if_wpi.c revision 177043
154359Sroberto/*-
254359Sroberto * Copyright (c) 2006,2007
354359Sroberto *	Damien Bergamini <damien.bergamini@free.fr>
454359Sroberto *	Benjamin Close <Benjamin.Close@clearchain.com>
554359Sroberto *
654359Sroberto * Permission to use, copy, modify, and distribute this software for any
7182007Sroberto * purpose with or without fee is hereby granted, provided that the above
8182007Sroberto * copyright notice and this permission notice appear in all copies.
9182007Sroberto *
10182007Sroberto * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11182007Sroberto * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
1254359Sroberto * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
1354359Sroberto * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
1454359Sroberto * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
1554359Sroberto * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
1654359Sroberto * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17182007Sroberto */
18182007Sroberto
19182007Sroberto#define VERSION "20071127"
20182007Sroberto
21182007Sroberto#include <sys/cdefs.h>
22182007Sroberto__FBSDID("$FreeBSD: head/sys/dev/wpi/if_wpi.c 177043 2008-03-10 23:16:48Z thompsa $");
23182007Sroberto
24182007Sroberto/*
25182007Sroberto * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26182007Sroberto *
27182007Sroberto * The 3945ABG network adapter doesn't use traditional hardware as
28182007Sroberto * many other adaptors do. Instead at run time the eeprom is set into a known
29182007Sroberto * state and told to load boot firmware. The boot firmware loads an init and a
30182007Sroberto * main  binary firmware image into SRAM on the card via DMA.
31182007Sroberto * Once the firmware is loaded, the driver/hw then
32182007Sroberto * communicate by way of circular dma rings via the the SRAM to the firmware.
33182007Sroberto *
34182007Sroberto * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35182007Sroberto * The 4 tx data rings allow for prioritization QoS.
36182007Sroberto *
37182007Sroberto * The rx data ring consists of 32 dma buffers. Two registers are used to
38182007Sroberto * indicate where in the ring the driver and the firmware are up to. The
39182007Sroberto * driver sets the initial read index (reg1) and the initial write index (reg2),
40182007Sroberto * the firmware updates the read index (reg1) on rx of a packet and fires an
41182007Sroberto * interrupt. The driver then processes the buffers starting at reg1 indicating
42182007Sroberto * to the firmware which buffers have been accessed by updating reg2. At the
43182007Sroberto * same time allocating new memory for the processed buffer.
44182007Sroberto *
4554359Sroberto * A similar thing happens with the tx rings. The difference is the firmware
4654359Sroberto * stop processing buffers once the queue is full and until confirmation
4754359Sroberto * of a successful transmition (tx_intr) has occurred.
4854359Sroberto *
4954359Sroberto * The command ring operates in the same manner as the tx queues.
5054359Sroberto *
5154359Sroberto * All communication direct to the card (ie eeprom) is classed as Stage1
5254359Sroberto * communication
5354359Sroberto *
5482498Sroberto * All communication via the firmware to the card is classed as State2.
5582498Sroberto * The firmware consists of 2 parts. A bootstrap firmware and a runtime
5654359Sroberto * firmware. The bootstrap firmware and runtime firmware are loaded
5782498Sroberto * from host memory via dma to the card then told to execute. From this point
5854359Sroberto * on the majority of communications between the driver and the card goes
5954359Sroberto * via the firmware.
6054359Sroberto */
6154359Sroberto
6254359Sroberto#include <sys/param.h>
6354359Sroberto#include <sys/sysctl.h>
6454359Sroberto#include <sys/sockio.h>
6554359Sroberto#include <sys/mbuf.h>
6654359Sroberto#include <sys/kernel.h>
6754359Sroberto#include <sys/socket.h>
6854359Sroberto#include <sys/systm.h>
6954359Sroberto#include <sys/malloc.h>
7054359Sroberto#include <sys/queue.h>
7154359Sroberto#include <sys/taskqueue.h>
7254359Sroberto#include <sys/module.h>
7354359Sroberto#include <sys/bus.h>
7454359Sroberto#include <sys/endian.h>
7554359Sroberto#include <sys/linker.h>
7654359Sroberto#include <sys/firmware.h>
7754359Sroberto
7854359Sroberto#include <machine/bus.h>
7954359Sroberto#include <machine/resource.h>
8054359Sroberto#include <sys/rman.h>
8154359Sroberto
8254359Sroberto#include <dev/pci/pcireg.h>
8354359Sroberto#include <dev/pci/pcivar.h>
8454359Sroberto
8554359Sroberto#include <net/bpf.h>
8654359Sroberto#include <net/if.h>
8754359Sroberto#include <net/if_arp.h>
8854359Sroberto#include <net/ethernet.h>
8954359Sroberto#include <net/if_dl.h>
9054359Sroberto#include <net/if_media.h>
9154359Sroberto#include <net/if_types.h>
9254359Sroberto
9354359Sroberto#include <net80211/ieee80211_var.h>
9454359Sroberto#include <net80211/ieee80211_radiotap.h>
9554359Sroberto#include <net80211/ieee80211_regdomain.h>
9654359Sroberto
9754359Sroberto#include <netinet/in.h>
9854359Sroberto#include <netinet/in_systm.h>
9954359Sroberto#include <netinet/in_var.h>
10054359Sroberto#include <netinet/ip.h>
10154359Sroberto#include <netinet/if_ether.h>
10254359Sroberto
10354359Sroberto#include <dev/wpi/if_wpireg.h>
10454359Sroberto#include <dev/wpi/if_wpivar.h>
10554359Sroberto
10654359Sroberto#define WPI_DEBUG
10754359Sroberto
10854359Sroberto#ifdef WPI_DEBUG
10954359Sroberto#define DPRINTF(x)	do { if (wpi_debug != 0) printf x; } while (0)
11054359Sroberto#define DPRINTFN(n, x)	do { if (wpi_debug & n) printf x; } while (0)
11154359Sroberto
11254359Srobertoenum {
11354359Sroberto	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
11454359Sroberto	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
11554359Sroberto	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
11654359Sroberto	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
11754359Sroberto	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
11854359Sroberto	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
11954359Sroberto	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
12054359Sroberto	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
12154359Sroberto	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
12254359Sroberto	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
12354359Sroberto	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
12454359Sroberto	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
12554359Sroberto	WPI_DEBUG_ANY		= 0xffffffff
12654359Sroberto};
12754359Sroberto
12854359Srobertoint wpi_debug = 0;
12954359SrobertoSYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
13054359Sroberto
13154359Sroberto#else
13254359Sroberto#define DPRINTF(x)
13354359Sroberto#define DPRINTFN(n, x)
13454359Sroberto#endif
13554359Sroberto
13654359Srobertostruct wpi_ident {
13754359Sroberto	uint16_t	vendor;
13854359Sroberto	uint16_t	device;
13954359Sroberto	uint16_t	subdevice;
14054359Sroberto	const char	*name;
14154359Sroberto};
14254359Sroberto
14354359Srobertostatic const struct wpi_ident wpi_ident_table[] = {
14454359Sroberto	/* The below entries support ABG regardless of the subid */
14554359Sroberto	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
14654359Sroberto	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
14754359Sroberto	/* The below entries only support BG */
14854359Sroberto	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945AB"  },
14954359Sroberto	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945AB"  },
15054359Sroberto	{ 0x8086, 0x4222, 0x1014, "Intel(R) PRO/Wireless 3945AB"  },
15154359Sroberto	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945AB"  },
15254359Sroberto	{ 0, 0, 0, NULL }
15354359Sroberto};
15454359Sroberto
15554359Srobertostatic int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
15654359Sroberto		    void **, bus_size_t, bus_size_t, int);
15754359Srobertostatic void	wpi_dma_contig_free(struct wpi_dma_info *);
15854359Srobertostatic void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
15954359Srobertostatic int	wpi_alloc_shared(struct wpi_softc *);
16054359Srobertostatic void	wpi_free_shared(struct wpi_softc *);
16154359Srobertostatic int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
16254359Srobertostatic void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
16354359Srobertostatic void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
16454359Srobertostatic int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
16554359Sroberto		    int, int);
16654359Srobertostatic void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
16754359Srobertostatic void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
16854359Srobertostatic struct	ieee80211_node *wpi_node_alloc(struct ieee80211_node_table *);
16954359Srobertostatic int	wpi_media_change(struct ifnet *);
17054359Srobertostatic int	wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
17154359Srobertostatic void	wpi_mem_lock(struct wpi_softc *);
17254359Srobertostatic void	wpi_mem_unlock(struct wpi_softc *);
17354359Srobertostatic uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
17454359Srobertostatic void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
17554359Srobertostatic void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
17654359Sroberto		    const uint32_t *, int);
17754359Srobertostatic uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
17854359Srobertostatic int	wpi_alloc_fwmem(struct wpi_softc *);
17954359Srobertostatic void	wpi_free_fwmem(struct wpi_softc *);
18054359Srobertostatic int	wpi_load_firmware(struct wpi_softc *);
18154359Srobertostatic void	wpi_unload_firmware(struct wpi_softc *);
18254359Srobertostatic int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
18354359Srobertostatic void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
18454359Sroberto		    struct wpi_rx_data *);
18554359Srobertostatic void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
18654359Srobertostatic void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
18754359Srobertostatic void	wpi_notif_intr(struct wpi_softc *);
18854359Srobertostatic void	wpi_intr(void *);
18954359Srobertostatic void	wpi_ops(void *, int);
19054359Srobertostatic uint8_t	wpi_plcp_signal(int);
19154359Srobertostatic int	wpi_queue_cmd(struct wpi_softc *, int, int, int);
19254359Srobertostatic void	wpi_watchdog(void *);
19354359Srobertostatic int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
19454359Sroberto		    struct ieee80211_node *, int);
19554359Srobertostatic void	wpi_start(struct ifnet *);
19654359Srobertostatic void	wpi_scan_start(struct ieee80211com *);
19782498Srobertostatic void	wpi_scan_end(struct ieee80211com *);
19854359Srobertostatic void	wpi_set_channel(struct ieee80211com *);
19954359Srobertostatic void	wpi_scan_curchan(struct ieee80211com *, unsigned long);
20054359Srobertostatic void	wpi_scan_mindwell(struct ieee80211com *);
20154359Srobertostatic int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
20254359Srobertostatic void	wpi_read_eeprom(struct wpi_softc *);
20354359Srobertostatic void	wpi_read_eeprom_channels(struct wpi_softc *, int);
20454359Srobertostatic void	wpi_read_eeprom_group(struct wpi_softc *, int);
20554359Srobertostatic int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
20654359Srobertostatic int	wpi_wme_update(struct ieee80211com *);
20754359Srobertostatic int	wpi_mrr_setup(struct wpi_softc *);
20854359Srobertostatic void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
20954359Srobertostatic void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
21054359Sroberto#if 0
21154359Srobertostatic int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
21254359Sroberto#endif
21354359Srobertostatic int	wpi_auth(struct wpi_softc *);
21454359Srobertostatic int	wpi_run(struct wpi_softc *);
21554359Srobertostatic int	wpi_scan(struct wpi_softc *);
21654359Srobertostatic int	wpi_config(struct wpi_softc *);
21754359Srobertostatic void	wpi_stop_master(struct wpi_softc *);
21854359Srobertostatic int	wpi_power_up(struct wpi_softc *);
21954359Srobertostatic int	wpi_reset(struct wpi_softc *);
22054359Srobertostatic void	wpi_hw_config(struct wpi_softc *);
22154359Srobertostatic void	wpi_init(void *);
22254359Srobertostatic void	wpi_init_locked(struct wpi_softc *, int);
22354359Srobertostatic void	wpi_stop(struct wpi_softc *);
22454359Srobertostatic void	wpi_stop_locked(struct wpi_softc *);
22554359Srobertostatic void	wpi_iter_func(void *, struct ieee80211_node *);
22654359Sroberto
22754359Srobertostatic void	wpi_newassoc(struct ieee80211_node *, int);
22854359Srobertostatic int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
22954359Sroberto		    int);
23054359Srobertostatic void	wpi_calib_timeout(void *);
23154359Srobertostatic void	wpi_power_calibration(struct wpi_softc *, int);
23254359Srobertostatic int	wpi_get_power_index(struct wpi_softc *,
23354359Sroberto		    struct wpi_power_group *, struct ieee80211_channel *, int);
23454359Srobertostatic const char *wpi_cmd_str(int);
23554359Srobertostatic int wpi_probe(device_t);
23654359Srobertostatic int wpi_attach(device_t);
23754359Srobertostatic int wpi_detach(device_t);
23854359Srobertostatic int wpi_shutdown(device_t);
23954359Srobertostatic int wpi_suspend(device_t);
24054359Srobertostatic int wpi_resume(device_t);
24154359Sroberto
24254359Sroberto
24354359Srobertostatic device_method_t wpi_methods[] = {
24454359Sroberto	/* Device interface */
24554359Sroberto	DEVMETHOD(device_probe,		wpi_probe),
24654359Sroberto	DEVMETHOD(device_attach,	wpi_attach),
24754359Sroberto	DEVMETHOD(device_detach,	wpi_detach),
24854359Sroberto	DEVMETHOD(device_shutdown,	wpi_shutdown),
24954359Sroberto	DEVMETHOD(device_suspend,	wpi_suspend),
25054359Sroberto	DEVMETHOD(device_resume,	wpi_resume),
25154359Sroberto
25254359Sroberto	{ 0, 0 }
25354359Sroberto};
25454359Sroberto
25554359Srobertostatic driver_t wpi_driver = {
25654359Sroberto	"wpi",
25754359Sroberto	wpi_methods,
258182007Sroberto	sizeof (struct wpi_softc)
259182007Sroberto};
260182007Sroberto
261182007Srobertostatic devclass_t wpi_devclass;
262182007Sroberto
263182007SrobertoDRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
264182007Sroberto
265182007Srobertostatic const uint8_t wpi_ridx_to_plcp[] = {
266182007Sroberto	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
267182007Sroberto	/* R1-R4 (ral/ural is R4-R1) */
26854359Sroberto	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
26954359Sroberto	/* CCK: device-dependent */
27054359Sroberto	10, 20, 55, 110
27154359Sroberto};
272static const uint8_t wpi_ridx_to_rate[] = {
273	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
274	2, 4, 11, 22 /*CCK */
275};
276
277
278static int
279wpi_probe(device_t dev)
280{
281	const struct wpi_ident *ident;
282
283	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
284		if (pci_get_vendor(dev) == ident->vendor &&
285		    pci_get_device(dev) == ident->device) {
286			device_set_desc(dev, ident->name);
287			return 0;
288		}
289	}
290	return ENXIO;
291}
292
293/**
294 * Load the firmare image from disk to the allocated dma buffer.
