if_wpi.c revision 280065
1/*-
2 * Copyright (c) 2006,2007
3 *	Damien Bergamini <damien.bergamini@free.fr>
4 *	Benjamin Close <Benjamin.Close@clearchain.com>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19#include <sys/cdefs.h>
20__FBSDID("$FreeBSD: head/sys/dev/wpi/if_wpi.c 280065 2015-03-15 20:30:03Z adrian $");
21
22/*
23 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
24 *
25 * The 3945ABG network adapter doesn't use traditional hardware as
26 * many other adaptors do. Instead at run time the eeprom is set into a known
27 * state and told to load boot firmware. The boot firmware loads an init and a
28 * main  binary firmware image into SRAM on the card via DMA.
29 * Once the firmware is loaded, the driver/hw then
30 * communicate by way of circular dma rings via the SRAM to the firmware.
31 *
32 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
33 * The 4 tx data rings allow for prioritization QoS.
34 *
35 * The rx data ring consists of 32 dma buffers. Two registers are used to
36 * indicate where in the ring the driver and the firmware are up to. The
37 * driver sets the initial read index (reg1) and the initial write index (reg2),
38 * the firmware updates the read index (reg1) on rx of a packet and fires an
39 * interrupt. The driver then processes the buffers starting at reg1 indicating
40 * to the firmware which buffers have been accessed by updating reg2. At the
41 * same time allocating new memory for the processed buffer.
42 *
43 * A similar thing happens with the tx rings. The difference is the firmware
44 * stop processing buffers once the queue is full and until confirmation
45 * of a successful transmition (tx_done) has occurred.
46 *
47 * The command ring operates in the same manner as the tx queues.
48 *
49 * All communication direct to the card (ie eeprom) is classed as Stage1
50 * communication
51 *
52 * All communication via the firmware to the card is classed as State2.
53 * The firmware consists of 2 parts. A bootstrap firmware and a runtime
54 * firmware. The bootstrap firmware and runtime firmware are loaded
55 * from host memory via dma to the card then told to execute. From this point
56 * on the majority of communications between the driver and the card goes
57 * via the firmware.
58 */
59
60#include "opt_wlan.h"
61#include "opt_wpi.h"
62
63#include <sys/param.h>
64#include <sys/sysctl.h>
65#include <sys/sockio.h>
66#include <sys/mbuf.h>
67#include <sys/kernel.h>
68#include <sys/socket.h>
69#include <sys/systm.h>
70#include <sys/malloc.h>
71#include <sys/queue.h>
72#include <sys/taskqueue.h>
73#include <sys/module.h>
74#include <sys/bus.h>
75#include <sys/endian.h>
76#include <sys/linker.h>
77#include <sys/firmware.h>
78
79#include <machine/bus.h>
80#include <machine/resource.h>
81#include <sys/rman.h>
82
83#include <dev/pci/pcireg.h>
84#include <dev/pci/pcivar.h>
85
86#include <net/bpf.h>
87#include <net/if.h>
88#include <net/if_var.h>
89#include <net/if_arp.h>
90#include <net/ethernet.h>
91#include <net/if_dl.h>
92#include <net/if_media.h>
93#include <net/if_types.h>
94
95#include <netinet/in.h>
96#include <netinet/in_systm.h>
97#include <netinet/in_var.h>
98#include <netinet/if_ether.h>
99#include <netinet/ip.h>
100
101#include <net80211/ieee80211_var.h>
102#include <net80211/ieee80211_radiotap.h>
103#include <net80211/ieee80211_regdomain.h>
104#include <net80211/ieee80211_ratectl.h>
105
106#include <dev/wpi/if_wpireg.h>
107#include <dev/wpi/if_wpivar.h>
108#include <dev/wpi/if_wpi_debug.h>
109
110struct wpi_ident {
111	uint16_t	vendor;
112	uint16_t	device;
113	uint16_t	subdevice;
114	const char	*name;
115};
116
117static const struct wpi_ident wpi_ident_table[] = {
118	/* The below entries support ABG regardless of the subid */
119	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
120	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
121	/* The below entries only support BG */
122	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
123	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
124	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
125	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
126	{ 0, 0, 0, NULL }
127};
128
129static int	wpi_probe(device_t);
130static int	wpi_attach(device_t);
131static void	wpi_radiotap_attach(struct wpi_softc *);
132static void	wpi_sysctlattach(struct wpi_softc *);
133static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
134		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
135		    const uint8_t [IEEE80211_ADDR_LEN],
136		    const uint8_t [IEEE80211_ADDR_LEN]);
137static void	wpi_vap_delete(struct ieee80211vap *);
138static int	wpi_detach(device_t);
139static int	wpi_shutdown(device_t);
140static int	wpi_suspend(device_t);
141static int	wpi_resume(device_t);
142static int	wpi_nic_lock(struct wpi_softc *);
143static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
144static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
145static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
146		    void **, bus_size_t, bus_size_t);
147static void	wpi_dma_contig_free(struct wpi_dma_info *);
148static int	wpi_alloc_shared(struct wpi_softc *);
149static void	wpi_free_shared(struct wpi_softc *);
150static int	wpi_alloc_fwmem(struct wpi_softc *);
151static void	wpi_free_fwmem(struct wpi_softc *);
152static int	wpi_alloc_rx_ring(struct wpi_softc *);
153static void	wpi_update_rx_ring(struct wpi_softc *);
154static void	wpi_reset_rx_ring(struct wpi_softc *);
155static void	wpi_free_rx_ring(struct wpi_softc *);
156static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
157		    int);
158static void	wpi_update_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
159static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
160static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
161static int	wpi_read_eeprom(struct wpi_softc *,
162		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
163static uint32_t	wpi_eeprom_channel_flags(struct wpi_eeprom_chan *);
164static void	wpi_read_eeprom_band(struct wpi_softc *, int);
165static int	wpi_read_eeprom_channels(struct wpi_softc *, int);
166static struct wpi_eeprom_chan *wpi_find_eeprom_channel(struct wpi_softc *,
167		    struct ieee80211_channel *);
168static int	wpi_setregdomain(struct ieee80211com *,
169		    struct ieee80211_regdomain *, int,
170		    struct ieee80211_channel[]);
171static int	wpi_read_eeprom_group(struct wpi_softc *, int);
172static void	wpi_node_free(struct ieee80211_node *);
173static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
174		    const uint8_t mac[IEEE80211_ADDR_LEN]);
175static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
176static void	wpi_calib_timeout(void *);
177static void	wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *,
178		    struct wpi_rx_data *);
179static void	wpi_rx_statistics(struct wpi_softc *, struct wpi_rx_desc *,
180		    struct wpi_rx_data *);
181static void	wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *);
182static void	wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *);
183static void	wpi_notif_intr(struct wpi_softc *);
184static void	wpi_wakeup_intr(struct wpi_softc *);
185static void	wpi_fatal_intr(struct wpi_softc *);
186static void	wpi_intr(void *);
187static int	wpi_cmd2(struct wpi_softc *, struct wpi_buf *);
188static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
189		    struct ieee80211_node *);
190static int	wpi_tx_data_raw(struct wpi_softc *, struct mbuf *,
191		    struct ieee80211_node *,
192		    const struct ieee80211_bpf_params *);
193static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
194		    const struct ieee80211_bpf_params *);
195static void	wpi_start(struct ifnet *);
196static void	wpi_start_locked(struct ifnet *);
197static void	wpi_watchdog_rfkill(void *);
198static void	wpi_watchdog(void *);
199static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
200static int	wpi_cmd(struct wpi_softc *, int, const void *, size_t, int);
201static int	wpi_mrr_setup(struct wpi_softc *);
202static int	wpi_add_node(struct wpi_softc *, struct ieee80211_node *);
203static int	wpi_add_broadcast_node(struct wpi_softc *, int);
204static int	wpi_add_ibss_node(struct wpi_softc *, struct ieee80211_node *);
205static void	wpi_del_node(struct wpi_softc *, struct ieee80211_node *);
206static int	wpi_updateedca(struct ieee80211com *);
207static void	wpi_set_promisc(struct wpi_softc *);
208static void	wpi_update_promisc(struct ifnet *);
209static void	wpi_update_mcast(struct ifnet *);
210static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
211static int	wpi_set_timing(struct wpi_softc *, struct ieee80211_node *);
212static void	wpi_power_calibration(struct wpi_softc *);
213static int	wpi_set_txpower(struct wpi_softc *, int);
214static int	wpi_get_power_index(struct wpi_softc *,
215		    struct wpi_power_group *, struct ieee80211_channel *, int);
216static int	wpi_set_pslevel(struct wpi_softc *, uint8_t, int, int);
217static int	wpi_send_btcoex(struct wpi_softc *);
218static int	wpi_send_rxon(struct wpi_softc *, int, int);
219static int	wpi_config(struct wpi_softc *);
220static uint16_t	wpi_get_active_dwell_time(struct wpi_softc *,
221		    struct ieee80211_channel *, uint8_t);
222static uint16_t	wpi_limit_dwell(struct wpi_softc *, uint16_t);
223static uint16_t	wpi_get_passive_dwell_time(struct wpi_softc *,
224		    struct ieee80211_channel *);
225static int	wpi_scan(struct wpi_softc *, struct ieee80211_channel *);
226static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
227static void	wpi_update_beacon(struct ieee80211vap *, int);
228static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
229static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
230static int	wpi_key_alloc(struct ieee80211vap *, struct ieee80211_key *,
231		    ieee80211_keyix *, ieee80211_keyix *);
232static int	wpi_key_set(struct ieee80211vap *,
233		    const struct ieee80211_key *,
234		    const uint8_t mac[IEEE80211_ADDR_LEN]);
235static int	wpi_key_delete(struct ieee80211vap *,
236		    const struct ieee80211_key *);
237static int	wpi_post_alive(struct wpi_softc *);
238static int	wpi_load_bootcode(struct wpi_softc *, const uint8_t *, int);
239static int	wpi_load_firmware(struct wpi_softc *);
240static int	wpi_read_firmware(struct wpi_softc *);
241static void	wpi_unload_firmware(struct wpi_softc *);
242static int	wpi_clock_wait(struct wpi_softc *);
243static int	wpi_apm_init(struct wpi_softc *);
244static void	wpi_apm_stop_master(struct wpi_softc *);
245static void	wpi_apm_stop(struct wpi_softc *);
246static void	wpi_nic_config(struct wpi_softc *);
247static int	wpi_hw_init(struct wpi_softc *);
248static void	wpi_hw_stop(struct wpi_softc *);
249static void	wpi_radio_on(void *, int);
250static void	wpi_radio_off(void *, int);
251static void	wpi_init_locked(struct wpi_softc *);
252static void	wpi_init(void *);
253static void	wpi_stop_locked(struct wpi_softc *);
254static void	wpi_stop(struct wpi_softc *);
255static void	wpi_scan_start(struct ieee80211com *);
256static void	wpi_scan_end(struct ieee80211com *);
257static void	wpi_set_channel(struct ieee80211com *);
258static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
259static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
260static void	wpi_hw_reset(void *, int);
261
262static device_method_t wpi_methods[] = {
263	/* Device interface */
264	DEVMETHOD(device_probe,		wpi_probe),
265	DEVMETHOD(device_attach,	wpi_attach),
266	DEVMETHOD(device_detach,	wpi_detach),
267	DEVMETHOD(device_shutdown,	wpi_shutdown),
268	DEVMETHOD(device_suspend,	wpi_suspend),
269	DEVMETHOD(device_resume,	wpi_resume),
270
271	DEVMETHOD_END
272};
273
274static driver_t wpi_driver = {
275	"wpi",
276	wpi_methods,
277	sizeof (struct wpi_softc)
278};
279static devclass_t wpi_devclass;
280
281DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
282
283MODULE_VERSION(wpi, 1);
284
285MODULE_DEPEND(wpi, pci,  1, 1, 1);
286MODULE_DEPEND(wpi, wlan, 1, 1, 1);
287MODULE_DEPEND(wpi, firmware, 1, 1, 1);
288
289static int
290wpi_probe(device_t dev)
291{
292	const struct wpi_ident *ident;
293
294	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
295		if (pci_get_vendor(dev) == ident->vendor &&
296		    pci_get_device(dev) == ident->device) {
297			device_set_desc(dev, ident->name);
298			return (BUS_PROBE_DEFAULT);
299		}
300	}
301	return ENXIO;
302}
303
304static int
305wpi_attach(device_t dev)
306{
307	struct wpi_softc *sc = (struct wpi_softc *)device_get_softc(dev);
308	struct ieee80211com *ic;
309	struct ifnet *ifp;
310	int i, error, rid;
311#ifdef WPI_DEBUG
312	int supportsa = 1;
313	const struct wpi_ident *ident;
314#endif
315	uint8_t macaddr[IEEE80211_ADDR_LEN];
316
317	sc->sc_dev = dev;
318
319#ifdef WPI_DEBUG
320	error = resource_int_value(device_get_name(sc->sc_dev),
321	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
322	if (error != 0)
323		sc->sc_debug = 0;
324#else
325	sc->sc_debug = 0;
326#endif
327
328	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
329
330	/*
331	 * Get the offset of the PCI Express Capability Structure in PCI
332	 * Configuration Space.
333	 */
334	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
335	if (error != 0) {
336		device_printf(dev, "PCIe capability structure not found!\n");
337		return error;
338	}
339
340	/*
341	 * Some card's only support 802.11b/g not a, check to see if
342	 * this is one such card. A 0x0 in the subdevice table indicates
343	 * the entire subdevice range is to be ignored.
344	 */
345#ifdef WPI_DEBUG
346	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
347		if (ident->subdevice &&
348		    pci_get_subdevice(dev) == ident->subdevice) {
349		    supportsa = 0;
350		    break;
351		}
352	}
353#endif
354
355	/* Clear device-specific "PCI retry timeout" register (41h). */
356	pci_write_config(dev, 0x41, 0, 1);
357
358	/* Enable bus-mastering. */
359	pci_enable_busmaster(dev);
360
361	rid = PCIR_BAR(0);
362	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
363	    RF_ACTIVE);
364	if (sc->mem == NULL) {
365		device_printf(dev, "can't map mem space\n");
366		error = ENOMEM;
367		return error;
368	}
369	sc->sc_st = rman_get_bustag(sc->mem);
370	sc->sc_sh = rman_get_bushandle(sc->mem);
371
372	i = 1;
373	rid = 0;
374	if (pci_alloc_msi(dev, &i) == 0)
375		rid = 1;
376	/* Install interrupt handler. */
377	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
378	    (rid != 0 ? 0 : RF_SHAREABLE));
379	if (sc->irq == NULL) {
380		device_printf(dev, "can't map interrupt\n");
381		error = ENOMEM;
382		goto fail;
383	}
384
385	WPI_LOCK_INIT(sc);
386
387	sc->sc_unr = new_unrhdr(WPI_ID_IBSS_MIN, WPI_ID_IBSS_MAX, &sc->sc_mtx);
388
389	/* Allocate DMA memory for firmware transfers. */
390	if ((error = wpi_alloc_fwmem(sc)) != 0) {
391		device_printf(dev,
392		    "could not allocate memory for firmware, error %d\n",
393		    error);
394		goto fail;
395	}
396
397	/* Allocate shared page. */
398	if ((error = wpi_alloc_shared(sc)) != 0) {
399		device_printf(dev, "could not allocate shared page\n");
400		goto fail;
401	}
402
403	/* Allocate TX rings - 4 for QoS purposes, 1 for commands. */
404	for (i = 0; i < WPI_NTXQUEUES; i++) {
405		if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
406			device_printf(dev,
407			    "could not allocate TX ring %d, error %d\n", i,
408			    error);
409			goto fail;
410		}
411	}
412
413	/* Allocate RX ring. */
414	if ((error = wpi_alloc_rx_ring(sc)) != 0) {
415		device_printf(dev, "could not allocate RX ring, error %d\n",
416		    error);
417		goto fail;
418	}
419
420	/* Clear pending interrupts. */
421	WPI_WRITE(sc, WPI_INT, 0xffffffff);
422
423	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
424	if (ifp == NULL) {
425		device_printf(dev, "can not allocate ifnet structure\n");
426		goto fail;
427	}
428
429	ic = ifp->if_l2com;
430	ic->ic_ifp = ifp;
431	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
432	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
433
434	/* Set device capabilities. */
435	ic->ic_caps =
436		  IEEE80211_C_STA		/* station mode supported */
437		| IEEE80211_C_IBSS		/* IBSS mode supported */
438		| IEEE80211_C_MONITOR		/* monitor mode supported */
439		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
440		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
441		| IEEE80211_C_TXPMGT		/* tx power management */
442		| IEEE80211_C_SHSLOT		/* short slot time supported */
443		| IEEE80211_C_WPA		/* 802.11i */
444		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
445#if 0
446		| IEEE80211_C_HOSTAP		/* Host access point mode */
447#endif
448		| IEEE80211_C_WME		/* 802.11e */
449		| IEEE80211_C_PMGT		/* Station-side power mgmt */
450		;
451
452	ic->ic_cryptocaps =
453		  IEEE80211_CRYPTO_AES_CCM;
454
455	/*
456	 * Read in the eeprom and also setup the channels for
457	 * net80211. We don't set the rates as net80211 does this for us
458	 */
459	if ((error = wpi_read_eeprom(sc, macaddr)) != 0) {
460		device_printf(dev, "could not read EEPROM, error %d\n",
461		    error);
462		goto fail;
463	}
464
465#ifdef WPI_DEBUG
466	if (bootverbose) {
467		device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n",
468		    sc->domain);
469		device_printf(sc->sc_dev, "Hardware Type: %c\n",
470		    sc->type > 1 ? 'B': '?');
471		device_printf(sc->sc_dev, "Hardware Revision: %c\n",
472		    ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
473		device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
474		    supportsa ? "does" : "does not");
475
476		/* XXX hw_config uses the PCIDEV for the Hardware rev. Must
477		   check what sc->rev really represents - benjsc 20070615 */
478	}
479#endif
480
481	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
482	ifp->if_softc = sc;
483	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
484	ifp->if_init = wpi_init;
485	ifp->if_ioctl = wpi_ioctl;
486	ifp->if_start = wpi_start;
487	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
488	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
489	IFQ_SET_READY(&ifp->if_snd);
490
491	ieee80211_ifattach(ic, macaddr);
492	ic->ic_vap_create = wpi_vap_create;
493	ic->ic_vap_delete = wpi_vap_delete;
494	ic->ic_raw_xmit = wpi_raw_xmit;
495	ic->ic_node_alloc = wpi_node_alloc;
496	sc->sc_node_free = ic->ic_node_free;
497	ic->ic_node_free = wpi_node_free;
498	ic->ic_wme.wme_update = wpi_updateedca;
499	ic->ic_update_promisc = wpi_update_promisc;
500	ic->ic_update_mcast = wpi_update_mcast;
501	ic->ic_scan_start = wpi_scan_start;
502	ic->ic_scan_end = wpi_scan_end;
503	ic->ic_set_channel = wpi_set_channel;
504	sc->sc_scan_curchan = ic->ic_scan_curchan;
505	ic->ic_scan_curchan = wpi_scan_curchan;
506	ic->ic_scan_mindwell = wpi_scan_mindwell;
507	ic->ic_setregdomain = wpi_setregdomain;
508
509	wpi_radiotap_attach(sc);
510
511	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
512	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
513	callout_init_mtx(&sc->watchdog_rfkill, &sc->sc_mtx, 0);
514	TASK_INIT(&sc->sc_reinittask, 0, wpi_hw_reset, sc);
515	TASK_INIT(&sc->sc_radiooff_task, 0, wpi_radio_off, sc);
516	TASK_INIT(&sc->sc_radioon_task, 0, wpi_radio_on, sc);
517
518	wpi_sysctlattach(sc);
519
520	/*
521	 * Hook our interrupt after all initialization is complete.
