if_wpi.c revision 280107
1/*-
2 * Copyright (c) 2006,2007
3 *	Damien Bergamini <damien.bergamini@free.fr>
4 *	Benjamin Close <Benjamin.Close@clearchain.com>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19#include <sys/cdefs.h>
20__FBSDID("$FreeBSD: head/sys/dev/wpi/if_wpi.c 280107 2015-03-15 21:19:52Z adrian $");
21
22/*
23 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
24 *
25 * The 3945ABG network adapter doesn't use traditional hardware as
26 * many other adaptors do. Instead at run time the eeprom is set into a known
27 * state and told to load boot firmware. The boot firmware loads an init and a
28 * main  binary firmware image into SRAM on the card via DMA.
29 * Once the firmware is loaded, the driver/hw then
30 * communicate by way of circular dma rings via the SRAM to the firmware.
31 *
32 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
33 * The 4 tx data rings allow for prioritization QoS.
34 *
35 * The rx data ring consists of 32 dma buffers. Two registers are used to
36 * indicate where in the ring the driver and the firmware are up to. The
37 * driver sets the initial read index (reg1) and the initial write index (reg2),
38 * the firmware updates the read index (reg1) on rx of a packet and fires an
39 * interrupt. The driver then processes the buffers starting at reg1 indicating
40 * to the firmware which buffers have been accessed by updating reg2. At the
41 * same time allocating new memory for the processed buffer.
42 *
43 * A similar thing happens with the tx rings. The difference is the firmware
44 * stop processing buffers once the queue is full and until confirmation
45 * of a successful transmition (tx_done) has occurred.
46 *
47 * The command ring operates in the same manner as the tx queues.
48 *
49 * All communication direct to the card (ie eeprom) is classed as Stage1
50 * communication
51 *
52 * All communication via the firmware to the card is classed as State2.
53 * The firmware consists of 2 parts. A bootstrap firmware and a runtime
54 * firmware. The bootstrap firmware and runtime firmware are loaded
55 * from host memory via dma to the card then told to execute. From this point
56 * on the majority of communications between the driver and the card goes
57 * via the firmware.
58 */
59
60#include "opt_wlan.h"
61#include "opt_wpi.h"
62
63#include <sys/param.h>
64#include <sys/sysctl.h>
65#include <sys/sockio.h>
66#include <sys/mbuf.h>
67#include <sys/kernel.h>
68#include <sys/socket.h>
69#include <sys/systm.h>
70#include <sys/malloc.h>
71#include <sys/queue.h>
72#include <sys/taskqueue.h>
73#include <sys/module.h>
74#include <sys/bus.h>
75#include <sys/endian.h>
76#include <sys/linker.h>
77#include <sys/firmware.h>
78
79#include <machine/bus.h>
80#include <machine/resource.h>
81#include <sys/rman.h>
82
83#include <dev/pci/pcireg.h>
84#include <dev/pci/pcivar.h>
85
86#include <net/bpf.h>
87#include <net/if.h>
88#include <net/if_var.h>
89#include <net/if_arp.h>
90#include <net/ethernet.h>
91#include <net/if_dl.h>
92#include <net/if_media.h>
93#include <net/if_types.h>
94
95#include <netinet/in.h>
96#include <netinet/in_systm.h>
97#include <netinet/in_var.h>
98#include <netinet/if_ether.h>
99#include <netinet/ip.h>
100
101#include <net80211/ieee80211_var.h>
102#include <net80211/ieee80211_radiotap.h>
103#include <net80211/ieee80211_regdomain.h>
104#include <net80211/ieee80211_ratectl.h>
105
106#include <dev/wpi/if_wpireg.h>
107#include <dev/wpi/if_wpivar.h>
108#include <dev/wpi/if_wpi_debug.h>
109
110struct wpi_ident {
111	uint16_t	vendor;
112	uint16_t	device;
113	uint16_t	subdevice;
114	const char	*name;
115};
116
117static const struct wpi_ident wpi_ident_table[] = {
118	/* The below entries support ABG regardless of the subid */
119	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
120	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
121	/* The below entries only support BG */
122	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
123	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
124	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
125	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
126	{ 0, 0, 0, NULL }
127};
128
129static int	wpi_probe(device_t);
130static int	wpi_attach(device_t);
131static void	wpi_radiotap_attach(struct wpi_softc *);
132static void	wpi_sysctlattach(struct wpi_softc *);
133static void	wpi_init_beacon(struct wpi_vap *);
134static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
135		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
136		    const uint8_t [IEEE80211_ADDR_LEN],
137		    const uint8_t [IEEE80211_ADDR_LEN]);
138static void	wpi_vap_delete(struct ieee80211vap *);
139static int	wpi_detach(device_t);
140static int	wpi_shutdown(device_t);
141static int	wpi_suspend(device_t);
142static int	wpi_resume(device_t);
143static int	wpi_nic_lock(struct wpi_softc *);
144static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
145static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
146static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
147		    void **, bus_size_t, bus_size_t);
148static void	wpi_dma_contig_free(struct wpi_dma_info *);
149static int	wpi_alloc_shared(struct wpi_softc *);
150static void	wpi_free_shared(struct wpi_softc *);
151static int	wpi_alloc_fwmem(struct wpi_softc *);
152static void	wpi_free_fwmem(struct wpi_softc *);
153static int	wpi_alloc_rx_ring(struct wpi_softc *);
154static void	wpi_update_rx_ring(struct wpi_softc *);
155static void	wpi_reset_rx_ring(struct wpi_softc *);
156static void	wpi_free_rx_ring(struct wpi_softc *);
157static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
158		    int);
159static void	wpi_update_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
160static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
161static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
162static int	wpi_read_eeprom(struct wpi_softc *,
163		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
164static uint32_t	wpi_eeprom_channel_flags(struct wpi_eeprom_chan *);
165static void	wpi_read_eeprom_band(struct wpi_softc *, int);
166static int	wpi_read_eeprom_channels(struct wpi_softc *, int);
167static struct wpi_eeprom_chan *wpi_find_eeprom_channel(struct wpi_softc *,
168		    struct ieee80211_channel *);
169static int	wpi_setregdomain(struct ieee80211com *,
170		    struct ieee80211_regdomain *, int,
171		    struct ieee80211_channel[]);
172static int	wpi_read_eeprom_group(struct wpi_softc *, int);
173static int	wpi_add_node_entry_adhoc(struct wpi_softc *);
174static void	wpi_node_free(struct ieee80211_node *);
175static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
176		    const uint8_t mac[IEEE80211_ADDR_LEN]);
177static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
178static void	wpi_calib_timeout(void *);
179static void	wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *,
180		    struct wpi_rx_data *);
181static void	wpi_rx_statistics(struct wpi_softc *, struct wpi_rx_desc *,
182		    struct wpi_rx_data *);
183static void	wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *);
184static void	wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *);
185static void	wpi_notif_intr(struct wpi_softc *);
186static void	wpi_wakeup_intr(struct wpi_softc *);
187#ifdef WPI_DEBUG
188static void	wpi_debug_registers(struct wpi_softc *);
189#endif
190static void	wpi_fatal_intr(struct wpi_softc *);
191static void	wpi_intr(void *);
192static int	wpi_cmd2(struct wpi_softc *, struct wpi_buf *);
193static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
194		    struct ieee80211_node *);
195static int	wpi_tx_data_raw(struct wpi_softc *, struct mbuf *,
196		    struct ieee80211_node *,
197		    const struct ieee80211_bpf_params *);
198static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
199		    const struct ieee80211_bpf_params *);
200static void	wpi_start(struct ifnet *);
201static void	wpi_start_task(void *, int);
202static void	wpi_watchdog_rfkill(void *);
203static void	wpi_scan_timeout(void *);
204static void	wpi_watchdog(void *);
205static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
206static int	wpi_cmd(struct wpi_softc *, int, const void *, size_t, int);
207static int	wpi_mrr_setup(struct wpi_softc *);
208static int	wpi_add_node(struct wpi_softc *, struct ieee80211_node *);
209static int	wpi_add_broadcast_node(struct wpi_softc *, int);
210static int	wpi_add_ibss_node(struct wpi_softc *, struct ieee80211_node *);
211static void	wpi_del_node(struct wpi_softc *, struct ieee80211_node *);
212static int	wpi_updateedca(struct ieee80211com *);
213static void	wpi_set_promisc(struct wpi_softc *);
214static void	wpi_update_promisc(struct ifnet *);
215static void	wpi_update_mcast(struct ifnet *);
216static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
217static int	wpi_set_timing(struct wpi_softc *, struct ieee80211_node *);
218static void	wpi_power_calibration(struct wpi_softc *);
219static int	wpi_set_txpower(struct wpi_softc *, int);
220static int	wpi_get_power_index(struct wpi_softc *,
221		    struct wpi_power_group *, struct ieee80211_channel *, int);
222static int	wpi_set_pslevel(struct wpi_softc *, uint8_t, int, int);
223static int	wpi_send_btcoex(struct wpi_softc *);
224static int	wpi_send_rxon(struct wpi_softc *, int, int);
225static int	wpi_config(struct wpi_softc *);
226static uint16_t	wpi_get_active_dwell_time(struct wpi_softc *,
227		    struct ieee80211_channel *, uint8_t);
228static uint16_t	wpi_limit_dwell(struct wpi_softc *, uint16_t);
229static uint16_t	wpi_get_passive_dwell_time(struct wpi_softc *,
230		    struct ieee80211_channel *);
231static int	wpi_scan(struct wpi_softc *, struct ieee80211_channel *);
232static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
233static int	wpi_config_beacon(struct wpi_vap *);
234static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
235static void	wpi_update_beacon(struct ieee80211vap *, int);
236static void	wpi_newassoc(struct ieee80211_node *, int);
237static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
238static int	wpi_load_key(struct ieee80211_node *,
239		    const struct ieee80211_key *);
240static void	wpi_load_key_cb(void *, struct ieee80211_node *);
241static int	wpi_set_global_keys(struct ieee80211_node *);
242static int	wpi_del_key(struct ieee80211_node *,
243		    const struct ieee80211_key *);
244static void	wpi_del_key_cb(void *, struct ieee80211_node *);
245static int	wpi_process_key(struct ieee80211vap *,
246		    const struct ieee80211_key *, int);
247static int	wpi_key_set(struct ieee80211vap *,
248		    const struct ieee80211_key *,
249		    const uint8_t mac[IEEE80211_ADDR_LEN]);
250static int	wpi_key_delete(struct ieee80211vap *,
251		    const struct ieee80211_key *);
252static int	wpi_post_alive(struct wpi_softc *);
253static int	wpi_load_bootcode(struct wpi_softc *, const uint8_t *, int);
254static int	wpi_load_firmware(struct wpi_softc *);
255static int	wpi_read_firmware(struct wpi_softc *);
256static void	wpi_unload_firmware(struct wpi_softc *);
257static int	wpi_clock_wait(struct wpi_softc *);
258static int	wpi_apm_init(struct wpi_softc *);
259static void	wpi_apm_stop_master(struct wpi_softc *);
260static void	wpi_apm_stop(struct wpi_softc *);
261static void	wpi_nic_config(struct wpi_softc *);
262static int	wpi_hw_init(struct wpi_softc *);
263static void	wpi_hw_stop(struct wpi_softc *);
264static void	wpi_radio_on(void *, int);
265static void	wpi_radio_off(void *, int);
266static void	wpi_init(void *);
267static void	wpi_stop_locked(struct wpi_softc *);
268static void	wpi_stop(struct wpi_softc *);
269static void	wpi_scan_start(struct ieee80211com *);
270static void	wpi_scan_end(struct ieee80211com *);
271static void	wpi_set_channel(struct ieee80211com *);
272static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
273static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
274static void	wpi_hw_reset(void *, int);
275
276static device_method_t wpi_methods[] = {
277	/* Device interface */
278	DEVMETHOD(device_probe,		wpi_probe),
279	DEVMETHOD(device_attach,	wpi_attach),
280	DEVMETHOD(device_detach,	wpi_detach),
281	DEVMETHOD(device_shutdown,	wpi_shutdown),
282	DEVMETHOD(device_suspend,	wpi_suspend),
283	DEVMETHOD(device_resume,	wpi_resume),
284
285	DEVMETHOD_END
286};
287
288static driver_t wpi_driver = {
289	"wpi",
290	wpi_methods,
291	sizeof (struct wpi_softc)
292};
293static devclass_t wpi_devclass;
294
295DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
296
297MODULE_VERSION(wpi, 1);
298
299MODULE_DEPEND(wpi, pci,  1, 1, 1);
300MODULE_DEPEND(wpi, wlan, 1, 1, 1);
301MODULE_DEPEND(wpi, firmware, 1, 1, 1);
302
303static int
304wpi_probe(device_t dev)
305{
306	const struct wpi_ident *ident;
307
308	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
309		if (pci_get_vendor(dev) == ident->vendor &&
310		    pci_get_device(dev) == ident->device) {
311			device_set_desc(dev, ident->name);
312			return (BUS_PROBE_DEFAULT);
313		}
314	}
315	return ENXIO;
316}
317
318static int
319wpi_attach(device_t dev)
320{
321	struct wpi_softc *sc = (struct wpi_softc *)device_get_softc(dev);
322	struct ieee80211com *ic;
323	struct ifnet *ifp;
324	int i, error, rid;
325#ifdef WPI_DEBUG
326	int supportsa = 1;
327	const struct wpi_ident *ident;
328#endif
329	uint8_t macaddr[IEEE80211_ADDR_LEN];
330
331	sc->sc_dev = dev;
332
333#ifdef WPI_DEBUG
334	error = resource_int_value(device_get_name(sc->sc_dev),
335	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
336	if (error != 0)
337		sc->sc_debug = 0;
338#else
339	sc->sc_debug = 0;
340#endif
341
342	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
343
344	/*
345	 * Get the offset of the PCI Express Capability Structure in PCI
346	 * Configuration Space.
347	 */
348	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
349	if (error != 0) {
350		device_printf(dev, "PCIe capability structure not found!\n");
351		return error;
352	}
353
354	/*
355	 * Some card's only support 802.11b/g not a, check to see if
356	 * this is one such card. A 0x0 in the subdevice table indicates
357	 * the entire subdevice range is to be ignored.
358	 */
359#ifdef WPI_DEBUG
360	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
361		if (ident->subdevice &&
362		    pci_get_subdevice(dev) == ident->subdevice) {
363		    supportsa = 0;
364		    break;
365		}
366	}
367#endif
368
369	/* Clear device-specific "PCI retry timeout" register (41h). */
370	pci_write_config(dev, 0x41, 0, 1);
371
372	/* Enable bus-mastering. */
373	pci_enable_busmaster(dev);
374
375	rid = PCIR_BAR(0);
376	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
377	    RF_ACTIVE);
378	if (sc->mem == NULL) {
379		device_printf(dev, "can't map mem space\n");
380		return ENOMEM;
381	}
382	sc->sc_st = rman_get_bustag(sc->mem);
383	sc->sc_sh = rman_get_bushandle(sc->mem);
384
385	i = 1;
386	rid = 0;
387	if (pci_alloc_msi(dev, &i) == 0)
388		rid = 1;
389	/* Install interrupt handler. */
390	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
391	    (rid != 0 ? 0 : RF_SHAREABLE));
392	if (sc->irq == NULL) {
393		device_printf(dev, "can't map interrupt\n");
394		error = ENOMEM;
395		goto fail;
396	}
397
398	WPI_LOCK_INIT(sc);
399	WPI_NT_LOCK_INIT(sc);
400	WPI_TXQ_LOCK_INIT(sc);
401
402	/* Allocate DMA memory for firmware transfers. */
403	if ((error = wpi_alloc_fwmem(sc)) != 0) {
404		device_printf(dev,
405		    "could not allocate memory for firmware, error %d\n",
406		    error);
407		goto fail;
408	}
409
410	/* Allocate shared page. */
411	if ((error = wpi_alloc_shared(sc)) != 0) {
412		device_printf(dev, "could not allocate shared page\n");
413		goto fail;
414	}
415
416	/* Allocate TX rings - 4 for QoS purposes, 1 for commands. */
417	for (i = 0; i < WPI_NTXQUEUES; i++) {
418		if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
419			device_printf(dev,
420			    "could not allocate TX ring %d, error %d\n", i,
421			    error);
422			goto fail;
423		}
424	}
425
426	/* Allocate RX ring. */
427	if ((error = wpi_alloc_rx_ring(sc)) != 0) {
428		device_printf(dev, "could not allocate RX ring, error %d\n",
429		    error);
430		goto fail;
431	}
432
433	/* Clear pending interrupts. */
434	WPI_WRITE(sc, WPI_INT, 0xffffffff);
435
436	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
437	if (ifp == NULL) {
438		device_printf(dev, "can not allocate ifnet structure\n");
439		goto fail;
440	}
441
442	ic = ifp->if_l2com;
443	ic->ic_ifp = ifp;
444	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
445	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
446
447	/* Set device capabilities. */
448	ic->ic_caps =
449		  IEEE80211_C_STA		/* station mode supported */
450		| IEEE80211_C_IBSS		/* IBSS mode supported */
451		| IEEE80211_C_HOSTAP		/* Host access point mode */
452		| IEEE80211_C_MONITOR		/* monitor mode supported */
453		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
454		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
455		| IEEE80211_C_TXPMGT		/* tx power management */
456		| IEEE80211_C_SHSLOT		/* short slot time supported */
457		| IEEE80211_C_WPA		/* 802.11i */
458		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
459		| IEEE80211_C_WME		/* 802.11e */
460		| IEEE80211_C_PMGT		/* Station-side power mgmt */
461		;
462
463	ic->ic_cryptocaps =
464		  IEEE80211_CRYPTO_AES_CCM;
465
466	/*
467	 * Read in the eeprom and also setup the channels for
468	 * net80211. We don't set the rates as net80211 does this for us
469	 */
470	if ((error = wpi_read_eeprom(sc, macaddr)) != 0) {
471		device_printf(dev, "could not read EEPROM, error %d\n",
472		    error);
473		goto fail;
474	}
475
476#ifdef WPI_DEBUG
477	if (bootverbose) {
478		device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n",
479		    sc->domain);
480		device_printf(sc->sc_dev, "Hardware Type: %c\n",
481		    sc->type > 1 ? 'B': '?');
482		device_printf(sc->sc_dev, "Hardware Revision: %c\n",
483		    ((sc->rev & 0xf0) == 0xd0) ? 'D': '?');
484		device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
485		    supportsa ? "does" : "does not");
486
487		/* XXX hw_config uses the PCIDEV for the Hardware rev. Must
488		   check what sc->rev really represents - benjsc 20070615 */
489	}
490#endif
491
492	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
493	ifp->if_softc = sc;
494	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
495	ifp->if_init = wpi_init;
496	ifp->if_ioctl = wpi_ioctl;
497	ifp->if_start = wpi_start;
498	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
499	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
500	IFQ_SET_READY(&ifp->if_snd);
501
502	ieee80211_ifattach(ic, macaddr);
503	ic->ic_vap_create = wpi_vap_create;
504	ic->ic_vap_delete = wpi_vap_delete;
505	ic->ic_raw_xmit = wpi_raw_xmit;
506	ic->ic_node_alloc = wpi_node_alloc;
507	sc->sc_node_free = ic->ic_node_free;
508	ic->ic_node_free = wpi_node_free;
509	ic->ic_wme.wme_update = wpi_updateedca;
510	ic->ic_update_promisc = wpi_update_promisc;
511	ic->ic_update_mcast = wpi_update_mcast;
512	ic->ic_newassoc = wpi_newassoc;
513	ic->ic_scan_start = wpi_scan_start;
514	ic->ic_scan_end = wpi_scan_end;
515	ic->ic_set_channel = wpi_set_channel;
516	sc->sc_scan_curchan = ic->ic_scan_curchan;
517	ic->ic_scan_curchan = wpi_scan_curchan;
518	ic->ic_scan_mindwell = wpi_scan_mindwell;
519	ic->ic_setregdomain = wpi_setregdomain;
520
521	wpi_radiotap_attach(sc);
522
523	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
524	callout_init_mtx(&sc->scan_timeout, &sc->sc_mtx, 0);
525	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
526	callout_init_mtx(&sc->watchdog_rfkill, &sc->sc_mtx, 0);
527	TASK_INIT(&sc->sc_reinittask, 0, wpi_hw_reset, sc);
528	TASK_INIT(&sc->sc_radiooff_task, 0, wpi_radio_off, sc);
529	TASK_INIT(&sc->sc_radioon_task, 0, wpi_radio_on, sc);
530	TASK_INIT(&sc->sc_start_task, 0, wpi_start_task, sc);
531
532	wpi_sysctlattach(sc);
533
534	/*
535	 * Hook our interrupt after all initialization is complete.
536	 */
537	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
538	    NULL, wpi_intr, sc, &sc->sc_ih);
539	if (error != 0) {
540		device_printf(dev, "can't establish interrupt, error %d\n",
541		    error);
542		goto fail;
543	}
544
545	if (bootverbose)
546		ieee80211_announce(ic);
547
548#ifdef WPI_DEBUG
549	if (sc->sc_debug & WPI_DEBUG_HW)
550		ieee80211_announce_channels(ic);
551#endif
552
553	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
554	return 0;
555
556fail:	wpi_detach(dev);
557	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
558	return error;
559}
560
561/*
562 * Attach the interface to 802.11 radiotap.
