if_wpi.c revision 173977
1/*-
2 * Copyright (c) 2006,2007
3 *	Damien Bergamini <damien.bergamini@free.fr>
4 *	Benjamin Close <Benjamin.Close@clearchain.com>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19#define VERSION "20071127"
20
21#include <sys/cdefs.h>
22__FBSDID("$FreeBSD: head/sys/dev/wpi/if_wpi.c 173977 2007-11-27 09:09:09Z benjsc $");
23
24/*
25 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26 *
27 * The 3945ABG network adapter doesn't use traditional hardware as
28 * many other adaptors do. Instead at run time the eeprom is set into a known
29 * state and told to load boot firmware. The boot firmware loads an init and a
30 * main  binary firmware image into SRAM on the card via DMA.
31 * Once the firmware is loaded, the driver/hw then
32 * communicate by way of circular dma rings via the the SRAM to the firmware.
33 *
34 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35 * The 4 tx data rings allow for prioritization QoS.
36 *
37 * The rx data ring consists of 32 dma buffers. Two registers are used to
38 * indicate where in the ring the driver and the firmware are up to. The
39 * driver sets the initial read index (reg1) and the initial write index (reg2),
40 * the firmware updates the read index (reg1) on rx of a packet and fires an
41 * interrupt. The driver then processes the buffers starting at reg1 indicating
42 * to the firmware which buffers have been accessed by updating reg2. At the
43 * same time allocating new memory for the processed buffer.
44 *
45 * A similar thing happens with the tx rings. The difference is the firmware
46 * stop processing buffers once the queue is full and until confirmation
47 * of a successful transmition (tx_intr) has occurred.
48 *
49 * The command ring operates in the same manner as the tx queues.
50 *
51 * All communication direct to the card (ie eeprom) is classed as Stage1
52 * communication
53 *
54 * All communication via the firmware to the card is classed as State2.
55 * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56 * firmware. The bootstrap firmware and runtime firmware are loaded
57 * from host memory via dma to the card then told to execute. From this point
58 * on the majority of communications between the driver and the card goes
59 * via the firmware.
60 */
61
62#include <sys/param.h>
63#include <sys/sysctl.h>
64#include <sys/sockio.h>
65#include <sys/mbuf.h>
66#include <sys/kernel.h>
67#include <sys/socket.h>
68#include <sys/systm.h>
69#include <sys/malloc.h>
70#include <sys/queue.h>
71#include <sys/taskqueue.h>
72#include <sys/module.h>
73#include <sys/bus.h>
74#include <sys/endian.h>
75#include <sys/linker.h>
76#include <sys/firmware.h>
77
78#if (__FreeBSD_version > 700000)
79#define WPI_CURRENT
80#endif
81
82#include <machine/bus.h>
83#include <machine/resource.h>
84#ifndef WPI_CURRENT
85#include <machine/clock.h>
86#endif
87#include <sys/rman.h>
88
89#include <dev/pci/pcireg.h>
90#include <dev/pci/pcivar.h>
91
92#include <net/bpf.h>
93#include <net/if.h>
94#include <net/if_arp.h>
95#include <net/ethernet.h>
96#include <net/if_dl.h>
97#include <net/if_media.h>
98#include <net/if_types.h>
99
100#include <net80211/ieee80211_var.h>
101#include <net80211/ieee80211_radiotap.h>
102#include <net80211/ieee80211_regdomain.h>
103
104#include <netinet/in.h>
105#include <netinet/in_systm.h>
106#include <netinet/in_var.h>
107#include <netinet/ip.h>
108#include <netinet/if_ether.h>
109
110#include <dev/wpi/if_wpireg.h>
111#include <dev/wpi/if_wpivar.h>
112
113#define WPI_DEBUG
114
115#ifdef WPI_DEBUG
116#define DPRINTF(x)	do { if (wpi_debug != 0) printf x; } while (0)
117#define DPRINTFN(n, x)	do { if (wpi_debug & n) printf x; } while (0)
118
119enum {
120	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
121	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
122	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
123	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
124	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
125	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
126	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
127	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
128	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
129	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
130	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
131	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
132	WPI_DEBUG_ANY		= 0xffffffff
133};
134
135int wpi_debug = 0;
136SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
137
138#else
139#define DPRINTF(x)
140#define DPRINTFN(n, x)
141#endif
142
143struct wpi_ident {
144	uint16_t	vendor;
145	uint16_t	device;
146	uint16_t	subdevice;
147	const char	*name;
148};
149
150static const struct wpi_ident wpi_ident_table[] = {
151	/* The below entries support ABG regardless of the subid */
152	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
153	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
154	/* The below entries only support BG */
155	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945AB"  },
156	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945AB"  },
157	{ 0x8086, 0x4222, 0x1014, "Intel(R) PRO/Wireless 3945AB"  },
158	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945AB"  },
159	{ 0, 0, 0, NULL }
160};
161
162static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
163		    void **, bus_size_t, bus_size_t, int);
164static void	wpi_dma_contig_free(struct wpi_dma_info *);
165static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
166static int	wpi_alloc_shared(struct wpi_softc *);
167static void	wpi_free_shared(struct wpi_softc *);
168static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
169static void	wpi_free_rbuf(void *, void *);
170static int	wpi_alloc_rpool(struct wpi_softc *);
171static void	wpi_free_rpool(struct wpi_softc *);
172static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
173static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
174static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
175static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
176		    int, int);
177static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
178static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
179static struct	ieee80211_node *wpi_node_alloc(struct ieee80211_node_table *);
180static int	wpi_media_change(struct ifnet *);
181static int	wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
182static void	wpi_mem_lock(struct wpi_softc *);
183static void	wpi_mem_unlock(struct wpi_softc *);
184static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
185static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
186static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
187		    const uint32_t *, int);
188static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
189static int	wpi_alloc_fwmem(struct wpi_softc *);
190static void	wpi_free_fwmem(struct wpi_softc *);
191static int	wpi_load_firmware(struct wpi_softc *);
192static void	wpi_unload_firmware(struct wpi_softc *);
193static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
194static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
195		    struct wpi_rx_data *);
196static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
197static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
198static void	wpi_notif_intr(struct wpi_softc *);
199static void	wpi_intr(void *);
200static void	wpi_ops(void *, int);
201static uint8_t	wpi_plcp_signal(int);
202static int	wpi_queue_cmd(struct wpi_softc *, int);
203static void	wpi_tick(void *);
204#if 0
205static void	wpi_radio_on(void *, int);
206static void	wpi_radio_off(void *, int);
207#endif
208static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
209		    struct ieee80211_node *, int);
210static void	wpi_start(struct ifnet *);
211static void	wpi_scan_start(struct ieee80211com *);
212static void	wpi_scan_end(struct ieee80211com *);
213static void	wpi_set_channel(struct ieee80211com *);
214static void	wpi_scan_curchan(struct ieee80211com *, unsigned long);
215static void	wpi_scan_mindwell(struct ieee80211com *);
216static void	wpi_watchdog(struct ifnet *);
217static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
218static void	wpi_restart(void *, int);
219static void	wpi_read_eeprom(struct wpi_softc *);
220static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
221static void	wpi_read_eeprom_group(struct wpi_softc *, int);
222static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
223static int	wpi_wme_update(struct ieee80211com *);
224static int	wpi_mrr_setup(struct wpi_softc *);
225static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
226static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
227#if 0
228static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
229#endif
230static int	wpi_auth(struct wpi_softc *);
231static int	wpi_scan(struct wpi_softc *);
232static int	wpi_config(struct wpi_softc *);
233static void	wpi_stop_master(struct wpi_softc *);
234static int	wpi_power_up(struct wpi_softc *);
235static int	wpi_reset(struct wpi_softc *);
236static void	wpi_hw_config(struct wpi_softc *);
237static void	wpi_init(void *);
238static void	wpi_stop(struct wpi_softc *);
239static void	wpi_stop_locked(struct wpi_softc *);
240static void	wpi_iter_func(void *, struct ieee80211_node *);
241
242static void	wpi_newassoc(struct ieee80211_node *, int);
243static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
244		    int);
245static void	wpi_calib_timeout(void *);
246static void	wpi_power_calibration(struct wpi_softc *, int);
247static int	wpi_get_power_index(struct wpi_softc *,
248		    struct wpi_power_group *, struct ieee80211_channel *, int);
249static const char *wpi_cmd_str(int);
250static int wpi_probe(device_t);
251static int wpi_attach(device_t);
252static int wpi_detach(device_t);
253static int wpi_shutdown(device_t);
254static int wpi_suspend(device_t);
255static int wpi_resume(device_t);
256
257
258static device_method_t wpi_methods[] = {
259	/* Device interface */
260	DEVMETHOD(device_probe,		wpi_probe),
261	DEVMETHOD(device_attach,	wpi_attach),
262	DEVMETHOD(device_detach,	wpi_detach),
263	DEVMETHOD(device_shutdown,	wpi_shutdown),
264	DEVMETHOD(device_suspend,	wpi_suspend),
265	DEVMETHOD(device_resume,	wpi_resume),
266
267	{ 0, 0 }
268};
269
270static driver_t wpi_driver = {
271	"wpi",
272	wpi_methods,
273	sizeof (struct wpi_softc)
274};
275
276static devclass_t wpi_devclass;
277
278DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
279
280static const uint8_t wpi_ridx_to_plcp[] = {
281	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
282	/* R1-R4 (ral/ural is R4-R1) */
283	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
284	/* CCK: device-dependent */
285	10, 20, 55, 110
286};
287static const uint8_t wpi_ridx_to_rate[] = {
288	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
289	2, 4, 11, 22 /*CCK */
290};
291
292
293static int
294wpi_probe(device_t dev)
295{
296	const struct wpi_ident *ident;
297
298	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
299		if (pci_get_vendor(dev) == ident->vendor &&
300		    pci_get_device(dev) == ident->device) {
301			device_set_desc(dev, ident->name);
302			return 0;
303		}
304	}
305	return ENXIO;
306}
307
308/**
309 * Load the firmare image from disk to the allocated dma buffer.
310 * we also maintain the reference to the firmware pointer as there
311 * is times where we may need to reload the firmware but we are not
312 * in a context that can access the filesystem (ie taskq cause by restart)
313 *
314 * @return 0 on success, an errno on failure
315 */
316static int
317wpi_load_firmware(struct wpi_softc *sc)
318{
319#ifdef WPI_CURRENT
320	const struct firmware *fp ;
321#else
322	struct firmware *fp;
323#endif
324	struct wpi_dma_info *dma = &sc->fw_dma;
325	const struct wpi_firmware_hdr *hdr;
326	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
327	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
328	int error;
329	WPI_LOCK_DECL;
330
331	DPRINTFN(WPI_DEBUG_FIRMWARE,
332	    ("Attempting Loading Firmware from wpi_fw module\n"));
333
334	WPI_UNLOCK(sc);
335
336	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
337		device_printf(sc->sc_dev,
338		    "could not load firmware image 'wpifw'\n");
339		error = ENOENT;
340		WPI_LOCK(sc);
341		goto fail;
342	}
343
344	fp = sc->fw_fp;
345
346	WPI_LOCK(sc);
347
348	/* Validate the firmware is minimum a particular version */
349	if (fp->version < WPI_FW_MINVERSION) {
350	    device_printf(sc->sc_dev,
351			   "firmware version is too old. Need %d, got %d\n",
352			   WPI_FW_MINVERSION,
353			   fp->version);
354	    error = ENXIO;
355	    goto fail;
356	}
357
358	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
359		device_printf(sc->sc_dev,
360		    "firmware file too short: %zu bytes\n", fp->datasize);
361		error = ENXIO;
362		goto fail;
363	}
364
365	hdr = (const struct wpi_firmware_hdr *)fp->data;
366
367	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
368	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
369
370	rtextsz = le32toh(hdr->rtextsz);
371	rdatasz = le32toh(hdr->rdatasz);
372	itextsz = le32toh(hdr->itextsz);
373	idatasz = le32toh(hdr->idatasz);
374	btextsz = le32toh(hdr->btextsz);
375
376	/* check that all firmware segments are present */
377	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
378		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
379		device_printf(sc->sc_dev,
380		    "firmware file too short: %zu bytes\n", fp->datasize);
381		error = ENXIO; /* XXX appropriate error code? */
382		goto fail;
383	}
384
385	/* get pointers to firmware segments */
386	rtext = (const uint8_t *)(hdr + 1);
387	rdata = rtext + rtextsz;
388	itext = rdata + rdatasz;
389	idata = itext + itextsz;
390	btext = idata + idatasz;
391
392	DPRINTFN(WPI_DEBUG_FIRMWARE,
393	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
394	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
395	     (le32toh(hdr->version) & 0xff000000) >> 24,
396	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
397	     (le32toh(hdr->version) & 0x0000ffff),
398	     rtextsz, rdatasz,
399	     itextsz, idatasz, btextsz));
400
401	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
402	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
403	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
404	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
405	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
406
407	/* sanity checks */
408	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
409	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
410	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
411	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
412	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
413	    (btextsz & 3) != 0) {
414		device_printf(sc->sc_dev, "firmware invalid\n");
415		error = EINVAL;
416		goto fail;
417	}
418
419	/* copy initialization images into pre-allocated DMA-safe memory */
420	memcpy(dma->vaddr, idata, idatasz);
421	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
422
423	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
424
425	/* tell adapter where to find initialization images */
426	wpi_mem_lock(sc);
427	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
428	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
429	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
430	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
431	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
432	wpi_mem_unlock(sc);
433
434	/* load firmware boot code */
435	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
436	    device_printf(sc->sc_dev, "Failed to load microcode\n");
437	    goto fail;
438	}
439
440	/* now press "execute" */
441	WPI_WRITE(sc, WPI_RESET, 0);
442
443	/* wait at most one second for the first alive notification */
444	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
445		device_printf(sc->sc_dev,
446		    "timeout waiting for adapter to initialize\n");
447		goto fail;
448	}
449
450	/* copy runtime images into pre-allocated DMA-sage memory */
451	memcpy(dma->vaddr, rdata, rdatasz);
452	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
453	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
454
455	/* tell adapter where to find runtime images */
456	wpi_mem_lock(sc);
457	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
458	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
459	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
460	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
461	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
462	wpi_mem_unlock(sc);
463
464	/* wait at most one second for the first alive notification */
465	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
466		device_printf(sc->sc_dev,
467		    "timeout waiting for adapter to initialize2\n");
468		goto fail;
469	}
470
471	DPRINTFN(WPI_DEBUG_FIRMWARE,
472	    ("Firmware loaded to driver successfully\n"));
473	return error;
474fail:
475	wpi_unload_firmware(sc);
476	return error;
477}
478
479/**
480 * Free the referenced firmware image
481 */
482static void
483wpi_unload_firmware(struct wpi_softc *sc)
484{
485	WPI_LOCK_DECL;
486
487	if (sc->fw_fp) {
488		WPI_UNLOCK(sc);
489		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
490		WPI_LOCK(sc);
491		sc->fw_fp = NULL;
492	}
493}
494
495static int
496wpi_attach(device_t dev)
497{
498	struct wpi_softc *sc = device_get_softc(dev);
499	struct ifnet *ifp;
500	struct ieee80211com *ic = &sc->sc_ic;
501	int ac, error, supportsa = 1;
502	uint32_t tmp;
503	const struct wpi_ident *ident;
504
505	sc->sc_dev = dev;
506
507	if (bootverbose || wpi_debug)
508	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
509
510	/*
511	 * Some card's only support 802.11b/g not a, check to see if
512	 * this is one such card. A 0x0 in the subdevice table indicates
513	 * the entire subdevice range is to be ignored.