522	 */
523	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
524	    NULL, wpi_intr, sc, &sc->sc_ih);
525	if (error != 0) {
526		device_printf(dev, "can't establish interrupt, error %d\n",
527		    error);
528		goto fail;
529	}
530
531	if (bootverbose)
532		ieee80211_announce(ic);
533
534#ifdef WPI_DEBUG
535	if (sc->sc_debug & WPI_DEBUG_HW)
536		ieee80211_announce_channels(ic);
537#endif
538
539	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
540	return 0;
541
542fail:	wpi_detach(dev);
543	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
544	return error;
545}
546
547/*
548 * Attach the interface to 802.11 radiotap.
549 */
550static void
551wpi_radiotap_attach(struct wpi_softc *sc)
552{
553	struct ifnet *ifp = sc->sc_ifp;
554	struct ieee80211com *ic = ifp->if_l2com;
555	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
556	ieee80211_radiotap_attach(ic,
557	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
558		WPI_TX_RADIOTAP_PRESENT,
559	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
560		WPI_RX_RADIOTAP_PRESENT);
561	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
562}
563
564static void
565wpi_sysctlattach(struct wpi_softc *sc)
566{
567#ifdef WPI_DEBUG
568	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
569	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
570
571	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
572	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
573		"control debugging printfs");
574#endif
575}
576
577static struct ieee80211vap *
578wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
579    enum ieee80211_opmode opmode, int flags,
580    const uint8_t bssid[IEEE80211_ADDR_LEN],
581    const uint8_t mac[IEEE80211_ADDR_LEN])
582{
583	struct wpi_vap *wvp;
584	struct wpi_buf *bcn;
585	struct ieee80211vap *vap;
586
587	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
588		return NULL;
589
590	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
591	    M_80211_VAP, M_NOWAIT | M_ZERO);
592	if (wvp == NULL)
593		return NULL;
594	vap = &wvp->vap;
595	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
596
597	bcn = &wvp->wv_bcbuf;
598	bcn->data = NULL;
599
600	/* Override with driver methods. */
601	wvp->newstate = vap->iv_newstate;
602	vap->iv_key_alloc = wpi_key_alloc;
603	vap->iv_key_set = wpi_key_set;
604	vap->iv_key_delete = wpi_key_delete;
605	vap->iv_newstate = wpi_newstate;
606	vap->iv_update_beacon = wpi_update_beacon;
607
608	ieee80211_ratectl_init(vap);
609	/* Complete setup. */
610	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
611	ic->ic_opmode = opmode;
612	return vap;
613}
614
615static void
616wpi_vap_delete(struct ieee80211vap *vap)
617{
618	struct wpi_vap *wvp = WPI_VAP(vap);
619	struct wpi_buf *bcn = &wvp->wv_bcbuf;
620
621	ieee80211_ratectl_deinit(vap);
622	ieee80211_vap_detach(vap);
623
624	if (bcn->data != NULL)
625		free(bcn->data, M_DEVBUF);
626	free(wvp, M_80211_VAP);
627}
628
629static int
630wpi_detach(device_t dev)
631{
632	struct wpi_softc *sc = device_get_softc(dev);
633	struct ifnet *ifp = sc->sc_ifp;
634	struct ieee80211com *ic;
635	int qid;
636
637	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
638
639	if (ifp != NULL) {
640		ic = ifp->if_l2com;
641
642		ieee80211_draintask(ic, &sc->sc_reinittask);
643		ieee80211_draintask(ic, &sc->sc_radiooff_task);
644		ieee80211_draintask(ic, &sc->sc_radioon_task);
645
646		wpi_stop(sc);
647
648		callout_drain(&sc->watchdog_to);
649		callout_drain(&sc->watchdog_rfkill);
650		callout_drain(&sc->calib_to);
651		ieee80211_ifdetach(ic);
652	}
653
654	/* Uninstall interrupt handler. */
655	if (sc->irq != NULL) {
656		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
657		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
658		    sc->irq);
659		pci_release_msi(dev);
660	}
661
662	if (sc->txq[0].data_dmat) {
663		/* Free DMA resources. */
664		for (qid = 0; qid < WPI_NTXQUEUES; qid++)
665			wpi_free_tx_ring(sc, &sc->txq[qid]);
666
667		wpi_free_rx_ring(sc);
668		wpi_free_shared(sc);
669	}
670
671	if (sc->fw_dma.tag)
672		wpi_free_fwmem(sc);
673
674	if (sc->mem != NULL)
675		bus_release_resource(dev, SYS_RES_MEMORY,
676		    rman_get_rid(sc->mem), sc->mem);
677
678	if (ifp != NULL)
679		if_free(ifp);
680
681	delete_unrhdr(sc->sc_unr);
682
683	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
684	WPI_LOCK_DESTROY(sc);
685	return 0;
686}
687
688static int
689wpi_shutdown(device_t dev)
690{
691	struct wpi_softc *sc = device_get_softc(dev);
692
693	wpi_stop(sc);
694	return 0;
695}
696
697static int
698wpi_suspend(device_t dev)
699{
700	struct wpi_softc *sc = device_get_softc(dev);
701	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
702
703	ieee80211_suspend_all(ic);
704	return 0;
705}
706
707static int
708wpi_resume(device_t dev)
709{
710	struct wpi_softc *sc = device_get_softc(dev);
711	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
712
713	/* Clear device-specific "PCI retry timeout" register (41h). */
714	pci_write_config(dev, 0x41, 0, 1);
715
716	ieee80211_resume_all(ic);
717	return 0;
718}
719
720/*
721 * Grab exclusive access to NIC memory.
722 */
723static int
724wpi_nic_lock(struct wpi_softc *sc)
725{
726	int ntries;
727
728	/* Request exclusive access to NIC. */
729	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
730
731	/* Spin until we actually get the lock. */
732	for (ntries = 0; ntries < 1000; ntries++) {
733		if ((WPI_READ(sc, WPI_GP_CNTRL) &
734		    (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) ==
735		    WPI_GP_CNTRL_MAC_ACCESS_ENA)
736			return 0;
737		DELAY(10);
738	}
739
740	device_printf(sc->sc_dev, "could not lock memory\n");
741
742	return ETIMEDOUT;
743}
744
745/*
746 * Release lock on NIC memory.
747 */
748static __inline void
749wpi_nic_unlock(struct wpi_softc *sc)
750{
751	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
752}
753
754static __inline uint32_t
755wpi_prph_read(struct wpi_softc *sc, uint32_t addr)
756{
757	WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr);
758	WPI_BARRIER_READ_WRITE(sc);
759	return WPI_READ(sc, WPI_PRPH_RDATA);
760}
761
762static __inline void
763wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
764{
765	WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr);
766	WPI_BARRIER_WRITE(sc);
767	WPI_WRITE(sc, WPI_PRPH_WDATA, data);
768}
769
770static __inline void
771wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
772{
773	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask);
774}
775
776static __inline void
777wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
778{
779	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask);
780}
781
782static __inline void
783wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr,
784    const uint32_t *data, int count)
785{
786	for (; count > 0; count--, data++, addr += 4)
787		wpi_prph_write(sc, addr, *data);
788}
789
790static __inline uint32_t
791wpi_mem_read(struct wpi_softc *sc, uint32_t addr)
792{
793	WPI_WRITE(sc, WPI_MEM_RADDR, addr);
794	WPI_BARRIER_READ_WRITE(sc);
795	return WPI_READ(sc, WPI_MEM_RDATA);
796}
797
798static __inline void
799wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data,
800    int count)
801{
802	for (; count > 0; count--, addr += 4)
803		*data++ = wpi_mem_read(sc, addr);
804}
805
806static int
807wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count)
808{
809	uint8_t *out = data;
810	uint32_t val;
811	int error, ntries;
812
813	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
814
815	if ((error = wpi_nic_lock(sc)) != 0)
816		return error;
817
818	for (; count > 0; count -= 2, addr++) {
819		WPI_WRITE(sc, WPI_EEPROM, addr << 2);
820		for (ntries = 0; ntries < 10; ntries++) {
821			val = WPI_READ(sc, WPI_EEPROM);
822			if (val & WPI_EEPROM_READ_VALID)
823				break;
824			DELAY(5);
825		}
826		if (ntries == 10) {
827			device_printf(sc->sc_dev,
828			    "timeout reading ROM at 0x%x\n", addr);
829			return ETIMEDOUT;
830		}
831		*out++= val >> 16;
832		if (count > 1)
833			*out ++= val >> 24;
834	}
835
836	wpi_nic_unlock(sc);
837
838	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
839
840	return 0;
841}
842
843static void
844wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
845{
846	if (error != 0)
847		return;
848	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
849	*(bus_addr_t *)arg = segs[0].ds_addr;
850}
851
852/*
853 * Allocates a contiguous block of dma memory of the requested size and
854 * alignment.
855 */
856static int
857wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
858    void **kvap, bus_size_t size, bus_size_t alignment)
859{
860	int error;
861
862	dma->tag = NULL;
863	dma->size = size;
864
865	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
866	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
867	    1, size, BUS_DMA_NOWAIT, NULL, NULL, &dma->tag);
868	if (error != 0)
869		goto fail;
870
871	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
872	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
873	if (error != 0)
874		goto fail;
875
876	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
877	    wpi_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
878	if (error != 0)
879		goto fail;
880
881	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
882
883	if (kvap != NULL)
884		*kvap = dma->vaddr;
885
886	return 0;
887
888fail:	wpi_dma_contig_free(dma);
889	return error;
890}
891
892static void
893wpi_dma_contig_free(struct wpi_dma_info *dma)
894{
895	if (dma->vaddr != NULL) {
896		bus_dmamap_sync(dma->tag, dma->map,
897		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
898		bus_dmamap_unload(dma->tag, dma->map);
899		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
900		dma->vaddr = NULL;
901	}
902	if (dma->tag != NULL) {
903		bus_dma_tag_destroy(dma->tag);
904		dma->tag = NULL;
905	}
906}
907
908/*
909 * Allocate a shared page between host and NIC.
910 */
911static int
912wpi_alloc_shared(struct wpi_softc *sc)
913{
914	/* Shared buffer must be aligned on a 4KB boundary. */
915	return wpi_dma_contig_alloc(sc, &sc->shared_dma,
916	    (void **)&sc->shared, sizeof (struct wpi_shared), 4096);
917}
918
919static void
920wpi_free_shared(struct wpi_softc *sc)
921{
922	wpi_dma_contig_free(&sc->shared_dma);
923}
924
925/*
926 * Allocate DMA-safe memory for firmware transfer.
927 */
928static int
929wpi_alloc_fwmem(struct wpi_softc *sc)
930{
931	/* Must be aligned on a 16-byte boundary. */
932	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
933	    WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16);
934}
935
936static void
937wpi_free_fwmem(struct wpi_softc *sc)
938{
939	wpi_dma_contig_free(&sc->fw_dma);
940}
941
942static int
943wpi_alloc_rx_ring(struct wpi_softc *sc)
944{
945	struct wpi_rx_ring *ring = &sc->rxq;
946	bus_size_t size;
947	int i, error;
948
949	ring->cur = 0;
950	ring->update = 0;
951
952	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
953
954	/* Allocate RX descriptors (16KB aligned.) */
955	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
956	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
957	    (void **)&ring->desc, size, WPI_RING_DMA_ALIGN);
958	if (error != 0) {
959		device_printf(sc->sc_dev,
960		    "%s: could not allocate RX ring DMA memory, error %d\n",
961		    __func__, error);
962		goto fail;
963	}
964
965	/* Create RX buffer DMA tag. */
966	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
967	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
968	    MJUMPAGESIZE, 1, MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL,
969	    &ring->data_dmat);
970	if (error != 0) {
971		device_printf(sc->sc_dev,
972		    "%s: could not create RX buf DMA tag, error %d\n",
973		    __func__, error);
974		goto fail;
975	}
976
977	/*
978	 * Allocate and map RX buffers.
979	 */
980	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
981		struct wpi_rx_data *data = &ring->data[i];
982		bus_addr_t paddr;
983
984		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
985		if (error != 0) {
986			device_printf(sc->sc_dev,
987			    "%s: could not create RX buf DMA map, error %d\n",
988			    __func__, error);
989			goto fail;
990		}
991
992		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
993		if (data->m == NULL) {
994			device_printf(sc->sc_dev,
995			    "%s: could not allocate RX mbuf\n", __func__);
996			error = ENOBUFS;
997			goto fail;
998		}
999
1000		error = bus_dmamap_load(ring->data_dmat, data->map,
1001		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1002		    &paddr, BUS_DMA_NOWAIT);
1003		if (error != 0 && error != EFBIG) {
1004			device_printf(sc->sc_dev,
1005			    "%s: can't map mbuf (error %d)\n", __func__,
1006			    error);
1007			goto fail;
1008		}
1009
1010		/* Set physical address of RX buffer. */
1011		ring->desc[i] = htole32(paddr);
1012	}
1013
1014	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1015	    BUS_DMASYNC_PREWRITE);
1016
1017	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1018
1019	return 0;
1020
1021fail:	wpi_free_rx_ring(sc);
1022
1023	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1024
1025	return error;
1026}
1027
1028static void
1029wpi_update_rx_ring(struct wpi_softc *sc)
1030{
1031	struct wpi_rx_ring *ring = &sc->rxq;
1032
1033	if (ring->update != 0) {
1034		/* Wait for INT_WAKEUP event. */
1035		return;
1036	}
1037
1038	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP) {
1039		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s: wakeup request\n",
1040		    __func__);
1041
1042		WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1043		ring->update = 1;
1044	} else
1045		WPI_WRITE(sc, WPI_FH_RX_WPTR, ring->cur & ~7);
1046}
1047
1048static void
1049wpi_reset_rx_ring(struct wpi_softc *sc)
1050{
1051	struct wpi_rx_ring *ring = &sc->rxq;
1052	int ntries;
1053
1054	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1055
1056	if (wpi_nic_lock(sc) == 0) {
1057		WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0);
1058		for (ntries = 0; ntries < 1000; ntries++) {
1059			if (WPI_READ(sc, WPI_FH_RX_STATUS) &
1060			    WPI_FH_RX_STATUS_IDLE)
1061				break;
1062			DELAY(10);
1063		}
1064#ifdef WPI_DEBUG
1065		if (ntries == 1000) {
1066			device_printf(sc->sc_dev,
1067			    "timeout resetting Rx ring\n");
1068		}
1069#endif
1070		wpi_nic_unlock(sc);
1071	}
1072
1073	ring->cur = 0;
1074	ring->update = 0;
1075}
1076
1077static void
1078wpi_free_rx_ring(struct wpi_softc *sc)
1079{
1080	struct wpi_rx_ring *ring = &sc->rxq;
1081	int i;
1082
1083	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1084
1085	wpi_dma_contig_free(&ring->desc_dma);
1086
1087	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1088		struct wpi_rx_data *data = &ring->data[i];
1089
1090		if (data->m != NULL) {
1091			bus_dmamap_sync(ring->data_dmat, data->map,
1092			    BUS_DMASYNC_POSTREAD);
1093			bus_dmamap_unload(ring->data_dmat, data->map);
1094			m_freem(data->m);
1095			data->m = NULL;
1096		}
1097		if (data->map != NULL)
1098			bus_dmamap_destroy(ring->data_dmat, data->map);
1099	}
1100	if (ring->data_dmat != NULL) {
1101		bus_dma_tag_destroy(ring->data_dmat);
1102		ring->data_dmat = NULL;
1103	}
1104}
1105
1106static int
1107wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int qid)
1108{
1109	bus_addr_t paddr;
1110	bus_size_t size;
1111	int i, error;
1112
1113	ring->qid = qid;
1114	ring->queued = 0;
1115	ring->cur = 0;
1116	ring->update = 0;
1117
1118	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1119
1120	/* Allocate TX descriptors (16KB aligned.) */
1121	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc);
1122	error = wpi_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1123	    size, WPI_RING_DMA_ALIGN);
1124	if (error != 0) {
1125		device_printf(sc->sc_dev,
1126		    "%s: could not allocate TX ring DMA memory, error %d\n",
1127		    __func__, error);
1128		goto fail;
1129	}
1130
1131	/* Update shared area with ring physical address. */
1132	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1133	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1134	    BUS_DMASYNC_PREWRITE);
1135
1136	/*
1137	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1138	 * to allocate commands space for other rings.
1139	 * XXX Do we really need to allocate descriptors for other rings?
1140	 */
1141	if (qid > WPI_CMD_QUEUE_NUM)
1142		return 0;
1143
1144	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd);
1145	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1146	    size, 4);
1147	if (error != 0) {
1148		device_printf(sc->sc_dev,
1149		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1150		    __func__, error);
1151		goto fail;
1152	}
1153
1154	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1155	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1156	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1157	    &ring->data_dmat);
1158	if (error != 0) {
1159		device_printf(sc->sc_dev,
1160		    "%s: could not create TX buf DMA tag, error %d\n",
1161		    __func__, error);
1162		goto fail;
1163	}
1164
1165	paddr = ring->cmd_dma.paddr;
1166	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1167		struct wpi_tx_data *data = &ring->data[i];
1168
1169		data->cmd_paddr = paddr;
1170		paddr += sizeof (struct wpi_tx_cmd);
1171
1172		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1173		if (error != 0) {
1174			device_printf(sc->sc_dev,
1175			    "%s: could not create TX buf DMA map, error %d\n",
1176			    __func__, error);
1177			goto fail;
1178		}
1179	}
1180
1181	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1182
1183	return 0;
1184
1185fail:	wpi_free_tx_ring(sc, ring);
1186	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1187	return error;
1188}
1189
1190static void
1191wpi_update_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1192{
1193	if (ring->update != 0) {
1194		/* Wait for INT_WAKEUP event. */
1195		return;
1196	}
1197
1198	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP) {
1199		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s (%d): requesting wakeup\n",
1200		    __func__, ring->qid);
1201
1202		WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1203		ring->update = 1;
1204	} else
1205		WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
1206}
1207
1208static void
1209wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1210{
1211	int i;
1212
1213	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1214
1215	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1216		struct wpi_tx_data *data = &ring->data[i];
1217
1218		if (data->m != NULL) {
1219			bus_dmamap_sync(ring->data_dmat, data->map,
1220			    BUS_DMASYNC_POSTWRITE);
1221			bus_dmamap_unload(ring->data_dmat, data->map);
1222			m_freem(data->m);
1223			data->m = NULL;
1224		}
1225	}
1226	/* Clear TX descriptors. */
1227	memset(ring->desc, 0, ring->desc_dma.size);
1228	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1229	    BUS_DMASYNC_PREWRITE);
1230	sc->qfullmsk &= ~(1 << ring->qid);
1231	ring->queued = 0;
1232	ring->cur = 0;
1233	ring->update = 0;
1234}
1235
1236static void
1237wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1238{
1239	int i;
1240
1241	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1242
1243	wpi_dma_contig_free(&ring->desc_dma);
1244	wpi_dma_contig_free(&ring->cmd_dma);
1245
1246	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1247		struct wpi_tx_data *data = &ring->data[i];
1248
1249		if (data->m != NULL) {
1250			bus_dmamap_sync(ring->data_dmat, data->map,
1251			    BUS_DMASYNC_POSTWRITE);
1252			bus_dmamap_unload(ring->data_dmat, data->map);
1253			m_freem(data->m);
1254		}
1255		if (data->map != NULL)
1256			bus_dmamap_destroy(ring->data_dmat, data->map);
1257	}
1258	if (ring->data_dmat != NULL) {
1259		bus_dma_tag_destroy(ring->data_dmat);
1260		ring->data_dmat = NULL;
1261	}
1262}
1263
1264/*
1265 * Extract various information from EEPROM.
