * much of this code is similar to that in wpi_cmd but because we must manually
2519 * construct the probe & channels, we duplicate what's needed here. XXX In the
2520 * future, this function should be modified to use wpi_cmd to help cleanup the
2521 * code base.
2522 */
2523static int
2524wpi_scan(struct wpi_softc *sc)
2525{
2526	struct ifnet *ifp = sc->sc_ifp;
2527	struct ieee80211com *ic = ifp->if_l2com;
2528	struct ieee80211_scan_state *ss = ic->ic_scan;
2529	struct wpi_tx_ring *ring = &sc->cmdq;
2530	struct wpi_tx_desc *desc;
2531	struct wpi_tx_data *data;
2532	struct wpi_tx_cmd *cmd;
2533	struct wpi_scan_hdr *hdr;
2534	struct wpi_scan_chan *chan;
2535	struct ieee80211_frame *wh;
2536	struct ieee80211_rateset *rs;
2537	struct ieee80211_channel *c;
2538	enum ieee80211_phymode mode;
2539	uint8_t *frm;
2540	int nrates, pktlen, error, i, nssid;
2541	bus_addr_t physaddr;
2542
2543	desc = &ring->desc[ring->cur];
2544	data = &ring->data[ring->cur];
2545
2546	data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2547	if (data->m == NULL) {
2548		device_printf(sc->sc_dev,
2549		    "could not allocate mbuf for scan command\n");
2550		return ENOMEM;
2551	}
2552
2553	cmd = mtod(data->m, struct wpi_tx_cmd *);
2554	cmd->code = WPI_CMD_SCAN;
2555	cmd->flags = 0;
2556	cmd->qid = ring->qid;
2557	cmd->idx = ring->cur;
2558
2559	hdr = (struct wpi_scan_hdr *)cmd->data;
2560	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2561
2562	/*
2563	 * Move to the next channel if no packets are received within 5 msecs
2564	 * after sending the probe request (this helps to reduce the duration
2565	 * of active scans).
2566	 */
2567	hdr->quiet = htole16(5);
2568	hdr->threshold = htole16(1);
2569
2570	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2571		/* send probe requests at 6Mbps */
2572		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2573
2574		/* Enable crc checking */
2575		hdr->promotion = htole16(1);
2576	} else {
2577		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2578		/* send probe requests at 1Mbps */
2579		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2580	}
2581	hdr->tx.id = WPI_ID_BROADCAST;
2582	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2583	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2584
2585	memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2586	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2587	for (i = 0; i < nssid; i++) {
2588		hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2589		hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2590		memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2591		    hdr->scan_essids[i].esslen);
2592		if (wpi_debug & WPI_DEBUG_SCANNING) {
2593			printf("Scanning Essid: ");
2594			ieee80211_print_essid(hdr->scan_essids[i].essid,
2595			    hdr->scan_essids[i].esslen);
2596			printf("\n");
2597		}
2598	}
2599
2600	/*
2601	 * Build a probe request frame.  Most of the following code is a
2602	 * copy & paste of what is done in net80211.
2603	 */
2604	wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2605	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2606		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2607	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2608	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2609	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2610	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2611	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2612	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2613
2614	frm = (uint8_t *)(wh + 1);
2615
2616	/* add essid IE, the hardware will fill this in for us */
2617	*frm++ = IEEE80211_ELEMID_SSID;
2618	*frm++ = 0;
2619
2620	mode = ieee80211_chan2mode(ic->ic_curchan);
2621	rs = &ic->ic_sup_rates[mode];
2622
2623	/* add supported rates IE */
2624	*frm++ = IEEE80211_ELEMID_RATES;
2625	nrates = rs->rs_nrates;
2626	if (nrates > IEEE80211_RATE_SIZE)
2627		nrates = IEEE80211_RATE_SIZE;
2628	*frm++ = nrates;
2629	memcpy(frm, rs->rs_rates, nrates);
2630	frm += nrates;
2631
2632	/* add supported xrates IE */
2633	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2634		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2635		*frm++ = IEEE80211_ELEMID_XRATES;
2636		*frm++ = nrates;
2637		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2638		frm += nrates;
2639	}
2640
2641	/* setup length of probe request */
2642	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2643
2644	/*
2645	 * Construct information about the channel that we
2646	 * want to scan. The firmware expects this to be directly
2647	 * after the scan probe request
2648	 */
2649	c = ic->ic_curchan;
2650	chan = (struct wpi_scan_chan *)frm;
2651	chan->chan = ieee80211_chan2ieee(ic, c);
2652	chan->flags = 0;
2653	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2654		chan->flags |= WPI_CHAN_ACTIVE;
2655		if (nssid != 0)
2656			chan->flags |= WPI_CHAN_DIRECT;
2657	}
2658	chan->gain_dsp = 0x6e; /* Default level */
2659	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2660		chan->active = htole16(10);
2661		chan->passive = htole16(ss->ss_maxdwell);
2662		chan->gain_radio = 0x3b;
2663	} else {
2664		chan->active = htole16(20);
2665		chan->passive = htole16(ss->ss_maxdwell);
2666		chan->gain_radio = 0x28;
2667	}
2668
2669	DPRINTFN(WPI_DEBUG_SCANNING,
2670	    ("Scanning %u Passive: %d\n",
2671	     chan->chan,
2672	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2673
2674	hdr->nchan++;
2675	chan++;
2676
2677	frm += sizeof (struct wpi_scan_chan);
2678#if 0
2679	// XXX All Channels....
