if_wpi.c revision 280050
1/*-
2 * Copyright (c) 2006,2007
3 *	Damien Bergamini <damien.bergamini@free.fr>
4 *	Benjamin Close <Benjamin.Close@clearchain.com>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19#include <sys/cdefs.h>
20__FBSDID("$FreeBSD: head/sys/dev/wpi/if_wpi.c 280050 2015-03-15 20:09:47Z adrian $");
21
22/*
23 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
24 *
25 * The 3945ABG network adapter doesn't use traditional hardware as
26 * many other adaptors do. Instead at run time the eeprom is set into a known
27 * state and told to load boot firmware. The boot firmware loads an init and a
28 * main  binary firmware image into SRAM on the card via DMA.
29 * Once the firmware is loaded, the driver/hw then
30 * communicate by way of circular dma rings via the SRAM to the firmware.
31 *
32 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
33 * The 4 tx data rings allow for prioritization QoS.
34 *
35 * The rx data ring consists of 32 dma buffers. Two registers are used to
36 * indicate where in the ring the driver and the firmware are up to. The
37 * driver sets the initial read index (reg1) and the initial write index (reg2),
38 * the firmware updates the read index (reg1) on rx of a packet and fires an
39 * interrupt. The driver then processes the buffers starting at reg1 indicating
40 * to the firmware which buffers have been accessed by updating reg2. At the
41 * same time allocating new memory for the processed buffer.
42 *
43 * A similar thing happens with the tx rings. The difference is the firmware
44 * stop processing buffers once the queue is full and until confirmation
45 * of a successful transmition (tx_done) has occurred.
46 *
47 * The command ring operates in the same manner as the tx queues.
48 *
49 * All communication direct to the card (ie eeprom) is classed as Stage1
50 * communication
51 *
52 * All communication via the firmware to the card is classed as State2.
53 * The firmware consists of 2 parts. A bootstrap firmware and a runtime
54 * firmware. The bootstrap firmware and runtime firmware are loaded
55 * from host memory via dma to the card then told to execute. From this point
56 * on the majority of communications between the driver and the card goes
57 * via the firmware.
58 */
59
60#include "opt_wlan.h"
61#include "opt_wpi.h"
62
63#include <sys/param.h>
64#include <sys/sysctl.h>
65#include <sys/sockio.h>
66#include <sys/mbuf.h>
67#include <sys/kernel.h>
68#include <sys/socket.h>
69#include <sys/systm.h>
70#include <sys/malloc.h>
71#include <sys/queue.h>
72#include <sys/taskqueue.h>
73#include <sys/module.h>
74#include <sys/bus.h>
75#include <sys/endian.h>
76#include <sys/linker.h>
77#include <sys/firmware.h>
78
79#include <machine/bus.h>
80#include <machine/resource.h>
81#include <sys/rman.h>
82
83#include <dev/pci/pcireg.h>
84#include <dev/pci/pcivar.h>
85
86#include <net/bpf.h>
87#include <net/if.h>
88#include <net/if_var.h>
89#include <net/if_arp.h>
90#include <net/ethernet.h>
91#include <net/if_dl.h>
92#include <net/if_media.h>
93#include <net/if_types.h>
94
95#include <netinet/in.h>
96#include <netinet/in_systm.h>
97#include <netinet/in_var.h>
98#include <netinet/if_ether.h>
99#include <netinet/ip.h>
100
101#include <net80211/ieee80211_var.h>
102#include <net80211/ieee80211_radiotap.h>
103#include <net80211/ieee80211_regdomain.h>
104#include <net80211/ieee80211_ratectl.h>
105
106#include <dev/wpi/if_wpireg.h>
107#include <dev/wpi/if_wpivar.h>
108#include <dev/wpi/if_wpi_debug.h>
109
110struct wpi_ident {
111	uint16_t	vendor;
112	uint16_t	device;
113	uint16_t	subdevice;
114	const char	*name;
115};
116
117static const struct wpi_ident wpi_ident_table[] = {
118	/* The below entries support ABG regardless of the subid */
119	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
120	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
121	/* The below entries only support BG */
122	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
123	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
124	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
125	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
126	{ 0, 0, 0, NULL }
127};
128
129static int	wpi_probe(device_t);
130static int	wpi_attach(device_t);
131static void	wpi_radiotap_attach(struct wpi_softc *);
132static void	wpi_sysctlattach(struct wpi_softc *);
133static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
134		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
135		    const uint8_t [IEEE80211_ADDR_LEN],
136		    const uint8_t [IEEE80211_ADDR_LEN]);
137static void	wpi_vap_delete(struct ieee80211vap *);
138static int	wpi_detach(device_t);
139static int	wpi_shutdown(device_t);
140static int	wpi_suspend(device_t);
141static int	wpi_resume(device_t);
142static int	wpi_nic_lock(struct wpi_softc *);
143static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
144static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
145static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
146		    void **, bus_size_t, bus_size_t);
147static void	wpi_dma_contig_free(struct wpi_dma_info *);
148static int	wpi_alloc_shared(struct wpi_softc *);
149static void	wpi_free_shared(struct wpi_softc *);
150static int	wpi_alloc_fwmem(struct wpi_softc *);
151static void	wpi_free_fwmem(struct wpi_softc *);
152static int	wpi_alloc_rx_ring(struct wpi_softc *);
153static void	wpi_update_rx_ring(struct wpi_softc *);
154static void	wpi_reset_rx_ring(struct wpi_softc *);
155static void	wpi_free_rx_ring(struct wpi_softc *);
156static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
157		    int);
158static void	wpi_update_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
159static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
160static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
161static int	wpi_read_eeprom(struct wpi_softc *,
162		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
163static uint32_t	wpi_eeprom_channel_flags(struct wpi_eeprom_chan *);
164static void	wpi_read_eeprom_band(struct wpi_softc *, int);
165static int	wpi_read_eeprom_channels(struct wpi_softc *, int);
166static struct wpi_eeprom_chan *wpi_find_eeprom_channel(struct wpi_softc *,
167		    struct ieee80211_channel *);
168static int	wpi_setregdomain(struct ieee80211com *,
169		    struct ieee80211_regdomain *, int,
170		    struct ieee80211_channel[]);
171static int	wpi_read_eeprom_group(struct wpi_softc *, int);
172static void	wpi_node_free(struct ieee80211_node *);
173static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
174		    const uint8_t mac[IEEE80211_ADDR_LEN]);
175static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
176static void	wpi_calib_timeout(void *);