1266 */
1267static int
1268wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1269{
1270#define WPI_CHK(res) do {		\
1271	if ((error = res) != 0)		\
1272		goto fail;		\
1273} while (0)
1274	int error, i;
1275
1276	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1277
1278	/* Adapter has to be powered on for EEPROM access to work. */
1279	if ((error = wpi_apm_init(sc)) != 0) {
1280		device_printf(sc->sc_dev,
1281		    "%s: could not power ON adapter, error %d\n", __func__,
1282		    error);
1283		return error;
1284	}
1285
1286	if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) {
1287		device_printf(sc->sc_dev, "bad EEPROM signature\n");
1288		error = EIO;
1289		goto fail;
1290	}
1291	/* Clear HW ownership of EEPROM. */
1292	WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER);
1293
1294	/* Read the hardware capabilities, revision and SKU type. */
1295	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_SKU_CAP, &sc->cap,
1296	    sizeof(sc->cap)));
1297	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,
1298	    sizeof(sc->rev)));
1299	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type,
1300	    sizeof(sc->type)));
1301
1302	DPRINTF(sc, WPI_DEBUG_EEPROM, "cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
1303	    sc->type);
1304
1305	/* Read the regulatory domain (4 ASCII characters.) */
1306	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain,
1307	    sizeof(sc->domain)));
1308
1309	/* Read MAC address. */
1310	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr,
1311	    IEEE80211_ADDR_LEN));
1312
1313	/* Read the list of authorized channels. */
1314	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
1315		WPI_CHK(wpi_read_eeprom_channels(sc, i));
1316
1317	/* Read the list of TX power groups. */
1318	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
1319		WPI_CHK(wpi_read_eeprom_group(sc, i));
1320
1321fail:	wpi_apm_stop(sc);	/* Power OFF adapter. */
1322
1323	DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
1324	    __func__);
1325
1326	return error;
1327#undef WPI_CHK
1328}
1329
1330/*
1331 * Translate EEPROM flags to net80211.
1332 */
1333static uint32_t
1334wpi_eeprom_channel_flags(struct wpi_eeprom_chan *channel)
1335{
1336	uint32_t nflags;
1337
1338	nflags = 0;
1339	if ((channel->flags & WPI_EEPROM_CHAN_ACTIVE) == 0)
1340		nflags |= IEEE80211_CHAN_PASSIVE;
1341	if ((channel->flags & WPI_EEPROM_CHAN_IBSS) == 0)
1342		nflags |= IEEE80211_CHAN_NOADHOC;
1343	if (channel->flags & WPI_EEPROM_CHAN_RADAR) {
1344		nflags |= IEEE80211_CHAN_DFS;
1345		/* XXX apparently IBSS may still be marked */
1346		nflags |= IEEE80211_CHAN_NOADHOC;
1347	}
1348
1349	return nflags;
1350}
1351
1352static void
1353wpi_read_eeprom_band(struct wpi_softc *sc, int n)
1354{
1355	struct ifnet *ifp = sc->sc_ifp;
1356	struct ieee80211com *ic = ifp->if_l2com;
1357	struct wpi_eeprom_chan *channels = sc->eeprom_channels[n];
1358	const struct wpi_chan_band *band = &wpi_bands[n];
1359	struct ieee80211_channel *c;
1360	uint8_t chan;
1361	int i, nflags;
1362
1363	for (i = 0; i < band->nchan; i++) {
1364		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
1365			DPRINTF(sc, WPI_DEBUG_HW,
1366			    "Channel Not Valid: %d, band %d\n",
1367			     band->chan[i],n);
1368			continue;
1369		}
1370
1371		chan = band->chan[i];
1372		nflags = wpi_eeprom_channel_flags(&channels[i]);
1373
1374		c = &ic->ic_channels[ic->ic_nchans++];
1375		c->ic_ieee = chan;
1376		c->ic_maxregpower = channels[i].maxpwr;
1377		c->ic_maxpower = 2*c->ic_maxregpower;
1378
1379		if (n == 0) {	/* 2GHz band */
1380			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_G);
1381			/* G =>'s B is supported */
1382			c->ic_flags = IEEE80211_CHAN_B | nflags;
1383			c = &ic->ic_channels[ic->ic_nchans++];
1384			c[0] = c[-1];
1385			c->ic_flags = IEEE80211_CHAN_G | nflags;
1386		} else {	/* 5GHz band */
1387			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A);
1388			c->ic_flags = IEEE80211_CHAN_A | nflags;
1389		}
1390
1391		/* Save maximum allowed TX power for this channel. */
1392		sc->maxpwr[chan] = channels[i].maxpwr;
1393
1394		DPRINTF(sc, WPI_DEBUG_EEPROM,
1395		    "adding chan %d (%dMHz) flags=0x%x maxpwr=%d passive=%d,"
1396		    " offset %d\n", chan, c->ic_freq,
1397		    channels[i].flags, sc->maxpwr[chan],
1398		    IEEE80211_IS_CHAN_PASSIVE(c), ic->ic_nchans);
1399	}
1400}
1401
1402/**
1403 * Read the eeprom to find out what channels are valid for the given
1404 * band and update net80211 with what we find.
1405 */
1406static int
1407wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
1408{
1409	struct ifnet *ifp = sc->sc_ifp;
1410	struct ieee80211com *ic = ifp->if_l2com;
1411	const struct wpi_chan_band *band = &wpi_bands[n];
1412	int error;
1413
1414	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1415
1416	error = wpi_read_prom_data(sc, band->addr, &sc->eeprom_channels[n],
1417	    band->nchan * sizeof (struct wpi_eeprom_chan));
1418	if (error != 0) {
1419		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1420		return error;
1421	}
1422
1423	wpi_read_eeprom_band(sc, n);
1424
1425	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1426
1427	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1428
1429	return 0;
1430}
1431
1432static struct wpi_eeprom_chan *
1433wpi_find_eeprom_channel(struct wpi_softc *sc, struct ieee80211_channel *c)
1434{
1435	int i, j;
1436
1437	for (j = 0; j < WPI_CHAN_BANDS_COUNT; j++)
1438		for (i = 0; i < wpi_bands[j].nchan; i++)
1439			if (wpi_bands[j].chan[i] == c->ic_ieee)
1440				return &sc->eeprom_channels[j][i];
1441
1442	return NULL;
1443}
1444
1445/*
1446 * Enforce flags read from EEPROM.
1447 */
1448static int
1449wpi_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
1450    int nchan, struct ieee80211_channel chans[])
1451{
1452	struct ifnet *ifp = ic->ic_ifp;
1453	struct wpi_softc *sc = ifp->if_softc;
1454	int i;
1455
1456	for (i = 0; i < nchan; i++) {
1457		struct ieee80211_channel *c = &chans[i];
1458		struct wpi_eeprom_chan *channel;
1459
1460		channel = wpi_find_eeprom_channel(sc, c);
1461		if (channel == NULL) {
1462			if_printf(ic->ic_ifp,
1463			    "%s: invalid channel %u freq %u/0x%x\n",
1464			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
1465			return EINVAL;
1466		}
1467		c->ic_flags |= wpi_eeprom_channel_flags(channel);
1468	}
1469
1470	return 0;
1471}
1472
1473static int
1474wpi_read_eeprom_group(struct wpi_softc *sc, int n)
1475{
1476	struct wpi_power_group *group = &sc->groups[n];
1477	struct wpi_eeprom_group rgroup;
1478	int i, error;
1479
1480	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1481
1482	if ((error = wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32,
1483	    &rgroup, sizeof rgroup)) != 0) {
1484		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1485		return error;
1486	}
1487
1488	/* Save TX power group information. */
1489	group->chan   = rgroup.chan;
1490	group->maxpwr = rgroup.maxpwr;
1491	/* Retrieve temperature at which the samples were taken. */
1492	group->temp   = (int16_t)le16toh(rgroup.temp);
1493
1494	DPRINTF(sc, WPI_DEBUG_EEPROM,
1495	    "power group %d: chan=%d maxpwr=%d temp=%d\n", n, group->chan,
1496	    group->maxpwr, group->temp);
1497
1498	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
1499		group->samples[i].index = rgroup.samples[i].index;
1500		group->samples[i].power = rgroup.samples[i].power;
1501
1502		DPRINTF(sc, WPI_DEBUG_EEPROM,
1503		    "\tsample %d: index=%d power=%d\n", i,
1504		    group->samples[i].index, group->samples[i].power);
1505	}
1506
1507	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1508
1509	return 0;
1510}
1511
1512static struct ieee80211_node *
1513wpi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1514{
1515	struct wpi_node *wn;
1516
1517	wn = malloc(sizeof (struct wpi_node), M_80211_NODE,
1518	    M_NOWAIT | M_ZERO);
1519
1520	if (wn == NULL)
1521		return NULL;
1522
1523	wn->id = WPI_ID_UNDEFINED;
1524
1525	return &wn->ni;
1526}
1527
1528static void
1529wpi_node_free(struct ieee80211_node *ni)
1530{
1531	struct ieee80211com *ic = ni->ni_ic;
1532	struct wpi_softc *sc = ic->ic_ifp->if_softc;
1533	struct wpi_node *wn = WPI_NODE(ni);
1534
1535	if (wn->id >= WPI_ID_IBSS_MIN && wn->id <= WPI_ID_IBSS_MAX) {
1536		free_unr(sc->sc_unr, wn->id);
1537
1538		WPI_LOCK(sc);
1539		if (sc->rxon.filter & htole32(WPI_FILTER_BSS))
1540			wpi_del_node(sc, ni);
1541		WPI_UNLOCK(sc);
1542	}
1543
1544	sc->sc_node_free(ni);
1545}
1546
1547/**
1548 * Called by net80211 when ever there is a change to 80211 state machine
1549 */
1550static int
1551wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1552{
1553	struct wpi_vap *wvp = WPI_VAP(vap);
1554	struct ieee80211com *ic = vap->iv_ic;
1555	struct ifnet *ifp = ic->ic_ifp;
1556	struct wpi_softc *sc = ifp->if_softc;
1557	int error = 0;
1558
1559	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1560
1561	DPRINTF(sc, WPI_DEBUG_STATE, "%s: %s -> %s\n", __func__,
1562		ieee80211_state_name[vap->iv_state],
1563		ieee80211_state_name[nstate]);
1564
1565	IEEE80211_UNLOCK(ic);
1566	WPI_LOCK(sc);
1567	switch (nstate) {
1568	case IEEE80211_S_SCAN:
1569		if ((vap->iv_opmode == IEEE80211_M_IBSS ||
1570		    vap->iv_opmode == IEEE80211_M_AHDEMO) &&
1571		    (sc->rxon.filter & htole32(WPI_FILTER_BSS))) {
1572			sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1573			if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1574				device_printf(sc->sc_dev,
1575				    "%s: could not send RXON\n", __func__);
1576			}
1577		}
1578		break;
1579
1580	case IEEE80211_S_ASSOC:
1581		if (vap->iv_state != IEEE80211_S_RUN)
1582			break;
1583		/* FALLTHROUGH */
1584	case IEEE80211_S_AUTH:
1585		/*
1586		 * The node must be registered in the firmware before auth.
1587		 * Also the associd must be cleared on RUN -> ASSOC
1588		 * transitions.
1589		 */
1590		if ((error = wpi_auth(sc, vap)) != 0) {
1591			device_printf(sc->sc_dev,
1592			    "%s: could not move to AUTH state, error %d\n",
1593			    __func__, error);
1594		}
1595		break;
1596
1597	case IEEE80211_S_RUN:
1598		/*
1599		 * RUN -> RUN transition; Just restart the timers.
1600		 */
1601		if (vap->iv_state == IEEE80211_S_RUN) {
1602			wpi_calib_timeout(sc);
1603			break;
1604		}
1605
1606		/*
1607		 * !RUN -> RUN requires setting the association id
1608		 * which is done with a firmware cmd.  We also defer
1609		 * starting the timers until that work is done.
1610		 */
1611		if ((error = wpi_run(sc, vap)) != 0) {
1612			device_printf(sc->sc_dev,
1613			    "%s: could not move to RUN state\n", __func__);
1614		}
1615		break;
1616
1617	default:
1618		break;
1619	}
1620	WPI_UNLOCK(sc);
1621	IEEE80211_LOCK(ic);
1622	if (error != 0) {
1623		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1624		return error;
1625	}
1626
1627	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1628
1629	return wvp->newstate(vap, nstate, arg);
1630}
1631
1632static void
1633wpi_calib_timeout(void *arg)
1634{
1635	struct wpi_softc *sc = arg;
1636	struct ifnet *ifp = sc->sc_ifp;
1637	struct ieee80211com *ic = ifp->if_l2com;
1638	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1639
1640	if (vap->iv_state != IEEE80211_S_RUN)
1641		return;
1642
1643	wpi_power_calibration(sc);
1644
1645	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
1646}
1647
1648static __inline uint8_t
1649rate2plcp(const uint8_t rate)
1650{
1651	switch (rate) {
1652	case 12:	return 0xd;
1653	case 18:	return 0xf;
1654	case 24:	return 0x5;
1655	case 36:	return 0x7;
1656	case 48:	return 0x9;
1657	case 72:	return 0xb;
1658	case 96:	return 0x1;
1659	case 108:	return 0x3;
1660	case 2:		return 10;
1661	case 4:		return 20;
1662	case 11:	return 55;
1663	case 22:	return 110;
1664	default:	return 0;
1665	}
1666}
1667
1668static __inline uint8_t
1669plcp2rate(const uint8_t plcp)
1670{
1671	switch (plcp) {
1672	case 0xd:	return 12;
1673	case 0xf:	return 18;
1674	case 0x5:	return 24;
1675	case 0x7:	return 36;
1676	case 0x9:	return 48;
1677	case 0xb:	return 72;
1678	case 0x1:	return 96;
1679	case 0x3:	return 108;
1680	case 10:	return 2;
1681	case 20:	return 4;
1682	case 55:	return 11;
1683	case 110:	return 22;
1684	default:	return 0;
1685	}
1686}
1687
1688/* Quickly determine if a given rate is CCK or OFDM. */
1689#define WPI_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
1690
1691static void
1692wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1693    struct wpi_rx_data *data)
1694{
1695	struct ifnet *ifp = sc->sc_ifp;
1696	const struct ieee80211_cipher *cip = NULL;
1697	struct ieee80211com *ic = ifp->if_l2com;
1698	struct wpi_rx_ring *ring = &sc->rxq;
1699	struct wpi_rx_stat *stat;
1700	struct wpi_rx_head *head;
1701	struct wpi_rx_tail *tail;
1702	struct ieee80211_frame *wh;
1703	struct ieee80211_node *ni;
1704	struct mbuf *m, *m1;
1705	bus_addr_t paddr;
1706	uint32_t flags;
1707	uint16_t len;
1708	int error;
1709
1710	stat = (struct wpi_rx_stat *)(desc + 1);
1711
1712	if (stat->len > WPI_STAT_MAXLEN) {
1713		device_printf(sc->sc_dev, "invalid RX statistic header\n");
1714		goto fail1;
1715	}
1716
1717	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1718	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1719	len = le16toh(head->len);
1720	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + len);
1721	flags = le32toh(tail->flags);
1722
1723	DPRINTF(sc, WPI_DEBUG_RECV, "%s: idx %d len %d stat len %u rssi %d"
1724	    " rate %x chan %d tstamp %ju\n", __func__, ring->cur,
1725	    le32toh(desc->len), len, (int8_t)stat->rssi,
1726	    head->plcp, head->chan, (uintmax_t)le64toh(tail->tstamp));
1727
1728	/* Discard frames with a bad FCS early. */
1729	if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1730		DPRINTF(sc, WPI_DEBUG_RECV, "%s: RX flags error %x\n",
1731		    __func__, flags);
1732		goto fail1;
1733	}
1734	/* Discard frames that are too short. */
1735	if (len < sizeof (*wh)) {
1736		DPRINTF(sc, WPI_DEBUG_RECV, "%s: frame too short: %d\n",
1737		    __func__, len);
1738		goto fail1;
1739	}
1740
1741	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1742	if (m1 == NULL) {
1743		DPRINTF(sc, WPI_DEBUG_ANY, "%s: no mbuf to restock ring\n",
1744		    __func__);
1745		goto fail1;
1746	}
1747	bus_dmamap_unload(ring->data_dmat, data->map);
1748
1749	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
1750	    MJUMPAGESIZE, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1751	if (error != 0 && error != EFBIG) {
1752		device_printf(sc->sc_dev,
1753		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1754		m_freem(m1);
1755
1756		/* Try to reload the old mbuf. */
1757		error = bus_dmamap_load(ring->data_dmat, data->map,
1758		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1759		    &paddr, BUS_DMA_NOWAIT);
1760		if (error != 0 && error != EFBIG) {
1761			panic("%s: could not load old RX mbuf", __func__);
1762		}
1763		/* Physical address may have changed. */
1764		ring->desc[ring->cur] = htole32(paddr);
1765		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
1766		    BUS_DMASYNC_PREWRITE);
1767		goto fail1;
1768	}
1769
1770	m = data->m;
1771	data->m = m1;
1772	/* Update RX descriptor. */
1773	ring->desc[ring->cur] = htole32(paddr);
1774	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1775	    BUS_DMASYNC_PREWRITE);
1776
1777	/* Finalize mbuf. */
1778	m->m_pkthdr.rcvif = ifp;
1779	m->m_data = (caddr_t)(head + 1);
1780	m->m_pkthdr.len = m->m_len = len;
1781
1782	/* Grab a reference to the source node. */
1783	wh = mtod(m, struct ieee80211_frame *);
1784	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1785
1786	if (ni != NULL)
1787		cip = ni->ni_ucastkey.wk_cipher;
1788	if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
1789	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1790	    cip != NULL && cip->ic_cipher == IEEE80211_CIPHER_AES_CCM) {
1791		if ((flags & WPI_RX_CIPHER_MASK) != WPI_RX_CIPHER_CCMP)
1792			goto fail2;
1793
1794		/* Check whether decryption was successful or not. */
1795		if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) {
1796			DPRINTF(sc, WPI_DEBUG_RECV,
1797			    "CCMP decryption failed 0x%x\n", flags);
1798			goto fail2;
1799		}
1800		m->m_flags |= M_WEP;
1801	}
1802
1803	if (ieee80211_radiotap_active(ic)) {
1804		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1805
1806		tap->wr_flags = 0;
1807		if (head->flags & htole16(WPI_STAT_FLAG_SHPREAMBLE))
1808			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1809		tap->wr_dbm_antsignal = (int8_t)(stat->rssi + WPI_RSSI_OFFSET);
1810		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1811		tap->wr_tsft = tail->tstamp;
1812		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1813		tap->wr_rate = plcp2rate(head->plcp);
1814	}
1815
1816	WPI_UNLOCK(sc);
1817
1818	/* Send the frame to the 802.11 layer. */
1819	if (ni != NULL) {
1820		(void)ieee80211_input(ni, m, stat->rssi, WPI_RSSI_OFFSET);
1821		/* Node is no longer needed. */
1822		ieee80211_free_node(ni);
1823	} else
1824		(void)ieee80211_input_all(ic, m, stat->rssi, WPI_RSSI_OFFSET);
1825
1826	WPI_LOCK(sc);
1827
1828	return;
1829
1830fail2:	ieee80211_free_node(ni);
1831	m_freem(m);
1832
1833fail1:	if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1834}
1835
1836static void
1837wpi_rx_statistics(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1838    struct wpi_rx_data *data)
1839{
1840	/* Ignore */
1841}
1842
1843static void
1844wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1845{
1846	struct ifnet *ifp = sc->sc_ifp;
1847	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1848	struct wpi_tx_data *data = &ring->data[desc->idx];
1849	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1850	struct mbuf *m;
1851	struct ieee80211_node *ni;
1852	struct ieee80211vap *vap;
1853	int ackfailcnt = stat->ackfailcnt / 2;	/* wpi_mrr_setup() */
1854	int status = le32toh(stat->status);
1855
1856	KASSERT(data->ni != NULL, ("no node"));
1857
1858	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1859
1860	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: "
1861	    "qid %d idx %d retries %d btkillcnt %d rate %x duration %d "
1862	    "status %x\n", __func__, desc->qid, desc->idx, ackfailcnt,
1863	    stat->btkillcnt, stat->rate, le32toh(stat->duration), status);
1864
1865	/* Unmap and free mbuf. */
1866	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
1867	bus_dmamap_unload(ring->data_dmat, data->map);
1868	m = data->m, data->m = NULL;
1869	ni = data->ni, data->ni = NULL;
1870	vap = ni->ni_vap;
1871
1872	/*
1873	 * Update rate control statistics for the node.