295 * we also maintain the reference to the firmware pointer as there
296 * is times where we may need to reload the firmware but we are not
297 * in a context that can access the filesystem (ie taskq cause by restart)
298 *
299 * @return 0 on success, an errno on failure
300 */
301static int
302wpi_load_firmware(struct wpi_softc *sc)
303{
304	const struct firmware *fp ;
305	struct wpi_dma_info *dma = &sc->fw_dma;
306	const struct wpi_firmware_hdr *hdr;
307	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
308	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
309	int error;
310
311	DPRINTFN(WPI_DEBUG_FIRMWARE,
312	    ("Attempting Loading Firmware from wpi_fw module\n"));
313
314	WPI_UNLOCK(sc);
315
316	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
317		device_printf(sc->sc_dev,
318		    "could not load firmware image 'wpifw'\n");
319		error = ENOENT;
320		WPI_LOCK(sc);
321		goto fail;
322	}
323
324	fp = sc->fw_fp;
325
326	WPI_LOCK(sc);
327
328	/* Validate the firmware is minimum a particular version */
329	if (fp->version < WPI_FW_MINVERSION) {
330	    device_printf(sc->sc_dev,
331			   "firmware version is too old. Need %d, got %d\n",
332			   WPI_FW_MINVERSION,
333			   fp->version);
334	    error = ENXIO;
335	    goto fail;
336	}
337
338	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
339		device_printf(sc->sc_dev,
340		    "firmware file too short: %zu bytes\n", fp->datasize);
341		error = ENXIO;
342		goto fail;
343	}
344
345	hdr = (const struct wpi_firmware_hdr *)fp->data;
346
347	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
348	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
349
350	rtextsz = le32toh(hdr->rtextsz);
351	rdatasz = le32toh(hdr->rdatasz);
352	itextsz = le32toh(hdr->itextsz);
353	idatasz = le32toh(hdr->idatasz);
354	btextsz = le32toh(hdr->btextsz);
355
356	/* check that all firmware segments are present */
357	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
358		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
359		device_printf(sc->sc_dev,
360		    "firmware file too short: %zu bytes\n", fp->datasize);
361		error = ENXIO; /* XXX appropriate error code? */
362		goto fail;
363	}
364
365	/* get pointers to firmware segments */
366	rtext = (const uint8_t *)(hdr + 1);
367	rdata = rtext + rtextsz;
368	itext = rdata + rdatasz;
369	idata = itext + itextsz;
370	btext = idata + idatasz;
371
372	DPRINTFN(WPI_DEBUG_FIRMWARE,
373	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
374	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
375	     (le32toh(hdr->version) & 0xff000000) >> 24,
376	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
377	     (le32toh(hdr->version) & 0x0000ffff),
378	     rtextsz, rdatasz,
379	     itextsz, idatasz, btextsz));
380
381	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
382	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
383	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
384	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
385	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
386
387	/* sanity checks */
388	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
389	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
390	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
391	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
392	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
393	    (btextsz & 3) != 0) {
394		device_printf(sc->sc_dev, "firmware invalid\n");
395		error = EINVAL;
396		goto fail;
397	}
398
399	/* copy initialization images into pre-allocated DMA-safe memory */
400	memcpy(dma->vaddr, idata, idatasz);
401	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
402
403	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
404
405	/* tell adapter where to find initialization images */
406	wpi_mem_lock(sc);
407	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
408	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
409	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
410	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
411	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
412	wpi_mem_unlock(sc);
413
414	/* load firmware boot code */
415	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
416	    device_printf(sc->sc_dev, "Failed to load microcode\n");
417	    goto fail;
418	}
419
420	/* now press "execute" */
421	WPI_WRITE(sc, WPI_RESET, 0);
422
423	/* wait at most one second for the first alive notification */
424	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
425		device_printf(sc->sc_dev,
426		    "timeout waiting for adapter to initialize\n");
427		goto fail;
428	}
429
430	/* copy runtime images into pre-allocated DMA-sage memory */
431	memcpy(dma->vaddr, rdata, rdatasz);
432	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
433	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
434
435	/* tell adapter where to find runtime images */
436	wpi_mem_lock(sc);
437	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
438	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
439	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
440	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
441	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
442	wpi_mem_unlock(sc);
443
444	/* wait at most one second for the first alive notification */
445	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
446		device_printf(sc->sc_dev,
447		    "timeout waiting for adapter to initialize2\n");
448		goto fail;
449	}
450
451	DPRINTFN(WPI_DEBUG_FIRMWARE,
452	    ("Firmware loaded to driver successfully\n"));
453	return error;
454fail:
455	wpi_unload_firmware(sc);
456	return error;
457}
458
459/**
460 * Free the referenced firmware image
461 */
462static void
463wpi_unload_firmware(struct wpi_softc *sc)
464{
465
466	if (sc->fw_fp) {
467		WPI_UNLOCK(sc);
468		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
469		WPI_LOCK(sc);
470		sc->fw_fp = NULL;
471	}
472}
473
474static int
475wpi_attach(device_t dev)
476{
477	struct wpi_softc *sc = device_get_softc(dev);
478	struct ifnet *ifp;
479	struct ieee80211com *ic = &sc->sc_ic;
480	int ac, error, supportsa = 1;
481	uint32_t tmp;
482	const struct wpi_ident *ident;
483
484	sc->sc_dev = dev;
485
486	if (bootverbose || wpi_debug)
487	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
488
489	/*
490	 * Some card's only support 802.11b/g not a, check to see if
491	 * this is one such card. A 0x0 in the subdevice table indicates
492	 * the entire subdevice range is to be ignored.
493	 */
494	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
495		if (ident->subdevice &&
496		    pci_get_subdevice(dev) == ident->subdevice) {
497		    supportsa = 0;
498		    break;
499		}
500	}
501
502#if __FreeBSD_version >= 700000
503	/*
504	 * Create the taskqueues used by the driver. Primarily
505	 * sc_tq handles most the task
506	 */
507	sc->sc_tq = taskqueue_create("wpi_taskq", M_NOWAIT | M_ZERO,
508	    taskqueue_thread_enqueue, &sc->sc_tq);
509	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
510	    device_get_nameunit(dev));
511#else
512#error "Sorry, this driver is not yet ready for FreeBSD < 7.0"
513#endif
514
515	/* Create the tasks that can be queued */
516	TASK_INIT(&sc->sc_opstask, 0, wpi_ops, sc);
517
518	WPI_LOCK_INIT(sc);
519	WPI_CMD_LOCK_INIT(sc);
520
521	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
522	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
523
524	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
525		device_printf(dev, "chip is in D%d power mode "
526		    "-- setting to D0\n", pci_get_powerstate(dev));
527		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
528	}
529
530	/* disable the retry timeout register */
531	pci_write_config(dev, 0x41, 0, 1);
532
533	/* enable bus-mastering */
534	pci_enable_busmaster(dev);
535
536	sc->mem_rid = PCIR_BAR(0);
537	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
538	    RF_ACTIVE);
539	if (sc->mem == NULL) {
540		device_printf(dev, "could not allocate memory resource\n");
541		error = ENOMEM;
542		goto fail;
543	}
544
545	sc->sc_st = rman_get_bustag(sc->mem);
546	sc->sc_sh = rman_get_bushandle(sc->mem);
547
548	sc->irq_rid = 0;
549	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
550	    RF_ACTIVE | RF_SHAREABLE);
551	if (sc->irq == NULL) {
552		device_printf(dev, "could not allocate interrupt resource\n");
553		error = ENOMEM;
554		goto fail;
555	}
556
557	/*
558	 * Allocate DMA memory for firmware transfers.
559	 */
560	if ((error = wpi_alloc_fwmem(sc)) != 0) {
561		printf(": could not allocate firmware memory\n");
562		error = ENOMEM;
563		goto fail;
564	}
565
566	/*
567	 * Put adapter into a known state.
568	 */
569	if ((error = wpi_reset(sc)) != 0) {
570		device_printf(dev, "could not reset adapter\n");
571		goto fail;
572	}
573
574	wpi_mem_lock(sc);
575	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
576	if (bootverbose || wpi_debug)
577	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
578
579	wpi_mem_unlock(sc);
580
581	/* Allocate shared page */
582	if ((error = wpi_alloc_shared(sc)) != 0) {
583		device_printf(dev, "could not allocate shared page\n");
584		goto fail;
585	}
586
587	/* tx data queues  - 4 for QoS purposes */
588	for (ac = 0; ac < WME_NUM_AC; ac++) {
589		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
590		if (error != 0) {
591		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
592		    goto fail;
593		}
594	}
595
596	/* command queue to talk to the card's firmware */
597	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
598	if (error != 0) {
599		device_printf(dev, "could not allocate command ring\n");
600		goto fail;
601	}
602
603	/* receive data queue */
604	error = wpi_alloc_rx_ring(sc, &sc->rxq);
605	if (error != 0) {
606		device_printf(dev, "could not allocate Rx ring\n");
607		goto fail;
608	}
609
610	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
611	if (ifp == NULL) {
612		device_printf(dev, "can not if_alloc()\n");
613		error = ENOMEM;
614		goto fail;
615	}
616
617	ic->ic_ifp = ifp;
618	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
619	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
620	ic->ic_state = IEEE80211_S_INIT;
621
622	/* set device capabilities */
623	ic->ic_caps =
624		  IEEE80211_C_MONITOR		/* monitor mode supported */
625		| IEEE80211_C_TXPMGT		/* tx power management */
626		| IEEE80211_C_SHSLOT		/* short slot time supported */
627		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
628		| IEEE80211_C_WPA		/* 802.11i */
629/* XXX looks like WME is partly supported? */
630#if 0
631		| IEEE80211_C_IBSS		/* IBSS mode support */
632		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
633		| IEEE80211_C_WME		/* 802.11e */
634		| IEEE80211_C_HOSTAP		/* Host access point mode */
635#endif
636		;
637
638	/*
639	 * Read in the eeprom and also setup the channels for
640	 * net80211. We don't set the rates as net80211 does this for us
641	 */
642	wpi_read_eeprom(sc);
643
644	if (bootverbose || wpi_debug) {
645	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
646	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
647			  sc->type > 1 ? 'B': '?');
648	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
649			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
650	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
651			  supportsa ? "does" : "does not");
652
653	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
654	       what sc->rev really represents - benjsc 20070615 */
655	}
656
657	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
658	ifp->if_softc = sc;
659	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
660	ifp->if_init = wpi_init;
661	ifp->if_ioctl = wpi_ioctl;
662	ifp->if_start = wpi_start;
663	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
664	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
665	IFQ_SET_READY(&ifp->if_snd);
666	ieee80211_ifattach(ic);
667
668	/* override default methods */
669	ic->ic_node_alloc = wpi_node_alloc;
670	ic->ic_newassoc = wpi_newassoc;
671	ic->ic_wme.wme_update = wpi_wme_update;
672	ic->ic_scan_start = wpi_scan_start;
673	ic->ic_scan_end = wpi_scan_end;
674	ic->ic_set_channel = wpi_set_channel;
675	ic->ic_scan_curchan = wpi_scan_curchan;
676	ic->ic_scan_mindwell = wpi_scan_mindwell;
677
678	/* override state transition machine */
679	sc->sc_newstate = ic->ic_newstate;
680	ic->ic_newstate = wpi_newstate;
681	ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
682
683	ieee80211_amrr_init(&sc->amrr, ic,
684			   IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
685			   IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD);
686
687	/* whilst ieee80211_ifattach will listen for ieee80211 frames,
688	 * we also want to listen for the lower level radio frames
689	 */
690	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
691	    sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap),
692	    &sc->sc_drvbpf);
693
694	sc->sc_rxtap_len = sizeof sc->sc_rxtap;
695	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
696	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
697
698	sc->sc_txtap_len = sizeof sc->sc_txtap;
699	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
700	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
701
702	/*
703	 * Hook our interrupt after all initialization is complete.
704	 */
705	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
706	    NULL, wpi_intr, sc, &sc->sc_ih);
707	if (error != 0) {
708		device_printf(dev, "could not set up interrupt\n");
709		goto fail;
710	}
711
712	if (bootverbose)
713		ieee80211_announce(ic);
714#ifdef XXX_DEBUG
715	ieee80211_announce_channels(ic);
716#endif
717
718	return 0;
719
720fail:	wpi_detach(dev);
721	return ENXIO;
722}
723
724static int
725wpi_detach(device_t dev)
726{
727	struct wpi_softc *sc = device_get_softc(dev);
728	struct ieee80211com *ic = &sc->sc_ic;
729	struct ifnet *ifp = ic->ic_ifp;
730	int ac;
731
732	if (ifp != NULL) {
733		wpi_stop(sc);
734		callout_drain(&sc->watchdog_to);
735		callout_drain(&sc->calib_to);
736		bpfdetach(ifp);
737		ieee80211_ifdetach(ic);
738	}
739
740	WPI_LOCK(sc);
741	if (sc->txq[0].data_dmat) {
742		for (ac = 0; ac < WME_NUM_AC; ac++)
743			wpi_free_tx_ring(sc, &sc->txq[ac]);
744
745		wpi_free_tx_ring(sc, &sc->cmdq);
746		wpi_free_rx_ring(sc, &sc->rxq);
747		wpi_free_shared(sc);
748	}
749
750	if (sc->fw_fp != NULL) {
751		wpi_unload_firmware(sc);
752	}
753
754	if (sc->fw_dma.tag)
755		wpi_free_fwmem(sc);
756	WPI_UNLOCK(sc);
757
758	if (sc->irq != NULL) {
759		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
760		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
761	}
762
763	if (sc->mem != NULL)
764		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
765
766	if (ifp != NULL)
767		if_free(ifp);
768
769	taskqueue_free(sc->sc_tq);
770
771	WPI_LOCK_DESTROY(sc);
772	WPI_CMD_LOCK_DESTROY(sc);
773
774	return 0;
775}
776
777static void
778wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
779{
780	if (error != 0)
781		return;
782
783	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
784
785	*(bus_addr_t *)arg = segs[0].ds_addr;
786}
787
788/*
789 * Allocates a contiguous block of dma memory of the requested size and
790 * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
791 * allocations greater than 4096 may fail. Hence if the requested alignment is
792 * greater we allocate 'alignment' size extra memory and shift the vaddr and
793 * paddr after the dma load. This bypasses the problem at the cost of a little
794 * more memory.