563 */
564static void
565wpi_radiotap_attach(struct wpi_softc *sc)
566{
567	struct ifnet *ifp = sc->sc_ifp;
568	struct ieee80211com *ic = ifp->if_l2com;
569	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
570	ieee80211_radiotap_attach(ic,
571	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
572		WPI_TX_RADIOTAP_PRESENT,
573	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
574		WPI_RX_RADIOTAP_PRESENT);
575	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
576}
577
578static void
579wpi_sysctlattach(struct wpi_softc *sc)
580{
581#ifdef WPI_DEBUG
582	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
583	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
584
585	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
586	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
587		"control debugging printfs");
588#endif
589}
590
591static void
592wpi_init_beacon(struct wpi_vap *wvp)
593{
594	struct wpi_buf *bcn = &wvp->wv_bcbuf;
595	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
596
597	cmd->id = WPI_ID_BROADCAST;
598	cmd->ofdm_mask = 0xff;
599	cmd->cck_mask = 0x0f;
600	cmd->lifetime = htole32(WPI_LIFETIME_INFINITE);
601	cmd->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
602
603	bcn->code = WPI_CMD_SET_BEACON;
604	bcn->ac = WPI_CMD_QUEUE_NUM;
605	bcn->size = sizeof(struct wpi_cmd_beacon);
606}
607
608static struct ieee80211vap *
609wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
610    enum ieee80211_opmode opmode, int flags,
611    const uint8_t bssid[IEEE80211_ADDR_LEN],
612    const uint8_t mac[IEEE80211_ADDR_LEN])
613{
614	struct wpi_vap *wvp;
615	struct ieee80211vap *vap;
616
617	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
618		return NULL;
619
620	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
621	    M_80211_VAP, M_NOWAIT | M_ZERO);
622	if (wvp == NULL)
623		return NULL;
624	vap = &wvp->wv_vap;
625	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
626
627	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
628		WPI_VAP_LOCK_INIT(wvp);
629		wpi_init_beacon(wvp);
630	}
631
632	/* Override with driver methods. */
633	vap->iv_key_set = wpi_key_set;
634	vap->iv_key_delete = wpi_key_delete;
635	wvp->wv_newstate = vap->iv_newstate;
636	vap->iv_newstate = wpi_newstate;
637	vap->iv_update_beacon = wpi_update_beacon;
638	vap->iv_max_aid = WPI_ID_IBSS_MAX - WPI_ID_IBSS_MIN + 1;
639
640	ieee80211_ratectl_init(vap);
641	/* Complete setup. */
642	ieee80211_vap_attach(vap, ieee80211_media_change,
643	    ieee80211_media_status);
644	ic->ic_opmode = opmode;
645	return vap;
646}
647
648static void
649wpi_vap_delete(struct ieee80211vap *vap)
650{
651	struct wpi_vap *wvp = WPI_VAP(vap);
652	struct wpi_buf *bcn = &wvp->wv_bcbuf;
653	enum ieee80211_opmode opmode = vap->iv_opmode;
654
655	ieee80211_ratectl_deinit(vap);
656	ieee80211_vap_detach(vap);
657
658	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
659		if (bcn->m != NULL)
660			m_freem(bcn->m);
661
662		WPI_VAP_LOCK_DESTROY(wvp);
663	}
664
665	free(wvp, M_80211_VAP);
666}
667
668static int
669wpi_detach(device_t dev)
670{
671	struct wpi_softc *sc = device_get_softc(dev);
672	struct ifnet *ifp = sc->sc_ifp;
673	struct ieee80211com *ic;
674	int qid;
675
676	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
677
678	if (ifp != NULL) {
679		ic = ifp->if_l2com;
680
681		ieee80211_draintask(ic, &sc->sc_reinittask);
682		ieee80211_draintask(ic, &sc->sc_radiooff_task);
683		ieee80211_draintask(ic, &sc->sc_radioon_task);
684		ieee80211_draintask(ic, &sc->sc_start_task);
685
686		wpi_stop(sc);
687
688		callout_drain(&sc->watchdog_rfkill);
689		callout_drain(&sc->watchdog_to);
690		callout_drain(&sc->scan_timeout);
691		callout_drain(&sc->calib_to);
692		ieee80211_ifdetach(ic);
693	}
694
695	/* Uninstall interrupt handler. */
696	if (sc->irq != NULL) {
697		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
698		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
699		    sc->irq);
700		pci_release_msi(dev);
701	}
702
703	if (sc->txq[0].data_dmat) {
704		/* Free DMA resources. */
705		for (qid = 0; qid < WPI_NTXQUEUES; qid++)
706			wpi_free_tx_ring(sc, &sc->txq[qid]);
707
708		wpi_free_rx_ring(sc);
709		wpi_free_shared(sc);
710	}
711
712	if (sc->fw_dma.tag)
713		wpi_free_fwmem(sc);
714
715	if (sc->mem != NULL)
716		bus_release_resource(dev, SYS_RES_MEMORY,
717		    rman_get_rid(sc->mem), sc->mem);
718
719	if (ifp != NULL)
720		if_free(ifp);
721
722	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
723	WPI_TXQ_LOCK_DESTROY(sc);
724	WPI_NT_LOCK_DESTROY(sc);
725	WPI_LOCK_DESTROY(sc);
726	return 0;
727}
728
729static int
730wpi_shutdown(device_t dev)
731{
732	struct wpi_softc *sc = device_get_softc(dev);
733
734	wpi_stop(sc);
735	return 0;
736}
737
738static int
739wpi_suspend(device_t dev)
740{
741	struct wpi_softc *sc = device_get_softc(dev);
742	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
743
744	ieee80211_suspend_all(ic);
745	return 0;
746}
747
748static int
749wpi_resume(device_t dev)
750{
751	struct wpi_softc *sc = device_get_softc(dev);
752	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
753
754	/* Clear device-specific "PCI retry timeout" register (41h). */
755	pci_write_config(dev, 0x41, 0, 1);
756
757	ieee80211_resume_all(ic);
758	return 0;
759}
760
761/*
762 * Grab exclusive access to NIC memory.
763 */
764static int
765wpi_nic_lock(struct wpi_softc *sc)
766{
767	int ntries;
768
769	/* Request exclusive access to NIC. */
770	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
771
772	/* Spin until we actually get the lock. */
773	for (ntries = 0; ntries < 1000; ntries++) {
774		if ((WPI_READ(sc, WPI_GP_CNTRL) &
775		    (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) ==
776		    WPI_GP_CNTRL_MAC_ACCESS_ENA)
777			return 0;
778		DELAY(10);
779	}
780
781	device_printf(sc->sc_dev, "could not lock memory\n");
782
783	return ETIMEDOUT;
784}
785
786/*
787 * Release lock on NIC memory.
788 */
789static __inline void
790wpi_nic_unlock(struct wpi_softc *sc)
791{
792	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
793}
794
795static __inline uint32_t
796wpi_prph_read(struct wpi_softc *sc, uint32_t addr)
797{
798	WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr);
799	WPI_BARRIER_READ_WRITE(sc);
800	return WPI_READ(sc, WPI_PRPH_RDATA);
801}
802
803static __inline void
804wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
805{
806	WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr);
807	WPI_BARRIER_WRITE(sc);
808	WPI_WRITE(sc, WPI_PRPH_WDATA, data);
809}
810
811static __inline void
812wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
813{
814	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask);
815}
816
817static __inline void
818wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
819{
820	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask);
821}
822
823static __inline void
824wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr,
825    const uint32_t *data, int count)
826{
827	for (; count > 0; count--, data++, addr += 4)
828		wpi_prph_write(sc, addr, *data);
829}
830
831static __inline uint32_t
832wpi_mem_read(struct wpi_softc *sc, uint32_t addr)
833{
834	WPI_WRITE(sc, WPI_MEM_RADDR, addr);
835	WPI_BARRIER_READ_WRITE(sc);
836	return WPI_READ(sc, WPI_MEM_RDATA);
837}
838
839static __inline void
840wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data,
841    int count)
842{
843	for (; count > 0; count--, addr += 4)
844		*data++ = wpi_mem_read(sc, addr);
845}
846
847static int
848wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count)
849{
850	uint8_t *out = data;
851	uint32_t val;
852	int error, ntries;
853
854	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
855
856	if ((error = wpi_nic_lock(sc)) != 0)
857		return error;
858
859	for (; count > 0; count -= 2, addr++) {
860		WPI_WRITE(sc, WPI_EEPROM, addr << 2);
861		for (ntries = 0; ntries < 10; ntries++) {
862			val = WPI_READ(sc, WPI_EEPROM);
863			if (val & WPI_EEPROM_READ_VALID)
864				break;
865			DELAY(5);
866		}
867		if (ntries == 10) {
868			device_printf(sc->sc_dev,
869			    "timeout reading ROM at 0x%x\n", addr);
870			return ETIMEDOUT;
871		}
872		*out++= val >> 16;
873		if (count > 1)
874			*out ++= val >> 24;
875	}
876
877	wpi_nic_unlock(sc);
878
879	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
880
881	return 0;
882}
883
884static void
885wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
886{
887	if (error != 0)
888		return;
889	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
890	*(bus_addr_t *)arg = segs[0].ds_addr;
891}
892
893/*
894 * Allocates a contiguous block of dma memory of the requested size and
895 * alignment.
896 */
897static int
898wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
899    void **kvap, bus_size_t size, bus_size_t alignment)
900{
901	int error;
902
903	dma->tag = NULL;
904	dma->size = size;
905
906	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
907	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
908	    1, size, BUS_DMA_NOWAIT, NULL, NULL, &dma->tag);
909	if (error != 0)
910		goto fail;
911
912	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
913	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
914	if (error != 0)
915		goto fail;
916
917	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
918	    wpi_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
919	if (error != 0)
920		goto fail;
921
922	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
923
924	if (kvap != NULL)
925		*kvap = dma->vaddr;
926
927	return 0;
928
929fail:	wpi_dma_contig_free(dma);
930	return error;
931}
932
933static void
934wpi_dma_contig_free(struct wpi_dma_info *dma)
935{
936	if (dma->vaddr != NULL) {
937		bus_dmamap_sync(dma->tag, dma->map,
938		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
939		bus_dmamap_unload(dma->tag, dma->map);
940		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
941		dma->vaddr = NULL;
942	}
943	if (dma->tag != NULL) {
944		bus_dma_tag_destroy(dma->tag);
945		dma->tag = NULL;
946	}
947}
948
949/*
950 * Allocate a shared page between host and NIC.
951 */
952static int
953wpi_alloc_shared(struct wpi_softc *sc)
954{
955	/* Shared buffer must be aligned on a 4KB boundary. */
956	return wpi_dma_contig_alloc(sc, &sc->shared_dma,
957	    (void **)&sc->shared, sizeof (struct wpi_shared), 4096);
958}
959
960static void
961wpi_free_shared(struct wpi_softc *sc)
962{
963	wpi_dma_contig_free(&sc->shared_dma);
964}
965
966/*
967 * Allocate DMA-safe memory for firmware transfer.
968 */
969static int
970wpi_alloc_fwmem(struct wpi_softc *sc)
971{
972	/* Must be aligned on a 16-byte boundary. */
973	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
974	    WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16);
975}
976
977static void
978wpi_free_fwmem(struct wpi_softc *sc)
979{
980	wpi_dma_contig_free(&sc->fw_dma);
981}
982
983static int
984wpi_alloc_rx_ring(struct wpi_softc *sc)
985{
986	struct wpi_rx_ring *ring = &sc->rxq;
987	bus_size_t size;
988	int i, error;
989
990	ring->cur = 0;
991	ring->update = 0;
992
993	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
994
995	/* Allocate RX descriptors (16KB aligned.) */
996	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
997	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
998	    (void **)&ring->desc, size, WPI_RING_DMA_ALIGN);
999	if (error != 0) {
1000		device_printf(sc->sc_dev,
1001		    "%s: could not allocate RX ring DMA memory, error %d\n",
1002		    __func__, error);
1003		goto fail;
1004	}
1005
1006	/* Create RX buffer DMA tag. */
1007	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1008	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1009	    MJUMPAGESIZE, 1, MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL,
1010	    &ring->data_dmat);
1011	if (error != 0) {
1012		device_printf(sc->sc_dev,
1013		    "%s: could not create RX buf DMA tag, error %d\n",
1014		    __func__, error);
1015		goto fail;
1016	}
1017
1018	/*
1019	 * Allocate and map RX buffers.
1020	 */
1021	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1022		struct wpi_rx_data *data = &ring->data[i];
1023		bus_addr_t paddr;
1024
1025		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1026		if (error != 0) {
1027			device_printf(sc->sc_dev,
1028			    "%s: could not create RX buf DMA map, error %d\n",
1029			    __func__, error);
1030			goto fail;
1031		}
1032
1033		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1034		if (data->m == NULL) {
1035			device_printf(sc->sc_dev,
1036			    "%s: could not allocate RX mbuf\n", __func__);
1037			error = ENOBUFS;
1038			goto fail;
1039		}
1040
1041		error = bus_dmamap_load(ring->data_dmat, data->map,
1042		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1043		    &paddr, BUS_DMA_NOWAIT);
1044		if (error != 0 && error != EFBIG) {
1045			device_printf(sc->sc_dev,
1046			    "%s: can't map mbuf (error %d)\n", __func__,
1047			    error);
1048			goto fail;
1049		}
1050
1051		/* Set physical address of RX buffer. */
1052		ring->desc[i] = htole32(paddr);
1053	}
1054
1055	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1056	    BUS_DMASYNC_PREWRITE);
1057
1058	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1059
1060	return 0;
1061
1062fail:	wpi_free_rx_ring(sc);
1063
1064	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1065
1066	return error;
1067}
1068
1069static void
1070wpi_update_rx_ring(struct wpi_softc *sc)
1071{
1072	struct wpi_rx_ring *ring = &sc->rxq;
1073
1074	if (ring->update != 0) {
1075		/* Wait for INT_WAKEUP event. */
1076		return;
1077	}
1078
1079	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP) {
1080		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s: wakeup request\n",
1081		    __func__);
1082
1083		WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1084		ring->update = 1;
1085	} else
1086		WPI_WRITE(sc, WPI_FH_RX_WPTR, ring->cur & ~7);
1087}
1088
1089static void
1090wpi_reset_rx_ring(struct wpi_softc *sc)
1091{
1092	struct wpi_rx_ring *ring = &sc->rxq;
1093	int ntries;
1094
1095	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1096
1097	if (wpi_nic_lock(sc) == 0) {
1098		WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0);
1099		for (ntries = 0; ntries < 1000; ntries++) {
1100			if (WPI_READ(sc, WPI_FH_RX_STATUS) &
1101			    WPI_FH_RX_STATUS_IDLE)
1102				break;
1103			DELAY(10);
1104		}
1105		wpi_nic_unlock(sc);
1106	}
1107
1108	ring->cur = 0;
1109	ring->update = 0;
1110}
1111
1112static void
1113wpi_free_rx_ring(struct wpi_softc *sc)
1114{
1115	struct wpi_rx_ring *ring = &sc->rxq;
1116	int i;
1117
1118	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1119
1120	wpi_dma_contig_free(&ring->desc_dma);
1121
1122	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1123		struct wpi_rx_data *data = &ring->data[i];
1124
1125		if (data->m != NULL) {
1126			bus_dmamap_sync(ring->data_dmat, data->map,
1127			    BUS_DMASYNC_POSTREAD);
1128			bus_dmamap_unload(ring->data_dmat, data->map);
1129			m_freem(data->m);
1130			data->m = NULL;
1131		}
1132		if (data->map != NULL)
1133			bus_dmamap_destroy(ring->data_dmat, data->map);
1134	}
1135	if (ring->data_dmat != NULL) {
1136		bus_dma_tag_destroy(ring->data_dmat);
1137		ring->data_dmat = NULL;
1138	}
1139}
1140
1141static int
1142wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int qid)
1143{
1144	bus_addr_t paddr;
1145	bus_size_t size;
1146	int i, error;
1147
1148	ring->qid = qid;
1149	ring->queued = 0;
1150	ring->cur = 0;
1151	ring->update = 0;
1152
1153	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1154
1155	/* Allocate TX descriptors (16KB aligned.) */
1156	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc);
1157	error = wpi_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1158	    size, WPI_RING_DMA_ALIGN);
1159	if (error != 0) {
1160		device_printf(sc->sc_dev,
1161		    "%s: could not allocate TX ring DMA memory, error %d\n",
1162		    __func__, error);
1163		goto fail;
1164	}
1165
1166	/* Update shared area with ring physical address. */
1167	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1168	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1169	    BUS_DMASYNC_PREWRITE);
1170
1171	/*
1172	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1173	 * to allocate commands space for other rings.
1174	 * XXX Do we really need to allocate descriptors for other rings?
1175	 */
1176	if (qid > WPI_CMD_QUEUE_NUM) {
1177		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1178		return 0;
1179	}
1180
1181	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd);
1182	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1183	    size, 4);
1184	if (error != 0) {
1185		device_printf(sc->sc_dev,
1186		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1187		    __func__, error);
1188		goto fail;
1189	}
1190
1191	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1192	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1193	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1194	    &ring->data_dmat);
1195	if (error != 0) {
1196		device_printf(sc->sc_dev,
1197		    "%s: could not create TX buf DMA tag, error %d\n",
1198		    __func__, error);
1199		goto fail;
1200	}
1201
1202	paddr = ring->cmd_dma.paddr;
1203	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1204		struct wpi_tx_data *data = &ring->data[i];
1205
1206		data->cmd_paddr = paddr;
1207		paddr += sizeof (struct wpi_tx_cmd);
1208
1209		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1210		if (error != 0) {
1211			device_printf(sc->sc_dev,
1212			    "%s: could not create TX buf DMA map, error %d\n",
1213			    __func__, error);
1214			goto fail;
1215		}
1216	}
1217
1218	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1219
1220	return 0;
1221
1222fail:	wpi_free_tx_ring(sc, ring);
1223	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1224	return error;
1225}
1226
1227static void
1228wpi_update_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1229{
1230	if (ring->update != 0) {
1231		/* Wait for INT_WAKEUP event. */
1232		return;
1233	}
1234
1235	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP) {
1236		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s (%d): requesting wakeup\n",
1237		    __func__, ring->qid);
1238
1239		WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1240		ring->update = 1;
1241	} else
1242		WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
1243}
1244
1245static void
1246wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1247{
1248	int i;
1249
1250	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1251
1252	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1253		struct wpi_tx_data *data = &ring->data[i];
1254
1255		if (data->m != NULL) {
1256			bus_dmamap_sync(ring->data_dmat, data->map,
1257			    BUS_DMASYNC_POSTWRITE);
1258			bus_dmamap_unload(ring->data_dmat, data->map);
1259			m_freem(data->m);
1260			data->m = NULL;
1261		}
1262	}
1263	/* Clear TX descriptors. */
1264	memset(ring->desc, 0, ring->desc_dma.size);
1265	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1266	    BUS_DMASYNC_PREWRITE);
1267	sc->qfullmsk &= ~(1 << ring->qid);
1268	ring->queued = 0;
1269	ring->cur = 0;
1270	ring->update = 0;
1271}
1272
1273static void
1274wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1275{
1276	int i;
1277
1278	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1279
1280	wpi_dma_contig_free(&ring->desc_dma);
1281	wpi_dma_contig_free(&ring->cmd_dma);
1282
1283	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1284		struct wpi_tx_data *data = &ring->data[i];
1285
1286		if (data->m != NULL) {
1287			bus_dmamap_sync(ring->data_dmat, data->map,
1288			    BUS_DMASYNC_POSTWRITE);
1289			bus_dmamap_unload(ring->data_dmat, data->map);
1290			m_freem(data->m);
1291		}
1292		if (data->map != NULL)
1293			bus_dmamap_destroy(ring->data_dmat, data->map);
1294	}
1295	if (ring->data_dmat != NULL) {
1296		bus_dma_tag_destroy(ring->data_dmat);
1297		ring->data_dmat = NULL;
1298	}
1299}
1300
1301/*
1302 * Extract various information from EEPROM.
1303 */
1304static int
1305wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1306{
1307#define WPI_CHK(res) do {		\
1308	if ((error = res) != 0)		\
1309		goto fail;		\
1310} while (0)
1311	int error, i;
1312
1313	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1314
1315	/* Adapter has to be powered on for EEPROM access to work. */
1316	if ((error = wpi_apm_init(sc)) != 0) {
1317		device_printf(sc->sc_dev,
1318		    "%s: could not power ON adapter, error %d\n", __func__,
1319		    error);
1320		return error;
1321	}
1322
1323	if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) {
1324		device_printf(sc->sc_dev, "bad EEPROM signature\n");
1325		error = EIO;
1326		goto fail;
1327	}
1328	/* Clear HW ownership of EEPROM. */
1329	WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER);
1330
1331	/* Read the hardware capabilities, revision and SKU type. */
1332	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_SKU_CAP, &sc->cap,
1333	    sizeof(sc->cap)));
1334	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,
1335	    sizeof(sc->rev)));
1336	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type,
1337	    sizeof(sc->type)));
1338
1339	sc->rev = le16toh(sc->rev);
1340	DPRINTF(sc, WPI_DEBUG_EEPROM, "cap=%x rev=%x type=%x\n", sc->cap,
1341	    sc->rev, sc->type);
1342
1343	/* Read the regulatory domain (4 ASCII characters.) */
1344	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain,
1345	    sizeof(sc->domain)));
1346
1347	/* Read MAC address. */
1348	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr,
1349	    IEEE80211_ADDR_LEN));
1350
1351	/* Read the list of authorized channels. */
1352	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
1353		WPI_CHK(wpi_read_eeprom_channels(sc, i));
1354
1355	/* Read the list of TX power groups. */
1356	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
1357		WPI_CHK(wpi_read_eeprom_group(sc, i));
1358
1359fail:	wpi_apm_stop(sc);	/* Power OFF adapter. */
1360
1361	DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
1362	    __func__);
1363
1364	return error;
1365#undef WPI_CHK
1366}
1367
1368/*
1369 * Translate EEPROM flags to net80211.