177static void	wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *,
178		    struct wpi_rx_data *);
179static void	wpi_rx_statistics(struct wpi_softc *, struct wpi_rx_desc *,
180		    struct wpi_rx_data *);
181static void	wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *);
182static void	wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *);
183static void	wpi_notif_intr(struct wpi_softc *);
184static void	wpi_wakeup_intr(struct wpi_softc *);
185static void	wpi_fatal_intr(struct wpi_softc *);
186static void	wpi_intr(void *);
187static int	wpi_cmd2(struct wpi_softc *, struct wpi_buf *);
188static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
189		    struct ieee80211_node *);
190static int	wpi_tx_data_raw(struct wpi_softc *, struct mbuf *,
191		    struct ieee80211_node *,
192		    const struct ieee80211_bpf_params *);
193static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
194		    const struct ieee80211_bpf_params *);
195static void	wpi_start(struct ifnet *);
196static void	wpi_start_locked(struct ifnet *);
197static void	wpi_watchdog_rfkill(void *);
198static void	wpi_watchdog(void *);
199static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
200static int	wpi_cmd(struct wpi_softc *, int, const void *, size_t, int);
201static int	wpi_mrr_setup(struct wpi_softc *);
202static int	wpi_add_node(struct wpi_softc *, struct ieee80211_node *);
203static int	wpi_add_broadcast_node(struct wpi_softc *, int);
204static int	wpi_add_ibss_node(struct wpi_softc *, struct ieee80211_node *);
205static void	wpi_del_node(struct wpi_softc *, struct ieee80211_node *);
206static int	wpi_updateedca(struct ieee80211com *);
207static void	wpi_set_promisc(struct wpi_softc *);
208static void	wpi_update_promisc(struct ifnet *);
209static void	wpi_update_mcast(struct ifnet *);
210static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
211static int	wpi_set_timing(struct wpi_softc *, struct ieee80211_node *);
212static void	wpi_power_calibration(struct wpi_softc *);
213static int	wpi_set_txpower(struct wpi_softc *, int);
214static int	wpi_get_power_index(struct wpi_softc *,
215		    struct wpi_power_group *, struct ieee80211_channel *, int);
216static int	wpi_set_pslevel(struct wpi_softc *, uint8_t, int, int);
217static int	wpi_send_btcoex(struct wpi_softc *);
218static int	wpi_send_rxon(struct wpi_softc *, int, int);
219static int	wpi_config(struct wpi_softc *);
220static uint16_t	wpi_get_active_dwell_time(struct wpi_softc *,
221		    struct ieee80211_channel *, uint8_t);
222static uint16_t	wpi_limit_dwell(struct wpi_softc *, uint16_t);
223static uint16_t	wpi_get_passive_dwell_time(struct wpi_softc *,
224		    struct ieee80211_channel *);
225static int	wpi_scan(struct wpi_softc *, struct ieee80211_channel *);
226static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
227static void	wpi_update_beacon(struct ieee80211vap *, int);
228static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
229static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
230static int	wpi_key_alloc(struct ieee80211vap *, struct ieee80211_key *,
231		    ieee80211_keyix *, ieee80211_keyix *);
232static int	wpi_key_set(struct ieee80211vap *,
233		    const struct ieee80211_key *,
234		    const uint8_t mac[IEEE80211_ADDR_LEN]);
235static int	wpi_key_delete(struct ieee80211vap *,
236		    const struct ieee80211_key *);
237static int	wpi_post_alive(struct wpi_softc *);
238static int	wpi_load_bootcode(struct wpi_softc *, const uint8_t *, int);
239static int	wpi_load_firmware(struct wpi_softc *);
240static int	wpi_read_firmware(struct wpi_softc *);
241static void	wpi_unload_firmware(struct wpi_softc *);
242static int	wpi_clock_wait(struct wpi_softc *);
243static int	wpi_apm_init(struct wpi_softc *);
244static void	wpi_apm_stop_master(struct wpi_softc *);
245static void	wpi_apm_stop(struct wpi_softc *);
246static void	wpi_nic_config(struct wpi_softc *);
247static int	wpi_hw_init(struct wpi_softc *);
248static void	wpi_hw_stop(struct wpi_softc *);
249static void	wpi_radio_on(void *, int);
250static void	wpi_radio_off(void *, int);
251static void	wpi_init_locked(struct wpi_softc *);
252static void	wpi_init(void *);
253static void	wpi_stop_locked(struct wpi_softc *);
254static void	wpi_stop(struct wpi_softc *);
255static void	wpi_scan_start(struct ieee80211com *);
256static void	wpi_scan_end(struct ieee80211com *);
257static void	wpi_set_channel(struct ieee80211com *);
258static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
259static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
260static void	wpi_hw_reset(void *, int);
261
262static device_method_t wpi_methods[] = {
263	/* Device interface */
264	DEVMETHOD(device_probe,		wpi_probe),
265	DEVMETHOD(device_attach,	wpi_attach),
266	DEVMETHOD(device_detach,	wpi_detach),
267	DEVMETHOD(device_shutdown,	wpi_shutdown),
268	DEVMETHOD(device_suspend,	wpi_suspend),
269	DEVMETHOD(device_resume,	wpi_resume),
270
271	DEVMETHOD_END
272};
273
274static driver_t wpi_driver = {
275	"wpi",
276	wpi_methods,
277	sizeof (struct wpi_softc)
278};
279static devclass_t wpi_devclass;
280
281DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
282
283MODULE_VERSION(wpi, 1);
284
285MODULE_DEPEND(wpi, pci,  1, 1, 1);
286MODULE_DEPEND(wpi, wlan, 1, 1, 1);
287MODULE_DEPEND(wpi, firmware, 1, 1, 1);
288
289static int
290wpi_probe(device_t dev)
291{
292	const struct wpi_ident *ident;
293
294	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
295		if (pci_get_vendor(dev) == ident->vendor &&
296		    pci_get_device(dev) == ident->device) {
297			device_set_desc(dev, ident->name);
298			return (BUS_PROBE_DEFAULT);
299		}
300	}
301	return ENXIO;
302}
303
304static int
305wpi_attach(device_t dev)
306{
307	struct wpi_softc *sc = (struct wpi_softc *)device_get_softc(dev);
308	struct ieee80211com *ic;
309	struct ifnet *ifp;
310	int i, error, rid, supportsa = 1;
311	const struct wpi_ident *ident;
312	uint8_t macaddr[IEEE80211_ADDR_LEN];
313
314	sc->sc_dev = dev;
315
316#ifdef	WPI_DEBUG
317	error = resource_int_value(device_get_name(sc->sc_dev),
318	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
319	if (error != 0)
320		sc->sc_debug = 0;
321#else
322	sc->sc_debug = 0;
323#endif
324
325	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
326
327	/*
328	 * Get the offset of the PCI Express Capability Structure in PCI
329	 * Configuration Space.
330	 */
331	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
332	if (error != 0) {
333		device_printf(dev, "PCIe capability structure not found!\n");
334		return error;
335	}
336
337	/*
338	 * Some card's only support 802.11b/g not a, check to see if
339	 * this is one such card. A 0x0 in the subdevice table indicates
340	 * the entire subdevice range is to be ignored.