2680	for (c  = &ic->ic_channels[1];
2681	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2682		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2683			continue;
2684
2685		chan->chan = ieee80211_chan2ieee(ic, c);
2686		chan->flags = 0;
2687		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2688		    chan->flags |= WPI_CHAN_ACTIVE;
2689		    if (ic->ic_des_ssid[0].len != 0)
2690			chan->flags |= WPI_CHAN_DIRECT;
2691		}
2692		chan->gain_dsp = 0x6e; /* Default level */
2693		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2694			chan->active = htole16(10);
2695			chan->passive = htole16(110);
2696			chan->gain_radio = 0x3b;
2697		} else {
2698			chan->active = htole16(20);
2699			chan->passive = htole16(120);
2700			chan->gain_radio = 0x28;
2701		}
2702
2703		DPRINTFN(WPI_DEBUG_SCANNING,
2704			 ("Scanning %u Passive: %d\n",
2705			  chan->chan,
2706			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2707
2708		hdr->nchan++;
2709		chan++;
2710
2711		frm += sizeof (struct wpi_scan_chan);
2712	}
2713#endif
2714
2715	hdr->len = htole16(frm - (uint8_t *)hdr);
2716	pktlen = frm - (uint8_t *)cmd;
2717
2718	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2719	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2720	if (error != 0) {
2721		device_printf(sc->sc_dev, "could not map scan command\n");
2722		m_freem(data->m);
2723		data->m = NULL;
2724		return error;
2725	}
2726
2727	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2728	desc->segs[0].addr = htole32(physaddr);
2729	desc->segs[0].len  = htole32(pktlen);
2730
2731	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2732	    BUS_DMASYNC_PREWRITE);
2733	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2734
2735	/* kick cmd ring */
2736	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2737	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2738
2739	sc->sc_scan_timer = 5;
2740	return 0;	/* will be notified async. of failure/success */
2741}
2742
2743/**
2744 * Configure the card to listen to a particular channel, this transisions the
2745 * card in to being able to receive frames from remote devices.
2746 */
2747static int
2748wpi_config(struct wpi_softc *sc)
2749{
2750	struct ifnet *ifp = sc->sc_ifp;
2751	struct ieee80211com *ic = ifp->if_l2com;
2752	struct wpi_power power;
2753	struct wpi_bluetooth bluetooth;
2754	struct wpi_node_info node;
2755	int error;
2756
2757	/* set power mode */
2758	memset(&power, 0, sizeof power);
2759	power.flags = htole32(WPI_POWER_CAM|0x8);
2760	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2761	if (error != 0) {
2762		device_printf(sc->sc_dev, "could not set power mode\n");
2763		return error;
2764	}
2765
2766	/* configure bluetooth coexistence */
2767	memset(&bluetooth, 0, sizeof bluetooth);
2768	bluetooth.flags = 3;
2769	bluetooth.lead = 0xaa;
2770	bluetooth.kill = 1;
2771	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2772	    0);
2773	if (error != 0) {
2774		device_printf(sc->sc_dev,
2775		    "could not configure bluetooth coexistence\n");
2776		return error;
2777	}
2778
2779	/* configure adapter */
2780	memset(&sc->config, 0, sizeof (struct wpi_config));
2781	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2782	/*set default channel*/
2783	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2784	sc->config.flags = htole32(WPI_CONFIG_TSF);
2785	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2786		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2787		    WPI_CONFIG_24GHZ);
2788	}
2789	sc->config.filter = 0;
2790	switch (ic->ic_opmode) {
2791	case IEEE80211_M_STA:
2792	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2793		sc->config.mode = WPI_MODE_STA;
2794		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2795		break;
2796	case IEEE80211_M_IBSS:
2797	case IEEE80211_M_AHDEMO:
2798		sc->config.mode = WPI_MODE_IBSS;
2799		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2800					     WPI_FILTER_MULTICAST);
2801		break;
2802	case IEEE80211_M_HOSTAP:
2803		sc->config.mode = WPI_MODE_HOSTAP;
2804		break;
2805	case IEEE80211_M_MONITOR:
2806		sc->config.mode = WPI_MODE_MONITOR;
2807		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2808			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2809		break;
2810	}
2811	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2812	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2813	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2814		sizeof (struct wpi_config), 0);
2815	if (error != 0) {
2816		device_printf(sc->sc_dev, "configure command failed\n");
2817		return error;
2818	}
2819
2820	/* configuration has changed, set Tx power accordingly */
2821	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2822	    device_printf(sc->sc_dev, "could not set Tx power\n");
2823	    return error;
2824	}
2825
2826	/* add broadcast node */
2827	memset(&node, 0, sizeof node);
2828	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2829	node.id = WPI_ID_BROADCAST;
2830	node.rate = wpi_plcp_signal(2);
2831	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2832	if (error != 0) {
2833		device_printf(sc->sc_dev, "could not add broadcast node\n");
2834		return error;
2835	}
2836
2837	/* Setup rate scalling */
2838	error = wpi_mrr_setup(sc);
2839	if (error != 0) {
2840		device_printf(sc->sc_dev, "could not setup MRR\n");
2841		return error;
2842	}
2843
2844	return 0;
2845}
2846
2847static void
2848wpi_stop_master(struct wpi_softc *sc)
2849{
2850	uint32_t tmp;
2851	int ntries;
2852
2853	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2854
2855	tmp = WPI_READ(sc, WPI_RESET);
2856	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2857