1370 */
1371static uint32_t
1372wpi_eeprom_channel_flags(struct wpi_eeprom_chan *channel)
1373{
1374	uint32_t nflags;
1375
1376	nflags = 0;
1377	if ((channel->flags & WPI_EEPROM_CHAN_ACTIVE) == 0)
1378		nflags |= IEEE80211_CHAN_PASSIVE;
1379	if ((channel->flags & WPI_EEPROM_CHAN_IBSS) == 0)
1380		nflags |= IEEE80211_CHAN_NOADHOC;
1381	if (channel->flags & WPI_EEPROM_CHAN_RADAR) {
1382		nflags |= IEEE80211_CHAN_DFS;
1383		/* XXX apparently IBSS may still be marked */
1384		nflags |= IEEE80211_CHAN_NOADHOC;
1385	}
1386
1387	/* XXX HOSTAP uses WPI_MODE_IBSS */
1388	if (nflags & IEEE80211_CHAN_NOADHOC)
1389		nflags |= IEEE80211_CHAN_NOHOSTAP;
1390
1391	return nflags;
1392}
1393
1394static void
1395wpi_read_eeprom_band(struct wpi_softc *sc, int n)
1396{
1397	struct ifnet *ifp = sc->sc_ifp;
1398	struct ieee80211com *ic = ifp->if_l2com;
1399	struct wpi_eeprom_chan *channels = sc->eeprom_channels[n];
1400	const struct wpi_chan_band *band = &wpi_bands[n];
1401	struct ieee80211_channel *c;
1402	uint8_t chan;
1403	int i, nflags;
1404
1405	for (i = 0; i < band->nchan; i++) {
1406		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
1407			DPRINTF(sc, WPI_DEBUG_EEPROM,
1408			    "Channel Not Valid: %d, band %d\n",
1409			     band->chan[i],n);
1410			continue;
1411		}
1412
1413		chan = band->chan[i];
1414		nflags = wpi_eeprom_channel_flags(&channels[i]);
1415
1416		c = &ic->ic_channels[ic->ic_nchans++];
1417		c->ic_ieee = chan;
1418		c->ic_maxregpower = channels[i].maxpwr;
1419		c->ic_maxpower = 2*c->ic_maxregpower;
1420
1421		if (n == 0) {	/* 2GHz band */
1422			c->ic_freq = ieee80211_ieee2mhz(chan,
1423			    IEEE80211_CHAN_G);
1424
1425			/* G =>'s B is supported */
1426			c->ic_flags = IEEE80211_CHAN_B | nflags;
1427			c = &ic->ic_channels[ic->ic_nchans++];
1428			c[0] = c[-1];
1429			c->ic_flags = IEEE80211_CHAN_G | nflags;
1430		} else {	/* 5GHz band */
1431			c->ic_freq = ieee80211_ieee2mhz(chan,
1432			    IEEE80211_CHAN_A);
1433
1434			c->ic_flags = IEEE80211_CHAN_A | nflags;
1435		}
1436
1437		/* Save maximum allowed TX power for this channel. */
1438		sc->maxpwr[chan] = channels[i].maxpwr;
1439
1440		DPRINTF(sc, WPI_DEBUG_EEPROM,
1441		    "adding chan %d (%dMHz) flags=0x%x maxpwr=%d passive=%d,"
1442		    " offset %d\n", chan, c->ic_freq,
1443		    channels[i].flags, sc->maxpwr[chan],
1444		    IEEE80211_IS_CHAN_PASSIVE(c), ic->ic_nchans);
1445	}
1446}
1447
1448/**
1449 * Read the eeprom to find out what channels are valid for the given
1450 * band and update net80211 with what we find.
1451 */
1452static int
1453wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
1454{
1455	struct ifnet *ifp = sc->sc_ifp;
1456	struct ieee80211com *ic = ifp->if_l2com;
1457	const struct wpi_chan_band *band = &wpi_bands[n];
1458	int error;
1459
1460	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1461
1462	error = wpi_read_prom_data(sc, band->addr, &sc->eeprom_channels[n],
1463	    band->nchan * sizeof (struct wpi_eeprom_chan));
1464	if (error != 0) {
1465		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1466		return error;
1467	}
1468
1469	wpi_read_eeprom_band(sc, n);
1470
1471	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1472
1473	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1474
1475	return 0;
1476}
1477
1478static struct wpi_eeprom_chan *
1479wpi_find_eeprom_channel(struct wpi_softc *sc, struct ieee80211_channel *c)
1480{
1481	int i, j;
1482
1483	for (j = 0; j < WPI_CHAN_BANDS_COUNT; j++)
1484		for (i = 0; i < wpi_bands[j].nchan; i++)
1485			if (wpi_bands[j].chan[i] == c->ic_ieee)
1486				return &sc->eeprom_channels[j][i];
1487
1488	return NULL;
1489}
1490
1491/*
1492 * Enforce flags read from EEPROM.
1493 */
1494static int
1495wpi_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
1496    int nchan, struct ieee80211_channel chans[])
1497{
1498	struct ifnet *ifp = ic->ic_ifp;
1499	struct wpi_softc *sc = ifp->if_softc;
1500	int i;
1501
1502	for (i = 0; i < nchan; i++) {
1503		struct ieee80211_channel *c = &chans[i];
1504		struct wpi_eeprom_chan *channel;
1505
1506		channel = wpi_find_eeprom_channel(sc, c);
1507		if (channel == NULL) {
1508			if_printf(ic->ic_ifp,
1509			    "%s: invalid channel %u freq %u/0x%x\n",
1510			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
1511			return EINVAL;
1512		}
1513		c->ic_flags |= wpi_eeprom_channel_flags(channel);
1514	}
1515
1516	return 0;
1517}
1518
1519static int
1520wpi_read_eeprom_group(struct wpi_softc *sc, int n)
1521{
1522	struct wpi_power_group *group = &sc->groups[n];
1523	struct wpi_eeprom_group rgroup;
1524	int i, error;
1525
1526	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1527
1528	if ((error = wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32,
1529	    &rgroup, sizeof rgroup)) != 0) {
1530		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1531		return error;
1532	}
1533
1534	/* Save TX power group information. */
1535	group->chan   = rgroup.chan;
1536	group->maxpwr = rgroup.maxpwr;
1537	/* Retrieve temperature at which the samples were taken. */
1538	group->temp   = (int16_t)le16toh(rgroup.temp);
1539
1540	DPRINTF(sc, WPI_DEBUG_EEPROM,
1541	    "power group %d: chan=%d maxpwr=%d temp=%d\n", n, group->chan,
1542	    group->maxpwr, group->temp);
1543
1544	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
1545		group->samples[i].index = rgroup.samples[i].index;
1546		group->samples[i].power = rgroup.samples[i].power;
1547
1548		DPRINTF(sc, WPI_DEBUG_EEPROM,
1549		    "\tsample %d: index=%d power=%d\n", i,
1550		    group->samples[i].index, group->samples[i].power);
1551	}
1552
1553	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1554
1555	return 0;
1556}
1557
1558static int
1559wpi_add_node_entry_adhoc(struct wpi_softc *sc)
1560{
1561	int newid = WPI_ID_IBSS_MIN;
1562
1563	for (; newid <= WPI_ID_IBSS_MAX; newid++) {
1564		if ((sc->nodesmsk & (1 << newid)) == 0) {
1565			sc->nodesmsk |= 1 << newid;
1566			return newid;
1567		}
1568	}
1569
1570	return WPI_ID_UNDEFINED;
1571}
1572
1573static __inline int
1574wpi_add_node_entry_sta(struct wpi_softc *sc)
1575{
1576	sc->nodesmsk |= 1 << WPI_ID_BSS;
1577
1578	return WPI_ID_BSS;
1579}
1580
1581static __inline int
1582wpi_check_node_entry(struct wpi_softc *sc, uint8_t id)
1583{
1584	if (id == WPI_ID_UNDEFINED)
1585		return 0;
1586
1587	return (sc->nodesmsk >> id) & 1;
1588}
1589
1590static __inline void
1591wpi_clear_node_table(struct wpi_softc *sc)
1592{
1593	sc->nodesmsk = 0;
1594}
1595
1596static __inline void
1597wpi_del_node_entry(struct wpi_softc *sc, uint8_t id)
1598{
1599	sc->nodesmsk &= ~(1 << id);
1600}
1601
1602static struct ieee80211_node *
1603wpi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1604{
1605	struct wpi_node *wn;
1606
1607	wn = malloc(sizeof (struct wpi_node), M_80211_NODE,
1608	    M_NOWAIT | M_ZERO);
1609
1610	if (wn == NULL)
1611		return NULL;
1612
1613	wn->id = WPI_ID_UNDEFINED;
1614
1615	return &wn->ni;
1616}
1617
1618static void
1619wpi_node_free(struct ieee80211_node *ni)
1620{
1621	struct ieee80211com *ic = ni->ni_ic;
1622	struct wpi_softc *sc = ic->ic_ifp->if_softc;
1623	struct wpi_node *wn = WPI_NODE(ni);
1624
1625	if (wn->id != WPI_ID_UNDEFINED) {
1626		WPI_NT_LOCK(sc);
1627		if (wpi_check_node_entry(sc, wn->id)) {
1628			wpi_del_node_entry(sc, wn->id);
1629			wpi_del_node(sc, ni);
1630		}
1631		WPI_NT_UNLOCK(sc);
1632	}
1633
1634	sc->sc_node_free(ni);
1635}
1636
1637/**
1638 * Called by net80211 when ever there is a change to 80211 state machine
1639 */
1640static int
1641wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1642{
1643	struct wpi_vap *wvp = WPI_VAP(vap);
1644	struct ieee80211com *ic = vap->iv_ic;
1645	struct ifnet *ifp = ic->ic_ifp;
1646	struct wpi_softc *sc = ifp->if_softc;
1647	int error = 0;
1648
1649	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1650
1651	DPRINTF(sc, WPI_DEBUG_STATE, "%s: %s -> %s\n", __func__,
1652		ieee80211_state_name[vap->iv_state],
1653		ieee80211_state_name[nstate]);
1654
1655	IEEE80211_UNLOCK(ic);
1656	WPI_LOCK(sc);
1657	switch (nstate) {
1658	case IEEE80211_S_SCAN:
1659		if ((sc->rxon.filter & htole32(WPI_FILTER_BSS)) &&
1660		    vap->iv_opmode != IEEE80211_M_STA) {
1661			sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1662			if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1663				device_printf(sc->sc_dev,
1664				    "%s: could not send RXON\n", __func__);
1665			}
1666		}
1667		break;
1668
1669	case IEEE80211_S_ASSOC:
1670		if (vap->iv_state != IEEE80211_S_RUN)
1671			break;
1672		/* FALLTHROUGH */
1673	case IEEE80211_S_AUTH:
1674		/*
1675		 * The node must be registered in the firmware before auth.
1676		 * Also the associd must be cleared on RUN -> ASSOC
1677		 * transitions.
1678		 */
1679		if ((error = wpi_auth(sc, vap)) != 0) {
1680			device_printf(sc->sc_dev,
1681			    "%s: could not move to AUTH state, error %d\n",
1682			    __func__, error);
1683		}
1684		break;
1685
1686	case IEEE80211_S_RUN:
1687		/*
1688		 * RUN -> RUN transition; Just restart the timers.
1689		 */
1690		if (vap->iv_state == IEEE80211_S_RUN) {
1691			wpi_calib_timeout(sc);
1692			break;
1693		}
1694
1695		/*
1696		 * !RUN -> RUN requires setting the association id
1697		 * which is done with a firmware cmd.  We also defer
1698		 * starting the timers until that work is done.
1699		 */
1700		if ((error = wpi_run(sc, vap)) != 0) {
1701			device_printf(sc->sc_dev,
1702			    "%s: could not move to RUN state\n", __func__);
1703		}
1704		break;
1705
1706	default:
1707		break;
1708	}
1709	WPI_UNLOCK(sc);
1710	IEEE80211_LOCK(ic);
1711	if (error != 0) {
1712		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1713		return error;
1714	}
1715
1716	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1717
1718	return wvp->wv_newstate(vap, nstate, arg);
1719}
1720
1721static void
1722wpi_calib_timeout(void *arg)
1723{
1724	struct wpi_softc *sc = arg;
1725
1726	if (!(sc->rxon.filter & htole32(WPI_FILTER_BSS)))
1727		return;
1728
1729	wpi_power_calibration(sc);
1730
1731	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
1732}
1733
1734static __inline uint8_t
1735rate2plcp(const uint8_t rate)
1736{
1737	switch (rate) {
1738	case 12:	return 0xd;
1739	case 18:	return 0xf;
1740	case 24:	return 0x5;
1741	case 36:	return 0x7;
1742	case 48:	return 0x9;
1743	case 72:	return 0xb;
1744	case 96:	return 0x1;
1745	case 108:	return 0x3;
1746	case 2:		return 10;
1747	case 4:		return 20;
1748	case 11:	return 55;
1749	case 22:	return 110;
1750	default:	return 0;
1751	}
1752}
1753
1754static __inline uint8_t
1755plcp2rate(const uint8_t plcp)
1756{
1757	switch (plcp) {
1758	case 0xd:	return 12;
1759	case 0xf:	return 18;
1760	case 0x5:	return 24;
1761	case 0x7:	return 36;
1762	case 0x9:	return 48;
1763	case 0xb:	return 72;
1764	case 0x1:	return 96;
1765	case 0x3:	return 108;
1766	case 10:	return 2;
1767	case 20:	return 4;
1768	case 55:	return 11;
1769	case 110:	return 22;
1770	default:	return 0;
1771	}
1772}
1773
1774/* Quickly determine if a given rate is CCK or OFDM. */
1775#define WPI_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
1776
1777static void
1778wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1779    struct wpi_rx_data *data)
1780{
1781	struct ifnet *ifp = sc->sc_ifp;
1782	struct ieee80211com *ic = ifp->if_l2com;
1783	struct wpi_rx_ring *ring = &sc->rxq;
1784	struct wpi_rx_stat *stat;
1785	struct wpi_rx_head *head;
1786	struct wpi_rx_tail *tail;
1787	struct ieee80211_frame *wh;
1788	struct ieee80211_node *ni;
1789	struct mbuf *m, *m1;
1790	bus_addr_t paddr;
1791	uint32_t flags;
1792	uint16_t len;
1793	int error;
1794
1795	stat = (struct wpi_rx_stat *)(desc + 1);
1796
1797	if (stat->len > WPI_STAT_MAXLEN) {
1798		device_printf(sc->sc_dev, "invalid RX statistic header\n");
1799		goto fail1;
1800	}
1801
1802	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1803	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1804	len = le16toh(head->len);
1805	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + len);
1806	flags = le32toh(tail->flags);
1807
1808	DPRINTF(sc, WPI_DEBUG_RECV, "%s: idx %d len %d stat len %u rssi %d"
1809	    " rate %x chan %d tstamp %ju\n", __func__, ring->cur,
1810	    le32toh(desc->len), len, (int8_t)stat->rssi,
1811	    head->plcp, head->chan, (uintmax_t)le64toh(tail->tstamp));
1812
1813	/* Discard frames with a bad FCS early. */
1814	if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1815		DPRINTF(sc, WPI_DEBUG_RECV, "%s: RX flags error %x\n",
1816		    __func__, flags);
1817		goto fail1;
1818	}
1819	/* Discard frames that are too short. */
1820	if (len < sizeof (*wh)) {
1821		DPRINTF(sc, WPI_DEBUG_RECV, "%s: frame too short: %d\n",
1822		    __func__, len);
1823		goto fail1;
1824	}
1825
1826	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1827	if (m1 == NULL) {
1828		DPRINTF(sc, WPI_DEBUG_ANY, "%s: no mbuf to restock ring\n",
1829		    __func__);
1830		goto fail1;
1831	}
1832	bus_dmamap_unload(ring->data_dmat, data->map);
1833
1834	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
1835	    MJUMPAGESIZE, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1836	if (error != 0 && error != EFBIG) {
1837		device_printf(sc->sc_dev,
1838		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1839		m_freem(m1);
1840
1841		/* Try to reload the old mbuf. */
1842		error = bus_dmamap_load(ring->data_dmat, data->map,
1843		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1844		    &paddr, BUS_DMA_NOWAIT);
1845		if (error != 0 && error != EFBIG) {
1846			panic("%s: could not load old RX mbuf", __func__);
1847		}
1848		/* Physical address may have changed. */
1849		ring->desc[ring->cur] = htole32(paddr);
1850		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
1851		    BUS_DMASYNC_PREWRITE);
1852		goto fail1;
1853	}
1854
1855	m = data->m;
1856	data->m = m1;
1857	/* Update RX descriptor. */
1858	ring->desc[ring->cur] = htole32(paddr);
1859	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1860	    BUS_DMASYNC_PREWRITE);
1861
1862	/* Finalize mbuf. */
1863	m->m_pkthdr.rcvif = ifp;
1864	m->m_data = (caddr_t)(head + 1);
1865	m->m_pkthdr.len = m->m_len = len;
1866
1867	/* Grab a reference to the source node. */
1868	wh = mtod(m, struct ieee80211_frame *);
1869
1870	if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
1871	    (flags & WPI_RX_CIPHER_MASK) == WPI_RX_CIPHER_CCMP) {
1872		/* Check whether decryption was successful or not. */
1873		if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) {
1874			DPRINTF(sc, WPI_DEBUG_RECV,
1875			    "CCMP decryption failed 0x%x\n", flags);
1876			goto fail2;
1877		}
1878		m->m_flags |= M_WEP;
1879	}
1880
1881	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1882
1883	if (ieee80211_radiotap_active(ic)) {
1884		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1885
1886		tap->wr_flags = 0;
1887		if (head->flags & htole16(WPI_STAT_FLAG_SHPREAMBLE))
1888			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1889		tap->wr_dbm_antsignal = (int8_t)(stat->rssi + WPI_RSSI_OFFSET);
1890		tap->wr_dbm_antnoise = WPI_RSSI_OFFSET;
1891		tap->wr_tsft = tail->tstamp;
1892		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1893		tap->wr_rate = plcp2rate(head->plcp);
1894	}
1895
1896	WPI_UNLOCK(sc);
1897
1898	/* Send the frame to the 802.11 layer. */
1899	if (ni != NULL) {
1900		(void)ieee80211_input(ni, m, stat->rssi, WPI_RSSI_OFFSET);
1901		/* Node is no longer needed. */
1902		ieee80211_free_node(ni);
1903	} else
1904		(void)ieee80211_input_all(ic, m, stat->rssi, WPI_RSSI_OFFSET);
1905
1906	WPI_LOCK(sc);
1907
1908	return;
1909
1910fail2:	m_freem(m);
1911
1912fail1:	if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1913}
1914
1915static void
1916wpi_rx_statistics(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1917    struct wpi_rx_data *data)
1918{
1919	/* Ignore */
1920}
1921
1922static void
1923wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1924{
1925	struct ifnet *ifp = sc->sc_ifp;
1926	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1927	struct wpi_tx_data *data = &ring->data[desc->idx];
1928	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1929	struct mbuf *m;
1930	struct ieee80211_node *ni;
1931	struct ieee80211vap *vap;
1932	struct ieee80211com *ic;
1933	int ackfailcnt = stat->ackfailcnt / 2;	/* wpi_mrr_setup() */
1934	int status = le32toh(stat->status);
1935
1936	KASSERT(data->ni != NULL, ("no node"));
1937	KASSERT(data->m != NULL, ("no mbuf"));
1938
1939	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1940
1941	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: "
1942	    "qid %d idx %d retries %d btkillcnt %d rate %x duration %d "
1943	    "status %x\n", __func__, desc->qid, desc->idx, ackfailcnt,
1944	    stat->btkillcnt, stat->rate, le32toh(stat->duration), status);
1945
1946	/* Unmap and free mbuf. */
1947	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
1948	bus_dmamap_unload(ring->data_dmat, data->map);
1949	m = data->m, data->m = NULL;
1950	ni = data->ni, data->ni = NULL;
1951	vap = ni->ni_vap;
1952	ic = vap->iv_ic;
1953
1954	/*
1955	 * Update rate control statistics for the node.
1956	 */
1957	WPI_UNLOCK(sc);
1958	if ((status & 0xff) != 1) {
1959		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1960		ieee80211_ratectl_tx_complete(vap, ni,
1961		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
1962	} else {
1963		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1964		ieee80211_ratectl_tx_complete(vap, ni,
1965		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
1966	}
1967
1968	ieee80211_tx_complete(ni, m, (status & 0xff) != 1);
1969	WPI_LOCK(sc);
1970
1971	sc->sc_tx_timer = 0;
1972	if (--ring->queued < WPI_TX_RING_LOMARK) {
1973		sc->qfullmsk &= ~(1 << ring->qid);
1974		IF_LOCK(&ifp->if_snd);
1975		if (sc->qfullmsk == 0 &&
1976		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
1977			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1978			IF_UNLOCK(&ifp->if_snd);
1979			ieee80211_runtask(ic, &sc->sc_start_task);
1980		} else
1981			IF_UNLOCK(&ifp->if_snd);
1982	}
1983
1984	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1985}
1986
1987/*
1988 * Process a "command done" firmware notification.  This is where we wakeup
1989 * processes waiting for a synchronous command completion.