795 */
796static int
797wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
798    void **kvap, bus_size_t size, bus_size_t alignment, int flags)
799{
800	int error;
801	bus_size_t align;
802	bus_size_t reqsize;
803
804	DPRINTFN(WPI_DEBUG_DMA,
805	    ("Size: %zd - alignment %zd\n", size, alignment));
806
807	dma->size = size;
808	dma->tag = NULL;
809
810	if (alignment > 4096) {
811		align = PAGE_SIZE;
812		reqsize = size + alignment;
813	} else {
814		align = alignment;
815		reqsize = size;
816	}
817	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
818	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
819	    NULL, NULL, reqsize,
820	    1, reqsize, flags,
821	    NULL, NULL, &dma->tag);
822	if (error != 0) {
823		device_printf(sc->sc_dev,
824		    "could not create shared page DMA tag\n");
825		goto fail;
826	}
827	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
828	    flags | BUS_DMA_ZERO, &dma->map);
829	if (error != 0) {
830		device_printf(sc->sc_dev,
831		    "could not allocate shared page DMA memory\n");
832		goto fail;
833	}
834
835	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
836	    reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
837
838	/* Save the original pointers so we can free all the memory */
839	dma->paddr = dma->paddr_start;
840	dma->vaddr = dma->vaddr_start;
841
842	/*
843	 * Check the alignment and increment by 4096 until we get the
844	 * requested alignment. Fail if can't obtain the alignment
845	 * we requested.
846	 */
847	if ((dma->paddr & (alignment -1 )) != 0) {
848		int i;
849
850		for (i = 0; i < alignment / 4096; i++) {
851			if ((dma->paddr & (alignment - 1 )) == 0)
852				break;
853			dma->paddr += 4096;
854			dma->vaddr += 4096;
855		}
856		if (i == alignment / 4096) {
857			device_printf(sc->sc_dev,
858			    "alignment requirement was not satisfied\n");
859			goto fail;
860		}
861	}
862
863	if (error != 0) {
864		device_printf(sc->sc_dev,
865		    "could not load shared page DMA map\n");
866		goto fail;
867	}
868
869	if (kvap != NULL)
870		*kvap = dma->vaddr;
871
872	return 0;
873
874fail:
875	wpi_dma_contig_free(dma);
876	return error;
877}
878
879static void
880wpi_dma_contig_free(struct wpi_dma_info *dma)
881{
882	if (dma->tag) {
883		if (dma->map != NULL) {
884			if (dma->paddr_start != 0) {
885				bus_dmamap_sync(dma->tag, dma->map,
886				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
887				bus_dmamap_unload(dma->tag, dma->map);
888			}
889			bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
890		}
891		bus_dma_tag_destroy(dma->tag);
892	}
893}
894
895/*
896 * Allocate a shared page between host and NIC.
897 */
898static int
899wpi_alloc_shared(struct wpi_softc *sc)
900{
901	int error;
902
903	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
904	    (void **)&sc->shared, sizeof (struct wpi_shared),
905	    PAGE_SIZE,
906	    BUS_DMA_NOWAIT);
907
908	if (error != 0) {
909		device_printf(sc->sc_dev,
910		    "could not allocate shared area DMA memory\n");
911	}
912
913	return error;
914}
915
916static void
917wpi_free_shared(struct wpi_softc *sc)
918{
919	wpi_dma_contig_free(&sc->shared_dma);
920}
921
922static int
923wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
924{
925
926	int i, error;
927
928	ring->cur = 0;
929
930	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
931	    (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
932	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
933
934	if (error != 0) {
935		device_printf(sc->sc_dev,
936		    "%s: could not allocate rx ring DMA memory, error %d\n",
937		    __func__, error);
938		goto fail;
939	}
940
941        error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
942	    BUS_SPACE_MAXADDR_32BIT,
943            BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
944            MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
945        if (error != 0) {
946                device_printf(sc->sc_dev,
947		    "%s: bus_dma_tag_create_failed, error %d\n",
948		    __func__, error);
949                goto fail;
950        }
951
952	/*
953	 * Setup Rx buffers.
954	 */
955	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
956		struct wpi_rx_data *data = &ring->data[i];
957		struct mbuf *m;
958		bus_addr_t paddr;
959
960		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
961		if (error != 0) {
962			device_printf(sc->sc_dev,
963			    "%s: bus_dmamap_create failed, error %d\n",
964			    __func__, error);
965			goto fail;
966		}
967		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
968		if (m == NULL) {
969			device_printf(sc->sc_dev,
970			   "%s: could not allocate rx mbuf\n", __func__);
971			error = ENOMEM;
972			goto fail;
973		}
974		/* map page */
975		error = bus_dmamap_load(ring->data_dmat, data->map,
976		    mtod(m, caddr_t), MJUMPAGESIZE,
977		    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
978		if (error != 0 && error != EFBIG) {
979			device_printf(sc->sc_dev,
980			    "%s: bus_dmamap_load failed, error %d\n",
981			    __func__, error);
982			m_freem(m);
983			error = ENOMEM;	/* XXX unique code */
984			goto fail;
985		}
986		bus_dmamap_sync(ring->data_dmat, data->map,
987		    BUS_DMASYNC_PREWRITE);
988
989		data->m = m;
990		ring->desc[i] = htole32(paddr);
991	}
992	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
993	    BUS_DMASYNC_PREWRITE);
994	return 0;
995fail:
996	wpi_free_rx_ring(sc, ring);
997	return error;
998}
999
1000static void
1001wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1002{
1003	int ntries;
1004
1005	wpi_mem_lock(sc);
1006
1007	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1008
1009	for (ntries = 0; ntries < 100; ntries++) {
1010		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1011			break;
1012		DELAY(10);
1013	}
1014
1015	wpi_mem_unlock(sc);
1016
1017#ifdef WPI_DEBUG
1018	if (ntries == 100)
1019		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1020#endif
1021
1022	ring->cur = 0;
1023}
1024
1025static void
1026wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1027{
1028	int i;
1029
1030	wpi_dma_contig_free(&ring->desc_dma);
1031
1032	for (i = 0; i < WPI_RX_RING_COUNT; i++)
1033		if (ring->data[i].m != NULL)
1034			m_freem(ring->data[i].m);
1035}
1036
1037static int
1038wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1039	int qid)
1040{
1041	struct wpi_tx_data *data;
1042	int i, error;
1043
1044	ring->qid = qid;
1045	ring->count = count;
1046	ring->queued = 0;
1047	ring->cur = 0;
1048	ring->data = NULL;
1049
1050	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1051		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1052		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1053
1054	if (error != 0) {
1055	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1056	    goto fail;
1057	}
1058
1059	/* update shared page with ring's base address */
1060	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1061
1062	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1063		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1064		BUS_DMA_NOWAIT);
1065
1066	if (error != 0) {
1067		device_printf(sc->sc_dev,
1068		    "could not allocate tx command DMA memory\n");
1069		goto fail;
1070	}
1071
1072	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1073	    M_NOWAIT | M_ZERO);
1074	if (ring->data == NULL) {
1075		device_printf(sc->sc_dev,
1076		    "could not allocate tx data slots\n");
1077		goto fail;
1078	}
1079
1080	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1081	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1082	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1083	    &ring->data_dmat);
1084	if (error != 0) {
1085		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1086		goto fail;
1087	}
1088
1089	for (i = 0; i < count; i++) {
1090		data = &ring->data[i];
1091
1092		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1093		if (error != 0) {
1094			device_printf(sc->sc_dev,
1095			    "could not create tx buf DMA map\n");
1096			goto fail;
1097		}
1098		bus_dmamap_sync(ring->data_dmat, data->map,
1099		    BUS_DMASYNC_PREWRITE);
1100	}
1101
1102	return 0;
1103
1104fail:
1105	wpi_free_tx_ring(sc, ring);
1106	return error;
1107}
1108
1109static void
1110wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1111{
1112	struct wpi_tx_data *data;
1113	int i, ntries;
1114
1115	wpi_mem_lock(sc);
1116
1117	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1118	for (ntries = 0; ntries < 100; ntries++) {
1119		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1120			break;
1121		DELAY(10);
1122	}
1123#ifdef WPI_DEBUG
1124	if (ntries == 100)
1125		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1126		    ring->qid);
1127#endif
1128	wpi_mem_unlock(sc);
1129
1130	for (i = 0; i < ring->count; i++) {
1131		data = &ring->data[i];
1132
1133		if (data->m != NULL) {
1134			bus_dmamap_unload(ring->data_dmat, data->map);
1135			m_freem(data->m);
1136			data->m = NULL;
1137		}
1138	}
1139
1140	ring->queued = 0;
1141	ring->cur = 0;
1142}
1143
1144static void
1145wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1146{
1147	struct wpi_tx_data *data;
1148	int i;
1149
1150	wpi_dma_contig_free(&ring->desc_dma);
1151	wpi_dma_contig_free(&ring->cmd_dma);
1152
1153	if (ring->data != NULL) {
1154		for (i = 0; i < ring->count; i++) {
1155			data = &ring->data[i];
1156
1157			if (data->m != NULL) {
1158				bus_dmamap_sync(ring->data_dmat, data->map,
1159				    BUS_DMASYNC_POSTWRITE);
1160				bus_dmamap_unload(ring->data_dmat, data->map);
1161				m_freem(data->m);
1162				data->m = NULL;
1163			}
1164		}
1165		free(ring->data, M_DEVBUF);
1166	}
1167
1168	if (ring->data_dmat != NULL)
1169		bus_dma_tag_destroy(ring->data_dmat);
1170}
1171
1172static int
1173wpi_shutdown(device_t dev)
1174{
1175	struct wpi_softc *sc = device_get_softc(dev);
1176
1177	WPI_LOCK(sc);
1178	wpi_stop_locked(sc);
1179	wpi_unload_firmware(sc);
1180	WPI_UNLOCK(sc);
1181
1182	return 0;
1183}
1184
1185static int
1186wpi_suspend(device_t dev)
1187{
1188	struct wpi_softc *sc = device_get_softc(dev);
1189
1190	wpi_stop(sc);
1191	return 0;
1192}
1193
1194static int
1195wpi_resume(device_t dev)
1196{
1197	struct wpi_softc *sc = device_get_softc(dev);
1198	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1199
1200	pci_write_config(dev, 0x41, 0, 1);
1201
1202	if (ifp->if_flags & IFF_UP) {
1203		wpi_init(ifp->if_softc);
1204		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1205			wpi_start(ifp);
1206	}
1207	return 0;
1208}
1209
1210/* ARGSUSED */
1211static struct ieee80211_node *
1212wpi_node_alloc(struct ieee80211_node_table *ic)
1213{
1214	struct wpi_node *wn;
1215
1216	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT |M_ZERO);
1217
1218	return &wn->ni;
1219}
1220
1221static int
1222wpi_media_change(struct ifnet *ifp)
1223{
1224	int error;
1225
1226	error = ieee80211_media_change(ifp);
1227	if (error != ENETRESET)
1228		return error;
1229
1230	if ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
1231		wpi_init(ifp->if_softc);
1232
1233	return 0;
1234}
1235
1236/**
1237 * Called by net80211 when ever there is a change to 80211 state machine
1238 */
1239static int
1240wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1241{
1242	struct ifnet *ifp = ic->ic_ifp;
1243	struct wpi_softc *sc = ifp->if_softc;
1244
1245	DPRINTF(("%s: %s -> %s\n", __func__,
1246		 ieee80211_state_name[ic->ic_state],
1247		 ieee80211_state_name[nstate]));
1248
1249	switch (nstate) {
1250	case IEEE80211_S_SCAN:
1251		/*
1252		 * Scanning is handled in net80211 via the scan_start,
1253		 * scan_end, scan_curchan functions. Hence all we do when
1254		 * changing to the SCAN state is update the leds
1255		 */
1256
1257		/* make the link LED blink while we're scanning */
1258		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
1259		break;
1260
1261	case IEEE80211_S_AUTH:
1262		/* Delay the auth transition until we can update the firmware */
1263		return wpi_queue_cmd(sc, WPI_AUTH, arg, WPI_QUEUE_NORMAL);
1264
1265	case IEEE80211_S_RUN:
1266		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
1267			/* link LED blinks while monitoring */
1268			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
1269			break;
1270		}
1271		if (ic->ic_state != IEEE80211_S_RUN)
1272			/* set the association id first */
1273			return wpi_queue_cmd(sc, WPI_RUN, arg,
1274			    WPI_QUEUE_NORMAL);
1275		break;
1276
1277	default:
1278		break;
1279	}
1280
1281	return sc->sc_newstate(ic, nstate, arg);
1282}
1283
1284/*
1285 * Grab exclusive access to NIC memory.
1286 */
1287static void
1288wpi_mem_lock(struct wpi_softc *sc)
1289{
1290	int ntries;
1291	uint32_t tmp;
1292
1293	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1294	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1295
1296	/* spin until we actually get the lock */
1297	for (ntries = 0; ntries < 100; ntries++) {
1298		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1299			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1300			break;
1301		DELAY(10);
1302	}
1303	if (ntries == 100)
1304		device_printf(sc->sc_dev, "could not lock memory\n");
1305}
1306
1307/*
1308 * Release lock on NIC memory.
1309 */
1310static void
1311wpi_mem_unlock(struct wpi_softc *sc)
1312{
1313	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1314	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1315}
1316
1317static uint32_t
1318wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1319{
1320	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1321	return WPI_READ(sc, WPI_READ_MEM_DATA);
1322}
1323
1324static void
1325wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1326{
1327	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1328	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1329}
1330
1331static void
1332wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1333    const uint32_t *data, int wlen)
1334{
1335	for (; wlen > 0; wlen--, data++, addr+=4)
1336		wpi_mem_write(sc, addr, *data);
1337}
1338
1339/*
1340 * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1341 * using the traditional bit-bang method. Data is read up until len bytes have
1342 * been obtained.
1343 */
1344static uint16_t
1345wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1346{
1347	int ntries;
1348	uint32_t val;
1349	uint8_t *out = data;
1350
1351	wpi_mem_lock(sc);
1352
1353	for (; len > 0; len -= 2, addr++) {
1354		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1355
1356		for (ntries = 0; ntries < 10; ntries++) {
1357			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1358				break;
1359			DELAY(5);
1360		}
1361
1362		if (ntries == 10) {
1363			device_printf(sc->sc_dev, "could not read EEPROM\n");
1364			return ETIMEDOUT;
1365		}
1366
1367		*out++= val >> 16;
1368		if (len > 1)
1369			*out ++= val >> 24;
1370	}
1371
1372	wpi_mem_unlock(sc);
1373
1374	return 0;
1375}
1376
1377/*
1378 * The firmware text and data segments are transferred to the NIC using DMA.