2858	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2859	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2860		return;	/* already asleep */
2861
2862	for (ntries = 0; ntries < 100; ntries++) {
2863		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2864			break;
2865		DELAY(10);
2866	}
2867	if (ntries == 100) {
2868		device_printf(sc->sc_dev, "timeout waiting for master\n");
2869	}
2870}
2871
2872static int
2873wpi_power_up(struct wpi_softc *sc)
2874{
2875	uint32_t tmp;
2876	int ntries;
2877
2878	wpi_mem_lock(sc);
2879	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2880	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2881	wpi_mem_unlock(sc);
2882
2883	for (ntries = 0; ntries < 5000; ntries++) {
2884		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2885			break;
2886		DELAY(10);
2887	}
2888	if (ntries == 5000) {
2889		device_printf(sc->sc_dev,
2890		    "timeout waiting for NIC to power up\n");
2891		return ETIMEDOUT;
2892	}
2893	return 0;
2894}
2895
2896static int
2897wpi_reset(struct wpi_softc *sc)
2898{
2899	uint32_t tmp;
2900	int ntries;
2901
2902	DPRINTFN(WPI_DEBUG_HW,
2903	    ("Resetting the card - clearing any uploaded firmware\n"));
2904
2905	/* clear any pending interrupts */
2906	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2907
2908	tmp = WPI_READ(sc, WPI_PLL_CTL);
2909	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2910
2911	tmp = WPI_READ(sc, WPI_CHICKEN);
2912	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2913
2914	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2915	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2916
2917	/* wait for clock stabilization */
2918	for (ntries = 0; ntries < 25000; ntries++) {
2919		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2920			break;
2921		DELAY(10);
2922	}
2923	if (ntries == 25000) {
2924		device_printf(sc->sc_dev,
2925		    "timeout waiting for clock stabilization\n");
2926		return ETIMEDOUT;
2927	}
2928
2929	/* initialize EEPROM */
2930	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2931
2932	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2933		device_printf(sc->sc_dev, "EEPROM not found\n");
2934		return EIO;
2935	}
2936	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2937
2938	return 0;
2939}
2940
2941static void
2942wpi_hw_config(struct wpi_softc *sc)
2943{
2944	uint32_t rev, hw;
2945
2946	/* voodoo from the Linux "driver".. */
2947	hw = WPI_READ(sc, WPI_HWCONFIG);
2948
2949	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2950	if ((rev & 0xc0) == 0x40)
2951		hw |= WPI_HW_ALM_MB;
2952	else if (!(rev & 0x80))
2953		hw |= WPI_HW_ALM_MM;
2954
2955	if (sc->cap == 0x80)
2956		hw |= WPI_HW_SKU_MRC;
2957
2958	hw &= ~WPI_HW_REV_D;
2959	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2960		hw |= WPI_HW_REV_D;
2961
2962	if (sc->type > 1)
2963		hw |= WPI_HW_TYPE_B;
2964
2965	WPI_WRITE(sc, WPI_HWCONFIG, hw);
2966}
2967
2968static void
2969wpi_rfkill_resume(struct wpi_softc *sc)
2970{
2971	struct ifnet *ifp = sc->sc_ifp;
2972	struct ieee80211com *ic = ifp->if_l2com;
2973	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2974	int ntries;
2975
2976	/* enable firmware again */
2977	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
2978	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
2979
2980	/* wait for thermal sensors to calibrate */
2981	for (ntries = 0; ntries < 1000; ntries++) {
2982		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
2983			break;
2984		DELAY(10);
2985	}
2986
2987	if (ntries == 1000) {
2988		device_printf(sc->sc_dev,
2989		    "timeout waiting for thermal calibration\n");
2990		WPI_UNLOCK(sc);
2991		return;
2992	}
2993	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
2994
2995	if (wpi_config(sc) != 0) {
2996		device_printf(sc->sc_dev, "device config failed\n");
2997		WPI_UNLOCK(sc);
2998		return;
2999	}
3000
3001	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3002	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3003	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3004
3005	if (vap != NULL) {
3006		if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3007			if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3008				ieee80211_beacon_miss(ic);
3009				wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3010			} else
3011				wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3012		} else {
3013			ieee80211_scan_next(vap);
3014			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3015		}
3016	}
3017
3018	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3019}
3020
3021static void
3022wpi_init_locked(struct wpi_softc *sc, int force)
3023{
3024	struct ifnet *ifp = sc->sc_ifp;
3025	uint32_t tmp;
3026	int ntries, qid;
3027
3028	wpi_stop_locked(sc);
3029	(void)wpi_reset(sc);
3030
3031	wpi_mem_lock(sc);
3032	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3033	DELAY(20);
3034	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3035	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3036	wpi_mem_unlock(sc);
3037
3038	(void)wpi_power_up(sc);
3039	wpi_hw_config(sc);
3040
3041	/* init Rx ring */
3042	wpi_mem_lock(sc);
3043	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3044	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3045	    offsetof(struct wpi_shared, next));
3046	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3047	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3048	wpi_mem_unlock(sc);
3049
3050	/* init Tx rings */
3051	wpi_mem_lock(sc);