1990 */
1991static void
1992wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1993{
1994	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
1995	struct wpi_tx_data *data;
1996
1997	DPRINTF(sc, WPI_DEBUG_CMD, "cmd notification qid %x idx %d flags %x "
1998				   "type %s len %d\n", desc->qid, desc->idx,
1999				   desc->flags, wpi_cmd_str(desc->type),
2000				   le32toh(desc->len));
2001
2002	if ((desc->qid & WPI_RX_DESC_QID_MSK) != WPI_CMD_QUEUE_NUM)
2003		return;	/* Not a command ack. */
2004
2005	KASSERT(ring->queued == 0, ("ring->queued must be 0"));
2006
2007	data = &ring->data[desc->idx];
2008
2009	/* If the command was mapped in an mbuf, free it. */
2010	if (data->m != NULL) {
2011		bus_dmamap_sync(ring->data_dmat, data->map,
2012		    BUS_DMASYNC_POSTWRITE);
2013		bus_dmamap_unload(ring->data_dmat, data->map);
2014		m_freem(data->m);
2015		data->m = NULL;
2016	}
2017
2018	wakeup(&ring->cmd[desc->idx]);
2019}
2020
2021static void
2022wpi_notif_intr(struct wpi_softc *sc)
2023{
2024	struct ifnet *ifp = sc->sc_ifp;
2025	struct ieee80211com *ic = ifp->if_l2com;
2026	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2027	int hw;
2028
2029	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
2030	    BUS_DMASYNC_POSTREAD);
2031
2032	hw = le32toh(sc->shared->next);
2033	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
2034
2035	while (sc->rxq.cur != hw) {
2036		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
2037
2038		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2039		struct wpi_rx_desc *desc;
2040
2041		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2042		    BUS_DMASYNC_POSTREAD);
2043		desc = mtod(data->m, struct wpi_rx_desc *);
2044
2045		DPRINTF(sc, WPI_DEBUG_NOTIFY,
2046		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
2047		    __func__, sc->rxq.cur, desc->qid, desc->idx, desc->flags,
2048		    desc->type, wpi_cmd_str(desc->type), le32toh(desc->len));
2049
2050		if (!(desc->qid & WPI_UNSOLICITED_RX_NOTIF)) {
2051			/* Reply to a command. */
2052			wpi_cmd_done(sc, desc);
2053		}
2054
2055		switch (desc->type) {
2056		case WPI_RX_DONE:
2057			/* An 802.11 frame has been received. */
2058			wpi_rx_done(sc, desc, data);
2059
2060			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2061				/* wpi_stop() was called. */
2062				return;
2063			}
2064
2065			break;
2066
2067		case WPI_TX_DONE:
2068			/* An 802.11 frame has been transmitted. */
2069			wpi_tx_done(sc, desc);
2070			break;
2071
2072		case WPI_RX_STATISTICS:
2073		case WPI_BEACON_STATISTICS:
2074			wpi_rx_statistics(sc, desc, data);
2075			break;
2076
2077		case WPI_BEACON_MISSED:
2078		{
2079			struct wpi_beacon_missed *miss =
2080			    (struct wpi_beacon_missed *)(desc + 1);
2081			int misses;
2082
2083			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2084			    BUS_DMASYNC_POSTREAD);
2085			misses = le32toh(miss->consecutive);
2086
2087			DPRINTF(sc, WPI_DEBUG_STATE,
2088			    "%s: beacons missed %d/%d\n", __func__, misses,
2089			    le32toh(miss->total));
2090
2091			if (vap->iv_state == IEEE80211_S_RUN &&
2092			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2093				if (misses >=  vap->iv_bmissthreshold) {
2094					WPI_UNLOCK(sc);
2095					ieee80211_beacon_miss(ic);
2096					WPI_LOCK(sc);
2097				}
2098			}
2099			break;
2100		}
2101		case WPI_UC_READY:
2102		{
2103			struct wpi_ucode_info *uc =
2104			    (struct wpi_ucode_info *)(desc + 1);
2105
2106			/* The microcontroller is ready. */
2107			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2108			    BUS_DMASYNC_POSTREAD);
2109			DPRINTF(sc, WPI_DEBUG_RESET,
2110			    "microcode alive notification version=%d.%d "
2111			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2112			    uc->subtype, le32toh(uc->valid));
2113
2114			if (le32toh(uc->valid) != 1) {
2115				device_printf(sc->sc_dev,
2116				    "microcontroller initialization failed\n");
2117				wpi_stop_locked(sc);
2118			}
2119			/* Save the address of the error log in SRAM. */
2120			sc->errptr = le32toh(uc->errptr);
2121			break;
2122		}
2123		case WPI_STATE_CHANGED:
2124		{
2125			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2126			    BUS_DMASYNC_POSTREAD);
2127
2128			uint32_t *status = (uint32_t *)(desc + 1);
2129
2130			DPRINTF(sc, WPI_DEBUG_STATE, "state changed to %x\n",
2131			    le32toh(*status));
2132
2133			if (le32toh(*status) & 1) {
2134				WPI_NT_LOCK(sc);
2135				wpi_clear_node_table(sc);
2136				WPI_NT_UNLOCK(sc);
2137				ieee80211_runtask(ic, &sc->sc_radiooff_task);
2138				return;
2139			}
2140			break;
2141		}
2142		case WPI_START_SCAN:
2143		{
2144			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2145			    BUS_DMASYNC_POSTREAD);
2146#ifdef WPI_DEBUG
2147			struct wpi_start_scan *scan =
2148			    (struct wpi_start_scan *)(desc + 1);
2149			DPRINTF(sc, WPI_DEBUG_SCAN,
2150			    "%s: scanning channel %d status %x\n",
2151			    __func__, scan->chan, le32toh(scan->status));
2152#endif
2153			break;
2154		}
2155		case WPI_STOP_SCAN:
2156		{
2157			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2158			    BUS_DMASYNC_POSTREAD);
2159#ifdef WPI_DEBUG
2160			struct wpi_stop_scan *scan =
2161			    (struct wpi_stop_scan *)(desc + 1);
2162			DPRINTF(sc, WPI_DEBUG_SCAN,
2163			    "scan finished nchan=%d status=%d chan=%d\n",
2164			    scan->nchan, scan->status, scan->chan);
2165#endif
2166			callout_stop(&sc->scan_timeout);
2167			WPI_UNLOCK(sc);
2168			ieee80211_scan_next(vap);
2169			WPI_LOCK(sc);
2170			break;
2171		}
2172		}
2173	}
2174
2175	/* Tell the firmware what we have processed. */
2176	wpi_update_rx_ring(sc);
2177}
2178
2179/*
2180 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2181 * from power-down sleep mode.
2182 */
2183static void
2184wpi_wakeup_intr(struct wpi_softc *sc)
2185{
2186	int qid;
2187
2188	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
2189	    "%s: ucode wakeup from power-down sleep\n", __func__);
2190
2191	/* Wakeup RX and TX rings. */
2192	if (sc->rxq.update) {
2193		sc->rxq.update = 0;
2194		wpi_update_rx_ring(sc);
2195	}
2196	WPI_TXQ_LOCK(sc);
2197	for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++) {
2198		struct wpi_tx_ring *ring = &sc->txq[qid];
2199
2200		if (ring->update) {
2201			ring->update = 0;
2202			wpi_update_tx_ring(sc, ring);
2203		}
2204	}
2205	WPI_TXQ_UNLOCK(sc);
2206
2207	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
2208}
2209
2210/*
2211 * This function prints firmware registers
2212 */
2213#ifdef WPI_DEBUG
2214static void
2215wpi_debug_registers(struct wpi_softc *sc)
2216{
2217#define COUNTOF(array) (sizeof(array) / sizeof(array[0]))
2218	int i;
2219	static const uint32_t csr_tbl[] = {
2220		WPI_HW_IF_CONFIG,
2221		WPI_INT,
2222		WPI_INT_MASK,
2223		WPI_FH_INT,
2224		WPI_GPIO_IN,
2225		WPI_RESET,
2226		WPI_GP_CNTRL,
2227		WPI_EEPROM,
2228		WPI_EEPROM_GP,
2229		WPI_GIO,
2230		WPI_UCODE_GP1,
2231		WPI_UCODE_GP2,
2232		WPI_GIO_CHICKEN,
2233		WPI_ANA_PLL,
2234		WPI_DBG_HPET_MEM,
2235	};
2236	static const uint32_t prph_tbl[] = {
2237		WPI_APMG_CLK_CTRL,
2238		WPI_APMG_PS,
2239		WPI_APMG_PCI_STT,
2240		WPI_APMG_RFKILL,
2241	};
2242
2243	DPRINTF(sc, WPI_DEBUG_REGISTER,"%s","\n");
2244
2245	for (i = 0; i <  COUNTOF(csr_tbl); i++) {
2246		DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2247		    wpi_get_csr_string(csr_tbl[i]), WPI_READ(sc, csr_tbl[i]));
2248
2249		if ((i + 1) % 2 == 0)
2250			DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2251	}
2252	DPRINTF(sc, WPI_DEBUG_REGISTER, "\n\n");
2253
2254	if (wpi_nic_lock(sc) == 0) {
2255		for (i = 0; i < COUNTOF(prph_tbl); i++) {
2256			DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2257			    wpi_get_prph_string(prph_tbl[i]),
2258			    wpi_prph_read(sc, prph_tbl[i]));
2259
2260			if ((i + 1) % 2 == 0)
2261				DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2262		}
2263		DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2264		wpi_nic_unlock(sc);
2265	} else {
2266		DPRINTF(sc, WPI_DEBUG_REGISTER,
2267		    "Cannot access internal registers.\n");
2268	}
2269#undef COUNTOF
2270}
2271#endif
2272
2273/*
2274 * Dump the error log of the firmware when a firmware panic occurs.  Although
2275 * we can't debug the firmware because it is neither open source nor free, it
2276 * can help us to identify certain classes of problems.
2277 */
2278static void
2279wpi_fatal_intr(struct wpi_softc *sc)
2280{
2281	struct wpi_fw_dump dump;
2282	uint32_t i, offset, count;
2283	const uint32_t size_errmsg =
2284	    (sizeof (wpi_fw_errmsg) / sizeof ((wpi_fw_errmsg)[0]));
2285
2286	/* Check that the error log address is valid. */
2287	if (sc->errptr < WPI_FW_DATA_BASE ||
2288	    sc->errptr + sizeof (dump) >
2289	    WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) {
2290		printf("%s: bad firmware error log address 0x%08x\n", __func__,
2291		    sc->errptr);
2292		return;
2293	}
2294	if (wpi_nic_lock(sc) != 0) {
2295		printf("%s: could not read firmware error log\n", __func__);
2296		return;
2297	}
2298	/* Read number of entries in the log. */
2299	count = wpi_mem_read(sc, sc->errptr);
2300	if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) {
2301		printf("%s: invalid count field (count = %u)\n", __func__,
2302		    count);
2303		wpi_nic_unlock(sc);
2304		return;
2305	}
2306	/* Skip "count" field. */
2307	offset = sc->errptr + sizeof (uint32_t);
2308	printf("firmware error log (count = %u):\n", count);
2309	for (i = 0; i < count; i++) {
2310		wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump,
2311		    sizeof (dump) / sizeof (uint32_t));
2312
2313		printf("  error type = \"%s\" (0x%08X)\n",
2314		    (dump.desc < size_errmsg) ?
2315		        wpi_fw_errmsg[dump.desc] : "UNKNOWN",
2316		    dump.desc);
2317		printf("  error data      = 0x%08X\n",
2318		    dump.data);
2319		printf("  branch link     = 0x%08X%08X\n",
2320		    dump.blink[0], dump.blink[1]);
2321		printf("  interrupt link  = 0x%08X%08X\n",
2322		    dump.ilink[0], dump.ilink[1]);
2323		printf("  time            = %u\n", dump.time);
2324
2325		offset += sizeof (dump);
2326	}
2327	wpi_nic_unlock(sc);
2328	/* Dump driver status (TX and RX rings) while we're here. */
2329	printf("driver status:\n");
2330	WPI_TXQ_LOCK(sc);
2331	for (i = 0; i < WPI_DRV_NTXQUEUES; i++) {
2332		struct wpi_tx_ring *ring = &sc->txq[i];
2333		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2334		    i, ring->qid, ring->cur, ring->queued);
2335	}
2336	WPI_TXQ_UNLOCK(sc);
2337	printf("  rx ring: cur=%d\n", sc->rxq.cur);
2338}
2339
2340static void
2341wpi_intr(void *arg)
2342{
2343	struct wpi_softc *sc = arg;
2344	struct ifnet *ifp = sc->sc_ifp;
2345	uint32_t r1, r2;
2346
2347	WPI_LOCK(sc);
2348
2349	/* Disable interrupts. */
2350	WPI_WRITE(sc, WPI_INT_MASK, 0);
2351
2352	r1 = WPI_READ(sc, WPI_INT);
2353
2354	if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2355		goto end;	/* Hardware gone! */
2356
2357	r2 = WPI_READ(sc, WPI_FH_INT);
2358
2359	DPRINTF(sc, WPI_DEBUG_INTR, "%s: reg1=0x%08x reg2=0x%08x\n", __func__,
2360	    r1, r2);
2361
2362	if (r1 == 0 && r2 == 0)
2363		goto done;	/* Interrupt not for us. */
2364
2365	/* Acknowledge interrupts. */
2366	WPI_WRITE(sc, WPI_INT, r1);
2367	WPI_WRITE(sc, WPI_FH_INT, r2);
2368
2369	if (r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR)) {
2370		struct ieee80211com *ic = ifp->if_l2com;
2371
2372		device_printf(sc->sc_dev, "fatal firmware error\n");
2373#ifdef WPI_DEBUG
2374		wpi_debug_registers(sc);
2375#endif
2376		wpi_fatal_intr(sc);
2377		DPRINTF(sc, WPI_DEBUG_HW,
2378		    "(%s)\n", (r1 & WPI_INT_SW_ERR) ? "(Software Error)" :
2379		    "(Hardware Error)");
2380		ieee80211_runtask(ic, &sc->sc_reinittask);
2381		goto end;
2382	}
2383
2384	if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) ||
2385	    (r2 & WPI_FH_INT_RX))
2386		wpi_notif_intr(sc);
2387
2388	if (r1 & WPI_INT_ALIVE)
2389		wakeup(sc);	/* Firmware is alive. */
2390
2391	if (r1 & WPI_INT_WAKEUP)
2392		wpi_wakeup_intr(sc);
2393
2394done:
2395	/* Re-enable interrupts. */
2396	if (ifp->if_flags & IFF_UP)
2397		WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
2398
2399end:	WPI_UNLOCK(sc);
2400}
2401
2402static int
2403wpi_cmd2(struct wpi_softc *sc, struct wpi_buf *buf)
2404{
2405	struct ieee80211_frame *wh;
2406	struct wpi_tx_cmd *cmd;
2407	struct wpi_tx_data *data;
2408	struct wpi_tx_desc *desc;
2409	struct wpi_tx_ring *ring;
2410	struct mbuf *m1;
2411	bus_dma_segment_t *seg, segs[WPI_MAX_SCATTER];
2412	int error, i, hdrlen, nsegs, totlen, pad;
2413
2414	WPI_TXQ_LOCK(sc);
2415
2416	KASSERT(buf->size <= sizeof(buf->data), ("buffer overflow"));
2417
2418	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2419
2420	if (sc->txq_active == 0) {
2421		/* wpi_stop() was called */
2422		error = ENETDOWN;
2423		goto fail;
2424	}
2425
2426	wh = mtod(buf->m, struct ieee80211_frame *);
2427	hdrlen = ieee80211_anyhdrsize(wh);
2428	totlen = buf->m->m_pkthdr.len;
2429
2430	if (hdrlen & 3) {
2431		/* First segment length must be a multiple of 4. */
2432		pad = 4 - (hdrlen & 3);
2433	} else
2434		pad = 0;
2435
2436	ring = &sc->txq[buf->ac];
2437	desc = &ring->desc[ring->cur];
2438	data = &ring->data[ring->cur];
2439
2440	/* Prepare TX firmware command. */
2441	cmd = &ring->cmd[ring->cur];
2442	cmd->code = buf->code;
2443	cmd->flags = 0;
2444	cmd->qid = ring->qid;
2445	cmd->idx = ring->cur;
2446
2447	memcpy(cmd->data, buf->data, buf->size);
2448
2449	/* Save and trim IEEE802.11 header. */
2450	memcpy((uint8_t *)(cmd->data + buf->size), wh, hdrlen);
2451	m_adj(buf->m, hdrlen);
2452
2453	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, buf->m,
2454	    segs, &nsegs, BUS_DMA_NOWAIT);
2455	if (error != 0 && error != EFBIG) {
2456		device_printf(sc->sc_dev,
2457		    "%s: can't map mbuf (error %d)\n", __func__, error);
2458		goto fail;
2459	}
2460	if (error != 0) {
2461		/* Too many DMA segments, linearize mbuf. */
2462		m1 = m_collapse(buf->m, M_NOWAIT, WPI_MAX_SCATTER - 1);
2463		if (m1 == NULL) {
2464			device_printf(sc->sc_dev,
2465			    "%s: could not defrag mbuf\n", __func__);
2466			error = ENOBUFS;
2467			goto fail;
2468		}
2469		buf->m = m1;
2470
2471		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
2472		    buf->m, segs, &nsegs, BUS_DMA_NOWAIT);
2473		if (error != 0) {
2474			device_printf(sc->sc_dev,
2475			    "%s: can't map mbuf (error %d)\n", __func__,
2476			    error);
2477			goto fail;
2478		}
2479	}
2480
2481	KASSERT(nsegs < WPI_MAX_SCATTER,
2482	    ("too many DMA segments, nsegs (%d) should be less than %d",
2483	     nsegs, WPI_MAX_SCATTER));
2484
2485	data->m = buf->m;
2486	data->ni = buf->ni;
2487
2488	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
2489	    __func__, ring->qid, ring->cur, totlen, nsegs);
2490
2491	/* Fill TX descriptor. */
2492	desc->nsegs = WPI_PAD32(totlen + pad) << 4 | (1 + nsegs);
2493	/* First DMA segment is used by the TX command. */
2494	desc->segs[0].addr = htole32(data->cmd_paddr);
2495	desc->segs[0].len  = htole32(4 + buf->size + hdrlen + pad);
2496	/* Other DMA segments are for data payload. */
2497	seg = &segs[0];
2498	for (i = 1; i <= nsegs; i++) {
2499		desc->segs[i].addr = htole32(seg->ds_addr);
2500		desc->segs[i].len  = htole32(seg->ds_len);
2501		seg++;
2502	}
2503
2504	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2505	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2506	    BUS_DMASYNC_PREWRITE);
2507	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2508	    BUS_DMASYNC_PREWRITE);
2509
2510	/* Kick TX ring. */
2511	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2512	wpi_update_tx_ring(sc, ring);
2513
2514	if (ring->qid < WPI_CMD_QUEUE_NUM) {
2515		/* Mark TX ring as full if we reach a certain threshold. */
2516		if (++ring->queued > WPI_TX_RING_HIMARK)
2517			sc->qfullmsk |= 1 << ring->qid;
2518
2519		sc->sc_tx_timer = 5;
2520	}
2521
2522	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2523
2524	WPI_TXQ_UNLOCK(sc);
2525
2526	return 0;
2527
2528fail:	m_freem(buf->m);
2529
2530	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
2531
2532	WPI_TXQ_UNLOCK(sc);
2533
2534	return error;
2535}
2536
2537/*
2538 * Construct the data packet for a transmit buffer.
2539 */
2540static int
2541wpi_tx_data(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2542{
2543	const struct ieee80211_txparam *tp;
2544	struct ieee80211vap *vap = ni->ni_vap;
2545	struct ieee80211com *ic = ni->ni_ic;
2546	struct wpi_node *wn = WPI_NODE(ni);
2547	struct ieee80211_channel *chan;
2548	struct ieee80211_frame *wh;
2549	struct ieee80211_key *k = NULL;
2550	struct wpi_buf tx_data;
2551	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2552	uint32_t flags;
2553	uint16_t qos;
2554	uint8_t tid, type;
2555	int ac, error, swcrypt, rate, ismcast, totlen;
2556
2557	wh = mtod(m, struct ieee80211_frame *);
2558	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2559	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2560
2561	/* Select EDCA Access Category and TX ring for this frame. */
2562	if (IEEE80211_QOS_HAS_SEQ(wh)) {
2563 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
2564		tid = qos & IEEE80211_QOS_TID;
2565	} else {
2566		qos = 0;
2567		tid = 0;
2568	}
2569	ac = M_WME_GETAC(m);
2570
2571	chan = (ni->ni_chan != IEEE80211_CHAN_ANYC) ?