1874	 */
1875	WPI_UNLOCK(sc);
1876	if ((status & 0xff) != 1) {
1877		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1878		ieee80211_ratectl_tx_complete(vap, ni,
1879		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
1880	} else {
1881		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1882		ieee80211_ratectl_tx_complete(vap, ni,
1883		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
1884	}
1885
1886	ieee80211_tx_complete(ni, m, (status & 0xff) != 1);
1887	WPI_LOCK(sc);
1888
1889	sc->sc_tx_timer = 0;
1890	if (--ring->queued < WPI_TX_RING_LOMARK) {
1891		sc->qfullmsk &= ~(1 << ring->qid);
1892		if (sc->qfullmsk == 0 &&
1893		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
1894			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1895			wpi_start_locked(ifp);
1896		}
1897	}
1898
1899	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1900}
1901
1902/*
1903 * Process a "command done" firmware notification.  This is where we wakeup
1904 * processes waiting for a synchronous command completion.
1905 */
1906static void
1907wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1908{
1909	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
1910	struct wpi_tx_data *data;
1911
1912	DPRINTF(sc, WPI_DEBUG_CMD, "cmd notification qid=%x idx=%d flags=%x "
1913				   "type=%s len=%d\n", desc->qid, desc->idx,
1914				   desc->flags, wpi_cmd_str(desc->type),
1915				   le32toh(desc->len));
1916
1917	if ((desc->qid & WPI_RX_DESC_QID_MSK) != WPI_CMD_QUEUE_NUM)
1918		return;	/* Not a command ack. */
1919
1920	data = &ring->data[desc->idx];
1921
1922	/* If the command was mapped in an mbuf, free it. */
1923	if (data->m != NULL) {
1924		bus_dmamap_sync(ring->data_dmat, data->map,
1925		    BUS_DMASYNC_POSTWRITE);
1926		bus_dmamap_unload(ring->data_dmat, data->map);
1927		m_freem(data->m);
1928		data->m = NULL;
1929	}
1930
1931	sc->flags &= ~WPI_FLAG_BUSY;
1932	wakeup(&ring->cmd[desc->idx]);
1933}
1934
1935static void
1936wpi_notif_intr(struct wpi_softc *sc)
1937{
1938	struct ifnet *ifp = sc->sc_ifp;
1939	struct ieee80211com *ic = ifp->if_l2com;
1940	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1941	int hw;
1942
1943	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1944	    BUS_DMASYNC_POSTREAD);
1945
1946	hw = le32toh(sc->shared->next);
1947	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1948
1949	while (sc->rxq.cur != hw) {
1950		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1951
1952		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1953		struct wpi_rx_desc *desc;
1954
1955		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1956		    BUS_DMASYNC_POSTREAD);
1957		desc = mtod(data->m, struct wpi_rx_desc *);
1958
1959		DPRINTF(sc, WPI_DEBUG_NOTIFY,
1960		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
1961		    __func__, sc->rxq.cur, desc->qid, desc->idx, desc->flags,
1962		    desc->type, wpi_cmd_str(desc->type), le32toh(desc->len));
1963
1964		if (!(desc->qid & WPI_UNSOLICITED_RX_NOTIF)) {
1965			/* Reply to a command. */
1966			wpi_cmd_done(sc, desc);
1967		}
1968
1969		switch (desc->type) {
1970		case WPI_RX_DONE:
1971			/* An 802.11 frame has been received. */
1972			wpi_rx_done(sc, desc, data);
1973
1974			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1975				/* wpi_stop() was called. */
1976				return;
1977			}
1978
1979			break;
1980
1981		case WPI_TX_DONE:
1982			/* An 802.11 frame has been transmitted. */
1983			wpi_tx_done(sc, desc);
1984			break;
1985
1986		case WPI_RX_STATISTICS:
1987		case WPI_BEACON_STATISTICS:
1988			wpi_rx_statistics(sc, desc, data);
1989			break;
1990
1991		case WPI_BEACON_MISSED:
1992		{
1993			struct wpi_beacon_missed *miss =
1994			    (struct wpi_beacon_missed *)(desc + 1);
1995			int misses;
1996
1997			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1998			    BUS_DMASYNC_POSTREAD);
1999			misses = le32toh(miss->consecutive);
2000
2001			DPRINTF(sc, WPI_DEBUG_STATE,
2002			    "%s: beacons missed %d/%d\n", __func__, misses,
2003			    le32toh(miss->total));
2004
2005			if (vap->iv_state == IEEE80211_S_RUN &&
2006			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2007				if (misses >=  vap->iv_bmissthreshold) {
2008					WPI_UNLOCK(sc);
2009					ieee80211_beacon_miss(ic);
2010					WPI_LOCK(sc);
2011				}
2012			}
2013			break;
2014		}
2015		case WPI_UC_READY:
2016		{
2017			struct wpi_ucode_info *uc =
2018			    (struct wpi_ucode_info *)(desc + 1);
2019
2020			/* The microcontroller is ready. */
2021			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2022			    BUS_DMASYNC_POSTREAD);
2023			DPRINTF(sc, WPI_DEBUG_RESET,
2024			    "microcode alive notification version=%d.%d "
2025			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2026			    uc->subtype, le32toh(uc->valid));
2027
2028			if (le32toh(uc->valid) != 1) {
2029				device_printf(sc->sc_dev,
2030				    "microcontroller initialization failed\n");
2031				wpi_stop_locked(sc);
2032			}
2033			/* Save the address of the error log in SRAM. */
2034			sc->errptr = le32toh(uc->errptr);
2035			break;
2036		}
2037		case WPI_STATE_CHANGED:
2038		{
2039			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2040			    BUS_DMASYNC_POSTREAD);
2041
2042			uint32_t *status = (uint32_t *)(desc + 1);
2043
2044			DPRINTF(sc, WPI_DEBUG_STATE, "state changed to %x\n",
2045			    le32toh(*status));
2046
2047			if (le32toh(*status) & 1) {
2048				ieee80211_runtask(ic, &sc->sc_radiooff_task);
2049				return;
2050			}
2051			break;
2052		}
2053		case WPI_START_SCAN:
2054		{
2055			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2056			    BUS_DMASYNC_POSTREAD);
2057#ifdef WPI_DEBUG
2058			struct wpi_start_scan *scan =
2059			    (struct wpi_start_scan *)(desc + 1);
2060			DPRINTF(sc, WPI_DEBUG_SCAN,
2061			    "%s: scanning channel %d status %x\n",
2062			    __func__, scan->chan, le32toh(scan->status));
2063#endif
2064			break;
2065		}
2066		case WPI_STOP_SCAN:
2067		{
2068			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2069			    BUS_DMASYNC_POSTREAD);
2070#ifdef WPI_DEBUG
2071			struct wpi_stop_scan *scan =
2072			    (struct wpi_stop_scan *)(desc + 1);
2073			DPRINTF(sc, WPI_DEBUG_SCAN,
2074			    "scan finished nchan=%d status=%d chan=%d\n",
2075			    scan->nchan, scan->status, scan->chan);
2076#endif
2077			sc->sc_scan_timer = 0;
2078			WPI_UNLOCK(sc);
2079			ieee80211_scan_next(vap);
2080			WPI_LOCK(sc);
2081			break;
2082		}
2083		}
2084	}
2085
2086	/* Tell the firmware what we have processed. */
2087	wpi_update_rx_ring(sc);
2088}
2089
2090/*
2091 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2092 * from power-down sleep mode.
2093 */
2094static void
2095wpi_wakeup_intr(struct wpi_softc *sc)
2096{
2097	int qid;
2098
2099	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
2100	    "%s: ucode wakeup from power-down sleep\n", __func__);
2101
2102	/* Wakeup RX and TX rings. */
2103	if (sc->rxq.update) {
2104		sc->rxq.update = 0;
2105		wpi_update_rx_ring(sc);
2106	}
2107	for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++) {
2108		struct wpi_tx_ring *ring = &sc->txq[qid];
2109
2110		if (ring->update) {
2111			ring->update = 0;
2112			wpi_update_tx_ring(sc, ring);
2113		}
2114	}
2115
2116	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
2117}
2118
2119/*
2120 * Dump the error log of the firmware when a firmware panic occurs.  Although
2121 * we can't debug the firmware because it is neither open source nor free, it
2122 * can help us to identify certain classes of problems.
2123 */
2124static void
2125wpi_fatal_intr(struct wpi_softc *sc)
2126{
2127	struct wpi_fw_dump dump;
2128	uint32_t i, offset, count;
2129	const uint32_t size_errmsg =
2130	    (sizeof (wpi_fw_errmsg) / sizeof ((wpi_fw_errmsg)[0]));
2131
2132	/* Check that the error log address is valid. */
2133	if (sc->errptr < WPI_FW_DATA_BASE ||
2134	    sc->errptr + sizeof (dump) >
2135	    WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) {
2136		printf("%s: bad firmware error log address 0x%08x\n", __func__,
2137		    sc->errptr);
2138		return;
2139	}
2140	if (wpi_nic_lock(sc) != 0) {
2141		printf("%s: could not read firmware error log\n", __func__);
2142		return;
2143	}
2144	/* Read number of entries in the log. */
2145	count = wpi_mem_read(sc, sc->errptr);
2146	if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) {
2147		printf("%s: invalid count field (count = %u)\n", __func__,
2148		    count);
2149		wpi_nic_unlock(sc);
2150		return;
2151	}
2152	/* Skip "count" field. */
2153	offset = sc->errptr + sizeof (uint32_t);
2154	printf("firmware error log (count = %u):\n", count);
2155	for (i = 0; i < count; i++) {
2156		wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump,
2157		    sizeof (dump) / sizeof (uint32_t));
2158
2159		printf("  error type = \"%s\" (0x%08X)\n",
2160		    (dump.desc < size_errmsg) ?
2161		        wpi_fw_errmsg[dump.desc] : "UNKNOWN",
2162		    dump.desc);
2163		printf("  error data      = 0x%08X\n",
2164		    dump.data);
2165		printf("  branch link     = 0x%08X%08X\n",
2166		    dump.blink[0], dump.blink[1]);
2167		printf("  interrupt link  = 0x%08X%08X\n",
2168		    dump.ilink[0], dump.ilink[1]);
2169		printf("  time            = %u\n", dump.time);
2170
2171		offset += sizeof (dump);
2172	}
2173	wpi_nic_unlock(sc);
2174	/* Dump driver status (TX and RX rings) while we're here. */
2175	printf("driver status:\n");
2176	for (i = 0; i < WPI_DRV_NTXQUEUES; i++) {
2177		struct wpi_tx_ring *ring = &sc->txq[i];
2178		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2179		    i, ring->qid, ring->cur, ring->queued);
2180	}
2181	printf("  rx ring: cur=%d\n", sc->rxq.cur);
2182}
2183
2184static void
2185wpi_intr(void *arg)
2186{
2187	struct wpi_softc *sc = arg;
2188	struct ifnet *ifp = sc->sc_ifp;
2189	uint32_t r1, r2;
2190
2191	WPI_LOCK(sc);
2192
2193	/* Disable interrupts. */
2194	WPI_WRITE(sc, WPI_INT_MASK, 0);
2195
2196	r1 = WPI_READ(sc, WPI_INT);
2197
2198	if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2199		goto end;	/* Hardware gone! */
2200
2201	r2 = WPI_READ(sc, WPI_FH_INT);
2202
2203	DPRINTF(sc, WPI_DEBUG_INTR, "%s: reg1=0x%08x reg2=0x%08x\n", __func__,
2204	    r1, r2);
2205
2206	if (r1 == 0 && r2 == 0)
2207		goto done;	/* Interrupt not for us. */
2208
2209	/* Acknowledge interrupts. */
2210	WPI_WRITE(sc, WPI_INT, r1);
2211	WPI_WRITE(sc, WPI_FH_INT, r2);
2212
2213	if (r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR)) {
2214		struct ieee80211com *ic = ifp->if_l2com;
2215
2216		device_printf(sc->sc_dev, "fatal firmware error\n");
2217		wpi_fatal_intr(sc);
2218		DPRINTF(sc, WPI_DEBUG_HW,
2219		    "(%s)\n", (r1 & WPI_INT_SW_ERR) ? "(Software Error)" :
2220		    "(Hardware Error)");
2221		ieee80211_runtask(ic, &sc->sc_reinittask);
2222		sc->flags &= ~WPI_FLAG_BUSY;
2223		goto end;
2224	}
2225
2226	if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) ||
2227	    (r2 & WPI_FH_INT_RX))
2228		wpi_notif_intr(sc);
2229
2230	if (r1 & WPI_INT_ALIVE)
2231		wakeup(sc);	/* Firmware is alive. */
2232
2233	if (r1 & WPI_INT_WAKEUP)
2234		wpi_wakeup_intr(sc);
2235
2236done:
2237	/* Re-enable interrupts. */
2238	if (ifp->if_flags & IFF_UP)
2239		WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
2240
2241end:	WPI_UNLOCK(sc);
2242}
2243
2244static int
2245wpi_cmd2(struct wpi_softc *sc, struct wpi_buf *buf)
2246{
2247	struct ieee80211_frame *wh;
2248	struct wpi_tx_cmd *cmd;
2249	struct wpi_tx_data *data;
2250	struct wpi_tx_desc *desc;
2251	struct wpi_tx_ring *ring;
2252	struct mbuf *m1;
2253	bus_dma_segment_t *seg, segs[WPI_MAX_SCATTER];
2254	int error, i, hdrlen, nsegs, totlen, pad;
2255
2256	WPI_LOCK_ASSERT(sc);
2257
2258	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2259
2260	wh = mtod(buf->m, struct ieee80211_frame *);
2261	hdrlen = ieee80211_anyhdrsize(wh);
2262	totlen = buf->m->m_pkthdr.len;
2263
2264	if (hdrlen & 3) {
2265		/* First segment length must be a multiple of 4. */
2266		pad = 4 - (hdrlen & 3);
2267	} else
2268		pad = 0;
2269
2270	ring = &sc->txq[buf->ac];
2271	desc = &ring->desc[ring->cur];
2272	data = &ring->data[ring->cur];
2273
2274	/* Prepare TX firmware command. */
2275	cmd = &ring->cmd[ring->cur];
2276	cmd->code = buf->code;
2277	cmd->flags = 0;
2278	cmd->qid = ring->qid;
2279	cmd->idx = ring->cur;
2280
2281	memcpy(cmd->data, buf->data, buf->size);
2282
2283	/* Save and trim IEEE802.11 header. */
2284	memcpy((uint8_t *)(cmd->data + buf->size), wh, hdrlen);
2285	m_adj(buf->m, hdrlen);
2286
2287	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, buf->m,
2288	    segs, &nsegs, BUS_DMA_NOWAIT);
2289	if (error != 0 && error != EFBIG) {
2290		device_printf(sc->sc_dev,
2291		    "%s: can't map mbuf (error %d)\n", __func__, error);
2292		m_freem(buf->m);
2293		return error;
2294	}
2295	if (error != 0) {
2296		/* Too many DMA segments, linearize mbuf. */
2297		m1 = m_collapse(buf->m, M_NOWAIT, WPI_MAX_SCATTER - 1);
2298		if (m1 == NULL) {
2299			device_printf(sc->sc_dev,
2300			    "%s: could not defrag mbuf\n", __func__);
2301			m_freem(buf->m);
2302			return ENOBUFS;
2303		}
2304		buf->m = m1;
2305
2306		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
2307		    buf->m, segs, &nsegs, BUS_DMA_NOWAIT);
2308		if (error != 0) {
2309			device_printf(sc->sc_dev,
2310			    "%s: can't map mbuf (error %d)\n", __func__, error);
2311			m_freem(buf->m);
2312			return error;
2313		}
2314	}
2315
2316	KASSERT(nsegs < WPI_MAX_SCATTER,
2317	    ("too many DMA segments, nsegs (%d) should be less than %d",
2318	     nsegs, WPI_MAX_SCATTER));
2319
2320	data->m = buf->m;
2321	data->ni = buf->ni;
2322
2323	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
2324	    __func__, ring->qid, ring->cur, totlen, nsegs);
2325
2326	/* Fill TX descriptor. */
2327	desc->nsegs = WPI_PAD32(totlen + pad) << 4 | (1 + nsegs);
2328	/* First DMA segment is used by the TX command. */
2329	desc->segs[0].addr = htole32(data->cmd_paddr);
2330	desc->segs[0].len  = htole32(4 + buf->size + hdrlen + pad);
2331	/* Other DMA segments are for data payload. */
2332	seg = &segs[0];
2333	for (i = 1; i <= nsegs; i++) {
2334		desc->segs[i].addr = htole32(seg->ds_addr);
2335		desc->segs[i].len  = htole32(seg->ds_len);
2336		seg++;
2337	}
2338
2339	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2340	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2341	    BUS_DMASYNC_PREWRITE);
2342	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2343	    BUS_DMASYNC_PREWRITE);
2344
2345	/* Kick TX ring. */
2346	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2347	wpi_update_tx_ring(sc, ring);
2348
2349	/* Mark TX ring as full if we reach a certain threshold. */
2350	if (++ring->queued > WPI_TX_RING_HIMARK)
2351		sc->qfullmsk |= 1 << ring->qid;
2352
2353	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2354
2355	return 0;
2356}
2357
2358/*
2359 * Construct the data packet for a transmit buffer.
2360 */
2361static int
2362wpi_tx_data(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2363{
2364	const struct ieee80211_txparam *tp;
2365	struct ieee80211vap *vap = ni->ni_vap;
2366	struct ieee80211com *ic = ni->ni_ic;
2367	struct wpi_node *wn = WPI_NODE(ni);
2368	struct ieee80211_channel *chan;
2369	struct ieee80211_frame *wh;
2370	struct ieee80211_key *k = NULL;
2371	struct wpi_cmd_data tx;
2372	struct wpi_buf tx_data;
2373	uint32_t flags;
2374	uint16_t qos;
2375	uint8_t tid, type;
2376	int ac, error, rate, ismcast, totlen;
2377
2378	wh = mtod(m, struct ieee80211_frame *);
2379	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2380	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2381
2382	/* Select EDCA Access Category and TX ring for this frame. */
2383	if (IEEE80211_QOS_HAS_SEQ(wh)) {
2384 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
2385		tid = qos & IEEE80211_QOS_TID;
2386	} else {
2387		qos = 0;
2388		tid = 0;
2389	}
2390	ac = M_WME_GETAC(m);
2391
2392	chan = (ni->ni_chan != IEEE80211_CHAN_ANYC) ?