1379 * The driver just copies the firmware into DMA-safe memory and tells the NIC
1380 * where to find it.  Once the NIC has copied the firmware into its internal
1381 * memory, we can free our local copy in the driver.
1382 */
1383static int
1384wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1385{
1386	int error, ntries;
1387
1388	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1389
1390	size /= sizeof(uint32_t);
1391
1392	wpi_mem_lock(sc);
1393
1394	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1395	    (const uint32_t *)fw, size);
1396
1397	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1398	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1399	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1400
1401	/* run microcode */
1402	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1403
1404	/* wait while the adapter is busy copying the firmware */
1405	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1406		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1407		DPRINTFN(WPI_DEBUG_HW,
1408		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1409		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1410		if (status & WPI_TX_IDLE(6)) {
1411			DPRINTFN(WPI_DEBUG_HW,
1412			    ("Status Match! - ntries = %d\n", ntries));
1413			break;
1414		}
1415		DELAY(10);
1416	}
1417	if (ntries == 1000) {
1418		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1419		error = ETIMEDOUT;
1420	}
1421
1422	/* start the microcode executing */
1423	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1424
1425	wpi_mem_unlock(sc);
1426
1427	return (error);
1428}
1429
1430static void
1431wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1432	struct wpi_rx_data *data)
1433{
1434	struct ieee80211com *ic = &sc->sc_ic;
1435	struct ifnet *ifp = ic->ic_ifp;
1436	struct wpi_rx_ring *ring = &sc->rxq;
1437	struct wpi_rx_stat *stat;
1438	struct wpi_rx_head *head;
1439	struct wpi_rx_tail *tail;
1440	struct ieee80211_node *ni;
1441	struct mbuf *m, *mnew;
1442	bus_addr_t paddr;
1443	int error;
1444
1445	stat = (struct wpi_rx_stat *)(desc + 1);
1446
1447	if (stat->len > WPI_STAT_MAXLEN) {
1448		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1449		ifp->if_ierrors++;
1450		return;
1451	}
1452
1453	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1454	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1455
1456	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1457	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1458	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1459	    (uintmax_t)le64toh(tail->tstamp)));
1460
1461	/* XXX don't need mbuf, just dma buffer */
1462	mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1463	if (mnew == NULL) {
1464		DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1465		    __func__));
1466		ic->ic_stats.is_rx_nobuf++;
1467		ifp->if_ierrors++;
1468		return;
1469	}
1470	error = bus_dmamap_load(ring->data_dmat, data->map,
1471	    mtod(mnew, caddr_t), MJUMPAGESIZE,
1472	    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1473	if (error != 0 && error != EFBIG) {
1474		device_printf(sc->sc_dev,
1475		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1476		m_freem(mnew);
1477		ic->ic_stats.is_rx_nobuf++;	/* XXX need stat */
1478		ifp->if_ierrors++;
1479		return;
1480	}
1481	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1482
1483	/* finalize mbuf and swap in new one */
1484	m = data->m;
1485	m->m_pkthdr.rcvif = ifp;
1486	m->m_data = (caddr_t)(head + 1);
1487	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1488
1489	data->m = mnew;
1490	/* update Rx descriptor */
1491	ring->desc[ring->cur] = htole32(paddr);
1492
1493	if (bpf_peers_present(sc->sc_drvbpf)) {
1494		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1495
1496		tap->wr_flags = 0;
1497		tap->wr_chan_freq =
1498			htole16(ic->ic_channels[head->chan].ic_freq);
1499		tap->wr_chan_flags =
1500			htole16(ic->ic_channels[head->chan].ic_flags);
1501		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1502		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1503		tap->wr_tsft = tail->tstamp;
1504		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1505		switch (head->rate) {
1506		/* CCK rates */
1507		case  10: tap->wr_rate =   2; break;
1508		case  20: tap->wr_rate =   4; break;
1509		case  55: tap->wr_rate =  11; break;
1510		case 110: tap->wr_rate =  22; break;
1511		/* OFDM rates */
1512		case 0xd: tap->wr_rate =  12; break;
1513		case 0xf: tap->wr_rate =  18; break;
1514		case 0x5: tap->wr_rate =  24; break;
1515		case 0x7: tap->wr_rate =  36; break;
1516		case 0x9: tap->wr_rate =  48; break;
1517		case 0xb: tap->wr_rate =  72; break;
1518		case 0x1: tap->wr_rate =  96; break;
1519		case 0x3: tap->wr_rate = 108; break;
1520		/* unknown rate: should not happen */
1521		default:  tap->wr_rate =   0;
1522		}
1523		if (le16toh(head->flags) & 0x4)
1524			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1525
1526		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1527	}
1528
1529	WPI_UNLOCK(sc);
1530
1531	/* XXX frame length > sizeof(struct ieee80211_frame_min)? */
1532	/* grab a reference to the source node */
1533	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1534
1535	/* send the frame to the 802.11 layer */
1536	ieee80211_input(ic, m, ni, stat->rssi, 0, 0);
1537
1538	/* release node reference */
1539	ieee80211_free_node(ni);
1540	WPI_LOCK(sc);
1541}
1542
1543static void
1544wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1545{
1546	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1547	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1548	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1549	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1550	struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1551
1552	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1553	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1554	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1555	    le32toh(stat->status)));
1556
1557	/*
1558	 * Update rate control statistics for the node.
1559	 * XXX we should not count mgmt frames since they're always sent at
1560	 * the lowest available bit-rate.
1561	 * XXX frames w/o ACK shouldn't be used either
1562	 */
1563	wn->amn.amn_txcnt++;
1564	if (stat->ntries > 0) {
1565		DPRINTFN(3, ("%d retries\n", stat->ntries));
1566		wn->amn.amn_retrycnt++;
1567	}
1568
1569	/* XXX oerrors should only count errors !maxtries */
1570	if ((le32toh(stat->status) & 0xff) != 1)
1571		ifp->if_oerrors++;
1572	else
1573		ifp->if_opackets++;
1574
1575	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1576	bus_dmamap_unload(ring->data_dmat, txdata->map);
1577	/* XXX handle M_TXCB? */
1578	m_freem(txdata->m);
1579	txdata->m = NULL;
1580	ieee80211_free_node(txdata->ni);
1581	txdata->ni = NULL;
1582
1583	ring->queued--;
1584
1585	sc->sc_tx_timer = 0;
1586	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1587	wpi_start(ifp);
1588}
1589
1590static void
1591wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1592{
1593	struct wpi_tx_ring *ring = &sc->cmdq;
1594	struct wpi_tx_data *data;
1595
1596	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1597				 "type=%s len=%d\n", desc->qid, desc->idx,
1598				 desc->flags, wpi_cmd_str(desc->type),
1599				 le32toh(desc->len)));
1600
1601	if ((desc->qid & 7) != 4)
1602		return;	/* not a command ack */
1603
1604	data = &ring->data[desc->idx];
1605
1606	/* if the command was mapped in a mbuf, free it */
1607	if (data->m != NULL) {
1608		bus_dmamap_unload(ring->data_dmat, data->map);
1609		m_freem(data->m);
1610		data->m = NULL;
1611	}
1612
1613	sc->flags &= ~WPI_FLAG_BUSY;
1614	wakeup(&ring->cmd[desc->idx]);
1615}
1616
1617static void
1618wpi_notif_intr(struct wpi_softc *sc)
1619{
1620	struct ieee80211com *ic = &sc->sc_ic;
1621	struct ifnet *ifp = ic->ic_ifp;
1622	struct wpi_rx_desc *desc;
1623	struct wpi_rx_data *data;
1624	uint32_t hw;
1625
1626	hw = le32toh(sc->shared->next);
1627	while (sc->rxq.cur != hw) {
1628		data = &sc->rxq.data[sc->rxq.cur];
1629		desc = (void *)data->m->m_ext.ext_buf;
1630
1631		DPRINTFN(WPI_DEBUG_NOTIFY,
1632			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1633			  desc->qid,
1634			  desc->idx,
1635			  desc->flags,
1636			  desc->type,
1637			  le32toh(desc->len)));
1638
1639		if (!(desc->qid & 0x80))	/* reply to a command */
1640			wpi_cmd_intr(sc, desc);
1641
1642		switch (desc->type) {
1643		case WPI_RX_DONE:
1644			/* a 802.11 frame was received */
1645			wpi_rx_intr(sc, desc, data);
1646			break;
1647
1648		case WPI_TX_DONE:
1649			/* a 802.11 frame has been transmitted */
1650			wpi_tx_intr(sc, desc);
1651			break;
1652
1653		case WPI_UC_READY:
1654		{
1655			struct wpi_ucode_info *uc =
1656				(struct wpi_ucode_info *)(desc + 1);
1657
1658			/* the microcontroller is ready */
1659			DPRINTF(("microcode alive notification version %x "
1660				"alive %x\n", le32toh(uc->version),
1661				le32toh(uc->valid)));
1662
1663			if (le32toh(uc->valid) != 1) {
1664				device_printf(sc->sc_dev,
1665				    "microcontroller initialization failed\n");
1666				wpi_stop_locked(sc);
1667			}
1668			break;
1669		}
1670		case WPI_STATE_CHANGED:
1671		{
1672			uint32_t *status = (uint32_t *)(desc + 1);
1673
1674			/* enabled/disabled notification */
1675			DPRINTF(("state changed to %x\n", le32toh(*status)));
1676
1677			if (le32toh(*status) & 1) {
1678				device_printf(sc->sc_dev,
1679				    "Radio transmitter is switched off\n");
1680				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1681				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1682				/* Disable firmware commands */
1683				WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1684			}
1685			break;
1686		}
1687		case WPI_START_SCAN:
1688		{
1689			struct wpi_start_scan *scan =
1690				(struct wpi_start_scan *)(desc + 1);
1691
1692			DPRINTFN(WPI_DEBUG_SCANNING,
1693				 ("scanning channel %d status %x\n",
1694			    scan->chan, le32toh(scan->status)));
1695			break;
1696		}
1697		case WPI_STOP_SCAN:
1698		{
1699			struct wpi_stop_scan *scan =
1700				(struct wpi_stop_scan *)(desc + 1);
1701
1702			DPRINTFN(WPI_DEBUG_SCANNING,
1703			    ("scan finished nchan=%d status=%d chan=%d\n",
1704			     scan->nchan, scan->status, scan->chan));
1705
1706			sc->sc_scan_timer = 0;
1707			ieee80211_scan_next(ic);
1708			break;
1709		}
1710		case WPI_MISSED_BEACON:
1711		{
1712		    struct wpi_missed_beacon *beacon =
1713				(struct wpi_missed_beacon *)(desc + 1);
1714
1715                    if (le32toh(beacon->consecutive) >=
1716			ic->ic_bmissthreshold) {
1717			DPRINTF(("Beacon miss: %u >= %u\n",
1718				 le32toh(beacon->consecutive),
1719				 ic->ic_bmissthreshold));
1720			ieee80211_beacon_miss(ic);
1721		    }
1722		    break;
1723		}
1724		}
1725
1726		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1727	}
1728
1729	/* tell the firmware what we have processed */
1730	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1731	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1732}
1733
1734static void
1735wpi_intr(void *arg)
1736{
1737	struct wpi_softc *sc = arg;
1738	uint32_t r;
1739
1740	WPI_LOCK(sc);
1741
1742	r = WPI_READ(sc, WPI_INTR);
1743	if (r == 0 || r == 0xffffffff) {
1744		WPI_UNLOCK(sc);
1745		return;
1746	}
1747
1748	/* disable interrupts */
1749	WPI_WRITE(sc, WPI_MASK, 0);
1750	/* ack interrupts */
1751	WPI_WRITE(sc, WPI_INTR, r);
1752
1753	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1754		device_printf(sc->sc_dev, "fatal firmware error\n");
1755		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1756				"(Hardware Error)"));
1757		wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR);
1758		sc->flags &= ~WPI_FLAG_BUSY;
1759		WPI_UNLOCK(sc);
1760		return;
1761	}
1762
1763	if (r & WPI_RX_INTR)
1764		wpi_notif_intr(sc);
1765
1766	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1767		wakeup(sc);
1768
1769	/* re-enable interrupts */
1770	if (sc->sc_ifp->if_flags & IFF_UP)
1771		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1772
1773	WPI_UNLOCK(sc);
1774}
1775
1776static uint8_t
1777wpi_plcp_signal(int rate)
1778{
1779	switch (rate) {
1780	/* CCK rates (returned values are device-dependent) */
1781	case 2:		return 10;
1782	case 4:		return 20;
1783	case 11:	return 55;
1784	case 22:	return 110;
1785
1786	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1787	/* R1-R4 (ral/ural is R4-R1) */
1788	case 12:	return 0xd;
1789	case 18:	return 0xf;
1790	case 24:	return 0x5;
1791	case 36:	return 0x7;
1792	case 48:	return 0x9;
1793	case 72:	return 0xb;
1794	case 96:	return 0x1;
1795	case 108:	return 0x3;
1796
1797	/* unsupported rates (should not get there) */
1798	default:	return 0;
1799	}
1800}
1801
1802/* quickly determine if a given rate is CCK or OFDM */
1803#define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1804
1805/*
1806 * Construct the data packet for a transmit buffer and acutally put
1807 * the buffer onto the transmit ring, kicking the card to process the
1808 * the buffer.