2572		ni->ni_chan : ic->ic_curchan;
2573	tp = &vap->iv_txparms[ieee80211_chan2mode(chan)];
2574
2575	/* Choose a TX rate index. */
2576	if (type == IEEE80211_FC0_TYPE_MGT)
2577		rate = tp->mgmtrate;
2578	else if (ismcast)
2579		rate = tp->mcastrate;
2580	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2581		rate = tp->ucastrate;
2582	else if (m->m_flags & M_EAPOL)
2583		rate = tp->mgmtrate;
2584	else {
2585		/* XXX pass pktlen */
2586		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2587		rate = ni->ni_txrate;
2588	}
2589
2590	/* Encrypt the frame if need be. */
2591	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2592		/* Retrieve key for TX. */
2593		k = ieee80211_crypto_encap(ni, m);
2594		if (k == NULL) {
2595			error = ENOBUFS;
2596			goto fail;
2597		}
2598		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2599
2600		/* 802.11 header may have moved. */
2601		wh = mtod(m, struct ieee80211_frame *);
2602	}
2603	totlen = m->m_pkthdr.len;
2604
2605	if (ieee80211_radiotap_active_vap(vap)) {
2606		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2607
2608		tap->wt_flags = 0;
2609		tap->wt_rate = rate;
2610		if (k != NULL)
2611			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2612
2613		ieee80211_radiotap_tx(vap, m);
2614	}
2615
2616	flags = 0;
2617	if (!ismcast) {
2618		/* Unicast frame, check if an ACK is expected. */
2619		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
2620		    IEEE80211_QOS_ACKPOLICY_NOACK)
2621			flags |= WPI_TX_NEED_ACK;
2622	}
2623
2624	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2625		flags |= WPI_TX_MORE_FRAG;	/* Cannot happen yet. */
2626
2627	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2628	if (!ismcast) {
2629		/* NB: Group frames are sent using CCK in 802.11b/g. */
2630		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2631			flags |= WPI_TX_NEED_RTS;
2632		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2633		    WPI_RATE_IS_OFDM(rate)) {
2634			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2635				flags |= WPI_TX_NEED_CTS;
2636			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2637				flags |= WPI_TX_NEED_RTS;
2638		}
2639
2640		if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2641			flags |= WPI_TX_FULL_TXOP;
2642	}
2643
2644	memset(tx, 0, sizeof (struct wpi_cmd_data));
2645	if (type == IEEE80211_FC0_TYPE_MGT) {
2646		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2647
2648		/* Tell HW to set timestamp in probe responses. */
2649		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2650			flags |= WPI_TX_INSERT_TSTAMP;
2651		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2652		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2653			tx->timeout = htole16(3);
2654		else
2655			tx->timeout = htole16(2);
2656	}
2657
2658	if (ismcast || type != IEEE80211_FC0_TYPE_DATA)
2659		tx->id = WPI_ID_BROADCAST;
2660	else {
2661		if (wn->id == WPI_ID_UNDEFINED) {
2662			device_printf(sc->sc_dev,
2663			    "%s: undefined node id\n", __func__);
2664			error = EINVAL;
2665			goto fail;
2666		}
2667
2668		tx->id = wn->id;
2669	}
2670
2671	if (type != IEEE80211_FC0_TYPE_MGT)
2672		tx->data_ntries = tp->maxretry;
2673
2674	if (k != NULL && !swcrypt) {
2675		switch (k->wk_cipher->ic_cipher) {
2676		case IEEE80211_CIPHER_AES_CCM:
2677			tx->security = WPI_CIPHER_CCMP;
2678			break;
2679
2680		default:
2681			break;
2682		}
2683
2684		memcpy(tx->key, k->wk_key, k->wk_keylen);
2685	}
2686
2687	tx->len = htole16(totlen);
2688	tx->flags = htole32(flags);
2689	tx->plcp = rate2plcp(rate);
2690	tx->tid = tid;
2691	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2692	tx->ofdm_mask = 0xff;
2693	tx->cck_mask = 0x0f;
2694	tx->rts_ntries = 7;
2695
2696	tx_data.ni = ni;
2697	tx_data.m = m;
2698	tx_data.size = sizeof(struct wpi_cmd_data);
2699	tx_data.code = WPI_CMD_TX_DATA;
2700	tx_data.ac = ac;
2701
2702	return wpi_cmd2(sc, &tx_data);
2703
2704fail:	m_freem(m);
2705	return error;
2706}
2707
2708static int
2709wpi_tx_data_raw(struct wpi_softc *sc, struct mbuf *m,
2710    struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
2711{
2712	struct ieee80211vap *vap = ni->ni_vap;
2713	struct ieee80211_key *k = NULL;
2714	struct ieee80211_frame *wh;
2715	struct wpi_buf tx_data;
2716	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2717	uint32_t flags;
2718	uint8_t type;
2719	int ac, rate, swcrypt, totlen;
2720
2721	wh = mtod(m, struct ieee80211_frame *);
2722	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2723
2724	ac = params->ibp_pri & 3;
2725
2726	/* Choose a TX rate index. */
2727	rate = params->ibp_rate0;
2728
2729	flags = 0;
2730	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
2731		flags |= WPI_TX_NEED_ACK;
2732	if (params->ibp_flags & IEEE80211_BPF_RTS)
2733		flags |= WPI_TX_NEED_RTS;
2734	if (params->ibp_flags & IEEE80211_BPF_CTS)
2735		flags |= WPI_TX_NEED_CTS;
2736	if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2737		flags |= WPI_TX_FULL_TXOP;
2738
2739	/* Encrypt the frame if need be. */
2740	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
2741		/* Retrieve key for TX. */
2742		k = ieee80211_crypto_encap(ni, m);
2743		if (k == NULL) {
2744			m_freem(m);
2745			return ENOBUFS;
2746		}
2747		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2748
2749		/* 802.11 header may have moved. */
2750		wh = mtod(m, struct ieee80211_frame *);
2751	}
2752	totlen = m->m_pkthdr.len;
2753
2754	if (ieee80211_radiotap_active_vap(vap)) {
2755		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2756
2757		tap->wt_flags = 0;
2758		tap->wt_rate = rate;
2759		if (params->ibp_flags & IEEE80211_BPF_CRYPTO)
2760			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2761
2762		ieee80211_radiotap_tx(vap, m);
2763	}
2764
2765	memset(tx, 0, sizeof (struct wpi_cmd_data));
2766	if (type == IEEE80211_FC0_TYPE_MGT) {
2767		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2768
2769		/* Tell HW to set timestamp in probe responses. */
2770		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2771			flags |= WPI_TX_INSERT_TSTAMP;
2772		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2773		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2774			tx->timeout = htole16(3);
2775		else
2776			tx->timeout = htole16(2);
2777	}
2778
2779	if (k != NULL && !swcrypt) {
2780		switch (k->wk_cipher->ic_cipher) {
2781		case IEEE80211_CIPHER_AES_CCM:
2782			tx->security = WPI_CIPHER_CCMP;
2783			break;
2784
2785		default:
2786			break;
2787		}
2788
2789		memcpy(tx->key, k->wk_key, k->wk_keylen);
2790	}
2791
2792	tx->len = htole16(totlen);
2793	tx->flags = htole32(flags);
2794	tx->plcp = rate2plcp(rate);
2795	tx->id = WPI_ID_BROADCAST;
2796	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2797	tx->rts_ntries = params->ibp_try1;
2798	tx->data_ntries = params->ibp_try0;
2799
2800	tx_data.ni = ni;
2801	tx_data.m = m;
2802	tx_data.size = sizeof(struct wpi_cmd_data);
2803	tx_data.code = WPI_CMD_TX_DATA;
2804	tx_data.ac = ac;
2805
2806	return wpi_cmd2(sc, &tx_data);
2807}
2808
2809static int
2810wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2811    const struct ieee80211_bpf_params *params)
2812{
2813	struct ieee80211com *ic = ni->ni_ic;
2814	struct ifnet *ifp = ic->ic_ifp;
2815	struct wpi_softc *sc = ifp->if_softc;
2816	int error = 0;
2817
2818	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2819
2820	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2821		ieee80211_free_node(ni);
2822		m_freem(m);
2823		return ENETDOWN;
2824	}
2825
2826	WPI_LOCK(sc);
2827	if (params == NULL) {
2828		/*
2829		 * Legacy path; interpret frame contents to decide
2830		 * precisely how to send the frame.
2831		 */
2832		error = wpi_tx_data(sc, m, ni);
2833	} else {
2834		/*
2835		 * Caller supplied explicit parameters to use in
2836		 * sending the frame.
2837		 */
2838		error = wpi_tx_data_raw(sc, m, ni, params);
2839	}
2840	WPI_UNLOCK(sc);
2841
2842	if (error != 0) {
2843		/* NB: m is reclaimed on tx failure */
2844		ieee80211_free_node(ni);
2845		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2846
2847		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
2848
2849		return error;
2850	}
2851
2852	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2853
2854	return 0;
2855}
2856
2857/**
2858 * Process data waiting to be sent on the IFNET output queue
2859 */
2860static void
2861wpi_start(struct ifnet *ifp)
2862{
2863	struct wpi_softc *sc = ifp->if_softc;
2864	struct ieee80211_node *ni;
2865	struct mbuf *m;
2866
2867	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: called\n", __func__);
2868
2869	IF_LOCK(&ifp->if_snd);
2870	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
2871	    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
2872		IF_UNLOCK(&ifp->if_snd);
2873		return;
2874	}
2875	IF_UNLOCK(&ifp->if_snd);
2876
2877	WPI_LOCK(sc);
2878	for (;;) {
2879		if (sc->qfullmsk != 0) {
2880			IF_LOCK(&ifp->if_snd);
2881			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2882			IF_UNLOCK(&ifp->if_snd);
2883			break;
2884		}
2885		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2886		if (m == NULL)
2887			break;
2888		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
2889		if (wpi_tx_data(sc, m, ni) != 0) {
2890			WPI_UNLOCK(sc);
2891			ieee80211_free_node(ni);
2892			WPI_LOCK(sc);
2893			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2894		}
2895	}
2896	WPI_UNLOCK(sc);
2897
2898	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: done\n", __func__);
2899}
2900
2901static void
2902wpi_start_task(void *arg0, int pending)
2903{
2904	struct wpi_softc *sc = arg0;
2905	struct ifnet *ifp = sc->sc_ifp;
2906
2907	wpi_start(ifp);
2908}
2909
2910static void
2911wpi_watchdog_rfkill(void *arg)
2912{
2913	struct wpi_softc *sc = arg;
2914	struct ifnet *ifp = sc->sc_ifp;
2915	struct ieee80211com *ic = ifp->if_l2com;
2916
2917	DPRINTF(sc, WPI_DEBUG_WATCHDOG, "RFkill Watchdog: tick\n");
2918
2919	/* No need to lock firmware memory. */
2920	if ((wpi_prph_read(sc, WPI_APMG_RFKILL) & 0x1) == 0) {
2921		/* Radio kill switch is still off. */
2922		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
2923		    sc);
2924	} else
2925		ieee80211_runtask(ic, &sc->sc_radioon_task);
2926}
2927
2928static void
2929wpi_scan_timeout(void *arg)
2930{
2931	struct wpi_softc *sc = arg;
2932	struct ifnet *ifp = sc->sc_ifp;
2933	struct ieee80211com *ic = ifp->if_l2com;
2934
2935	if_printf(ifp, "scan timeout\n");
2936	ieee80211_runtask(ic, &sc->sc_reinittask);
2937}
2938
2939/**
2940 * Called every second, wpi_watchdog used by the watch dog timer
2941 * to check that the card is still alive
2942 */
2943static void
2944wpi_watchdog(void *arg)
2945{
2946	struct wpi_softc *sc = arg;
2947	struct ifnet *ifp = sc->sc_ifp;
2948	struct ieee80211com *ic = ifp->if_l2com;
2949
2950	DPRINTF(sc, WPI_DEBUG_WATCHDOG, "Watchdog: tick\n");
2951
2952	if (sc->sc_tx_timer > 0) {
2953		if (--sc->sc_tx_timer == 0) {
2954			if_printf(ifp, "device timeout\n");
2955			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2956			ieee80211_runtask(ic, &sc->sc_reinittask);
2957		}
2958	}
2959
2960	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2961		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2962}
2963
2964static int
2965wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2966{
2967	struct wpi_softc *sc = ifp->if_softc;
2968	struct ieee80211com *ic = ifp->if_l2com;
2969	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2970	struct ifreq *ifr = (struct ifreq *) data;
2971	int error = 0;
2972
2973	switch (cmd) {
2974	case SIOCGIFADDR:
2975		error = ether_ioctl(ifp, cmd, data);
2976		break;
2977	case SIOCSIFFLAGS:
2978		if (ifp->if_flags & IFF_UP) {
2979			wpi_init(sc);
2980
2981			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 &&
2982			    vap != NULL)
2983				ieee80211_stop(vap);
2984		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2985			wpi_stop(sc);
2986		break;
2987	case SIOCGIFMEDIA:
2988		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2989		break;
2990	default:
2991		error = EINVAL;
2992		break;
2993	}
2994	return error;
2995}
2996
2997/*
2998 * Send a command to the firmware.
2999 */
3000static int
3001wpi_cmd(struct wpi_softc *sc, int code, const void *buf, size_t size,
3002    int async)
3003{
3004	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
3005	struct wpi_tx_desc *desc;
3006	struct wpi_tx_data *data;
3007	struct wpi_tx_cmd *cmd;
3008	struct mbuf *m;
3009	bus_addr_t paddr;
3010	int totlen, error;
3011
3012	WPI_TXQ_LOCK(sc);
3013
3014	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3015
3016	if (sc->txq_active == 0) {
3017		/* wpi_stop() was called */
3018		error = 0;
3019		goto fail;
3020	}
3021
3022	if (async == 0)
3023		WPI_LOCK_ASSERT(sc);
3024
3025	DPRINTF(sc, WPI_DEBUG_CMD, "%s: cmd %s size %zu async %d\n",
3026	    __func__, wpi_cmd_str(code), size, async);
3027
3028	desc = &ring->desc[ring->cur];
3029	data = &ring->data[ring->cur];
3030	totlen = 4 + size;
3031
3032	if (size > sizeof cmd->data) {
3033		/* Command is too large to fit in a descriptor. */
3034		if (totlen > MCLBYTES) {
3035			error = EINVAL;
3036			goto fail;
3037		}
3038		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
3039		if (m == NULL) {
3040			error = ENOMEM;
3041			goto fail;
3042		}
3043		cmd = mtod(m, struct wpi_tx_cmd *);
3044		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
3045		    totlen, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3046		if (error != 0) {
3047			m_freem(m);
3048			goto fail;
3049		}
3050		data->m = m;
3051	} else {
3052		cmd = &ring->cmd[ring->cur];
3053		paddr = data->cmd_paddr;
3054	}
3055
3056	cmd->code = code;
3057	cmd->flags = 0;
3058	cmd->qid = ring->qid;
3059	cmd->idx = ring->cur;
3060	memcpy(cmd->data, buf, size);
3061
3062	desc->nsegs = 1 + (WPI_PAD32(size) << 4);
3063	desc->segs[0].addr = htole32(paddr);
3064	desc->segs[0].len  = htole32(totlen);
3065
3066	if (size > sizeof cmd->data) {
3067		bus_dmamap_sync(ring->data_dmat, data->map,
3068		    BUS_DMASYNC_PREWRITE);
3069	} else {
3070		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3071		    BUS_DMASYNC_PREWRITE);
3072	}
3073	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3074	    BUS_DMASYNC_PREWRITE);
3075
3076	/* Kick command ring. */
3077	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
3078	wpi_update_tx_ring(sc, ring);
3079
3080	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3081
3082	WPI_TXQ_UNLOCK(sc);
3083
3084	if (async)
3085		return 0;
3086
3087	return mtx_sleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
3088
3089fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3090
3091	WPI_TXQ_UNLOCK(sc);
3092
3093	return error;
3094}
3095
3096/*
3097 * Configure HW multi-rate retries.
3098 */
3099static int
3100wpi_mrr_setup(struct wpi_softc *sc)
3101{
3102	struct ifnet *ifp = sc->sc_ifp;
3103	struct ieee80211com *ic = ifp->if_l2com;
3104	struct wpi_mrr_setup mrr;
3105	int i, error;
3106
3107	/* CCK rates (not used with 802.11a). */
3108	for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) {
3109		mrr.rates[i].flags = 0;
3110		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3111		/* Fallback to the immediate lower CCK rate (if any.) */
3112		mrr.rates[i].next =
3113		    (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1;
3114		/* Try one time at this rate before falling back to "next". */
3115		mrr.rates[i].ntries = 1;
3116	}
3117	/* OFDM rates (not used with 802.11b). */
3118	for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) {
3119		mrr.rates[i].flags = 0;
3120		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3121		/* Fallback to the immediate lower rate (if any.) */
3122		/* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */
3123		mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ?
3124		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
3125			WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) :
3126		    i - 1;
3127		/* Try one time at this rate before falling back to "next". */
3128		mrr.rates[i].ntries = 1;
3129	}
3130	/* Setup MRR for control frames. */
3131	mrr.which = htole32(WPI_MRR_CTL);
3132	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3133	if (error != 0) {
3134		device_printf(sc->sc_dev,
3135		    "could not setup MRR for control frames\n");
3136		return error;
3137	}
3138	/* Setup MRR for data frames. */
3139	mrr.which = htole32(WPI_MRR_DATA);
3140	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3141	if (error != 0) {
3142		device_printf(sc->sc_dev,
3143		    "could not setup MRR for data frames\n");
3144		return error;
3145	}
3146	return 0;
3147}
3148
3149static int
3150wpi_add_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3151{
3152	struct ieee80211com *ic = ni->ni_ic;
3153	struct wpi_vap *wvp = WPI_VAP(ni->ni_vap);
3154	struct wpi_node *wn = WPI_NODE(ni);
3155	struct wpi_node_info node;
3156	int error;
3157
3158	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3159
3160	if (wn->id == WPI_ID_UNDEFINED)
3161		return EINVAL;
3162
3163	memset(&node, 0, sizeof node);
3164	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3165	node.id = wn->id;
3166	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3167	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3168	node.action = htole32(WPI_ACTION_SET_RATE);
3169	node.antenna = WPI_ANTENNA_BOTH;
3170
3171	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding node %d (%s)\n", __func__,
3172	    wn->id, ether_sprintf(ni->ni_macaddr));
3173
3174	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
3175	if (error != 0) {
3176		device_printf(sc->sc_dev,
3177		    "%s: wpi_cmd() call failed with error code %d\n", __func__,
3178		    error);
3179		return error;
3180	}
3181
3182	if (wvp->wv_gtk != 0) {
3183		error = wpi_set_global_keys(ni);
3184		if (error != 0) {
3185			device_printf(sc->sc_dev,
3186			    "%s: error while setting global keys\n", __func__);
3187			return ENXIO;
3188		}
3189	}
3190
3191	return 0;
3192}
3193
3194/*
3195 * Broadcast node is used to send group-addressed and management frames.
3196 */
3197static int
3198wpi_add_broadcast_node(struct wpi_softc *sc, int async)
3199{
3200	struct ifnet *ifp = sc->sc_ifp;
3201	struct ieee80211com *ic = ifp->if_l2com;
3202	struct wpi_node_info node;
3203
3204	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3205
3206	memset(&node, 0, sizeof node);
3207	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
3208	node.id = WPI_ID_BROADCAST;
3209	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3210	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3211	node.action = htole32(WPI_ACTION_SET_RATE);
3212	node.antenna = WPI_ANTENNA_BOTH;
3213
3214	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding broadcast node\n", __func__);
3215
3216	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, async);
3217}
3218
3219static int
3220wpi_add_sta_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3221{
3222	struct wpi_node *wn = WPI_NODE(ni);
3223	int error;
3224
3225	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3226
3227	wn->id = wpi_add_node_entry_sta(sc);
3228
3229	if ((error = wpi_add_node(sc, ni)) != 0) {
3230		wpi_del_node_entry(sc, wn->id);
3231		wn->id = WPI_ID_UNDEFINED;
3232		return error;
3233	}
3234
3235	return 0;
3236}
3237
3238static int
3239wpi_add_ibss_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3240{
3241	struct wpi_node *wn = WPI_NODE(ni);
3242	int error;
3243
3244	KASSERT(wn->id == WPI_ID_UNDEFINED,
3245	    ("the node %d was added before", wn->id));
3246
3247	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3248
3249	if ((wn->id = wpi_add_node_entry_adhoc(sc)) == WPI_ID_UNDEFINED) {
3250		device_printf(sc->sc_dev, "%s: h/w table is full\n", __func__);
3251		return ENOMEM;
3252	}
3253
3254	if ((error = wpi_add_node(sc, ni)) != 0) {
3255		wpi_del_node_entry(sc, wn->id);
3256		wn->id = WPI_ID_UNDEFINED;
3257		return error;
3258	}
3259
3260	return 0;
3261}
3262
3263static void
3264wpi_del_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3265{
3266	struct wpi_node *wn = WPI_NODE(ni);
3267	struct wpi_cmd_del_node node;
3268	int error;
3269
3270	KASSERT(wn->id != WPI_ID_UNDEFINED, ("undefined node id passed"));
3271
3272	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3273
3274	memset(&node, 0, sizeof node);
3275	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3276	node.count = 1;
3277
3278	DPRINTF(sc, WPI_DEBUG_NODE, "%s: deleting node %d (%s)\n", __func__,
3279	    wn->id, ether_sprintf(ni->ni_macaddr));
3280
3281	error = wpi_cmd(sc, WPI_CMD_DEL_NODE, &node, sizeof node, 1);
3282	if (error != 0) {
3283		device_printf(sc->sc_dev,
3284		    "%s: could not delete node %u, error %d\n", __func__,
3285		    wn->id, error);
3286	}
3287}
3288
3289static int
3290wpi_updateedca(struct ieee80211com *ic)
3291{
3292#define WPI_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3293	struct wpi_softc *sc = ic->ic_ifp->if_softc;
3294	struct wpi_edca_params cmd;
3295	int aci, error;
3296
3297	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3298
3299	memset(&cmd, 0, sizeof cmd);
3300	cmd.flags = htole32(WPI_EDCA_UPDATE);
3301	for (aci = 0; aci < WME_NUM_AC; aci++) {
3302		const struct wmeParams *ac =
3303		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
3304		cmd.ac[aci].aifsn = ac->wmep_aifsn;
3305		cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->wmep_logcwmin));
3306		cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->wmep_logcwmax));
3307		cmd.ac[aci].txoplimit =
3308		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
3309
3310		DPRINTF(sc, WPI_DEBUG_EDCA,
3311		    "setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
3312		    "txoplimit=%d\n", aci, cmd.ac[aci].aifsn,
3313		    cmd.ac[aci].cwmin, cmd.ac[aci].cwmax,
3314		    cmd.ac[aci].txoplimit);
3315	}
3316	error = wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
3317
3318	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3319
3320	return error;
3321#undef WPI_EXP2
3322}
3323
3324static void
3325wpi_set_promisc(struct wpi_softc *sc)
3326{
3327	struct ifnet *ifp = sc->sc_ifp;
3328	struct ieee80211com *ic = ifp->if_l2com;
3329	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3330	uint32_t promisc_filter;
3331
3332	promisc_filter = WPI_FILTER_CTL;
3333	if (vap != NULL && vap->iv_opmode != IEEE80211_M_HOSTAP)
3334		promisc_filter |= WPI_FILTER_PROMISC;
3335
3336	if (ifp->if_flags & IFF_PROMISC)
3337		sc->rxon.filter |= htole32(promisc_filter);
3338	else
3339		sc->rxon.filter &= ~htole32(promisc_filter);
3340}
3341
3342static void
3343wpi_update_promisc(struct ifnet *ifp)
3344{
3345	struct wpi_softc *sc = ifp->if_softc;
3346
3347	WPI_LOCK(sc);
3348	wpi_set_promisc(sc);
3349
3350	if (wpi_send_rxon(sc, 1, 1) != 0) {
3351		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3352		    __func__);
3353	}
3354	WPI_UNLOCK(sc);
3355}
3356
3357static void
3358wpi_update_mcast(struct ifnet *ifp)
3359{
3360	/* Ignore */
3361}
3362
3363static void
3364wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3365{
3366	struct wpi_cmd_led led;
3367
3368	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3369
3370	led.which = which;
3371	led.unit = htole32(100000);	/* on/off in unit of 100ms */
3372	led.off = off;
3373	led.on = on;
3374	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
3375}
3376
3377static int
3378wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni)
3379{
3380	struct wpi_cmd_timing cmd;
3381	uint64_t val, mod;
3382
3383	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3384
3385	memset(&cmd, 0, sizeof cmd);
3386	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3387	cmd.bintval = htole16(ni->ni_intval);
3388	cmd.lintval = htole16(10);
3389
3390	/* Compute remaining time until next beacon. */
3391	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
3392	mod = le64toh(cmd.tstamp) % val;
3393	cmd.binitval = htole32((uint32_t)(val - mod));
3394
3395	DPRINTF(sc, WPI_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
3396	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
3397
3398	return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1);
3399}
3400
3401/*
3402 * This function is called periodically (every 60 seconds) to adjust output
3403 * power to temperature changes.
