if_wpi.c revision 173976
1/*-
2 * Copyright (c) 2006,2007
3 *	Damien Bergamini <damien.bergamini@free.fr>
4 *	Benjamin Close <Benjamin.Close@clearchain.com>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19#define VERSION "20071102"
20
21#include <sys/cdefs.h>
22__FBSDID("$FreeBSD: head/sys/dev/wpi/if_wpi.c 173976 2007-11-27 08:58:32Z benjsc $");
23
24/*
25 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26 *
27 * The 3945ABG network adapter doesn't use traditional hardware as
28 * many other adaptors do. Instead at run time the eeprom is set into a known
29 * state and told to load boot firmware. The boot firmware loads an init and a
30 * main  binary firmware image into SRAM on the card via DMA.
31 * Once the firmware is loaded, the driver/hw then
32 * communicate by way of circular dma rings via the the SRAM to the firmware.
33 *
34 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35 * The 4 tx data rings allow for prioritization QoS.
36 *
37 * The rx data ring consists of 32 dma buffers. Two registers are used to
38 * indicate where in the ring the driver and the firmware are up to. The
39 * driver sets the initial read index (reg1) and the initial write index (reg2),
40 * the firmware updates the read index (reg1) on rx of a packet and fires an
41 * interrupt. The driver then processes the buffers starting at reg1 indicating
42 * to the firmware which buffers have been accessed by updating reg2. At the
43 * same time allocating new memory for the processed buffer.
44 *
45 * A similar thing happens with the tx rings. The difference is the firmware
46 * stop processing buffers once the queue is full and until confirmation
47 * of a successful transmition (tx_intr) has occurred.
48 *
49 * The command ring operates in the same manner as the tx queues.
50 *
51 * All communication direct to the card (ie eeprom) is classed as Stage1
52 * communication
53 *
54 * All communication via the firmware to the card is classed as State2.
55 * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56 * firmware. The bootstrap firmware and runtime firmware are loaded
57 * from host memory via dma to the card then told to execute. From this point
58 * on the majority of communications between the driver and the card goes
59 * via the firmware.
60 */
61
62#include <sys/param.h>
63#include <sys/sysctl.h>
64#include <sys/sockio.h>
65#include <sys/mbuf.h>
66#include <sys/kernel.h>
67#include <sys/socket.h>
68#include <sys/systm.h>
69#include <sys/malloc.h>
70#include <sys/queue.h>
71#include <sys/taskqueue.h>
72#include <sys/module.h>
73#include <sys/bus.h>
74#include <sys/endian.h>
75#include <sys/linker.h>
76#include <sys/firmware.h>
77
78#if (__FreeBSD_version > 700000)
79#define WPI_CURRENT
80#endif
81
82#include <machine/bus.h>
83#include <machine/resource.h>
84#ifndef WPI_CURRENT
85#include <machine/clock.h>
86#endif
87#include <sys/rman.h>
88
89#include <dev/pci/pcireg.h>
90#include <dev/pci/pcivar.h>
91
92#include <net/bpf.h>
93#include <net/if.h>
94#include <net/if_arp.h>
95#include <net/ethernet.h>
96#include <net/if_dl.h>
97#include <net/if_media.h>
98#include <net/if_types.h>
99
100#include <net80211/ieee80211_var.h>
101#include <net80211/ieee80211_radiotap.h>
102#include <net80211/ieee80211_regdomain.h>
103
104#include <netinet/in.h>
105#include <netinet/in_systm.h>
106#include <netinet/in_var.h>
107#include <netinet/ip.h>
108#include <netinet/if_ether.h>
109
110#include <dev/wpi/if_wpireg.h>
111#include <dev/wpi/if_wpivar.h>
112
113#define WPI_DEBUG
114
115#ifdef WPI_DEBUG
116#define DPRINTF(x)	do { if (wpi_debug != 0) printf x; } while (0)
117#define DPRINTFN(n, x)	do { if (wpi_debug & n) printf x; } while (0)
118
119enum {
120	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
121	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
122	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
123	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
124	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
125	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
126	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
127	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
128	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
129	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
130	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
131	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
132	WPI_DEBUG_ANY		= 0xffffffff
133};
134
135int wpi_debug = 0;
136SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
137
138#else
139#define DPRINTF(x)
140#define DPRINTFN(n, x)
141#endif
142
143struct wpi_ident {
144	uint16_t	vendor;
145	uint16_t	device;
146	uint16_t	subdevice;
147	const char	*name;
148};
149
150static const struct wpi_ident wpi_ident_table[] = {
151	/* The below entries support ABG regardless of the subid */
152	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
153	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
154	/* The below entries only support BG */
155	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945AB"  },
156	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945AB"  },
157	{ 0x8086, 0x4222, 0x1014, "Intel(R) PRO/Wireless 3945AB"  },
158	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945AB"  },
159	{ 0, 0, 0, NULL }
160};
161
162static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
163		    void **, bus_size_t, bus_size_t, int);
164static void	wpi_dma_contig_free(struct wpi_dma_info *);
165static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
166static int	wpi_alloc_shared(struct wpi_softc *);
167static void	wpi_free_shared(struct wpi_softc *);
168static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
169static void	wpi_free_rbuf(void *, void *);
170static int	wpi_alloc_rpool(struct wpi_softc *);
171static void	wpi_free_rpool(struct wpi_softc *);
172static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
173static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
174static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
175static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
176		    int, int);
177static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
178static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
179static struct	ieee80211_node *wpi_node_alloc(struct ieee80211_node_table *);
180static int	wpi_media_change(struct ifnet *);
181static int	wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
182static void	wpi_mem_lock(struct wpi_softc *);
183static void	wpi_mem_unlock(struct wpi_softc *);
184static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
185static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
186static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
187		    const uint32_t *, int);
188static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
189static int	wpi_alloc_fwmem(struct wpi_softc *);
190static void	wpi_free_fwmem(struct wpi_softc *);
191static int	wpi_load_firmware(struct wpi_softc *);
192static void	wpi_unload_firmware(struct wpi_softc *);
193static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
194static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
195		    struct wpi_rx_data *);
196static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
197static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
198static void	wpi_notif_intr(struct wpi_softc *);
199static void	wpi_intr(void *);
200static void	wpi_ops(void *, int);
201static uint8_t	wpi_plcp_signal(int);
202static int	wpi_queue_cmd(struct wpi_softc *, int);
203static void	wpi_tick(void *);
204#if 0
205static void	wpi_radio_on(void *, int);
206static void	wpi_radio_off(void *, int);
207#endif
208static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
209		    struct ieee80211_node *, int);
210static void	wpi_start(struct ifnet *);
211static void	wpi_scan_start(struct ieee80211com *);
212static void	wpi_scan_end(struct ieee80211com *);
213static void	wpi_set_channel(struct ieee80211com *);
214static void	wpi_scan_curchan(struct ieee80211com *, unsigned long);
215static void	wpi_scan_mindwell(struct ieee80211com *);
216static void	wpi_watchdog(struct ifnet *);
217static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
218static void	wpi_restart(void *, int);
219static void	wpi_read_eeprom(struct wpi_softc *);
220static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
221static void	wpi_read_eeprom_group(struct wpi_softc *, int);
222static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
223static int	wpi_wme_update(struct ieee80211com *);
224static int	wpi_mrr_setup(struct wpi_softc *);
225static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
226static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
227#if 0
228static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
229#endif
230static int	wpi_auth(struct wpi_softc *);
231static int	wpi_scan(struct wpi_softc *);
232static int	wpi_config(struct wpi_softc *);
233static void	wpi_stop_master(struct wpi_softc *);
234static int	wpi_power_up(struct wpi_softc *);
235static int	wpi_reset(struct wpi_softc *);
236static void	wpi_hw_config(struct wpi_softc *);
237static void	wpi_init(void *);
238static void	wpi_stop(struct wpi_softc *);
239static void	wpi_stop_locked(struct wpi_softc *);
240static void	wpi_iter_func(void *, struct ieee80211_node *);
241
242static void	wpi_newassoc(struct ieee80211_node *, int);
243static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
244		    int);
245static void	wpi_calib_timeout(void *);
246static void	wpi_power_calibration(struct wpi_softc *, int);
247static int	wpi_get_power_index(struct wpi_softc *,
248		    struct wpi_power_group *, struct ieee80211_channel *, int);
249static const char *wpi_cmd_str(int);
250static int wpi_probe(device_t);
251static int wpi_attach(device_t);
252static int wpi_detach(device_t);
253static int wpi_shutdown(device_t);
254static int wpi_suspend(device_t);
255static int wpi_resume(device_t);
256
257
258static device_method_t wpi_methods[] = {
259	/* Device interface */
260	DEVMETHOD(device_probe,		wpi_probe),
261	DEVMETHOD(device_attach,	wpi_attach),
262	DEVMETHOD(device_detach,	wpi_detach),
263	DEVMETHOD(device_shutdown,	wpi_shutdown),
264	DEVMETHOD(device_suspend,	wpi_suspend),
265	DEVMETHOD(device_resume,	wpi_resume),
266
267	{ 0, 0 }
268};
269
270static driver_t wpi_driver = {
271	"wpi",
272	wpi_methods,
273	sizeof (struct wpi_softc)
274};
275
276static devclass_t wpi_devclass;
277
278DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
279
280static const uint8_t wpi_ridx_to_plcp[] = {
281	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
282	/* R1-R4 (ral/ural is R4-R1) */
283	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
284	/* CCK: device-dependent */
285	10, 20, 55, 110
286};
287static const uint8_t wpi_ridx_to_rate[] = {
288	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
289	2, 4, 11, 22 /*CCK */
290};
291
292
293static int
294wpi_probe(device_t dev)
295{
296	const struct wpi_ident *ident;
297
298	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
299		if (pci_get_vendor(dev) == ident->vendor &&
300		    pci_get_device(dev) == ident->device) {
301			device_set_desc(dev, ident->name);
302			return 0;
303		}
304	}
305	return ENXIO;
306}
307
308/**
309 * Load the firmare image from disk to the allocated dma buffer.
310 * we also maintain the reference to the firmware pointer as there
311 * is times where we may need to reload the firmware but we are not
312 * in a context that can access the filesystem (ie taskq cause by restart)
313 *
314 * @return 0 on success, an errno on failure
315 */
316static int
317wpi_load_firmware(struct wpi_softc *sc)
318{
319#ifdef WPI_CURRENT
320	const struct firmware *fp ;
321#else
322	struct firmware *fp;
323#endif
324	struct wpi_dma_info *dma = &sc->fw_dma;
325	const struct wpi_firmware_hdr *hdr;
326	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
327	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
328	int error;
329	WPI_LOCK_DECL;
330
331	DPRINTFN(WPI_DEBUG_FIRMWARE,
332	    ("Attempting Loading Firmware from wpi_fw module\n"));
333
334	WPI_UNLOCK(sc);
335
336	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
337		device_printf(sc->sc_dev,
338		    "could not load firmware image 'wpifw'\n");
339		error = ENOENT;
340		WPI_LOCK(sc);
341		goto fail;
342	}
343
344	fp = sc->fw_fp;
345
346	WPI_LOCK(sc);
347
348	/* Validate the firmware is minimum a particular version */
349	if (fp->version < WPI_FW_MINVERSION) {
350	    device_printf(sc->sc_dev,
351			   "firmware version is too old. Need %d, got %d\n",
352			   WPI_FW_MINVERSION,
353			   fp->version);
354	    error = ENXIO;
355	    goto fail;
356	}
357
358	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
359		device_printf(sc->sc_dev,
360		    "firmware file too short: %zu bytes\n", fp->datasize);
361		error = ENXIO;
362		goto fail;
363	}
364
365	hdr = (const struct wpi_firmware_hdr *)fp->data;
366
367	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
368	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
369
370	rtextsz = le32toh(hdr->rtextsz);
371	rdatasz = le32toh(hdr->rdatasz);
372	itextsz = le32toh(hdr->itextsz);
373	idatasz = le32toh(hdr->idatasz);
374	btextsz = le32toh(hdr->btextsz);
375
376	/* check that all firmware segments are present */
377	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
378		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
379		device_printf(sc->sc_dev,
380		    "firmware file too short: %zu bytes\n", fp->datasize);
381		error = ENXIO; /* XXX appropriate error code? */
382		goto fail;
383	}
384
385	/* get pointers to firmware segments */
386	rtext = (const uint8_t *)(hdr + 1);
387	rdata = rtext + rtextsz;
388	itext = rdata + rdatasz;
389	idata = itext + itextsz;
390	btext = idata + idatasz;
391
392	DPRINTFN(WPI_DEBUG_FIRMWARE,
393	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
394	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
395	     (le32toh(hdr->version) & 0xff000000) >> 24,
396	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
397	     (le32toh(hdr->version) & 0x0000ffff),
398	     rtextsz, rdatasz,
399	     itextsz, idatasz, btextsz));
400
401	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
402	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
403	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
404	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
405	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
406
407	/* sanity checks */
408	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
409	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
410	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
411	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
412	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
413	    (btextsz & 3) != 0) {
414		device_printf(sc->sc_dev, "firmware invalid\n");
415		error = EINVAL;
416		goto fail;
417	}
418
419	/* copy initialization images into pre-allocated DMA-safe memory */
420	memcpy(dma->vaddr, idata, idatasz);
421	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
422
423	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
424
425	/* tell adapter where to find initialization images */
426	wpi_mem_lock(sc);
427	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
428	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
429	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
430	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
431	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
432	wpi_mem_unlock(sc);
433
434	/* load firmware boot code */
435	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
436	    device_printf(sc->sc_dev, "Failed to load microcode\n");
437	    goto fail;
438	}
439
440	/* now press "execute" */
441	WPI_WRITE(sc, WPI_RESET, 0);
442
443	/* wait at most one second for the first alive notification */
444	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
445		device_printf(sc->sc_dev,
446		    "timeout waiting for adapter to initialize\n");
447		goto fail;
448	}
449
450	/* copy runtime images into pre-allocated DMA-sage memory */
451	memcpy(dma->vaddr, rdata, rdatasz);
452	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
453	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
454
455	/* tell adapter where to find runtime images */
456	wpi_mem_lock(sc);
457	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
458	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
459	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
460	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
461	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
462	wpi_mem_unlock(sc);
463
464	/* wait at most one second for the first alive notification */
465	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
466		device_printf(sc->sc_dev,
467		    "timeout waiting for adapter to initialize2\n");
468		goto fail;
469	}
470
471	DPRINTFN(WPI_DEBUG_FIRMWARE,
472	    ("Firmware loaded to driver successfully\n"));
473	return error;
474fail:
475	wpi_unload_firmware(sc);
476	return error;
477}
478
479/**
480 * Free the referenced firmware image
481 */
482static void
483wpi_unload_firmware(struct wpi_softc *sc)
484{
485	WPI_LOCK_DECL;
486
487	if (sc->fw_fp) {
488		WPI_UNLOCK(sc);
489		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
490		WPI_LOCK(sc);
491		sc->fw_fp = NULL;
492	}
493}
494
495static int
496wpi_attach(device_t dev)
497{
498	struct wpi_softc *sc = device_get_softc(dev);
499	struct ifnet *ifp;
500	struct ieee80211com *ic = &sc->sc_ic;
501	int ac, error, supportsa = 1;
502	uint32_t tmp;
503	const struct wpi_ident *ident;
504
505	sc->sc_dev = dev;
506
507	if (bootverbose || wpi_debug)
508	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
509
510	/*
511	 * Some card's only support 802.11b/g not a, check to see if
512	 * this is one such card. A 0x0 in the subdevice table indicates
513	 * the entire subdevice range is to be ignored.