3052	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3053	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3054	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3055	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3056	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3057	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3058	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3059
3060	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3061	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3062
3063	for (qid = 0; qid < 6; qid++) {
3064		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3065		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3066		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3067	}
3068	wpi_mem_unlock(sc);
3069
3070	/* clear "radio off" and "disable command" bits (reversed logic) */
3071	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3072	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3073	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3074
3075	/* clear any pending interrupts */
3076	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3077
3078	/* enable interrupts */
3079	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3080
3081	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3082	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3083
3084	if ((wpi_load_firmware(sc)) != 0) {
3085	    device_printf(sc->sc_dev,
3086		"A problem occurred loading the firmware to the driver\n");
3087	    return;
3088	}
3089
3090	/* At this point the firmware is up and running. If the hardware
3091	 * RF switch is turned off thermal calibration will fail, though
3092	 * the card is still happy to continue to accept commands, catch
3093	 * this case and schedule a task to watch for it to be turned on.
3094	 */
3095	wpi_mem_lock(sc);
3096	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3097	wpi_mem_unlock(sc);
3098
3099	if (!(tmp & 0x1)) {
3100		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3101		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3102		goto out;
3103	}
3104
3105	/* wait for thermal sensors to calibrate */
3106	for (ntries = 0; ntries < 1000; ntries++) {
3107		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3108			break;
3109		DELAY(10);
3110	}
3111
3112	if (ntries == 1000) {
3113		device_printf(sc->sc_dev,
3114		    "timeout waiting for thermal sensors calibration\n");
3115		return;
3116	}
3117	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3118
3119	if (wpi_config(sc) != 0) {
3120		device_printf(sc->sc_dev, "device config failed\n");
3121		return;
3122	}
3123
3124	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3125	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3126out:
3127	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3128}
3129
3130static void
3131wpi_init(void *arg)
3132{
3133	struct wpi_softc *sc = arg;
3134	struct ifnet *ifp = sc->sc_ifp;
3135	struct ieee80211com *ic = ifp->if_l2com;
3136
3137	WPI_LOCK(sc);
3138	wpi_init_locked(sc, 0);
3139	WPI_UNLOCK(sc);
3140
3141	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3142		ieee80211_start_all(ic);		/* start all vaps */
3143}
3144
3145static void
3146wpi_stop_locked(struct wpi_softc *sc)
3147{
3148	struct ifnet *ifp = sc->sc_ifp;
3149	uint32_t tmp;
3150	int ac;
3151
3152	sc->sc_tx_timer = 0;
3153	sc->sc_scan_timer = 0;
3154	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3155	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3156	callout_stop(&sc->watchdog_to);
3157	callout_stop(&sc->calib_to);
3158
3159
3160	/* disable interrupts */
3161	WPI_WRITE(sc, WPI_MASK, 0);
3162	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3163	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3164	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3165
3166	/* Clear any commands left in the command buffer */
3167	memset(sc->sc_cmd, 0, sizeof(sc->sc_cmd));
3168	memset(sc->sc_cmd_arg, 0, sizeof(sc->sc_cmd_arg));
3169	sc->sc_cmd_cur = 0;
3170	sc->sc_cmd_next = 0;
3171
3172	wpi_mem_lock(sc);
3173	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3174	wpi_mem_unlock(sc);
3175
3176	/* reset all Tx rings */
3177	for (ac = 0; ac < 4; ac++)
3178		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3179	wpi_reset_tx_ring(sc, &sc->cmdq);
3180
3181	/* reset Rx ring */
3182	wpi_reset_rx_ring(sc, &sc->rxq);
3183
3184	wpi_mem_lock(sc);
3185	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3186	wpi_mem_unlock(sc);
3187
3188	DELAY(5);
3189
3190	wpi_stop_master(sc);
3191
3192	tmp = WPI_READ(sc, WPI_RESET);
3193	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3194	sc->flags &= ~WPI_FLAG_BUSY;
3195}
3196
3197static void
3198wpi_stop(struct wpi_softc *sc)
3199{
3200	WPI_LOCK(sc);
3201	wpi_stop_locked(sc);
3202	WPI_UNLOCK(sc);
3203}
3204
3205static void
3206wpi_newassoc(struct ieee80211_node *ni, int isnew)
3207{
3208	struct ieee80211vap *vap = ni->ni_vap;
3209	struct wpi_vap *wvp = WPI_VAP(vap);
3210
3211	ieee80211_amrr_node_init(&wvp->amrr, &WPI_NODE(ni)->amn, ni);
3212}
3213
3214static void
3215wpi_calib_timeout(void *arg)
3216{
3217	struct wpi_softc *sc = arg;
3218	struct ifnet *ifp = sc->sc_ifp;
3219	struct ieee80211com *ic = ifp->if_l2com;
3220	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3221	int temp;
3222
3223	if (vap->iv_state != IEEE80211_S_RUN)
3224		return;
3225
3226	/* update sensor data */
3227	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3228	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3229
3230	wpi_power_calibration(sc, temp);
3231
3232	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3233}
3234
3235/*
3236 * This function is called periodically (every 60 seconds) to adjust output
3237 * power to temperature changes.