3404 */
3405static void
3406wpi_power_calibration(struct wpi_softc *sc)
3407{
3408	int temp;
3409
3410	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3411
3412	/* Update sensor data. */
3413	temp = (int)WPI_READ(sc, WPI_UCODE_GP2);
3414	DPRINTF(sc, WPI_DEBUG_TEMP, "Temp in calibration is: %d\n", temp);
3415
3416	/* Sanity-check read value. */
3417	if (temp < -260 || temp > 25) {
3418		/* This can't be correct, ignore. */
3419		DPRINTF(sc, WPI_DEBUG_TEMP,
3420		    "out-of-range temperature reported: %d\n", temp);
3421		return;
3422	}
3423
3424	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d->%d\n", sc->temp, temp);
3425
3426	/* Adjust Tx power if need be. */
3427	if (abs(temp - sc->temp) <= 6)
3428		return;
3429
3430	sc->temp = temp;
3431
3432	if (wpi_set_txpower(sc, 1) != 0) {
3433		/* just warn, too bad for the automatic calibration... */
3434		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3435	}
3436}
3437
3438/*
3439 * Set TX power for current channel.
3440 */
3441static int
3442wpi_set_txpower(struct wpi_softc *sc, int async)
3443{
3444	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3445	struct ieee80211_channel *ch;
3446	struct wpi_power_group *group;
3447	struct wpi_cmd_txpower cmd;
3448	uint8_t chan;
3449	int idx, i;
3450
3451	/* Retrieve current channel from last RXON. */
3452	chan = sc->rxon.chan;
3453	ch = &ic->ic_channels[chan];
3454
3455	/* Find the TX power group to which this channel belongs. */
3456	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3457		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3458			if (chan <= group->chan)
3459				break;
3460	} else
3461		group = &sc->groups[0];
3462
3463	memset(&cmd, 0, sizeof cmd);
3464	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3465	cmd.chan = htole16(chan);
3466
3467	/* Set TX power for all OFDM and CCK rates. */
3468	for (i = 0; i <= WPI_RIDX_MAX ; i++) {
3469		/* Retrieve TX power for this channel/rate. */
3470		idx = wpi_get_power_index(sc, group, ch, i);
3471
3472		cmd.rates[i].plcp = wpi_ridx_to_plcp[i];
3473
3474		if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3475			cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
3476			cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
3477		} else {
3478			cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
3479			cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
3480		}
3481		DPRINTF(sc, WPI_DEBUG_TEMP,
3482		    "chan %d/ridx %d: power index %d\n", chan, i, idx);
3483	}
3484
3485	return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async);
3486}
3487
3488/*
3489 * Determine Tx power index for a given channel/rate combination.
3490 * This takes into account the regulatory information from EEPROM and the
3491 * current temperature.
3492 */
3493static int
3494wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3495    struct ieee80211_channel *c, int ridx)
3496{
3497/* Fixed-point arithmetic division using a n-bit fractional part. */
3498#define fdivround(a, b, n)	\
3499	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3500
3501/* Linear interpolation. */
3502#define interpolate(x, x1, y1, x2, y2, n)	\
3503	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3504
3505	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3506	struct wpi_power_sample *sample;
3507	int pwr, idx;
3508	u_int chan;
3509
3510	/* Get channel number. */
3511	chan = ieee80211_chan2ieee(ic, c);
3512
3513	/* Default TX power is group maximum TX power minus 3dB. */
3514	pwr = group->maxpwr / 2;
3515
3516	/* Decrease TX power for highest OFDM rates to reduce distortion. */
3517	switch (ridx) {
3518	case WPI_RIDX_OFDM36:
3519		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3520		break;
3521	case WPI_RIDX_OFDM48:
3522		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3523		break;
3524	case WPI_RIDX_OFDM54:
3525		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3526		break;
3527	}
3528
3529	/* Never exceed the channel maximum allowed TX power. */
3530	pwr = min(pwr, sc->maxpwr[chan]);
3531
3532	/* Retrieve TX power index into gain tables from samples. */
3533	for (sample = group->samples; sample < &group->samples[3]; sample++)
3534		if (pwr > sample[1].power)
3535			break;
3536	/* Fixed-point linear interpolation using a 19-bit fractional part. */
3537	idx = interpolate(pwr, sample[0].power, sample[0].index,
3538	    sample[1].power, sample[1].index, 19);
3539
3540	/*-
3541	 * Adjust power index based on current temperature:
3542	 * - if cooler than factory-calibrated: decrease output power
3543	 * - if warmer than factory-calibrated: increase output power
3544	 */
3545	idx -= (sc->temp - group->temp) * 11 / 100;
3546
3547	/* Decrease TX power for CCK rates (-5dB). */
3548	if (ridx >= WPI_RIDX_CCK1)
3549		idx += 10;
3550
3551	/* Make sure idx stays in a valid range. */
3552	if (idx < 0)
3553		return 0;
3554	if (idx > WPI_MAX_PWR_INDEX)
3555		return WPI_MAX_PWR_INDEX;
3556	return idx;
3557
3558#undef interpolate
3559#undef fdivround
3560}
3561
3562/*
3563 * Set STA mode power saving level (between 0 and 5).
3564 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
3565 */
3566static int
3567wpi_set_pslevel(struct wpi_softc *sc, uint8_t dtim, int level, int async)
3568{
3569	struct wpi_pmgt_cmd cmd;
3570	const struct wpi_pmgt *pmgt;
3571	uint32_t max, skip_dtim;
3572	uint32_t reg;
3573	int i;
3574
3575	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
3576	    "%s: dtim=%d, level=%d, async=%d\n",
3577	    __func__, dtim, level, async);
3578
3579	/* Select which PS parameters to use. */
3580	if (dtim <= 10)
3581		pmgt = &wpi_pmgt[0][level];
3582	else
3583		pmgt = &wpi_pmgt[1][level];
3584
3585	memset(&cmd, 0, sizeof cmd);
3586	if (level != 0)	/* not CAM */
3587		cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP);
3588	/* Retrieve PCIe Active State Power Management (ASPM). */
3589	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
3590	if (!(reg & 0x1))	/* L0s Entry disabled. */
3591		cmd.flags |= htole16(WPI_PS_PCI_PMGT);
3592
3593	cmd.rxtimeout = htole32(pmgt->rxtimeout * IEEE80211_DUR_TU);
3594	cmd.txtimeout = htole32(pmgt->txtimeout * IEEE80211_DUR_TU);
3595
3596	if (dtim == 0) {
3597		dtim = 1;
3598		skip_dtim = 0;
3599	} else
3600		skip_dtim = pmgt->skip_dtim;
3601
3602	if (skip_dtim != 0) {
3603		cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM);
3604		max = pmgt->intval[4];
3605		if (max == (uint32_t)-1)
3606			max = dtim * (skip_dtim + 1);
3607		else if (max > dtim)
3608			max = (max / dtim) * dtim;
3609	} else
3610		max = dtim;
3611
3612	for (i = 0; i < 5; i++)
3613		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
3614
3615	return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
3616}
3617
3618static int
3619wpi_send_btcoex(struct wpi_softc *sc)
3620{
3621	struct wpi_bluetooth cmd;
3622
3623	memset(&cmd, 0, sizeof cmd);
3624	cmd.flags = WPI_BT_COEX_MODE_4WIRE;
3625	cmd.lead_time = WPI_BT_LEAD_TIME_DEF;
3626	cmd.max_kill = WPI_BT_MAX_KILL_DEF;
3627	DPRINTF(sc, WPI_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
3628	    __func__);
3629	return wpi_cmd(sc, WPI_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
3630}
3631
3632static int
3633wpi_send_rxon(struct wpi_softc *sc, int assoc, int async)
3634{
3635	int error;
3636
3637	if (assoc && (sc->rxon.filter & htole32(WPI_FILTER_BSS))) {
3638		struct wpi_assoc rxon_assoc;
3639
3640		rxon_assoc.flags = sc->rxon.flags;
3641		rxon_assoc.filter = sc->rxon.filter;
3642		rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask;
3643		rxon_assoc.cck_mask = sc->rxon.cck_mask;
3644		rxon_assoc.reserved = 0;
3645
3646		error = wpi_cmd(sc, WPI_CMD_RXON_ASSOC, &rxon_assoc,
3647		    sizeof (struct wpi_assoc), async);
3648		if (error != 0) {
3649			device_printf(sc->sc_dev,
3650			    "RXON_ASSOC command failed, error %d\n", error);
3651			return error;
3652		}
3653	} else {
3654		if (async) {
3655			WPI_NT_LOCK(sc);
3656			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3657			    sizeof (struct wpi_rxon), async);
3658			if (error == 0)
3659				wpi_clear_node_table(sc);
3660			WPI_NT_UNLOCK(sc);
3661		} else {
3662			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3663			    sizeof (struct wpi_rxon), async);
3664			if (error == 0)
3665				wpi_clear_node_table(sc);
3666		}
3667
3668		if (error != 0) {
3669			device_printf(sc->sc_dev,
3670			    "RXON command failed, error %d\n", error);
3671			return error;
3672		}
3673
3674		/* Add broadcast node. */
3675		error = wpi_add_broadcast_node(sc, async);
3676		if (error != 0) {
3677			device_printf(sc->sc_dev,
3678			    "could not add broadcast node, error %d\n", error);
3679			return error;
3680		}
3681	}
3682
3683	/* Configuration has changed, set Tx power accordingly. */
3684	if ((error = wpi_set_txpower(sc, async)) != 0) {
3685		device_printf(sc->sc_dev,
3686		    "%s: could not set TX power, error %d\n", __func__, error);
3687		return error;
3688	}
3689
3690	return 0;
3691}
3692
3693/**
3694 * Configure the card to listen to a particular channel, this transisions the
3695 * card in to being able to receive frames from remote devices.
3696 */
3697static int
3698wpi_config(struct wpi_softc *sc)
3699{
3700	struct ifnet *ifp = sc->sc_ifp;
3701	struct ieee80211com *ic = ifp->if_l2com;
3702	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3703	uint32_t flags;
3704	int error;
3705
3706	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3707
3708	/* Set power saving level to CAM during initialization. */
3709	if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) {
3710		device_printf(sc->sc_dev,
3711		    "%s: could not set power saving level\n", __func__);
3712		return error;
3713	}
3714
3715	/* Configure bluetooth coexistence. */
3716	if ((error = wpi_send_btcoex(sc)) != 0) {
3717		device_printf(sc->sc_dev,
3718		    "could not configure bluetooth coexistence\n");
3719		return error;
3720	}
3721
3722	/* Configure adapter. */
3723	memset(&sc->rxon, 0, sizeof (struct wpi_rxon));
3724	IEEE80211_ADDR_COPY(sc->rxon.myaddr, vap->iv_myaddr);
3725
3726	/* Set default channel. */
3727	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
3728	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3729	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
3730		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3731
3732	sc->rxon.filter = WPI_FILTER_MULTICAST;
3733	switch (ic->ic_opmode) {
3734	case IEEE80211_M_STA:
3735		sc->rxon.mode = WPI_MODE_STA;
3736		break;
3737	case IEEE80211_M_IBSS:
3738		sc->rxon.mode = WPI_MODE_IBSS;
3739		sc->rxon.filter |= WPI_FILTER_BEACON;
3740		break;
3741	case IEEE80211_M_HOSTAP:
3742		/* XXX workaround for beaconing */
3743		sc->rxon.mode = WPI_MODE_IBSS;
3744		sc->rxon.filter |= WPI_FILTER_ASSOC | WPI_FILTER_PROMISC;
3745		break;
3746	case IEEE80211_M_AHDEMO:
3747		/* XXX workaround for passive channels selection */
3748		sc->rxon.mode = WPI_MODE_HOSTAP;
3749		break;
3750	case IEEE80211_M_MONITOR:
3751		sc->rxon.mode = WPI_MODE_MONITOR;
3752		break;
3753	default:
3754		device_printf(sc->sc_dev, "unknown opmode %d\n",
3755		    ic->ic_opmode);
3756		return EINVAL;
3757	}
3758	sc->rxon.filter = htole32(sc->rxon.filter);
3759	wpi_set_promisc(sc);
3760	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
3761	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
3762
3763	if ((error = wpi_send_rxon(sc, 0, 0)) != 0) {
3764		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3765		    __func__);
3766		return error;
3767	}
3768
3769	/* Setup rate scalling. */
3770	if ((error = wpi_mrr_setup(sc)) != 0) {
3771		device_printf(sc->sc_dev, "could not setup MRR, error %d\n",
3772		    error);
3773		return error;
3774	}
3775
3776	/* Disable beacon notifications (unused). */
3777	flags = WPI_STATISTICS_BEACON_DISABLE;
3778	error = wpi_cmd(sc, WPI_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3779	if (error != 0) {
3780		device_printf(sc->sc_dev,
3781		    "could not disable beacon statistics, error %d\n", error);
3782		return error;
3783	}
3784
3785	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3786
3787	return 0;
3788}
3789
3790static uint16_t
3791wpi_get_active_dwell_time(struct wpi_softc *sc,
3792    struct ieee80211_channel *c, uint8_t n_probes)
3793{
3794	/* No channel? Default to 2GHz settings. */
3795	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
3796		return (WPI_ACTIVE_DWELL_TIME_2GHZ +
3797		WPI_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
3798	}
3799
3800	/* 5GHz dwell time. */
3801	return (WPI_ACTIVE_DWELL_TIME_5GHZ +
3802	    WPI_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
3803}
3804
3805/*
3806 * Limit the total dwell time to 85% of the beacon interval.
3807 *
3808 * Returns the dwell time in milliseconds.
3809 */
3810static uint16_t
3811wpi_limit_dwell(struct wpi_softc *sc, uint16_t dwell_time)
3812{
3813	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3814	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3815	int bintval = 0;
3816
3817	/* bintval is in TU (1.024mS) */
3818	if (vap != NULL)
3819		bintval = vap->iv_bss->ni_intval;
3820
3821	/*
3822	 * If it's non-zero, we should calculate the minimum of
3823	 * it and the DWELL_BASE.
3824	 *
3825	 * XXX Yes, the math should take into account that bintval
3826	 * is 1.024mS, not 1mS..
3827	 */
3828	if (bintval > 0) {
3829		DPRINTF(sc, WPI_DEBUG_SCAN, "%s: bintval=%d\n", __func__,
3830		    bintval);
3831		return (MIN(WPI_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
3832	}
3833
3834	/* No association context? Default. */
3835	return (WPI_PASSIVE_DWELL_BASE);
3836}
3837
3838static uint16_t
3839wpi_get_passive_dwell_time(struct wpi_softc *sc, struct ieee80211_channel *c)
3840{
3841	uint16_t passive;
3842
3843	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c))
3844		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_2GHZ;
3845	else
3846		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_5GHZ;
3847
3848	/* Clamp to the beacon interval if we're associated. */
3849	return (wpi_limit_dwell(sc, passive));
3850}
3851
3852/*
3853 * Send a scan request to the firmware.
3854 */
3855static int
3856wpi_scan(struct wpi_softc *sc, struct ieee80211_channel *c)
3857{
3858	struct ifnet *ifp = sc->sc_ifp;
3859	struct ieee80211com *ic = ifp->if_l2com;
3860	struct ieee80211_scan_state *ss = ic->ic_scan;
3861	struct ieee80211vap *vap = ss->ss_vap;
3862	struct wpi_scan_hdr *hdr;
3863	struct wpi_cmd_data *tx;
3864	struct wpi_scan_essid *essids;
3865	struct wpi_scan_chan *chan;
3866	struct ieee80211_frame *wh;
3867	struct ieee80211_rateset *rs;
3868	uint16_t dwell_active, dwell_passive;
3869	uint8_t *buf, *frm;
3870	int buflen, error, i, nssid;
3871
3872	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3873
3874	/*
3875	 * We are absolutely not allowed to send a scan command when another
3876	 * scan command is pending.
3877	 */
3878	if (callout_pending(&sc->scan_timeout)) {
3879		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
3880		    __func__);
3881
3882		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3883
3884		return (EAGAIN);
3885	}
3886
3887	buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
3888	if (buf == NULL) {
3889		device_printf(sc->sc_dev,
3890		    "%s: could not allocate buffer for scan command\n",
3891		    __func__);
3892		error = ENOMEM;
3893		goto fail;
3894	}
3895	hdr = (struct wpi_scan_hdr *)buf;
3896
3897	/*
3898	 * Move to the next channel if no packets are received within 10 msecs
3899	 * after sending the probe request.
3900	 */
3901	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
3902	hdr->quiet_threshold = htole16(1);	/* min # of packets */
3903	/*
3904	 * Max needs to be greater than active and passive and quiet!
3905	 * It's also in microseconds!
3906	 */
3907	hdr->max_svc = htole32(250 * IEEE80211_DUR_TU);
3908	hdr->pause_svc = htole32((4 << 24) |
3909	    (100 * IEEE80211_DUR_TU));	/* Hardcode for now */
3910	hdr->filter = htole32(WPI_FILTER_MULTICAST | WPI_FILTER_BEACON);
3911
3912	tx = (struct wpi_cmd_data *)(hdr + 1);
3913	tx->flags = htole32(WPI_TX_AUTO_SEQ);
3914	tx->id = WPI_ID_BROADCAST;
3915	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
3916
3917	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3918		/* Send probe requests at 6Mbps. */
3919		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_OFDM6];
3920		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
3921	} else {
3922		hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO);
3923		/* Send probe requests at 1Mbps. */
3924		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3925		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
3926	}
3927
3928	essids = (struct wpi_scan_essid *)(tx + 1);
3929	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
3930	for (i = 0; i < nssid; i++) {
3931		essids[i].id = IEEE80211_ELEMID_SSID;
3932		essids[i].len = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN);
3933		memcpy(essids[i].data, ss->ss_ssid[i].ssid, essids[i].len);
3934#ifdef WPI_DEBUG
3935		if (sc->sc_debug & WPI_DEBUG_SCAN) {
3936			printf("Scanning Essid: ");
3937			ieee80211_print_essid(essids[i].data, essids[i].len);
3938			printf("\n");
3939		}
3940#endif
3941	}
3942
3943	/*
3944	 * Build a probe request frame.  Most of the following code is a
3945	 * copy & paste of what is done in net80211.
3946	 */
3947	wh = (struct ieee80211_frame *)(essids + WPI_SCAN_MAX_ESSIDS);
3948	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3949		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
3950	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3951	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3952	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3953	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
3954	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
3955	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
3956
3957	frm = (uint8_t *)(wh + 1);
3958	frm = ieee80211_add_ssid(frm, NULL, 0);
3959	frm = ieee80211_add_rates(frm, rs);
3960	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
3961		frm = ieee80211_add_xrates(frm, rs);
3962
3963	/* Set length of probe request. */
3964	tx->len = htole16(frm - (uint8_t *)wh);
3965
3966	/*
3967	 * Construct information about the channel that we
3968	 * want to scan. The firmware expects this to be directly
3969	 * after the scan probe request
3970	 */
3971	chan = (struct wpi_scan_chan *)frm;
3972	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
3973	chan->flags = 0;
3974	if (nssid) {
3975		hdr->crc_threshold = WPI_SCAN_CRC_TH_DEFAULT;
3976		chan->flags |= WPI_CHAN_NPBREQS(nssid);
3977	} else
3978		hdr->crc_threshold = WPI_SCAN_CRC_TH_NEVER;
3979
3980	if (!IEEE80211_IS_CHAN_PASSIVE(c))
3981		chan->flags |= WPI_CHAN_ACTIVE;
3982
3983	/*
3984	 * Calculate the active/passive dwell times.