514	 */
515	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
516		if (ident->subdevice &&
517		    pci_get_subdevice(dev) == ident->subdevice) {
518		    supportsa = 0;
519		    break;
520		}
521	}
522
523#if __FreeBSD_version >= 700000
524	/*
525	 * Create the taskqueues used by the driver. Primarily
526	 * sc_tq handles most the task
527	 */
528	sc->sc_tq = taskqueue_create("wpi_taskq", M_NOWAIT | M_ZERO,
529	    taskqueue_thread_enqueue, &sc->sc_tq);
530	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
531	    device_get_nameunit(dev));
532
533	sc->sc_tq2 = taskqueue_create("wpi_taskq2", M_NOWAIT | M_ZERO,
534	    taskqueue_thread_enqueue, &sc->sc_tq2);
535	taskqueue_start_threads(&sc->sc_tq2, 1, PI_NET, "%s taskq2",
536	    device_get_nameunit(dev));
537#else
538#error "Sorry, this driver is not yet ready for FreeBSD < 7.0"
539#endif
540
541	/* Create the tasks that can be queued */
542#if 0
543	TASK_INIT(&sc->sc_radioontask, 0, wpi_radio_on, sc);
544	TASK_INIT(&sc->sc_radioofftask, 0, wpi_radio_off, sc);
545#endif
546	TASK_INIT(&sc->sc_opstask, 0, wpi_ops, sc);
547	TASK_INIT(&sc->sc_restarttask, 0, wpi_restart, sc);
548
549	WPI_LOCK_INIT(sc);
550	WPI_CMD_LOCK_INIT(sc);
551
552	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
553	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
554
555	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
556		device_printf(dev, "chip is in D%d power mode "
557		    "-- setting to D0\n", pci_get_powerstate(dev));
558		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
559	}
560
561	/* disable the retry timeout register */
562	pci_write_config(dev, 0x41, 0, 1);
563
564	/* enable bus-mastering */
565	pci_enable_busmaster(dev);
566
567	sc->mem_rid = PCIR_BAR(0);
568	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
569	    RF_ACTIVE);
570	if (sc->mem == NULL) {
571		device_printf(dev, "could not allocate memory resource\n");
572		error = ENOMEM;
573		goto fail;
574	}
575
576	sc->sc_st = rman_get_bustag(sc->mem);
577	sc->sc_sh = rman_get_bushandle(sc->mem);
578
579	sc->irq_rid = 0;
580	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
581	    RF_ACTIVE | RF_SHAREABLE);
582	if (sc->irq == NULL) {
583		device_printf(dev, "could not allocate interrupt resource\n");
584		error = ENOMEM;
585		goto fail;
586	}
587
588	/*
589	 * Allocate DMA memory for firmware transfers.
590	 */
591	if ((error = wpi_alloc_fwmem(sc)) != 0) {
592		printf(": could not allocate firmware memory\n");
593		error = ENOMEM;
594		goto fail;
595	}
596
597	/*
598	 * Put adapter into a known state.
599	 */
600	if ((error = wpi_reset(sc)) != 0) {
601		device_printf(dev, "could not reset adapter\n");
602		goto fail;
603	}
604
605	wpi_mem_lock(sc);
606	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
607	if (bootverbose || wpi_debug)
608	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
609
610	wpi_mem_unlock(sc);
611
612	/* Allocate shared page */
613	if ((error = wpi_alloc_shared(sc)) != 0) {
614		device_printf(dev, "could not allocate shared page\n");
615		goto fail;
616	}
617
618	/*
619	 * Allocate the receive buffer pool. The recieve buffers are
620	 * WPI_RBUF_SIZE in length (3k) this is bigger than MCLBYTES
621	 * hence we can't simply use a cluster and used mapped dma memory
622	 * instead.
623	 */
624	if ((error = wpi_alloc_rpool(sc)) != 0) {
625	    device_printf(dev, "could not allocate Rx buffers\n");
626	    goto fail;
627	}
628
629	/* tx data queues  - 4 for QoS purposes */
630	for (ac = 0; ac < WME_NUM_AC; ac++) {
631		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
632		if (error != 0) {
633		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
634		    goto fail;
635		}
636	}
637
638	/* command queue to talk to the card's firmware */
639	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
640	if (error != 0) {
641		device_printf(dev, "could not allocate command ring\n");
642		goto fail;
643	}
644
645	/* receive data queue */
646	error = wpi_alloc_rx_ring(sc, &sc->rxq);
647	if (error != 0) {
648		device_printf(dev, "could not allocate Rx ring\n");
649		goto fail;
650	}
651
652	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
653	if (ifp == NULL) {
654		device_printf(dev, "can not if_alloc()\n");
655		error = ENOMEM;
656		goto fail;
657	}
658
659	ic->ic_ifp = ifp;
660	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
661	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
662	ic->ic_state = IEEE80211_S_INIT;
663
664	/* set device capabilities */
665	ic->ic_caps =
666		  IEEE80211_C_MONITOR		/* monitor mode supported */
667		| IEEE80211_C_TXPMGT		/* tx power management */
668		| IEEE80211_C_SHSLOT		/* short slot time supported */
669		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
670		| IEEE80211_C_WPA		/* 802.11i */
671/* XXX looks like WME is partly supported? */
672#if 0
673		| IEEE80211_C_IBSS		/* IBSS mode support */
674		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
675		| IEEE80211_C_WME		/* 802.11e */
676		| IEEE80211_C_HOSTAP		/* Host access point mode */
677#endif
678		;
679
680	/*
681	 * Read in the eeprom and also setup the channels for
682	 * net80211. We don't set the rates as net80211 does this for us
683	 */
684	wpi_read_eeprom(sc);
685
686	if (bootverbose || wpi_debug) {
687	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
688	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
689			  sc->type > 1 ? 'B': '?');
690	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
691			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
692	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
693			  supportsa ? "does" : "does not");
694
695	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
696	       what sc->rev really represents - benjsc 20070615 */
697	}
698
699	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
700	ifp->if_softc = sc;
701	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
702	ifp->if_init = wpi_init;
703	ifp->if_ioctl = wpi_ioctl;
704	ifp->if_start = wpi_start;
705	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
706	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
707	IFQ_SET_READY(&ifp->if_snd);
708	ieee80211_ifattach(ic);
709
710	/* override default methods */
711	ic->ic_node_alloc = wpi_node_alloc;
712	ic->ic_newassoc = wpi_newassoc;
713	ic->ic_wme.wme_update = wpi_wme_update;
714	ic->ic_scan_start = wpi_scan_start;
715	ic->ic_scan_end = wpi_scan_end;
716	ic->ic_set_channel = wpi_set_channel;
717	ic->ic_scan_curchan = wpi_scan_curchan;
718	ic->ic_scan_mindwell = wpi_scan_mindwell;
719
720	/* override state transition machine */
721	sc->sc_newstate = ic->ic_newstate;
722	ic->ic_newstate = wpi_newstate;
723	ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
724
725	ieee80211_amrr_init(&sc->amrr, ic,
726			   IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
727			   IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD);
728
729	/* whilst ieee80211_ifattach will listen for ieee80211 frames,
730	 * we also want to listen for the lower level radio frames
731	 */
732	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
733	    sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap),
734	    &sc->sc_drvbpf);
735
736	sc->sc_rxtap_len = sizeof sc->sc_rxtap;
737	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
738	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
739
740	sc->sc_txtap_len = sizeof sc->sc_txtap;
741	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
742	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
743
744	/*
745	 * Hook our interrupt after all initialization is complete.
746	 */
747	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE ,
748#ifdef WPI_CURRENT
749	    NULL,
750#endif
751	    wpi_intr, sc, &sc->sc_ih);
752	if (error != 0) {
753		device_printf(dev, "could not set up interrupt\n");
754		goto fail;
755	}
756
757	ieee80211_announce(ic);
758#ifdef XXX_DEBUG
759	ieee80211_announce_channels(ic);
760#endif
761
762	return 0;
763
764fail:	wpi_detach(dev);
765	return ENXIO;
766}
767
768static int
769wpi_detach(device_t dev)
770{
771	struct wpi_softc *sc = device_get_softc(dev);
772	struct ieee80211com *ic = &sc->sc_ic;
773	struct ifnet *ifp = ic->ic_ifp;
774	int ac;
775	WPI_LOCK_DECL;
776
777	if (ifp != NULL) {
778		wpi_stop(sc);
779		callout_drain(&sc->watchdog_to);
780		callout_drain(&sc->calib_to);
781		bpfdetach(ifp);
782		ieee80211_ifdetach(ic);
783	}
784
785	WPI_LOCK(sc);
786	if (sc->txq[0].data_dmat) {
787		for (ac = 0; ac < WME_NUM_AC; ac++)
788			wpi_free_tx_ring(sc, &sc->txq[ac]);
789
790		wpi_free_tx_ring(sc, &sc->cmdq);
791		wpi_free_rx_ring(sc, &sc->rxq);
792		wpi_free_rpool(sc);
793		wpi_free_shared(sc);
794	}
795
796	if (sc->fw_fp != NULL) {
797		wpi_unload_firmware(sc);
798	}
799
800	if (sc->fw_dma.tag)
801		wpi_free_fwmem(sc);
802	WPI_UNLOCK(sc);
803
804	if (sc->irq != NULL) {
805		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
806		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
807	}
808
809	if (sc->mem != NULL)
810		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
811
812	if (ifp != NULL)
813		if_free(ifp);
814
815	taskqueue_free(sc->sc_tq);
816	taskqueue_free(sc->sc_tq2);
817
818	WPI_LOCK_DESTROY(sc);
819	WPI_CMD_LOCK_DESTROY(sc);
820
821	return 0;
822}
823
824static void
825wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
826{
827	if (error != 0)
828		return;
829
830	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
831
832	*(bus_addr_t *)arg = segs[0].ds_addr;
833}
834
835static int
836wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
837    void **kvap, bus_size_t size, bus_size_t alignment, int flags)
838{
839	int error;
840	int count = 0;
841
842	DPRINTFN(WPI_DEBUG_DMA,
843	    ("Size: %zd - alignement %zd\n", size, alignment));
844
845	dma->size = size;
846	dma->tag = NULL;
847
848again:
849	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
850	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
851	    NULL, NULL, size,
852	    1, size, flags,
853	    NULL, NULL, &dma->tag);
854	if (error != 0) {
855		device_printf(sc->sc_dev,
856		    "could not create shared page DMA tag\n");
857		goto fail;
858	}
859	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
860	    flags | BUS_DMA_ZERO, &dma->map);
861	if (error != 0) {
862		device_printf(sc->sc_dev,
863		    "could not allocate shared page DMA memory\n");
864		goto fail;
865	}
866
867	/**
868	 * Sadly FreeBSD can't always align on a 16k boundary, hence we give it
869	 * 10 attempts increasing the size of the allocation by 4k each time.
870	 * This should eventually align us on a 16k boundary at the cost
871	 * of chewing up dma memory
872	 */
873	if ((((uintptr_t)dma->vaddr) & (alignment-1)) && count < 10) {
874		DPRINTFN(WPI_DEBUG_DMA,
875		    ("Memory Unaligned, trying again: %d\n", count++));
876		wpi_dma_contig_free(dma);
877		size += 4096;
878		goto again;
879	}
880
881	DPRINTFN(WPI_DEBUG_DMA,("Memory, allocated & %s Aligned!\n",
882		    count == 10 ? "FAILED" : ""));
883	if (count == 10) {
884		device_printf(sc->sc_dev, "Unable to align memory\n");
885		error = ENOMEM;
886		goto fail;
887	}
888
889	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr,
890	    size,  wpi_dma_map_addr, &dma->paddr, flags);
891
892	if (error != 0) {
893		device_printf(sc->sc_dev,
894		    "could not load shared page DMA map\n");
895		goto fail;
896	}
897
898	if (kvap != NULL)
899		*kvap = dma->vaddr;
900
901	return 0;
902
903fail:
904	wpi_dma_contig_free(dma);
905	return error;
906}
907
908static void
909wpi_dma_contig_free(struct wpi_dma_info *dma)
910{
911	if (dma->tag) {
912		if (dma->map != NULL) {
913			if (dma->paddr == 0) {
914				bus_dmamap_sync(dma->tag, dma->map,
915				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
916				bus_dmamap_unload(dma->tag, dma->map);
917			}
918			bus_dmamem_free(dma->tag, &dma->vaddr, dma->map);
919		}
920		bus_dma_tag_destroy(dma->tag);
921	}
922}
923
924/*
925 * Allocate a shared page between host and NIC.
926 */
927static int
928wpi_alloc_shared(struct wpi_softc *sc)
929{
930	int error;
931
932	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
933	    (void **)&sc->shared, sizeof (struct wpi_shared),
934	    PAGE_SIZE,
935	    BUS_DMA_NOWAIT);
936
937	if (error != 0) {
938		device_printf(sc->sc_dev,
939		    "could not allocate shared area DMA memory\n");
940	}
941
942	return error;
943}
944
945static void
946wpi_free_shared(struct wpi_softc *sc)
947{
948	wpi_dma_contig_free(&sc->shared_dma);
949}
950
951struct wpi_rbuf *
952wpi_alloc_rbuf(struct wpi_softc *sc)
953{
954	struct wpi_rbuf *rbuf;
955
956	rbuf = SLIST_FIRST(&sc->rxq.freelist);
957	if (rbuf == NULL)
958		return NULL;
959	SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
960	return rbuf;
961}
962
963/*
964 * This is called automatically by the network stack when the mbuf to which our
965 * Rx buffer is attached is freed.