1809 */
1810static int
1811wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1812	int ac)
1813{
1814	struct ieee80211com *ic = &sc->sc_ic;
1815	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1816	struct wpi_tx_ring *ring = &sc->txq[ac];
1817	struct wpi_tx_desc *desc;
1818	struct wpi_tx_data *data;
1819	struct wpi_tx_cmd *cmd;
1820	struct wpi_cmd_data *tx;
1821	struct ieee80211_frame *wh;
1822	struct ieee80211_key *k;
1823	struct mbuf *mnew;
1824	int i, error, nsegs, rate, hdrlen, ismcast;
1825	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1826
1827	desc = &ring->desc[ring->cur];
1828	data = &ring->data[ring->cur];
1829
1830	wh = mtod(m0, struct ieee80211_frame *);
1831
1832	hdrlen = ieee80211_hdrsize(wh);
1833	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1834
1835	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1836		k = ieee80211_crypto_encap(ic, ni, m0);
1837		if (k == NULL) {
1838			m_freem(m0);
1839			return ENOBUFS;
1840		}
1841		/* packet header may have moved, reset our local pointer */
1842		wh = mtod(m0, struct ieee80211_frame *);
1843	}
1844
1845	cmd = &ring->cmd[ring->cur];
1846	cmd->code = WPI_CMD_TX_DATA;
1847	cmd->flags = 0;
1848	cmd->qid = ring->qid;
1849	cmd->idx = ring->cur;
1850
1851	tx = (struct wpi_cmd_data *)cmd->data;
1852	tx->flags = htole32(WPI_TX_AUTO_SEQ);
1853	tx->timeout= htole16(0);
1854	tx->ofdm_mask = 0xff;
1855	tx->cck_mask = 0x0f;
1856	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1857	tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1858	tx->len = htole16(m0->m_pkthdr.len);
1859
1860	if (ismcast) {
1861		if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1862		    !cap->cap_wmeParams[ac].wmep_noackPolicy)
1863			tx->flags |= htole32(WPI_TX_NEED_ACK);
1864		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
1865			tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1866			tx->rts_ntries = 7;
1867		}
1868	}
1869
1870	/* pick a rate */
1871	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MASK) {
1872		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1873		/* tell h/w to set timestamp in probe responses */
1874		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1875			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1876
1877		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1878		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1879			tx->timeout = htole16(3);
1880		else
1881			tx->timeout = htole16(2);
1882
1883		rate = ni->ni_rates.rs_rates[0] & IEEE80211_RATE_VAL;
1884	} else if (ismcast) {
1885		rate = ic->ic_mcast_rate;
1886	} else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1887		rate = ic->ic_fixed_rate;
1888	} else {
1889		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1890		rate &= IEEE80211_RATE_VAL;
1891	}
1892	tx->rate = wpi_plcp_signal(rate);
1893
1894	/* be very persistant at sending frames out */
1895	tx->data_ntries = 15;	/* XXX Way too high */
1896
1897	if (bpf_peers_present(sc->sc_drvbpf)) {
1898		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1899		tap->wt_flags = 0;
1900		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1901		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1902		tap->wt_rate = rate;
1903		tap->wt_hwqueue = ac;
1904		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1905			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1906		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1907	}
1908
1909	/* save and trim IEEE802.11 header */
1910	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1911	m_adj(m0, hdrlen);
1912
1913	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
1914	    &nsegs, BUS_DMA_NOWAIT);
1915	if (error != 0 && error != EFBIG) {
1916		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1917		    error);
1918		m_freem(m0);
1919		return error;
1920	}
1921	if (error != 0) {
1922		/* XXX use m_collapse */
1923		mnew = m_defrag(m0, M_DONTWAIT);
1924		if (mnew == NULL) {
1925			device_printf(sc->sc_dev,
1926			    "could not defragment mbuf\n");
1927			m_freem(m0);
1928			return ENOBUFS;
1929		}
1930		m0 = mnew;
1931
1932		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
1933		    m0, segs, &nsegs, BUS_DMA_NOWAIT);
1934		if (error != 0) {
1935			device_printf(sc->sc_dev,
1936			    "could not map mbuf (error %d)\n", error);
1937			m_freem(m0);
1938			return error;
1939		}
1940	}
1941
1942	data->m = m0;
1943	data->ni = ni;
1944
1945	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1946	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
1947
1948	/* first scatter/gather segment is used by the tx data command */
1949	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1950	    (1 + nsegs) << 24);
1951	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1952	    ring->cur * sizeof (struct wpi_tx_cmd));
1953	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
1954	for (i = 1; i <= nsegs; i++) {
1955		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
1956		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
1957	}
1958
1959	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1960	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1961	    BUS_DMASYNC_PREWRITE);
1962
1963	ring->queued++;
1964
1965	/* kick ring */
1966	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1967	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1968
1969	return 0;
1970}
1971
1972/**
1973 * Process data waiting to be sent on the IFNET output queue
1974 */
1975static void
1976wpi_start(struct ifnet *ifp)
1977{
1978	struct wpi_softc *sc = ifp->if_softc;
1979	struct ieee80211com *ic = &sc->sc_ic;
1980	struct ieee80211_node *ni;
1981	struct ether_header *eh;
1982	struct mbuf *m0;
1983	int ac, waslocked;
1984
1985	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1986		return;
1987
1988	waslocked = WPI_LOCK_OWNED(sc);
1989	if (!waslocked)
1990		WPI_LOCK(sc);
1991
1992	for (;;) {
1993		IF_DEQUEUE(&ic->ic_mgtq, m0);
1994		if (m0 != NULL) {
1995			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1996			m0->m_pkthdr.rcvif = NULL;
1997
1998			/* management frames go into ring 0 */
1999			if (sc->txq[0].queued > sc->txq[0].count - 8) {
2000				ifp->if_oerrors++;
2001				continue;
2002			}
2003
2004			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
2005				ifp->if_oerrors++;
2006				break;
2007			}
2008		} else {
2009			if (ic->ic_state != IEEE80211_S_RUN)
2010				break;
2011
2012			IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
2013			if (m0 == NULL)
2014				break;
2015
2016			/*
2017			 * Cancel any background scan.
2018			 */
2019			if (ic->ic_flags & IEEE80211_F_SCAN)
2020				ieee80211_cancel_scan(ic);
2021
2022			if (m0->m_len < sizeof (*eh) &&
2023			    (m0 = m_pullup(m0, sizeof (*eh))) != NULL) {
2024				ifp->if_oerrors++;
2025				continue;
2026			}
2027			eh = mtod(m0, struct ether_header *);
2028			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2029			if (ni == NULL) {
2030				m_freem(m0);
2031				ifp->if_oerrors++;
2032				continue;
2033			}
2034
2035			/* classify mbuf so we can find which tx ring to use */
2036			if (ieee80211_classify(ic, m0, ni) != 0) {
2037				m_freem(m0);
2038				ieee80211_free_node(ni);
2039				ifp->if_oerrors++;
2040				continue;
2041			}
2042
2043			ac = M_WME_GETAC(m0);
2044			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2045				/* there is no place left in this ring */
2046				IFQ_DRV_PREPEND(&ifp->if_snd, m0);
2047				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2048				break;
2049			}
2050
2051			BPF_MTAP(ifp, m0);
2052
2053			m0 = ieee80211_encap(ic, m0, ni);
2054			if (m0 == NULL) {
2055				ieee80211_free_node(ni);
2056				ifp->if_oerrors++;
2057				continue;
2058			}
2059
2060			if (bpf_peers_present(ic->ic_rawbpf))
2061				bpf_mtap(ic->ic_rawbpf, m0);
2062
2063			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2064				ieee80211_free_node(ni);
2065				ifp->if_oerrors++;
2066				break;
2067			}
2068		}
2069
2070		sc->sc_tx_timer = 5;
2071		ic->ic_lastdata = ticks;
2072	}
2073
2074	if (!waslocked)
2075		WPI_UNLOCK(sc);
2076}
2077
2078static int
2079wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2080{
2081	struct wpi_softc *sc = ifp->if_softc;
2082	struct ieee80211com *ic = &sc->sc_ic;
2083	int error = 0;
2084
2085	WPI_LOCK(sc);
2086
2087	switch (cmd) {
2088	case SIOCSIFFLAGS:
2089		if ((ifp->if_flags & IFF_UP)) {
2090			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
2091				wpi_init_locked(sc, 0);
2092		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2093			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2094			wpi_stop_locked(sc);
2095		break;
2096	default:
2097		WPI_UNLOCK(sc);
2098		error = ieee80211_ioctl(ic, cmd, data);
2099		WPI_LOCK(sc);
2100	}
2101
2102	if (error == ENETRESET) {
2103		if ((ifp->if_flags & IFF_UP) &&
2104		    (ifp->if_drv_flags & IFF_DRV_RUNNING) &&
2105		    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2106			wpi_init_locked(sc, 0);
2107		error = 0;
2108	}
2109
2110	WPI_UNLOCK(sc);
2111
2112	return error;
2113}
2114
2115/*
2116 * Extract various information from EEPROM.
2117 */
2118static void
2119wpi_read_eeprom(struct wpi_softc *sc)
2120{
2121	struct ieee80211com *ic = &sc->sc_ic;
2122	int i;
2123
2124	/* read the hardware capabilities, revision and SKU type */
2125	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2126	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2127	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2128
2129	/* read the regulatory domain */
2130	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2131
2132	/* read in the hw MAC address */
2133	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2134
2135	/* read the list of authorized channels */
2136	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2137		wpi_read_eeprom_channels(sc,i);
2138
2139	/* read the power level calibration info for each group */
2140	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2141		wpi_read_eeprom_group(sc,i);
2142}
2143
2144/*
2145 * Send a command to the firmware.
2146 */
2147static int
2148wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2149{
2150	struct wpi_tx_ring *ring = &sc->cmdq;
2151	struct wpi_tx_desc *desc;
2152	struct wpi_tx_cmd *cmd;
2153
2154#ifdef WPI_DEBUG
2155	if (!async) {
2156		WPI_LOCK_ASSERT(sc);
2157	}
2158#endif
2159
2160	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2161		    async));
2162
2163	if (sc->flags & WPI_FLAG_BUSY) {
2164		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2165		    __func__, code);
2166		return EAGAIN;
2167	}
2168	sc->flags|= WPI_FLAG_BUSY;
2169
2170	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2171	    code, size));
2172
2173	desc = &ring->desc[ring->cur];
2174	cmd = &ring->cmd[ring->cur];
2175
2176	cmd->code = code;
2177	cmd->flags = 0;
2178	cmd->qid = ring->qid;
2179	cmd->idx = ring->cur;
2180	memcpy(cmd->data, buf, size);
2181
2182	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2183	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2184		ring->cur * sizeof (struct wpi_tx_cmd));
2185	desc->segs[0].len  = htole32(4 + size);
2186
2187	/* kick cmd ring */
2188	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2189	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2190
2191	if (async) {
2192		sc->flags &= ~ WPI_FLAG_BUSY;
2193		return 0;
2194	}
2195
2196	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2197}
2198
2199static int
2200wpi_wme_update(struct ieee80211com *ic)
2201{
2202#define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2203#define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2204	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2205	const struct wmeParams *wmep;
2206	struct wpi_wme_setup wme;
2207	int ac;
2208
2209	/* don't override default WME values if WME is not actually enabled */
2210	if (!(ic->ic_flags & IEEE80211_F_WME))
2211		return 0;
2212
2213	wme.flags = 0;
2214	for (ac = 0; ac < WME_NUM_AC; ac++) {
2215		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2216		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2217		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2218		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2219		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2220
2221		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2222		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2223		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2224	}
2225
2226	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2227#undef WPI_USEC
2228#undef WPI_EXP2
2229}
2230
2231/*
2232 * Configure h/w multi-rate retries.
2233 */
2234static int
2235wpi_mrr_setup(struct wpi_softc *sc)
2236{
2237	struct ieee80211com *ic = &sc->sc_ic;
2238	struct wpi_mrr_setup mrr;
2239	int i, error;
2240
2241	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2242
2243	/* CCK rates (not used with 802.11a) */
2244	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2245		mrr.rates[i].flags = 0;
2246		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2247		/* fallback to the immediate lower CCK rate (if any) */
2248		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2249		/* try one time at this rate before falling back to "next" */
2250		mrr.rates[i].ntries = 1;
2251	}
2252
2253	/* OFDM rates (not used with 802.11b) */
2254	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2255		mrr.rates[i].flags = 0;
2256		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2257		/* fallback to the immediate lower OFDM rate (if any) */
2258		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2259		mrr.rates[i].next = (i == WPI_OFDM6) ?
2260		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2261			WPI_OFDM6 : WPI_CCK2) :
2262		    i - 1;
2263		/* try one time at this rate before falling back to "next" */
2264		mrr.rates[i].ntries = 1;
2265	}
2266
2267	/* setup MRR for control frames */
2268	mrr.which = htole32(WPI_MRR_CTL);
2269	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2270	if (error != 0) {
2271		device_printf(sc->sc_dev,
2272		    "could not setup MRR for control frames\n");
2273		return error;
2274	}
2275
2276	/* setup MRR for data frames */
2277	mrr.which = htole32(WPI_MRR_DATA);
2278	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2279	if (error != 0) {
2280		device_printf(sc->sc_dev,
2281		    "could not setup MRR for data frames\n");
2282		return error;
2283	}
2284
2285	return 0;
2286}
2287
2288static void
2289wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2290{
2291	struct wpi_cmd_led led;
2292
2293	led.which = which;
2294	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2295	led.off = off;
2296	led.on = on;
2297
2298	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2299}
2300
2301static void
2302wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2303{
2304	struct wpi_cmd_tsf tsf;
2305	uint64_t val, mod;
2306
2307	memset(&tsf, 0, sizeof tsf);
2308	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2309	tsf.bintval = htole16(ni->ni_intval);
2310	tsf.lintval = htole16(10);
2311
2312	/* compute remaining time until next beacon */
2313	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2314	mod = le64toh(tsf.tstamp) % val;
2315	tsf.binitval = htole32((uint32_t)(val - mod));
2316
2317	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2318		device_printf(sc->sc_dev, "could not enable TSF\n");
2319}
2320
2321#if 0
2322/*
2323 * Build a beacon frame that the firmware will broadcast periodically in
2324 * IBSS or HostAP modes.