3238 */
3239static void
3240wpi_power_calibration(struct wpi_softc *sc, int temp)
3241{
3242	struct ifnet *ifp = sc->sc_ifp;
3243	struct ieee80211com *ic = ifp->if_l2com;
3244	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3245
3246	/* sanity-check read value */
3247	if (temp < -260 || temp > 25) {
3248		/* this can't be correct, ignore */
3249		DPRINTFN(WPI_DEBUG_TEMP,
3250		    ("out-of-range temperature reported: %d\n", temp));
3251		return;
3252	}
3253
3254	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3255
3256	/* adjust Tx power if need be */
3257	if (abs(temp - sc->temp) <= 6)
3258		return;
3259
3260	sc->temp = temp;
3261
3262	if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3263		/* just warn, too bad for the automatic calibration... */
3264		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3265	}
3266}
3267
3268/**
3269 * Read the eeprom to find out what channels are valid for the given
3270 * band and update net80211 with what we find.
3271 */
3272static void
3273wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3274{
3275	struct ifnet *ifp = sc->sc_ifp;
3276	struct ieee80211com *ic = ifp->if_l2com;
3277	const struct wpi_chan_band *band = &wpi_bands[n];
3278	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3279	int chan, i, offset, passive;
3280
3281	wpi_read_prom_data(sc, band->addr, channels,
3282	    band->nchan * sizeof (struct wpi_eeprom_chan));
3283
3284	for (i = 0; i < band->nchan; i++) {
3285		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3286			DPRINTFN(WPI_DEBUG_HW,
3287			    ("Channel Not Valid: %d, band %d\n",
3288			     band->chan[i],n));
3289			continue;
3290		}
3291
3292		passive = 0;
3293		chan = band->chan[i];
3294		offset = ic->ic_nchans;
3295
3296		/* is active scan allowed on this channel? */
3297		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3298			passive = IEEE80211_CHAN_PASSIVE;
3299		}
3300
3301		if (n == 0) {	/* 2GHz band */
3302			ic->ic_channels[offset].ic_ieee = chan;
3303			ic->ic_channels[offset].ic_freq =
3304			ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
3305			ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_B | passive;
3306			offset++;
3307			ic->ic_channels[offset].ic_ieee = chan;
3308			ic->ic_channels[offset].ic_freq =
3309			ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
3310			ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_G | passive;
3311			offset++;
3312
3313		} else {	/* 5GHz band */
3314			/*
3315			 * Some 3945ABG adapters support channels 7, 8, 11
3316			 * and 12 in the 2GHz *and* 5GHz bands.
3317			 * Because of limitations in our net80211(9) stack,
3318			 * we can't support these channels in 5GHz band.
3319			 * XXX not true; just need to map to proper frequency
3320			 */
3321			if (chan <= 14)
3322				continue;
3323
3324			ic->ic_channels[offset].ic_ieee = chan;
3325			ic->ic_channels[offset].ic_freq =
3326			ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
3327			ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_A | passive;
3328			offset++;
3329		}
3330
3331		/* save maximum allowed power for this channel */
3332		sc->maxpwr[chan] = channels[i].maxpwr;
3333
3334		ic->ic_nchans = offset;
3335
3336#if 0
3337		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3338		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3339		//ic->ic_channels[chan].ic_minpower...
3340		//ic->ic_channels[chan].ic_maxregtxpower...
3341#endif
3342
3343		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d, offset %d\n",
3344			    chan, channels[i].flags, sc->maxpwr[chan], offset));
3345	}
3346}
3347
3348static void
3349wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3350{
3351	struct wpi_power_group *group = &sc->groups[n];
3352	struct wpi_eeprom_group rgroup;
3353	int i;
3354
3355	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3356	    sizeof rgroup);
3357
3358	/* save power group information */
3359	group->chan   = rgroup.chan;
3360	group->maxpwr = rgroup.maxpwr;
3361	/* temperature at which the samples were taken */
3362	group->temp   = (int16_t)le16toh(rgroup.temp);
3363
3364	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3365		    group->chan, group->maxpwr, group->temp));
3366
3367	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3368		group->samples[i].index = rgroup.samples[i].index;
3369		group->samples[i].power = rgroup.samples[i].power;
3370
3371		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3372			    group->samples[i].index, group->samples[i].power));
3373	}
3374}
3375
3376/*
3377 * Update Tx power to match what is defined for channel `c'.