2393		ni->ni_chan : ic->ic_curchan;
2394	tp = &vap->iv_txparms[ieee80211_chan2mode(chan)];
2395
2396	/* Choose a TX rate index. */
2397	if (type == IEEE80211_FC0_TYPE_MGT)
2398		rate = tp->mgmtrate;
2399	else if (ismcast)
2400		rate = tp->mcastrate;
2401	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2402		rate = tp->ucastrate;
2403	else if (m->m_flags & M_EAPOL)
2404		rate = tp->mgmtrate;
2405	else {
2406		/* XXX pass pktlen */
2407		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2408		rate = ni->ni_txrate;
2409	}
2410
2411	/* Encrypt the frame if need be. */
2412	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2413		/* Retrieve key for TX. */
2414		k = ieee80211_crypto_encap(ni, m);
2415		if (k == NULL) {
2416			error = ENOBUFS;
2417			goto fail;
2418		}
2419		/* 802.11 header may have moved. */
2420		wh = mtod(m, struct ieee80211_frame *);
2421	}
2422	totlen = m->m_pkthdr.len;
2423
2424	if (ieee80211_radiotap_active_vap(vap)) {
2425		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2426
2427		tap->wt_flags = 0;
2428		tap->wt_rate = rate;
2429		if (k != NULL)
2430			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2431
2432		ieee80211_radiotap_tx(vap, m);
2433	}
2434
2435	flags = 0;
2436	if (!ismcast) {
2437		/* Unicast frame, check if an ACK is expected. */
2438		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
2439		    IEEE80211_QOS_ACKPOLICY_NOACK)
2440			flags |= WPI_TX_NEED_ACK;
2441	}
2442
2443	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2444		flags |= WPI_TX_MORE_FRAG;	/* Cannot happen yet. */
2445
2446	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2447	if (!ismcast) {
2448		/* NB: Group frames are sent using CCK in 802.11b/g. */
2449		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2450			flags |= WPI_TX_NEED_RTS;
2451		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2452		    WPI_RATE_IS_OFDM(rate)) {
2453			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2454				flags |= WPI_TX_NEED_CTS;
2455			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2456				flags |= WPI_TX_NEED_RTS;
2457		}
2458
2459		if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2460			flags |= WPI_TX_FULL_TXOP;
2461	}
2462
2463	memset(&tx, 0, sizeof (struct wpi_cmd_data));
2464	if (type == IEEE80211_FC0_TYPE_MGT) {
2465		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2466
2467		/* Tell HW to set timestamp in probe responses. */
2468		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2469			flags |= WPI_TX_INSERT_TSTAMP;
2470		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2471		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2472			tx.timeout = htole16(3);
2473		else
2474			tx.timeout = htole16(2);
2475	}
2476
2477	if (ismcast || type != IEEE80211_FC0_TYPE_DATA)
2478		tx.id = WPI_ID_BROADCAST;
2479	else {
2480		if (wn->id == WPI_ID_UNDEFINED &&
2481		    (vap->iv_opmode == IEEE80211_M_IBSS ||
2482		    vap->iv_opmode == IEEE80211_M_AHDEMO)) {
2483			error = wpi_add_ibss_node(sc, ni);
2484			if (error != 0) {
2485				device_printf(sc->sc_dev,
2486				    "%s: could not add IBSS node, error %d\n",
2487				    __func__, error);
2488				goto fail;
2489			}
2490		}
2491
2492		if (wn->id == WPI_ID_UNDEFINED) {
2493			device_printf(sc->sc_dev,
2494			    "%s: undefined node id\n", __func__);
2495			error = EINVAL;
2496			goto fail;
2497		}
2498
2499		tx.id = wn->id;
2500	}
2501
2502	if (type != IEEE80211_FC0_TYPE_MGT)
2503		tx.data_ntries = tp->maxretry;
2504
2505	tx.len = htole16(totlen);
2506	tx.flags = htole32(flags);
2507	tx.plcp = rate2plcp(rate);
2508	tx.tid = tid;
2509	tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2510	tx.ofdm_mask = 0xff;
2511	tx.cck_mask = 0x0f;
2512	tx.rts_ntries = 7;
2513
2514	if (k != NULL && k->wk_cipher->ic_cipher == IEEE80211_CIPHER_AES_CCM) {
2515		if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) {
2516			tx.security = WPI_CIPHER_CCMP;
2517			memcpy(tx.key, k->wk_key, k->wk_keylen);
2518		}
2519	}
2520
2521	tx_data.data = &tx;
2522	tx_data.ni = ni;
2523	tx_data.m = m;
2524	tx_data.size = sizeof(tx);
2525	tx_data.code = WPI_CMD_TX_DATA;
2526	tx_data.ac = ac;
2527
2528	return wpi_cmd2(sc, &tx_data);
2529
2530fail:	m_freem(m);
2531	return error;
2532}
2533
2534static int
2535wpi_tx_data_raw(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
2536    const struct ieee80211_bpf_params *params)
2537{
2538	struct ieee80211vap *vap = ni->ni_vap;
2539	struct ieee80211_frame *wh;
2540	struct wpi_cmd_data tx;
2541	struct wpi_buf tx_data;
2542	uint32_t flags;
2543	uint8_t type;
2544	int ac, rate, totlen;
2545
2546	wh = mtod(m, struct ieee80211_frame *);
2547	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2548	totlen = m->m_pkthdr.len;
2549
2550	ac = params->ibp_pri & 3;
2551
2552	/* Choose a TX rate index. */
2553	rate = params->ibp_rate0;
2554
2555	flags = 0;
2556	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
2557		flags |= WPI_TX_NEED_ACK;
2558	if (params->ibp_flags & IEEE80211_BPF_RTS)
2559		flags |= WPI_TX_NEED_RTS;
2560	if (params->ibp_flags & IEEE80211_BPF_CTS)
2561		flags |= WPI_TX_NEED_CTS;
2562	if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2563		flags |= WPI_TX_FULL_TXOP;
2564
2565	if (ieee80211_radiotap_active_vap(vap)) {
2566		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2567
2568		tap->wt_flags = 0;
2569		tap->wt_rate = rate;
2570
2571		ieee80211_radiotap_tx(vap, m);
2572	}
2573
2574	memset(&tx, 0, sizeof (struct wpi_cmd_data));
2575	if (type == IEEE80211_FC0_TYPE_MGT) {
2576		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2577
2578		/* Tell HW to set timestamp in probe responses. */
2579		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2580			flags |= WPI_TX_INSERT_TSTAMP;
2581		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2582		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2583			tx.timeout = htole16(3);
2584		else
2585			tx.timeout = htole16(2);
2586	}
2587
2588	tx.len = htole16(totlen);
2589	tx.flags = htole32(flags);
2590	tx.plcp = rate2plcp(rate);
2591	tx.id = WPI_ID_BROADCAST;
2592	tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2593	tx.rts_ntries = params->ibp_try1;
2594	tx.data_ntries = params->ibp_try0;
2595
2596	tx_data.data = &tx;
2597	tx_data.ni = ni;
2598	tx_data.m = m;
2599	tx_data.size = sizeof(tx);
2600	tx_data.code = WPI_CMD_TX_DATA;
2601	tx_data.ac = ac;
2602
2603	return wpi_cmd2(sc, &tx_data);
2604}
2605
2606static int
2607wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2608    const struct ieee80211_bpf_params *params)
2609{
2610	struct ieee80211com *ic = ni->ni_ic;
2611	struct ifnet *ifp = ic->ic_ifp;
2612	struct wpi_softc *sc = ifp->if_softc;
2613	int error = 0;
2614
2615	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2616
2617	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2618		ieee80211_free_node(ni);
2619		m_freem(m);
2620		return ENETDOWN;
2621	}
2622
2623	WPI_LOCK(sc);
2624	if (params == NULL) {
2625		/*
2626		 * Legacy path; interpret frame contents to decide
2627		 * precisely how to send the frame.
2628		 */
2629		error = wpi_tx_data(sc, m, ni);
2630	} else {
2631		/*
2632		 * Caller supplied explicit parameters to use in
2633		 * sending the frame.
2634		 */
2635		error = wpi_tx_data_raw(sc, m, ni, params);
2636	}
2637	WPI_UNLOCK(sc);
2638
2639	if (error != 0) {
2640		/* NB: m is reclaimed on tx failure */
2641		ieee80211_free_node(ni);
2642		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2643
2644		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
2645
2646		return error;
2647	}
2648
2649	sc->sc_tx_timer = 5;
2650
2651	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2652
2653	return 0;
2654}
2655
2656/**
2657 * Process data waiting to be sent on the IFNET output queue
2658 */
2659static void
2660wpi_start(struct ifnet *ifp)
2661{
2662	struct wpi_softc *sc = ifp->if_softc;
2663
2664	WPI_LOCK(sc);
2665	wpi_start_locked(ifp);
2666	WPI_UNLOCK(sc);
2667}
2668
2669static void
2670wpi_start_locked(struct ifnet *ifp)
2671{
2672	struct wpi_softc *sc = ifp->if_softc;
2673	struct ieee80211_node *ni;
2674	struct mbuf *m;
2675
2676	WPI_LOCK_ASSERT(sc);
2677
2678	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: called\n", __func__);
2679
2680	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
2681	    (ifp->if_drv_flags & IFF_DRV_OACTIVE))
2682		return;
2683
2684	for (;;) {
2685		if (sc->qfullmsk != 0) {
2686			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2687			break;
2688		}
2689		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2690		if (m == NULL)
2691			break;
2692		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
2693		if (wpi_tx_data(sc, m, ni) != 0) {
2694			WPI_UNLOCK(sc);
2695			ieee80211_free_node(ni);
2696			WPI_LOCK(sc);
2697			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2698		} else
2699			sc->sc_tx_timer = 5;
2700	}
2701
2702	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: done\n", __func__);
2703}
2704
2705static void
2706wpi_watchdog_rfkill(void *arg)
2707{
2708	struct wpi_softc *sc = arg;
2709	struct ifnet *ifp = sc->sc_ifp;
2710	struct ieee80211com *ic = ifp->if_l2com;
2711
2712	DPRINTF(sc, WPI_DEBUG_WATCHDOG, "RFkill Watchdog: tick\n");
2713
2714	/* No need to lock firmware memory. */
2715	if ((wpi_prph_read(sc, WPI_APMG_RFKILL) & 0x1) == 0) {
2716		/* Radio kill switch is still off. */
2717		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
2718		    sc);
2719	} else
2720		ieee80211_runtask(ic, &sc->sc_radioon_task);
2721}
2722
2723/**
2724 * Called every second, wpi_watchdog used by the watch dog timer
2725 * to check that the card is still alive
2726 */
2727static void
2728wpi_watchdog(void *arg)
2729{
2730	struct wpi_softc *sc = arg;
2731	struct ifnet *ifp = sc->sc_ifp;
2732	struct ieee80211com *ic = ifp->if_l2com;
2733
2734	DPRINTF(sc, WPI_DEBUG_WATCHDOG, "Watchdog: tick\n");
2735
2736	if (sc->sc_tx_timer > 0) {
2737		if (--sc->sc_tx_timer == 0) {
2738			if_printf(ifp, "device timeout\n");
2739			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2740			ieee80211_runtask(ic, &sc->sc_reinittask);
2741		}
2742	}
2743
2744	if (sc->sc_scan_timer > 0) {
2745		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2746		if (--sc->sc_scan_timer == 0 && vap != NULL) {
2747			if_printf(ifp, "scan timeout\n");
2748			ieee80211_cancel_scan(vap);
2749			ieee80211_runtask(ic, &sc->sc_reinittask);
2750		}
2751	}
2752
2753	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2754		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2755}
2756
2757static int
2758wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2759{
2760	struct wpi_softc *sc = ifp->if_softc;
2761	struct ieee80211com *ic = ifp->if_l2com;
2762	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2763	struct ifreq *ifr = (struct ifreq *) data;
2764	int error = 0, startall = 0, stop = 0;
2765
2766	switch (cmd) {
2767	case SIOCGIFADDR:
2768		error = ether_ioctl(ifp, cmd, data);
2769		break;
2770	case SIOCSIFFLAGS:
2771		WPI_LOCK(sc);
2772		if (ifp->if_flags & IFF_UP) {
2773			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2774				wpi_init_locked(sc);
2775				if (WPI_READ(sc, WPI_GP_CNTRL) &
2776				    WPI_GP_CNTRL_RFKILL)
2777					startall = 1;
2778				else
2779					stop = 1;
2780			}
2781		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2782			wpi_stop_locked(sc);
2783		WPI_UNLOCK(sc);
2784		if (startall)
2785			ieee80211_start_all(ic);
2786		else if (vap != NULL && stop)
2787			ieee80211_stop(vap);
2788		break;
2789	case SIOCGIFMEDIA:
2790		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2791		break;
2792	default:
2793		error = EINVAL;
2794		break;
2795	}
2796	return error;
2797}
2798
2799/*
2800 * Send a command to the firmware.
2801 */
2802static int
2803wpi_cmd(struct wpi_softc *sc, int code, const void *buf, size_t size,
2804    int async)
2805{
2806	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
2807	struct wpi_tx_desc *desc;
2808	struct wpi_tx_data *data;
2809	struct wpi_tx_cmd *cmd;
2810	struct mbuf *m;
2811	bus_addr_t paddr;
2812	int totlen, error;
2813
2814	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2815
2816	if (async == 0)
2817		WPI_LOCK_ASSERT(sc);
2818
2819	DPRINTF(sc, WPI_DEBUG_CMD, "wpi_cmd %s size %zu async %d\n",
2820	    wpi_cmd_str(code), size, async);
2821
2822	if (sc->flags & WPI_FLAG_BUSY) {
2823		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2824		    __func__, code);
2825		return EAGAIN;
2826	}
2827	sc->flags |= WPI_FLAG_BUSY;
2828
2829	desc = &ring->desc[ring->cur];
2830	data = &ring->data[ring->cur];
2831	totlen = 4 + size;
2832
2833	if (size > sizeof cmd->data) {
2834		/* Command is too large to fit in a descriptor. */
2835		if (totlen > MCLBYTES)
2836			return EINVAL;
2837		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
2838		if (m == NULL)
2839			return ENOMEM;
2840		cmd = mtod(m, struct wpi_tx_cmd *);
2841		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
2842		    totlen, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
2843		if (error != 0) {
2844			m_freem(m);
2845			return error;
2846		}
2847		data->m = m;
2848	} else {
2849		cmd = &ring->cmd[ring->cur];
2850		paddr = data->cmd_paddr;
2851	}
2852
2853	cmd->code = code;
2854	cmd->flags = 0;
2855	cmd->qid = ring->qid;
2856	cmd->idx = ring->cur;
2857	memcpy(cmd->data, buf, size);
2858
2859	desc->nsegs = 1 + (WPI_PAD32(size) << 4);
2860	desc->segs[0].addr = htole32(paddr);
2861	desc->segs[0].len  = htole32(totlen);
2862
2863	if (size > sizeof cmd->data) {
2864		bus_dmamap_sync(ring->data_dmat, data->map,
2865		    BUS_DMASYNC_PREWRITE);
2866	} else {
2867		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2868		    BUS_DMASYNC_PREWRITE);
2869	}
2870	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2871	    BUS_DMASYNC_PREWRITE);
2872
2873	/* Kick command ring. */
2874	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2875	wpi_update_tx_ring(sc, ring);
2876
2877	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2878
2879	if (async) {
2880		sc->flags &= ~WPI_FLAG_BUSY;
2881		return 0;
2882	}
2883
2884	return mtx_sleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2885}
2886
2887/*
2888 * Configure HW multi-rate retries.
2889 */
2890static int
2891wpi_mrr_setup(struct wpi_softc *sc)
2892{
2893	struct ifnet *ifp = sc->sc_ifp;
2894	struct ieee80211com *ic = ifp->if_l2com;
2895	struct wpi_mrr_setup mrr;
2896	int i, error;
2897
2898	/* CCK rates (not used with 802.11a). */
2899	for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) {
2900		mrr.rates[i].flags = 0;
2901		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2902		/* Fallback to the immediate lower CCK rate (if any.) */
2903		mrr.rates[i].next =
2904		    (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1;
2905		/* Try one time at this rate before falling back to "next". */
2906		mrr.rates[i].ntries = 1;
2907	}
2908	/* OFDM rates (not used with 802.11b). */
2909	for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) {
2910		mrr.rates[i].flags = 0;
2911		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2912		/* Fallback to the immediate lower rate (if any.) */
2913		/* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */
2914		mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ?
2915		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2916			WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) :
2917		    i - 1;
2918		/* Try one time at this rate before falling back to "next". */
2919		mrr.rates[i].ntries = 1;
2920	}
2921	/* Setup MRR for control frames. */
2922	mrr.which = htole32(WPI_MRR_CTL);
2923	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2924	if (error != 0) {
2925		device_printf(sc->sc_dev,
2926		    "could not setup MRR for control frames\n");
2927		return error;
2928	}
2929	/* Setup MRR for data frames. */
2930	mrr.which = htole32(WPI_MRR_DATA);
2931	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2932	if (error != 0) {
2933		device_printf(sc->sc_dev,
2934		    "could not setup MRR for data frames\n");
2935		return error;
2936	}
2937	return 0;
2938}
2939
2940static int
2941wpi_add_node(struct wpi_softc *sc, struct ieee80211_node *ni)
2942{
2943	struct ieee80211com *ic = ni->ni_ic;
2944	struct wpi_node *wn = WPI_NODE(ni);
2945	struct wpi_node_info node;
2946
2947	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
2948
2949	if (wn->id == WPI_ID_UNDEFINED)
2950		return EINVAL;
2951
2952	memset(&node, 0, sizeof node);
2953	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
2954	node.id = wn->id;
2955	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2956	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
2957	node.action = htole32(WPI_ACTION_SET_RATE);
2958	node.antenna = WPI_ANTENNA_BOTH;
2959
2960	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2961}
2962
2963/*
2964 * Broadcast node is used to send group-addressed and management frames.
2965 */
2966static int
2967wpi_add_broadcast_node(struct wpi_softc *sc, int async)
2968{
2969	struct ifnet *ifp = sc->sc_ifp;
2970	struct ieee80211com *ic = ifp->if_l2com;
2971	struct wpi_node_info node;
2972
2973	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
2974
2975	memset(&node, 0, sizeof node);
2976	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
2977	node.id = WPI_ID_BROADCAST;
2978	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2979	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
2980	node.action = htole32(WPI_ACTION_SET_RATE);
2981	node.antenna = WPI_ANTENNA_BOTH;
2982
2983	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, async);
2984}
2985
2986static int
2987wpi_add_ibss_node(struct wpi_softc *sc, struct ieee80211_node *ni)
2988{
2989	struct wpi_node *wn = WPI_NODE(ni);
2990
2991	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
2992
2993	if (wn->id != WPI_ID_UNDEFINED)
2994		return EINVAL;
2995
2996	wn->id = alloc_unrl(sc->sc_unr);
2997
2998	if (wn->id == (uint8_t)-1)
2999		return ENOBUFS;
3000
3001	return wpi_add_node(sc, ni);
3002}
3003
3004static void
3005wpi_del_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3006{
3007	struct wpi_node *wn = WPI_NODE(ni);
3008	struct wpi_cmd_del_node node;
3009	int error;
3010
3011	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3012
3013	if (wn->id == WPI_ID_UNDEFINED) {
3014		device_printf(sc->sc_dev, "%s: undefined node id passed\n",
3015		    __func__);
3016		return;
3017	}
3018
3019	memset(&node, 0, sizeof node);
3020	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3021	node.count = 1;
3022
3023	error = wpi_cmd(sc, WPI_CMD_DEL_NODE, &node, sizeof node, 1);
3024	if (error != 0) {
3025		device_printf(sc->sc_dev,
3026		    "%s: could not delete node %u, error %d\n", __func__,
3027		    wn->id, error);
3028	}
3029}
3030
3031static int
3032wpi_updateedca(struct ieee80211com *ic)
3033{
3034#define WPI_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3035	struct wpi_softc *sc = ic->ic_ifp->if_softc;
3036	struct wpi_edca_params cmd;
3037	int aci, error;
3038
3039	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3040
3041	memset(&cmd, 0, sizeof cmd);
3042	cmd.flags = htole32(WPI_EDCA_UPDATE);
3043	for (aci = 0; aci < WME_NUM_AC; aci++) {
3044		const struct wmeParams *ac =
3045		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
3046		cmd.ac[aci].aifsn = ac->wmep_aifsn;
3047		cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->wmep_logcwmin));
3048		cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->wmep_logcwmax));
3049		cmd.ac[aci].txoplimit =
3050		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
3051
3052		DPRINTF(sc, WPI_DEBUG_EDCA,
3053		    "setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
3054		    "txoplimit=%d\n", aci, cmd.ac[aci].aifsn,
3055		    cmd.ac[aci].cwmin, cmd.ac[aci].cwmax,
3056		    cmd.ac[aci].txoplimit);
3057	}
3058	IEEE80211_UNLOCK(ic);
3059	WPI_LOCK(sc);
3060	error = wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
3061	WPI_UNLOCK(sc);
3062	IEEE80211_LOCK(ic);
3063
3064	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3065
3066	return error;
3067#undef WPI_EXP2
3068}
3069
3070static void
3071wpi_set_promisc(struct wpi_softc *sc)
3072{
3073	struct ifnet *ifp = sc->sc_ifp;
3074	uint32_t promisc_filter;
3075
3076	promisc_filter = WPI_FILTER_PROMISC | WPI_FILTER_CTL;
3077
3078	if (ifp->if_flags & IFF_PROMISC)
3079		sc->rxon.filter |= htole32(promisc_filter);
3080	else
3081		sc->rxon.filter &= ~htole32(promisc_filter);
3082}
3083
3084static void
3085wpi_update_promisc(struct ifnet *ifp)
3086{
3087	struct wpi_softc *sc = ifp->if_softc;
3088
3089	wpi_set_promisc(sc);
3090
3091	WPI_LOCK(sc);
3092	if (wpi_send_rxon(sc, 1, 1) != 0) {
3093		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3094		    __func__);
3095	}
3096	WPI_UNLOCK(sc);
3097}
3098
3099static void
3100wpi_update_mcast(struct ifnet *ifp)
3101{
3102	/* Ignore */
3103}
3104
3105static void
3106wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3107{
3108	struct wpi_cmd_led led;
3109
3110	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3111
3112	led.which = which;
3113	led.unit = htole32(100000);	/* on/off in unit of 100ms */
3114	led.off = off;
3115	led.on = on;
3116	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
3117}
3118
3119static int
3120wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni)
3121{
3122	struct wpi_cmd_timing cmd;
3123	uint64_t val, mod;
3124
3125	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3126
3127	memset(&cmd, 0, sizeof cmd);
3128	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3129	cmd.bintval = htole16(ni->ni_intval);
3130	cmd.lintval = htole16(10);
3131
3132	/* Compute remaining time until next beacon. */
3133	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
3134	mod = le64toh(cmd.tstamp) % val;
3135	cmd.binitval = htole32((uint32_t)(val - mod));
3136
3137	DPRINTF(sc, WPI_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
3138	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
3139
3140	return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1);
3141}
3142
3143/*
3144 * This function is called periodically (every 60 seconds) to adjust output
3145 * power to temperature changes.