341	 */
342	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
343		if (ident->subdevice &&
344		    pci_get_subdevice(dev) == ident->subdevice) {
345		    supportsa = 0;
346		    break;
347		}
348	}
349
350	/* Clear device-specific "PCI retry timeout" register (41h). */
351	pci_write_config(dev, 0x41, 0, 1);
352
353	/* Enable bus-mastering. */
354	pci_enable_busmaster(dev);
355
356	rid = PCIR_BAR(0);
357	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
358	    RF_ACTIVE);
359	if (sc->mem == NULL) {
360		device_printf(dev, "can't map mem space\n");
361		error = ENOMEM;
362		return error;
363	}
364	sc->sc_st = rman_get_bustag(sc->mem);
365	sc->sc_sh = rman_get_bushandle(sc->mem);
366
367	i = 1;
368	rid = 0;
369	if (pci_alloc_msi(dev, &i) == 0)
370		rid = 1;
371	/* Install interrupt handler. */
372	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
373	    (rid != 0 ? 0 : RF_SHAREABLE));
374	if (sc->irq == NULL) {
375		device_printf(dev, "can't map interrupt\n");
376		error = ENOMEM;
377		goto fail;
378	}
379
380	WPI_LOCK_INIT(sc);
381
382	sc->sc_unr = new_unrhdr(WPI_ID_IBSS_MIN, WPI_ID_IBSS_MAX, &sc->sc_mtx);
383
384	/* Allocate DMA memory for firmware transfers. */
385	if ((error = wpi_alloc_fwmem(sc)) != 0) {
386		device_printf(dev,
387		    "could not allocate memory for firmware, error %d\n",
388		    error);
389		goto fail;
390	}
391
392	/* Allocate shared page. */
393	if ((error = wpi_alloc_shared(sc)) != 0) {
394		device_printf(dev, "could not allocate shared page\n");
395		goto fail;
396	}
397
398	/* Allocate TX rings - 4 for QoS purposes, 1 for commands. */
399	for (i = 0; i < WPI_NTXQUEUES; i++) {
400		if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
401			device_printf(dev,
402			    "could not allocate TX ring %d, error %d\n", i,
403			    error);
404			goto fail;
405		}
406	}
407
408	/* Allocate RX ring. */
409	if ((error = wpi_alloc_rx_ring(sc)) != 0) {
410		device_printf(dev, "could not allocate RX ring, error %d\n",
411		    error);
412		goto fail;
413	}
414
415	/* Clear pending interrupts. */
416	WPI_WRITE(sc, WPI_INT, 0xffffffff);
417
418	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
419	if (ifp == NULL) {
420		device_printf(dev, "can not allocate ifnet structure\n");
421		goto fail;
422	}
423
424	ic = ifp->if_l2com;
425	ic->ic_ifp = ifp;
426	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
427	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
428
429	/* Set device capabilities. */
430	ic->ic_caps =
431		  IEEE80211_C_STA		/* station mode supported */
432		| IEEE80211_C_IBSS		/* IBSS mode supported */
433		| IEEE80211_C_MONITOR		/* monitor mode supported */
434		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
435		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
436		| IEEE80211_C_TXPMGT		/* tx power management */
437		| IEEE80211_C_SHSLOT		/* short slot time supported */
438		| IEEE80211_C_WPA		/* 802.11i */
439		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
440#if 0
441		| IEEE80211_C_HOSTAP		/* Host access point mode */
442#endif
443		| IEEE80211_C_WME		/* 802.11e */
444		| IEEE80211_C_PMGT		/* Station-side power mgmt */
445		;
446
447	ic->ic_cryptocaps =
448		  IEEE80211_CRYPTO_AES_CCM;
449
450	/*
451	 * Read in the eeprom and also setup the channels for
452	 * net80211. We don't set the rates as net80211 does this for us
453	 */
454	if ((error = wpi_read_eeprom(sc, macaddr)) != 0) {
455		device_printf(dev, "could not read EEPROM, error %d\n",
456		    error);
457		goto fail;
458        }
459
460#ifdef	WPI_DEBUG
461	if (bootverbose) {
462	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
463	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
464			  sc->type > 1 ? 'B': '?');
465	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
466			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
467	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
468			  supportsa ? "does" : "does not");
469
470	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
471	       what sc->rev really represents - benjsc 20070615 */
472	}
473#endif
474
475	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
476	ifp->if_softc = sc;
477	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
478	ifp->if_init = wpi_init;
479	ifp->if_ioctl = wpi_ioctl;
480	ifp->if_start = wpi_start;
481	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
482	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
483	IFQ_SET_READY(&ifp->if_snd);
484
485	ieee80211_ifattach(ic, macaddr);
486	ic->ic_vap_create = wpi_vap_create;
487	ic->ic_vap_delete = wpi_vap_delete;
488	ic->ic_raw_xmit = wpi_raw_xmit;
489	ic->ic_node_alloc = wpi_node_alloc;
490	sc->sc_node_free = ic->ic_node_free;
491	ic->ic_node_free = wpi_node_free;
492	ic->ic_wme.wme_update = wpi_updateedca;
493	ic->ic_update_promisc = wpi_update_promisc;
494	ic->ic_update_mcast = wpi_update_mcast;
495	ic->ic_scan_start = wpi_scan_start;
496	ic->ic_scan_end = wpi_scan_end;
497	ic->ic_set_channel = wpi_set_channel;
498	sc->sc_scan_curchan = ic->ic_scan_curchan;
499	ic->ic_scan_curchan = wpi_scan_curchan;
500	ic->ic_scan_mindwell = wpi_scan_mindwell;
501	ic->ic_setregdomain = wpi_setregdomain;
502
503	wpi_radiotap_attach(sc);
504
505	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
506	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
507	callout_init_mtx(&sc->watchdog_rfkill, &sc->sc_mtx, 0);
508	TASK_INIT(&sc->sc_reinittask, 0, wpi_hw_reset, sc);
509	TASK_INIT(&sc->sc_radiooff_task, 0, wpi_radio_off, sc);
510	TASK_INIT(&sc->sc_radioon_task, 0, wpi_radio_on, sc);
511
512	wpi_sysctlattach(sc);
513
514	/*
515	 * Hook our interrupt after all initialization is complete.
516	 */
517	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
518	    NULL, wpi_intr, sc, &sc->sc_ih);
519	if (error != 0) {
520		device_printf(dev, "can't establish interrupt, error %d\n",
521		    error);
522		goto fail;
523	}
524
525	if (bootverbose)
526		ieee80211_announce(ic);
527
528#ifdef WPI_DEBUG
529	if (sc->sc_debug & WPI_DEBUG_HW)
530		ieee80211_announce_channels(ic);
531#endif
532
533	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
534	return 0;
535
536fail:	wpi_detach(dev);
537	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
538	return error;
539}
540
541/*
542 * Attach the interface to 802.11 radiotap.