3378 */
3379static int
3380wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3381{
3382	struct ifnet *ifp = sc->sc_ifp;
3383	struct ieee80211com *ic = ifp->if_l2com;
3384	struct wpi_power_group *group;
3385	struct wpi_cmd_txpower txpower;
3386	u_int chan;
3387	int i;
3388
3389	/* get channel number */
3390	chan = ieee80211_chan2ieee(ic, c);
3391
3392	/* find the power group to which this channel belongs */
3393	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3394		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3395			if (chan <= group->chan)
3396				break;
3397	} else
3398		group = &sc->groups[0];
3399
3400	memset(&txpower, 0, sizeof txpower);
3401	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3402	txpower.channel = htole16(chan);
3403
3404	/* set Tx power for all OFDM and CCK rates */
3405	for (i = 0; i <= 11 ; i++) {
3406		/* retrieve Tx power for this channel/rate combination */
3407		int idx = wpi_get_power_index(sc, group, c,
3408		    wpi_ridx_to_rate[i]);
3409
3410		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3411
3412		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3413			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3414			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3415		} else {
3416			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3417			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3418		}
3419		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3420			    chan, wpi_ridx_to_rate[i], idx));
3421	}
3422
3423	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3424}
3425
3426/*
3427 * Determine Tx power index for a given channel/rate combination.
3428 * This takes into account the regulatory information from EEPROM and the
3429 * current temperature.
3430 */
3431static int
3432wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3433    struct ieee80211_channel *c, int rate)
3434{
3435/* fixed-point arithmetic division using a n-bit fractional part */
3436#define fdivround(a, b, n)      \
3437	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3438
3439/* linear interpolation */
3440#define interpolate(x, x1, y1, x2, y2, n)       \
3441	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3442
3443	struct ifnet *ifp = sc->sc_ifp;
3444	struct ieee80211com *ic = ifp->if_l2com;
3445	struct wpi_power_sample *sample;
3446	int pwr, idx;
3447	u_int chan;
3448
3449	/* get channel number */
3450	chan = ieee80211_chan2ieee(ic, c);
3451
3452	/* default power is group's maximum power - 3dB */
3453	pwr = group->maxpwr / 2;
3454
3455	/* decrease power for highest OFDM rates to reduce distortion */
3456	switch (rate) {
3457		case 72:	/* 36Mb/s */
3458			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3459			break;
3460		case 96:	/* 48Mb/s */
3461			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3462			break;
3463		case 108:	/* 54Mb/s */
3464			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3465			break;
3466	}
3467
3468	/* never exceed channel's maximum allowed Tx power */
3469	pwr = min(pwr, sc->maxpwr[chan]);
3470
3471	/* retrieve power index into gain tables from samples */
3472	for (sample = group->samples; sample < &group->samples[3]; sample++)
3473		if (pwr > sample[1].power)
3474			break;
3475	/* fixed-point linear interpolation using a 19-bit fractional part */
3476	idx = interpolate(pwr, sample[0].power, sample[0].index,
3477	    sample[1].power, sample[1].index, 19);
3478
3479	/*
3480	 *  Adjust power index based on current temperature
3481	 *	- if colder than factory-calibrated: decreate output power
3482	 *	- if warmer than factory-calibrated: increase output power
3483	 */
3484	idx -= (sc->temp - group->temp) * 11 / 100;
3485
3486	/* decrease power for CCK rates (-5dB) */
3487	if (!WPI_RATE_IS_OFDM(rate))
3488		idx += 10;
3489
3490	/* keep power index in a valid range */
3491	if (idx < 0)
3492		return 0;
3493	if (idx > WPI_MAX_PWR_INDEX)
3494		return WPI_MAX_PWR_INDEX;
3495	return idx;
3496
3497#undef interpolate
3498#undef fdivround
3499}
3500
3501/**
3502 * Called by net80211 framework to indicate that a scan
3503 * is starting. This function doesn't actually do the scan,
3504 * wpi_scan_curchan starts things off. This function is more
3505 * of an early warning from the framework we should get ready
3506 * for the scan.
3507 */
3508static void
3509wpi_scan_start(struct ieee80211com *ic)
3510{
3511	struct ifnet *ifp = ic->ic_ifp;
3512	struct wpi_softc *sc = ifp->if_softc;
3513
3514	wpi_queue_cmd(sc, WPI_SCAN_START, 0, WPI_QUEUE_NORMAL);
3515}
3516
3517/**
3518 * Called by the net80211 framework, indicates that the
3519 * scan has ended. If there is a scan in progress on the card
3520 * then it should be aborted.