2325 */
2326static int
2327wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2328{
2329	struct ieee80211com *ic = &sc->sc_ic;
2330	struct wpi_tx_ring *ring = &sc->cmdq;
2331	struct wpi_tx_desc *desc;
2332	struct wpi_tx_data *data;
2333	struct wpi_tx_cmd *cmd;
2334	struct wpi_cmd_beacon *bcn;
2335	struct ieee80211_beacon_offsets bo;
2336	struct mbuf *m0;
2337	bus_addr_t physaddr;
2338	int error;
2339
2340	desc = &ring->desc[ring->cur];
2341	data = &ring->data[ring->cur];
2342
2343	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2344	if (m0 == NULL) {
2345		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2346		return ENOMEM;
2347	}
2348
2349	cmd = &ring->cmd[ring->cur];
2350	cmd->code = WPI_CMD_SET_BEACON;
2351	cmd->flags = 0;
2352	cmd->qid = ring->qid;
2353	cmd->idx = ring->cur;
2354
2355	bcn = (struct wpi_cmd_beacon *)cmd->data;
2356	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2357	bcn->id = WPI_ID_BROADCAST;
2358	bcn->ofdm_mask = 0xff;
2359	bcn->cck_mask = 0x0f;
2360	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2361	bcn->len = htole16(m0->m_pkthdr.len);
2362	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2363		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2364	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2365
2366	/* save and trim IEEE802.11 header */
2367	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2368	m_adj(m0, sizeof (struct ieee80211_frame));
2369
2370	/* assume beacon frame is contiguous */
2371	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2372	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2373	if (error != 0) {
2374		device_printf(sc->sc_dev, "could not map beacon\n");
2375		m_freem(m0);
2376		return error;
2377	}
2378
2379	data->m = m0;
2380
2381	/* first scatter/gather segment is used by the beacon command */
2382	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2383	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2384		ring->cur * sizeof (struct wpi_tx_cmd));
2385	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2386	desc->segs[1].addr = htole32(physaddr);
2387	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2388
2389	/* kick cmd ring */
2390	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2391	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2392
2393	return 0;
2394}
2395#endif
2396
2397static int
2398wpi_auth(struct wpi_softc *sc)
2399{
2400	struct ieee80211com *ic = &sc->sc_ic;
2401	struct ieee80211_node *ni = ic->ic_bss;
2402	struct wpi_node_info node;
2403	int error;
2404
2405
2406	/* update adapter's configuration */
2407	sc->config.associd = 0;
2408	sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2409	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2410	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2411	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2412		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2413		    WPI_CONFIG_24GHZ);
2414	}
2415	switch (ic->ic_curmode) {
2416	case IEEE80211_MODE_11A:
2417		sc->config.cck_mask  = 0;
2418		sc->config.ofdm_mask = 0x15;
2419		break;
2420	case IEEE80211_MODE_11B:
2421		sc->config.cck_mask  = 0x03;
2422		sc->config.ofdm_mask = 0;
2423		break;
2424	default:	/* assume 802.11b/g */
2425		sc->config.cck_mask  = 0x0f;
2426		sc->config.ofdm_mask = 0x15;
2427	}
2428
2429	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2430		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2431	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2432		sizeof (struct wpi_config), 1);
2433	if (error != 0) {
2434		device_printf(sc->sc_dev, "could not configure\n");
2435		return error;
2436	}
2437
2438	/* configuration has changed, set Tx power accordingly */
2439	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2440		device_printf(sc->sc_dev, "could not set Tx power\n");
2441		return error;
2442	}
2443
2444	/* add default node */
2445	memset(&node, 0, sizeof node);
2446	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2447	node.id = WPI_ID_BSS;
2448	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2449	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2450	node.action = htole32(WPI_ACTION_SET_RATE);
2451	node.antenna = WPI_ANTENNA_BOTH;
2452	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2453	if (error != 0)
2454		device_printf(sc->sc_dev, "could not add BSS node\n");
2455
2456	return (error);
2457}
2458
2459static int
2460wpi_run(struct wpi_softc *sc)
2461{
2462	struct ieee80211com *ic = &sc->sc_ic;
2463	struct ieee80211_node *ni = ic->ic_bss;
2464	int error;
2465
2466	ni = ic->ic_bss;
2467	wpi_enable_tsf(sc, ni);
2468
2469	/* update adapter's configuration */
2470	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2471	/* short preamble/slot time are negotiated when associating */
2472	sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2473	    WPI_CONFIG_SHSLOT);
2474	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2475		sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2476	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2477		sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2478	sc->config.filter |= htole32(WPI_FILTER_BSS);
2479
2480	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2481
2482	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2483		    sc->config.flags));
2484	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2485		    wpi_config), 1);
2486	if (error != 0) {
2487		device_printf(sc->sc_dev, "could not update configuration\n");
2488		return error;
2489	}
2490
2491	error = wpi_set_txpower(sc, ic->ic_bsschan, 1);
2492	if (error != 0) {
2493		device_printf(sc->sc_dev, "could set txpower\n");
2494		return error;
2495	}
2496
2497	if (ic->ic_opmode == IEEE80211_M_STA) {
2498		/* fake a join to init the tx rate */
2499		wpi_newassoc(ic->ic_bss, 1);
2500	}
2501
2502	/* link LED always on while associated */
2503	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2504
2505	/* start automatic rate control timer */
2506	callout_reset(&sc->calib_to, hz/2, wpi_calib_timeout, sc);
2507
2508	return (error);
2509}
2510
2511/*
2512 * Send a scan request to the firmware.  Since this command is huge, we map it
2513 * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2514 * much of this code is similar to that in wpi_cmd but because we must manually
2515 * construct the probe & channels, we duplicate what's needed here. XXX In the
2516 * future, this function should be modified to use wpi_cmd to help cleanup the
2517 * code base.
2518 */
2519static int
2520wpi_scan(struct wpi_softc *sc)
2521{
2522	struct ieee80211com *ic = &sc->sc_ic;
2523	struct ieee80211_scan_state *ss = ic->ic_scan;
2524	struct wpi_tx_ring *ring = &sc->cmdq;
2525	struct wpi_tx_desc *desc;
2526	struct wpi_tx_data *data;
2527	struct wpi_tx_cmd *cmd;
2528	struct wpi_scan_hdr *hdr;
2529	struct wpi_scan_chan *chan;
2530	struct ieee80211_frame *wh;
2531	struct ieee80211_rateset *rs;
2532	struct ieee80211_channel *c;
2533	enum ieee80211_phymode mode;
2534	uint8_t *frm;
2535	int nrates, pktlen, error, i, nssid;
2536	bus_addr_t physaddr;
2537	struct ifnet *ifp = ic->ic_ifp;
2538
2539	desc = &ring->desc[ring->cur];
2540	data = &ring->data[ring->cur];
2541
2542	data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2543	if (data->m == NULL) {
2544		device_printf(sc->sc_dev,
2545		    "could not allocate mbuf for scan command\n");
2546		return ENOMEM;
2547	}
2548
2549	cmd = mtod(data->m, struct wpi_tx_cmd *);
2550	cmd->code = WPI_CMD_SCAN;
2551	cmd->flags = 0;
2552	cmd->qid = ring->qid;
2553	cmd->idx = ring->cur;
2554
2555	hdr = (struct wpi_scan_hdr *)cmd->data;
2556	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2557
2558	/*
2559	 * Move to the next channel if no packets are received within 5 msecs
2560	 * after sending the probe request (this helps to reduce the duration
2561	 * of active scans).
2562	 */
2563	hdr->quiet = htole16(5);
2564	hdr->threshold = htole16(1);
2565
2566	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2567		/* send probe requests at 6Mbps */
2568		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2569
2570		/* Enable crc checking */
2571		hdr->promotion = htole16(1);
2572	} else {
2573		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2574		/* send probe requests at 1Mbps */
2575		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2576	}
2577	hdr->tx.id = WPI_ID_BROADCAST;
2578	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2579	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2580
2581	/*XXX Need to cater for multiple essids */
2582	memset(&hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2583	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2584	for (i = 0; i < nssid; i++ ){
2585		hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2586		hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2587		memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2588		    hdr->scan_essids[i].esslen);
2589#ifdef WPI_DEBUG
2590		if (wpi_debug & WPI_DEBUG_SCANNING) {
2591			printf("Scanning Essid: ");
2592			ieee80211_print_essid(ic->ic_des_ssid[i].ssid,
2593			    ic->ic_des_ssid[i].len);
2594			printf("\n");
2595		}
2596#endif
2597	}
2598
2599	/*
2600	 * Build a probe request frame.  Most of the following code is a
2601	 * copy & paste of what is done in net80211.
2602	 */
2603	wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2604	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2605		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2606	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2607	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2608	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2609	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2610	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2611	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2612
2613	frm = (uint8_t *)(wh + 1);
2614
2615	/* add essid IE, the hardware will fill this in for us */
2616	*frm++ = IEEE80211_ELEMID_SSID;
2617	*frm++ = 0;
2618
2619	mode = ieee80211_chan2mode(ic->ic_curchan);
2620	rs = &ic->ic_sup_rates[mode];
2621
2622	/* add supported rates IE */
2623	*frm++ = IEEE80211_ELEMID_RATES;
2624	nrates = rs->rs_nrates;
2625	if (nrates > IEEE80211_RATE_SIZE)
2626		nrates = IEEE80211_RATE_SIZE;
2627	*frm++ = nrates;
2628	memcpy(frm, rs->rs_rates, nrates);
2629	frm += nrates;
2630
2631	/* add supported xrates IE */
2632	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2633		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2634		*frm++ = IEEE80211_ELEMID_XRATES;
2635		*frm++ = nrates;
2636		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2637		frm += nrates;
2638	}
2639
2640	/* setup length of probe request */
2641	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2642
2643	/*
2644	 * Construct information about the channel that we
2645	 * want to scan. The firmware expects this to be directly
2646	 * after the scan probe request
2647	 */
2648	c = ic->ic_curchan;
2649	chan = (struct wpi_scan_chan *)frm;
2650	chan->chan = ieee80211_chan2ieee(ic, c);
2651	chan->flags = 0;
2652	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2653		chan->flags |= WPI_CHAN_ACTIVE;
2654		if (ic->ic_des_ssid[0].len != 0)
2655			chan->flags |= WPI_CHAN_DIRECT;
2656	}
2657	chan->gain_dsp = 0x6e; /* Default level */
2658	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2659		chan->active = htole16(10);
2660		chan->passive = htole16(sc->maxdwell);
2661		chan->gain_radio = 0x3b;
2662	} else {
2663		chan->active = htole16(20);
2664		chan->passive = htole16(sc->maxdwell);
2665		chan->gain_radio = 0x28;
2666	}
2667
2668	DPRINTFN(WPI_DEBUG_SCANNING,
2669	    ("Scanning %u Passive: %d\n",
2670	     chan->chan,
2671	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2672
2673	hdr->nchan++;
2674	chan++;
2675
2676	frm += sizeof (struct wpi_scan_chan);
2677#if 0
2678	// XXX All Channels....
2679	for (c  = &ic->ic_channels[1];
2680	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2681		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2682			continue;
2683
2684		chan->chan = ieee80211_chan2ieee(ic, c);
2685		chan->flags = 0;
2686		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2687		    chan->flags |= WPI_CHAN_ACTIVE;
2688		    if (ic->ic_des_ssid[0].len != 0)
2689			chan->flags |= WPI_CHAN_DIRECT;
2690		}
2691		chan->gain_dsp = 0x6e; /* Default level */
2692		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2693			chan->active = htole16(10);
2694			chan->passive = htole16(110);
2695			chan->gain_radio = 0x3b;
2696		} else {
2697			chan->active = htole16(20);
2698			chan->passive = htole16(120);
2699			chan->gain_radio = 0x28;
2700		}
2701
2702		DPRINTFN(WPI_DEBUG_SCANNING,
2703			 ("Scanning %u Passive: %d\n",
2704			  chan->chan,
2705			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2706
2707		hdr->nchan++;
2708		chan++;
2709
2710		frm += sizeof (struct wpi_scan_chan);
2711	}
2712#endif
2713
2714	hdr->len = htole16(frm - (uint8_t *)hdr);
2715	pktlen = frm - (uint8_t *)cmd;
2716
2717	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2718	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2719	if (error != 0) {
2720		device_printf(sc->sc_dev, "could not map scan command\n");
2721		m_freem(data->m);
2722		data->m = NULL;
2723		return error;
2724	}
2725
2726	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2727	desc->segs[0].addr = htole32(physaddr);
2728	desc->segs[0].len  = htole32(pktlen);
2729
2730	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2731	    BUS_DMASYNC_PREWRITE);
2732	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2733
2734	/* kick cmd ring */
2735	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2736	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2737
2738	sc->sc_scan_timer = 5;
2739	return 0;	/* will be notified async. of failure/success */
2740}
2741
2742/**
2743 * Configure the card to listen to a particular channel, this transisions the
2744 * card in to being able to receive frames from remote devices.