543 */
544static void
545wpi_radiotap_attach(struct wpi_softc *sc)
546{
547	struct ifnet *ifp = sc->sc_ifp;
548	struct ieee80211com *ic = ifp->if_l2com;
549	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
550	ieee80211_radiotap_attach(ic,
551	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
552		WPI_TX_RADIOTAP_PRESENT,
553	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
554		WPI_RX_RADIOTAP_PRESENT);
555	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
556}
557
558static void
559wpi_sysctlattach(struct wpi_softc *sc)
560{
561#ifdef  WPI_DEBUG
562	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
563	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
564
565	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
566	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
567		"control debugging printfs");
568#endif
569}
570
571static struct ieee80211vap *
572wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
573    enum ieee80211_opmode opmode, int flags,
574    const uint8_t bssid[IEEE80211_ADDR_LEN],
575    const uint8_t mac[IEEE80211_ADDR_LEN])
576{
577	struct wpi_vap *wvp;
578	struct wpi_buf *bcn;
579	struct ieee80211vap *vap;
580
581	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
582		return NULL;
583
584	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
585	    M_80211_VAP, M_NOWAIT | M_ZERO);
586	if (wvp == NULL)
587		return NULL;
588	vap = &wvp->vap;
589	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
590
591	bcn = &wvp->wv_bcbuf;
592	bcn->data = NULL;
593
594	/* Override with driver methods. */
595	wvp->newstate = vap->iv_newstate;
596	vap->iv_key_alloc = wpi_key_alloc;
597	vap->iv_key_set = wpi_key_set;
598	vap->iv_key_delete = wpi_key_delete;
599	vap->iv_newstate = wpi_newstate;
600	vap->iv_update_beacon = wpi_update_beacon;
601
602	ieee80211_ratectl_init(vap);
603	/* Complete setup. */
604	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
605	ic->ic_opmode = opmode;
606	return vap;
607}
608
609static void
610wpi_vap_delete(struct ieee80211vap *vap)
611{
612	struct wpi_vap *wvp = WPI_VAP(vap);
613	struct wpi_buf *bcn = &wvp->wv_bcbuf;
614
615	ieee80211_ratectl_deinit(vap);
616	ieee80211_vap_detach(vap);
617
618	if (bcn->data != NULL)
619		free(bcn->data, M_DEVBUF);
620	free(wvp, M_80211_VAP);
621}
622
623static int
624wpi_detach(device_t dev)
625{
626	struct wpi_softc *sc = device_get_softc(dev);
627	struct ifnet *ifp = sc->sc_ifp;
628	struct ieee80211com *ic;
629	int qid;
630
631	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
632
633	if (ifp != NULL) {
634		ic = ifp->if_l2com;
635
636		ieee80211_draintask(ic, &sc->sc_reinittask);
637		ieee80211_draintask(ic, &sc->sc_radiooff_task);
638
639		wpi_stop(sc);
640
641		callout_drain(&sc->watchdog_to);
642		callout_drain(&sc->watchdog_rfkill);
643		callout_drain(&sc->calib_to);
644		ieee80211_ifdetach(ic);
645	}
646
647	/* Uninstall interrupt handler. */
648	if (sc->irq != NULL) {
649		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
650		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
651		    sc->irq);
652		pci_release_msi(dev);
653	}
654
655	if (sc->txq[0].data_dmat) {
656		/* Free DMA resources. */
657		for (qid = 0; qid < WPI_NTXQUEUES; qid++)
658			wpi_free_tx_ring(sc, &sc->txq[qid]);
659
660		wpi_free_rx_ring(sc);
661		wpi_free_shared(sc);
662	}
663
664	if (sc->fw_dma.tag)
665		wpi_free_fwmem(sc);
666
667	if (sc->mem != NULL)
668		bus_release_resource(dev, SYS_RES_MEMORY,
669		    rman_get_rid(sc->mem), sc->mem);
670
671	if (ifp != NULL)
672		if_free(ifp);
673
674	delete_unrhdr(sc->sc_unr);
675
676	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
677	WPI_LOCK_DESTROY(sc);
678	return 0;
679}
680
681static int
682wpi_shutdown(device_t dev)
683{
684	struct wpi_softc *sc = device_get_softc(dev);
685
686	wpi_stop(sc);
687	return 0;
688}
689
690static int
691wpi_suspend(device_t dev)
692{
693	struct wpi_softc *sc = device_get_softc(dev);
694	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
695
696	ieee80211_suspend_all(ic);
697	return 0;
698}
699
700static int
701wpi_resume(device_t dev)
702{
703	struct wpi_softc *sc = device_get_softc(dev);
704	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
705
706	/* Clear device-specific "PCI retry timeout" register (41h). */
707	pci_write_config(dev, 0x41, 0, 1);
708
709	ieee80211_resume_all(ic);
710	return 0;
711}
712
713/*
714 * Grab exclusive access to NIC memory.
715 */
716static int
717wpi_nic_lock(struct wpi_softc *sc)
718{
719	int ntries;
720
721	/* Request exclusive access to NIC. */
722	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
723
724	/* Spin until we actually get the lock. */
725	for (ntries = 0; ntries < 1000; ntries++) {
726		if ((WPI_READ(sc, WPI_GP_CNTRL) &
727		     (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) ==
728		    WPI_GP_CNTRL_MAC_ACCESS_ENA)
729			return 0;
730		DELAY(10);
731	}
732
733	device_printf(sc->sc_dev, "could not lock memory\n");
734
735	return ETIMEDOUT;
736}
737
738/*
739 * Release lock on NIC memory.
740 */
741static __inline void
742wpi_nic_unlock(struct wpi_softc *sc)
743{
744	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
745}
746
747static __inline uint32_t
748wpi_prph_read(struct wpi_softc *sc, uint32_t addr)
749{
750	WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr);
751	WPI_BARRIER_READ_WRITE(sc);
752	return WPI_READ(sc, WPI_PRPH_RDATA);
753}
754
755static __inline void
756wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
757{
758	WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr);
759	WPI_BARRIER_WRITE(sc);
760	WPI_WRITE(sc, WPI_PRPH_WDATA, data);
761}
762
763static __inline void
764wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
765{
766	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask);
767}
768
769static __inline void
770wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
771{
772	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask);
773}
774
775static __inline void
776wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr,
777    const uint32_t *data, int count)
778{
779	for (; count > 0; count--, data++, addr += 4)
780		wpi_prph_write(sc, addr, *data);
781}
782
783static __inline uint32_t
784wpi_mem_read(struct wpi_softc *sc, uint32_t addr)
785{
786	WPI_WRITE(sc, WPI_MEM_RADDR, addr);
787	WPI_BARRIER_READ_WRITE(sc);
788	return WPI_READ(sc, WPI_MEM_RDATA);
789}
790
791static __inline void
792wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data,
793    int count)
794{
795	for (; count > 0; count--, addr += 4)
796		*data++ = wpi_mem_read(sc, addr);
797}
798
799static int
800wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count)
801{
802	uint8_t *out = data;
803	uint32_t val;
804	int error, ntries;
805
806	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
807
808	if ((error = wpi_nic_lock(sc)) != 0)
809		return error;
810
811	for (; count > 0; count -= 2, addr++) {
812		WPI_WRITE(sc, WPI_EEPROM, addr << 2);
813		for (ntries = 0; ntries < 10; ntries++) {
814			val = WPI_READ(sc, WPI_EEPROM);
815			if (val & WPI_EEPROM_READ_VALID)
816				break;
817			DELAY(5);
818		}
819		if (ntries == 10) {
820			device_printf(sc->sc_dev,
821			    "timeout reading ROM at 0x%x\n", addr);
822			return ETIMEDOUT;
823		}
824		*out++= val >> 16;
825		if (count > 1)
826			*out ++= val >> 24;
827	}
828
829	wpi_nic_unlock(sc);
830
831	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
832
833	return 0;
834}
835
836static void
837wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
838{
839	if (error != 0)
840		return;
841	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
842	*(bus_addr_t *)arg = segs[0].ds_addr;
843}
844
845/*
846 * Allocates a contiguous block of dma memory of the requested size and
847 * alignment.