966 */
967static void
968wpi_free_rbuf(void *buf, void *arg)
969{
970	struct wpi_rbuf *rbuf = arg;
971	struct wpi_softc *sc = rbuf->sc;
972	WPI_LOCK_DECL;
973
974	WPI_LOCK(sc);
975
976	/* put the buffer back in the free list */
977	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
978
979	WPI_UNLOCK(sc);
980}
981
982static int
983wpi_alloc_rpool(struct wpi_softc *sc)
984{
985	struct wpi_rx_ring *ring = &sc->rxq;
986	struct wpi_rbuf *rbuf;
987	int i, error;
988
989	/* allocate a big chunk of DMA'able memory.. */
990	error = wpi_dma_contig_alloc(sc, &ring->buf_dma, NULL,
991	    WPI_RBUF_COUNT * WPI_RBUF_SIZE, PAGE_SIZE, BUS_DMA_NOWAIT);
992	if (error != 0) {
993		device_printf(sc->sc_dev,
994		    "could not allocate Rx buffers DMA memory\n");
995		return error;
996	}
997
998	/* ..and split it into 3KB chunks */
999	SLIST_INIT(&ring->freelist);
1000	for (i = 0; i < WPI_RBUF_COUNT; i++) {
1001		rbuf = &ring->rbuf[i];
1002
1003		rbuf->sc = sc;	/* backpointer for callbacks */
1004		rbuf->vaddr = ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
1005		rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
1006
1007		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
1008	}
1009	return 0;
1010}
1011
1012static void
1013wpi_free_rpool(struct wpi_softc *sc)
1014{
1015	wpi_dma_contig_free(&sc->rxq.buf_dma);
1016}
1017
1018static int
1019wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1020{
1021
1022	struct wpi_rx_data *data;
1023	struct wpi_rbuf *rbuf;
1024	int i, error;
1025
1026	ring->cur = 0;
1027
1028	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1029		(void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
1030		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1031
1032	if (error != 0) {
1033	    device_printf(sc->sc_dev,
1034		"could not allocate rx ring DMA memory\n");
1035	    goto fail;
1036	}
1037
1038	/*
1039	 * Allocate Rx buffers.
1040	 */
1041	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1042		data = &ring->data[i];
1043
1044		data->m = m_get(M_DONTWAIT, MT_HEADER);
1045		if (data->m == NULL) {
1046			device_printf(sc->sc_dev,
1047			    "could not allocate rx mbuf\n");
1048			error = ENOBUFS;
1049			goto fail;
1050		}
1051
1052		if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
1053			m_freem(data->m);
1054			data->m = NULL;
1055			device_printf(sc->sc_dev,
1056			    "could not allocate rx buffer\n");
1057			error = ENOBUFS;
1058			goto fail;
1059		}
1060
1061		/* attach RxBuffer to mbuf */
1062		MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE,wpi_free_rbuf,
1063		    rbuf,0,EXT_NET_DRV);
1064
1065		if ((data->m->m_flags & M_EXT) == 0) {
1066			m_freem(data->m);
1067			data->m = NULL;
1068			error = ENOBUFS;
1069			goto fail;
1070		}
1071		ring->desc[i] = htole32(rbuf->paddr);
1072	}
1073
1074	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1075	    BUS_DMASYNC_PREWRITE);
1076
1077	return 0;
1078
1079fail:
1080	wpi_free_rx_ring(sc, ring);
1081	return error;
1082}
1083
1084static void
1085wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1086{
1087	int ntries;
1088
1089	wpi_mem_lock(sc);
1090
1091	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1092
1093	for (ntries = 0; ntries < 100; ntries++) {
1094		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1095			break;
1096		DELAY(10);
1097	}
1098
1099	wpi_mem_unlock(sc);
1100
1101#ifdef WPI_DEBUG
1102	if (ntries == 100 && wpi_debug > 0)
1103		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1104#endif
1105
1106	ring->cur = 0;
1107}
1108
1109static void
1110wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1111{
1112	int i;
1113
1114	wpi_dma_contig_free(&ring->desc_dma);
1115
1116	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1117		if (ring->data[i].m != NULL) {
1118			m_freem(ring->data[i].m);
1119			ring->data[i].m = NULL;
1120		}
1121	}
1122}
1123
1124static int
1125wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1126	int qid)
1127{
1128	struct wpi_tx_data *data;
1129	int i, error;
1130
1131	ring->qid = qid;
1132	ring->count = count;
1133	ring->queued = 0;
1134	ring->cur = 0;
1135	ring->data = NULL;
1136
1137	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1138		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1139		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1140
1141	if (error != 0) {
1142	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1143	    goto fail;
1144	}
1145
1146	/* update shared page with ring's base address */
1147	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1148
1149	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1150		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1151		BUS_DMA_NOWAIT);
1152
1153	if (error != 0) {
1154		device_printf(sc->sc_dev,
1155		    "could not allocate tx command DMA memory\n");
1156		goto fail;
1157	}
1158
1159	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1160	    M_NOWAIT | M_ZERO);
1161	if (ring->data == NULL) {
1162		device_printf(sc->sc_dev,
1163		    "could not allocate tx data slots\n");
1164		goto fail;
1165	}
1166
1167	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1168	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1169	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1170	    &ring->data_dmat);
1171	if (error != 0) {
1172		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1173		goto fail;
1174	}
1175
1176	for (i = 0; i < count; i++) {
1177		data = &ring->data[i];
1178
1179		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1180		if (error != 0) {
1181			device_printf(sc->sc_dev,
1182			    "could not create tx buf DMA map\n");
1183			goto fail;
1184		}
1185		bus_dmamap_sync(ring->data_dmat, data->map,
1186		    BUS_DMASYNC_PREWRITE);
1187	}
1188
1189	return 0;
1190
1191fail:	wpi_free_tx_ring(sc, ring);
1192	return error;
1193}
1194
1195static void
1196wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1197{
1198	struct wpi_tx_data *data;
1199	int i, ntries;
1200
1201	wpi_mem_lock(sc);
1202
1203	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1204	for (ntries = 0; ntries < 100; ntries++) {
1205		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1206			break;
1207		DELAY(10);
1208	}
1209#ifdef WPI_DEBUG
1210	if (ntries == 100 && wpi_debug > 0) {
1211		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1212		    ring->qid);
1213	}
1214#endif
1215	wpi_mem_unlock(sc);
1216
1217	for (i = 0; i < ring->count; i++) {
1218		data = &ring->data[i];
1219
1220		if (data->m != NULL) {
1221			bus_dmamap_unload(ring->data_dmat, data->map);
1222			m_freem(data->m);
1223			data->m = NULL;
1224		}
1225	}
1226
1227	ring->queued = 0;
1228	ring->cur = 0;
1229}
1230
1231static void
1232wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1233{
1234	struct wpi_tx_data *data;
1235	int i;
1236
1237	wpi_dma_contig_free(&ring->desc_dma);
1238	wpi_dma_contig_free(&ring->cmd_dma);
1239
1240	if (ring->data != NULL) {
1241		for (i = 0; i < ring->count; i++) {
1242			data = &ring->data[i];
1243
1244			if (data->m != NULL) {
1245				bus_dmamap_sync(ring->data_dmat, data->map,
1246				    BUS_DMASYNC_POSTWRITE);
1247				bus_dmamap_unload(ring->data_dmat, data->map);
1248				m_freem(data->m);
1249				data->m = NULL;
1250			}
1251		}
1252		free(ring->data, M_DEVBUF);
1253	}
1254
1255	if (ring->data_dmat != NULL)
1256		bus_dma_tag_destroy(ring->data_dmat);
1257}
1258
1259static int
1260wpi_shutdown(device_t dev)
1261{
1262	struct wpi_softc *sc = device_get_softc(dev);
1263	WPI_LOCK_DECL;
1264
1265	WPI_LOCK(sc);
1266	wpi_stop_locked(sc);
1267	wpi_unload_firmware(sc);
1268	WPI_UNLOCK(sc);
1269
1270	return 0;
1271}
1272
1273static int
1274wpi_suspend(device_t dev)
1275{
1276	struct wpi_softc *sc = device_get_softc(dev);
1277
1278	wpi_stop(sc);
1279	return 0;
1280}
1281
1282static int
1283wpi_resume(device_t dev)
1284{
1285	struct wpi_softc *sc = device_get_softc(dev);
1286	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1287
1288	pci_write_config(dev, 0x41, 0, 1);
1289
1290	if (ifp->if_flags & IFF_UP) {
1291		wpi_init(ifp->if_softc);
1292		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1293			wpi_start(ifp);
1294	}
1295	return 0;
1296}
1297
1298/* ARGSUSED */
1299static struct ieee80211_node *
1300wpi_node_alloc(struct ieee80211_node_table *ic)
1301{
1302	struct wpi_node *wn;
1303
1304	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT |M_ZERO);
1305
1306	return &wn->ni;
1307}
1308
1309static int
1310wpi_media_change(struct ifnet *ifp)
1311{
1312	int error;
1313
1314	error = ieee80211_media_change(ifp);
1315	if (error != ENETRESET)
1316		return error;
1317
1318	if ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
1319		wpi_init(ifp->if_softc);
1320
1321	return 0;
1322}
1323
1324/**
1325 * Called by net80211 when ever there is a change to 80211 state machine
1326 */
1327static int
1328wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1329{
1330	struct ifnet *ifp = ic->ic_ifp;
1331	struct wpi_softc *sc = ifp->if_softc;
1332	struct ieee80211_node *ni;
1333	int error;
1334
1335	callout_stop(&sc->calib_to);
1336
1337	switch (nstate) {
1338	case IEEE80211_S_SCAN:
1339		DPRINTF(("NEWSTATE:SCAN\n"));
1340		/* Scanning is handled in net80211 via the scan_start,
1341		 * scan_end, scan_curchan functions. Hence all we do when
1342		 * changing to the SCAN state is update the leds
1343		 */
1344
1345		/* make the link LED blink while we're scanning */
1346		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
1347		break;
1348
1349	case IEEE80211_S_ASSOC:
1350		DPRINTF(("NEWSTATE:ASSOC\n"));
1351		if (ic->ic_state != IEEE80211_S_RUN)
1352		  break;
1353		/* FALLTHROUGH */
1354
1355	case IEEE80211_S_AUTH:
1356		DPRINTF(("NEWSTATE:AUTH\n"));
1357		sc->flags |= WPI_FLAG_AUTH;
1358		sc->config.associd = 0;
1359		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
1360		wpi_queue_cmd(sc,WPI_AUTH);
1361		DPRINTF(("END AUTH\n"));
1362		break;
1363
1364	case IEEE80211_S_RUN:
1365		DPRINTF(("NEWSTATE:RUN\n"));
1366		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
1367			/* link LED blinks while monitoring */
1368			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
1369			break;
1370		}
1371
1372#if 0
1373		if (ic->ic_opmode != IEEE80211_M_STA) {
1374			(void) wpi_auth(sc);    /* XXX */
1375			wpi_setup_beacon(sc, ic->ic_bss);
1376		}
1377#endif
1378
1379		ni = ic->ic_bss;
1380		wpi_enable_tsf(sc, ni);
1381
1382		/* update adapter's configuration */
1383		sc->config.associd = htole16(ni->ni_associd & ~0xc000);
1384		/* short preamble/slot time are negotiated when associating */
1385		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
1386			WPI_CONFIG_SHSLOT);
1387		if (ic->ic_flags & IEEE80211_F_SHSLOT)
1388			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
1389		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1390			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
1391		sc->config.filter |= htole32(WPI_FILTER_BSS);
1392#if 0
1393		if (ic->ic_opmode != IEEE80211_M_STA)
1394			sc->config.filter |= htole32(WPI_FILTER_BEACON);
1395#endif
1396
1397/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
1398
1399		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
1400		    sc->config.flags));
1401		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
1402			sizeof (struct wpi_config), 1);
1403		if (error != 0) {
1404			device_printf(sc->sc_dev,
1405			    "could not update configuration\n");
1406			return error;
1407		}
1408
1409		if ((error = wpi_set_txpower(sc, ic->ic_bss->ni_chan, 1)) != 0) {
1410			device_printf(sc->sc_dev,
1411			    "could set txpower\n");
1412			return error;
1413		}
1414
1415		if (ic->ic_opmode == IEEE80211_M_STA) {
1416			/* fake a join to init the tx rate */
1417			wpi_newassoc(ic->ic_bss, 1);
1418		}
1419
1420		/* start automatic rate control timer */
1421		callout_reset(&sc->calib_to, hz/2, wpi_calib_timeout, sc);
1422
1423		/* link LED always on while associated */
1424		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
1425		break;
1426
1427	case IEEE80211_S_INIT:
1428		DPRINTF(("NEWSTATE:INIT\n"));
1429		break;
1430
1431	default:
1432		break;
1433	}
1434
1435	return (*sc->sc_newstate)(ic, nstate, arg);
1436}
1437
1438/*
1439 * Grab exclusive access to NIC memory.
1440 */
1441static void
1442wpi_mem_lock(struct wpi_softc *sc)
1443{
1444	int ntries;
1445	uint32_t tmp;
1446
1447	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1448	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1449
1450	/* spin until we actually get the lock */
1451	for (ntries = 0; ntries < 100; ntries++) {
1452		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1453			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1454			break;
1455		DELAY(10);
1456	}
1457	if (ntries == 100)
1458		device_printf(sc->sc_dev, "could not lock memory\n");
1459}
1460
1461/*
1462 * Release lock on NIC memory.
1463 */
1464static void
1465wpi_mem_unlock(struct wpi_softc *sc)
1466{
1467	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1468	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1469}
1470
1471static uint32_t
1472wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1473{
1474	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1475	return WPI_READ(sc, WPI_READ_MEM_DATA);
1476}
1477
1478static void
1479wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1480{
1481	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1482	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1483}
1484
1485static void
1486wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1487    const uint32_t *data, int wlen)
1488{
1489	for (; wlen > 0; wlen--, data++, addr+=4)
1490		wpi_mem_write(sc, addr, *data);
1491}
1492
1493/*
1494 * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1495 * using the traditional bit-bang method. Data is read up until len bytes have
1496 * been obtained.