514	 */
515	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
516		if (ident->subdevice &&
517		    pci_get_subdevice(dev) == ident->subdevice) {
518		    supportsa = 0;
519		    break;
520		}
521	}
522
523#if __FreeBSD_version >= 700000
524	/*
525	 * Create the taskqueues used by the driver. Primarily
526	 * sc_tq handles most the task
527	 */
528	sc->sc_tq = taskqueue_create("wpi_taskq", M_NOWAIT | M_ZERO,
529	    taskqueue_thread_enqueue, &sc->sc_tq);
530	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
531	    device_get_nameunit(dev));
532
533	sc->sc_tq2 = taskqueue_create("wpi_taskq2", M_NOWAIT | M_ZERO,
534	    taskqueue_thread_enqueue, &sc->sc_tq2);
535	taskqueue_start_threads(&sc->sc_tq2, 1, PI_NET, "%s taskq2",
536	    device_get_nameunit(dev));
537#else
538#error "Sorry, this driver is not yet ready for FreeBSD < 7.0"
539#endif
540
541	/* Create the tasks that can be queued */
542#if 0
543	TASK_INIT(&sc->sc_radioontask, 0, wpi_radio_on, sc);
544	TASK_INIT(&sc->sc_radioofftask, 0, wpi_radio_off, sc);
545#endif
546	TASK_INIT(&sc->sc_opstask, 0, wpi_ops, sc);
547	TASK_INIT(&sc->sc_restarttask, 0, wpi_restart, sc);
548
549	WPI_LOCK_INIT(sc);
550	WPI_CMD_LOCK_INIT(sc);
551
552	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
553	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
554
555	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
556		device_printf(dev, "chip is in D%d power mode "
557		    "-- setting to D0\n", pci_get_powerstate(dev));
558		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
559	}
560
561	/* disable the retry timeout register */
562	pci_write_config(dev, 0x41, 0, 1);
563
564	/* enable bus-mastering */
565	pci_enable_busmaster(dev);
566
567	sc->mem_rid = PCIR_BAR(0);
568	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
569	    RF_ACTIVE);
570	if (sc->mem == NULL) {
571		device_printf(dev, "could not allocate memory resource\n");
572		error = ENOMEM;
573		goto fail;
574	}
575
576	sc->sc_st = rman_get_bustag(sc->mem);
577	sc->sc_sh = rman_get_bushandle(sc->mem);
578
579	sc->irq_rid = 0;
580	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
581	    RF_ACTIVE | RF_SHAREABLE);
582	if (sc->irq == NULL) {
583		device_printf(dev, "could not allocate interrupt resource\n");
584		error = ENOMEM;
585		goto fail;
586	}
587
588	/*
589	 * Allocate DMA memory for firmware transfers.
590	 */
591	if ((error = wpi_alloc_fwmem(sc)) != 0) {
592		printf(": could not allocate firmware memory\n");
593		error = ENOMEM;
594		goto fail;
595	}
596
597	/*
598	 * Put adapter into a known state.
599	 */
600	if ((error = wpi_reset(sc)) != 0) {
601		device_printf(dev, "could not reset adapter\n");
602		goto fail;
603	}
604
605	wpi_mem_lock(sc);
606	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
607	if (bootverbose || wpi_debug)
608	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
609
610	wpi_mem_unlock(sc);
611
612	/* Allocate shared page */
613	if ((error = wpi_alloc_shared(sc)) != 0) {
614		device_printf(dev, "could not allocate shared page\n");
615		goto fail;
616	}
617
618	/*
619	 * Allocate the receive buffer pool. The recieve buffers are
620	 * WPI_RBUF_SIZE in length (3k) this is bigger than MCLBYTES
621	 * hence we can't simply use a cluster and used mapped dma memory
622	 * instead.
623	 */
624	if ((error = wpi_alloc_rpool(sc)) != 0) {
625	    device_printf(dev, "could not allocate Rx buffers\n");
626	    goto fail;
627	}
628
629	/* tx data queues  - 4 for QoS purposes */
630	for (ac = 0; ac < WME_NUM_AC; ac++) {
631		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
632		if (error != 0) {
633		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
634		    goto fail;
635		}
636	}
637
638	/* command queue to talk to the card's firmware */
639	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
640	if (error != 0) {
641		device_printf(dev, "could not allocate command ring\n");
642		goto fail;
643	}
644
645	/* receive data queue */
646	error = wpi_alloc_rx_ring(sc, &sc->rxq);
647	if (error != 0) {
648		device_printf(dev, "could not allocate Rx ring\n");
649		goto fail;
650	}
651
652	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
653	if (ifp == NULL) {
654		device_printf(dev, "can not if_alloc()\n");
655		error = ENOMEM;
656		goto fail;
657	}
658
659	ic->ic_ifp = ifp;
660	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
661	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
662	ic->ic_state = IEEE80211_S_INIT;
663
664	/* set device capabilities */
665	ic->ic_caps =
666		  IEEE80211_C_MONITOR		/* monitor mode supported */
667		| IEEE80211_C_TXPMGT		/* tx power management */
668		| IEEE80211_C_SHSLOT		/* short slot time supported */
669		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
670		| IEEE80211_C_WPA		/* 802.11i */
671/* XXX looks like WME is partly supported? */
672#if 0
673		| IEEE80211_C_IBSS		/* IBSS mode support */
674		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
675		| IEEE80211_C_WME		/* 802.11e */
676		| IEEE80211_C_HOSTAP		/* Host access point mode */
677#endif
678		;
679
680	/*
681	 * Read in the eeprom and also setup the channels for
682	 * net80211. We don't set the rates as net80211 does this for us
683	 */
684	wpi_read_eeprom(sc);
685
686	if (bootverbose || wpi_debug) {
687	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
688	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
689			  sc->type > 1 ? 'B': '?');
690	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
691			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
692	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
693			  supportsa ? "does" : "does not");
694
695	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
696	       what sc->rev really represents - benjsc 20070615 */
697	}
698
699	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
700	ifp->if_softc = sc;
701	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
702	ifp->if_init = wpi_init;
703	ifp->if_ioctl = wpi_ioctl;
704	ifp->if_start = wpi_start;
705	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
706	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
707	IFQ_SET_READY(&ifp->if_snd);
708	ieee80211_ifattach(ic);
709
710	/* override default methods */
711	ic->ic_node_alloc = wpi_node_alloc;
712	ic->ic_newassoc = wpi_newassoc;
713	ic->ic_wme.wme_update = wpi_wme_update;
714	ic->ic_scan_start = wpi_scan_start;
715	ic->ic_scan_end = wpi_scan_end;
716	ic->ic_set_channel = wpi_set_channel;
717	ic->ic_scan_curchan = wpi_scan_curchan;
718	ic->ic_scan_mindwell = wpi_scan_mindwell;
719
720	/* override state transition machine */
721	sc->sc_newstate = ic->ic_newstate;
722	ic->ic_newstate = wpi_newstate;
723	ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
724
725	ieee80211_amrr_init(&sc->amrr, ic,
726			   IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
727			   IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD);
728
729	/* whilst ieee80211_ifattach will listen for ieee80211 frames,
730	 * we also want to listen for the lower level radio frames
731	 */
732	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
733	    sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap),
734	    &sc->sc_drvbpf);
735
736	sc->sc_rxtap_len = sizeof sc->sc_rxtap;
737	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
738	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
739
740	sc->sc_txtap_len = sizeof sc->sc_txtap;
741	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
742	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
743
744	/*
745	 * Hook our interrupt after all initialization is complete.
746	 */
747	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE ,
748#ifdef WPI_CURRENT
749	    NULL,
750#endif
751	    wpi_intr, sc, &sc->sc_ih);
752	if (error != 0) {
753		device_printf(dev, "could not set up interrupt\n");
754		goto fail;
755	}
756
757	ieee80211_announce(ic);
758#ifdef XXX_DEBUG
759	ieee80211_announce_channels(ic);
760#endif
761
762	return 0;
763
764fail:	wpi_detach(dev);
765	return ENXIO;
766}
767
768static int
769wpi_detach(device_t dev)
770{
771	struct wpi_softc *sc = device_get_softc(dev);
772	struct ieee80211com *ic = &sc->sc_ic;
773	struct ifnet *ifp = ic->ic_ifp;
774	int ac;
775	WPI_LOCK_DECL;
776
777	if (ifp != NULL) {
778		wpi_stop(sc);
779		callout_drain(&sc->watchdog_to);
780		callout_drain(&sc->calib_to);
781		bpfdetach(ifp);
782		ieee80211_ifdetach(ic);
783	}
784
785	WPI_LOCK(sc);
786	if (sc->txq[0].data_dmat) {
787		for (ac = 0; ac < WME_NUM_AC; ac++)
788			wpi_free_tx_ring(sc, &sc->txq[ac]);
789
790		wpi_free_tx_ring(sc, &sc->cmdq);
791		wpi_free_rx_ring(sc, &sc->rxq);
792		wpi_free_rpool(sc);
793		wpi_free_shared(sc);
794	}
795
796	if (sc->fw_fp != NULL) {
797		wpi_unload_firmware(sc);
798	}
799
800	if (sc->fw_dma.tag)
801		wpi_free_fwmem(sc);
802	WPI_UNLOCK(sc);
803
804	if (sc->irq != NULL) {
805		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
806		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
807	}
808
809	if (sc->mem != NULL)
810		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
811
812	if (ifp != NULL)
813		if_free(ifp);
814
815	taskqueue_free(sc->sc_tq);
816	taskqueue_free(sc->sc_tq2);
817
818	WPI_LOCK_DESTROY(sc);
819	WPI_CMD_LOCK_DESTROY(sc);
820
821	return 0;
822}
823
824static void
825wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
826{
827	if (error != 0)
828		return;
829
830	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
831
832	*(bus_addr_t *)arg = segs[0].ds_addr;
833}
834
835static int
836wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
837    void **kvap, bus_size_t size, bus_size_t alignment, int flags)
838{
839	int error;
840	int count = 0;
841
842	DPRINTFN(WPI_DEBUG_DMA,
843	    ("Size: %zd - alignement %zd\n", size, alignment));
844
845	dma->size = size;
846	dma->tag = NULL;
847
848again:
849	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
850	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
851	    NULL, NULL, size,
852	    1, size, flags,
853	    NULL, NULL, &dma->tag);
854	if (error != 0) {
855		device_printf(sc->sc_dev,
856		    "could not create shared page DMA tag\n");
857		goto fail;
858	}
859	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
860	    flags | BUS_DMA_ZERO, &dma->map);
861	if (error != 0) {
862		device_printf(sc->sc_dev,
863		    "could not allocate shared page DMA memory\n");
864		goto fail;
865	}
866
867	/**
868	 * Sadly FreeBSD can't always align on a 16k boundary, hence we give it
869	 * 10 attempts increasing the size of the allocation by 4k each time.
870	 * This should eventually align us on a 16k boundary at the cost
871	 * of chewing up dma memory
872	 */
873	if ((((uintptr_t)dma->vaddr) & (alignment-1)) && count < 10) {
874		DPRINTFN(WPI_DEBUG_DMA,
875		    ("Memory Unaligned, trying again: %d\n", count++));
876		wpi_dma_contig_free(dma);
877		size += 4096;
878		goto again;
879	}
880
881	DPRINTFN(WPI_DEBUG_DMA,("Memory, allocated & %s Aligned!\n",
882		    count == 10 ? "FAILED" : ""));
883	if (count == 10) {
884		device_printf(sc->sc_dev, "Unable to align memory\n");
885		error = ENOMEM;
886		goto fail;
887	}
888
889	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr,
890	    size,  wpi_dma_map_addr, &dma->paddr, flags);
891
892	if (error != 0) {
893		device_printf(sc->sc_dev,
894		    "could not load shared page DMA map\n");
895		goto fail;
896	}
897
898	if (kvap != NULL)
899		*kvap = dma->vaddr;
900
901	return 0;
902
903fail:
904	wpi_dma_contig_free(dma);
905	return error;
906}
907
908static void
909wpi_dma_contig_free(struct wpi_dma_info *dma)
910{
911	if (dma->tag) {
912		if (dma->map != NULL) {
913			if (dma->paddr == 0) {
914				bus_dmamap_sync(dma->tag, dma->map,
915				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
916				bus_dmamap_unload(dma->tag, dma->map);
917			}
918			bus_dmamem_free(dma->tag, &dma->vaddr, dma->map);
919		}
920		bus_dma_tag_destroy(dma->tag);
921	}
922}
923
924/*
925 * Allocate a shared page between host and NIC.
926 */
927static int
928wpi_alloc_shared(struct wpi_softc *sc)
929{
930	int error;
931
932	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
933	    (void **)&sc->shared, sizeof (struct wpi_shared),
934	    PAGE_SIZE,
935	    BUS_DMA_NOWAIT);
936
937	if (error != 0) {
938		device_printf(sc->sc_dev,
939		    "could not allocate shared area DMA memory\n");
940	}
941
942	return error;
943}
944
945static void
946wpi_free_shared(struct wpi_softc *sc)
947{
948	wpi_dma_contig_free(&sc->shared_dma);
949}
950
951struct wpi_rbuf *
952wpi_alloc_rbuf(struct wpi_softc *sc)
953{
954	struct wpi_rbuf *rbuf;
955
956	rbuf = SLIST_FIRST(&sc->rxq.freelist);
957	if (rbuf == NULL)
958		return NULL;
959	SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
960	return rbuf;
961}
962
963/*
964 * This is called automatically by the network stack when the mbuf to which our
965 * Rx buffer is attached is freed.