3146 */
3147static void
3148wpi_power_calibration(struct wpi_softc *sc)
3149{
3150	int temp;
3151
3152	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3153
3154	/* Update sensor data. */
3155	temp = (int)WPI_READ(sc, WPI_UCODE_GP2);
3156	DPRINTF(sc, WPI_DEBUG_TEMP, "Temp in calibration is: %d\n", temp);
3157
3158	/* Sanity-check read value. */
3159	if (temp < -260 || temp > 25) {
3160		/* This can't be correct, ignore. */
3161		DPRINTF(sc, WPI_DEBUG_TEMP,
3162		    "out-of-range temperature reported: %d\n", temp);
3163		return;
3164	}
3165
3166	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d->%d\n", sc->temp, temp);
3167
3168	/* Adjust Tx power if need be. */
3169	if (abs(temp - sc->temp) <= 6)
3170		return;
3171
3172	sc->temp = temp;
3173
3174	if (wpi_set_txpower(sc, 1) != 0) {
3175		/* just warn, too bad for the automatic calibration... */
3176		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3177	}
3178}
3179
3180/*
3181 * Set TX power for current channel.
3182 */
3183static int
3184wpi_set_txpower(struct wpi_softc *sc, int async)
3185{
3186	struct ifnet *ifp = sc->sc_ifp;
3187	struct ieee80211com *ic = ifp->if_l2com;
3188	struct ieee80211_channel *ch;
3189	struct wpi_power_group *group;
3190	struct wpi_cmd_txpower cmd;
3191	uint8_t chan;
3192	int idx, i;
3193
3194	/* Retrieve current channel from last RXON. */
3195	chan = sc->rxon.chan;
3196	ch = &ic->ic_channels[chan];
3197
3198	/* Find the TX power group to which this channel belongs. */
3199	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3200		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3201			if (chan <= group->chan)
3202				break;
3203	} else
3204		group = &sc->groups[0];
3205
3206	memset(&cmd, 0, sizeof cmd);
3207	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3208	cmd.chan = htole16(chan);
3209
3210	/* Set TX power for all OFDM and CCK rates. */
3211	for (i = 0; i <= WPI_RIDX_MAX ; i++) {
3212		/* Retrieve TX power for this channel/rate. */
3213		idx = wpi_get_power_index(sc, group, ch, i);
3214
3215		cmd.rates[i].plcp = wpi_ridx_to_plcp[i];
3216
3217		if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3218			cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
3219			cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
3220		} else {
3221			cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
3222			cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
3223		}
3224		DPRINTF(sc, WPI_DEBUG_TEMP,
3225		    "chan %d/ridx %d: power index %d\n", chan, i, idx);
3226	}
3227
3228	return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async);
3229}
3230
3231/*
3232 * Determine Tx power index for a given channel/rate combination.
3233 * This takes into account the regulatory information from EEPROM and the
3234 * current temperature.
3235 */
3236static int
3237wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3238    struct ieee80211_channel *c, int ridx)
3239{
3240/* Fixed-point arithmetic division using a n-bit fractional part. */
3241#define fdivround(a, b, n)	\
3242	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3243
3244/* Linear interpolation. */
3245#define interpolate(x, x1, y1, x2, y2, n)	\
3246	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3247
3248	struct ifnet *ifp = sc->sc_ifp;
3249	struct ieee80211com *ic = ifp->if_l2com;
3250	struct wpi_power_sample *sample;
3251	int pwr, idx;
3252	u_int chan;
3253
3254	/* Get channel number. */
3255	chan = ieee80211_chan2ieee(ic, c);
3256
3257	/* Default TX power is group maximum TX power minus 3dB. */
3258	pwr = group->maxpwr / 2;
3259
3260	/* Decrease TX power for highest OFDM rates to reduce distortion. */
3261	switch (ridx) {
3262	case WPI_RIDX_OFDM36:
3263		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3264		break;
3265	case WPI_RIDX_OFDM48:
3266		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3267		break;
3268	case WPI_RIDX_OFDM54:
3269		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3270		break;
3271	}
3272
3273	/* Never exceed the channel maximum allowed TX power. */
3274	pwr = min(pwr, sc->maxpwr[chan]);
3275
3276	/* Retrieve TX power index into gain tables from samples. */
3277	for (sample = group->samples; sample < &group->samples[3]; sample++)
3278		if (pwr > sample[1].power)
3279			break;
3280	/* Fixed-point linear interpolation using a 19-bit fractional part. */
3281	idx = interpolate(pwr, sample[0].power, sample[0].index,
3282	    sample[1].power, sample[1].index, 19);
3283
3284	/*-
3285	 * Adjust power index based on current temperature:
3286	 * - if cooler than factory-calibrated: decrease output power
3287	 * - if warmer than factory-calibrated: increase output power
3288	 */
3289	idx -= (sc->temp - group->temp) * 11 / 100;
3290
3291	/* Decrease TX power for CCK rates (-5dB). */
3292	if (ridx >= WPI_RIDX_CCK1)
3293		idx += 10;
3294
3295	/* Make sure idx stays in a valid range. */
3296	if (idx < 0)
3297		return 0;
3298	if (idx > WPI_MAX_PWR_INDEX)
3299		return WPI_MAX_PWR_INDEX;
3300	return idx;
3301
3302#undef interpolate
3303#undef fdivround
3304}
3305
3306/*
3307 * Set STA mode power saving level (between 0 and 5).
3308 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
3309 */
3310static int
3311wpi_set_pslevel(struct wpi_softc *sc, uint8_t dtim, int level, int async)
3312{
3313	struct wpi_pmgt_cmd cmd;
3314	const struct wpi_pmgt *pmgt;
3315	uint32_t max, skip_dtim;
3316	uint32_t reg;
3317	int i;
3318
3319	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
3320	    "%s: dtim=%d, level=%d, async=%d\n",
3321	    __func__, dtim, level, async);
3322
3323	/* Select which PS parameters to use. */
3324	if (dtim <= 10)
3325		pmgt = &wpi_pmgt[0][level];
3326	else
3327		pmgt = &wpi_pmgt[1][level];
3328
3329	memset(&cmd, 0, sizeof cmd);
3330	if (level != 0)	/* not CAM */
3331		cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP);
3332	/* Retrieve PCIe Active State Power Management (ASPM). */
3333	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
3334	if (!(reg & 0x1))	/* L0s Entry disabled. */
3335		cmd.flags |= htole16(WPI_PS_PCI_PMGT);
3336
3337	cmd.rxtimeout = htole32(pmgt->rxtimeout * IEEE80211_DUR_TU);
3338	cmd.txtimeout = htole32(pmgt->txtimeout * IEEE80211_DUR_TU);
3339
3340	if (dtim == 0) {
3341		dtim = 1;
3342		skip_dtim = 0;
3343	} else
3344		skip_dtim = pmgt->skip_dtim;
3345
3346	if (skip_dtim != 0) {
3347		cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM);
3348		max = pmgt->intval[4];
3349		if (max == (uint32_t)-1)
3350			max = dtim * (skip_dtim + 1);
3351		else if (max > dtim)
3352			max = (max / dtim) * dtim;
3353	} else
3354		max = dtim;
3355
3356	for (i = 0; i < 5; i++)
3357		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
3358
3359	return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
3360}
3361
3362static int
3363wpi_send_btcoex(struct wpi_softc *sc)
3364{
3365	struct wpi_bluetooth cmd;
3366
3367	memset(&cmd, 0, sizeof cmd);
3368	cmd.flags = WPI_BT_COEX_MODE_4WIRE;
3369	cmd.lead_time = WPI_BT_LEAD_TIME_DEF;
3370	cmd.max_kill = WPI_BT_MAX_KILL_DEF;
3371	DPRINTF(sc, WPI_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
3372	    __func__);
3373	return wpi_cmd(sc, WPI_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
3374}
3375
3376static int
3377wpi_send_rxon(struct wpi_softc *sc, int assoc, int async)
3378{
3379	int error;
3380
3381	if (assoc && (sc->rxon.filter & htole32(WPI_FILTER_BSS))) {
3382		struct wpi_assoc rxon_assoc;
3383
3384		rxon_assoc.flags = sc->rxon.flags;
3385		rxon_assoc.filter = sc->rxon.filter;
3386		rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask;
3387		rxon_assoc.cck_mask = sc->rxon.cck_mask;
3388		rxon_assoc.reserved = 0;
3389
3390		error = wpi_cmd(sc, WPI_CMD_RXON_ASSOC, &rxon_assoc,
3391		    sizeof (struct wpi_assoc), async);
3392	} else {
3393		error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3394		    sizeof (struct wpi_rxon), async);
3395	}
3396	if (error != 0) {
3397		device_printf(sc->sc_dev, "RXON command failed, error %d\n",
3398		    error);
3399		return error;
3400	}
3401
3402	/* Configuration has changed, set Tx power accordingly. */
3403	if ((error = wpi_set_txpower(sc, async)) != 0) {
3404		device_printf(sc->sc_dev,
3405		    "%s: could not set TX power, error %d\n", __func__, error);
3406		return error;
3407	}
3408
3409	if (!(sc->rxon.filter & htole32(WPI_FILTER_BSS))) {
3410		/* Add broadcast node. */
3411		error = wpi_add_broadcast_node(sc, async);
3412		if (error != 0) {
3413			device_printf(sc->sc_dev,
3414			    "could not add broadcast node, error %d\n", error);
3415			return error;
3416		}
3417	}
3418
3419	return 0;
3420}
3421
3422/**
3423 * Configure the card to listen to a particular channel, this transisions the
3424 * card in to being able to receive frames from remote devices.
3425 */
3426static int
3427wpi_config(struct wpi_softc *sc)
3428{
3429	struct ifnet *ifp = sc->sc_ifp;
3430	struct ieee80211com *ic = ifp->if_l2com;
3431	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3432	uint32_t flags;
3433	int error;
3434
3435	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3436
3437	/* Set power saving level to CAM during initialization. */
3438	if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) {
3439		device_printf(sc->sc_dev,
3440		    "%s: could not set power saving level\n", __func__);
3441		return error;
3442	}
3443
3444	/* Configure bluetooth coexistence. */
3445	if ((error = wpi_send_btcoex(sc)) != 0) {
3446		device_printf(sc->sc_dev,
3447		    "could not configure bluetooth coexistence\n");
3448		return error;
3449	}
3450
3451	/* Configure adapter. */
3452	memset(&sc->rxon, 0, sizeof (struct wpi_rxon));
3453	IEEE80211_ADDR_COPY(sc->rxon.myaddr, vap->iv_myaddr);
3454
3455	/* Set default channel. */
3456	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
3457	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3458	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
3459		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3460
3461	sc->rxon.filter = WPI_FILTER_MULTICAST;
3462	switch (ic->ic_opmode) {
3463	case IEEE80211_M_STA:
3464		sc->rxon.mode = WPI_MODE_STA;
3465		break;
3466	case IEEE80211_M_IBSS:
3467		sc->rxon.mode = WPI_MODE_IBSS;
3468		sc->rxon.filter |= WPI_FILTER_BEACON;
3469		break;
3470	/* XXX workaround for passive channels selection */
3471	case IEEE80211_M_AHDEMO:
3472	case IEEE80211_M_HOSTAP:
3473		sc->rxon.mode = WPI_MODE_HOSTAP;
3474		break;
3475	case IEEE80211_M_MONITOR:
3476		sc->rxon.mode = WPI_MODE_MONITOR;
3477		break;
3478	default:
3479		device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
3480		return EINVAL;
3481	}
3482	sc->rxon.filter = htole32(sc->rxon.filter);
3483	wpi_set_promisc(sc);
3484	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
3485	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
3486
3487	if ((error = wpi_send_rxon(sc, 0, 0)) != 0) {
3488		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3489		    __func__);
3490		return error;
3491	}
3492
3493	/* Setup rate scalling. */
3494	if ((error = wpi_mrr_setup(sc)) != 0) {
3495		device_printf(sc->sc_dev, "could not setup MRR, error %d\n",
3496		    error);
3497		return error;
3498	}
3499
3500	/* Disable beacon notifications (unused). */
3501	flags = WPI_STATISTICS_BEACON_DISABLE;
3502	error = wpi_cmd(sc, WPI_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3503	if (error != 0) {
3504		device_printf(sc->sc_dev,
3505		    "could not disable beacon statistics, error %d\n", error);
3506		return error;
3507	}
3508
3509	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3510
3511	return 0;
3512}
3513
3514static uint16_t
3515wpi_get_active_dwell_time(struct wpi_softc *sc,
3516    struct ieee80211_channel *c, uint8_t n_probes)
3517{
3518	/* No channel? Default to 2GHz settings. */
3519	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
3520		return (WPI_ACTIVE_DWELL_TIME_2GHZ +
3521		WPI_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
3522	}
3523
3524	/* 5GHz dwell time. */
3525	return (WPI_ACTIVE_DWELL_TIME_5GHZ +
3526	    WPI_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
3527}
3528
3529/*
3530 * Limit the total dwell time to 85% of the beacon interval.
3531 *
3532 * Returns the dwell time in milliseconds.
3533 */
3534static uint16_t
3535wpi_limit_dwell(struct wpi_softc *sc, uint16_t dwell_time)
3536{
3537	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3538	struct ieee80211vap *vap = NULL;
3539	int bintval = 0;
3540
3541	/* bintval is in TU (1.024mS) */
3542	if (! TAILQ_EMPTY(&ic->ic_vaps)) {
3543		vap = TAILQ_FIRST(&ic->ic_vaps);
3544		bintval = vap->iv_bss->ni_intval;
3545	}
3546
3547	/*
3548	 * If it's non-zero, we should calculate the minimum of
3549	 * it and the DWELL_BASE.
3550	 *
3551	 * XXX Yes, the math should take into account that bintval
3552	 * is 1.024mS, not 1mS..
3553	 */
3554	if (bintval > 0) {
3555		DPRINTF(sc, WPI_DEBUG_SCAN, "%s: bintval=%d\n", __func__,
3556		    bintval);
3557		return (MIN(WPI_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
3558	}
3559
3560	/* No association context? Default. */
3561	return (WPI_PASSIVE_DWELL_BASE);
3562}
3563
3564static uint16_t
3565wpi_get_passive_dwell_time(struct wpi_softc *sc, struct ieee80211_channel *c)
3566{
3567	uint16_t passive;
3568
3569	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c))
3570		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_2GHZ;
3571	else
3572		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_5GHZ;
3573
3574	/* Clamp to the beacon interval if we're associated. */
3575	return (wpi_limit_dwell(sc, passive));
3576}
3577
3578/*
3579 * Send a scan request to the firmware.
3580 */
3581static int
3582wpi_scan(struct wpi_softc *sc, struct ieee80211_channel *c)
3583{
3584	struct ifnet *ifp = sc->sc_ifp;
3585	struct ieee80211com *ic = ifp->if_l2com;
3586	struct ieee80211_scan_state *ss = ic->ic_scan;
3587	struct ieee80211vap *vap = ss->ss_vap;
3588	struct wpi_scan_hdr *hdr;
3589	struct wpi_cmd_data *tx;
3590	struct wpi_scan_essid *essids;
3591	struct wpi_scan_chan *chan;
3592	struct ieee80211_frame *wh;
3593	struct ieee80211_rateset *rs;
3594	uint16_t dwell_active, dwell_passive;
3595	uint8_t *buf, *frm;
3596	int buflen, error, i, nssid;
3597
3598	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3599
3600	/*
3601	 * We are absolutely not allowed to send a scan command when another
3602	 * scan command is pending.
3603	 */
3604	if (sc->sc_scan_timer) {
3605		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
3606		    __func__);
3607
3608		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3609
3610		return (EAGAIN);
3611	}
3612
3613	buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
3614	if (buf == NULL) {
3615		device_printf(sc->sc_dev,
3616		    "%s: could not allocate buffer for scan command\n",
3617		    __func__);
3618		error = ENOMEM;
3619		goto fail;
3620	}
3621	hdr = (struct wpi_scan_hdr *)buf;
3622
3623	/*
3624	 * Move to the next channel if no packets are received within 10 msecs
3625	 * after sending the probe request.
3626	 */
3627	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
3628	hdr->quiet_threshold = htole16(1);	/* min # of packets */
3629	/*
3630	 * Max needs to be greater than active and passive and quiet!
3631	 * It's also in microseconds!
3632	 */
3633	hdr->max_svc = htole32(250 * IEEE80211_DUR_TU);
3634	hdr->pause_svc = htole32((4 << 24) |
3635	    (100 * IEEE80211_DUR_TU));	/* Hardcode for now */
3636	hdr->filter = htole32(WPI_FILTER_MULTICAST | WPI_FILTER_BEACON);
3637
3638	tx = (struct wpi_cmd_data *)(hdr + 1);
3639	tx->flags = htole32(WPI_TX_AUTO_SEQ);
3640	tx->id = WPI_ID_BROADCAST;
3641	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
3642
3643	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3644		/* Send probe requests at 6Mbps. */
3645		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_OFDM6];
3646		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
3647	} else {
3648		hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO);
3649		/* Send probe requests at 1Mbps. */
3650		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3651		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
3652	}
3653
3654	essids = (struct wpi_scan_essid *)(tx + 1);
3655	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
3656	for (i = 0; i < nssid; i++) {
3657		essids[i].id = IEEE80211_ELEMID_SSID;
3658		essids[i].len = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN);
3659		memcpy(essids[i].data, ss->ss_ssid[i].ssid, essids[i].len);
3660#ifdef WPI_DEBUG
3661		if (sc->sc_debug & WPI_DEBUG_SCAN) {
3662			printf("Scanning Essid: ");
3663			ieee80211_print_essid(essids[i].data, essids[i].len);
3664			printf("\n");
3665		}
3666#endif
3667	}
3668
3669	/*
3670	 * Build a probe request frame.  Most of the following code is a
3671	 * copy & paste of what is done in net80211.