1497 */
1498static uint16_t
1499wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1500{
1501	int ntries;
1502	uint32_t val;
1503	uint8_t *out = data;
1504
1505	wpi_mem_lock(sc);
1506
1507	for (; len > 0; len -= 2, addr++) {
1508		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1509
1510		for (ntries = 0; ntries < 10; ntries++) {
1511			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1512				break;
1513			DELAY(5);
1514		}
1515
1516		if (ntries == 10) {
1517			device_printf(sc->sc_dev, "could not read EEPROM\n");
1518			return ETIMEDOUT;
1519		}
1520
1521		*out++= val >> 16;
1522		if (len > 1)
1523			*out ++= val >> 24;
1524	}
1525
1526	wpi_mem_unlock(sc);
1527
1528	return 0;
1529}
1530
1531/*
1532 * The firmware text and data segments are transferred to the NIC using DMA.
1533 * The driver just copies the firmware into DMA-safe memory and tells the NIC
1534 * where to find it.  Once the NIC has copied the firmware into its internal
1535 * memory, we can free our local copy in the driver.
1536 */
1537static int
1538wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1539{
1540	int error, ntries;
1541
1542	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1543
1544	size /= sizeof(uint32_t);
1545
1546	wpi_mem_lock(sc);
1547
1548	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1549	    (const uint32_t *)fw, size);
1550
1551	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1552	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1553	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1554
1555	/* run microcode */
1556	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1557
1558	/* wait while the adapter is busy copying the firmware */
1559	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1560		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1561		DPRINTFN(WPI_DEBUG_HW,
1562		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1563		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1564		if (status & WPI_TX_IDLE(6)) {
1565			DPRINTFN(WPI_DEBUG_HW,
1566			    ("Status Match! - ntries = %d\n", ntries));
1567			break;
1568		}
1569		DELAY(10);
1570	}
1571	if (ntries == 1000) {
1572		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1573		error = ETIMEDOUT;
1574	}
1575
1576	/* start the microcode executing */
1577	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1578
1579	wpi_mem_unlock(sc);
1580
1581	return (error);
1582}
1583
1584static void
1585wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1586	struct wpi_rx_data *data)
1587{
1588	struct ieee80211com *ic = &sc->sc_ic;
1589	struct ifnet *ifp = ic->ic_ifp;
1590	struct wpi_rx_ring *ring = &sc->rxq;
1591	struct wpi_rx_stat *stat;
1592	struct wpi_rx_head *head;
1593	struct wpi_rx_tail *tail;
1594	struct wpi_rbuf *rbuf;
1595	struct ieee80211_frame *wh;
1596	struct ieee80211_node *ni;
1597	struct mbuf *m, *mnew;
1598	WPI_LOCK_DECL;
1599
1600	stat = (struct wpi_rx_stat *)(desc + 1);
1601
1602	if (stat->len > WPI_STAT_MAXLEN) {
1603		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1604		ifp->if_ierrors++;
1605		return;
1606	}
1607
1608	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1609	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1610
1611	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1612	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1613	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1614	    (uintmax_t)le64toh(tail->tstamp)));
1615
1616	m = data->m;
1617
1618	/* finalize mbuf */
1619	m->m_pkthdr.rcvif = ifp;
1620	m->m_data = (caddr_t)(head + 1);
1621	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1622
1623	if ((rbuf = SLIST_FIRST(&sc->rxq.freelist)) != NULL) {
1624		mnew = m_gethdr(M_DONTWAIT,MT_DATA);
1625		if (mnew == NULL) {
1626			ifp->if_ierrors++;
1627			return;
1628		}
1629
1630		/* attach Rx buffer to mbuf */
1631		MEXTADD(mnew,rbuf->vaddr,WPI_RBUF_SIZE, wpi_free_rbuf, rbuf, 0,
1632		    EXT_NET_DRV);
1633		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
1634		data->m = mnew;
1635
1636		/* update Rx descriptor */
1637		ring->desc[ring->cur] = htole32(rbuf->paddr);
1638	} else {
1639		/* no free rbufs, copy frame */
1640		m = m_dup(m, M_DONTWAIT);
1641		if (m == NULL) {
1642			/* no free mbufs either, drop frame */
1643			ifp->if_ierrors++;
1644			return;
1645		}
1646	}
1647
1648#ifndef WPI_CURRENT
1649	if (sc->sc_drvbpf != NULL) {
1650#else
1651	if (bpf_peers_present(sc->sc_drvbpf)) {
1652#endif
1653		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1654
1655		tap->wr_flags = 0;
1656		tap->wr_chan_freq =
1657			htole16(ic->ic_channels[head->chan].ic_freq);
1658		tap->wr_chan_flags =
1659			htole16(ic->ic_channels[head->chan].ic_flags);
1660		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1661		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1662		tap->wr_tsft = tail->tstamp;
1663		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1664		switch (head->rate) {
1665		/* CCK rates */
1666		case  10: tap->wr_rate =   2; break;
1667		case  20: tap->wr_rate =   4; break;
1668		case  55: tap->wr_rate =  11; break;
1669		case 110: tap->wr_rate =  22; break;
1670		/* OFDM rates */
1671		case 0xd: tap->wr_rate =  12; break;
1672		case 0xf: tap->wr_rate =  18; break;
1673		case 0x5: tap->wr_rate =  24; break;
1674		case 0x7: tap->wr_rate =  36; break;
1675		case 0x9: tap->wr_rate =  48; break;
1676		case 0xb: tap->wr_rate =  72; break;
1677		case 0x1: tap->wr_rate =  96; break;
1678		case 0x3: tap->wr_rate = 108; break;
1679		/* unknown rate: should not happen */
1680		default:  tap->wr_rate =   0;
1681		}
1682		if (le16toh(head->flags) & 0x4)
1683			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1684
1685		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1686	}
1687
1688	wh = mtod(m, struct ieee80211_frame *);
1689	WPI_UNLOCK(sc);
1690
1691	/* XXX frame length > sizeof(struct ieee80211_frame_min)? */
1692	/* grab a reference to the source node */
1693	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1694
1695	/* send the frame to the 802.11 layer */
1696	ieee80211_input(ic, m, ni, stat->rssi, 0, 0);
1697
1698	/* release node reference */
1699	ieee80211_free_node(ni);
1700	WPI_LOCK(sc);
1701}
1702
1703static void
1704wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1705{
1706	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1707	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1708	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1709	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1710	struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1711
1712	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1713	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1714	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1715	    le32toh(stat->status)));
1716
1717	/*
1718	 * Update rate control statistics for the node.
1719	 * XXX we should not count mgmt frames since they're always sent at
1720	 * the lowest available bit-rate.
1721	 * XXX frames w/o ACK shouldn't be used either
1722	 */
1723	wn->amn.amn_txcnt++;
1724	if (stat->ntries > 0) {
1725		DPRINTFN(3, ("%d retries\n", stat->ntries));
1726		wn->amn.amn_retrycnt++;
1727	}
1728
1729	/* XXX oerrors should only count errors !maxtries */
1730	if ((le32toh(stat->status) & 0xff) != 1)
1731		ifp->if_oerrors++;
1732	else
1733		ifp->if_opackets++;
1734
1735	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1736	bus_dmamap_unload(ring->data_dmat, txdata->map);
1737	/* XXX handle M_TXCB? */
1738	m_freem(txdata->m);
1739	txdata->m = NULL;
1740	ieee80211_free_node(txdata->ni);
1741	txdata->ni = NULL;
1742
1743	ring->queued--;
1744
1745	sc->sc_tx_timer = 0;
1746	sc->watchdog_cnt = 0;
1747	callout_stop(&sc->watchdog_to);
1748	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1749	wpi_start(ifp);
1750}
1751
1752static void
1753wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1754{
1755	struct wpi_tx_ring *ring = &sc->cmdq;
1756	struct wpi_tx_data *data;
1757
1758	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1759				 "type=%s len=%d\n", desc->qid, desc->idx,
1760				 desc->flags, wpi_cmd_str(desc->type),
1761				 le32toh(desc->len)));
1762
1763	if ((desc->qid & 7) != 4)
1764		return;	/* not a command ack */
1765
1766	data = &ring->data[desc->idx];
1767
1768	/* if the command was mapped in a mbuf, free it */
1769	if (data->m != NULL) {
1770		bus_dmamap_unload(ring->data_dmat, data->map);
1771		m_freem(data->m);
1772		data->m = NULL;
1773	}
1774
1775	sc->flags &= ~WPI_FLAG_BUSY;
1776	wakeup(&ring->cmd[desc->idx]);
1777}
1778
1779static void
1780wpi_notif_intr(struct wpi_softc *sc)
1781{
1782	struct ieee80211com *ic = &sc->sc_ic;
1783	struct wpi_rx_desc *desc;
1784	struct wpi_rx_data *data;
1785	uint32_t hw;
1786
1787	hw = le32toh(sc->shared->next);
1788	while (sc->rxq.cur != hw) {
1789		data = &sc->rxq.data[sc->rxq.cur];
1790		desc = (void *)data->m->m_ext.ext_buf;
1791
1792		DPRINTFN(WPI_DEBUG_NOTIFY,
1793			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1794			  desc->qid,
1795			  desc->idx,
1796			  desc->flags,
1797			  desc->type,
1798			  le32toh(desc->len)));
1799
1800		if (!(desc->qid & 0x80))	/* reply to a command */
1801			wpi_cmd_intr(sc, desc);
1802
1803		switch (desc->type) {
1804		case WPI_RX_DONE:
1805			/* a 802.11 frame was received */
1806			wpi_rx_intr(sc, desc, data);
1807			break;
1808
1809		case WPI_TX_DONE:
1810			/* a 802.11 frame has been transmitted */
1811			wpi_tx_intr(sc, desc);
1812			break;
1813
1814		case WPI_UC_READY:
1815		{
1816			struct wpi_ucode_info *uc =
1817				(struct wpi_ucode_info *)(desc + 1);
1818
1819			/* the microcontroller is ready */
1820			DPRINTF(("microcode alive notification version %x "
1821				"alive %x\n", le32toh(uc->version),
1822				le32toh(uc->valid)));
1823
1824			if (le32toh(uc->valid) != 1) {
1825				device_printf(sc->sc_dev,
1826				    "microcontroller initialization failed\n");
1827				wpi_stop_locked(sc);
1828			}
1829			break;
1830		}
1831		case WPI_STATE_CHANGED:
1832		{
1833			uint32_t *status = (uint32_t *)(desc + 1);
1834
1835			/* enabled/disabled notification */
1836			DPRINTF(("state changed to %x\n", le32toh(*status)));
1837
1838			if (le32toh(*status) & 1) {
1839				device_printf(sc->sc_dev,
1840				    "Radio transmitter is switched off\n");
1841				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1842				break;
1843			}
1844			sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
1845			break;
1846		}
1847		case WPI_START_SCAN:
1848		{
1849			struct wpi_start_scan *scan =
1850				(struct wpi_start_scan *)(desc + 1);
1851
1852			DPRINTFN(WPI_DEBUG_SCANNING,
1853				 ("scanning channel %d status %x\n",
1854			    scan->chan, le32toh(scan->status)));
1855
1856			/* fix current channel */
1857			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1858			break;
1859		}
1860		case WPI_STOP_SCAN:
1861		{
1862			struct wpi_stop_scan *scan =
1863				(struct wpi_stop_scan *)(desc + 1);
1864
1865			DPRINTFN(WPI_DEBUG_SCANNING,
1866			    ("scan finished nchan=%d status=%d chan=%d\n",
1867			     scan->nchan, scan->status, scan->chan));
1868
1869			wpi_queue_cmd(sc, WPI_SCAN_NEXT);
1870			break;
1871		}
1872		case WPI_MISSED_BEACON:
1873		{
1874		    struct wpi_missed_beacon *beacon =
1875				(struct wpi_missed_beacon *)(desc + 1);
1876
1877                    if (le32toh(beacon->consecutive) >= ic->ic_bmissthreshold) {
1878			DPRINTF(("Beacon miss: %u >= %u\n",
1879				 le32toh(beacon->consecutive),
1880				 ic->ic_bmissthreshold));
1881			ieee80211_beacon_miss(ic);
1882		    }
1883		}
1884		}
1885
1886		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1887	}
1888
1889	/* tell the firmware what we have processed */
1890	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1891	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1892
1893}
1894
1895static void
1896wpi_intr(void *arg)
1897{
1898	struct wpi_softc *sc = arg;
1899	uint32_t r;
1900	WPI_LOCK_DECL;
1901
1902	WPI_LOCK(sc);
1903
1904	r = WPI_READ(sc, WPI_INTR);
1905	if (r == 0 || r == 0xffffffff) {
1906		WPI_UNLOCK(sc);
1907		return;
1908	}
1909
1910	/* disable interrupts */
1911	WPI_WRITE(sc, WPI_MASK, 0);
1912	/* ack interrupts */
1913	WPI_WRITE(sc, WPI_INTR, r);
1914
1915	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1916		device_printf(sc->sc_dev, "fatal firmware error\n");
1917		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1918				"(Hardware Error)"));
1919		taskqueue_enqueue(sc->sc_tq2, &sc->sc_restarttask);
1920		sc->flags &= ~WPI_FLAG_BUSY;
1921		WPI_UNLOCK(sc);
1922		return;
1923	}
1924
1925	if (r & WPI_RX_INTR)
1926		wpi_notif_intr(sc);
1927
1928	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1929		wakeup(sc);
1930
1931	/* re-enable interrupts */
1932	if (sc->sc_ifp->if_flags & IFF_UP)
1933		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1934
1935	WPI_UNLOCK(sc);
1936}
1937
1938static uint8_t
1939wpi_plcp_signal(int rate)
1940{
1941	switch (rate) {
1942	/* CCK rates (returned values are device-dependent) */
1943	case 2:		return 10;
1944	case 4:		return 20;
1945	case 11:	return 55;
1946	case 22:	return 110;
1947
1948	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1949	/* R1-R4 (ral/ural is R4-R1) */
1950	case 12:	return 0xd;
1951	case 18:	return 0xf;
1952	case 24:	return 0x5;
1953	case 36:	return 0x7;
1954	case 48:	return 0x9;
1955	case 72:	return 0xb;
1956	case 96:	return 0x1;
1957	case 108:	return 0x3;
1958
1959	/* unsupported rates (should not get there) */
1960	default:	return 0;
1961	}
1962}
1963
1964/* quickly determine if a given rate is CCK or OFDM */
1965#define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1966
1967/*
1968 * Construct the data packet for a transmit buffer and acutally put
1969 * the buffer onto the transmit ring, kicking the card to process the
1970 * the buffer.