966 */
967static void
968wpi_free_rbuf(void *buf, void *arg)
969{
970	struct wpi_rbuf *rbuf = arg;
971	struct wpi_softc *sc = rbuf->sc;
972	WPI_LOCK_DECL;
973
974	WPI_LOCK(sc);
975
976	/* put the buffer back in the free list */
977	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
978
979	WPI_UNLOCK(sc);
980}
981
982static int
983wpi_alloc_rpool(struct wpi_softc *sc)
984{
985	struct wpi_rx_ring *ring = &sc->rxq;
986	struct wpi_rbuf *rbuf;
987	int i, error;
988
989	/* allocate a big chunk of DMA'able memory.. */
990	error = wpi_dma_contig_alloc(sc, &ring->buf_dma, NULL,
991	    WPI_RBUF_COUNT * WPI_RBUF_SIZE, PAGE_SIZE, BUS_DMA_NOWAIT);
992	if (error != 0) {
993		device_printf(sc->sc_dev,
994		    "could not allocate Rx buffers DMA memory\n");
995		return error;
996	}
997
998	/* ..and split it into 3KB chunks */
999	SLIST_INIT(&ring->freelist);
1000	for (i = 0; i < WPI_RBUF_COUNT; i++) {
1001		rbuf = &ring->rbuf[i];
1002
1003		rbuf->sc = sc;	/* backpointer for callbacks */
1004		rbuf->vaddr = ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
1005		rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
1006
1007		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
1008	}
1009	return 0;
1010}
1011
1012static void
1013wpi_free_rpool(struct wpi_softc *sc)
1014{
1015	wpi_dma_contig_free(&sc->rxq.buf_dma);
1016}
1017
1018static int
1019wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1020{
1021
1022	struct wpi_rx_data *data;
1023	struct wpi_rbuf *rbuf;
1024	int i, error;
1025
1026	ring->cur = 0;
1027
1028	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1029		(void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
1030		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1031
1032	if (error != 0) {
1033	    device_printf(sc->sc_dev,
1034		"could not allocate rx ring DMA memory\n");
1035	    goto fail;
1036	}
1037
1038	/*
1039	 * Allocate Rx buffers.
1040	 */
1041	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1042		data = &ring->data[i];
1043
1044		data->m = m_get(M_DONTWAIT, MT_HEADER);
1045		if (data->m == NULL) {
1046			device_printf(sc->sc_dev,
1047			    "could not allocate rx mbuf\n");
1048			error = ENOBUFS;
1049			goto fail;
1050		}
1051
1052		if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
1053			m_freem(data->m);
1054			data->m = NULL;
1055			device_printf(sc->sc_dev,
1056			    "could not allocate rx buffer\n");
1057			error = ENOBUFS;
1058			goto fail;
1059		}
1060
1061		/* attach RxBuffer to mbuf */
1062		MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE,wpi_free_rbuf,
1063		    rbuf,0,EXT_NET_DRV);
1064
1065		if ((data->m->m_flags & M_EXT) == 0) {
1066			m_freem(data->m);
1067			data->m = NULL;
1068			error = ENOBUFS;
1069			goto fail;
1070		}
1071		ring->desc[i] = htole32(rbuf->paddr);
1072	}
1073
1074	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1075	    BUS_DMASYNC_PREWRITE);
1076
1077	return 0;
1078
1079fail:
1080	wpi_free_rx_ring(sc, ring);
1081	return error;
1082}
1083
1084static void
1085wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1086{
1087	int ntries;
1088
1089	wpi_mem_lock(sc);
1090
1091	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1092
1093	for (ntries = 0; ntries < 100; ntries++) {
1094		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1095			break;
1096		DELAY(10);
1097	}
1098
1099	wpi_mem_unlock(sc);
1100
1101#ifdef WPI_DEBUG
1102	if (ntries == 100 && wpi_debug > 0)
1103		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1104#endif
1105
1106	ring->cur = 0;
1107}
1108
1109static void
1110wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1111{
1112	int i;
1113
1114	wpi_dma_contig_free(&ring->desc_dma);
1115
1116	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1117		if (ring->data[i].m != NULL) {
1118			m_freem(ring->data[i].m);
1119			ring->data[i].m = NULL;
1120		}
1121	}
1122}
1123
1124static int
1125wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1126	int qid)
1127{
1128	struct wpi_tx_data *data;
1129	int i, error;
1130
1131	ring->qid = qid;
1132	ring->count = count;
1133	ring->queued = 0;
1134	ring->cur = 0;
1135	ring->data = NULL;
1136
1137	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1138		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1139		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1140
1141	if (error != 0) {
1142	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1143	    goto fail;
1144	}
1145
1146	/* update shared page with ring's base address */
1147	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1148
1149	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1150		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1151		BUS_DMA_NOWAIT);
1152
1153	if (error != 0) {
1154		device_printf(sc->sc_dev,
1155		    "could not allocate tx command DMA memory\n");
1156		goto fail;
1157	}
1158
1159	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1160	    M_NOWAIT | M_ZERO);
1161	if (ring->data == NULL) {
1162		device_printf(sc->sc_dev,
1163		    "could not allocate tx data slots\n");
1164		goto fail;
1165	}
1166
1167	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1168	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1169	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1170	    &ring->data_dmat);
1171	if (error != 0) {
1172		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1173		goto fail;
1174	}
1175
1176	for (i = 0; i < count; i++) {
1177		data = &ring->data[i];
1178
1179		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1180		if (error != 0) {
1181			device_printf(sc->sc_dev,
1182			    "could not create tx buf DMA map\n");
1183			goto fail;
1184		}
1185		bus_dmamap_sync(ring->data_dmat, data->map,
1186		    BUS_DMASYNC_PREWRITE);
1187	}
1188
1189	return 0;
1190
1191fail:	wpi_free_tx_ring(sc, ring);
1192	return error;
1193}
1194
1195static void
1196wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1197{
1198	struct wpi_tx_data *data;
1199	int i, ntries;
1200
1201	wpi_mem_lock(sc);
1202
1203	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1204	for (ntries = 0; ntries < 100; ntries++) {
1205		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1206			break;
1207		DELAY(10);
1208	}
1209#ifdef WPI_DEBUG
1210	if (ntries == 100 && wpi_debug > 0) {
1211		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1212		    ring->qid);
1213	}
1214#endif
1215	wpi_mem_unlock(sc);
1216
1217	for (i = 0; i < ring->count; i++) {
1218		data = &ring->data[i];
1219
1220		if (data->m != NULL) {
1221			bus_dmamap_unload(ring->data_dmat, data->map);
1222			m_freem(data->m);
1223			data->m = NULL;
1224		}
1225	}
1226
1227	ring->queued = 0;
1228	ring->cur = 0;
1229}
1230
1231static void
1232wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1233{
1234	struct wpi_tx_data *data;
1235	int i;
1236
1237	wpi_dma_contig_free(&ring->desc_dma);
1238	wpi_dma_contig_free(&ring->cmd_dma);
1239
1240	if (ring->data != NULL) {
1241		for (i = 0; i < ring->count; i++) {
1242			data = &ring->data[i];
1243
1244			if (data->m != NULL) {
1245				bus_dmamap_sync(ring->data_dmat, data->map,
1246				    BUS_DMASYNC_POSTWRITE);
1247				bus_dmamap_unload(ring->data_dmat, data->map);
1248				m_freem(data->m);
1249				data->m = NULL;
1250			}
1251		}
1252		free(ring->data, M_DEVBUF);
1253	}
1254
1255	if (ring->data_dmat != NULL)
1256		bus_dma_tag_destroy(ring->data_dmat);
1257}
1258
1259static int
1260wpi_shutdown(device_t dev)
1261{
1262	struct wpi_softc *sc = device_get_softc(dev);
1263	WPI_LOCK_DECL;
1264
1265	WPI_LOCK(sc);
1266	wpi_stop_locked(sc);
1267	wpi_unload_firmware(sc);
1268	WPI_UNLOCK(sc);
1269
1270	return 0;
1271}
1272
1273static int
1274wpi_suspend(device_t dev)
1275{
1276	struct wpi_softc *sc = device_get_softc(dev);
1277
1278	wpi_stop(sc);
1279	return 0;
1280}
1281
1282static int
1283wpi_resume(device_t dev)
1284{
1285	struct wpi_softc *sc = device_get_softc(dev);
1286	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1287
1288	pci_write_config(dev, 0x41, 0, 1);
1289
1290	if (ifp->if_flags & IFF_UP) {
1291		wpi_init(ifp->if_softc);
1292		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1293			wpi_start(ifp);
1294	}
1295	return 0;
1296}
1297
1298/* ARGSUSED */
1299static struct ieee80211_node *
1300wpi_node_alloc(struct ieee80211_node_table *ic)
1301{
1302	struct wpi_node *wn;
1303
1304	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT |M_ZERO);
1305
1306	return &wn->ni;
1307}
1308
1309static int
1310wpi_media_change(struct ifnet *ifp)
1311{
1312	int error;
1313
1314	error = ieee80211_media_change(ifp);
1315	if (error != ENETRESET)
1316		return error;
1317
1318	if ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
1319		wpi_init(ifp->if_softc);
1320
1321	return 0;
1322}
1323
1324/**
1325 * Called by net80211 when ever there is a change to 80211 state machine
1326 */
1327static int
1328wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1329{
1330	struct ifnet *ifp = ic->ic_ifp;
1331	struct wpi_softc *sc = ifp->if_softc;
1332	struct ieee80211_node *ni;
1333	int error;
1334	WPI_LOCK_DECL;
1335
1336	WPI_LOCK(sc);
1337	callout_stop(&sc->calib_to);
1338	WPI_UNLOCK(sc);
1339
1340	switch (nstate) {
1341	case IEEE80211_S_SCAN:
1342		DPRINTF(("NEWSTATE:SCAN\n"));
1343		/* Scanning is handled in net80211 via the scan_start,
1344		 * scan_end, scan_curchan functions. Hence all we do when
1345		 * changing to the SCAN state is update the leds
1346		 */
1347
1348		/* make the link LED blink while we're scanning */
1349		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
1350		break;
1351
1352	case IEEE80211_S_ASSOC:
1353		DPRINTF(("NEWSTATE:ASSOC\n"));
1354		if (ic->ic_state != IEEE80211_S_RUN)
1355		  break;
1356		/* FALLTHROUGH */
1357
1358	case IEEE80211_S_AUTH:
1359		DPRINTF(("NEWSTATE:AUTH\n"));
1360		sc->flags |= WPI_FLAG_AUTH;
1361		sc->config.associd = 0;
1362		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
1363		wpi_queue_cmd(sc,WPI_AUTH);
1364		DPRINTF(("END AUTH\n"));
1365		break;
1366
1367	case IEEE80211_S_RUN:
1368		DPRINTF(("NEWSTATE:RUN\n"));
1369		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
1370			/* link LED blinks while monitoring */
1371			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
1372			break;
1373		}
1374
1375#if 0
1376		if (ic->ic_opmode != IEEE80211_M_STA) {
1377			(void) wpi_auth(sc);    /* XXX */
1378			wpi_setup_beacon(sc, ic->ic_bss);
1379		}
1380#endif
1381
1382		ni = ic->ic_bss;
1383		wpi_enable_tsf(sc, ni);
1384
1385		/* update adapter's configuration */
1386		sc->config.associd = htole16(ni->ni_associd & ~0xc000);
1387		/* short preamble/slot time are negotiated when associating */
1388		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
1389			WPI_CONFIG_SHSLOT);
1390		if (ic->ic_flags & IEEE80211_F_SHSLOT)
1391			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
1392		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1393			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
1394		sc->config.filter |= htole32(WPI_FILTER_BSS);
1395#if 0
1396		if (ic->ic_opmode != IEEE80211_M_STA)
1397			sc->config.filter |= htole32(WPI_FILTER_BEACON);
1398#endif
1399
1400/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
1401
1402		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
1403		    sc->config.flags));
1404		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
1405			sizeof (struct wpi_config), 1);
1406		if (error != 0) {
1407			device_printf(sc->sc_dev,
1408			    "could not update configuration\n");
1409			return error;
1410		}
1411
1412		if ((error = wpi_set_txpower(sc, ic->ic_bss->ni_chan, 1)) != 0) {
1413			device_printf(sc->sc_dev,
1414			    "could set txpower\n");
1415			return error;
1416		}
1417
1418		if (ic->ic_opmode == IEEE80211_M_STA) {
1419			/* fake a join to init the tx rate */
1420			wpi_newassoc(ic->ic_bss, 1);
1421		}
1422
1423		/* start automatic rate control timer */
1424		callout_reset(&sc->calib_to, hz/2, wpi_calib_timeout, sc);
1425
1426		/* link LED always on while associated */
1427		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
1428		break;
1429
1430	case IEEE80211_S_INIT:
1431		DPRINTF(("NEWSTATE:INIT\n"));
1432		break;
1433
1434	default:
1435		break;
1436	}
1437
1438	return (*sc->sc_newstate)(ic, nstate, arg);
1439}
1440
1441/*
1442 * Grab exclusive access to NIC memory.
1443 */
1444static void
1445wpi_mem_lock(struct wpi_softc *sc)
1446{
1447	int ntries;
1448	uint32_t tmp;
1449
1450	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1451	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1452
1453	/* spin until we actually get the lock */
1454	for (ntries = 0; ntries < 100; ntries++) {
1455		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1456			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1457			break;
1458		DELAY(10);
1459	}
1460	if (ntries == 100)
1461		device_printf(sc->sc_dev, "could not lock memory\n");
1462}
1463
1464/*
1465 * Release lock on NIC memory.
1466 */
1467static void
1468wpi_mem_unlock(struct wpi_softc *sc)
1469{
1470	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1471	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1472}
1473
1474static uint32_t
1475wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1476{
1477	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1478	return WPI_READ(sc, WPI_READ_MEM_DATA);
1479}
1480
1481static void
1482wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1483{
1484	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1485	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1486}
1487
1488static void
1489wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1490    const uint32_t *data, int wlen)
1491{
1492	for (; wlen > 0; wlen--, data++, addr+=4)
1493		wpi_mem_write(sc, addr, *data);
1494}
1495
1496/*
1497 * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1498 * using the traditional bit-bang method. Data is read up until len bytes have
1499 * been obtained.