2745 */
2746static int
2747wpi_config(struct wpi_softc *sc)
2748{
2749	struct ieee80211com *ic = &sc->sc_ic;
2750	struct ifnet *ifp = ic->ic_ifp;
2751	struct wpi_power power;
2752	struct wpi_bluetooth bluetooth;
2753	struct wpi_node_info node;
2754	int error;
2755
2756	/* set power mode */
2757	memset(&power, 0, sizeof power);
2758	power.flags = htole32(WPI_POWER_CAM|0x8);
2759	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2760	if (error != 0) {
2761		device_printf(sc->sc_dev, "could not set power mode\n");
2762		return error;
2763	}
2764
2765	/* configure bluetooth coexistence */
2766	memset(&bluetooth, 0, sizeof bluetooth);
2767	bluetooth.flags = 3;
2768	bluetooth.lead = 0xaa;
2769	bluetooth.kill = 1;
2770	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2771	    0);
2772	if (error != 0) {
2773		device_printf(sc->sc_dev,
2774		    "could not configure bluetooth coexistence\n");
2775		return error;
2776	}
2777
2778	/* configure adapter */
2779	memset(&sc->config, 0, sizeof (struct wpi_config));
2780	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2781	/*set default channel*/
2782	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2783	sc->config.flags = htole32(WPI_CONFIG_TSF);
2784	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2785		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2786		    WPI_CONFIG_24GHZ);
2787	}
2788	sc->config.filter = 0;
2789	switch (ic->ic_opmode) {
2790	case IEEE80211_M_STA:
2791	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2792		sc->config.mode = WPI_MODE_STA;
2793		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2794		break;
2795	case IEEE80211_M_IBSS:
2796	case IEEE80211_M_AHDEMO:
2797		sc->config.mode = WPI_MODE_IBSS;
2798		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2799					     WPI_FILTER_MULTICAST);
2800		break;
2801	case IEEE80211_M_HOSTAP:
2802		sc->config.mode = WPI_MODE_HOSTAP;
2803		break;
2804	case IEEE80211_M_MONITOR:
2805		sc->config.mode = WPI_MODE_MONITOR;
2806		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2807			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2808		break;
2809	}
2810	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2811	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2812	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2813		sizeof (struct wpi_config), 0);
2814	if (error != 0) {
2815		device_printf(sc->sc_dev, "configure command failed\n");
2816		return error;
2817	}
2818
2819	/* configuration has changed, set Tx power accordingly */
2820	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2821	    device_printf(sc->sc_dev, "could not set Tx power\n");
2822	    return error;
2823	}
2824
2825	/* add broadcast node */
2826	memset(&node, 0, sizeof node);
2827	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2828	node.id = WPI_ID_BROADCAST;
2829	node.rate = wpi_plcp_signal(2);
2830	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2831	if (error != 0) {
2832		device_printf(sc->sc_dev, "could not add broadcast node\n");
2833		return error;
2834	}
2835
2836	/* Setup rate scalling */
2837	error = wpi_mrr_setup(sc);
2838	if (error != 0) {
2839		device_printf(sc->sc_dev, "could not setup MRR\n");
2840		return error;
2841	}
2842
2843	return 0;
2844}
2845
2846static void
2847wpi_stop_master(struct wpi_softc *sc)
2848{
2849	uint32_t tmp;
2850	int ntries;
2851
2852	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2853
2854	tmp = WPI_READ(sc, WPI_RESET);
2855	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2856
2857	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2858	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2859		return;	/* already asleep */
2860
2861	for (ntries = 0; ntries < 100; ntries++) {
2862		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2863			break;
2864		DELAY(10);
2865	}
2866	if (ntries == 100) {
2867		device_printf(sc->sc_dev, "timeout waiting for master\n");
2868	}
2869}
2870
2871static int
2872wpi_power_up(struct wpi_softc *sc)
2873{
2874	uint32_t tmp;
2875	int ntries;
2876
2877	wpi_mem_lock(sc);
2878	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2879	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2880	wpi_mem_unlock(sc);
2881
2882	for (ntries = 0; ntries < 5000; ntries++) {
2883		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2884			break;
2885		DELAY(10);
2886	}
2887	if (ntries == 5000) {
2888		device_printf(sc->sc_dev,
2889		    "timeout waiting for NIC to power up\n");
2890		return ETIMEDOUT;
2891	}
2892	return 0;
2893}
2894
2895static int
2896wpi_reset(struct wpi_softc *sc)
2897{
2898	uint32_t tmp;
2899	int ntries;
2900
2901	DPRINTFN(WPI_DEBUG_HW,
2902	    ("Resetting the card - clearing any uploaded firmware\n"));
2903
2904	/* clear any pending interrupts */
2905	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2906
2907	tmp = WPI_READ(sc, WPI_PLL_CTL);
2908	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2909
2910	tmp = WPI_READ(sc, WPI_CHICKEN);
2911	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2912
2913	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2914	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2915
2916	/* wait for clock stabilization */
2917	for (ntries = 0; ntries < 25000; ntries++) {
2918		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2919			break;
2920		DELAY(10);
2921	}
2922	if (ntries == 25000) {
2923		device_printf(sc->sc_dev,
2924		    "timeout waiting for clock stabilization\n");
2925		return ETIMEDOUT;
2926	}
2927
2928	/* initialize EEPROM */
2929	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2930
2931	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2932		device_printf(sc->sc_dev, "EEPROM not found\n");
2933		return EIO;
2934	}
2935	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2936
2937	return 0;
2938}
2939
2940static void
2941wpi_hw_config(struct wpi_softc *sc)
2942{
2943	uint32_t rev, hw;
2944
2945	/* voodoo from the Linux "driver".. */
2946	hw = WPI_READ(sc, WPI_HWCONFIG);
2947
2948	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2949	if ((rev & 0xc0) == 0x40)
2950		hw |= WPI_HW_ALM_MB;
2951	else if (!(rev & 0x80))
2952		hw |= WPI_HW_ALM_MM;
2953
2954	if (sc->cap == 0x80)
2955		hw |= WPI_HW_SKU_MRC;
2956
2957	hw &= ~WPI_HW_REV_D;
2958	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2959		hw |= WPI_HW_REV_D;
2960
2961	if (sc->type > 1)
2962		hw |= WPI_HW_TYPE_B;
2963
2964	WPI_WRITE(sc, WPI_HWCONFIG, hw);
2965}
2966
2967static void
2968wpi_rfkill_resume(struct wpi_softc *sc)
2969{
2970	struct ifnet *ifp = sc->sc_ifp;
2971	struct ieee80211com *ic = &sc->sc_ic;
2972	int ntries;
2973
2974	/* enable firmware again */
2975	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
2976	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
2977
2978	/* wait for thermal sensors to calibrate */
2979	for (ntries = 0; ntries < 1000; ntries++) {
2980		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
2981			break;
2982		DELAY(10);
2983	}
2984
2985	if (ntries == 1000) {
2986		device_printf(sc->sc_dev,
2987		    "timeout waiting for thermal calibration\n");
2988		WPI_UNLOCK(sc);
2989		return;
2990	}
2991	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
2992
2993	if (wpi_config(sc) != 0) {
2994		device_printf(sc->sc_dev, "device config failed\n");
2995		WPI_UNLOCK(sc);
2996		return;
2997	}
2998
2999	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3000	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3001	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3002
3003	if (ic->ic_flags & IEEE80211_F_SCAN)
3004		ieee80211_scan_next(ic);
3005
3006	ieee80211_beacon_miss(ic);
3007
3008	/* reset the led sequence */
3009	switch (ic->ic_state) {
3010		case IEEE80211_S_SCAN:
3011			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3012			break;
3013
3014		case IEEE80211_S_RUN:
3015			if (ic->ic_opmode == IEEE80211_M_MONITOR)
3016				wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3017			else
3018				wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3019			break;
3020
3021		default:
3022			break;	/* please compiler */
3023	}
3024
3025	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3026}
3027
3028static void
3029wpi_init(void *arg)
3030{
3031	struct wpi_softc *sc = arg;
3032
3033	WPI_LOCK(sc);
3034	wpi_init_locked(sc, 0);
3035	WPI_UNLOCK(sc);
3036}
3037
3038static void
3039wpi_init_locked(struct wpi_softc *sc, int force)
3040{
3041	struct ieee80211com *ic = &sc->sc_ic;
3042	struct ifnet *ifp = ic->ic_ifp;
3043	uint32_t tmp;
3044	int ntries, qid;
3045
3046	wpi_stop_locked(sc);
3047	(void)wpi_reset(sc);
3048
3049	wpi_mem_lock(sc);
3050	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3051	DELAY(20);
3052	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3053	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3054	wpi_mem_unlock(sc);
3055
3056	(void)wpi_power_up(sc);
3057	wpi_hw_config(sc);
3058
3059	/* init Rx ring */
3060	wpi_mem_lock(sc);
3061	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3062	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3063	    offsetof(struct wpi_shared, next));
3064	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3065	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3066	wpi_mem_unlock(sc);
3067
3068	/* init Tx rings */
3069	wpi_mem_lock(sc);
3070	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3071	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3072	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3073	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3074	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3075	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3076	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3077
3078	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3079	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3080
3081	for (qid = 0; qid < 6; qid++) {
3082		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3083		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3084		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3085	}
3086	wpi_mem_unlock(sc);
3087
3088	/* clear "radio off" and "disable command" bits (reversed logic) */
3089	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3090	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3091	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3092
3093	/* clear any pending interrupts */
3094	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3095
3096	/* enable interrupts */
3097	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3098
3099	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3100	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3101
3102	if ((wpi_load_firmware(sc)) != 0) {
3103	    device_printf(sc->sc_dev,
3104		"A problem occurred loading the firmware to the driver\n");
3105	    return;
3106	}
3107
3108	/* At this point the firmware is up and running. If the hardware
3109	 * RF switch is turned off thermal calibration will fail, though
3110	 * the card is still happy to continue to accept commands, catch
3111	 * this case and schedule a task to watch for it to be turned on.
3112	 */
3113	wpi_mem_lock(sc);
3114	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3115	wpi_mem_unlock(sc);
3116
3117	if (!(tmp & 0x1)) {
3118		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3119		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3120		goto out;
3121	}
3122
3123	/* wait for thermal sensors to calibrate */
3124	for (ntries = 0; ntries < 1000; ntries++) {
3125		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3126			break;
3127		DELAY(10);
3128	}
3129
3130	if (ntries == 1000) {
3131		device_printf(sc->sc_dev,
3132		    "timeout waiting for thermal sensors calibration\n");
3133		return;
3134	}
3135	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3136
3137	if (wpi_config(sc) != 0) {
3138		device_printf(sc->sc_dev, "device config failed\n");
3139		return;
3140	}
3141
3142	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3143	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3144out:
3145	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3146
3147	if (ic->ic_opmode == IEEE80211_M_MONITOR)
3148		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3149	else if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3150		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3151	return;
3152}
3153
3154static void
3155wpi_stop(struct wpi_softc *sc)
3156{
3157
3158	WPI_LOCK(sc);
3159	wpi_stop_locked(sc);
3160	WPI_UNLOCK(sc);
3161
3162}
3163static void
3164wpi_stop_locked(struct wpi_softc *sc)
3165
3166{
3167	struct ieee80211com *ic = &sc->sc_ic;
3168	struct ifnet *ifp = ic->ic_ifp;
3169	uint32_t tmp;
3170	int ac;
3171
3172	sc->sc_tx_timer = 0;
3173	sc->sc_scan_timer = 0;
3174	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3175	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3176	callout_stop(&sc->watchdog_to);
3177	callout_stop(&sc->calib_to);
3178
3179
3180	/* disable interrupts */
3181	WPI_WRITE(sc, WPI_MASK, 0);
3182	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3183	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3184	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3185
3186	/* Clear any commands left in the command buffer */
3187	memset(sc->sc_cmd, 0, sizeof(sc->sc_cmd));
3188	memset(sc->sc_cmd_arg, 0, sizeof(sc->sc_cmd_arg));
3189	sc->sc_cmd_cur = 0;
3190	sc->sc_cmd_next = 0;
3191
3192	wpi_mem_lock(sc);
3193	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3194	wpi_mem_unlock(sc);
3195
3196	/* reset all Tx rings */
3197	for (ac = 0; ac < 4; ac++)
3198		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3199	wpi_reset_tx_ring(sc, &sc->cmdq);
3200
3201	/* reset Rx ring */
3202	wpi_reset_rx_ring(sc, &sc->rxq);
3203
3204	wpi_mem_lock(sc);
3205	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3206	wpi_mem_unlock(sc);
3207
3208	DELAY(5);
3209
3210	wpi_stop_master(sc);
3211
3212	tmp = WPI_READ(sc, WPI_RESET);
3213	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3214	sc->flags &= ~WPI_FLAG_BUSY;
3215
3216	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3217}
3218
3219static void
3220wpi_iter_func(void *arg, struct ieee80211_node *ni)
3221{
3222	struct wpi_softc *sc = arg;
3223	struct wpi_node *wn = (struct wpi_node *)ni;
3224
3225	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
3226}
3227
3228static void
3229wpi_newassoc(struct ieee80211_node *ni, int isnew)
3230{
3231	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
3232	int i;
3233
3234	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
3235
3236	for (i = ni->ni_rates.rs_nrates - 1;
3237	    i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
3238	    i--);
3239	ni->ni_txrate = i;
3240}
3241
3242static void
3243wpi_calib_timeout(void *arg)
3244{
3245	struct wpi_softc *sc = arg;
3246	struct ieee80211com *ic = &sc->sc_ic;
3247	int temp;
3248
3249	if (ic->ic_state != IEEE80211_S_RUN)
3250		return;
3251
3252	/* automatic rate control triggered every 500ms */
3253	if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
3254		if (ic->ic_opmode == IEEE80211_M_STA)
3255			wpi_iter_func(sc, ic->ic_bss);
3256		else
3257			ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
3258	}
3259
3260	/* update sensor data */
3261	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3262	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3263#if 0
3264	//XXX Used by OpenBSD Sensor Framework
3265	sc->sensor.value = temp + 260;
3266#endif
3267
3268	/* automatic power calibration every 60s */
3269	if (++sc->calib_cnt >= 120) {
3270		wpi_power_calibration(sc, temp);
3271		sc->calib_cnt = 0;
3272	}
3273
3274	callout_reset(&sc->calib_to, hz/2, wpi_calib_timeout, sc);
3275}
3276
3277/*
3278 * This function is called periodically (every 60 seconds) to adjust output
3279 * power to temperature changes.
3280 */
3281static void
3282wpi_power_calibration(struct wpi_softc *sc, int temp)
3283{
3284	/* sanity-check read value */
3285	if (temp < -260 || temp > 25) {
3286		/* this can't be correct, ignore */
3287		DPRINTFN(WPI_DEBUG_TEMP,
3288		    ("out-of-range temperature reported: %d\n", temp));
3289		return;
3290	}
3291
3292	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3293
3294	/* adjust Tx power if need be */
3295	if (abs(temp - sc->temp) <= 6)
3296		return;
3297
3298	sc->temp = temp;
3299
3300	if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan,1) != 0) {
3301		/* just warn, too bad for the automatic calibration... */
3302		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3303	}
3304}
3305
3306/**
3307 * Read the eeprom to find out what channels are valid for the given
3308 * band and update net80211 with what we find.
3309 */
3310static void
3311wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3312{
3313	struct ieee80211com *ic = &sc->sc_ic;
3314	const struct wpi_chan_band *band = &wpi_bands[n];
3315	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3316	int chan, i, offset, passive;
3317
3318	wpi_read_prom_data(sc, band->addr, channels,
3319	    band->nchan * sizeof (struct wpi_eeprom_chan));
3320
3321	for (i = 0; i < band->nchan; i++) {
3322		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3323			DPRINTFN(WPI_DEBUG_HW,
3324			    ("Channel Not Valid: %d, band %d\n",
3325			     band->chan[i],n));
3326			continue;
3327		}
3328
3329		passive = 0;
3330		chan = band->chan[i];
3331		offset = ic->ic_nchans;
3332
3333		/* is active scan allowed on this channel? */
3334		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3335			passive = IEEE80211_CHAN_PASSIVE;
3336		}
3337
3338		if (n == 0) {	/* 2GHz band */
3339			ic->ic_channels[offset].ic_ieee = chan;
3340			ic->ic_channels[offset].ic_freq =
3341			ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
3342			ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_B | passive;
3343			offset++;
3344			ic->ic_channels[offset].ic_ieee = chan;
3345			ic->ic_channels[offset].ic_freq =
3346			ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
3347			ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_G | passive;
3348			offset++;
3349
3350		} else {	/* 5GHz band */
3351			/*
3352			 * Some 3945ABG adapters support channels 7, 8, 11
3353			 * and 12 in the 2GHz *and* 5GHz bands.
3354			 * Because of limitations in our net80211(9) stack,
3355			 * we can't support these channels in 5GHz band.
3356			 * XXX not true; just need to map to proper frequency
3357			 */
3358			if (chan <= 14)
3359				continue;
3360
3361			ic->ic_channels[offset].ic_ieee = chan;
3362			ic->ic_channels[offset].ic_freq =
3363			ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
3364			ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_A | passive;
3365			offset++;
3366		}
3367
3368		/* save maximum allowed power for this channel */
3369		sc->maxpwr[chan] = channels[i].maxpwr;
3370
3371		ic->ic_nchans = offset;
3372
3373#if 0
3374		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3375		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3376		//ic->ic_channels[chan].ic_minpower...
3377		//ic->ic_channels[chan].ic_maxregtxpower...