1971 */
1972static int
1973wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1974	int ac)
1975{
1976	struct ieee80211com *ic = &sc->sc_ic;
1977	struct wpi_tx_ring *ring = &sc->txq[ac];
1978	struct wpi_tx_desc *desc;
1979	struct wpi_tx_data *data;
1980	struct wpi_tx_cmd *cmd;
1981	struct wpi_cmd_data *tx;
1982	struct ieee80211_frame *wh;
1983	struct ieee80211_key *k;
1984	const struct chanAccParams *cap;
1985	struct mbuf *mnew;
1986	int i, error, nsegs, rate, hdrlen, noack = 0;
1987	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1988
1989	desc = &ring->desc[ring->cur];
1990	data = &ring->data[ring->cur];
1991
1992	wh = mtod(m0, struct ieee80211_frame *);
1993
1994	if (IEEE80211_QOS_HAS_SEQ(wh)) {
1995		hdrlen = sizeof (struct ieee80211_qosframe);
1996		cap = &ic->ic_wme.wme_chanParams;
1997		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1998	} else
1999		hdrlen = sizeof (struct ieee80211_frame);
2000
2001	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2002		if ((k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
2003			m_freem(m0);
2004			return ENOBUFS;
2005		}
2006
2007		/* packet header may have moved, reset our local pointer */
2008		wh = mtod(m0, struct ieee80211_frame *);
2009	}
2010
2011	/* pickup a rate */
2012	if (IEEE80211_IS_MULTICAST(wh->i_addr1)||
2013	    ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
2014		IEEE80211_FC0_TYPE_MGT)) {
2015		/*
2016		 * mgmt/multicast frames are sent at the lowest available
2017		 * bit-rate
2018		 */
2019		rate = ni->ni_rates.rs_rates[0];
2020	} else {
2021		if (ic->ic_fixed_rate != -1) {
2022			rate = ic->ic_sup_rates[ic->ic_curmode].
2023				rs_rates[ic->ic_fixed_rate];
2024		} else
2025			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
2026	}
2027	rate &= IEEE80211_RATE_VAL;
2028
2029#ifndef WPI_CURRENT
2030	if (sc->sc_drvbpf != NULL) {
2031#else
2032	if (bpf_peers_present(sc->sc_drvbpf)) {
2033#endif
2034
2035		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2036
2037		tap->wt_flags = 0;
2038		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
2039		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
2040		tap->wt_rate = rate;
2041		tap->wt_hwqueue = ac;
2042		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2043			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2044
2045		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2046	}
2047
2048	cmd = &ring->cmd[ring->cur];
2049	cmd->code = WPI_CMD_TX_DATA;
2050	cmd->flags = 0;
2051	cmd->qid = ring->qid;
2052	cmd->idx = ring->cur;
2053
2054	tx = (struct wpi_cmd_data *)cmd->data;
2055	tx->flags = 0;
2056
2057	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2058		tx->flags |= htole32(WPI_TX_NEED_ACK);
2059	} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
2060		tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
2061	}
2062
2063	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
2064
2065	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
2066	  WPI_ID_BSS;
2067
2068	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
2069		IEEE80211_FC0_TYPE_MGT) {
2070		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2071		/* tell h/w to set timestamp in probe responses */
2072		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2073			    tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
2074
2075		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2076			    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2077			tx->timeout = htole16(3);
2078		else
2079			tx->timeout = htole16(2);
2080	} else
2081		tx->timeout = htole16(0);
2082
2083	tx->rate = wpi_plcp_signal(rate);
2084
2085	/* be very persistant at sending frames out */
2086	tx->rts_ntries = 7;
2087	tx->data_ntries = 15;
2088
2089	tx->ofdm_mask = 0xff;
2090	tx->cck_mask = 0x0f;
2091	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2092
2093	tx->len = htole16(m0->m_pkthdr.len);
2094
2095	/* save and trim IEEE802.11 header */
2096	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
2097	m_adj(m0, hdrlen);
2098
2099	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
2100	    &nsegs, BUS_DMA_NOWAIT);
2101	if (error != 0 && error != EFBIG) {
2102		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
2103		    error);
2104		m_freem(m0);
2105		return error;
2106	}
2107	if (error != 0) {
2108		/* XXX use ath_defrag */
2109		mnew = m_defrag(m0, M_DONTWAIT);
2110		if (mnew == NULL) {
2111			device_printf(sc->sc_dev,
2112			    "could not defragment mbuf\n");
2113			m_freem(m0);
2114			return ENOBUFS;
2115		}
2116		m0 = mnew;
2117
2118		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
2119		    m0, segs, &nsegs, BUS_DMA_NOWAIT);
2120		if (error != 0) {
2121			device_printf(sc->sc_dev,
2122			    "could not map mbuf (error %d)\n", error);
2123			m_freem(m0);
2124			return error;
2125		}
2126	}
2127
2128	data->m = m0;
2129	data->ni = ni;
2130
2131	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2132	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
2133
2134	/* first scatter/gather segment is used by the tx data command */
2135	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
2136	    (1 + nsegs) << 24);
2137	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2138	    ring->cur * sizeof (struct wpi_tx_cmd));
2139	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
2140	for (i = 1; i <= nsegs; i++) {
2141		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
2142		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
2143	}
2144
2145	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2146	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2147	    BUS_DMASYNC_PREWRITE);
2148
2149	ring->queued++;
2150
2151	/* kick ring */
2152	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2153	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2154
2155	return 0;
2156}
2157
2158/**
2159 * Process data waiting to be sent on the IFNET output queue
2160 */
2161static void
2162wpi_start(struct ifnet *ifp)
2163{
2164	struct wpi_softc *sc = ifp->if_softc;
2165	struct ieee80211com *ic = &sc->sc_ic;
2166	struct ieee80211_node *ni;
2167	struct ether_header *eh;
2168	struct mbuf *m0;
2169	int ac;
2170	WPI_LOCK_DECL;
2171
2172	WPI_LOCK(sc);
2173
2174	for (;;) {
2175		IF_POLL(&ic->ic_mgtq, m0);
2176		if (m0 != NULL) {
2177			IF_DEQUEUE(&ic->ic_mgtq, m0);
2178
2179			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2180			m0->m_pkthdr.rcvif = NULL;
2181
2182			/* management frames go into ring 0 */
2183			if (sc->txq[0].queued > sc->txq[0].count - 8) {
2184				ifp->if_oerrors++;
2185				continue;
2186			}
2187
2188			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
2189				ifp->if_oerrors++;
2190				break;
2191			}
2192		} else {
2193			if (ic->ic_state != IEEE80211_S_RUN)
2194				break;
2195
2196			IFQ_POLL(&ifp->if_snd, m0);
2197			if (m0 == NULL)
2198				break;
2199
2200			/*
2201			 * Cancel any background scan.
2202			 */
2203			if (ic->ic_flags & IEEE80211_F_SCAN)
2204				ieee80211_cancel_scan(ic);
2205
2206			if (m0->m_len < sizeof (*eh) &&
2207			    (m0 = m_pullup(m0, sizeof (*eh))) != NULL) {
2208				ifp->if_oerrors++;
2209				continue;
2210			}
2211			eh = mtod(m0, struct ether_header *);
2212			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2213			if (ni == NULL) {
2214				m_freem(m0);
2215				ifp->if_oerrors++;
2216				continue;
2217			}
2218
2219			/* classify mbuf so we can find which tx ring to use */
2220			if (ieee80211_classify(ic, m0, ni) != 0) {
2221				m_freem(m0);
2222				ieee80211_free_node(ni);
2223				ifp->if_oerrors++;
2224				continue;
2225			}
2226
2227			/* no QoS encapsulation for EAPOL frames */
2228			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
2229			    M_WME_GETAC(m0) : WME_AC_BE;
2230
2231			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2232				/* there is no place left in this ring */
2233				IFQ_DRV_PREPEND(&ifp->if_snd, m0);
2234				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2235				break;
2236			}
2237
2238			IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
2239			BPF_MTAP(ifp, m0);
2240
2241			m0 = ieee80211_encap(ic, m0, ni);
2242			if (m0 == NULL) {
2243				ieee80211_free_node(ni);
2244				ifp->if_oerrors++;
2245				continue;
2246			}
2247
2248#ifndef WPI_CURRENT
2249			if (ic->ic_rawbpf != NULL)
2250#else
2251			if (bpf_peers_present(ic->ic_rawbpf))
2252#endif
2253				bpf_mtap(ic->ic_rawbpf, m0);
2254
2255			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2256				ieee80211_free_node(ni);
2257				ifp->if_oerrors++;
2258				break;
2259			}
2260		}
2261
2262		sc->sc_tx_timer = 5;
2263		sc->watchdog_cnt = 5;
2264		ic->ic_lastdata = ticks;
2265	}
2266
2267	WPI_UNLOCK(sc);
2268}
2269
2270static void
2271wpi_watchdog(struct ifnet *ifp)
2272{
2273	struct wpi_softc *sc = ifp->if_softc;
2274	WPI_LOCK_DECL;
2275
2276	WPI_LOCK(sc);
2277
2278	DPRINTFN(WPI_DEBUG_WATCHDOG, ("watchdog_cnt: %d\n", sc->watchdog_cnt));
2279
2280	if (sc->watchdog_cnt == 0 || --sc->watchdog_cnt)
2281		goto done;
2282
2283	if (--sc->sc_tx_timer != 0) {
2284		device_printf(sc->sc_dev,"device timeout\n");
2285		ifp->if_oerrors++;
2286		taskqueue_enqueue(sc->sc_tq2, &sc->sc_restarttask);
2287	}
2288done:
2289	WPI_UNLOCK(sc);
2290}
2291
2292static int
2293wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2294{
2295	struct wpi_softc *sc = ifp->if_softc;
2296	struct ieee80211com *ic = &sc->sc_ic;
2297	int error = 0;
2298	WPI_LOCK_DECL;
2299
2300	WPI_LOCK(sc);
2301
2302	switch (cmd) {
2303	case SIOCSIFFLAGS:
2304		if ((ifp->if_flags & IFF_UP)) {
2305			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
2306				wpi_init(sc);
2307		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2308			wpi_stop_locked(sc);
2309		break;
2310	default:
2311		WPI_UNLOCK(sc);
2312		error = ieee80211_ioctl(ic, cmd, data);
2313		WPI_LOCK(sc);
2314	}
2315
2316	if (error == ENETRESET) {
2317		if ((ifp->if_flags & IFF_UP) &&
2318		    (ifp->if_drv_flags & IFF_DRV_RUNNING) &&
2319		    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2320			wpi_init(sc);
2321		error = 0;
2322	}
2323
2324	WPI_UNLOCK(sc);
2325
2326	return error;
2327}
2328
2329/*
2330 * Extract various information from EEPROM.
2331 */
2332static void
2333wpi_read_eeprom(struct wpi_softc *sc)
2334{
2335	struct ieee80211com *ic = &sc->sc_ic;
2336	int i;
2337
2338	/* read the hardware capabilities, revision and SKU type */
2339	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2340	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2341	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2342
2343	/* read the regulatory domain */
2344	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2345
2346	/* read in the hw MAC address */
2347	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2348
2349	/* read the list of authorized channels */
2350	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2351		wpi_read_eeprom_channels(sc,i);
2352
2353	/* read the power level calibration info for each group */
2354	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2355		wpi_read_eeprom_group(sc,i);
2356}
2357
2358/*
2359 * Send a command to the firmware.
2360 */
2361static int
2362wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2363{
2364	struct wpi_tx_ring *ring = &sc->cmdq;
2365	struct wpi_tx_desc *desc;
2366	struct wpi_tx_cmd *cmd;
2367
2368#ifdef WPI_DEBUG
2369	if (!async) {
2370		WPI_LOCK_ASSERT(sc);
2371	}
2372#endif
2373
2374	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2375		    async));
2376
2377	if (sc->flags & WPI_FLAG_BUSY) {
2378		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2379		    __func__, code);
2380		return EAGAIN;
2381	}
2382	sc->flags|= WPI_FLAG_BUSY;
2383
2384	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2385	    code, size));
2386
2387	desc = &ring->desc[ring->cur];
2388	cmd = &ring->cmd[ring->cur];
2389
2390	cmd->code = code;
2391	cmd->flags = 0;
2392	cmd->qid = ring->qid;
2393	cmd->idx = ring->cur;
2394	memcpy(cmd->data, buf, size);
2395
2396	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2397	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2398		ring->cur * sizeof (struct wpi_tx_cmd));
2399	desc->segs[0].len  = htole32(4 + size);
2400
2401	/* kick cmd ring */
2402	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2403	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2404
2405	if (async) {
2406		sc->flags &= ~ WPI_FLAG_BUSY;
2407		return 0;
2408	}
2409
2410	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2411}
2412
2413static int
2414wpi_wme_update(struct ieee80211com *ic)
2415{
2416#define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2417#define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2418	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2419	const struct wmeParams *wmep;
2420	struct wpi_wme_setup wme;
2421	int ac;
2422
2423	/* don't override default WME values if WME is not actually enabled */
2424	if (!(ic->ic_flags & IEEE80211_F_WME))
2425		return 0;
2426
2427	wme.flags = 0;
2428	for (ac = 0; ac < WME_NUM_AC; ac++) {
2429		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2430		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2431		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2432		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2433		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2434
2435		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2436		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2437		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2438	}
2439
2440	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2441#undef WPI_USEC
2442#undef WPI_EXP2
2443}
2444
2445/*
2446 * Configure h/w multi-rate retries.
2447 */
2448static int
2449wpi_mrr_setup(struct wpi_softc *sc)
2450{
2451	struct ieee80211com *ic = &sc->sc_ic;
2452	struct wpi_mrr_setup mrr;
2453	int i, error;
2454
2455	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2456
2457	/* CCK rates (not used with 802.11a) */
2458	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2459		mrr.rates[i].flags = 0;
2460		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2461		/* fallback to the immediate lower CCK rate (if any) */
2462		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2463		/* try one time at this rate before falling back to "next" */
2464		mrr.rates[i].ntries = 1;
2465	}
2466
2467	/* OFDM rates (not used with 802.11b) */
2468	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2469		mrr.rates[i].flags = 0;
2470		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2471		/* fallback to the immediate lower OFDM rate (if any) */
2472		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2473		mrr.rates[i].next = (i == WPI_OFDM6) ?