1500 */
1501static uint16_t
1502wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1503{
1504	int ntries;
1505	uint32_t val;
1506	uint8_t *out = data;
1507
1508	wpi_mem_lock(sc);
1509
1510	for (; len > 0; len -= 2, addr++) {
1511		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1512
1513		for (ntries = 0; ntries < 10; ntries++) {
1514			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1515				break;
1516			DELAY(5);
1517		}
1518
1519		if (ntries == 10) {
1520			device_printf(sc->sc_dev, "could not read EEPROM\n");
1521			return ETIMEDOUT;
1522		}
1523
1524		*out++= val >> 16;
1525		if (len > 1)
1526			*out ++= val >> 24;
1527	}
1528
1529	wpi_mem_unlock(sc);
1530
1531	return 0;
1532}
1533
1534/*
1535 * The firmware text and data segments are transferred to the NIC using DMA.
1536 * The driver just copies the firmware into DMA-safe memory and tells the NIC
1537 * where to find it.  Once the NIC has copied the firmware into its internal
1538 * memory, we can free our local copy in the driver.
1539 */
1540static int
1541wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1542{
1543	int error, ntries;
1544
1545	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1546
1547	size /= sizeof(uint32_t);
1548
1549	wpi_mem_lock(sc);
1550
1551	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1552	    (const uint32_t *)fw, size);
1553
1554	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1555	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1556	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1557
1558	/* run microcode */
1559	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1560
1561	/* wait while the adapter is busy copying the firmware */
1562	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1563		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1564		DPRINTFN(WPI_DEBUG_HW,
1565		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1566		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1567		if (status & WPI_TX_IDLE(6)) {
1568			DPRINTFN(WPI_DEBUG_HW,
1569			    ("Status Match! - ntries = %d\n", ntries));
1570			break;
1571		}
1572		DELAY(10);
1573	}
1574	if (ntries == 1000) {
1575		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1576		error = ETIMEDOUT;
1577	}
1578
1579	/* start the microcode executing */
1580	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1581
1582	wpi_mem_unlock(sc);
1583
1584	return (error);
1585}
1586
1587static void
1588wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1589	struct wpi_rx_data *data)
1590{
1591	struct ieee80211com *ic = &sc->sc_ic;
1592	struct ifnet *ifp = ic->ic_ifp;
1593	struct wpi_rx_ring *ring = &sc->rxq;
1594	struct wpi_rx_stat *stat;
1595	struct wpi_rx_head *head;
1596	struct wpi_rx_tail *tail;
1597	struct wpi_rbuf *rbuf;
1598	struct ieee80211_frame *wh;
1599	struct ieee80211_node *ni;
1600	struct mbuf *m, *mnew;
1601	WPI_LOCK_DECL;
1602
1603	stat = (struct wpi_rx_stat *)(desc + 1);
1604
1605	if (stat->len > WPI_STAT_MAXLEN) {
1606		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1607		ifp->if_ierrors++;
1608		return;
1609	}
1610
1611	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1612	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1613
1614	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1615	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1616	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1617	    (uintmax_t)le64toh(tail->tstamp)));
1618
1619	m = data->m;
1620
1621	/* finalize mbuf */
1622	m->m_pkthdr.rcvif = ifp;
1623	m->m_data = (caddr_t)(head + 1);
1624	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1625
1626	if ((rbuf = SLIST_FIRST(&sc->rxq.freelist)) != NULL) {
1627		mnew = m_gethdr(M_DONTWAIT,MT_DATA);
1628		if (mnew == NULL) {
1629			ifp->if_ierrors++;
1630			return;
1631		}
1632
1633		/* attach Rx buffer to mbuf */
1634		MEXTADD(mnew,rbuf->vaddr,WPI_RBUF_SIZE, wpi_free_rbuf, rbuf, 0,
1635		    EXT_NET_DRV);
1636		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
1637		data->m = mnew;
1638
1639		/* update Rx descriptor */
1640		ring->desc[ring->cur] = htole32(rbuf->paddr);
1641	} else {
1642		/* no free rbufs, copy frame */
1643		m = m_dup(m, M_DONTWAIT);
1644		if (m == NULL) {
1645			/* no free mbufs either, drop frame */
1646			ifp->if_ierrors++;
1647			return;
1648		}
1649	}
1650
1651#ifndef WPI_CURRENT
1652	if (sc->sc_drvbpf != NULL) {
1653#else
1654	if (bpf_peers_present(sc->sc_drvbpf)) {
1655#endif
1656		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1657
1658		tap->wr_flags = 0;
1659		tap->wr_chan_freq =
1660			htole16(ic->ic_channels[head->chan].ic_freq);
1661		tap->wr_chan_flags =
1662			htole16(ic->ic_channels[head->chan].ic_flags);
1663		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1664		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1665		tap->wr_tsft = tail->tstamp;
1666		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1667		switch (head->rate) {
1668		/* CCK rates */
1669		case  10: tap->wr_rate =   2; break;
1670		case  20: tap->wr_rate =   4; break;
1671		case  55: tap->wr_rate =  11; break;
1672		case 110: tap->wr_rate =  22; break;
1673		/* OFDM rates */
1674		case 0xd: tap->wr_rate =  12; break;
1675		case 0xf: tap->wr_rate =  18; break;
1676		case 0x5: tap->wr_rate =  24; break;
1677		case 0x7: tap->wr_rate =  36; break;
1678		case 0x9: tap->wr_rate =  48; break;
1679		case 0xb: tap->wr_rate =  72; break;
1680		case 0x1: tap->wr_rate =  96; break;
1681		case 0x3: tap->wr_rate = 108; break;
1682		/* unknown rate: should not happen */
1683		default:  tap->wr_rate =   0;
1684		}
1685		if (le16toh(head->flags) & 0x4)
1686			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1687
1688		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1689	}
1690
1691	wh = mtod(m, struct ieee80211_frame *);
1692	WPI_UNLOCK(sc);
1693
1694	/* XXX frame length > sizeof(struct ieee80211_frame_min)? */
1695	/* grab a reference to the source node */
1696	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1697
1698	/* send the frame to the 802.11 layer */
1699	ieee80211_input(ic, m, ni, stat->rssi, 0, 0);
1700
1701	/* release node reference */
1702	ieee80211_free_node(ni);
1703	WPI_LOCK(sc);
1704}
1705
1706static void
1707wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1708{
1709	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1710	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1711	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1712	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1713	struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1714
1715	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1716	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1717	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1718	    le32toh(stat->status)));
1719
1720	/*
1721	 * Update rate control statistics for the node.
1722	 * XXX we should not count mgmt frames since they're always sent at
1723	 * the lowest available bit-rate.
1724	 * XXX frames w/o ACK shouldn't be used either
1725	 */
1726	wn->amn.amn_txcnt++;
1727	if (stat->ntries > 0) {
1728		DPRINTFN(3, ("%d retries\n", stat->ntries));
1729		wn->amn.amn_retrycnt++;
1730	}
1731
1732	/* XXX oerrors should only count errors !maxtries */
1733	if ((le32toh(stat->status) & 0xff) != 1)
1734		ifp->if_oerrors++;
1735	else
1736		ifp->if_opackets++;
1737
1738	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1739	bus_dmamap_unload(ring->data_dmat, txdata->map);
1740	/* XXX handle M_TXCB? */
1741	m_freem(txdata->m);
1742	txdata->m = NULL;
1743	ieee80211_free_node(txdata->ni);
1744	txdata->ni = NULL;
1745
1746	ring->queued--;
1747
1748	sc->sc_tx_timer = 0;
1749	sc->watchdog_cnt = 0;
1750	callout_stop(&sc->watchdog_to);
1751	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1752	wpi_start(ifp);
1753}
1754
1755static void
1756wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1757{
1758	struct wpi_tx_ring *ring = &sc->cmdq;
1759	struct wpi_tx_data *data;
1760
1761	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1762				 "type=%s len=%d\n", desc->qid, desc->idx,
1763				 desc->flags, wpi_cmd_str(desc->type),
1764				 le32toh(desc->len)));
1765
1766	if ((desc->qid & 7) != 4)
1767		return;	/* not a command ack */
1768
1769	data = &ring->data[desc->idx];
1770
1771	/* if the command was mapped in a mbuf, free it */
1772	if (data->m != NULL) {
1773		bus_dmamap_unload(ring->data_dmat, data->map);
1774		m_freem(data->m);
1775		data->m = NULL;
1776	}
1777
1778	sc->flags &= ~WPI_FLAG_BUSY;
1779	wakeup(&ring->cmd[desc->idx]);
1780}
1781
1782static void
1783wpi_notif_intr(struct wpi_softc *sc)
1784{
1785	struct ieee80211com *ic = &sc->sc_ic;
1786	struct wpi_rx_desc *desc;
1787	struct wpi_rx_data *data;
1788	uint32_t hw;
1789
1790	hw = le32toh(sc->shared->next);
1791	while (sc->rxq.cur != hw) {
1792		data = &sc->rxq.data[sc->rxq.cur];
1793		desc = (void *)data->m->m_ext.ext_buf;
1794
1795		DPRINTFN(WPI_DEBUG_NOTIFY,
1796			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1797			  desc->qid,
1798			  desc->idx,
1799			  desc->flags,
1800			  desc->type,
1801			  le32toh(desc->len)));
1802
1803		if (!(desc->qid & 0x80))	/* reply to a command */
1804			wpi_cmd_intr(sc, desc);
1805
1806		switch (desc->type) {
1807		case WPI_RX_DONE:
1808			/* a 802.11 frame was received */
1809			wpi_rx_intr(sc, desc, data);
1810			break;
1811
1812		case WPI_TX_DONE:
1813			/* a 802.11 frame has been transmitted */
1814			wpi_tx_intr(sc, desc);
1815			break;
1816
1817		case WPI_UC_READY:
1818		{
1819			struct wpi_ucode_info *uc =
1820				(struct wpi_ucode_info *)(desc + 1);
1821
1822			/* the microcontroller is ready */
1823			DPRINTF(("microcode alive notification version %x "
1824				"alive %x\n", le32toh(uc->version),
1825				le32toh(uc->valid)));
1826
1827			if (le32toh(uc->valid) != 1) {
1828				device_printf(sc->sc_dev,
1829				    "microcontroller initialization failed\n");
1830				wpi_stop_locked(sc);
1831			}
1832			break;
1833		}
1834		case WPI_STATE_CHANGED:
1835		{
1836			uint32_t *status = (uint32_t *)(desc + 1);
1837
1838			/* enabled/disabled notification */
1839			DPRINTF(("state changed to %x\n", le32toh(*status)));
1840
1841			if (le32toh(*status) & 1) {
1842				device_printf(sc->sc_dev,
1843				    "Radio transmitter is switched off\n");
1844				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1845				break;
1846			}
1847			sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
1848			break;
1849		}
1850		case WPI_START_SCAN:
1851		{
1852			struct wpi_start_scan *scan =
1853				(struct wpi_start_scan *)(desc + 1);
1854
1855			DPRINTFN(WPI_DEBUG_SCANNING,
1856				 ("scanning channel %d status %x\n",
1857			    scan->chan, le32toh(scan->status)));
1858
1859			/* fix current channel */
1860			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1861			break;
1862		}
1863		case WPI_STOP_SCAN:
1864		{
1865			struct wpi_stop_scan *scan =
1866				(struct wpi_stop_scan *)(desc + 1);
1867
1868			DPRINTFN(WPI_DEBUG_SCANNING,
1869			    ("scan finished nchan=%d status=%d chan=%d\n",
1870			     scan->nchan, scan->status, scan->chan));
1871
1872			wpi_queue_cmd(sc, WPI_SCAN_NEXT);
1873			break;
1874		}
1875		case WPI_MISSED_BEACON:
1876		{
1877		    struct wpi_missed_beacon *beacon =
1878				(struct wpi_missed_beacon *)(desc + 1);
1879
1880                    if (le32toh(beacon->consecutive) >= ic->ic_bmissthreshold) {
1881			DPRINTF(("Beacon miss: %u >= %u\n",
1882				 le32toh(beacon->consecutive),
1883				 ic->ic_bmissthreshold));
1884			ieee80211_beacon_miss(ic);
1885		    }
1886		}
1887		}
1888
1889		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1890	}
1891
1892	/* tell the firmware what we have processed */
1893	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1894	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1895
1896}
1897
1898static void
1899wpi_intr(void *arg)
1900{
1901	struct wpi_softc *sc = arg;
1902	uint32_t r;
1903	WPI_LOCK_DECL;
1904
1905	WPI_LOCK(sc);
1906
1907	r = WPI_READ(sc, WPI_INTR);
1908	if (r == 0 || r == 0xffffffff) {
1909		WPI_UNLOCK(sc);
1910		return;
1911	}
1912
1913	/* disable interrupts */
1914	WPI_WRITE(sc, WPI_MASK, 0);
1915	/* ack interrupts */
1916	WPI_WRITE(sc, WPI_INTR, r);
1917
1918	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1919		device_printf(sc->sc_dev, "fatal firmware error\n");
1920		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1921				"(Hardware Error)"));
1922		taskqueue_enqueue(sc->sc_tq2, &sc->sc_restarttask);
1923		sc->flags &= ~WPI_FLAG_BUSY;
1924		WPI_UNLOCK(sc);
1925		return;
1926	}
1927
1928	if (r & WPI_RX_INTR)
1929		wpi_notif_intr(sc);
1930
1931	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1932		wakeup(sc);
1933
1934	/* re-enable interrupts */
1935	if (sc->sc_ifp->if_flags & IFF_UP)
1936		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1937
1938	WPI_UNLOCK(sc);
1939}
1940
1941static uint8_t
1942wpi_plcp_signal(int rate)
1943{
1944	switch (rate) {
1945	/* CCK rates (returned values are device-dependent) */
1946	case 2:		return 10;
1947	case 4:		return 20;
1948	case 11:	return 55;
1949	case 22:	return 110;
1950
1951	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1952	/* R1-R4 (ral/ural is R4-R1) */
1953	case 12:	return 0xd;
1954	case 18:	return 0xf;
1955	case 24:	return 0x5;
1956	case 36:	return 0x7;
1957	case 48:	return 0x9;
1958	case 72:	return 0xb;
1959	case 96:	return 0x1;
1960	case 108:	return 0x3;
1961
1962	/* unsupported rates (should not get there) */
1963	default:	return 0;
1964	}
1965}
1966
1967/* quickly determine if a given rate is CCK or OFDM */
1968#define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1969
1970/*
1971 * Construct the data packet for a transmit buffer and acutally put
1972 * the buffer onto the transmit ring, kicking the card to process the
1973 * the buffer.