3985	 */
3986
3987	dwell_active = wpi_get_active_dwell_time(sc, c, nssid);
3988	dwell_passive = wpi_get_passive_dwell_time(sc, c);
3989
3990	/* Make sure they're valid. */
3991	if (dwell_passive <= dwell_active)
3992		dwell_passive = dwell_active + 1;
3993
3994	chan->active = htole16(dwell_active);
3995	chan->passive = htole16(dwell_passive);
3996
3997	chan->dsp_gain = 0x6e;  /* Default level */
3998
3999	if (IEEE80211_IS_CHAN_5GHZ(c))
4000		chan->rf_gain = 0x3b;
4001	else
4002		chan->rf_gain = 0x28;
4003
4004	DPRINTF(sc, WPI_DEBUG_SCAN, "Scanning %u Passive: %d\n",
4005	    chan->chan, IEEE80211_IS_CHAN_PASSIVE(c));
4006
4007	hdr->nchan++;
4008	chan++;
4009
4010	buflen = (uint8_t *)chan - buf;
4011	hdr->len = htole16(buflen);
4012
4013	DPRINTF(sc, WPI_DEBUG_CMD, "sending scan command nchan=%d\n",
4014	    hdr->nchan);
4015	error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1);
4016	free(buf, M_DEVBUF);
4017
4018	if (error != 0)
4019		goto fail;
4020
4021	callout_reset(&sc->scan_timeout, 5*hz, wpi_scan_timeout, sc);
4022
4023	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4024
4025	return 0;
4026
4027fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
4028
4029	return error;
4030}
4031
4032static int
4033wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
4034{
4035	struct ieee80211com *ic = vap->iv_ic;
4036	struct ieee80211_node *ni = vap->iv_bss;
4037	int error;
4038
4039	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4040
4041	/* Update adapter configuration. */
4042	sc->rxon.associd = 0;
4043	sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
4044	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4045	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4046	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4047	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4048		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4049	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4050		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4051	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4052		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4053	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
4054		sc->rxon.cck_mask  = 0;
4055		sc->rxon.ofdm_mask = 0x15;
4056	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
4057		sc->rxon.cck_mask  = 0x03;
4058		sc->rxon.ofdm_mask = 0;
4059	} else {
4060		/* Assume 802.11b/g. */
4061		sc->rxon.cck_mask  = 0x0f;
4062		sc->rxon.ofdm_mask = 0x15;
4063	}
4064
4065	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
4066	    sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask,
4067	    sc->rxon.ofdm_mask);
4068
4069	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4070		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4071		    __func__);
4072	}
4073
4074	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4075
4076	return error;
4077}
4078
4079static int
4080wpi_config_beacon(struct wpi_vap *wvp)
4081{
4082	struct ieee80211com *ic = wvp->wv_vap.iv_ic;
4083	struct ieee80211_beacon_offsets *bo = &wvp->wv_boff;
4084	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4085	struct wpi_softc *sc = ic->ic_ifp->if_softc;
4086	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
4087	struct ieee80211_tim_ie *tie;
4088	struct mbuf *m;
4089	uint8_t *ptr;
4090	int error;
4091
4092	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4093
4094	WPI_VAP_LOCK_ASSERT(wvp);
4095
4096	cmd->len = htole16(bcn->m->m_pkthdr.len);
4097	cmd->plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
4098	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
4099
4100	/* XXX seems to be unused */
4101	if (*(bo->bo_tim) == IEEE80211_ELEMID_TIM) {
4102		tie = (struct ieee80211_tim_ie *) bo->bo_tim;
4103		ptr = mtod(bcn->m, uint8_t *);
4104
4105		cmd->tim = htole16(bo->bo_tim - ptr);
4106		cmd->timsz = tie->tim_len;
4107	}
4108
4109	/* Necessary for recursion in ieee80211_beacon_update(). */
4110	m = bcn->m;
4111	bcn->m = m_dup(m, M_NOWAIT);
4112	if (bcn->m == NULL) {
4113		device_printf(sc->sc_dev,
4114		    "%s: could not copy beacon frame\n", __func__);
4115		error = ENOMEM;
4116		goto end;
4117	}
4118
4119	if ((error = wpi_cmd2(sc, bcn)) != 0) {
4120		device_printf(sc->sc_dev,
4121		    "%s: could not update beacon frame, error %d", __func__,
4122		    error);
4123	}
4124
4125	/* Restore mbuf. */
4126end:	bcn->m = m;
4127
4128	return error;
4129}
4130
4131static int
4132wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
4133{
4134	struct wpi_vap *wvp = WPI_VAP(ni->ni_vap);
4135	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4136	struct ieee80211_beacon_offsets *bo = &wvp->wv_boff;
4137	struct mbuf *m;
4138	int error;
4139
4140	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4141
4142	if (ni->ni_chan == IEEE80211_CHAN_ANYC)
4143		return EINVAL;
4144
4145	m = ieee80211_beacon_alloc(ni, bo);
4146	if (m == NULL) {
4147		device_printf(sc->sc_dev,
4148		    "%s: could not allocate beacon frame\n", __func__);
4149		return ENOMEM;
4150	}
4151
4152	WPI_VAP_LOCK(wvp);
4153	if (bcn->m != NULL)
4154		m_freem(bcn->m);
4155
4156	bcn->m = m;
4157
4158	error = wpi_config_beacon(wvp);
4159	WPI_VAP_UNLOCK(wvp);
4160
4161	return error;
4162}
4163
4164static void
4165wpi_update_beacon(struct ieee80211vap *vap, int item)
4166{
4167	struct wpi_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4168	struct wpi_vap *wvp = WPI_VAP(vap);
4169	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4170	struct ieee80211_beacon_offsets *bo = &wvp->wv_boff;
4171	struct ieee80211_node *ni = vap->iv_bss;
4172	int mcast = 0;
4173
4174	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4175
4176	WPI_VAP_LOCK(wvp);
4177	if (bcn->m == NULL) {
4178		bcn->m = ieee80211_beacon_alloc(ni, bo);
4179		if (bcn->m == NULL) {
4180			device_printf(sc->sc_dev,
4181			    "%s: could not allocate beacon frame\n", __func__);
4182
4183			DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR,
4184			    __func__);
4185
4186			WPI_VAP_UNLOCK(wvp);
4187			return;
4188		}
4189	}
4190	WPI_VAP_UNLOCK(wvp);
4191
4192	if (item == IEEE80211_BEACON_TIM)
4193		mcast = 1;	/* TODO */
4194
4195	setbit(bo->bo_flags, item);
4196	ieee80211_beacon_update(ni, bo, bcn->m, mcast);
4197
4198	WPI_VAP_LOCK(wvp);
4199	wpi_config_beacon(wvp);
4200	WPI_VAP_UNLOCK(wvp);
4201
4202	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4203}
4204
4205static void
4206wpi_newassoc(struct ieee80211_node *ni, int isnew)
4207{
4208	struct ieee80211vap *vap = ni->ni_vap;
4209	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4210	struct wpi_node *wn = WPI_NODE(ni);
4211	int error;
4212
4213	WPI_NT_LOCK(sc);
4214
4215	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4216
4217	if (vap->iv_opmode != IEEE80211_M_STA && wn->id == WPI_ID_UNDEFINED) {
4218		if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
4219			device_printf(sc->sc_dev,
4220			    "%s: could not add IBSS node, error %d\n",
4221			    __func__, error);
4222		}
4223	}
4224	WPI_NT_UNLOCK(sc);
4225}
4226
4227static int
4228wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
4229{
4230	struct ieee80211com *ic = vap->iv_ic;
4231	struct ieee80211_node *ni = vap->iv_bss;
4232	int error;
4233
4234	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4235
4236	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
4237		/* Link LED blinks while monitoring. */
4238		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
4239		return 0;
4240	}
4241
4242	/* XXX kernel panic workaround */
4243	if (ni->ni_chan == IEEE80211_CHAN_ANYC) {
4244		device_printf(sc->sc_dev, "%s: incomplete configuration\n",
4245		    __func__);
4246		return EINVAL;
4247	}
4248
4249	if ((error = wpi_set_timing(sc, ni)) != 0) {
4250		device_printf(sc->sc_dev,
4251		    "%s: could not set timing, error %d\n", __func__, error);
4252		return error;
4253	}
4254
4255	/* Update adapter configuration. */
4256	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4257	sc->rxon.associd = htole16(IEEE80211_NODE_AID(ni));
4258	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4259	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4260	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4261		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4262	/* Short preamble and slot time are negotiated when associating. */
4263	sc->rxon.flags &= ~htole32(WPI_RXON_SHPREAMBLE | WPI_RXON_SHSLOT);
4264	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4265		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4266	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4267		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4268	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
4269		sc->rxon.cck_mask  = 0;
4270		sc->rxon.ofdm_mask = 0x15;
4271	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
4272		sc->rxon.cck_mask  = 0x03;
4273		sc->rxon.ofdm_mask = 0;
4274	} else {
4275		/* Assume 802.11b/g. */
4276		sc->rxon.cck_mask  = 0x0f;
4277		sc->rxon.ofdm_mask = 0x15;
4278	}
4279	sc->rxon.filter |= htole32(WPI_FILTER_BSS);
4280
4281	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x\n",
4282	    sc->rxon.chan, sc->rxon.flags);
4283
4284	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4285		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4286		    __func__);
4287		return error;
4288	}
4289
4290	if (vap->iv_opmode == IEEE80211_M_IBSS ||
4291	    vap->iv_opmode == IEEE80211_M_HOSTAP) {
4292		if ((error = wpi_setup_beacon(sc, ni)) != 0) {
4293			device_printf(sc->sc_dev,
4294			    "%s: could not setup beacon, error %d\n", __func__,
4295			    error);
4296			return error;
4297		}
4298	}
4299
4300	if (vap->iv_opmode == IEEE80211_M_STA) {
4301		/* Add BSS node. */
4302		WPI_NT_LOCK(sc);
4303		error = wpi_add_sta_node(sc, ni);
4304		WPI_NT_UNLOCK(sc);
4305		if (error != 0) {
4306			device_printf(sc->sc_dev,
4307			    "%s: could not add BSS node, error %d\n", __func__,
4308			    error);
4309			return error;
4310		}
4311	}
4312
4313	/* Link LED always on while associated. */
4314	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
4315
4316	/* Start periodic calibration timer. */
4317	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
4318
4319	/* Enable power-saving mode if requested by user. */
4320	if ((vap->iv_flags & IEEE80211_F_PMGTON) &&
4321	    vap->iv_opmode != IEEE80211_M_IBSS)
4322		(void)wpi_set_pslevel(sc, 0, 3, 1);
4323	else
4324		(void)wpi_set_pslevel(sc, 0, 0, 1);
4325
4326	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4327
4328	return 0;
4329}
4330
4331static int
4332wpi_load_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4333{
4334	const struct ieee80211_cipher *cip = k->wk_cipher;
4335	struct ieee80211vap *vap = ni->ni_vap;
4336	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4337	struct wpi_node *wn = WPI_NODE(ni);
4338	struct wpi_node_info node;
4339	uint16_t kflags;
4340	int error;
4341
4342	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4343
4344	if (wpi_check_node_entry(sc, wn->id) == 0) {
4345		device_printf(sc->sc_dev, "%s: node does not exist\n",
4346		    __func__);
4347		return 0;
4348	}
4349
4350	switch (cip->ic_cipher) {
4351	case IEEE80211_CIPHER_AES_CCM:
4352		kflags = WPI_KFLAG_CCMP;
4353		break;
4354
4355	default:
4356		device_printf(sc->sc_dev, "%s: unknown cipher %d\n", __func__,
4357		    cip->ic_cipher);
4358		return 0;
4359	}
4360
4361	kflags |= WPI_KFLAG_KID(k->wk_keyix);
4362	if (k->wk_flags & IEEE80211_KEY_GROUP)
4363		kflags |= WPI_KFLAG_MULTICAST;
4364
4365	memset(&node, 0, sizeof node);
4366	node.id = wn->id;
4367	node.control = WPI_NODE_UPDATE;
4368	node.flags = WPI_FLAG_KEY_SET;
4369	node.kflags = htole16(kflags);
4370	memcpy(node.key, k->wk_key, k->wk_keylen);
4371again:
4372	DPRINTF(sc, WPI_DEBUG_KEY,
4373	    "%s: setting %s key id %d for node %d (%s)\n", __func__,
4374	    (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast", k->wk_keyix,
4375	    node.id, ether_sprintf(ni->ni_macaddr));
4376
4377	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4378	if (error != 0) {
4379		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4380		    error);
4381		return !error;
4382	}
4383
4384	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4385	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4386		kflags |= WPI_KFLAG_MULTICAST;
4387		node.kflags = htole16(kflags);
4388
4389		goto again;
4390	}
4391
4392	return 1;
4393}
4394
4395static void
4396wpi_load_key_cb(void *arg, struct ieee80211_node *ni)
4397{
4398	const struct ieee80211_key *k = arg;
4399	struct ieee80211vap *vap = ni->ni_vap;
4400	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4401	struct wpi_node *wn = WPI_NODE(ni);
4402	int error;
4403
4404	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4405		return;
4406
4407	WPI_NT_LOCK(sc);
4408	error = wpi_load_key(ni, k);
4409	WPI_NT_UNLOCK(sc);
4410
4411	if (error == 0) {
4412		device_printf(sc->sc_dev, "%s: error while setting key\n",
4413		    __func__);
4414	}
4415}
4416
4417static int
4418wpi_set_global_keys(struct ieee80211_node *ni)
4419{
4420	struct ieee80211vap *vap = ni->ni_vap;
4421	struct ieee80211_key *wk = &vap->iv_nw_keys[0];
4422	int error = 1;
4423
4424	for (; wk < &vap->iv_nw_keys[IEEE80211_WEP_NKID] && error; wk++)
4425		if (wk->wk_keyix != IEEE80211_KEYIX_NONE)
4426			error = wpi_load_key(ni, wk);
4427
4428	return !error;
4429}
4430
4431static int
4432wpi_del_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4433{
4434	struct ieee80211vap *vap = ni->ni_vap;
4435	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4436	struct wpi_node *wn = WPI_NODE(ni);
4437	struct wpi_node_info node;
4438	uint16_t kflags;
4439	int error;
4440
4441	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4442
4443	if (wpi_check_node_entry(sc, wn->id) == 0) {
4444		DPRINTF(sc, WPI_DEBUG_KEY, "%s: node was removed\n", __func__);
4445		return 1;	/* Nothing to do. */
4446	}
4447
4448	kflags = WPI_KFLAG_KID(k->wk_keyix);
4449	if (k->wk_flags & IEEE80211_KEY_GROUP)
4450		kflags |= WPI_KFLAG_MULTICAST;
4451
4452	memset(&node, 0, sizeof node);
4453	node.id = wn->id;
4454	node.control = WPI_NODE_UPDATE;
4455	node.flags = WPI_FLAG_KEY_SET;
4456	node.kflags = htole16(kflags);
4457again:
4458	DPRINTF(sc, WPI_DEBUG_KEY, "%s: deleting %s key %d for node %d (%s)\n",
4459	    __func__, (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast",
4460	    k->wk_keyix, node.id, ether_sprintf(ni->ni_macaddr));
4461
4462	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4463	if (error != 0) {
4464		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4465		    error);
4466		return !error;
4467	}
4468
4469	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4470	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4471		kflags |= WPI_KFLAG_MULTICAST;
4472		node.kflags = htole16(kflags);
4473
4474		goto again;
4475	}
4476
4477	return 1;
4478}
4479
4480static void
4481wpi_del_key_cb(void *arg, struct ieee80211_node *ni)
4482{
4483	const struct ieee80211_key *k = arg;
4484	struct ieee80211vap *vap = ni->ni_vap;
4485	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4486	struct wpi_node *wn = WPI_NODE(ni);
4487	int error;
4488
4489	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4490		return;
4491
4492	WPI_NT_LOCK(sc);
4493	error = wpi_del_key(ni, k);
4494	WPI_NT_UNLOCK(sc);
4495
4496	if (error == 0) {
4497		device_printf(sc->sc_dev, "%s: error while deleting key\n",
4498		    __func__);
4499	}
4500}
4501
4502static int
4503wpi_process_key(struct ieee80211vap *vap, const struct ieee80211_key *k,
4504    int set)
4505{
4506	struct ieee80211com *ic = vap->iv_ic;
4507	struct wpi_softc *sc = ic->ic_ifp->if_softc;
4508	struct wpi_vap *wvp = WPI_VAP(vap);
4509	struct ieee80211_node *ni;
4510	int error, ni_ref = 0;
4511
4512	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4513
4514	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
4515		/* Not for us. */
4516		return 1;
4517	}
4518
4519	if (!(k->wk_flags & IEEE80211_KEY_RECV)) {
4520		/* XMIT keys are handled in wpi_tx_data(). */
4521		return 1;
4522	}
4523
4524	/* Handle group keys. */
4525	if (&vap->iv_nw_keys[0] <= k &&
4526	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4527		WPI_NT_LOCK(sc);
4528		if (set)
4529			wvp->wv_gtk |= WPI_VAP_KEY(k->wk_keyix);
4530		else
4531			wvp->wv_gtk &= ~WPI_VAP_KEY(k->wk_keyix);
4532		WPI_NT_UNLOCK(sc);
4533
4534		if (vap->iv_state == IEEE80211_S_RUN) {
4535			ieee80211_iterate_nodes(&ic->ic_sta,
4536			    set ? wpi_load_key_cb : wpi_del_key_cb, (void *)k);
4537		}
4538
4539		return 1;
4540	}
4541
4542	switch (vap->iv_opmode) {
4543	case IEEE80211_M_STA:
4544		ni = vap->iv_bss;
4545		break;
4546
4547	case IEEE80211_M_IBSS:
4548	case IEEE80211_M_AHDEMO:
4549	case IEEE80211_M_HOSTAP:
4550		ni = ieee80211_find_vap_node(&ic->ic_sta, vap, k->wk_macaddr);
4551		if (ni == NULL)
4552			return 0;	/* should not happen */
4553
4554		ni_ref = 1;
4555		break;
4556
4557	default:
4558		device_printf(sc->sc_dev, "%s: unknown opmode %d\n", __func__,
4559		    vap->iv_opmode);
4560		return 0;
4561	}
4562
4563	WPI_NT_LOCK(sc);
4564	if (set)
4565		error = wpi_load_key(ni, k);
4566	else
4567		error = wpi_del_key(ni, k);
4568	WPI_NT_UNLOCK(sc);
4569
4570	if (ni_ref)
4571		ieee80211_node_decref(ni);
4572
4573	return error;
4574}
4575
4576static int
4577wpi_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
4578    const uint8_t mac[IEEE80211_ADDR_LEN])
4579{
4580	return wpi_process_key(vap, k, 1);
4581}
4582
4583static int
4584wpi_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
4585{
4586	return wpi_process_key(vap, k, 0);
4587}
4588
4589/*
4590 * This function is called after the runtime firmware notifies us of its
4591 * readiness (called in a process context).
4592 */
4593static int
4594wpi_post_alive(struct wpi_softc *sc)
4595{
4596	int ntries, error;
4597
4598	/* Check (again) that the radio is not disabled. */
4599	if ((error = wpi_nic_lock(sc)) != 0)
4600		return error;
4601
4602	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4603
4604	/* NB: Runtime firmware must be up and running. */
4605	if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) {
4606 		device_printf(sc->sc_dev,
4607		    "RF switch: radio disabled (%s)\n", __func__);
4608		wpi_nic_unlock(sc);
4609		return EPERM;   /* :-) */
4610	}
4611	wpi_nic_unlock(sc);
4612
4613	/* Wait for thermal sensor to calibrate. */
4614	for (ntries = 0; ntries < 1000; ntries++) {
4615		if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0)
4616			break;
4617		DELAY(10);
4618	}
4619
4620	if (ntries == 1000) {
4621		device_printf(sc->sc_dev,
4622		    "timeout waiting for thermal sensor calibration\n");
4623		return ETIMEDOUT;
4624	}
4625
4626	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d\n", sc->temp);
4627	return 0;
4628}
4629
4630/*
4631 * The firmware boot code is small and is intended to be copied directly into
4632 * the NIC internal memory (no DMA transfer).