3672	 */
3673	wh = (struct ieee80211_frame *)(essids + WPI_SCAN_MAX_ESSIDS);
3674	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3675		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
3676	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3677	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3678	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3679	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
3680	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
3681	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
3682
3683	frm = (uint8_t *)(wh + 1);
3684	frm = ieee80211_add_ssid(frm, NULL, 0);
3685	frm = ieee80211_add_rates(frm, rs);
3686	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
3687		frm = ieee80211_add_xrates(frm, rs);
3688
3689	/* Set length of probe request. */
3690	tx->len = htole16(frm - (uint8_t *)wh);
3691
3692	/*
3693	 * Construct information about the channel that we
3694	 * want to scan. The firmware expects this to be directly
3695	 * after the scan probe request
3696	 */
3697	chan = (struct wpi_scan_chan *)frm;
3698	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
3699	chan->flags = 0;
3700	if (nssid) {
3701		hdr->crc_threshold = WPI_SCAN_CRC_TH_DEFAULT;
3702		chan->flags |= WPI_CHAN_NPBREQS(nssid);
3703	} else
3704		hdr->crc_threshold = WPI_SCAN_CRC_TH_NEVER;
3705
3706	if (!IEEE80211_IS_CHAN_PASSIVE(c))
3707		chan->flags |= WPI_CHAN_ACTIVE;
3708
3709	/*
3710	 * Calculate the active/passive dwell times.
3711	 */
3712
3713	dwell_active = wpi_get_active_dwell_time(sc, c, nssid);
3714	dwell_passive = wpi_get_passive_dwell_time(sc, c);
3715
3716	/* Make sure they're valid. */
3717	if (dwell_passive <= dwell_active)
3718		dwell_passive = dwell_active + 1;
3719
3720	chan->active = htole16(dwell_active);
3721	chan->passive = htole16(dwell_passive);
3722
3723	chan->dsp_gain = 0x6e;  /* Default level */
3724
3725	if (IEEE80211_IS_CHAN_5GHZ(c))
3726		chan->rf_gain = 0x3b;
3727	else
3728		chan->rf_gain = 0x28;
3729
3730	DPRINTF(sc, WPI_DEBUG_SCAN, "Scanning %u Passive: %d\n",
3731	    chan->chan, IEEE80211_IS_CHAN_PASSIVE(c));
3732
3733	hdr->nchan++;
3734	chan++;
3735
3736	buflen = (uint8_t *)chan - buf;
3737	hdr->len = htole16(buflen);
3738
3739	DPRINTF(sc, WPI_DEBUG_CMD, "sending scan command nchan=%d\n",
3740	    hdr->nchan);
3741	error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1);
3742	free(buf, M_DEVBUF);
3743
3744	if (error != 0)
3745		goto fail;
3746
3747	sc->sc_scan_timer = 5;
3748
3749	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3750
3751	return 0;
3752
3753fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3754
3755	return error;
3756}
3757
3758static int
3759wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
3760{
3761	struct ieee80211com *ic = vap->iv_ic;
3762	struct ieee80211_node *ni = vap->iv_bss;
3763	int error;
3764
3765	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3766
3767	/* Update adapter configuration. */
3768	sc->rxon.associd = 0;
3769	sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
3770	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
3771	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
3772	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3773	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
3774		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3775	if (ic->ic_flags & IEEE80211_F_SHSLOT)
3776		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
3777	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
3778		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
3779	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
3780		sc->rxon.cck_mask  = 0;
3781		sc->rxon.ofdm_mask = 0x15;
3782	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
3783		sc->rxon.cck_mask  = 0x03;
3784		sc->rxon.ofdm_mask = 0;
3785	} else {
3786		/* Assume 802.11b/g. */
3787		sc->rxon.cck_mask  = 0x0f;
3788		sc->rxon.ofdm_mask = 0x15;
3789	}
3790
3791	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
3792	    sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask,
3793	    sc->rxon.ofdm_mask);
3794
3795	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
3796		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3797		    __func__);
3798	}
3799
3800	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3801
3802	return error;
3803}
3804
3805static int
3806wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
3807{
3808	struct ifnet *ifp = sc->sc_ifp;
3809	struct ieee80211com *ic = ifp->if_l2com;
3810	struct ieee80211vap *vap = ni->ni_vap;
3811	struct wpi_vap *wvp = WPI_VAP(vap);
3812	struct wpi_buf *bcn = &wvp->wv_bcbuf;
3813	struct ieee80211_beacon_offsets bo;
3814	struct wpi_cmd_beacon *cmd;
3815	struct mbuf *m;
3816	int totlen;
3817
3818	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3819
3820	if (ni->ni_chan == IEEE80211_CHAN_ANYC)
3821		return EINVAL;
3822
3823	m = ieee80211_beacon_alloc(ni, &bo);
3824	if (m == NULL) {
3825		device_printf(sc->sc_dev,
3826		    "%s: could not allocate beacon frame\n", __func__);
3827		return ENOMEM;
3828	}
3829	totlen = m->m_pkthdr.len;
3830
3831	if (bcn->data == NULL) {
3832		cmd = malloc(sizeof(struct wpi_cmd_beacon), M_DEVBUF,
3833		    M_NOWAIT | M_ZERO);
3834
3835		if (cmd == NULL) {
3836			device_printf(sc->sc_dev,
3837			    "could not allocate buffer for beacon command\n");
3838			m_freem(m);
3839			return ENOMEM;
3840		}
3841
3842		cmd->id = WPI_ID_BROADCAST;
3843		cmd->ofdm_mask = 0xff;
3844		cmd->cck_mask = 0x0f;
3845		cmd->lifetime = htole32(WPI_LIFETIME_INFINITE);
3846		cmd->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
3847
3848		bcn->data = cmd;
3849		bcn->ni = NULL;
3850		bcn->code = WPI_CMD_SET_BEACON;
3851		bcn->ac = 4;
3852		bcn->size = sizeof(struct wpi_cmd_beacon);
3853	} else
3854		cmd = bcn->data;
3855
3856	cmd->len = htole16(totlen);
3857	cmd->plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3858	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3859
3860	/* NB: m will be freed in wpi_cmd_done() */
3861	bcn->m = m;
3862
3863	return wpi_cmd2(sc, bcn);
3864}
3865
3866static void
3867wpi_update_beacon(struct ieee80211vap *vap, int item)
3868{
3869	struct wpi_softc *sc = vap->iv_ic->ic_ifp->if_softc;
3870	struct ieee80211_node *ni = vap->iv_bss;
3871	int error;
3872
3873	WPI_LOCK(sc);
3874	if ((error = wpi_setup_beacon(sc, ni)) != 0) {
3875		device_printf(sc->sc_dev,
3876		    "%s: could not update beacon frame, error %d", __func__,
3877		    error);
3878	}
3879	WPI_UNLOCK(sc);
3880}
3881
3882static int
3883wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
3884{
3885	struct ieee80211com *ic = vap->iv_ic;
3886	struct ieee80211_node *ni = vap->iv_bss;
3887	int error;
3888
3889	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3890
3891	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
3892		/* Link LED blinks while monitoring. */
3893		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3894		return 0;
3895	}
3896
3897	/* XXX kernel panic workaround */
3898	if (ni->ni_chan == IEEE80211_CHAN_ANYC) {
3899		device_printf(sc->sc_dev, "%s: incomplete configuration\n",
3900		    __func__);
3901		return EINVAL;
3902	}
3903
3904	if ((error = wpi_set_timing(sc, ni)) != 0) {
3905		device_printf(sc->sc_dev,
3906		    "%s: could not set timing, error %d\n", __func__, error);
3907		return error;
3908	}
3909
3910	/* Update adapter configuration. */
3911	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
3912	sc->rxon.associd = htole16(IEEE80211_NODE_AID(ni));
3913	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
3914	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3915	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
3916		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3917	/* Short preamble and slot time are negotiated when associating. */
3918	sc->rxon.flags &= ~htole32(WPI_RXON_SHPREAMBLE | WPI_RXON_SHSLOT);
3919	if (ic->ic_flags & IEEE80211_F_SHSLOT)
3920		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
3921	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
3922		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
3923	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
3924		sc->rxon.cck_mask  = 0;
3925		sc->rxon.ofdm_mask = 0x15;
3926	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
3927		sc->rxon.cck_mask  = 0x03;
3928		sc->rxon.ofdm_mask = 0;
3929	} else {
3930		/* Assume 802.11b/g. */
3931		sc->rxon.cck_mask  = 0x0f;
3932		sc->rxon.ofdm_mask = 0x15;
3933	}
3934	sc->rxon.filter |= htole32(WPI_FILTER_BSS);
3935
3936	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
3937
3938	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x\n",
3939	    sc->rxon.chan, sc->rxon.flags);
3940
3941	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
3942		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3943		    __func__);
3944		return error;
3945	}
3946
3947	if (vap->iv_opmode == IEEE80211_M_IBSS) {
3948		if ((error = wpi_setup_beacon(sc, ni)) != 0) {
3949			device_printf(sc->sc_dev,
3950			    "%s: could not setup beacon, error %d\n", __func__,
3951			    error);
3952			return error;
3953		}
3954	}
3955
3956	if (vap->iv_opmode == IEEE80211_M_STA) {
3957		/* Add BSS node. */
3958		((struct wpi_node *)ni)->id = WPI_ID_BSS;
3959		if ((error = wpi_add_node(sc, ni)) != 0) {
3960			device_printf(sc->sc_dev,
3961			    "%s: could not add BSS node, error %d\n", __func__,
3962			    error);
3963			return error;
3964		}
3965	}
3966
3967	/* Link LED always on while associated. */
3968	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3969
3970	/* Start periodic calibration timer. */
3971	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3972
3973	/* Enable power-saving mode if requested by user. */
3974	if (vap->iv_flags & IEEE80211_F_PMGTON)
3975		(void)wpi_set_pslevel(sc, 0, 3, 1);
3976	else
3977		(void)wpi_set_pslevel(sc, 0, 0, 1);
3978
3979	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3980
3981	return 0;
3982}
3983
3984static int
3985wpi_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
3986    ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
3987{
3988	struct wpi_softc *sc = vap->iv_ic->ic_ifp->if_softc;
3989
3990	if (!(&vap->iv_nw_keys[0] <= k &&
3991	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
3992		if (k->wk_flags & IEEE80211_KEY_GROUP) {
3993			/* should not happen */
3994			DPRINTF(sc, WPI_DEBUG_KEY, "%s: bogus group key\n",
3995			    __func__);
3996			return 0;
3997		}
3998		*keyix = 0;	/* NB: use key index 0 for ucast key */
3999	} else {
4000		*keyix = *rxkeyix = k - vap->iv_nw_keys;
4001
4002		if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_AES_CCM)
4003			k->wk_flags |= IEEE80211_KEY_SWCRYPT;
4004	}
4005	return 1;
4006}
4007
4008static int
4009wpi_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
4010    const uint8_t mac[IEEE80211_ADDR_LEN])
4011{
4012	const struct ieee80211_cipher *cip = k->wk_cipher;
4013	struct ieee80211com *ic = vap->iv_ic;
4014	struct ieee80211_node *ni = vap->iv_bss;
4015	struct wpi_softc *sc = ic->ic_ifp->if_softc;
4016	struct wpi_node *wn = WPI_NODE(ni);
4017	struct wpi_node_info node;
4018	uint16_t kflags;
4019	int error;
4020
4021	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4022
4023	switch (cip->ic_cipher) {
4024	case IEEE80211_CIPHER_AES_CCM:
4025		if (k->wk_flags & IEEE80211_KEY_GROUP)
4026			return 1;
4027
4028		kflags = WPI_KFLAG_CCMP;
4029		break;
4030	default:
4031		/* null_key_set() */
4032		return 1;
4033	}
4034
4035	if (wn->id == WPI_ID_UNDEFINED)
4036		return 0;
4037
4038	kflags |= WPI_KFLAG_KID(k->wk_keyix);
4039	if (k->wk_flags & IEEE80211_KEY_GROUP)
4040		kflags |= WPI_KFLAG_MULTICAST;
4041
4042	memset(&node, 0, sizeof node);
4043	node.id = wn->id;
4044	node.control = WPI_NODE_UPDATE;
4045	node.flags = WPI_FLAG_KEY_SET;
4046	node.kflags = htole16(kflags);
4047	memcpy(node.key, k->wk_key, k->wk_keylen);
4048
4049	DPRINTF(sc, WPI_DEBUG_KEY, "set key id=%d for node %d\n", k->wk_keyix,
4050	    node.id);
4051
4052	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4053	if (error != 0) {
4054		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4055		    error);
4056		return 0;
4057	}
4058
4059	return 1;
4060}
4061
4062static int
4063wpi_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
4064{
4065	const struct ieee80211_cipher *cip = k->wk_cipher;
4066	struct ieee80211com *ic = vap->iv_ic;
4067	struct ieee80211_node *ni = vap->iv_bss;
4068	struct wpi_softc *sc = ic->ic_ifp->if_softc;
4069	struct wpi_node *wn = WPI_NODE(ni);
4070	struct wpi_node_info node;
4071
4072	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4073
4074	switch (cip->ic_cipher) {
4075	case IEEE80211_CIPHER_AES_CCM:
4076		break;
4077	default:
4078		/* null_key_delete() */
4079		return 1;
4080	}
4081
4082	if (vap->iv_state != IEEE80211_S_RUN ||
4083	    (k->wk_flags & IEEE80211_KEY_GROUP))
4084		return 1; /* Nothing to do. */
4085
4086	memset(&node, 0, sizeof node);
4087	node.id = wn->id;
4088	node.control = WPI_NODE_UPDATE;
4089	node.flags = WPI_FLAG_KEY_SET;
4090
4091	DPRINTF(sc, WPI_DEBUG_KEY, "delete keys for node %d\n", node.id);
4092	(void)wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4093
4094	return 1;
4095}
4096
4097/*
4098 * This function is called after the runtime firmware notifies us of its
4099 * readiness (called in a process context).
4100 */
4101static int
4102wpi_post_alive(struct wpi_softc *sc)
4103{
4104	int ntries, error;
4105
4106	/* Check (again) that the radio is not disabled. */
4107	if ((error = wpi_nic_lock(sc)) != 0)
4108		return error;
4109
4110	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4111
4112	/* NB: Runtime firmware must be up and running. */
4113	if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) {
4114 		device_printf(sc->sc_dev,
4115		    "RF switch: radio disabled (%s)\n", __func__);
4116		wpi_nic_unlock(sc);
4117		return EPERM;   /* :-) */
4118	}
4119	wpi_nic_unlock(sc);
4120
4121	/* Wait for thermal sensor to calibrate. */
4122	for (ntries = 0; ntries < 1000; ntries++) {
4123		if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0)
4124			break;
4125		DELAY(10);
4126	}
4127
4128	if (ntries == 1000) {
4129		device_printf(sc->sc_dev,
4130		    "timeout waiting for thermal sensor calibration\n");
4131		return ETIMEDOUT;
4132	}
4133
4134	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d\n", sc->temp);
4135	return 0;
4136}
4137
4138/*
4139 * The firmware boot code is small and is intended to be copied directly into
4140 * the NIC internal memory (no DMA transfer).