2474		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2475			WPI_OFDM6 : WPI_CCK2) :
2476		    i - 1;
2477		/* try one time at this rate before falling back to "next" */
2478		mrr.rates[i].ntries = 1;
2479	}
2480
2481	/* setup MRR for control frames */
2482	mrr.which = htole32(WPI_MRR_CTL);
2483	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2484	if (error != 0) {
2485		device_printf(sc->sc_dev,
2486		    "could not setup MRR for control frames\n");
2487		return error;
2488	}
2489
2490	/* setup MRR for data frames */
2491	mrr.which = htole32(WPI_MRR_DATA);
2492	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2493	if (error != 0) {
2494		device_printf(sc->sc_dev,
2495		    "could not setup MRR for data frames\n");
2496		return error;
2497	}
2498
2499	return 0;
2500}
2501
2502static void
2503wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2504{
2505	struct wpi_cmd_led led;
2506
2507	led.which = which;
2508	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2509	led.off = off;
2510	led.on = on;
2511
2512	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2513}
2514
2515static void
2516wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2517{
2518	struct wpi_cmd_tsf tsf;
2519	uint64_t val, mod;
2520
2521	memset(&tsf, 0, sizeof tsf);
2522	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2523	tsf.bintval = htole16(ni->ni_intval);
2524	tsf.lintval = htole16(10);
2525
2526	/* compute remaining time until next beacon */
2527	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2528	mod = le64toh(tsf.tstamp) % val;
2529	tsf.binitval = htole32((uint32_t)(val - mod));
2530
2531	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2532		device_printf(sc->sc_dev, "could not enable TSF\n");
2533}
2534
2535#if 0
2536/*
2537 * Build a beacon frame that the firmware will broadcast periodically in
2538 * IBSS or HostAP modes.
2539 */
2540static int
2541wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2542{
2543	struct ieee80211com *ic = &sc->sc_ic;
2544	struct wpi_tx_ring *ring = &sc->cmdq;
2545	struct wpi_tx_desc *desc;
2546	struct wpi_tx_data *data;
2547	struct wpi_tx_cmd *cmd;
2548	struct wpi_cmd_beacon *bcn;
2549	struct ieee80211_beacon_offsets bo;
2550	struct mbuf *m0;
2551	bus_addr_t physaddr;
2552	int error;
2553
2554	desc = &ring->desc[ring->cur];
2555	data = &ring->data[ring->cur];
2556
2557	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2558	if (m0 == NULL) {
2559		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2560		return ENOMEM;
2561	}
2562
2563	cmd = &ring->cmd[ring->cur];
2564	cmd->code = WPI_CMD_SET_BEACON;
2565	cmd->flags = 0;
2566	cmd->qid = ring->qid;
2567	cmd->idx = ring->cur;
2568
2569	bcn = (struct wpi_cmd_beacon *)cmd->data;
2570	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2571	bcn->id = WPI_ID_BROADCAST;
2572	bcn->ofdm_mask = 0xff;
2573	bcn->cck_mask = 0x0f;
2574	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2575	bcn->len = htole16(m0->m_pkthdr.len);
2576	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2577		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2578	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2579
2580	/* save and trim IEEE802.11 header */
2581	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2582	m_adj(m0, sizeof (struct ieee80211_frame));
2583
2584	/* assume beacon frame is contiguous */
2585	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2586	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2587	if (error != 0) {
2588		device_printf(sc->sc_dev, "could not map beacon\n");
2589		m_freem(m0);
2590		return error;
2591	}
2592
2593	data->m = m0;
2594
2595	/* first scatter/gather segment is used by the beacon command */
2596	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2597	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2598		ring->cur * sizeof (struct wpi_tx_cmd));
2599	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2600	desc->segs[1].addr = htole32(physaddr);
2601	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2602
2603	/* kick cmd ring */
2604	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2605	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2606
2607	return 0;
2608}
2609#endif
2610
2611static int
2612wpi_auth(struct wpi_softc *sc)
2613{
2614	struct ieee80211com *ic = &sc->sc_ic;
2615	struct ieee80211_node *ni = ic->ic_bss;
2616	struct wpi_node_info node;
2617	int error;
2618
2619	/* update adapter's configuration */
2620	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2621	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2622	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2623		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2624		    WPI_CONFIG_24GHZ);
2625	}
2626	switch (ic->ic_curmode) {
2627	case IEEE80211_MODE_11A:
2628		sc->config.cck_mask  = 0;
2629		sc->config.ofdm_mask = 0x15;
2630		break;
2631	case IEEE80211_MODE_11B:
2632		sc->config.cck_mask  = 0x03;
2633		sc->config.ofdm_mask = 0;
2634		break;
2635	default:	/* assume 802.11b/g */
2636		sc->config.cck_mask  = 0x0f;
2637		sc->config.ofdm_mask = 0x15;
2638	}
2639
2640	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2641		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2642	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2643		sizeof (struct wpi_config), 1);
2644	if (error != 0) {
2645		device_printf(sc->sc_dev, "could not configure\n");
2646		return error;
2647	}
2648
2649	/* configuration has changed, set Tx power accordingly */
2650	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2651		device_printf(sc->sc_dev, "could not set Tx power\n");
2652		return error;
2653	}
2654
2655	/* add default node */
2656	memset(&node, 0, sizeof node);
2657	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2658	node.id = WPI_ID_BSS;
2659	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2660	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2661	node.action = htole32(WPI_ACTION_SET_RATE);
2662	node.antenna = WPI_ANTENNA_BOTH;
2663	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2664	if (error != 0) {
2665		device_printf(sc->sc_dev, "could not add BSS node\n");
2666		return error;
2667	}
2668
2669	sc->flags &= ~WPI_FLAG_AUTH;
2670
2671	return 0;
2672}
2673
2674/*
2675 * Send a scan request to the firmware.  Since this command is huge, we map it
2676 * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2677 * much of this code is similar to that in wpi_cmd but because we must manually
2678 * construct the probe & channels, we duplicate what's needed here. XXX In the
2679 * future, this function should be modified to use wpi_cmd to help cleanup the
2680 * code base.
2681 */
2682static int
2683wpi_scan(struct wpi_softc *sc)
2684{
2685	struct ieee80211com *ic = &sc->sc_ic;
2686	struct wpi_tx_ring *ring = &sc->cmdq;
2687	struct wpi_tx_desc *desc;
2688	struct wpi_tx_data *data;
2689	struct wpi_tx_cmd *cmd;
2690	struct wpi_scan_hdr *hdr;
2691	struct wpi_scan_chan *chan;
2692	struct ieee80211_frame *wh;
2693	struct ieee80211_rateset *rs;
2694	struct ieee80211_channel *c;
2695	enum ieee80211_phymode mode;
2696	uint8_t *frm;
2697	int nrates, pktlen, error;
2698	bus_addr_t physaddr;
2699	struct ifnet *ifp = ic->ic_ifp;
2700
2701	desc = &ring->desc[ring->cur];
2702	data = &ring->data[ring->cur];
2703
2704	data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2705	if (data->m == NULL) {
2706		device_printf(sc->sc_dev,
2707		    "could not allocate mbuf for scan command\n");
2708		return ENOMEM;
2709	}
2710
2711	cmd = mtod(data->m, struct wpi_tx_cmd *);
2712	cmd->code = WPI_CMD_SCAN;
2713	cmd->flags = 0;
2714	cmd->qid = ring->qid;
2715	cmd->idx = ring->cur;
2716
2717	hdr = (struct wpi_scan_hdr *)cmd->data;
2718	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2719
2720	/*
2721	 * Move to the next channel if no packets are received within 5 msecs
2722	 * after sending the probe request (this helps to reduce the duration
2723	 * of active scans).
2724	 */
2725	hdr->quiet = htole16(5);
2726	hdr->threshold = htole16(1);
2727
2728	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2729		/* send probe requests at 6Mbps */
2730		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2731
2732		/* Enable crc checking */
2733		hdr->promotion = htole16(1);
2734	} else {
2735		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2736		/* send probe requests at 1Mbps */
2737		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2738	}
2739	hdr->tx.id = WPI_ID_BROADCAST;
2740	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2741	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2742
2743	/*XXX Need to cater for multiple essids */
2744	memset(&hdr->scan_essids[0], 0, 4 * sizeof(hdr->scan_essids[0]));
2745	hdr->scan_essids[0].id = IEEE80211_ELEMID_SSID;
2746	hdr->scan_essids[0].esslen = ic->ic_des_ssid[0].len;
2747	memcpy(hdr->scan_essids[0].essid, ic->ic_des_ssid[0].ssid,
2748	    ic->ic_des_ssid[0].len);
2749
2750	if (wpi_debug & WPI_DEBUG_SCANNING) {
2751		printf("Scanning Essid: ");
2752		ieee80211_print_essid(ic->ic_des_ssid[0].ssid,
2753		    ic->ic_des_ssid[0].len);
2754		printf("\n");
2755	}
2756
2757	/*
2758	 * Build a probe request frame.  Most of the following code is a
2759	 * copy & paste of what is done in net80211.
2760	 */
2761	wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2762	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2763		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2764	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2765	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2766	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2767	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2768	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2769	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2770
2771	frm = (uint8_t *)(wh + 1);
2772
2773	/* add essid IE, the hardware will fill this in for us */
2774	*frm++ = IEEE80211_ELEMID_SSID;
2775	*frm++ = 0;
2776
2777	mode = ieee80211_chan2mode(ic->ic_curchan);
2778	rs = &ic->ic_sup_rates[mode];
2779
2780	/* add supported rates IE */
2781	*frm++ = IEEE80211_ELEMID_RATES;
2782	nrates = rs->rs_nrates;
2783	if (nrates > IEEE80211_RATE_SIZE)
2784		nrates = IEEE80211_RATE_SIZE;
2785	*frm++ = nrates;
2786	memcpy(frm, rs->rs_rates, nrates);
2787	frm += nrates;
2788
2789	/* add supported xrates IE */
2790	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2791		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2792		*frm++ = IEEE80211_ELEMID_XRATES;
2793		*frm++ = nrates;
2794		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2795		frm += nrates;
2796	}
2797
2798	/* setup length of probe request */
2799	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2800
2801	/*
2802	 * Construct information about the channel that we
2803	 * want to scan. The firmware expects this to be directly
2804	 * after the scan probe request
2805	 */
2806	c = ic->ic_curchan;
2807	chan = (struct wpi_scan_chan *)frm;
2808	chan->chan = ieee80211_chan2ieee(ic, c);
2809	chan->flags = 0;
2810	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2811		chan->flags |= WPI_CHAN_ACTIVE;
2812		if (ic->ic_des_ssid[0].len != 0)
2813			chan->flags |= WPI_CHAN_DIRECT;
2814	}
2815	chan->gain_dsp = 0x6e; /* Default level */
2816	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2817		chan->active = htole16(10);
2818		chan->passive = htole16(sc->maxdwell);
2819		chan->gain_radio = 0x3b;
2820	} else {
2821		chan->active = htole16(20);
2822		chan->passive = htole16(sc->maxdwell);
2823		chan->gain_radio = 0x28;
2824	}
2825
2826	DPRINTFN(WPI_DEBUG_SCANNING,
2827	    ("Scanning %u Passive: %d\n",
2828	     chan->chan,
2829	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2830
2831	hdr->nchan++;
2832	chan++;
2833
2834	frm += sizeof (struct wpi_scan_chan);
2835#if 0
2836	// XXX All Channels....
2837	for (c  = &ic->ic_channels[1];
2838	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2839		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2840			continue;
2841
2842		chan->chan = ieee80211_chan2ieee(ic, c);
2843		chan->flags = 0;
2844		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2845		    chan->flags |= WPI_CHAN_ACTIVE;
2846		    if (ic->ic_des_ssid[0].len != 0)
2847			chan->flags |= WPI_CHAN_DIRECT;
2848		}
2849		chan->gain_dsp = 0x6e; /* Default level */
2850		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2851			chan->active = htole16(10);
2852			chan->passive = htole16(110);
2853			chan->gain_radio = 0x3b;
2854		} else {
2855			chan->active = htole16(20);
2856			chan->passive = htole16(120);
2857			chan->gain_radio = 0x28;
2858		}
2859
2860		DPRINTFN(WPI_DEBUG_SCANNING,
2861			 ("Scanning %u Passive: %d\n",
2862			  chan->chan,
2863			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2864
2865		hdr->nchan++;
2866		chan++;
2867
2868		frm += sizeof (struct wpi_scan_chan);
2869	}
2870#endif
2871
2872	hdr->len = htole16(frm - (uint8_t *)hdr);
2873	pktlen = frm - (uint8_t *)cmd;
2874
2875	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2876	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2877	if (error != 0) {
2878		device_printf(sc->sc_dev, "could not map scan command\n");
2879		m_freem(data->m);
2880		data->m = NULL;
2881		return error;
2882	}
2883
2884	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2885	desc->segs[0].addr = htole32(physaddr);
2886	desc->segs[0].len  = htole32(pktlen);
2887
2888	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2889	    BUS_DMASYNC_PREWRITE);
2890	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2891
2892	/* kick cmd ring */
2893	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2894	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2895
2896	return 0;	/* will be notified async. of failure/success */
2897}
2898
2899/**
2900 * Configure the card to listen to a particular channel, this transisions the
2901 * card in to being able to receive frames from remote devices.