4633 */
4634static int
4635wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
4636{
4637	int error, ntries;
4638
4639	DPRINTF(sc, WPI_DEBUG_HW, "Loading microcode size 0x%x\n", size);
4640
4641	size /= sizeof (uint32_t);
4642
4643	if ((error = wpi_nic_lock(sc)) != 0)
4644		return error;
4645
4646	/* Copy microcode image into NIC memory. */
4647	wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE,
4648	    (const uint32_t *)ucode, size);
4649
4650	wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0);
4651	wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE);
4652	wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size);
4653
4654	/* Start boot load now. */
4655	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START);
4656
4657	/* Wait for transfer to complete. */
4658	for (ntries = 0; ntries < 1000; ntries++) {
4659		uint32_t status = WPI_READ(sc, WPI_FH_TX_STATUS);
4660		DPRINTF(sc, WPI_DEBUG_HW,
4661		    "firmware status=0x%x, val=0x%x, result=0x%x\n", status,
4662		    WPI_FH_TX_STATUS_IDLE(6),
4663		    status & WPI_FH_TX_STATUS_IDLE(6));
4664		if (status & WPI_FH_TX_STATUS_IDLE(6)) {
4665			DPRINTF(sc, WPI_DEBUG_HW,
4666			    "Status Match! - ntries = %d\n", ntries);
4667			break;
4668		}
4669		DELAY(10);
4670	}
4671	if (ntries == 1000) {
4672		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4673		    __func__);
4674		wpi_nic_unlock(sc);
4675		return ETIMEDOUT;
4676	}
4677
4678	/* Enable boot after power up. */
4679	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN);
4680
4681	wpi_nic_unlock(sc);
4682	return 0;
4683}
4684
4685static int
4686wpi_load_firmware(struct wpi_softc *sc)
4687{
4688	struct wpi_fw_info *fw = &sc->fw;
4689	struct wpi_dma_info *dma = &sc->fw_dma;
4690	int error;
4691
4692	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4693
4694	/* Copy initialization sections into pre-allocated DMA-safe memory. */
4695	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
4696	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4697	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->init.text, fw->init.textsz);
4698	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4699
4700	/* Tell adapter where to find initialization sections. */
4701	if ((error = wpi_nic_lock(sc)) != 0)
4702		return error;
4703	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4704	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz);
4705	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4706	    dma->paddr + WPI_FW_DATA_MAXSZ);
4707	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
4708	wpi_nic_unlock(sc);
4709
4710	/* Load firmware boot code. */
4711	error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
4712	if (error != 0) {
4713		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4714		    __func__);
4715		return error;
4716	}
4717
4718	/* Now press "execute". */
4719	WPI_WRITE(sc, WPI_RESET, 0);
4720
4721	/* Wait at most one second for first alive notification. */
4722	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
4723		device_printf(sc->sc_dev,
4724		    "%s: timeout waiting for adapter to initialize, error %d\n",
4725		    __func__, error);
4726		return error;
4727	}
4728
4729	/* Copy runtime sections into pre-allocated DMA-safe memory. */
4730	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
4731	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4732	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->main.text, fw->main.textsz);
4733	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4734
4735	/* Tell adapter where to find runtime sections. */
4736	if ((error = wpi_nic_lock(sc)) != 0)
4737		return error;
4738	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4739	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz);
4740	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4741	    dma->paddr + WPI_FW_DATA_MAXSZ);
4742	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE,
4743	    WPI_FW_UPDATED | fw->main.textsz);
4744	wpi_nic_unlock(sc);
4745
4746	return 0;
4747}
4748
4749static int
4750wpi_read_firmware(struct wpi_softc *sc)
4751{
4752	const struct firmware *fp;
4753	struct wpi_fw_info *fw = &sc->fw;
4754	const struct wpi_firmware_hdr *hdr;
4755	int error;
4756
4757	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4758
4759	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
4760	    "Attempting Loading Firmware from %s module\n", WPI_FW_NAME);
4761
4762	WPI_UNLOCK(sc);
4763	fp = firmware_get(WPI_FW_NAME);
4764	WPI_LOCK(sc);
4765
4766	if (fp == NULL) {
4767		device_printf(sc->sc_dev,
4768		    "could not load firmware image '%s'\n", WPI_FW_NAME);
4769		return EINVAL;
4770	}
4771
4772	sc->fw_fp = fp;
4773
4774	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
4775		device_printf(sc->sc_dev,
4776		    "firmware file too short: %zu bytes\n", fp->datasize);
4777		error = EINVAL;
4778		goto fail;
4779	}
4780
4781	fw->size = fp->datasize;
4782	fw->data = (const uint8_t *)fp->data;
4783
4784	/* Extract firmware header information. */
4785	hdr = (const struct wpi_firmware_hdr *)fw->data;
4786
4787	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
4788	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
4789
4790	fw->main.textsz = le32toh(hdr->rtextsz);
4791	fw->main.datasz = le32toh(hdr->rdatasz);
4792	fw->init.textsz = le32toh(hdr->itextsz);
4793	fw->init.datasz = le32toh(hdr->idatasz);
4794	fw->boot.textsz = le32toh(hdr->btextsz);
4795	fw->boot.datasz = 0;
4796
4797	/* Sanity-check firmware header. */
4798	if (fw->main.textsz > WPI_FW_TEXT_MAXSZ ||
4799	    fw->main.datasz > WPI_FW_DATA_MAXSZ ||
4800	    fw->init.textsz > WPI_FW_TEXT_MAXSZ ||
4801	    fw->init.datasz > WPI_FW_DATA_MAXSZ ||
4802	    fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
4803	    (fw->boot.textsz & 3) != 0) {
4804		device_printf(sc->sc_dev, "invalid firmware header\n");
4805		error = EINVAL;
4806		goto fail;
4807	}
4808
4809	/* Check that all firmware sections fit. */
4810	if (fw->size < sizeof (*hdr) + fw->main.textsz + fw->main.datasz +
4811	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
4812		device_printf(sc->sc_dev,
4813		    "firmware file too short: %zu bytes\n", fw->size);
4814		error = EINVAL;
4815		goto fail;
4816	}
4817
4818	/* Get pointers to firmware sections. */
4819	fw->main.text = (const uint8_t *)(hdr + 1);
4820	fw->main.data = fw->main.text + fw->main.textsz;
4821	fw->init.text = fw->main.data + fw->main.datasz;
4822	fw->init.data = fw->init.text + fw->init.textsz;
4823	fw->boot.text = fw->init.data + fw->init.datasz;
4824
4825	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
4826	    "Firmware Version: Major %d, Minor %d, Driver %d, \n"
4827	    "runtime (text: %u, data: %u) init (text: %u, data %u) "
4828	    "boot (text %u)\n", hdr->major, hdr->minor, le32toh(hdr->driver),
4829	    fw->main.textsz, fw->main.datasz,
4830	    fw->init.textsz, fw->init.datasz, fw->boot.textsz);
4831
4832	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.text %p\n", fw->main.text);
4833	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.data %p\n", fw->main.data);
4834	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.text %p\n", fw->init.text);
4835	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.data %p\n", fw->init.data);
4836	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->boot.text %p\n", fw->boot.text);
4837
4838	return 0;
4839
4840fail:	wpi_unload_firmware(sc);
4841	return error;
4842}
4843
4844/**
4845 * Free the referenced firmware image
4846 */
4847static void
4848wpi_unload_firmware(struct wpi_softc *sc)
4849{
4850	if (sc->fw_fp != NULL) {
4851		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
4852		sc->fw_fp = NULL;
4853	}
4854}
4855
4856static int
4857wpi_clock_wait(struct wpi_softc *sc)
4858{
4859	int ntries;
4860
4861	/* Set "initialization complete" bit. */
4862	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
4863
4864	/* Wait for clock stabilization. */
4865	for (ntries = 0; ntries < 2500; ntries++) {
4866		if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY)
4867			return 0;
4868		DELAY(100);
4869	}
4870	device_printf(sc->sc_dev,
4871	    "%s: timeout waiting for clock stabilization\n", __func__);
4872
4873	return ETIMEDOUT;
4874}
4875
4876static int
4877wpi_apm_init(struct wpi_softc *sc)
4878{
4879	uint32_t reg;
4880	int error;
4881
4882	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4883
4884	/* Disable L0s exit timer (NMI bug workaround). */
4885	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_DIS_L0S_TIMER);
4886	/* Don't wait for ICH L0s (ICH bug workaround). */
4887	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX);
4888
4889	/* Set FH wait threshold to max (HW bug under stress workaround). */
4890	WPI_SETBITS(sc, WPI_DBG_HPET_MEM, 0xffff0000);
4891
4892	/* Cleanup. */
4893	wpi_prph_write(sc, WPI_APMG_CLK_DIS, 0x00000400);
4894	wpi_prph_clrbits(sc, WPI_APMG_PS, 0x00000E00);
4895
4896	/* Retrieve PCIe Active State Power Management (ASPM). */
4897	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
4898	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
4899	if (reg & 0x02)	/* L1 Entry enabled. */
4900		WPI_SETBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
4901	else
4902		WPI_CLRBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
4903
4904	WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT);
4905
4906	/* Wait for clock stabilization before accessing prph. */
4907	if ((error = wpi_clock_wait(sc)) != 0)
4908		return error;
4909
4910	if ((error = wpi_nic_lock(sc)) != 0)
4911		return error;
4912	/* Enable DMA and BSM (Bootstrap State Machine). */
4913	wpi_prph_write(sc, WPI_APMG_CLK_EN,
4914	    WPI_APMG_CLK_CTRL_DMA_CLK_RQT | WPI_APMG_CLK_CTRL_BSM_CLK_RQT);
4915	DELAY(20);
4916	/* Disable L1-Active. */
4917	wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS);
4918	wpi_nic_unlock(sc);
4919
4920	return 0;
4921}
4922
4923static void
4924wpi_apm_stop_master(struct wpi_softc *sc)
4925{
4926	int ntries;
4927
4928	/* Stop busmaster DMA activity. */
4929	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER);
4930
4931	if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) ==
4932	    WPI_GP_CNTRL_MAC_PS)
4933		return; /* Already asleep. */
4934
4935	for (ntries = 0; ntries < 100; ntries++) {
4936		if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED)
4937			return;
4938		DELAY(10);
4939	}
4940	device_printf(sc->sc_dev, "%s: timeout waiting for master\n",
4941	    __func__);
4942}
4943
4944static void
4945wpi_apm_stop(struct wpi_softc *sc)
4946{
4947	wpi_apm_stop_master(sc);
4948
4949	/* Reset the entire device. */
4950	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW);
4951	DELAY(10);
4952	/* Clear "initialization complete" bit. */
4953	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
4954}
4955
4956static void
4957wpi_nic_config(struct wpi_softc *sc)
4958{
4959	uint32_t rev;
4960
4961	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4962
4963	/* voodoo from the Linux "driver".. */
4964	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
4965	if ((rev & 0xc0) == 0x40)
4966		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB);
4967	else if (!(rev & 0x80))
4968		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM);
4969
4970	if (sc->cap == 0x80)
4971		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC);
4972
4973	if ((sc->rev & 0xf0) == 0xd0)
4974		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
4975	else
4976		WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
4977
4978	if (sc->type > 1)
4979		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B);
4980}
4981
4982static int
4983wpi_hw_init(struct wpi_softc *sc)
4984{
4985	int chnl, ntries, error;
4986
4987	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4988
4989	/* Clear pending interrupts. */
4990	WPI_WRITE(sc, WPI_INT, 0xffffffff);
4991
4992	if ((error = wpi_apm_init(sc)) != 0) {
4993		device_printf(sc->sc_dev,
4994		    "%s: could not power ON adapter, error %d\n", __func__,
4995		    error);
4996		return error;
4997	}
4998
4999	/* Select VMAIN power source. */
5000	if ((error = wpi_nic_lock(sc)) != 0)
5001		return error;
5002	wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK);
5003	wpi_nic_unlock(sc);
5004	/* Spin until VMAIN gets selected. */
5005	for (ntries = 0; ntries < 5000; ntries++) {
5006		if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN)
5007			break;
5008		DELAY(10);
5009	}
5010	if (ntries == 5000) {
5011		device_printf(sc->sc_dev, "timeout selecting power source\n");
5012		return ETIMEDOUT;
5013	}
5014
5015	/* Perform adapter initialization. */
5016	wpi_nic_config(sc);
5017
5018	/* Initialize RX ring. */
5019	if ((error = wpi_nic_lock(sc)) != 0)
5020		return error;
5021	/* Set physical address of RX ring. */
5022	WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr);
5023	/* Set physical address of RX read pointer. */
5024	WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr +
5025	    offsetof(struct wpi_shared, next));
5026	WPI_WRITE(sc, WPI_FH_RX_WPTR, 0);
5027	/* Enable RX. */
5028	WPI_WRITE(sc, WPI_FH_RX_CONFIG,
5029	    WPI_FH_RX_CONFIG_DMA_ENA |
5030	    WPI_FH_RX_CONFIG_RDRBD_ENA |
5031	    WPI_FH_RX_CONFIG_WRSTATUS_ENA |
5032	    WPI_FH_RX_CONFIG_MAXFRAG |
5033	    WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) |
5034	    WPI_FH_RX_CONFIG_IRQ_DST_HOST |
5035	    WPI_FH_RX_CONFIG_IRQ_TIMEOUT(1));
5036	(void)WPI_READ(sc, WPI_FH_RSSR_TBL);	/* barrier */
5037	wpi_nic_unlock(sc);
5038	WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7);
5039
5040	/* Initialize TX rings. */
5041	if ((error = wpi_nic_lock(sc)) != 0)
5042		return error;
5043	wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2);	/* bypass mode */
5044	wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1);	/* enable RA0 */
5045	/* Enable all 6 TX rings. */
5046	wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f);
5047	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000);
5048	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002);
5049	wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4);
5050	wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5);
5051	/* Set physical address of TX rings. */
5052	WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr);
5053	WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5);
5054
5055	/* Enable all DMA channels. */
5056	for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5057		WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0);
5058		WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0);
5059		WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008);
5060	}
5061	wpi_nic_unlock(sc);
5062	(void)WPI_READ(sc, WPI_FH_TX_BASE);	/* barrier */
5063
5064	/* Clear "radio off" and "commands blocked" bits. */
5065	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5066	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED);
5067
5068	/* Clear pending interrupts. */
5069	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5070	/* Enable interrupts. */
5071	WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
5072
5073	/* _Really_ make sure "radio off" bit is cleared! */
5074	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5075	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5076
5077	if ((error = wpi_load_firmware(sc)) != 0) {
5078		device_printf(sc->sc_dev,
5079		    "%s: could not load firmware, error %d\n", __func__,
5080		    error);
5081		return error;
5082	}
5083	/* Wait at most one second for firmware alive notification. */
5084	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
5085		device_printf(sc->sc_dev,
5086		    "%s: timeout waiting for adapter to initialize, error %d\n",
5087		    __func__, error);
5088		return error;
5089	}
5090
5091	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5092
5093	/* Do post-firmware initialization. */
5094	return wpi_post_alive(sc);
5095}
5096
5097static void
5098wpi_hw_stop(struct wpi_softc *sc)
5099{
5100	int chnl, qid, ntries;
5101
5102	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5103
5104	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP)
5105		wpi_nic_lock(sc);
5106
5107	WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO);
5108
5109	/* Disable interrupts. */
5110	WPI_WRITE(sc, WPI_INT_MASK, 0);
5111	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5112	WPI_WRITE(sc, WPI_FH_INT, 0xffffffff);
5113
5114	/* Make sure we no longer hold the NIC lock. */
5115	wpi_nic_unlock(sc);
5116
5117	if (wpi_nic_lock(sc) == 0) {
5118		/* Stop TX scheduler. */
5119		wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0);
5120		wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0);
5121
5122		/* Stop all DMA channels. */
5123		for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5124			WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0);
5125			for (ntries = 0; ntries < 200; ntries++) {
5126				if (WPI_READ(sc, WPI_FH_TX_STATUS) &
5127				    WPI_FH_TX_STATUS_IDLE(chnl))
5128					break;
5129				DELAY(10);
5130			}
5131		}
5132		wpi_nic_unlock(sc);
5133	}
5134
5135	/* Stop RX ring. */
5136	wpi_reset_rx_ring(sc);
5137
5138	/* Reset all TX rings. */
5139	for (qid = 0; qid < WPI_NTXQUEUES; qid++)
5140		wpi_reset_tx_ring(sc, &sc->txq[qid]);
5141
5142	if (wpi_nic_lock(sc) == 0) {
5143		wpi_prph_write(sc, WPI_APMG_CLK_DIS,
5144		    WPI_APMG_CLK_CTRL_DMA_CLK_RQT);
5145		wpi_nic_unlock(sc);
5146	}
5147	DELAY(5);
5148	/* Power OFF adapter. */
5149	wpi_apm_stop(sc);
5150}
5151
5152static void
5153wpi_radio_on(void *arg0, int pending)
5154{
5155	struct wpi_softc *sc = arg0;
5156	struct ifnet *ifp = sc->sc_ifp;
5157	struct ieee80211com *ic = ifp->if_l2com;
5158	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5159
5160	device_printf(sc->sc_dev, "RF switch: radio enabled\n");
5161
5162	if (vap != NULL) {
5163		wpi_init(sc);
5164		ieee80211_init(vap);
5165	}
5166
5167	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL) {
5168		WPI_LOCK(sc);
5169		callout_stop(&sc->watchdog_rfkill);
5170		WPI_UNLOCK(sc);
5171	}
5172}
5173
5174static void
5175wpi_radio_off(void *arg0, int pending)
5176{
5177	struct wpi_softc *sc = arg0;
5178	struct ifnet *ifp = sc->sc_ifp;
5179	struct ieee80211com *ic = ifp->if_l2com;
5180	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5181
5182	device_printf(sc->sc_dev, "RF switch: radio disabled\n");
5183
5184	wpi_stop(sc);
5185	if (vap != NULL)
5186		ieee80211_stop(vap);
5187
5188	WPI_LOCK(sc);
5189	callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, sc);
5190	WPI_UNLOCK(sc);
5191}
5192
5193static void
5194wpi_init(void *arg)
5195{
5196	struct wpi_softc *sc = arg;
5197	struct ifnet *ifp = sc->sc_ifp;
5198	struct ieee80211com *ic = ifp->if_l2com;
5199	int error;
5200
5201	WPI_LOCK(sc);
5202
5203	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
5204
5205	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
5206		goto end;
5207
5208	/* Check that the radio is not disabled by hardware switch. */
5209	if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) {
5210		device_printf(sc->sc_dev,
5211		    "RF switch: radio disabled (%s)\n", __func__);
5212		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
5213		    sc);
5214		goto end;
5215	}
5216
5217	/* Read firmware images from the filesystem. */
5218	if ((error = wpi_read_firmware(sc)) != 0) {
5219		device_printf(sc->sc_dev,
5220		    "%s: could not read firmware, error %d\n", __func__,
5221		    error);
5222		goto fail;
5223	}
5224
5225	/* Initialize hardware and upload firmware. */
5226	error = wpi_hw_init(sc);
5227	wpi_unload_firmware(sc);
5228	if (error != 0) {
5229		device_printf(sc->sc_dev,
5230		    "%s: could not initialize hardware, error %d\n", __func__,
5231		    error);
5232		goto fail;
5233	}
5234
5235	/* Configure adapter now that it is ready. */
5236	sc->txq_active = 1;
5237	if ((error = wpi_config(sc)) != 0) {
5238		device_printf(sc->sc_dev,
5239		    "%s: could not configure device, error %d\n", __func__,
5240		    error);
5241		goto fail;
5242	}
5243
5244	IF_LOCK(&ifp->if_snd);
5245	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5246	ifp->if_drv_flags |= IFF_DRV_RUNNING;
5247	IF_UNLOCK(&ifp->if_snd);
5248
5249	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
5250
5251	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5252
5253	WPI_UNLOCK(sc);
5254
5255	ieee80211_start_all(ic);
5256
5257	return;
5258
5259fail:	wpi_stop_locked(sc);
5260end:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
5261	WPI_UNLOCK(sc);
5262}
5263
5264static void
5265wpi_stop_locked(struct wpi_softc *sc)
5266{
5267	struct ifnet *ifp = sc->sc_ifp;
5268
5269	WPI_LOCK_ASSERT(sc);
5270
5271	WPI_TXQ_LOCK(sc);
5272	sc->txq_active = 0;
5273	WPI_TXQ_UNLOCK(sc);
5274
5275	sc->sc_tx_timer = 0;
5276	callout_stop(&sc->watchdog_to);
5277	callout_stop(&sc->scan_timeout);
5278	callout_stop(&sc->calib_to);
5279
5280	IF_LOCK(&ifp->if_snd);
5281	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
5282	IF_UNLOCK(&ifp->if_snd);
5283
5284	/* Power OFF hardware. */
5285	wpi_hw_stop(sc);
5286}
5287
5288static void
5289wpi_stop(struct wpi_softc *sc)
5290{
5291	WPI_LOCK(sc);
5292	wpi_stop_locked(sc);
5293	WPI_UNLOCK(sc);
5294}
5295
5296/*
5297 * Callback from net80211 to start a scan.
5298 */
5299static void
5300wpi_scan_start(struct ieee80211com *ic)
5301{
5302	struct wpi_softc *sc = ic->ic_ifp->if_softc;
5303
5304	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
5305}
5306
5307/*
5308 * Callback from net80211 to terminate a scan.
5309 */
5310static void
5311wpi_scan_end(struct ieee80211com *ic)
5312{
5313	struct ifnet *ifp = ic->ic_ifp;
5314	struct wpi_softc *sc = ifp->if_softc;
5315	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5316
5317	if (vap->iv_state == IEEE80211_S_RUN)
5318		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
5319}
5320
5321/**
5322 * Called by the net80211 framework to indicate to the driver
5323 * that the channel should be changed
5324 */
5325static void
5326wpi_set_channel(struct ieee80211com *ic)
5327{
5328	const struct ieee80211_channel *c = ic->ic_curchan;
5329	struct ifnet *ifp = ic->ic_ifp;
5330	struct wpi_softc *sc = ifp->if_softc;
5331	int error;
5332
5333	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5334
5335	WPI_LOCK(sc);
5336	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
5337	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
5338	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
5339	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
5340
5341	/*
5342	 * Only need to set the channel in Monitor mode. AP scanning and auth
5343	 * are already taken care of by their respective firmware commands.
5344	 */
5345	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
5346		sc->rxon.chan = ieee80211_chan2ieee(ic, c);
5347		if (IEEE80211_IS_CHAN_2GHZ(c)) {
5348			sc->rxon.flags |= htole32(WPI_RXON_AUTO |
5349			    WPI_RXON_24GHZ);
5350		} else {
5351			sc->rxon.flags &= ~htole32(WPI_RXON_AUTO |
5352			    WPI_RXON_24GHZ);
5353		}
5354		if ((error = wpi_send_rxon(sc, 0, 0)) != 0)
5355			device_printf(sc->sc_dev,
5356			    "%s: error %d setting channel\n", __func__,
5357			    error);
5358	}
5359	WPI_UNLOCK(sc);
5360}
5361
5362/**
5363 * Called by net80211 to indicate that we need to scan the current
5364 * channel. The channel is previously be set via the wpi_set_channel
5365 * callback.
5366 */
5367static void
5368wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
5369{
5370	struct ieee80211vap *vap = ss->ss_vap;
5371	struct ieee80211com *ic = vap->iv_ic;
5372	struct wpi_softc *sc = ic->ic_ifp->if_softc;
5373	int error;
5374
5375	if (sc->rxon.chan != ieee80211_chan2ieee(ic, ic->ic_curchan)) {
5376		WPI_LOCK(sc);
5377		error = wpi_scan(sc, ic->ic_curchan);
5378		WPI_UNLOCK(sc);
5379		if (error != 0)
5380			ieee80211_cancel_scan(vap);
5381	} else {
5382		/* Send probe request when associated. */
5383		sc->sc_scan_curchan(ss, maxdwell);
5384	}
5385}
5386
5387/**
5388 * Called by the net80211 framework to indicate
5389 * the minimum dwell time has been met, terminate the scan.
5390 * We don't actually terminate the scan as the firmware will notify
5391 * us when it's finished and we have no way to interrupt it.
5392 */
5393static void
5394wpi_scan_mindwell(struct ieee80211_scan_state *ss)
5395{
5396	/* NB: don't try to abort scan; wait for firmware to finish */
5397}
5398
5399static void
5400wpi_hw_reset(void *arg, int pending)
5401{
5402	struct wpi_softc *sc = arg;
5403	struct ifnet *ifp = sc->sc_ifp;
5404	struct ieee80211com *ic = ifp->if_l2com;
5405	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5406
5407	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5408
5409	if (vap != NULL && (ic->ic_flags & IEEE80211_F_SCAN))
5410		ieee80211_cancel_scan(vap);
5411
5412	wpi_stop(sc);
5413	if (vap != NULL)
5414		ieee80211_stop(vap);
5415	wpi_init(sc);
5416	if (vap != NULL)
5417		ieee80211_init(vap);
5418}
5419