3378#endif
3379
3380		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d, offset %d\n",
3381			    chan, channels[i].flags, sc->maxpwr[chan], offset));
3382	}
3383}
3384
3385static void
3386wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3387{
3388	struct wpi_power_group *group = &sc->groups[n];
3389	struct wpi_eeprom_group rgroup;
3390	int i;
3391
3392	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3393	    sizeof rgroup);
3394
3395	/* save power group information */
3396	group->chan   = rgroup.chan;
3397	group->maxpwr = rgroup.maxpwr;
3398	/* temperature at which the samples were taken */
3399	group->temp   = (int16_t)le16toh(rgroup.temp);
3400
3401	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3402		    group->chan, group->maxpwr, group->temp));
3403
3404	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3405		group->samples[i].index = rgroup.samples[i].index;
3406		group->samples[i].power = rgroup.samples[i].power;
3407
3408		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3409			    group->samples[i].index, group->samples[i].power));
3410	}
3411}
3412
3413/*
3414 * Update Tx power to match what is defined for channel `c'.
3415 */
3416static int
3417wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3418{
3419	struct ieee80211com *ic = &sc->sc_ic;
3420	struct wpi_power_group *group;
3421	struct wpi_cmd_txpower txpower;
3422	u_int chan;
3423	int i;
3424
3425	/* get channel number */
3426	chan = ieee80211_chan2ieee(ic, c);
3427
3428	/* find the power group to which this channel belongs */
3429	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3430		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3431			if (chan <= group->chan)
3432				break;
3433	} else
3434		group = &sc->groups[0];
3435
3436	memset(&txpower, 0, sizeof txpower);
3437	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3438	txpower.channel = htole16(chan);
3439
3440	/* set Tx power for all OFDM and CCK rates */
3441	for (i = 0; i <= 11 ; i++) {
3442		/* retrieve Tx power for this channel/rate combination */
3443		int idx = wpi_get_power_index(sc, group, c,
3444		    wpi_ridx_to_rate[i]);
3445
3446		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3447
3448		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3449			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3450			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3451		} else {
3452			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3453			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3454		}
3455		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3456			    chan, wpi_ridx_to_rate[i], idx));
3457	}
3458
3459	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3460}
3461
3462/*
3463 * Determine Tx power index for a given channel/rate combination.
3464 * This takes into account the regulatory information from EEPROM and the
3465 * current temperature.
3466 */
3467static int
3468wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3469    struct ieee80211_channel *c, int rate)
3470{
3471/* fixed-point arithmetic division using a n-bit fractional part */
3472#define fdivround(a, b, n)      \
3473	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3474
3475/* linear interpolation */
3476#define interpolate(x, x1, y1, x2, y2, n)       \
3477	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3478
3479	struct ieee80211com *ic = &sc->sc_ic;
3480	struct wpi_power_sample *sample;
3481	int pwr, idx;
3482	u_int chan;
3483
3484	/* get channel number */
3485	chan = ieee80211_chan2ieee(ic, c);
3486
3487	/* default power is group's maximum power - 3dB */
3488	pwr = group->maxpwr / 2;
3489
3490	/* decrease power for highest OFDM rates to reduce distortion */
3491	switch (rate) {
3492		case 72:	/* 36Mb/s */
3493			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3494			break;
3495		case 96:	/* 48Mb/s */
3496			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3497			break;
3498		case 108:	/* 54Mb/s */
3499			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3500			break;
3501	}
3502
3503	/* never exceed channel's maximum allowed Tx power */
3504	pwr = min(pwr, sc->maxpwr[chan]);
3505
3506	/* retrieve power index into gain tables from samples */
3507	for (sample = group->samples; sample < &group->samples[3]; sample++)
3508		if (pwr > sample[1].power)
3509			break;
3510	/* fixed-point linear interpolation using a 19-bit fractional part */
3511	idx = interpolate(pwr, sample[0].power, sample[0].index,
3512	    sample[1].power, sample[1].index, 19);
3513
3514	/*
3515	 *  Adjust power index based on current temperature
3516	 *	- if colder than factory-calibrated: decreate output power
3517	 *	- if warmer than factory-calibrated: increase output power
3518	 */
3519	idx -= (sc->temp - group->temp) * 11 / 100;
3520
3521	/* decrease power for CCK rates (-5dB) */
3522	if (!WPI_RATE_IS_OFDM(rate))
3523		idx += 10;
3524
3525	/* keep power index in a valid range */
3526	if (idx < 0)
3527		return 0;
3528	if (idx > WPI_MAX_PWR_INDEX)
3529		return WPI_MAX_PWR_INDEX;
3530	return idx;
3531
3532#undef interpolate
3533#undef fdivround
3534}
3535
3536/**
3537 * Called by net80211 framework to indicate that a scan
3538 * is starting. This function doesn't actually do the scan,
3539 * wpi_scan_curchan starts things off. This function is more
3540 * of an early warning from the framework we should get ready
3541 * for the scan.
3542 */
3543static void
3544wpi_scan_start(struct ieee80211com *ic)
3545{
3546	struct ifnet *ifp = ic->ic_ifp;
3547	struct wpi_softc *sc = ifp->if_softc;
3548
3549	wpi_queue_cmd(sc, WPI_SCAN_START, 0, WPI_QUEUE_NORMAL);
3550}
3551
3552/**
3553 * Called by the net80211 framework, indicates that the
3554 * scan has ended. If there is a scan in progress on the card
3555 * then it should be aborted.
3556 */
3557static void
3558wpi_scan_end(struct ieee80211com *ic)
3559{
3560	struct ifnet *ifp = ic->ic_ifp;
3561	struct wpi_softc *sc = ifp->if_softc;
3562
3563	wpi_queue_cmd(sc, WPI_SCAN_STOP, 0, WPI_QUEUE_NORMAL);
3564}
3565
3566/**
3567 * Called by the net80211 framework to indicate to the driver
3568 * that the channel should be changed
3569 */
3570static void
3571wpi_set_channel(struct ieee80211com *ic)
3572{
3573	struct ifnet *ifp = ic->ic_ifp;
3574	struct wpi_softc *sc = ifp->if_softc;
3575
3576	/*
3577	 * Only need to set the channel in Monitor mode. AP scanning and auth
3578	 * are already taken care of by their respective firmware commands.
3579	 */
3580	if (ic->ic_opmode == IEEE80211_M_MONITOR)
3581		wpi_queue_cmd(sc, WPI_SET_CHAN, 0, WPI_QUEUE_NORMAL);
3582}
3583
3584/**
3585 * Called by net80211 to indicate that we need to scan the current
3586 * channel. The channel is previously be set via the wpi_set_channel
3587 * callback.
3588 */
3589static void
3590wpi_scan_curchan(struct ieee80211com *ic, unsigned long maxdwell)
3591{
3592	struct ifnet *ifp = ic->ic_ifp;
3593	struct wpi_softc *sc = ifp->if_softc;
3594
3595	sc->maxdwell = maxdwell;
3596
3597	wpi_queue_cmd(sc, WPI_SCAN_CURCHAN, 0, WPI_QUEUE_NORMAL);
3598}
3599
3600/**
3601 * Called by the net80211 framework to indicate
3602 * the minimum dwell time has been met, terminate the scan.
3603 * We don't actually terminate the scan as the firmware will notify
3604 * us when it's finished and we have no way to interrupt it.
3605 */
3606static void
3607wpi_scan_mindwell(struct ieee80211com *ic)
3608{
3609	/* NB: don't try to abort scan; wait for firmware to finish */
3610}
3611
3612/**
3613 * The ops function is called to perform some actual work.
3614 * because we can't sleep from any of the ic callbacks, we queue an
3615 * op task with wpi_queue_cmd and have the taskqueue process that task.
3616 * The task that gets cued is a op task, which ends up calling this function.
3617 */
3618static void
3619wpi_ops(void *arg0, int pending)
3620{
3621	struct wpi_softc *sc = arg0;
3622	struct ieee80211com *ic = &sc->sc_ic;
3623	int cmd, arg, error;
3624
3625again:
3626	WPI_CMD_LOCK(sc);
3627	cmd = sc->sc_cmd[sc->sc_cmd_cur];
3628	arg = sc->sc_cmd_arg[sc->sc_cmd_cur];
3629
3630	if (cmd == 0) {
3631		/* No more commands to process */
3632		WPI_CMD_UNLOCK(sc);
3633		return;
3634	}
3635	sc->sc_cmd[sc->sc_cmd_cur] = 0; /* free the slot */
3636	sc->sc_cmd_arg[sc->sc_cmd_cur] = 0; /* free the slot */
3637	sc->sc_cmd_cur = (sc->sc_cmd_cur + 1) % WPI_CMD_MAXOPS;
3638	WPI_CMD_UNLOCK(sc);
3639	WPI_LOCK(sc);
3640
3641	DPRINTFN(WPI_DEBUG_OPS,("wpi_ops: command: %d\n", cmd));
3642
3643	switch (cmd) {
3644	case WPI_RESTART:
3645		wpi_init_locked(sc, 0);
3646		WPI_UNLOCK(sc);
3647		return;
3648
3649	case WPI_RF_RESTART:
3650		wpi_rfkill_resume(sc);
3651		WPI_UNLOCK(sc);
3652		return;
3653	}
3654
3655	if (!(sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3656		WPI_UNLOCK(sc);
3657		return;
3658	}
3659
3660	switch (cmd) {
3661	case WPI_SCAN_START:
3662		sc->flags |= WPI_FLAG_SCANNING;
3663		break;
3664
3665	case WPI_SCAN_STOP:
3666		sc->flags &= ~WPI_FLAG_SCANNING;
3667		break;
3668
3669	case WPI_SCAN_CURCHAN:
3670		if (wpi_scan(sc))
3671			ieee80211_cancel_scan(ic);
3672		break;
3673
3674	case WPI_SET_CHAN:
3675		error = wpi_config(sc);
3676		if (error != 0)
3677			device_printf(sc->sc_dev,
3678			    "error %d settting channel\n", error);
3679		break;
3680
3681	case WPI_AUTH:
3682		/* The node must be registered in the firmware before auth */
3683		error = wpi_auth(sc);
3684		if (error != 0) {
3685			device_printf(sc->sc_dev,
3686			    "%s: could not move to auth state, error %d\n",
3687			    __func__, error);
3688			WPI_UNLOCK(sc);
3689			return;
3690		}
3691		/* Send the auth frame now */
3692		sc->sc_newstate(ic, IEEE80211_S_AUTH, arg);
3693		break;
3694
3695	case WPI_RUN:
3696		error = wpi_run(sc);
3697		if (error != 0) {
3698			device_printf(sc->sc_dev,
3699			    "%s: could not move to run state, error %d\n",
3700			    __func__, error);
3701			WPI_UNLOCK(sc);
3702			return;
3703		}
3704		sc->sc_newstate(ic, IEEE80211_S_RUN, arg);
3705		break;
3706	}
3707	WPI_UNLOCK(sc);
3708
3709	/* Take another pass */
3710	goto again;
3711}
3712
3713/**
3714 * queue a command for later execution in a different thread.
3715 * This is needed as the net80211 callbacks do not allow
3716 * sleeping, since we need to sleep to confirm commands have
3717 * been processed by the firmware, we must defer execution to
3718 * a sleep enabled thread.
3719 */
3720static int
3721wpi_queue_cmd(struct wpi_softc *sc, int cmd, int arg, int flush)
3722{
3723	WPI_CMD_LOCK(sc);
3724
3725	if (flush) {
3726		memset(sc->sc_cmd, 0, sizeof (sc->sc_cmd));
3727		memset(sc->sc_cmd_arg, 0, sizeof (sc->sc_cmd_arg));
3728		sc->sc_cmd_cur = 0;
3729		sc->sc_cmd_next = 0;
3730	}
3731
3732	if (sc->sc_cmd[sc->sc_cmd_next] != 0) {
3733		WPI_CMD_UNLOCK(sc);
3734		DPRINTF(("%s: command %d dropped\n", __func__, cmd));
3735		return (EBUSY);
3736	}
3737
3738	sc->sc_cmd[sc->sc_cmd_next] = cmd;
3739	sc->sc_cmd_arg[sc->sc_cmd_next] = arg;
3740	sc->sc_cmd_next = (sc->sc_cmd_next + 1) % WPI_CMD_MAXOPS;
3741
3742	taskqueue_enqueue(sc->sc_tq, &sc->sc_opstask);
3743
3744	WPI_CMD_UNLOCK(sc);
3745
3746	return 0;
3747}
3748
3749/*
3750 * Allocate DMA-safe memory for firmware transfer.
3751 */
3752static int
3753wpi_alloc_fwmem(struct wpi_softc *sc)
3754{
3755	/* allocate enough contiguous space to store text and data */
3756	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3757	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3758	    BUS_DMA_NOWAIT);
3759}
3760
3761static void
3762wpi_free_fwmem(struct wpi_softc *sc)
3763{
3764	wpi_dma_contig_free(&sc->fw_dma);
3765}
3766
3767/**
3768 * Called every second, wpi_watchdog used by the watch dog timer
3769 * to check that the card is still alive
3770 */
3771static void
3772wpi_watchdog(void *arg)
3773{
3774	struct wpi_softc *sc = arg;
3775	struct ifnet *ifp = sc->sc_ifp;
3776	uint32_t tmp;
3777
3778	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3779
3780	if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3781		/* No need to lock firmware memory */
3782		tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3783
3784		if ((tmp & 0x1) == 0) {
3785			/* Radio kill switch is still off */
3786			callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3787			return;
3788		}
3789
3790		device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3791		wpi_queue_cmd(sc, WPI_RF_RESTART, 0, WPI_QUEUE_CLEAR);
3792		return;
3793	}
3794
3795	if (sc->sc_tx_timer > 0) {
3796		if (--sc->sc_tx_timer == 0) {
3797			device_printf(sc->sc_dev,"device timeout\n");
3798			ifp->if_oerrors++;
3799			wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR);
3800		}
3801	}
3802	if (sc->sc_scan_timer > 0) {
3803		if (--sc->sc_scan_timer == 0) {
3804			device_printf(sc->sc_dev,"scan timeout\n");
3805			ieee80211_cancel_scan(&sc->sc_ic);
3806			wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR);
3807		}
3808	}
3809
3810	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3811		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3812}
3813
3814#ifdef WPI_DEBUG
3815static const char *wpi_cmd_str(int cmd)
3816{
3817	switch(cmd) {
3818		case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3819		case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3820		case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3821		case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3822		case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3823		case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3824		case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3825		case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3826		case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3827		case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3828		case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3829		case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3830		case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3831		case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3832
3833		default:
3834		KASSERT(1, ("Unknown Command: %d\n", cmd));
3835		return "UNKNOWN CMD"; // Make the compiler happy
3836	}
3837}
3838#endif
3839
3840MODULE_DEPEND(wpi, pci,  1, 1, 1);
3841MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3842MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3843MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1);
3844