1974 */
1975static int
1976wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1977	int ac)
1978{
1979	struct ieee80211com *ic = &sc->sc_ic;
1980	struct wpi_tx_ring *ring = &sc->txq[ac];
1981	struct wpi_tx_desc *desc;
1982	struct wpi_tx_data *data;
1983	struct wpi_tx_cmd *cmd;
1984	struct wpi_cmd_data *tx;
1985	struct ieee80211_frame *wh;
1986	struct ieee80211_key *k;
1987	const struct chanAccParams *cap;
1988	struct mbuf *mnew;
1989	int i, error, nsegs, rate, hdrlen, noack = 0;
1990	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1991
1992	desc = &ring->desc[ring->cur];
1993	data = &ring->data[ring->cur];
1994
1995	wh = mtod(m0, struct ieee80211_frame *);
1996
1997	if (IEEE80211_QOS_HAS_SEQ(wh)) {
1998		hdrlen = sizeof (struct ieee80211_qosframe);
1999		cap = &ic->ic_wme.wme_chanParams;
2000		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
2001	} else
2002		hdrlen = sizeof (struct ieee80211_frame);
2003
2004	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2005		if ((k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
2006			m_freem(m0);
2007			return ENOBUFS;
2008		}
2009
2010		/* packet header may have moved, reset our local pointer */
2011		wh = mtod(m0, struct ieee80211_frame *);
2012	}
2013
2014	/* pickup a rate */
2015	if (IEEE80211_IS_MULTICAST(wh->i_addr1)||
2016	    ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
2017		IEEE80211_FC0_TYPE_MGT)) {
2018		/*
2019		 * mgmt/multicast frames are sent at the lowest available
2020		 * bit-rate
2021		 */
2022		rate = ni->ni_rates.rs_rates[0];
2023	} else {
2024		if (ic->ic_fixed_rate != -1) {
2025			rate = ic->ic_sup_rates[ic->ic_curmode].
2026				rs_rates[ic->ic_fixed_rate];
2027		} else
2028			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
2029	}
2030	rate &= IEEE80211_RATE_VAL;
2031
2032#ifndef WPI_CURRENT
2033	if (sc->sc_drvbpf != NULL) {
2034#else
2035	if (bpf_peers_present(sc->sc_drvbpf)) {
2036#endif
2037
2038		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2039
2040		tap->wt_flags = 0;
2041		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
2042		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
2043		tap->wt_rate = rate;
2044		tap->wt_hwqueue = ac;
2045		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2046			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2047
2048		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2049	}
2050
2051	cmd = &ring->cmd[ring->cur];
2052	cmd->code = WPI_CMD_TX_DATA;
2053	cmd->flags = 0;
2054	cmd->qid = ring->qid;
2055	cmd->idx = ring->cur;
2056
2057	tx = (struct wpi_cmd_data *)cmd->data;
2058	tx->flags = 0;
2059
2060	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2061		tx->flags |= htole32(WPI_TX_NEED_ACK);
2062	} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
2063		tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
2064	}
2065
2066	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
2067
2068	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
2069	  WPI_ID_BSS;
2070
2071	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
2072		IEEE80211_FC0_TYPE_MGT) {
2073		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2074		/* tell h/w to set timestamp in probe responses */
2075		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2076			    tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
2077
2078		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2079			    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2080			tx->timeout = htole16(3);
2081		else
2082			tx->timeout = htole16(2);
2083	} else
2084		tx->timeout = htole16(0);
2085
2086	tx->rate = wpi_plcp_signal(rate);
2087
2088	/* be very persistant at sending frames out */
2089	tx->rts_ntries = 7;
2090	tx->data_ntries = 15;
2091
2092	tx->ofdm_mask = 0xff;
2093	tx->cck_mask = 0x0f;
2094	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2095
2096	tx->len = htole16(m0->m_pkthdr.len);
2097
2098	/* save and trim IEEE802.11 header */
2099	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
2100	m_adj(m0, hdrlen);
2101
2102	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
2103	    &nsegs, BUS_DMA_NOWAIT);
2104	if (error != 0 && error != EFBIG) {
2105		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
2106		    error);
2107		m_freem(m0);
2108		return error;
2109	}
2110	if (error != 0) {
2111		/* XXX use ath_defrag */
2112		mnew = m_defrag(m0, M_DONTWAIT);
2113		if (mnew == NULL) {
2114			device_printf(sc->sc_dev,
2115			    "could not defragment mbuf\n");
2116			m_freem(m0);
2117			return ENOBUFS;
2118		}
2119		m0 = mnew;
2120
2121		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
2122		    m0, segs, &nsegs, BUS_DMA_NOWAIT);
2123		if (error != 0) {
2124			device_printf(sc->sc_dev,
2125			    "could not map mbuf (error %d)\n", error);
2126			m_freem(m0);
2127			return error;
2128		}
2129	}
2130
2131	data->m = m0;
2132	data->ni = ni;
2133
2134	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2135	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
2136
2137	/* first scatter/gather segment is used by the tx data command */
2138	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
2139	    (1 + nsegs) << 24);
2140	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2141	    ring->cur * sizeof (struct wpi_tx_cmd));
2142	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
2143	for (i = 1; i <= nsegs; i++) {
2144		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
2145		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
2146	}
2147
2148	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2149	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2150	    BUS_DMASYNC_PREWRITE);
2151
2152	ring->queued++;
2153
2154	/* kick ring */
2155	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2156	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2157
2158	return 0;
2159}
2160
2161/**
2162 * Process data waiting to be sent on the IFNET output queue
2163 */
2164static void
2165wpi_start(struct ifnet *ifp)
2166{
2167	struct wpi_softc *sc = ifp->if_softc;
2168	struct ieee80211com *ic = &sc->sc_ic;
2169	struct ieee80211_node *ni;
2170	struct ether_header *eh;
2171	struct mbuf *m0;
2172	int ac;
2173	WPI_LOCK_DECL;
2174
2175	WPI_LOCK(sc);
2176
2177	for (;;) {
2178		IF_POLL(&ic->ic_mgtq, m0);
2179		if (m0 != NULL) {
2180			IF_DEQUEUE(&ic->ic_mgtq, m0);
2181
2182			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2183			m0->m_pkthdr.rcvif = NULL;
2184
2185			/* management frames go into ring 0 */
2186			if (sc->txq[0].queued > sc->txq[0].count - 8) {
2187				ifp->if_oerrors++;
2188				continue;
2189			}
2190
2191			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
2192				ifp->if_oerrors++;
2193				break;
2194			}
2195		} else {
2196			if (ic->ic_state != IEEE80211_S_RUN)
2197				break;
2198
2199			IFQ_POLL(&ifp->if_snd, m0);
2200			if (m0 == NULL)
2201				break;
2202
2203			/*
2204			 * Cancel any background scan.
2205			 */
2206			if (ic->ic_flags & IEEE80211_F_SCAN)
2207				ieee80211_cancel_scan(ic);
2208
2209			if (m0->m_len < sizeof (*eh) &&
2210			    (m0 = m_pullup(m0, sizeof (*eh))) != NULL) {
2211				ifp->if_oerrors++;
2212				continue;
2213			}
2214			eh = mtod(m0, struct ether_header *);
2215			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2216			if (ni == NULL) {
2217				m_freem(m0);
2218				ifp->if_oerrors++;
2219				continue;
2220			}
2221
2222			/* classify mbuf so we can find which tx ring to use */
2223			if (ieee80211_classify(ic, m0, ni) != 0) {
2224				m_freem(m0);
2225				ieee80211_free_node(ni);
2226				ifp->if_oerrors++;
2227				continue;
2228			}
2229
2230			/* no QoS encapsulation for EAPOL frames */
2231			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
2232			    M_WME_GETAC(m0) : WME_AC_BE;
2233
2234			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2235				/* there is no place left in this ring */
2236				IFQ_DRV_PREPEND(&ifp->if_snd, m0);
2237				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2238				break;
2239			}
2240
2241			IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
2242			BPF_MTAP(ifp, m0);
2243
2244			m0 = ieee80211_encap(ic, m0, ni);
2245			if (m0 == NULL) {
2246				ieee80211_free_node(ni);
2247				ifp->if_oerrors++;
2248				continue;
2249			}
2250
2251#ifndef WPI_CURRENT
2252			if (ic->ic_rawbpf != NULL)
2253#else
2254			if (bpf_peers_present(ic->ic_rawbpf))
2255#endif
2256				bpf_mtap(ic->ic_rawbpf, m0);
2257
2258			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2259				ieee80211_free_node(ni);
2260				ifp->if_oerrors++;
2261				break;
2262			}
2263		}
2264
2265		sc->sc_tx_timer = 5;
2266		sc->watchdog_cnt = 5;
2267		ic->ic_lastdata = ticks;
2268	}
2269
2270	WPI_UNLOCK(sc);
2271}
2272
2273static void
2274wpi_watchdog(struct ifnet *ifp)
2275{
2276	struct wpi_softc *sc = ifp->if_softc;
2277	WPI_LOCK_DECL;
2278
2279	WPI_LOCK(sc);
2280
2281	DPRINTFN(WPI_DEBUG_WATCHDOG, ("watchdog_cnt: %d\n", sc->watchdog_cnt));
2282
2283	if (sc->watchdog_cnt == 0 || --sc->watchdog_cnt)
2284		goto done;
2285
2286	if (--sc->sc_tx_timer != 0) {
2287		device_printf(sc->sc_dev,"device timeout\n");
2288		ifp->if_oerrors++;
2289		taskqueue_enqueue(sc->sc_tq2, &sc->sc_restarttask);
2290	}
2291done:
2292	WPI_UNLOCK(sc);
2293}
2294
2295static int
2296wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2297{
2298	struct wpi_softc *sc = ifp->if_softc;
2299	struct ieee80211com *ic = &sc->sc_ic;
2300	int error = 0;
2301	WPI_LOCK_DECL;
2302
2303	WPI_LOCK(sc);
2304
2305	switch (cmd) {
2306	case SIOCSIFFLAGS:
2307		if ((ifp->if_flags & IFF_UP)) {
2308			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
2309				wpi_init(sc);
2310		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2311			wpi_stop_locked(sc);
2312		break;
2313	default:
2314		WPI_UNLOCK(sc);
2315		error = ieee80211_ioctl(ic, cmd, data);
2316		WPI_LOCK(sc);
2317	}
2318
2319	if (error == ENETRESET) {
2320		if ((ifp->if_flags & IFF_UP) &&
2321		    (ifp->if_drv_flags & IFF_DRV_RUNNING) &&
2322		    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2323			wpi_init(sc);
2324		error = 0;
2325	}
2326
2327	WPI_UNLOCK(sc);
2328
2329	return error;
2330}
2331
2332/*
2333 * Extract various information from EEPROM.
2334 */
2335static void
2336wpi_read_eeprom(struct wpi_softc *sc)
2337{
2338	struct ieee80211com *ic = &sc->sc_ic;
2339	int i;
2340
2341	/* read the hardware capabilities, revision and SKU type */
2342	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2343	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2344	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2345
2346	/* read the regulatory domain */
2347	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2348
2349	/* read in the hw MAC address */
2350	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2351
2352	/* read the list of authorized channels */
2353	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2354		wpi_read_eeprom_channels(sc,i);
2355
2356	/* read the power level calibration info for each group */
2357	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2358		wpi_read_eeprom_group(sc,i);
2359}
2360
2361/*
2362 * Send a command to the firmware.
2363 */
2364static int
2365wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2366{
2367	struct wpi_tx_ring *ring = &sc->cmdq;
2368	struct wpi_tx_desc *desc;
2369	struct wpi_tx_cmd *cmd;
2370
2371#ifdef WPI_DEBUG
2372	if (!async) {
2373		WPI_LOCK_ASSERT(sc);
2374	}
2375#endif
2376
2377	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2378		    async));
2379
2380	if (sc->flags & WPI_FLAG_BUSY) {
2381		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2382		    __func__, code);
2383		return EAGAIN;
2384	}
2385	sc->flags|= WPI_FLAG_BUSY;
2386
2387	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2388	    code, size));
2389
2390	desc = &ring->desc[ring->cur];
2391	cmd = &ring->cmd[ring->cur];
2392
2393	cmd->code = code;
2394	cmd->flags = 0;
2395	cmd->qid = ring->qid;
2396	cmd->idx = ring->cur;
2397	memcpy(cmd->data, buf, size);
2398
2399	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2400	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2401		ring->cur * sizeof (struct wpi_tx_cmd));
2402	desc->segs[0].len  = htole32(4 + size);
2403
2404	/* kick cmd ring */
2405	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2406	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2407
2408	if (async) {
2409		sc->flags &= ~ WPI_FLAG_BUSY;
2410		return 0;
2411	}
2412
2413	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2414}
2415
2416static int
2417wpi_wme_update(struct ieee80211com *ic)
2418{
2419#define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2420#define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2421	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2422	const struct wmeParams *wmep;
2423	struct wpi_wme_setup wme;
2424	int ac;
2425
2426	/* don't override default WME values if WME is not actually enabled */
2427	if (!(ic->ic_flags & IEEE80211_F_WME))
2428		return 0;
2429
2430	wme.flags = 0;
2431	for (ac = 0; ac < WME_NUM_AC; ac++) {
2432		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2433		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2434		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2435		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2436		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2437
2438		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2439		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2440		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2441	}
2442
2443	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2444#undef WPI_USEC
2445#undef WPI_EXP2
2446}
2447
2448/*
2449 * Configure h/w multi-rate retries.
2450 */
2451static int
2452wpi_mrr_setup(struct wpi_softc *sc)
2453{
2454	struct ieee80211com *ic = &sc->sc_ic;
2455	struct wpi_mrr_setup mrr;
2456	int i, error;
2457
2458	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2459
2460	/* CCK rates (not used with 802.11a) */
2461	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2462		mrr.rates[i].flags = 0;
2463		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2464		/* fallback to the immediate lower CCK rate (if any) */
2465		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2466		/* try one time at this rate before falling back to "next" */
2467		mrr.rates[i].ntries = 1;
2468	}
2469
2470	/* OFDM rates (not used with 802.11b) */
2471	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2472		mrr.rates[i].flags = 0;
2473		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2474		/* fallback to the immediate lower OFDM rate (if any) */
2475		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2476		mrr.rates[i].next = (i == WPI_OFDM6) ?