2902 */
2903static int
2904wpi_config(struct wpi_softc *sc)
2905{
2906	struct ieee80211com *ic = &sc->sc_ic;
2907	struct ifnet *ifp = ic->ic_ifp;
2908	struct wpi_power power;
2909	struct wpi_bluetooth bluetooth;
2910	struct wpi_node_info node;
2911	int error;
2912
2913	/* set power mode */
2914	memset(&power, 0, sizeof power);
2915	power.flags = htole32(WPI_POWER_CAM|0x8);
2916	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2917	if (error != 0) {
2918		device_printf(sc->sc_dev, "could not set power mode\n");
2919		return error;
2920	}
2921
2922	/* configure bluetooth coexistence */
2923	memset(&bluetooth, 0, sizeof bluetooth);
2924	bluetooth.flags = 3;
2925	bluetooth.lead = 0xaa;
2926	bluetooth.kill = 1;
2927	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2928	    0);
2929	if (error != 0) {
2930		device_printf(sc->sc_dev,
2931		    "could not configure bluetooth coexistence\n");
2932		return error;
2933	}
2934
2935	/* configure adapter */
2936	memset(&sc->config, 0, sizeof (struct wpi_config));
2937	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2938	/*set default channel*/
2939	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2940	sc->config.flags = htole32(WPI_CONFIG_TSF);
2941	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2942		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2943		    WPI_CONFIG_24GHZ);
2944	}
2945	sc->config.filter = 0;
2946	switch (ic->ic_opmode) {
2947	case IEEE80211_M_STA:
2948	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2949		sc->config.mode = WPI_MODE_STA;
2950		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2951		break;
2952	case IEEE80211_M_IBSS:
2953	case IEEE80211_M_AHDEMO:
2954		sc->config.mode = WPI_MODE_IBSS;
2955		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2956					     WPI_FILTER_MULTICAST);
2957		break;
2958	case IEEE80211_M_HOSTAP:
2959		sc->config.mode = WPI_MODE_HOSTAP;
2960		break;
2961	case IEEE80211_M_MONITOR:
2962		sc->config.mode = WPI_MODE_MONITOR;
2963		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2964			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2965		break;
2966	}
2967	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2968	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2969	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2970		sizeof (struct wpi_config), 0);
2971	if (error != 0) {
2972		device_printf(sc->sc_dev, "configure command failed\n");
2973		return error;
2974	}
2975
2976	/* configuration has changed, set Tx power accordingly */
2977	if ((error = wpi_set_txpower(sc, ic->ic_curchan,0)) != 0) {
2978	    device_printf(sc->sc_dev, "could not set Tx power\n");
2979	    return error;
2980	}
2981
2982	/* add broadcast node */
2983	memset(&node, 0, sizeof node);
2984	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2985	node.id = WPI_ID_BROADCAST;
2986	node.rate = wpi_plcp_signal(2);
2987	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2988	if (error != 0) {
2989		device_printf(sc->sc_dev, "could not add broadcast node\n");
2990		return error;
2991	}
2992
2993	/* Setup rate scalling */
2994	error = wpi_mrr_setup(sc);
2995	if (error != 0) {
2996		device_printf(sc->sc_dev, "could not setup MRR\n");
2997		return error;
2998	}
2999
3000	return 0;
3001}
3002
3003static void
3004wpi_stop_master(struct wpi_softc *sc)
3005{
3006	uint32_t tmp;
3007	int ntries;
3008
3009	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
3010
3011	tmp = WPI_READ(sc, WPI_RESET);
3012	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
3013
3014	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3015	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
3016		return;	/* already asleep */
3017
3018	for (ntries = 0; ntries < 100; ntries++) {
3019		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
3020			break;
3021		DELAY(10);
3022	}
3023	if (ntries == 100) {
3024		device_printf(sc->sc_dev, "timeout waiting for master\n");
3025	}
3026}
3027
3028static int
3029wpi_power_up(struct wpi_softc *sc)
3030{
3031	uint32_t tmp;
3032	int ntries;
3033
3034	wpi_mem_lock(sc);
3035	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
3036	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
3037	wpi_mem_unlock(sc);
3038
3039	for (ntries = 0; ntries < 5000; ntries++) {
3040		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
3041			break;
3042		DELAY(10);
3043	}
3044	if (ntries == 5000) {
3045		device_printf(sc->sc_dev,
3046		    "timeout waiting for NIC to power up\n");
3047		return ETIMEDOUT;
3048	}
3049	return 0;
3050}
3051
3052static int
3053wpi_reset(struct wpi_softc *sc)
3054{
3055	uint32_t tmp;
3056	int ntries;
3057
3058	DPRINTFN(WPI_DEBUG_HW,
3059	    ("Resetting the card - clearing any uploaded firmware\n"));
3060
3061	/* clear any pending interrupts */
3062	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3063
3064	tmp = WPI_READ(sc, WPI_PLL_CTL);
3065	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
3066
3067	tmp = WPI_READ(sc, WPI_CHICKEN);
3068	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
3069
3070	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3071	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
3072
3073	/* wait for clock stabilization */
3074	for (ntries = 0; ntries < 25000; ntries++) {
3075		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
3076			break;
3077		DELAY(10);
3078	}
3079	if (ntries == 25000) {
3080		device_printf(sc->sc_dev,
3081		    "timeout waiting for clock stabilization\n");
3082		return ETIMEDOUT;
3083	}
3084
3085	/* initialize EEPROM */
3086	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
3087
3088	if ((tmp & WPI_EEPROM_VERSION) == 0) {
3089		device_printf(sc->sc_dev, "EEPROM not found\n");
3090		return EIO;
3091	}
3092	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
3093
3094	return 0;
3095}
3096
3097static void
3098wpi_hw_config(struct wpi_softc *sc)
3099{
3100	uint32_t rev, hw;
3101
3102	/* voodoo from the Linux "driver".. */
3103	hw = WPI_READ(sc, WPI_HWCONFIG);
3104
3105	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
3106	if ((rev & 0xc0) == 0x40)
3107		hw |= WPI_HW_ALM_MB;
3108	else if (!(rev & 0x80))
3109		hw |= WPI_HW_ALM_MM;
3110
3111	if (sc->cap == 0x80)
3112		hw |= WPI_HW_SKU_MRC;
3113
3114	hw &= ~WPI_HW_REV_D;
3115	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
3116		hw |= WPI_HW_REV_D;
3117
3118	if (sc->type > 1)
3119		hw |= WPI_HW_TYPE_B;
3120
3121	WPI_WRITE(sc, WPI_HWCONFIG, hw);
3122}
3123
3124static void
3125wpi_init(void *arg)
3126{
3127	struct wpi_softc *sc = arg;
3128	struct ieee80211com *ic = &sc->sc_ic;
3129	struct ifnet *ifp = ic->ic_ifp;
3130	uint32_t tmp;
3131	int ntries, error, qid;
3132	WPI_LOCK_DECL;
3133
3134	WPI_LOCK(sc);
3135
3136	wpi_stop_locked(sc);
3137	(void)wpi_reset(sc);
3138
3139	wpi_mem_lock(sc);
3140	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3141	DELAY(20);
3142	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3143	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3144	wpi_mem_unlock(sc);
3145
3146	(void)wpi_power_up(sc);
3147	wpi_hw_config(sc);
3148
3149	/* init Rx ring */
3150	wpi_mem_lock(sc);
3151	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3152	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3153	    offsetof(struct wpi_shared, next));
3154	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3155	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3156	wpi_mem_unlock(sc);
3157
3158	/* init Tx rings */
3159	wpi_mem_lock(sc);
3160	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3161	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3162	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3163	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3164	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3165	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3166	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3167
3168	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3169	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3170
3171	for (qid = 0; qid < 6; qid++) {
3172		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3173		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3174		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3175	}
3176	wpi_mem_unlock(sc);
3177
3178	/* clear "radio off" and "disable command" bits (reversed logic) */
3179	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3180	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3181	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3182
3183	/* clear any pending interrupts */
3184	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3185
3186	/* enable interrupts */
3187	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3188
3189	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3190	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3191
3192	if ((error = wpi_load_firmware(sc)) != 0) {
3193	    device_printf(sc->sc_dev,
3194		"A problem occurred loading the firmware to the driver\n");
3195	    return;
3196	}
3197
3198	/* At this point the firmware is up and running. If the hardware
3199	 * RF switch is turned off thermal calibration will fail, though
3200	 * the card is still happy to continue to accept commands, catch
3201	 * this case and record the hw is disabled.
3202	 */
3203	wpi_mem_lock(sc);
3204	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3205	wpi_mem_unlock(sc);
3206
3207	if (!(tmp & 0x1)) {
3208		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3209		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3210		ifp->if_drv_flags |= IFF_DRV_RUNNING;
3211		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3212		return;
3213	}
3214
3215	/* wait for thermal sensors to calibrate */
3216	for (ntries = 0; ntries < 1000; ntries++) {
3217		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3218			break;
3219		DELAY(10);
3220	}
3221
3222	if (ntries == 1000) {
3223		device_printf(sc->sc_dev,
3224		    "timeout waiting for thermal sensors calibration\n");
3225		error = ETIMEDOUT;
3226		return;
3227	}
3228	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3229
3230	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3231	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3232	callout_reset(&sc->watchdog_to, hz, wpi_tick, sc);
3233	WPI_UNLOCK(sc);
3234
3235	if (ic->ic_opmode == IEEE80211_M_MONITOR)
3236		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3237	else if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3238		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3239}
3240
3241static void
3242wpi_stop(struct wpi_softc *sc)
3243{
3244	WPI_LOCK_DECL;
3245
3246	WPI_LOCK(sc);
3247	wpi_stop_locked(sc);
3248	WPI_UNLOCK(sc);
3249
3250}
3251static void
3252wpi_stop_locked(struct wpi_softc *sc)
3253
3254{
3255	struct ieee80211com *ic = &sc->sc_ic;
3256	struct ifnet *ifp = ic->ic_ifp;
3257	uint32_t tmp;
3258	int ac;
3259
3260	sc->watchdog_cnt = sc->sc_tx_timer = 0;
3261	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3262
3263	/* disable interrupts */
3264	WPI_WRITE(sc, WPI_MASK, 0);
3265	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3266	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3267	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3268
3269	/* Clear any commands left in the command buffer */
3270	memset(sc->sc_cmd, 0, sizeof(sc->sc_cmd));
3271
3272	wpi_mem_lock(sc);
3273	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3274	wpi_mem_unlock(sc);
3275
3276	/* reset all Tx rings */
3277	for (ac = 0; ac < 4; ac++)
3278		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3279	wpi_reset_tx_ring(sc, &sc->cmdq);
3280
3281	/* reset Rx ring */
3282	wpi_reset_rx_ring(sc, &sc->rxq);
3283
3284	wpi_mem_lock(sc);
3285	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3286	wpi_mem_unlock(sc);
3287
3288	DELAY(5);
3289
3290	wpi_stop_master(sc);
3291
3292	tmp = WPI_READ(sc, WPI_RESET);
3293	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3294	sc->flags &= ~WPI_FLAG_BUSY;
3295
3296	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3297}
3298
3299static void
3300wpi_iter_func(void *arg, struct ieee80211_node *ni)
3301{
3302	struct wpi_softc *sc = arg;
3303	struct wpi_node *wn = (struct wpi_node *)ni;
3304
3305	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
3306}
3307
3308static void
3309wpi_newassoc(struct ieee80211_node *ni, int isnew)
3310{
3311	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
3312	int i;
3313
3314	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
3315
3316	for (i = ni->ni_rates.rs_nrates - 1;
3317	    i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
3318	    i--);
3319	ni->ni_txrate = i;
3320}
3321
3322static void
3323wpi_calib_timeout(void *arg)
3324{
3325	struct wpi_softc *sc = arg;
3326	struct ieee80211com *ic = &sc->sc_ic;
3327	int temp;
3328	WPI_LOCK_DECL;
3329
3330	/* automatic rate control triggered every 500ms */
3331	if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
3332		WPI_LOCK(sc);
3333		if (ic->ic_opmode == IEEE80211_M_STA)
3334			wpi_iter_func(sc, ic->ic_bss);
3335		else
3336			ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
3337		WPI_UNLOCK(sc);
3338	}
3339
3340	/* update sensor data */
3341	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3342	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3343#if 0
3344	//XXX Used by OpenBSD Sensor Framework
3345	sc->sensor.value = temp + 260;
3346#endif
3347
3348	/* automatic power calibration every 60s */
3349	if (++sc->calib_cnt >= 120) {
3350		wpi_power_calibration(sc, temp);
3351		sc->calib_cnt = 0;
3352	}
3353
3354	callout_reset(&sc->calib_to, hz/2, wpi_calib_timeout, sc);
3355}
3356
3357/*
3358 * This function is called periodically (every 60 seconds) to adjust output
3359 * power to temperature changes.
3360 */
3361static void
3362wpi_power_calibration(struct wpi_softc *sc, int temp)
3363{
3364	/* sanity-check read value */
3365	if (temp < -260 || temp > 25) {
3366		/* this can't be correct, ignore */
3367		DPRINTFN(WPI_DEBUG_TEMP,
3368		    ("out-of-range temperature reported: %d\n", temp));
3369		return;
3370	}
3371
3372	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3373
3374	/* adjust Tx power if need be */
3375	if (abs(temp - sc->temp) <= 6)
3376		return;
3377
3378	sc->temp = temp;
3379
3380	if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan,1) != 0) {
3381		/* just warn, too bad for the automatic calibration... */
3382		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3383	}
3384}
3385
3386/**
3387 * Read the eeprom to find out what channels are valid for the given
3388 * band and update net80211 with what we find.
3389 */
3390static void
3391wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3392{
3393	struct ieee80211com *ic = &sc->sc_ic;
3394	const struct wpi_chan_band *band = &wpi_bands[n];
3395	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3396	int chan, i, offset, passive;
3397
3398	wpi_read_prom_data(sc, band->addr, channels,
3399	    band->nchan * sizeof (struct wpi_eeprom_chan));
3400
3401	for (i = 0; i < band->nchan; i++) {
3402		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3403			DPRINTFN(WPI_DEBUG_HW,
3404			    ("Channel Not Valid: %d, band %d\n",
3405			     band->chan[i],n));
3406			continue;
3407		}
3408
3409		passive = 0;
3410		chan = band->chan[i];
3411		offset = ic->ic_nchans;
3412
3413		/* is active scan allowed on this channel? */
3414		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3415			passive = IEEE80211_CHAN_PASSIVE;
3416		}
3417
3418		if (n == 0) {	/* 2GHz band */
3419			ic->ic_channels[offset].ic_ieee = chan;
3420			ic->ic_channels[offset].ic_freq =
3421			ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
3422			ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_B | passive;
3423			offset++;
3424			ic->ic_channels[offset].ic_ieee = chan;
3425			ic->ic_channels[offset].ic_freq =
3426			ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
3427			ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_G | passive;
3428			offset++;
3429
3430		} else {	/* 5GHz band */
3431			/*
3432			 * Some 3945ABG adapters support channels 7, 8, 11
3433			 * and 12 in the 2GHz *and* 5GHz bands.
3434			 * Because of limitations in our net80211(9) stack,
3435			 * we can't support these channels in 5GHz band.
3436			 * XXX not true; just need to map to proper frequency
3437			 */
3438			if (chan <= 14)
3439				continue;
3440
3441			ic->ic_channels[offset].ic_ieee = chan;
3442			ic->ic_channels[offset].ic_freq =
3443			ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
3444			ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_A | passive;
3445			offset++;
3446		}
3447
3448		/* save maximum allowed power for this channel */
3449		sc->maxpwr[chan] = channels[i].maxpwr;
3450
3451		ic->ic_nchans = offset;
3452
3453#if 0
3454		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3455		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3456		//ic->ic_channels[chan].ic_minpower...