3521 */
3522static void
3523wpi_scan_end(struct ieee80211com *ic)
3524{
3525	struct ifnet *ifp = ic->ic_ifp;
3526	struct wpi_softc *sc = ifp->if_softc;
3527
3528	wpi_queue_cmd(sc, WPI_SCAN_STOP, 0, WPI_QUEUE_NORMAL);
3529}
3530
3531/**
3532 * Called by the net80211 framework to indicate to the driver
3533 * that the channel should be changed
3534 */
3535static void
3536wpi_set_channel(struct ieee80211com *ic)
3537{
3538	struct ifnet *ifp = ic->ic_ifp;
3539	struct wpi_softc *sc = ifp->if_softc;
3540
3541	/*
3542	 * Only need to set the channel in Monitor mode. AP scanning and auth
3543	 * are already taken care of by their respective firmware commands.
3544	 */
3545	if (ic->ic_opmode == IEEE80211_M_MONITOR)
3546		wpi_queue_cmd(sc, WPI_SET_CHAN, 0, WPI_QUEUE_NORMAL);
3547}
3548
3549/**
3550 * Called by net80211 to indicate that we need to scan the current
3551 * channel. The channel is previously be set via the wpi_set_channel
3552 * callback.
3553 */
3554static void
3555wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3556{
3557	struct ieee80211vap *vap = ss->ss_vap;
3558	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3559	struct wpi_softc *sc = ifp->if_softc;
3560
3561	wpi_queue_cmd(sc, WPI_SCAN_CURCHAN, 0, WPI_QUEUE_NORMAL);
3562}
3563
3564/**
3565 * Called by the net80211 framework to indicate
3566 * the minimum dwell time has been met, terminate the scan.
3567 * We don't actually terminate the scan as the firmware will notify
3568 * us when it's finished and we have no way to interrupt it.
3569 */
3570static void
3571wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3572{
3573	/* NB: don't try to abort scan; wait for firmware to finish */
3574}
3575
3576/**
3577 * The ops function is called to perform some actual work.
3578 * because we can't sleep from any of the ic callbacks, we queue an
3579 * op task with wpi_queue_cmd and have the taskqueue process that task.
3580 * The task that gets cued is a op task, which ends up calling this function.
3581 */
3582static void
3583wpi_ops(void *arg0, int pending)
3584{
3585	struct wpi_softc *sc = arg0;
3586	struct ifnet *ifp = sc->sc_ifp;
3587	struct ieee80211com *ic = ifp->if_l2com;
3588	int cmd, arg, error;
3589	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3590
3591again:
3592	WPI_CMD_LOCK(sc);
3593	cmd = sc->sc_cmd[sc->sc_cmd_cur];
3594	arg = sc->sc_cmd_arg[sc->sc_cmd_cur];
3595
3596	if (cmd == 0) {
3597		/* No more commands to process */
3598		WPI_CMD_UNLOCK(sc);
3599		return;
3600	}
3601	sc->sc_cmd[sc->sc_cmd_cur] = 0; /* free the slot */
3602	sc->sc_cmd_arg[sc->sc_cmd_cur] = 0; /* free the slot */
3603	sc->sc_cmd_cur = (sc->sc_cmd_cur + 1) % WPI_CMD_MAXOPS;
3604	WPI_CMD_UNLOCK(sc);
3605	WPI_LOCK(sc);
3606
3607	DPRINTFN(WPI_DEBUG_OPS,("wpi_ops: command: %d\n", cmd));
3608
3609	switch (cmd) {
3610	case WPI_RESTART:
3611		wpi_init_locked(sc, 0);
3612		WPI_UNLOCK(sc);
3613		return;
3614
3615	case WPI_RF_RESTART:
3616		wpi_rfkill_resume(sc);
3617		WPI_UNLOCK(sc);
3618		return;
3619	}
3620
3621	if (!(sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3622		WPI_UNLOCK(sc);
3623		return;
3624	}
3625
3626	switch (cmd) {
3627	case WPI_SCAN_START:
3628		/* make the link LED blink while we're scanning */
3629		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3630		sc->flags |= WPI_FLAG_SCANNING;
3631		break;
3632
3633	case WPI_SCAN_STOP:
3634		sc->flags &= ~WPI_FLAG_SCANNING;
3635		break;
3636
3637	case WPI_SCAN_CURCHAN:
3638		if (wpi_scan(sc))
3639			ieee80211_cancel_scan(vap);
3640		break;
3641
3642	case WPI_SET_CHAN:
3643		error = wpi_config(sc);
3644		if (error != 0)
3645			device_printf(sc->sc_dev,
3646			    "error %d settting channel\n", error);
3647		break;
3648
3649	case WPI_AUTH:
3650		/* The node must be registered in the firmware before auth */
3651		error = wpi_auth(sc, vap);
3652		WPI_UNLOCK(sc);
3653		if (error != 0) {
3654			device_printf(sc->sc_dev,
3655			    "%s: could not move to auth state, error %d\n",
3656			    __func__, error);
3657			return;
3658		}
3659		IEEE80211_LOCK(ic);
3660		WPI_VAP(vap)->newstate(vap, IEEE80211_S_AUTH, arg);
3661		if (vap->iv_newstate_cb != NULL)
3662			vap->iv_newstate_cb(vap, IEEE80211_S_AUTH, arg);
3663		IEEE80211_UNLOCK(ic);
3664		goto again;
3665
3666	case WPI_RUN:
3667		error = wpi_run(sc, vap);
3668		WPI_UNLOCK(sc);
3669		if (error != 0) {
3670			device_printf(sc->sc_dev,
3671			    "%s: could not move to run state, error %d\n",
3672			    __func__, error);
3673			return;
3674		}
3675		IEEE80211_LOCK(ic);
3676		WPI_VAP(vap)->newstate(vap, IEEE80211_S_RUN, arg);
3677		if (vap->iv_newstate_cb != NULL)
3678			vap->iv_newstate_cb(vap, IEEE80211_S_RUN, arg);
3679		IEEE80211_UNLOCK(ic);
3680		goto again;
3681	}
3682	WPI_UNLOCK(sc);
3683
3684	/* Take another pass */
3685	goto again;
3686}
3687
3688/**
3689 * queue a command for later execution in a different thread.