2477		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2478			WPI_OFDM6 : WPI_CCK2) :
2479		    i - 1;
2480		/* try one time at this rate before falling back to "next" */
2481		mrr.rates[i].ntries = 1;
2482	}
2483
2484	/* setup MRR for control frames */
2485	mrr.which = htole32(WPI_MRR_CTL);
2486	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2487	if (error != 0) {
2488		device_printf(sc->sc_dev,
2489		    "could not setup MRR for control frames\n");
2490		return error;
2491	}
2492
2493	/* setup MRR for data frames */
2494	mrr.which = htole32(WPI_MRR_DATA);
2495	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2496	if (error != 0) {
2497		device_printf(sc->sc_dev,
2498		    "could not setup MRR for data frames\n");
2499		return error;
2500	}
2501
2502	return 0;
2503}
2504
2505static void
2506wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2507{
2508	struct wpi_cmd_led led;
2509
2510	led.which = which;
2511	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2512	led.off = off;
2513	led.on = on;
2514
2515	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2516}
2517
2518static void
2519wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2520{
2521	struct wpi_cmd_tsf tsf;
2522	uint64_t val, mod;
2523
2524	memset(&tsf, 0, sizeof tsf);
2525	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2526	tsf.bintval = htole16(ni->ni_intval);
2527	tsf.lintval = htole16(10);
2528
2529	/* compute remaining time until next beacon */
2530	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2531	mod = le64toh(tsf.tstamp) % val;
2532	tsf.binitval = htole32((uint32_t)(val - mod));
2533
2534	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2535		device_printf(sc->sc_dev, "could not enable TSF\n");
2536}
2537
2538#if 0
2539/*
2540 * Build a beacon frame that the firmware will broadcast periodically in
2541 * IBSS or HostAP modes.
2542 */
2543static int
2544wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2545{
2546	struct ieee80211com *ic = &sc->sc_ic;
2547	struct wpi_tx_ring *ring = &sc->cmdq;
2548	struct wpi_tx_desc *desc;
2549	struct wpi_tx_data *data;
2550	struct wpi_tx_cmd *cmd;
2551	struct wpi_cmd_beacon *bcn;
2552	struct ieee80211_beacon_offsets bo;
2553	struct mbuf *m0;
2554	bus_addr_t physaddr;
2555	int error;
2556
2557	desc = &ring->desc[ring->cur];
2558	data = &ring->data[ring->cur];
2559
2560	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2561	if (m0 == NULL) {
2562		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2563		return ENOMEM;
2564	}
2565
2566	cmd = &ring->cmd[ring->cur];
2567	cmd->code = WPI_CMD_SET_BEACON;
2568	cmd->flags = 0;
2569	cmd->qid = ring->qid;
2570	cmd->idx = ring->cur;
2571
2572	bcn = (struct wpi_cmd_beacon *)cmd->data;
2573	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2574	bcn->id = WPI_ID_BROADCAST;
2575	bcn->ofdm_mask = 0xff;
2576	bcn->cck_mask = 0x0f;
2577	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2578	bcn->len = htole16(m0->m_pkthdr.len);
2579	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2580		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2581	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2582
2583	/* save and trim IEEE802.11 header */
2584	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2585	m_adj(m0, sizeof (struct ieee80211_frame));
2586
2587	/* assume beacon frame is contiguous */
2588	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2589	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2590	if (error != 0) {
2591		device_printf(sc->sc_dev, "could not map beacon\n");
2592		m_freem(m0);
2593		return error;
2594	}
2595
2596	data->m = m0;
2597
2598	/* first scatter/gather segment is used by the beacon command */
2599	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2600	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2601		ring->cur * sizeof (struct wpi_tx_cmd));
2602	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2603	desc->segs[1].addr = htole32(physaddr);
2604	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2605
2606	/* kick cmd ring */
2607	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2608	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2609
2610	return 0;
2611}
2612#endif
2613
2614static int
2615wpi_auth(struct wpi_softc *sc)
2616{
2617	struct ieee80211com *ic = &sc->sc_ic;
2618	struct ieee80211_node *ni = ic->ic_bss;
2619	struct wpi_node_info node;
2620	int error;
2621
2622	/* update adapter's configuration */
2623	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2624	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2625	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2626		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2627		    WPI_CONFIG_24GHZ);
2628	}
2629	switch (ic->ic_curmode) {
2630	case IEEE80211_MODE_11A:
2631		sc->config.cck_mask  = 0;
2632		sc->config.ofdm_mask = 0x15;
2633		break;
2634	case IEEE80211_MODE_11B:
2635		sc->config.cck_mask  = 0x03;
2636		sc->config.ofdm_mask = 0;
2637		break;
2638	default:	/* assume 802.11b/g */
2639		sc->config.cck_mask  = 0x0f;
2640		sc->config.ofdm_mask = 0x15;
2641	}
2642
2643	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2644		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2645	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2646		sizeof (struct wpi_config), 1);
2647	if (error != 0) {
2648		device_printf(sc->sc_dev, "could not configure\n");
2649		return error;
2650	}
2651
2652	/* configuration has changed, set Tx power accordingly */
2653	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2654		device_printf(sc->sc_dev, "could not set Tx power\n");
2655		return error;
2656	}
2657
2658	/* add default node */
2659	memset(&node, 0, sizeof node);
2660	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2661	node.id = WPI_ID_BSS;
2662	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2663	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2664	node.action = htole32(WPI_ACTION_SET_RATE);
2665	node.antenna = WPI_ANTENNA_BOTH;
2666	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2667	if (error != 0) {
2668		device_printf(sc->sc_dev, "could not add BSS node\n");
2669		return error;
2670	}
2671
2672	sc->flags &= ~WPI_FLAG_AUTH;
2673
2674	return 0;
2675}
2676
2677/*
2678 * Send a scan request to the firmware.  Since this command is huge, we map it
2679 * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2680 * much of this code is similar to that in wpi_cmd but because we must manually
2681 * construct the probe & channels, we duplicate what's needed here. XXX In the
2682 * future, this function should be modified to use wpi_cmd to help cleanup the
2683 * code base.
2684 */
2685static int
2686wpi_scan(struct wpi_softc *sc)
2687{
2688	struct ieee80211com *ic = &sc->sc_ic;
2689	struct wpi_tx_ring *ring = &sc->cmdq;
2690	struct wpi_tx_desc *desc;
2691	struct wpi_tx_data *data;
2692	struct wpi_tx_cmd *cmd;
2693	struct wpi_scan_hdr *hdr;
2694	struct wpi_scan_chan *chan;
2695	struct ieee80211_frame *wh;
2696	struct ieee80211_rateset *rs;
2697	struct ieee80211_channel *c;
2698	enum ieee80211_phymode mode;
2699	uint8_t *frm;
2700	int nrates, pktlen, error;
2701	bus_addr_t physaddr;
2702	struct ifnet *ifp = ic->ic_ifp;
2703
2704	desc = &ring->desc[ring->cur];
2705	data = &ring->data[ring->cur];
2706
2707	data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2708	if (data->m == NULL) {
2709		device_printf(sc->sc_dev,
2710		    "could not allocate mbuf for scan command\n");
2711		return ENOMEM;
2712	}
2713
2714	cmd = mtod(data->m, struct wpi_tx_cmd *);
2715	cmd->code = WPI_CMD_SCAN;
2716	cmd->flags = 0;
2717	cmd->qid = ring->qid;
2718	cmd->idx = ring->cur;
2719
2720	hdr = (struct wpi_scan_hdr *)cmd->data;
2721	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2722
2723	/*
2724	 * Move to the next channel if no packets are received within 5 msecs
2725	 * after sending the probe request (this helps to reduce the duration
2726	 * of active scans).
2727	 */
2728	hdr->quiet = htole16(5);
2729	hdr->threshold = htole16(1);
2730
2731	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2732		/* send probe requests at 6Mbps */
2733		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2734
2735		/* Enable crc checking */
2736		hdr->promotion = htole16(1);
2737	} else {
2738		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2739		/* send probe requests at 1Mbps */
2740		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2741	}
2742	hdr->tx.id = WPI_ID_BROADCAST;
2743	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2744	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2745
2746	/*XXX Need to cater for multiple essids */
2747	memset(&hdr->scan_essids[0], 0, 4 * sizeof(hdr->scan_essids[0]));
2748	hdr->scan_essids[0].id = IEEE80211_ELEMID_SSID;
2749	hdr->scan_essids[0].esslen = ic->ic_des_ssid[0].len;
2750	memcpy(hdr->scan_essids[0].essid, ic->ic_des_ssid[0].ssid,
2751	    ic->ic_des_ssid[0].len);
2752
2753	if (wpi_debug & WPI_DEBUG_SCANNING) {
2754		printf("Scanning Essid: ");
2755		ieee80211_print_essid(ic->ic_des_ssid[0].ssid,
2756		    ic->ic_des_ssid[0].len);
2757		printf("\n");
2758	}
2759
2760	/*
2761	 * Build a probe request frame.  Most of the following code is a
2762	 * copy & paste of what is done in net80211.
2763	 */
2764	wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2765	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2766		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2767	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2768	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2769	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2770	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2771	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2772	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2773
2774	frm = (uint8_t *)(wh + 1);
2775
2776	/* add essid IE, the hardware will fill this in for us */
2777	*frm++ = IEEE80211_ELEMID_SSID;
2778	*frm++ = 0;
2779
2780	mode = ieee80211_chan2mode(ic->ic_curchan);
2781	rs = &ic->ic_sup_rates[mode];
2782
2783	/* add supported rates IE */
2784	*frm++ = IEEE80211_ELEMID_RATES;
2785	nrates = rs->rs_nrates;
2786	if (nrates > IEEE80211_RATE_SIZE)
2787		nrates = IEEE80211_RATE_SIZE;
2788	*frm++ = nrates;
2789	memcpy(frm, rs->rs_rates, nrates);
2790	frm += nrates;
2791
2792	/* add supported xrates IE */
2793	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2794		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2795		*frm++ = IEEE80211_ELEMID_XRATES;
2796		*frm++ = nrates;
2797		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2798		frm += nrates;
2799	}
2800
2801	/* setup length of probe request */
2802	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2803
2804	/*
2805	 * Construct information about the channel that we
2806	 * want to scan. The firmware expects this to be directly
2807	 * after the scan probe request
2808	 */
2809	c = ic->ic_curchan;
2810	chan = (struct wpi_scan_chan *)frm;
2811	chan->chan = ieee80211_chan2ieee(ic, c);
2812	chan->flags = 0;
2813	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2814		chan->flags |= WPI_CHAN_ACTIVE;
2815		if (ic->ic_des_ssid[0].len != 0)
2816			chan->flags |= WPI_CHAN_DIRECT;
2817	}
2818	chan->gain_dsp = 0x6e; /* Default level */
2819	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2820		chan->active = htole16(10);
2821		chan->passive = htole16(sc->maxdwell);
2822		chan->gain_radio = 0x3b;
2823	} else {
2824		chan->active = htole16(20);
2825		chan->passive = htole16(sc->maxdwell);
2826		chan->gain_radio = 0x28;
2827	}
2828
2829	DPRINTFN(WPI_DEBUG_SCANNING,
2830	    ("Scanning %u Passive: %d\n",
2831	     chan->chan,
2832	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2833
2834	hdr->nchan++;
2835	chan++;
2836
2837	frm += sizeof (struct wpi_scan_chan);
2838#if 0
2839	// XXX All Channels....
2840	for (c  = &ic->ic_channels[1];
2841	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2842		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2843			continue;
2844
2845		chan->chan = ieee80211_chan2ieee(ic, c);
2846		chan->flags = 0;
2847		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2848		    chan->flags |= WPI_CHAN_ACTIVE;
2849		    if (ic->ic_des_ssid[0].len != 0)
2850			chan->flags |= WPI_CHAN_DIRECT;
2851		}
2852		chan->gain_dsp = 0x6e; /* Default level */
2853		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2854			chan->active = htole16(10);
2855			chan->passive = htole16(110);
2856			chan->gain_radio = 0x3b;
2857		} else {
2858			chan->active = htole16(20);
2859			chan->passive = htole16(120);
2860			chan->gain_radio = 0x28;
2861		}
2862
2863		DPRINTFN(WPI_DEBUG_SCANNING,
2864			 ("Scanning %u Passive: %d\n",
2865			  chan->chan,
2866			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2867
2868		hdr->nchan++;
2869		chan++;
2870
2871		frm += sizeof (struct wpi_scan_chan);
2872	}
2873#endif
2874
2875	hdr->len = htole16(frm - (uint8_t *)hdr);
2876	pktlen = frm - (uint8_t *)cmd;
2877
2878	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2879	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2880	if (error != 0) {
2881		device_printf(sc->sc_dev, "could not map scan command\n");
2882		m_freem(data->m);
2883		data->m = NULL;
2884		return error;
2885	}
2886
2887	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2888	desc->segs[0].addr = htole32(physaddr);
2889	desc->segs[0].len  = htole32(pktlen);
2890
2891	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2892	    BUS_DMASYNC_PREWRITE);
2893	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2894
2895	/* kick cmd ring */
2896	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2897	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2898
2899	return 0;	/* will be notified async. of failure/success */
2900}
2901
2902/**
2903 * Configure the card to listen to a particular channel, this transisions the
2904 * card in to being able to receive frames from remote devices.