4141 */
4142static int
4143wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
4144{
4145	int error, ntries;
4146
4147	DPRINTF(sc, WPI_DEBUG_HW, "Loading microcode size 0x%x\n", size);
4148
4149	size /= sizeof (uint32_t);
4150
4151	if ((error = wpi_nic_lock(sc)) != 0)
4152		return error;
4153
4154	/* Copy microcode image into NIC memory. */
4155	wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE,
4156	    (const uint32_t *)ucode, size);
4157
4158	wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0);
4159	wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE);
4160	wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size);
4161
4162	/* Start boot load now. */
4163	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START);
4164
4165	/* Wait for transfer to complete. */
4166	for (ntries = 0; ntries < 1000; ntries++) {
4167		uint32_t status = WPI_READ(sc, WPI_FH_TX_STATUS);
4168		DPRINTF(sc, WPI_DEBUG_HW,
4169		    "firmware status=0x%x, val=0x%x, result=0x%x\n", status,
4170		    WPI_FH_TX_STATUS_IDLE(6),
4171		    status & WPI_FH_TX_STATUS_IDLE(6));
4172		if (status & WPI_FH_TX_STATUS_IDLE(6)) {
4173			DPRINTF(sc, WPI_DEBUG_HW,
4174			    "Status Match! - ntries = %d\n", ntries);
4175			break;
4176		}
4177		DELAY(10);
4178	}
4179	if (ntries == 1000) {
4180		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4181		    __func__);
4182		wpi_nic_unlock(sc);
4183		return ETIMEDOUT;
4184	}
4185
4186	/* Enable boot after power up. */
4187	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN);
4188
4189	wpi_nic_unlock(sc);
4190	return 0;
4191}
4192
4193static int
4194wpi_load_firmware(struct wpi_softc *sc)
4195{
4196	struct wpi_fw_info *fw = &sc->fw;
4197	struct wpi_dma_info *dma = &sc->fw_dma;
4198	int error;
4199
4200	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4201
4202	/* Copy initialization sections into pre-allocated DMA-safe memory. */
4203	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
4204	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4205	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->init.text, fw->init.textsz);
4206	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4207
4208	/* Tell adapter where to find initialization sections. */
4209	if ((error = wpi_nic_lock(sc)) != 0)
4210		return error;
4211	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4212	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz);
4213	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4214	    dma->paddr + WPI_FW_DATA_MAXSZ);
4215	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
4216	wpi_nic_unlock(sc);
4217
4218	/* Load firmware boot code. */
4219	error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
4220	if (error != 0) {
4221		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4222		    __func__);
4223		return error;
4224	}
4225
4226	/* Now press "execute". */
4227	WPI_WRITE(sc, WPI_RESET, 0);
4228
4229	/* Wait at most one second for first alive notification. */
4230	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
4231		device_printf(sc->sc_dev,
4232		    "%s: timeout waiting for adapter to initialize, error %d\n",
4233		    __func__, error);
4234		return error;
4235	}
4236
4237	/* Copy runtime sections into pre-allocated DMA-safe memory. */
4238	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
4239	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4240	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->main.text, fw->main.textsz);
4241	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4242
4243	/* Tell adapter where to find runtime sections. */
4244	if ((error = wpi_nic_lock(sc)) != 0)
4245		return error;
4246	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4247	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz);
4248	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4249	    dma->paddr + WPI_FW_DATA_MAXSZ);
4250	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE,
4251	    WPI_FW_UPDATED | fw->main.textsz);
4252	wpi_nic_unlock(sc);
4253
4254	return 0;
4255}
4256
4257static int
4258wpi_read_firmware(struct wpi_softc *sc)
4259{
4260	const struct firmware *fp;
4261	struct wpi_fw_info *fw = &sc->fw;
4262	const struct wpi_firmware_hdr *hdr;
4263	int error;
4264
4265	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4266
4267	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
4268	    "Attempting Loading Firmware from %s module\n", WPI_FW_NAME);
4269
4270	WPI_UNLOCK(sc);
4271	fp = firmware_get(WPI_FW_NAME);
4272	WPI_LOCK(sc);
4273
4274	if (fp == NULL) {
4275		device_printf(sc->sc_dev,
4276		    "could not load firmware image '%s'\n", WPI_FW_NAME);
4277		return EINVAL;
4278	}
4279
4280	sc->fw_fp = fp;
4281
4282	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
4283		device_printf(sc->sc_dev,
4284		    "firmware file too short: %zu bytes\n", fp->datasize);
4285		error = EINVAL;
4286		goto fail;
4287	}
4288
4289	fw->size = fp->datasize;
4290	fw->data = (const uint8_t *)fp->data;
4291
4292	/* Extract firmware header information. */
4293	hdr = (const struct wpi_firmware_hdr *)fw->data;
4294
4295	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
4296	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
4297
4298	fw->main.textsz = le32toh(hdr->rtextsz);
4299	fw->main.datasz = le32toh(hdr->rdatasz);
4300	fw->init.textsz = le32toh(hdr->itextsz);
4301	fw->init.datasz = le32toh(hdr->idatasz);
4302	fw->boot.textsz = le32toh(hdr->btextsz);
4303	fw->boot.datasz = 0;
4304
4305	/* Sanity-check firmware header. */
4306	if (fw->main.textsz > WPI_FW_TEXT_MAXSZ ||
4307	    fw->main.datasz > WPI_FW_DATA_MAXSZ ||
4308	    fw->init.textsz > WPI_FW_TEXT_MAXSZ ||
4309	    fw->init.datasz > WPI_FW_DATA_MAXSZ ||
4310	    fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
4311	    (fw->boot.textsz & 3) != 0) {
4312		device_printf(sc->sc_dev, "invalid firmware header\n");
4313		error = EINVAL;
4314		goto fail;
4315	}
4316
4317	/* Check that all firmware sections fit. */
4318	if (fw->size < sizeof (*hdr) + fw->main.textsz + fw->main.datasz +
4319	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
4320		device_printf(sc->sc_dev,
4321		    "firmware file too short: %zu bytes\n", fw->size);
4322		error = EINVAL;
4323		goto fail;
4324	}
4325
4326	/* Get pointers to firmware sections. */
4327	fw->main.text = (const uint8_t *)(hdr + 1);
4328	fw->main.data = fw->main.text + fw->main.textsz;
4329	fw->init.text = fw->main.data + fw->main.datasz;
4330	fw->init.data = fw->init.text + fw->init.textsz;
4331	fw->boot.text = fw->init.data + fw->init.datasz;
4332
4333	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
4334	    "Firmware Version: Major %d, Minor %d, Driver %d, \n"
4335	    "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
4336	    hdr->major, hdr->minor, le32toh(hdr->driver),
4337	    fw->main.textsz, fw->main.datasz,
4338	    fw->init.textsz, fw->init.datasz, fw->boot.textsz);
4339
4340	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.text %p\n", fw->main.text);
4341	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.data %p\n", fw->main.data);
4342	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.text %p\n", fw->init.text);
4343	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.data %p\n", fw->init.data);
4344	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->boot.text %p\n", fw->boot.text);
4345
4346	return 0;
4347
4348fail:	wpi_unload_firmware(sc);
4349	return error;
4350}
4351
4352/**
4353 * Free the referenced firmware image
4354 */
4355static void
4356wpi_unload_firmware(struct wpi_softc *sc)
4357{
4358	if (sc->fw_fp != NULL) {
4359		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
4360		sc->fw_fp = NULL;
4361	}
4362}
4363
4364static int
4365wpi_clock_wait(struct wpi_softc *sc)
4366{
4367	int ntries;
4368
4369	/* Set "initialization complete" bit. */
4370	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
4371
4372	/* Wait for clock stabilization. */
4373	for (ntries = 0; ntries < 2500; ntries++) {
4374		if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY)
4375			return 0;
4376		DELAY(100);
4377	}
4378	device_printf(sc->sc_dev,
4379	    "%s: timeout waiting for clock stabilization\n", __func__);
4380
4381	return ETIMEDOUT;
4382}
4383
4384static int
4385wpi_apm_init(struct wpi_softc *sc)
4386{
4387	uint32_t reg;
4388	int error;
4389
4390	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4391
4392	/* Disable L0s exit timer (NMI bug workaround). */
4393	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_DIS_L0S_TIMER);
4394	/* Don't wait for ICH L0s (ICH bug workaround). */
4395	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX);
4396
4397	/* Set FH wait threshold to max (HW bug under stress workaround). */
4398	WPI_SETBITS(sc, WPI_DBG_HPET_MEM, 0xffff0000);
4399
4400	/* Retrieve PCIe Active State Power Management (ASPM). */
4401	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
4402	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
4403	if (reg & 0x02)	/* L1 Entry enabled. */
4404		WPI_SETBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
4405	else
4406		WPI_CLRBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
4407
4408	WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT);
4409
4410	/* Wait for clock stabilization before accessing prph. */
4411	if ((error = wpi_clock_wait(sc)) != 0)
4412		return error;
4413
4414	if ((error = wpi_nic_lock(sc)) != 0)
4415		return error;
4416	/* Enable DMA and BSM (Bootstrap State Machine). */
4417	wpi_prph_write(sc, WPI_APMG_CLK_EN,
4418	    WPI_APMG_CLK_CTRL_DMA_CLK_RQT | WPI_APMG_CLK_CTRL_BSM_CLK_RQT);
4419	DELAY(20);
4420	/* Disable L1-Active. */
4421	wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS);
4422	/* ??? */
4423	wpi_prph_clrbits(sc, WPI_APMG_PS, 0x00000E00);
4424	wpi_nic_unlock(sc);
4425
4426	return 0;
4427}
4428
4429static void
4430wpi_apm_stop_master(struct wpi_softc *sc)
4431{
4432	int ntries;
4433
4434	/* Stop busmaster DMA activity. */
4435	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER);
4436
4437	if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) ==
4438	    WPI_GP_CNTRL_MAC_PS)
4439		return; /* Already asleep. */
4440
4441	for (ntries = 0; ntries < 100; ntries++) {
4442		if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED)
4443			return;
4444		DELAY(10);
4445	}
4446	device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
4447}
4448
4449static void
4450wpi_apm_stop(struct wpi_softc *sc)
4451{
4452	wpi_apm_stop_master(sc);
4453
4454	/* Reset the entire device. */
4455	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW);
4456	DELAY(10);
4457	/* Clear "initialization complete" bit. */
4458	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
4459}
4460
4461static void
4462wpi_nic_config(struct wpi_softc *sc)
4463{
4464	uint32_t rev;
4465
4466	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4467
4468	/* voodoo from the Linux "driver".. */
4469	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
4470	if ((rev & 0xc0) == 0x40)
4471		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB);
4472	else if (!(rev & 0x80))
4473		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM);
4474
4475	if (sc->cap == 0x80)
4476		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC);
4477
4478	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
4479		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
4480	else
4481		WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
4482
4483	if (sc->type > 1)
4484		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B);
4485}
4486
4487static int
4488wpi_hw_init(struct wpi_softc *sc)
4489{
4490	int chnl, ntries, error;
4491
4492	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4493
4494	/* Clear pending interrupts. */
4495	WPI_WRITE(sc, WPI_INT, 0xffffffff);
4496
4497	if ((error = wpi_apm_init(sc)) != 0) {
4498		device_printf(sc->sc_dev,
4499		    "%s: could not power ON adapter, error %d\n", __func__,
4500		    error);
4501		return error;
4502	}
4503
4504	/* Select VMAIN power source. */
4505	if ((error = wpi_nic_lock(sc)) != 0)
4506		return error;
4507	wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK);
4508	wpi_nic_unlock(sc);
4509	/* Spin until VMAIN gets selected. */
4510	for (ntries = 0; ntries < 5000; ntries++) {
4511		if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN)
4512			break;
4513		DELAY(10);
4514	}
4515	if (ntries == 5000) {
4516		device_printf(sc->sc_dev, "timeout selecting power source\n");
4517		return ETIMEDOUT;
4518	}
4519
4520	/* Perform adapter initialization. */
4521	wpi_nic_config(sc);
4522
4523	/* Initialize RX ring. */
4524	if ((error = wpi_nic_lock(sc)) != 0)
4525		return error;
4526	/* Set physical address of RX ring. */
4527	WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr);
4528	/* Set physical address of RX read pointer. */
4529	WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr +
4530	    offsetof(struct wpi_shared, next));
4531	WPI_WRITE(sc, WPI_FH_RX_WPTR, 0);
4532	/* Enable RX. */
4533	WPI_WRITE(sc, WPI_FH_RX_CONFIG,
4534	    WPI_FH_RX_CONFIG_DMA_ENA |
4535	    WPI_FH_RX_CONFIG_RDRBD_ENA |
4536	    WPI_FH_RX_CONFIG_WRSTATUS_ENA |
4537	    WPI_FH_RX_CONFIG_MAXFRAG |
4538	    WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) |
4539	    WPI_FH_RX_CONFIG_IRQ_DST_HOST |
4540	    WPI_FH_RX_CONFIG_IRQ_TIMEOUT(1));
4541	(void)WPI_READ(sc, WPI_FH_RSSR_TBL);	/* barrier */
4542	wpi_nic_unlock(sc);
4543	WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7);
4544
4545	/* Initialize TX rings. */
4546	if ((error = wpi_nic_lock(sc)) != 0)
4547		return error;
4548	wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2);	/* bypass mode */
4549	wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1);	/* enable RA0 */
4550	/* Enable all 6 TX rings. */
4551	wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f);
4552	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000);
4553	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002);
4554	wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4);
4555	wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5);
4556	/* Set physical address of TX rings. */
4557	WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr);
4558	WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5);
4559
4560	/* Enable all DMA channels. */
4561	for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
4562		WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0);
4563		WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0);
4564		WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008);
4565	}
4566	wpi_nic_unlock(sc);
4567	(void)WPI_READ(sc, WPI_FH_TX_BASE);	/* barrier */
4568
4569	/* Clear "radio off" and "commands blocked" bits. */
4570	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
4571	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED);
4572
4573	/* Clear pending interrupts. */
4574	WPI_WRITE(sc, WPI_INT, 0xffffffff);
4575	/* Enable interrupts. */
4576	WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
4577
4578	/* _Really_ make sure "radio off" bit is cleared! */
4579	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
4580	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
4581
4582	if ((error = wpi_load_firmware(sc)) != 0) {
4583		device_printf(sc->sc_dev,
4584		    "%s: could not load firmware, error %d\n", __func__,
4585		    error);
4586		return error;
4587	}
4588	/* Wait at most one second for firmware alive notification. */
4589	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
4590		device_printf(sc->sc_dev,
4591		    "%s: timeout waiting for adapter to initialize, error %d\n",
4592		    __func__, error);
4593		return error;
4594	}
4595
4596	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4597
4598	/* Do post-firmware initialization. */
4599	return wpi_post_alive(sc);
4600}
4601
4602static void
4603wpi_hw_stop(struct wpi_softc *sc)
4604{
4605	int chnl, qid, ntries;
4606
4607	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4608
4609	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP)
4610		wpi_nic_lock(sc);
4611
4612	WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO);
4613
4614	/* Disable interrupts. */
4615	WPI_WRITE(sc, WPI_INT_MASK, 0);
4616	WPI_WRITE(sc, WPI_INT, 0xffffffff);
4617	WPI_WRITE(sc, WPI_FH_INT, 0xffffffff);
4618
4619	/* Make sure we no longer hold the NIC lock. */
4620	wpi_nic_unlock(sc);
4621
4622	if (wpi_nic_lock(sc) == 0) {
4623		/* Stop TX scheduler. */
4624		wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0);
4625		wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0);
4626
4627		/* Stop all DMA channels. */
4628		for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
4629			WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0);
4630			for (ntries = 0; ntries < 200; ntries++) {
4631				if (WPI_READ(sc, WPI_FH_TX_STATUS) &
4632				    WPI_FH_TX_STATUS_IDLE(chnl))
4633					break;
4634				DELAY(10);
4635			}
4636		}
4637		wpi_nic_unlock(sc);
4638	}
4639
4640	/* Stop RX ring. */
4641	wpi_reset_rx_ring(sc);
4642
4643	/* Reset all TX rings. */
4644	for (qid = 0; qid < WPI_NTXQUEUES; qid++)
4645		wpi_reset_tx_ring(sc, &sc->txq[qid]);
4646
4647	if (wpi_nic_lock(sc) == 0) {
4648		wpi_prph_write(sc, WPI_APMG_CLK_DIS,
4649		    WPI_APMG_CLK_CTRL_DMA_CLK_RQT);
4650		wpi_nic_unlock(sc);
4651	}
4652	DELAY(5);
4653	/* Power OFF adapter. */
4654	wpi_apm_stop(sc);
4655}
4656
4657static void
4658wpi_radio_on(void *arg0, int pending)
4659{
4660	struct wpi_softc *sc = arg0;
4661	struct ifnet *ifp = sc->sc_ifp;
4662	struct ieee80211com *ic = ifp->if_l2com;
4663	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4664
4665	device_printf(sc->sc_dev, "RF switch: radio enabled\n");
4666
4667	if (vap != NULL) {
4668		wpi_init(sc);
4669		ieee80211_init(vap);
4670	}
4671
4672	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL) {
4673		WPI_LOCK(sc);
4674		callout_stop(&sc->watchdog_rfkill);
4675		WPI_UNLOCK(sc);
4676	}
4677}
4678
4679static void
4680wpi_radio_off(void *arg0, int pending)
4681{
4682	struct wpi_softc *sc = arg0;
4683	struct ifnet *ifp = sc->sc_ifp;
4684	struct ieee80211com *ic = ifp->if_l2com;
4685	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4686
4687	device_printf(sc->sc_dev, "RF switch: radio disabled\n");
4688
4689	wpi_stop(sc);
4690	if (vap != NULL)
4691		ieee80211_stop(vap);
4692
4693	WPI_LOCK(sc);
4694	callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, sc);
4695	WPI_UNLOCK(sc);
4696}
4697
4698static void
4699wpi_init_locked(struct wpi_softc *sc)
4700{
4701	struct ifnet *ifp = sc->sc_ifp;
4702	int error;
4703
4704	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4705
4706	WPI_LOCK_ASSERT(sc);
4707
4708	/* Check that the radio is not disabled by hardware switch. */
4709	if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) {
4710		device_printf(sc->sc_dev,
4711		    "RF switch: radio disabled (%s)\n", __func__);
4712		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
4713		    sc);
4714		return;
4715	}
4716
4717	/* Read firmware images from the filesystem. */
4718	if ((error = wpi_read_firmware(sc)) != 0) {
4719		device_printf(sc->sc_dev,
4720		    "%s: could not read firmware, error %d\n", __func__,
4721		    error);
4722		goto fail;
4723	}
4724
4725	/* Initialize hardware and upload firmware. */
4726	error = wpi_hw_init(sc);
4727	wpi_unload_firmware(sc);
4728	if (error != 0) {
4729		device_printf(sc->sc_dev,
4730		    "%s: could not initialize hardware, error %d\n", __func__,
4731		    error);
4732		goto fail;
4733	}
4734
4735	/* Configure adapter now that it is ready. */
4736	if ((error = wpi_config(sc)) != 0) {
4737		device_printf(sc->sc_dev,
4738		    "%s: could not configure device, error %d\n", __func__,
4739		    error);
4740		goto fail;
4741	}
4742
4743	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4744	ifp->if_drv_flags |= IFF_DRV_RUNNING;
4745
4746	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
4747
4748	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4749
4750	return;
4751
4752fail:	wpi_stop_locked(sc);
4753	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
4754}
4755
4756static void
4757wpi_init(void *arg)
4758{
4759	struct wpi_softc *sc = arg;
4760	struct ifnet *ifp = sc->sc_ifp;
4761	struct ieee80211com *ic = ifp->if_l2com;
4762
4763	WPI_LOCK(sc);
4764	wpi_init_locked(sc);
4765	WPI_UNLOCK(sc);
4766
4767	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4768		ieee80211_start_all(ic);
4769}
4770
4771static void
4772wpi_stop_locked(struct wpi_softc *sc)
4773{
4774	struct ifnet *ifp = sc->sc_ifp;
4775
4776	WPI_LOCK_ASSERT(sc);
4777
4778	sc->sc_scan_timer = 0;
4779	sc->sc_tx_timer = 0;
4780	callout_stop(&sc->watchdog_to);
4781	callout_stop(&sc->calib_to);
4782	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4783
4784	/* Power OFF hardware. */
4785	wpi_hw_stop(sc);
4786}
4787
4788static void
4789wpi_stop(struct wpi_softc *sc)
4790{
4791	WPI_LOCK(sc);
4792	wpi_stop_locked(sc);
4793	WPI_UNLOCK(sc);
4794}
4795
4796/*
4797 * Callback from net80211 to start a scan.
4798 */
4799static void
4800wpi_scan_start(struct ieee80211com *ic)
4801{
4802	struct ifnet *ifp = ic->ic_ifp;
4803	struct wpi_softc *sc = ifp->if_softc;
4804
4805	WPI_LOCK(sc);
4806	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
4807	WPI_UNLOCK(sc);
4808}
4809
4810/*
4811 * Callback from net80211 to terminate a scan.
4812 */
4813static void
4814wpi_scan_end(struct ieee80211com *ic)
4815{
4816	struct ifnet *ifp = ic->ic_ifp;
4817	struct wpi_softc *sc = ifp->if_softc;
4818	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4819
4820	if (vap->iv_state == IEEE80211_S_RUN) {
4821		WPI_LOCK(sc);
4822		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
4823		WPI_UNLOCK(sc);
4824	}
4825}
4826
4827/**
4828 * Called by the net80211 framework to indicate to the driver
4829 * that the channel should be changed
4830 */
4831static void
4832wpi_set_channel(struct ieee80211com *ic)
4833{
4834	const struct ieee80211_channel *c = ic->ic_curchan;
4835	struct ifnet *ifp = ic->ic_ifp;
4836	struct wpi_softc *sc = ifp->if_softc;
4837	int error;
4838
4839	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4840
4841	WPI_LOCK(sc);
4842	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
4843	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
4844	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
4845	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
4846
4847	/*
4848	 * Only need to set the channel in Monitor mode. AP scanning and auth
4849	 * are already taken care of by their respective firmware commands.
4850	 */
4851	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4852		sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4853		if (IEEE80211_IS_CHAN_2GHZ(c)) {
4854			sc->rxon.flags |= htole32(WPI_RXON_AUTO |
4855			    WPI_RXON_24GHZ);
4856		} else {
4857			sc->rxon.flags &= ~htole32(WPI_RXON_AUTO |
4858			    WPI_RXON_24GHZ);
4859		}
4860		if ((error = wpi_send_rxon(sc, 0, 0)) != 0)
4861			device_printf(sc->sc_dev,
4862			    "%s: error %d settting channel\n", __func__,
4863			    error);
4864	}
4865	WPI_UNLOCK(sc);
4866}
4867
4868/**
4869 * Called by net80211 to indicate that we need to scan the current
4870 * channel. The channel is previously be set via the wpi_set_channel
4871 * callback.
4872 */
4873static void
4874wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
4875{
4876	struct ieee80211vap *vap = ss->ss_vap;
4877	struct ieee80211com *ic = vap->iv_ic;
4878	struct ifnet *ifp = ic->ic_ifp;
4879	struct wpi_softc *sc = ifp->if_softc;
4880	int error;
4881
4882	if (sc->rxon.chan != ieee80211_chan2ieee(ic, ic->ic_curchan)) {
4883		WPI_LOCK(sc);
4884		error = wpi_scan(sc, ic->ic_curchan);
4885		WPI_UNLOCK(sc);
4886		if (error != 0)
4887			ieee80211_cancel_scan(vap);
4888	} else {
4889		/* Send probe request when associated. */
4890		sc->sc_scan_curchan(ss, maxdwell);
4891	}
4892}
4893
4894/**
4895 * Called by the net80211 framework to indicate
4896 * the minimum dwell time has been met, terminate the scan.
4897 * We don't actually terminate the scan as the firmware will notify
4898 * us when it's finished and we have no way to interrupt it.
4899 */
4900static void
4901wpi_scan_mindwell(struct ieee80211_scan_state *ss)
4902{
4903	/* NB: don't try to abort scan; wait for firmware to finish */
4904}
4905
4906static void
4907wpi_hw_reset(void *arg, int pending)
4908{
4909	struct wpi_softc *sc = arg;
4910	struct ifnet *ifp = sc->sc_ifp;
4911	struct ieee80211com *ic = ifp->if_l2com;
4912	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4913
4914	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4915
4916	wpi_stop(sc);
4917	if (vap != NULL)
4918		ieee80211_stop(vap);
4919	wpi_init(sc);
4920	if (vap != NULL)
4921		ieee80211_init(vap);
4922}
4923