3457		//ic->ic_channels[chan].ic_maxregtxpower...
3458#endif
3459
3460		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d, offset %d\n",
3461			    chan, channels[i].flags, sc->maxpwr[chan], offset));
3462	}
3463}
3464
3465static void
3466wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3467{
3468	struct wpi_power_group *group = &sc->groups[n];
3469	struct wpi_eeprom_group rgroup;
3470	int i;
3471
3472	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3473	    sizeof rgroup);
3474
3475	/* save power group information */
3476	group->chan   = rgroup.chan;
3477	group->maxpwr = rgroup.maxpwr;
3478	/* temperature at which the samples were taken */
3479	group->temp   = (int16_t)le16toh(rgroup.temp);
3480
3481	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3482		    group->chan, group->maxpwr, group->temp));
3483
3484	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3485		group->samples[i].index = rgroup.samples[i].index;
3486		group->samples[i].power = rgroup.samples[i].power;
3487
3488		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3489			    group->samples[i].index, group->samples[i].power));
3490	}
3491}
3492
3493/*
3494 * Update Tx power to match what is defined for channel `c'.
3495 */
3496static int
3497wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3498{
3499	struct ieee80211com *ic = &sc->sc_ic;
3500	struct wpi_power_group *group;
3501	struct wpi_cmd_txpower txpower;
3502	u_int chan;
3503	int i;
3504
3505	/* get channel number */
3506	chan = ieee80211_chan2ieee(ic, c);
3507
3508	/* find the power group to which this channel belongs */
3509	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3510		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3511			if (chan <= group->chan)
3512				break;
3513	} else
3514		group = &sc->groups[0];
3515
3516	memset(&txpower, 0, sizeof txpower);
3517	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3518	txpower.channel = htole16(chan);
3519
3520	/* set Tx power for all OFDM and CCK rates */
3521	for (i = 0; i <= 11 ; i++) {
3522		/* retrieve Tx power for this channel/rate combination */
3523		int idx = wpi_get_power_index(sc, group, c,
3524		    wpi_ridx_to_rate[i]);
3525
3526		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3527
3528		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3529			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3530			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3531		} else {
3532			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3533			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3534		}
3535		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3536			    chan, wpi_ridx_to_rate[i], idx));
3537	}
3538
3539	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3540}
3541
3542/*
3543 * Determine Tx power index for a given channel/rate combination.
3544 * This takes into account the regulatory information from EEPROM and the
3545 * current temperature.
3546 */
3547static int
3548wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3549    struct ieee80211_channel *c, int rate)
3550{
3551/* fixed-point arithmetic division using a n-bit fractional part */
3552#define fdivround(a, b, n)      \
3553	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3554
3555/* linear interpolation */
3556#define interpolate(x, x1, y1, x2, y2, n)       \
3557	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3558
3559	struct ieee80211com *ic = &sc->sc_ic;
3560	struct wpi_power_sample *sample;
3561	int pwr, idx;
3562	u_int chan;
3563
3564	/* get channel number */
3565	chan = ieee80211_chan2ieee(ic, c);
3566
3567	/* default power is group's maximum power - 3dB */
3568	pwr = group->maxpwr / 2;
3569
3570	/* decrease power for highest OFDM rates to reduce distortion */
3571	switch (rate) {
3572		case 72:	/* 36Mb/s */
3573			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3574			break;
3575		case 96:	/* 48Mb/s */
3576			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3577			break;
3578		case 108:	/* 54Mb/s */
3579			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3580			break;
3581	}
3582
3583	/* never exceed channel's maximum allowed Tx power */
3584	pwr = min(pwr, sc->maxpwr[chan]);
3585
3586	/* retrieve power index into gain tables from samples */
3587	for (sample = group->samples; sample < &group->samples[3]; sample++)
3588		if (pwr > sample[1].power)
3589			break;
3590	/* fixed-point linear interpolation using a 19-bit fractional part */
3591	idx = interpolate(pwr, sample[0].power, sample[0].index,
3592	    sample[1].power, sample[1].index, 19);
3593
3594	/*
3595	 *  Adjust power index based on current temperature
3596	 *	- if colder than factory-calibrated: decreate output power
3597	 *	- if warmer than factory-calibrated: increase output power
3598	 */
3599	idx -= (sc->temp - group->temp) * 11 / 100;
3600
3601	/* decrease power for CCK rates (-5dB) */
3602	if (!WPI_RATE_IS_OFDM(rate))
3603		idx += 10;
3604
3605	/* keep power index in a valid range */
3606	if (idx < 0)
3607		return 0;
3608	if (idx > WPI_MAX_PWR_INDEX)
3609		return WPI_MAX_PWR_INDEX;
3610	return idx;
3611
3612#undef interpolate
3613#undef fdivround
3614}
3615
3616#if 0
3617static void
3618wpi_radio_on(void *arg, int pending)
3619{
3620	struct wpi_softc *sc = arg;
3621
3622	device_printf(sc->sc_dev, "radio turned on\n");
3623}
3624
3625static void
3626wpi_radio_off(void *arg, int pending)
3627{
3628	struct wpi_softc *sc = arg;
3629
3630	device_printf(sc->sc_dev, "radio turned off\n");
3631}
3632#endif
3633
3634/**
3635 * Called by net80211 framework to indicate that a scan
3636 * is starting. This function doesn't actually do the scan,
3637 * wpi_scan_curchan starts things off. This function is more
3638 * of an early warning from the framework we should get ready
3639 * for the scan.
3640 */
3641static void
3642wpi_scan_start(struct ieee80211com *ic)
3643{
3644	struct ifnet *ifp = ic->ic_ifp;
3645	struct wpi_softc *sc = ifp->if_softc;
3646
3647	wpi_queue_cmd(sc, WPI_SCAN_START);
3648}
3649
3650/**
3651 * Called by the net80211 framework, indicates that the
3652 * scan has ended. If there is a scan in progress on the card
3653 * then it should be aborted.
3654 */
3655static void
3656wpi_scan_end(struct ieee80211com *ic)
3657{
3658	struct ifnet *ifp = ic->ic_ifp;
3659	struct wpi_softc *sc = ifp->if_softc;
3660
3661	wpi_queue_cmd(sc, WPI_SCAN_STOP);
3662}
3663
3664/**
3665 * Called by the net80211 framework to indicate to the driver
3666 * that the channel should be changed
3667 */
3668static void
3669wpi_set_channel(struct ieee80211com *ic)
3670{
3671	struct ifnet *ifp = ic->ic_ifp;
3672	struct wpi_softc *sc = ifp->if_softc;
3673
3674	wpi_queue_cmd(sc, WPI_SET_CHAN);
3675}
3676
3677/**
3678 * Called by net80211 to indicate that we need to scan the current
3679 * channel. The channel is previously be set via the wpi_set_channel
3680 * callback.
3681 */
3682static void
3683wpi_scan_curchan(struct ieee80211com *ic, unsigned long maxdwell)
3684{
3685	struct ifnet *ifp = ic->ic_ifp;
3686	struct wpi_softc *sc = ifp->if_softc;
3687
3688	sc->maxdwell = maxdwell;
3689
3690	wpi_queue_cmd(sc, WPI_SCAN_CURCHAN);
3691}
3692
3693/**
3694 * Called by the net80211 framework to indicate
3695 * the minimum dwell time has been met, terminate the scan.
3696 * We don't actually terminate the scan as the firmware will notify
3697 * us when it's finished and we have no way to interrupt it.
3698 */
3699static void
3700wpi_scan_mindwell(struct ieee80211com *ic)
3701{
3702	/* NB: don't try to abort scan; wait for firmware to finish */
3703}
3704
3705/**
3706 * The ops function is called to perform some actual work.
3707 * because we can't sleep from any of the ic callbacks, we queue an
3708 * op task with wpi_queue_cmd and have the taskqueue process that task.
3709 * The task that gets cued is a op task, which ends up calling this function.
3710 */
3711static void
3712wpi_ops(void *arg, int pending)
3713{
3714	struct wpi_softc *sc = arg;
3715	struct ieee80211com *ic = &sc->sc_ic;
3716	WPI_LOCK_DECL;
3717	int cmd;
3718
3719again:
3720	WPI_CMD_LOCK(sc);
3721	cmd = sc->sc_cmd[sc->sc_cmd_cur];
3722
3723	if (cmd == 0) {
3724		/* No more commands to process */
3725		WPI_CMD_UNLOCK(sc);
3726		return;
3727	}
3728	sc->sc_cmd[sc->sc_cmd_cur] = 0; /* free the slot */
3729	sc->sc_cmd_cur = (sc->sc_cmd_cur + 1) % WPI_CMD_MAXOPS;
3730	WPI_CMD_UNLOCK(sc);
3731	WPI_LOCK(sc);
3732
3733	if (!(sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3734		WPI_UNLOCK(sc);
3735		return;
3736	}
3737
3738	{
3739	const char *name[]={"SCAN_START", "SCAN_CURCHAN",0,"STOP",0,0,0,"CHAN",
3740		0,0,0,0,0,0,"AUTH",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,"NEXT"};
3741	DPRINTFN(WPI_DEBUG_OPS,("wpi_ops: command: %d %s\n", cmd, name[cmd-1]));
3742	}
3743
3744	switch (cmd) {
3745	case WPI_SCAN_START:
3746		if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3747			DPRINTF(("HERER\n"));
3748			ieee80211_cancel_scan(ic);
3749		} else
3750			sc->flags |= WPI_FLAG_SCANNING;
3751		break;
3752
3753	case WPI_SCAN_STOP:
3754		sc->flags &= ~WPI_FLAG_SCANNING;
3755		break;
3756
3757	case WPI_SCAN_NEXT:
3758		DPRINTF(("NEXT\n"));
3759		WPI_UNLOCK(sc);
3760		ieee80211_scan_next(ic);
3761		WPI_LOCK(sc);
3762		break;
3763
3764	case WPI_SCAN_CURCHAN:
3765		if (wpi_scan(sc))
3766			ieee80211_cancel_scan(ic);
3767		break;
3768
3769	case WPI_SET_CHAN:
3770		if (sc->flags&WPI_FLAG_AUTH) {
3771			DPRINTF(("Authenticating, not changing channel\n"));
3772			break;
3773		}
3774		if (wpi_config(sc)) {
3775			DPRINTF(("Scan cancelled\n"));
3776			WPI_UNLOCK(sc);
3777			ieee80211_cancel_scan(ic);
3778			WPI_LOCK(sc);
3779			sc->flags &= ~WPI_FLAG_SCANNING;
3780			wpi_restart(sc,0);
3781			WPI_UNLOCK(sc);
3782			return;
3783		}
3784		break;
3785
3786	case WPI_AUTH:
3787		if (wpi_auth(sc) != 0) {
3788			device_printf(sc->sc_dev,
3789			    "could not send authentication request\n");
3790			wpi_stop_locked(sc);
3791			WPI_UNLOCK(sc);
3792			return;
3793		}
3794		WPI_UNLOCK(sc);
3795		ieee80211_node_authorize(ic->ic_bss);
3796		ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
3797		WPI_LOCK(sc);
3798		break;
3799	}
3800	WPI_UNLOCK(sc);
3801
3802	/* Take another pass */
3803	goto again;
3804}
3805
3806/**
3807 * queue a command for later execution in a different thread.
3808 * This is needed as the net80211 callbacks do not allow
3809 * sleeping, since we need to sleep to confirm commands have
3810 * been processed by the firmware, we must defer execution to
3811 * a sleep enabled thread.
3812 */
3813static int
3814wpi_queue_cmd(struct wpi_softc *sc, int cmd)
3815{
3816	WPI_CMD_LOCK(sc);
3817
3818	if (sc->sc_cmd[sc->sc_cmd_next] != 0) {
3819		WPI_CMD_UNLOCK(sc);
3820		DPRINTF(("%s: command %d dropped\n", __func__, cmd));
3821		return (EBUSY);
3822	}
3823
3824	sc->sc_cmd[sc->sc_cmd_next] = cmd;
3825	sc->sc_cmd_next = (sc->sc_cmd_next + 1) % WPI_CMD_MAXOPS;
3826
3827	taskqueue_enqueue(sc->sc_tq, &sc->sc_opstask);
3828
3829	WPI_CMD_UNLOCK(sc);
3830
3831	return 0;
3832}
3833
3834static void
3835wpi_restart(void * arg, int pending)
3836{
3837#if 0
3838	struct wpi_softc *sc = arg;
3839	struct ieee80211com *ic = &sc->sc_ic;
3840	WPI_LOCK_DECL;
3841
3842	DPRINTF(("Device failed, restarting device\n"));
3843	WPI_LOCK(sc);
3844	wpi_stop(sc);
3845	wpi_init(sc);
3846	WPI_UNLOCK(sc);
3847	ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3848#endif
3849}
3850
3851/*
3852 * Allocate DMA-safe memory for firmware transfer.
3853 */
3854static int
3855wpi_alloc_fwmem(struct wpi_softc *sc)
3856{
3857	/* allocate enough contiguous space to store text and data */
3858	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3859	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3860	    BUS_DMA_NOWAIT);
3861}
3862
3863static void
3864wpi_free_fwmem(struct wpi_softc *sc)
3865{
3866	wpi_dma_contig_free(&sc->fw_dma);
3867}
3868
3869/**
3870 * Called every second, wpi_tick used by the watch dog timer
3871 * to check that the card is still alive
3872 */
3873static void
3874wpi_tick(void *arg)
3875{
3876	struct wpi_softc *sc = arg;
3877
3878	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3879
3880	wpi_watchdog(sc->sc_ifp);
3881	callout_reset(&sc->watchdog_to, hz, wpi_tick, sc);
3882}
3883
3884#ifdef WPI_DEBUG
3885static const char *wpi_cmd_str(int cmd)
3886{
3887	switch(cmd) {
3888		case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3889		case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3890		case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3891		case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3892		case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3893		case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3894		case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3895		case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3896		case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3897		case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3898		case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3899		case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3900		case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3901		case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3902
3903		default:
3904		KASSERT(1, ("Unknown Command: %d\n", cmd));
3905		return "UNKNOWN CMD"; // Make the compiler happy
3906	}
3907}
3908#endif
3909
3910MODULE_DEPEND(wpi, pci,  1, 1, 1);
3911MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3912MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3913MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1);
3914