2905 */
2906static int
2907wpi_config(struct wpi_softc *sc)
2908{
2909	struct ieee80211com *ic = &sc->sc_ic;
2910	struct ifnet *ifp = ic->ic_ifp;
2911	struct wpi_power power;
2912	struct wpi_bluetooth bluetooth;
2913	struct wpi_node_info node;
2914	int error;
2915
2916	/* set power mode */
2917	memset(&power, 0, sizeof power);
2918	power.flags = htole32(WPI_POWER_CAM|0x8);
2919	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2920	if (error != 0) {
2921		device_printf(sc->sc_dev, "could not set power mode\n");
2922		return error;
2923	}
2924
2925	/* configure bluetooth coexistence */
2926	memset(&bluetooth, 0, sizeof bluetooth);
2927	bluetooth.flags = 3;
2928	bluetooth.lead = 0xaa;
2929	bluetooth.kill = 1;
2930	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2931	    0);
2932	if (error != 0) {
2933		device_printf(sc->sc_dev,
2934		    "could not configure bluetooth coexistence\n");
2935		return error;
2936	}
2937
2938	/* configure adapter */
2939	memset(&sc->config, 0, sizeof (struct wpi_config));
2940	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2941	/*set default channel*/
2942	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2943	sc->config.flags = htole32(WPI_CONFIG_TSF);
2944	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2945		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2946		    WPI_CONFIG_24GHZ);
2947	}
2948	sc->config.filter = 0;
2949	switch (ic->ic_opmode) {
2950	case IEEE80211_M_STA:
2951	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2952		sc->config.mode = WPI_MODE_STA;
2953		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2954		break;
2955	case IEEE80211_M_IBSS:
2956	case IEEE80211_M_AHDEMO:
2957		sc->config.mode = WPI_MODE_IBSS;
2958		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2959					     WPI_FILTER_MULTICAST);
2960		break;
2961	case IEEE80211_M_HOSTAP:
2962		sc->config.mode = WPI_MODE_HOSTAP;
2963		break;
2964	case IEEE80211_M_MONITOR:
2965		sc->config.mode = WPI_MODE_MONITOR;
2966		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2967			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2968		break;
2969	}
2970	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2971	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2972	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2973		sizeof (struct wpi_config), 0);
2974	if (error != 0) {
2975		device_printf(sc->sc_dev, "configure command failed\n");
2976		return error;
2977	}
2978
2979	/* configuration has changed, set Tx power accordingly */
2980	if ((error = wpi_set_txpower(sc, ic->ic_curchan,0)) != 0) {
2981	    device_printf(sc->sc_dev, "could not set Tx power\n");
2982	    return error;
2983	}
2984
2985	/* add broadcast node */
2986	memset(&node, 0, sizeof node);
2987	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2988	node.id = WPI_ID_BROADCAST;
2989	node.rate = wpi_plcp_signal(2);
2990	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2991	if (error != 0) {
2992		device_printf(sc->sc_dev, "could not add broadcast node\n");
2993		return error;
2994	}
2995
2996	/* Setup rate scalling */
2997	error = wpi_mrr_setup(sc);
2998	if (error != 0) {
2999		device_printf(sc->sc_dev, "could not setup MRR\n");
3000		return error;
3001	}
3002
3003	return 0;
3004}
3005
3006static void
3007wpi_stop_master(struct wpi_softc *sc)
3008{
3009	uint32_t tmp;
3010	int ntries;
3011
3012	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
3013
3014	tmp = WPI_READ(sc, WPI_RESET);
3015	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
3016
3017	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3018	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
3019		return;	/* already asleep */
3020
3021	for (ntries = 0; ntries < 100; ntries++) {
3022		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
3023			break;
3024		DELAY(10);
3025	}
3026	if (ntries == 100) {
3027		device_printf(sc->sc_dev, "timeout waiting for master\n");
3028	}
3029}
3030
3031static int
3032wpi_power_up(struct wpi_softc *sc)
3033{
3034	uint32_t tmp;
3035	int ntries;
3036
3037	wpi_mem_lock(sc);
3038	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
3039	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
3040	wpi_mem_unlock(sc);
3041
3042	for (ntries = 0; ntries < 5000; ntries++) {
3043		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
3044			break;
3045		DELAY(10);
3046	}
3047	if (ntries == 5000) {
3048		device_printf(sc->sc_dev,
3049		    "timeout waiting for NIC to power up\n");
3050		return ETIMEDOUT;
3051	}
3052	return 0;
3053}
3054
3055static int
3056wpi_reset(struct wpi_softc *sc)
3057{
3058	uint32_t tmp;
3059	int ntries;
3060
3061	DPRINTFN(WPI_DEBUG_HW,
3062	    ("Resetting the card - clearing any uploaded firmware\n"));
3063
3064	/* clear any pending interrupts */
3065	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3066
3067	tmp = WPI_READ(sc, WPI_PLL_CTL);
3068	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
3069
3070	tmp = WPI_READ(sc, WPI_CHICKEN);
3071	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
3072
3073	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3074	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
3075
3076	/* wait for clock stabilization */
3077	for (ntries = 0; ntries < 25000; ntries++) {
3078		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
3079			break;
3080		DELAY(10);
3081	}
3082	if (ntries == 25000) {
3083		device_printf(sc->sc_dev,
3084		    "timeout waiting for clock stabilization\n");
3085		return ETIMEDOUT;
3086	}
3087
3088	/* initialize EEPROM */
3089	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
3090
3091	if ((tmp & WPI_EEPROM_VERSION) == 0) {
3092		device_printf(sc->sc_dev, "EEPROM not found\n");
3093		return EIO;
3094	}
3095	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
3096
3097	return 0;
3098}
3099
3100static void
3101wpi_hw_config(struct wpi_softc *sc)
3102{
3103	uint32_t rev, hw;
3104
3105	/* voodoo from the Linux "driver".. */
3106	hw = WPI_READ(sc, WPI_HWCONFIG);
3107
3108	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
3109	if ((rev & 0xc0) == 0x40)
3110		hw |= WPI_HW_ALM_MB;
3111	else if (!(rev & 0x80))
3112		hw |= WPI_HW_ALM_MM;
3113
3114	if (sc->cap == 0x80)
3115		hw |= WPI_HW_SKU_MRC;
3116
3117	hw &= ~WPI_HW_REV_D;
3118	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
3119		hw |= WPI_HW_REV_D;
3120
3121	if (sc->type > 1)
3122		hw |= WPI_HW_TYPE_B;
3123
3124	WPI_WRITE(sc, WPI_HWCONFIG, hw);
3125}
3126
3127static void
3128wpi_init(void *arg)
3129{
3130	struct wpi_softc *sc = arg;
3131	struct ieee80211com *ic = &sc->sc_ic;
3132	struct ifnet *ifp = ic->ic_ifp;
3133	uint32_t tmp;
3134	int ntries, error, qid;
3135	WPI_LOCK_DECL;
3136
3137	WPI_LOCK(sc);
3138
3139	wpi_stop_locked(sc);
3140	(void)wpi_reset(sc);
3141
3142	wpi_mem_lock(sc);
3143	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3144	DELAY(20);
3145	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3146	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3147	wpi_mem_unlock(sc);
3148
3149	(void)wpi_power_up(sc);
3150	wpi_hw_config(sc);
3151
3152	/* init Rx ring */
3153	wpi_mem_lock(sc);
3154	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3155	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3156	    offsetof(struct wpi_shared, next));
3157	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3158	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3159	wpi_mem_unlock(sc);
3160
3161	/* init Tx rings */
3162	wpi_mem_lock(sc);
3163	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3164	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3165	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3166	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3167	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3168	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3169	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3170
3171	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3172	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3173
3174	for (qid = 0; qid < 6; qid++) {
3175		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3176		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3177		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3178	}
3179	wpi_mem_unlock(sc);
3180
3181	/* clear "radio off" and "disable command" bits (reversed logic) */
3182	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3183	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3184	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3185
3186	/* clear any pending interrupts */
3187	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3188
3189	/* enable interrupts */
3190	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3191
3192	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3193	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3194
3195	if ((error = wpi_load_firmware(sc)) != 0) {
3196	    device_printf(sc->sc_dev,
3197		"A problem occurred loading the firmware to the driver\n");
3198	    return;
3199	}
3200
3201	/* At this point the firmware is up and running. If the hardware
3202	 * RF switch is turned off thermal calibration will fail, though
3203	 * the card is still happy to continue to accept commands, catch
3204	 * this case and record the hw is disabled.
3205	 */
3206	wpi_mem_lock(sc);
3207	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3208	wpi_mem_unlock(sc);
3209
3210	if (!(tmp & 0x1)) {
3211		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3212		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3213		ifp->if_drv_flags |= IFF_DRV_RUNNING;
3214		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3215		return;
3216	}
3217
3218	/* wait for thermal sensors to calibrate */
3219	for (ntries = 0; ntries < 1000; ntries++) {
3220		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3221			break;
3222		DELAY(10);
3223	}
3224
3225	if (ntries == 1000) {
3226		device_printf(sc->sc_dev,
3227		    "timeout waiting for thermal sensors calibration\n");
3228		error = ETIMEDOUT;
3229		return;
3230	}
3231	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3232
3233	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3234	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3235	callout_reset(&sc->watchdog_to, hz, wpi_tick, sc);
3236	WPI_UNLOCK(sc);
3237
3238	if (ic->ic_opmode == IEEE80211_M_MONITOR)
3239		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3240	else if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3241		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3242}
3243
3244static void
3245wpi_stop(struct wpi_softc *sc)
3246{
3247	WPI_LOCK_DECL;
3248
3249	WPI_LOCK(sc);
3250	wpi_stop_locked(sc);
3251	WPI_UNLOCK(sc);
3252
3253}
3254static void
3255wpi_stop_locked(struct wpi_softc *sc)
3256
3257{
3258	struct ieee80211com *ic = &sc->sc_ic;
3259	struct ifnet *ifp = ic->ic_ifp;
3260	uint32_t tmp;
3261	int ac;
3262
3263	sc->watchdog_cnt = sc->sc_tx_timer = 0;
3264	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3265
3266	/* disable interrupts */
3267	WPI_WRITE(sc, WPI_MASK, 0);
3268	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3269	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3270	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3271
3272	/* Clear any commands left in the command buffer */
3273	memset(sc->sc_cmd, 0, sizeof(sc->sc_cmd));
3274
3275	wpi_mem_lock(sc);
3276	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3277	wpi_mem_unlock(sc);
3278
3279	/* reset all Tx rings */
3280	for (ac = 0; ac < 4; ac++)
3281		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3282	wpi_reset_tx_ring(sc, &sc->cmdq);
3283
3284	/* reset Rx ring */
3285	wpi_reset_rx_ring(sc, &sc->rxq);
3286
3287	wpi_mem_lock(sc);
3288	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3289	wpi_mem_unlock(sc);
3290
3291	DELAY(5);
3292
3293	wpi_stop_master(sc);
3294
3295	tmp = WPI_READ(sc, WPI_RESET);
3296	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3297	sc->flags &= ~WPI_FLAG_BUSY;
3298
3299	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3300}
3301
3302static void
3303wpi_iter_func(void *arg, struct ieee80211_node *ni)
3304{
3305	struct wpi_softc *sc = arg;
3306	struct wpi_node *wn = (struct wpi_node *)ni;
3307
3308	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
3309}
3310
3311static void
3312wpi_newassoc(struct ieee80211_node *ni, int isnew)
3313{
3314	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
3315	int i;
3316
3317	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
3318
3319	for (i = ni->ni_rates.rs_nrates - 1;
3320	    i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
3321	    i--);
3322	ni->ni_txrate = i;
3323}
3324
3325static void
3326wpi_calib_timeout(void *arg)
3327{
3328	struct wpi_softc *sc = arg;
3329	struct ieee80211com *ic = &sc->sc_ic;
3330	int temp;
3331	WPI_LOCK_DECL;
3332
3333	/* automatic rate control triggered every 500ms */
3334	if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
3335		WPI_LOCK(sc);
3336		if (ic->ic_opmode == IEEE80211_M_STA)
3337			wpi_iter_func(sc, ic->ic_bss);
3338		else
3339			ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
3340		WPI_UNLOCK(sc);
3341	}
3342
3343	/* update sensor data */
3344	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3345	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3346#if 0
3347	//XXX Used by OpenBSD Sensor Framework
3348	sc->sensor.value = temp + 260;
3349#endif
3350
3351	/* automatic power calibration every 60s */
3352	if (++sc->calib_cnt >= 120) {
3353		wpi_power_calibration(sc, temp);
3354		sc->calib_cnt = 0;
3355	}
3356
3357	callout_reset(&sc->calib_to, hz/2, wpi_calib_timeout, sc);
3358}
3359
3360/*
3361 * This function is called periodically (every 60 seconds) to adjust output
3362 * power to temperature changes.
3363 */
3364static void
3365wpi_power_calibration(struct wpi_softc *sc, int temp)
3366{
3367	/* sanity-check read value */
3368	if (temp < -260 || temp > 25) {
3369		/* this can't be correct, ignore */
3370		DPRINTFN(WPI_DEBUG_TEMP,
3371		    ("out-of-range temperature reported: %d\n", temp));
3372		return;
3373	}
3374
3375	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3376
3377	/* adjust Tx power if need be */
3378	if (abs(temp - sc->temp) <= 6)
3379		return;
3380
3381	sc->temp = temp;
3382
3383	if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan,1) != 0) {
3384		/* just warn, too bad for the automatic calibration... */
3385		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3386	}
3387}
3388
3389/**
3390 * Read the eeprom to find out what channels are valid for the given
3391 * band and update net80211 with what we find.
3392 */
3393static void
3394wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3395{
3396	struct ieee80211com *ic = &sc->sc_ic;
3397	const struct wpi_chan_band *band = &wpi_bands[n];
3398	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3399	int chan, i, offset, passive;
3400
3401	wpi_read_prom_data(sc, band->addr, channels,
3402	    band->nchan * sizeof (struct wpi_eeprom_chan));
3403
3404	for (i = 0; i < band->nchan; i++) {
3405		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3406			DPRINTFN(WPI_DEBUG_HW,
3407			    ("Channel Not Valid: %d, band %d\n",
3408			     band->chan[i],n));
3409			continue;
3410		}
3411
3412		passive = 0;
3413		chan = band->chan[i];
3414		offset = ic->ic_nchans;
3415
3416		/* is active scan allowed on this channel? */
3417		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3418			passive = IEEE80211_CHAN_PASSIVE;
3419		}
3420
3421		if (n == 0) {	/* 2GHz band */
3422			ic->ic_channels[offset].ic_ieee = chan;
3423			ic->ic_channels[offset].ic_freq =
3424			ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
3425			ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_B | passive;
3426			offset++;
3427			ic->ic_channels[offset].ic_ieee = chan;
3428			ic->ic_channels[offset].ic_freq =
3429			ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
3430			ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_G | passive;
3431			offset++;
3432
3433		} else {	/* 5GHz band */
3434			/*
3435			 * Some 3945ABG adapters support channels 7, 8, 11
3436			 * and 12 in the 2GHz *and* 5GHz bands.
3437			 * Because of limitations in our net80211(9) stack,
3438			 * we can't support these channels in 5GHz band.
3439			 * XXX not true; just need to map to proper frequency
3440			 */
3441			if (chan <= 14)
3442				continue;
3443
3444			ic->ic_channels[offset].ic_ieee = chan;
3445			ic->ic_channels[offset].ic_freq =
3446			ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
3447			ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_A | passive;
3448			offset++;
3449		}
3450
3451		/* save maximum allowed power for this channel */
3452		sc->maxpwr[chan] = channels[i].maxpwr;
3453
3454		ic->ic_nchans = offset;
3455
3456#if 0
3457		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3458		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3459		//ic->ic_channels[chan].ic_minpower...