848 */
849static int
850wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
851    void **kvap, bus_size_t size, bus_size_t alignment)
852{
853	int error;
854
855	dma->tag = NULL;
856	dma->size = size;
857
858	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
859	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
860	    1, size, BUS_DMA_NOWAIT, NULL, NULL, &dma->tag);
861	if (error != 0)
862		goto fail;
863
864	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
865	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
866	if (error != 0)
867		goto fail;
868
869	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
870	    wpi_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
871	if (error != 0)
872		goto fail;
873
874	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
875
876	if (kvap != NULL)
877		*kvap = dma->vaddr;
878
879	return 0;
880
881fail:	wpi_dma_contig_free(dma);
882	return error;
883}
884
885static void
886wpi_dma_contig_free(struct wpi_dma_info *dma)
887{
888	if (dma->vaddr != NULL) {
889		bus_dmamap_sync(dma->tag, dma->map,
890		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
891		bus_dmamap_unload(dma->tag, dma->map);
892		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
893		dma->vaddr = NULL;
894	}
895	if (dma->tag != NULL) {
896		bus_dma_tag_destroy(dma->tag);
897		dma->tag = NULL;
898	}
899}
900
901/*
902 * Allocate a shared page between host and NIC.
903 */
904static int
905wpi_alloc_shared(struct wpi_softc *sc)
906{
907	/* Shared buffer must be aligned on a 4KB boundary. */
908	return wpi_dma_contig_alloc(sc, &sc->shared_dma,
909	    (void **)&sc->shared, sizeof (struct wpi_shared), 4096);
910}
911
912static void
913wpi_free_shared(struct wpi_softc *sc)
914{
915	wpi_dma_contig_free(&sc->shared_dma);
916}
917
918/*
919 * Allocate DMA-safe memory for firmware transfer.
920 */
921static int
922wpi_alloc_fwmem(struct wpi_softc *sc)
923{
924	/* Must be aligned on a 16-byte boundary. */
925	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
926	    WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16);
927}
928
929static void
930wpi_free_fwmem(struct wpi_softc *sc)
931{
932	wpi_dma_contig_free(&sc->fw_dma);
933}
934
935static int
936wpi_alloc_rx_ring(struct wpi_softc *sc)
937{
938	struct wpi_rx_ring *ring = &sc->rxq;
939	bus_size_t size;
940	int i, error;
941
942	ring->cur = 0;
943	ring->update = 0;
944
945	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
946
947	/* Allocate RX descriptors (16KB aligned.) */
948	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
949	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
950	    (void **)&ring->desc, size, WPI_RING_DMA_ALIGN);
951	if (error != 0) {
952		device_printf(sc->sc_dev,
953		    "%s: could not allocate RX ring DMA memory, error %d\n",
954		    __func__, error);
955		goto fail;
956	}
957
958	/* Create RX buffer DMA tag. */
959        error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
960	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
961	    MJUMPAGESIZE, 1, MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL,
962	    &ring->data_dmat);
963        if (error != 0) {
964                device_printf(sc->sc_dev,
965		    "%s: could not create RX buf DMA tag, error %d\n",
966		    __func__, error);
967                goto fail;
968        }
969
970	/*
971	 * Allocate and map RX buffers.
972	 */
973	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
974		struct wpi_rx_data *data = &ring->data[i];
975		bus_addr_t paddr;
976
977		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
978		if (error != 0) {
979			device_printf(sc->sc_dev,
980			    "%s: could not create RX buf DMA map, error %d\n",
981			    __func__, error);
982			goto fail;
983		}
984
985		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
986		if (data->m == NULL) {
987			device_printf(sc->sc_dev,
988			    "%s: could not allocate RX mbuf\n", __func__);
989			error = ENOBUFS;
990			goto fail;
991		}
992
993		error = bus_dmamap_load(ring->data_dmat, data->map,
994		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
995		    &paddr, BUS_DMA_NOWAIT);
996		if (error != 0 && error != EFBIG) {
997			device_printf(sc->sc_dev,
998			    "%s: can't map mbuf (error %d)\n", __func__,
999			    error);
1000			goto fail;
1001		}
1002
1003		/* Set physical address of RX buffer. */
1004		ring->desc[i] = htole32(paddr);
1005	}
1006
1007	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1008	    BUS_DMASYNC_PREWRITE);
1009
1010	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1011
1012	return 0;
1013
1014fail:	wpi_free_rx_ring(sc);
1015
1016	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1017
1018	return error;
1019}
1020
1021static void
1022wpi_update_rx_ring(struct wpi_softc *sc)
1023{
1024	struct wpi_rx_ring *ring = &sc->rxq;
1025
1026	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP) {
1027		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s: wakeup request\n",
1028		    __func__);
1029
1030		WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1031		ring->update = 1;
1032	} else
1033		WPI_WRITE(sc, WPI_FH_RX_WPTR, ring->cur & ~7);
1034}
1035
1036static void
1037wpi_reset_rx_ring(struct wpi_softc *sc)
1038{
1039	struct wpi_rx_ring *ring = &sc->rxq;
1040	int ntries;
1041
1042	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1043
1044	if (wpi_nic_lock(sc) == 0) {
1045		WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0);
1046		for (ntries = 0; ntries < 1000; ntries++) {
1047			if (WPI_READ(sc, WPI_FH_RX_STATUS) &
1048			    WPI_FH_RX_STATUS_IDLE)
1049				break;
1050			DELAY(10);
1051		}
1052#ifdef WPI_DEBUG
1053		if (ntries == 1000) {
1054			device_printf(sc->sc_dev,
1055			    "timeout resetting Rx ring\n");
1056		}
1057#endif
1058		wpi_nic_unlock(sc);
1059	}
1060
1061	ring->cur = 0;
1062	ring->update = 0;
1063}
1064
1065static void
1066wpi_free_rx_ring(struct wpi_softc *sc)
1067{
1068	struct wpi_rx_ring *ring = &sc->rxq;
1069	int i;
1070
1071	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1072
1073	wpi_dma_contig_free(&ring->desc_dma);
1074
1075	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1076		struct wpi_rx_data *data = &ring->data[i];
1077
1078		if (data->m != NULL) {
1079			bus_dmamap_sync(ring->data_dmat, data->map,
1080			    BUS_DMASYNC_POSTREAD);
1081			bus_dmamap_unload(ring->data_dmat, data->map);
1082			m_freem(data->m);
1083			data->m = NULL;
1084		}
1085		if (data->map != NULL)
1086			bus_dmamap_destroy(ring->data_dmat, data->map);
1087	}
1088	if (ring->data_dmat != NULL) {
1089		bus_dma_tag_destroy(ring->data_dmat);
1090		ring->data_dmat = NULL;
1091	}
1092}
1093
1094static int
1095wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int qid)
1096{
1097	bus_addr_t paddr;
1098	bus_size_t size;
1099	int i, error;
1100
1101	ring->qid = qid;
1102	ring->queued = 0;
1103	ring->cur = 0;
1104	ring->update = 0;
1105
1106	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1107
1108	/* Allocate TX descriptors (16KB aligned.) */
1109	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc);
1110	error = wpi_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1111	    size, WPI_RING_DMA_ALIGN);
1112	if (error != 0) {
1113		device_printf(sc->sc_dev,
1114		    "%s: could not allocate TX ring DMA memory, error %d\n",
1115		    __func__, error);
1116		goto fail;
1117	}
1118
1119	/* Update shared area with ring physical address. */
1120	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1121	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1122	    BUS_DMASYNC_PREWRITE);
1123
1124	/*
1125	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1126	 * to allocate commands space for other rings.