3690 * This is needed as the net80211 callbacks do not allow
3691 * sleeping, since we need to sleep to confirm commands have
3692 * been processed by the firmware, we must defer execution to
3693 * a sleep enabled thread.
3694 */
3695static int
3696wpi_queue_cmd(struct wpi_softc *sc, int cmd, int arg, int flush)
3697{
3698	WPI_CMD_LOCK(sc);
3699
3700	if (flush) {
3701		memset(sc->sc_cmd, 0, sizeof (sc->sc_cmd));
3702		memset(sc->sc_cmd_arg, 0, sizeof (sc->sc_cmd_arg));
3703		sc->sc_cmd_cur = 0;
3704		sc->sc_cmd_next = 0;
3705	}
3706
3707	if (sc->sc_cmd[sc->sc_cmd_next] != 0) {
3708		WPI_CMD_UNLOCK(sc);
3709		DPRINTF(("%s: command %d dropped\n", __func__, cmd));
3710		return (EBUSY);
3711	}
3712
3713	sc->sc_cmd[sc->sc_cmd_next] = cmd;
3714	sc->sc_cmd_arg[sc->sc_cmd_next] = arg;
3715	sc->sc_cmd_next = (sc->sc_cmd_next + 1) % WPI_CMD_MAXOPS;
3716
3717	taskqueue_enqueue(sc->sc_tq, &sc->sc_opstask);
3718
3719	WPI_CMD_UNLOCK(sc);
3720
3721	return 0;
3722}
3723
3724/*
3725 * Allocate DMA-safe memory for firmware transfer.
3726 */
3727static int
3728wpi_alloc_fwmem(struct wpi_softc *sc)
3729{
3730	/* allocate enough contiguous space to store text and data */
3731	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3732	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3733	    BUS_DMA_NOWAIT);
3734}
3735
3736static void
3737wpi_free_fwmem(struct wpi_softc *sc)
3738{
3739	wpi_dma_contig_free(&sc->fw_dma);
3740}
3741
3742/**
3743 * Called every second, wpi_watchdog used by the watch dog timer
3744 * to check that the card is still alive
3745 */
3746static void
3747wpi_watchdog(void *arg)
3748{
3749	struct wpi_softc *sc = arg;
3750	struct ifnet *ifp = sc->sc_ifp;
3751	uint32_t tmp;
3752
3753	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3754
3755	if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3756		/* No need to lock firmware memory */
3757		tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3758
3759		if ((tmp & 0x1) == 0) {
3760			/* Radio kill switch is still off */
3761			callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3762			return;
3763		}
3764
3765		device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3766		wpi_queue_cmd(sc, WPI_RF_RESTART, 0, WPI_QUEUE_CLEAR);
3767		return;
3768	}
3769
3770	if (sc->sc_tx_timer > 0) {
3771		if (--sc->sc_tx_timer == 0) {
3772			device_printf(sc->sc_dev,"device timeout\n");
3773			ifp->if_oerrors++;
3774			wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR);
3775		}
3776	}
3777	if (sc->sc_scan_timer > 0) {
3778		struct ifnet *ifp = sc->sc_ifp;
3779		struct ieee80211com *ic = ifp->if_l2com;
3780		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3781		if (--sc->sc_scan_timer == 0 && vap != NULL) {
3782			device_printf(sc->sc_dev,"scan timeout\n");
3783			ieee80211_cancel_scan(vap);
3784			wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR);
3785		}
3786	}
3787
3788	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3789		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3790}
3791
3792#ifdef WPI_DEBUG
3793static const char *wpi_cmd_str(int cmd)
3794{
3795	switch (cmd) {
3796	case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3797	case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3798	case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3799	case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3800	case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3801	case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3802	case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3803	case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3804	case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3805	case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3806	case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3807	case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3808	case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3809	case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3810
3811	default:
3812		KASSERT(1, ("Unknown Command: %d\n", cmd));
3813		return "UNKNOWN CMD";	/* Make the compiler happy */
3814	}
3815}
3816#endif
3817
3818MODULE_DEPEND(wpi, pci,  1, 1, 1);
3819MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3820MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3821MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1);
3822