3460		//ic->ic_channels[chan].ic_maxregtxpower...
3461#endif
3462
3463		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d, offset %d\n",
3464			    chan, channels[i].flags, sc->maxpwr[chan], offset));
3465	}
3466}
3467
3468static void
3469wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3470{
3471	struct wpi_power_group *group = &sc->groups[n];
3472	struct wpi_eeprom_group rgroup;
3473	int i;
3474
3475	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3476	    sizeof rgroup);
3477
3478	/* save power group information */
3479	group->chan   = rgroup.chan;
3480	group->maxpwr = rgroup.maxpwr;
3481	/* temperature at which the samples were taken */
3482	group->temp   = (int16_t)le16toh(rgroup.temp);
3483
3484	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3485		    group->chan, group->maxpwr, group->temp));
3486
3487	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3488		group->samples[i].index = rgroup.samples[i].index;
3489		group->samples[i].power = rgroup.samples[i].power;
3490
3491		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3492			    group->samples[i].index, group->samples[i].power));
3493	}
3494}
3495
3496/*
3497 * Update Tx power to match what is defined for channel `c'.
3498 */
3499static int
3500wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3501{
3502	struct ieee80211com *ic = &sc->sc_ic;
3503	struct wpi_power_group *group;
3504	struct wpi_cmd_txpower txpower;
3505	u_int chan;
3506	int i;
3507
3508	/* get channel number */
3509	chan = ieee80211_chan2ieee(ic, c);
3510
3511	/* find the power group to which this channel belongs */
3512	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3513		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3514			if (chan <= group->chan)
3515				break;
3516	} else
3517		group = &sc->groups[0];
3518
3519	memset(&txpower, 0, sizeof txpower);
3520	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3521	txpower.channel = htole16(chan);
3522
3523	/* set Tx power for all OFDM and CCK rates */
3524	for (i = 0; i <= 11 ; i++) {
3525		/* retrieve Tx power for this channel/rate combination */
3526		int idx = wpi_get_power_index(sc, group, c,
3527		    wpi_ridx_to_rate[i]);
3528
3529		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3530
3531		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3532			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3533			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3534		} else {
3535			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3536			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3537		}
3538		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3539			    chan, wpi_ridx_to_rate[i], idx));
3540	}
3541
3542	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3543}
3544
3545/*
3546 * Determine Tx power index for a given channel/rate combination.
3547 * This takes into account the regulatory information from EEPROM and the
3548 * current temperature.
3549 */
3550static int
3551wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3552    struct ieee80211_channel *c, int rate)
3553{
3554/* fixed-point arithmetic division using a n-bit fractional part */
3555#define fdivround(a, b, n)      \
3556	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3557
3558/* linear interpolation */
3559#define interpolate(x, x1, y1, x2, y2, n)       \
3560	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3561
3562	struct ieee80211com *ic = &sc->sc_ic;
3563	struct wpi_power_sample *sample;
3564	int pwr, idx;
3565	u_int chan;
3566
3567	/* get channel number */
3568	chan = ieee80211_chan2ieee(ic, c);
3569
3570	/* default power is group's maximum power - 3dB */
3571	pwr = group->maxpwr / 2;
3572
3573	/* decrease power for highest OFDM rates to reduce distortion */
3574	switch (rate) {
3575		case 72:	/* 36Mb/s */
3576			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3577			break;
3578		case 96:	/* 48Mb/s */
3579			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3580			break;
3581		case 108:	/* 54Mb/s */
3582			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3583			break;
3584	}
3585
3586	/* never exceed channel's maximum allowed Tx power */
3587	pwr = min(pwr, sc->maxpwr[chan]);
3588
3589	/* retrieve power index into gain tables from samples */
3590	for (sample = group->samples; sample < &group->samples[3]; sample++)
3591		if (pwr > sample[1].power)
3592			break;
3593	/* fixed-point linear interpolation using a 19-bit fractional part */
3594	idx = interpolate(pwr, sample[0].power, sample[0].index,
3595	    sample[1].power, sample[1].index, 19);
3596
3597	/*
3598	 *  Adjust power index based on current temperature
3599	 *	- if colder than factory-calibrated: decreate output power
3600	 *	- if warmer than factory-calibrated: increase output power
3601	 */
3602	idx -= (sc->temp - group->temp) * 11 / 100;
3603
3604	/* decrease power for CCK rates (-5dB) */
3605	if (!WPI_RATE_IS_OFDM(rate))
3606		idx += 10;
3607
3608	/* keep power index in a valid range */
3609	if (idx < 0)
3610		return 0;
3611	if (idx > WPI_MAX_PWR_INDEX)
3612		return WPI_MAX_PWR_INDEX;
3613	return idx;
3614
3615#undef interpolate
3616#undef fdivround
3617}
3618
3619#if 0
3620static void
3621wpi_radio_on(void *arg, int pending)
3622{
3623	struct wpi_softc *sc = arg;
3624
3625	device_printf(sc->sc_dev, "radio turned on\n");
3626}
3627
3628static void
3629wpi_radio_off(void *arg, int pending)
3630{
3631	struct wpi_softc *sc = arg;
3632
3633	device_printf(sc->sc_dev, "radio turned off\n");
3634}
3635#endif
3636
3637/**
3638 * Called by net80211 framework to indicate that a scan
3639 * is starting. This function doesn't actually do the scan,
3640 * wpi_scan_curchan starts things off. This function is more
3641 * of an early warning from the framework we should get ready
3642 * for the scan.
3643 */
3644static void
3645wpi_scan_start(struct ieee80211com *ic)
3646{
3647	struct ifnet *ifp = ic->ic_ifp;
3648	struct wpi_softc *sc = ifp->if_softc;
3649
3650	wpi_queue_cmd(sc, WPI_SCAN_START);
3651}
3652
3653/**
3654 * Called by the net80211 framework, indicates that the
3655 * scan has ended. If there is a scan in progress on the card
3656 * then it should be aborted.
3657 */
3658static void
3659wpi_scan_end(struct ieee80211com *ic)
3660{
3661	struct ifnet *ifp = ic->ic_ifp;
3662	struct wpi_softc *sc = ifp->if_softc;
3663
3664	wpi_queue_cmd(sc, WPI_SCAN_STOP);
3665}
3666
3667/**
3668 * Called by the net80211 framework to indicate to the driver
3669 * that the channel should be changed
3670 */
3671static void
3672wpi_set_channel(struct ieee80211com *ic)
3673{
3674	struct ifnet *ifp = ic->ic_ifp;
3675	struct wpi_softc *sc = ifp->if_softc;
3676
3677	wpi_queue_cmd(sc, WPI_SET_CHAN);
3678}
3679
3680/**
3681 * Called by net80211 to indicate that we need to scan the current
3682 * channel. The channel is previously be set via the wpi_set_channel
3683 * callback.
3684 */
3685static void
3686wpi_scan_curchan(struct ieee80211com *ic, unsigned long maxdwell)
3687{
3688	struct ifnet *ifp = ic->ic_ifp;
3689	struct wpi_softc *sc = ifp->if_softc;
3690
3691	sc->maxdwell = maxdwell;
3692
3693	wpi_queue_cmd(sc, WPI_SCAN_CURCHAN);
3694}
3695
3696/**
3697 * Called by the net80211 framework to indicate
3698 * the minimum dwell time has been met, terminate the scan.
3699 * We don't actually terminate the scan as the firmware will notify
3700 * us when it's finished and we have no way to interrupt it.
3701 */
3702static void
3703wpi_scan_mindwell(struct ieee80211com *ic)
3704{
3705	/* NB: don't try to abort scan; wait for firmware to finish */
3706}
3707
3708/**
3709 * The ops function is called to perform some actual work.
3710 * because we can't sleep from any of the ic callbacks, we queue an
3711 * op task with wpi_queue_cmd and have the taskqueue process that task.
3712 * The task that gets cued is a op task, which ends up calling this function.
3713 */
3714static void
3715wpi_ops(void *arg, int pending)
3716{
3717	struct wpi_softc *sc = arg;
3718	struct ieee80211com *ic = &sc->sc_ic;
3719	WPI_LOCK_DECL;
3720	int cmd;
3721
3722again:
3723	WPI_CMD_LOCK(sc);
3724	cmd = sc->sc_cmd[sc->sc_cmd_cur];
3725
3726	if (cmd == 0) {
3727		/* No more commands to process */
3728		WPI_CMD_UNLOCK(sc);
3729		return;
3730	}
3731	sc->sc_cmd[sc->sc_cmd_cur] = 0; /* free the slot */
3732	sc->sc_cmd_cur = (sc->sc_cmd_cur + 1) % WPI_CMD_MAXOPS;
3733	WPI_CMD_UNLOCK(sc);
3734	WPI_LOCK(sc);
3735
3736	if (!(sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3737		WPI_UNLOCK(sc);
3738		return;
3739	}
3740
3741	{
3742	const char *name[]={"SCAN_START", "SCAN_CURCHAN",0,"STOP",0,0,0,"CHAN",
3743		0,0,0,0,0,0,"AUTH",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,"NEXT"};
3744	DPRINTFN(WPI_DEBUG_OPS,("wpi_ops: command: %d %s\n", cmd, name[cmd-1]));
3745	}
3746
3747	switch (cmd) {
3748	case WPI_SCAN_START:
3749		if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3750			DPRINTF(("HERER\n"));
3751			ieee80211_cancel_scan(ic);
3752		} else
3753			sc->flags |= WPI_FLAG_SCANNING;
3754		break;
3755
3756	case WPI_SCAN_STOP:
3757		sc->flags &= ~WPI_FLAG_SCANNING;
3758		break;
3759
3760	case WPI_SCAN_NEXT:
3761		DPRINTF(("NEXT\n"));
3762		WPI_UNLOCK(sc);
3763		ieee80211_scan_next(ic);
3764		WPI_LOCK(sc);
3765		break;
3766
3767	case WPI_SCAN_CURCHAN:
3768		if (wpi_scan(sc))
3769			ieee80211_cancel_scan(ic);
3770		break;
3771
3772	case WPI_SET_CHAN:
3773		if (sc->flags&WPI_FLAG_AUTH) {
3774			DPRINTF(("Authenticating, not changing channel\n"));
3775			break;
3776		}
3777		if (wpi_config(sc)) {
3778			DPRINTF(("Scan cancelled\n"));
3779			WPI_UNLOCK(sc);
3780			ieee80211_cancel_scan(ic);
3781			WPI_LOCK(sc);
3782			sc->flags &= ~WPI_FLAG_SCANNING;
3783			wpi_restart(sc,0);
3784			WPI_UNLOCK(sc);
3785			return;
3786		}
3787		break;
3788
3789	case WPI_AUTH:
3790		if (wpi_auth(sc) != 0) {
3791			device_printf(sc->sc_dev,
3792			    "could not send authentication request\n");
3793			wpi_stop_locked(sc);
3794			WPI_UNLOCK(sc);
3795			return;
3796		}
3797		WPI_UNLOCK(sc);
3798		ieee80211_node_authorize(ic->ic_bss);
3799		ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
3800		WPI_LOCK(sc);
3801		break;
3802	}
3803	WPI_UNLOCK(sc);
3804
3805	/* Take another pass */
3806	goto again;
3807}
3808
3809/**
3810 * queue a command for later execution in a different thread.
3811 * This is needed as the net80211 callbacks do not allow
3812 * sleeping, since we need to sleep to confirm commands have
3813 * been processed by the firmware, we must defer execution to
3814 * a sleep enabled thread.
3815 */
3816static int
3817wpi_queue_cmd(struct wpi_softc *sc, int cmd)
3818{
3819	WPI_CMD_LOCK(sc);
3820
3821	if (sc->sc_cmd[sc->sc_cmd_next] != 0) {
3822		WPI_CMD_UNLOCK(sc);
3823		DPRINTF(("%s: command %d dropped\n", __func__, cmd));
3824		return (EBUSY);
3825	}
3826
3827	sc->sc_cmd[sc->sc_cmd_next] = cmd;
3828	sc->sc_cmd_next = (sc->sc_cmd_next + 1) % WPI_CMD_MAXOPS;
3829
3830	taskqueue_enqueue(sc->sc_tq, &sc->sc_opstask);
3831
3832	WPI_CMD_UNLOCK(sc);
3833
3834	return 0;
3835}
3836
3837static void
3838wpi_restart(void * arg, int pending)
3839{
3840#if 0
3841	struct wpi_softc *sc = arg;
3842	struct ieee80211com *ic = &sc->sc_ic;
3843	WPI_LOCK_DECL;
3844
3845	DPRINTF(("Device failed, restarting device\n"));
3846	WPI_LOCK(sc);
3847	wpi_stop(sc);
3848	wpi_init(sc);
3849	WPI_UNLOCK(sc);
3850	ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3851#endif
3852}
3853
3854/*
3855 * Allocate DMA-safe memory for firmware transfer.
3856 */
3857static int
3858wpi_alloc_fwmem(struct wpi_softc *sc)
3859{
3860	/* allocate enough contiguous space to store text and data */
3861	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3862	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3863	    BUS_DMA_NOWAIT);
3864}
3865
3866static void
3867wpi_free_fwmem(struct wpi_softc *sc)
3868{
3869	wpi_dma_contig_free(&sc->fw_dma);
3870}
3871
3872/**
3873 * Called every second, wpi_tick used by the watch dog timer
3874 * to check that the card is still alive
3875 */
3876static void
3877wpi_tick(void *arg)
3878{
3879	struct wpi_softc *sc = arg;
3880
3881	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3882
3883	wpi_watchdog(sc->sc_ifp);
3884	callout_reset(&sc->watchdog_to, hz, wpi_tick, sc);
3885}
3886
3887#ifdef WPI_DEBUG
3888static const char *wpi_cmd_str(int cmd)
3889{
3890	switch(cmd) {
3891		case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3892		case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3893		case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3894		case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3895		case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3896		case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3897		case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3898		case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3899		case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3900		case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3901		case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3902		case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3903		case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3904		case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3905
3906		default:
3907		KASSERT(1, ("Unknown Command: %d\n", cmd));
3908		return "UNKNOWN CMD"; // Make the compiler happy
3909	}
3910}
3911#endif
3912
3913MODULE_DEPEND(wpi, pci,  1, 1, 1);
3914MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3915MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3916MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1);
3917