1127	 * XXX Do we really need to allocate descriptors for other rings?
1128	 */
1129	if (qid > 4)
1130		return 0;
1131
1132	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd);
1133	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1134	    size, 4);
1135	if (error != 0) {
1136		device_printf(sc->sc_dev,
1137		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1138		    __func__, error);
1139		goto fail;
1140	}
1141
1142	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1143	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1144	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1145	    &ring->data_dmat);
1146	if (error != 0) {
1147		device_printf(sc->sc_dev,
1148		    "%s: could not create TX buf DMA tag, error %d\n",
1149		    __func__, error);
1150		goto fail;
1151	}
1152
1153	paddr = ring->cmd_dma.paddr;
1154	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1155		struct wpi_tx_data *data = &ring->data[i];
1156
1157		data->cmd_paddr = paddr;
1158		paddr += sizeof (struct wpi_tx_cmd);
1159
1160		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1161		if (error != 0) {
1162			device_printf(sc->sc_dev,
1163			    "%s: could not create TX buf DMA map, error %d\n",
1164			    __func__, error);
1165			goto fail;
1166		}
1167	}
1168
1169	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1170
1171	return 0;
1172
1173fail:	wpi_free_tx_ring(sc, ring);
1174	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1175	return error;
1176}
1177
1178static void
1179wpi_update_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1180{
1181	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP) {
1182		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s (%d): requesting wakeup\n",
1183		    __func__, ring->qid);
1184
1185		WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1186		ring->update = 1;
1187	} else
1188		WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
1189}
1190
1191static void
1192wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1193{
1194	int i;
1195
1196	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1197
1198	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1199		struct wpi_tx_data *data = &ring->data[i];
1200
1201		if (data->m != NULL) {
1202			bus_dmamap_sync(ring->data_dmat, data->map,
1203			    BUS_DMASYNC_POSTWRITE);
1204			bus_dmamap_unload(ring->data_dmat, data->map);
1205			m_freem(data->m);
1206			data->m = NULL;
1207		}
1208	}
1209	/* Clear TX descriptors. */
1210	memset(ring->desc, 0, ring->desc_dma.size);
1211	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1212	    BUS_DMASYNC_PREWRITE);
1213	sc->qfullmsk &= ~(1 << ring->qid);
1214	ring->queued = 0;
1215	ring->cur = 0;
1216	ring->update = 0;
1217}
1218
1219static void
1220wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1221{
1222	int i;
1223
1224	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1225
1226	wpi_dma_contig_free(&ring->desc_dma);
1227	wpi_dma_contig_free(&ring->cmd_dma);
1228
1229	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1230		struct wpi_tx_data *data = &ring->data[i];
1231
1232		if (data->m != NULL) {
1233			bus_dmamap_sync(ring->data_dmat, data->map,
1234			    BUS_DMASYNC_POSTWRITE);
1235			bus_dmamap_unload(ring->data_dmat, data->map);
1236			m_freem(data->m);
1237		}
1238		if (data->map != NULL)
1239			bus_dmamap_destroy(ring->data_dmat, data->map);
1240	}
1241	if (ring->data_dmat != NULL) {
1242		bus_dma_tag_destroy(ring->data_dmat);
1243		ring->data_dmat = NULL;
1244	}
1245}
1246
1247/*
1248 * Extract various information from EEPROM.
1249 */
1250static int
1251wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1252{
1253#define WPI_CHK(res) do {		\
1254	if ((error = res) != 0)		\
1255		goto fail;		\
1256} while (0)
1257	int error, i;
1258
1259	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1260
1261	/* Adapter has to be powered on for EEPROM access to work. */
1262	if ((error = wpi_apm_init(sc)) != 0) {
1263		device_printf(sc->sc_dev,
1264		    "%s: could not power ON adapter, error %d\n", __func__,
1265		    error);
1266		return error;
1267	}
1268
1269	if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) {
1270		device_printf(sc->sc_dev, "bad EEPROM signature\n");
1271		error = EIO;
1272		goto fail;
1273	}
1274	/* Clear HW ownership of EEPROM. */
1275	WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER);
1276
1277	/* Read the hardware capabilities, revision and SKU type. */
1278	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_SKU_CAP, &sc->cap,
1279	    sizeof(sc->cap)));
1280	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,
1281	    sizeof(sc->rev)));
1282	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type,
1283	    sizeof(sc->type)));
1284
1285	DPRINTF(sc, WPI_DEBUG_EEPROM, "cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
1286	    sc->type);
1287
1288	/* Read the regulatory domain (4 ASCII characters.) */
1289	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain,
1290	    sizeof(sc->domain)));
1291
1292	/* Read MAC address. */
1293	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr,
1294	    IEEE80211_ADDR_LEN));
1295
1296	/* Read the list of authorized channels. */
1297	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
1298		WPI_CHK(wpi_read_eeprom_channels(sc, i));
1299
1300	/* Read the list of TX power groups. */
1301	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
1302		WPI_CHK(wpi_read_eeprom_group(sc, i));
1303
1304fail:	wpi_apm_stop(sc);	/* Power OFF adapter. */
1305
1306	DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
1307	    __func__);
1308
1309	return error;
1310#undef WPI_CHK
1311}
1312
1313/*
1314 * Translate EEPROM flags to net80211.
1315 */
1316static uint32_t
1317wpi_eeprom_channel_flags(struct wpi_eeprom_chan *channel)
1318{
1319	uint32_t nflags;
1320
1321	nflags = 0;
1322	if ((channel->flags & WPI_EEPROM_CHAN_ACTIVE) == 0)
1323		nflags |= IEEE80211_CHAN_PASSIVE;
1324	if ((channel->flags & WPI_EEPROM_CHAN_IBSS) == 0)
1325		nflags |= IEEE80211_CHAN_NOADHOC;
1326	if (channel->flags & WPI_EEPROM_CHAN_RADAR) {
1327		nflags |= IEEE80211_CHAN_DFS;
1328		/* XXX apparently IBSS may still be marked */
1329		nflags |= IEEE80211_CHAN_NOADHOC;
1330	}
1331
1332	return nflags;
1333}
1334
1335static void
1336wpi_read_eeprom_band(struct wpi_softc *sc, int n)
1337{
1338	struct ifnet *ifp = sc->sc_ifp;
1339	struct ieee80211com *ic = ifp->if_l2com;
1340	struct wpi_eeprom_chan *channels = sc->eeprom_channels[n];
1341	const struct wpi_chan_band *band = &wpi_bands[n];
1342	struct ieee80211_channel *c;
1343	uint8_t chan;
1344	int i, nflags;
1345
1346	for (i = 0; i < band->nchan; i++) {
1347		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
1348			DPRINTF(sc, WPI_DEBUG_HW,
1349			    "Channel Not Valid: %d, band %d\n",
1350			     band->chan[i],n);
1351			continue;
1352		}
1353
1354		chan = band->chan[i];
1355		nflags = wpi_eeprom_channel_flags(&channels[i]);
1356
1357		c = &ic->ic_channels[ic->ic_nchans++];
1358		c->ic_ieee = chan;
1359		c->ic_maxregpower = channels[i].maxpwr;
1360		c->ic_maxpower = 2*c->ic_maxregpower;
1361
1362		if (n == 0) {	/* 2GHz band */
1363			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_G);
1364			/* G =>'s B is supported */
1365			c->ic_flags = IEEE80211_CHAN_B | nflags;
1366			c = &ic->ic_channels[ic->ic_nchans++];
1367			c[0] = c[-1];
1368			c->ic_flags = IEEE80211_CHAN_G | nflags;
1369		} else {	/* 5GHz band */
1370			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A);
1371			c->ic_flags = IEEE80211_CHAN_A | nflags;
1372		}
1373
1374		/* Save maximum allowed TX power for this channel. */
1375		sc->maxpwr[chan] = channels[i].maxpwr;
1376
1377		DPRINTF(sc, WPI_DEBUG_EEPROM,
1378		    "adding chan %d (%dMHz) flags=0x%x maxpwr=%d passive=%d,"
1379		    " offset %d\n", chan, c->ic_freq,
1380		    channels[i].flags, sc->maxpwr[chan],
1381		    IEEE80211_IS_CHAN_PASSIVE(c), ic->ic_nchans);
1382	}
1383}
1384
1385/**
1386 * Read the eeprom to find out what channels are valid for the given
1387 * band and update net80211 with what we find.
1388 */
1389static int
1390wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
1391{
1392	struct ifnet *ifp = sc->sc_ifp;
1393	struct ieee80211com *ic = ifp->if_l2com;
1394	const struct wpi_chan_band *band = &wpi_bands[n];
1395	int error;
1396
1397	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1398
1399	error = wpi_read_prom_data(sc, band->addr, &sc->eeprom_channels[n],
1400	    band->nchan * sizeof (struct wpi_eeprom_chan));
1401	if (error != 0) {
1402		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1403		return error;
1404	}
1405
1406	wpi_read_eeprom_band(sc, n);
1407
1408	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1409
1410	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1411
1412	return 0;
1413}
1414
1415static struct wpi_eeprom_chan *
1416wpi_find_eeprom_channel(struct wpi_softc *sc, struct ieee80211_channel *c)
1417{
1418	int i, j;
1419
1420	for (j = 0; j < WPI_CHAN_BANDS_COUNT; j++)
1421		for (i = 0; i < wpi_bands[j].nchan; i++)
1422			if (wpi_bands[j].chan[i] == c->ic_ieee)
1423				return &sc->eeprom_channels[j][i];
1424
1425	return NULL;
1426}
1427
1428/*
1429 * Enforce flags read from EEPROM.
1430 */
1431static int
1432wpi_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
1433    int nchan, struct ieee80211_channel chans[])
1434{
1435	struct ifnet *ifp = ic->ic_ifp;
1436	struct wpi_softc *sc = ifp->if_softc;
1437	int i;
1438
1439	for (i = 0; i < nchan; i++) {
1440		struct ieee80211_channel *c = &chans[i];
1441		struct wpi_eeprom_chan *channel;
1442
1443		channel = wpi_find_eeprom_channel(sc, c);
1444		if (channel == NULL) {
1445			if_printf(ic->ic_ifp,
1446			    "%s: invalid channel %u freq %u/0x%x\n",
1447			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
1448			return EINVAL;
1449		}
1450		c->ic_flags |= wpi_eeprom_channel_flags(channel);
1451	}
1452
1453	return 0;
1454}
1455
1456static int
1457wpi_read_eeprom_group(struct wpi_softc *sc, int n)
1458{
1459	struct wpi_power_group *group = &sc->groups[n];
1460	struct wpi_eeprom_group rgroup;
1461	int i, error;
1462
1463	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1464
1465	if ((error = wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32,
1466	    &rgroup, sizeof rgroup)) != 0) {
1467		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1468		return error;
1469	}
1470
1471	/* Save TX power group information. */
1472	group->chan   = rgroup.chan;
1473	group->maxpwr = rgroup.maxpwr;
1474	/* Retrieve temperature at which the samples were taken. */
1475	group->temp   = (int16_t)le16toh(rgroup.temp);
1476
1477	DPRINTF(sc, WPI_DEBUG_EEPROM,
1478	    "power group %d: chan=%d maxpwr=%d temp=%d\n", n, group->chan,
1479	    group->maxpwr, group->temp);
1480
1481	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
1482		group->samples[i].index = rgroup.samples[i].index;
1483		group->samples[i].power = rgroup.samples[i].power;
1484
1485		DPRINTF(sc, WPI_DEBUG_EEPROM,
1486		    "\tsample %d: index=%d power=%d\n", i,
1487		    group->samples[i].index, group->samples[i].power);
1488	}
1489
1490	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1491
1492	return 0;
1493}
1494
1495static struct ieee80211_node *
1496wpi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1497{
1498	struct wpi_node *wn;
1499
1500	wn = malloc(sizeof (struct wpi_node), M_80211_NODE,
1501	    M_NOWAIT | M_ZERO);
1502
1503	if (wn == NULL)
1504		return NULL;
1505
1506	wn->id = WPI_ID_UNDEFINED;
1507
1508	return &wn->ni;
1509}
1510
1511static void
1512wpi_node_free(struct ieee80211_node *ni)
1513{
1514	struct ieee80211com *ic = ni->ni_ic;
1515	struct wpi_softc *sc = ic->ic_ifp->if_softc;
1516	struct wpi_node *wn = (struct wpi_node *)ni;
1517
1518	if (wn->id >= WPI_ID_IBSS_MIN && wn->id <= WPI_ID_IBSS_MAX) {
1519		free_unr(sc->sc_unr, wn->id);
1520
1521		WPI_LOCK(sc);
1522		if (sc->rxon.filter & htole32(WPI_FILTER_BSS))
1523			wpi_del_node(sc, ni);
1524		WPI_UNLOCK(sc);
1525	}
1526
1527	sc->sc_node_free(ni);
1528}
1529
1530/**
1531 * Called by net80211 when ever there is a change to 80211 state machine
1532 */
1533static int
1534wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1535{
1536	struct wpi_vap *wvp = WPI_VAP(vap);
1537	struct ieee80211com *ic = vap->iv_ic;
1538	struct ifnet *ifp = ic->ic_ifp;
1539	struct wpi_softc *sc = ifp->if_softc;
1540	int error = 0;
1541
1542	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1543
1544	DPRINTF(sc, WPI_DEBUG_STATE, "%s: %s -> %s\n", __func__,
1545		ieee80211_state_name[vap->iv_state],
1546		ieee80211_state_name[nstate]);
1547
1548	IEEE80211_UNLOCK(ic);
1549	WPI_LOCK(sc);
1550	switch (nstate) {
1551	case IEEE80211_S_SCAN:
1552		if ((vap->iv_opmode == IEEE80211_M_IBSS ||
1553		    vap->iv_opmode == IEEE80211_M_AHDEMO) &&
1554		    (sc->rxon.filter & htole32(WPI_FILTER_BSS))) {
1555			sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1556			if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1557				device_printf(sc->sc_dev,
1558				    "%s: could not send RXON\n", __func__);
1559			}
1560		}
1561		break;
1562
1563	case IEEE80211_S_ASSOC:
1564		if (vap->iv_state != IEEE80211_S_RUN)
1565			break;
1566		/* FALLTHROUGH */
1567	case IEEE80211_S_AUTH:
1568		/*
1569		 * The node must be registered in the firmware before auth.
1570		 * Also the associd must be cleared on RUN -> ASSOC
1571		 * transitions.
1572		 */
1573		if ((error = wpi_auth(sc, vap)) != 0) {
1574			device_printf(sc->sc_dev,
1575			    "%s: could not move to AUTH state, error %d\n",
1576			    __func__, error);
1577		}
1578		break;
1579
1580	case IEEE80211_S_RUN:
1581		/*
1582		 * RUN -> RUN transition; Just restart the timers.
1583		 */
1584		if (vap->iv_state == IEEE80211_S_RUN) {
1585			wpi_calib_timeout(sc);
1586			break;
1587		}
1588
1589		/*
1590		 * !RUN -> RUN requires setting the association id
1591		 * which is done with a firmware cmd.  We also defer
1592		 * starting the timers until that work is done.
1593		 */
1594		if ((error = wpi_run(sc, vap)) != 0) {
1595			device_printf(sc->sc_dev,
1596			    "%s: could not move to RUN state\n", __func__);
1597		}
1598		break;
1599
1600	default:
1601		break;
1602	}
1603	WPI_UNLOCK(sc);
1604	IEEE80211_LOCK(ic);
1605	if (error != 0) {
1606		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1607		return error;
1608	}
1609
1610	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1611
1612	return wvp->newstate(vap, nstate, arg);
1613}
1614
1615static void
1616wpi_calib_timeout(void *arg)
1617{
1618	struct wpi_softc *sc = arg;
1619	struct ifnet *ifp = sc->sc_ifp;
1620	struct ieee80211com *ic = ifp->if_l2com;
1621	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1622
1623	if (vap->iv_state != IEEE80211_S_RUN)
1624		return;
1625
1626	wpi_power_calibration(sc);
1627
1628	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
1629}
1630
1631static __inline uint8_t
1632rate2plcp(const uint8_t rate)
1633{
1634	switch (rate) {
1635	case 12:	return 0xd;
1636	case 18:	return 0xf;
1637	case 24:	return 0x5;
1638	case 36:	return 0x7;
1639	case 48:	return 0x9;
1640	case 72:	return 0xb;
1641	case 96:	return 0x1;
1642	case 108:	return 0x3;
1643	case 2:		return 10;
1644	case 4:		return 20;
1645	case 11:	return 55;
1646	case 22:	return 110;
1647	default:	return 0;
1648	}
1649}
1650
1651static __inline uint8_t
1652plcp2rate(const uint8_t plcp)
1653{
1654	switch (plcp) {
1655	case 0xd:	return 12;
1656	case 0xf:	return 18;
1657	case 0x5:	return 24;
1658	case 0x7:	return 36;
1659	case 0x9:	return 48;
1660	case 0xb:	return 72;
1661	case 0x1:	return 96;
1662	case 0x3:	return 108;
1663	case 10:	return 2;
1664	case 20:	return 4;
1665	case 55:	return 11;
1666	case 110:	return 22;
1667	default:	return 0;
1668	}
1669}
1670
1671/* Quickly determine if a given rate is CCK or OFDM. */
1672#define WPI_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
1673
1674static void
1675wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1676    struct wpi_rx_data *data)
1677{
1678	struct ifnet *ifp = sc->sc_ifp;
1679	const struct ieee80211_cipher *cip = NULL;
1680	struct ieee80211com *ic = ifp->if_l2com;
1681	struct wpi_rx_ring *ring = &sc->rxq;
1682	struct wpi_rx_stat *stat;
1683	struct wpi_rx_head *head;
1684	struct wpi_rx_tail *tail;
1685	struct ieee80211_frame *wh;
1686	struct ieee80211_node *ni;
1687	struct mbuf *m, *m1;
1688	bus_addr_t paddr;
1689	uint32_t flags;
1690	uint16_t len;
1691	int error;
1692
1693	stat = (struct wpi_rx_stat *)(desc + 1);
1694
1695	if (stat->len > WPI_STAT_MAXLEN) {
1696		device_printf(sc->sc_dev, "invalid RX statistic header\n");
1697		goto fail1;
1698	}
1699
1700	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1701	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1702	len = le16toh(head->len);
1703	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + len);
1704	flags = le32toh(tail->flags);
1705
1706	DPRINTF(sc, WPI_DEBUG_RECV, "%s: idx %d len %d stat len %u rssi %d"
1707	    " rate %x chan %d tstamp %ju\n", __func__, ring->cur,
1708	    le32toh(desc->len), len, (int8_t)stat->rssi,
1709	    head->plcp, head->chan, (uintmax_t)le64toh(tail->tstamp));
1710
1711	/* Discard frames with a bad FCS early. */
1712	if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1713		DPRINTF(sc, WPI_DEBUG_RECV, "%s: RX flags error %x\n",
1714		    __func__, flags);
1715		goto fail1;
1716	}
1717	/* Discard frames that are too short. */
1718	if (len < sizeof (*wh)) {
1719		DPRINTF(sc, WPI_DEBUG_RECV, "%s: frame too short: %d\n",
1720		    __func__, len);
1721		goto fail1;
1722	}
1723
1724	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1725	if (m1 == NULL) {
1726		DPRINTF(sc, WPI_DEBUG_ANY, "%s: no mbuf to restock ring\n",
1727		    __func__);
1728		goto fail1;
1729	}
1730	bus_dmamap_unload(ring->data_dmat, data->map);
1731
1732	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
1733	    MJUMPAGESIZE, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1734	if (error != 0 && error != EFBIG) {
1735		device_printf(sc->sc_dev,
1736		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1737		m_freem(m1);
1738
1739		/* Try to reload the old mbuf. */
1740		error = bus_dmamap_load(ring->data_dmat, data->map,
1741		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1742		    &paddr, BUS_DMA_NOWAIT);
1743		if (error != 0 && error != EFBIG) {
1744			panic("%s: could not load old RX mbuf", __func__);
1745		}
1746		/* Physical address may have changed. */
1747		ring->desc[ring->cur] = htole32(paddr);
1748		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
1749		    BUS_DMASYNC_PREWRITE);
1750		goto fail1;
1751	}
1752
1753	m = data->m;
1754	data->m = m1;
1755	/* Update RX descriptor. */
1756	ring->desc[ring->cur] = htole32(paddr);
1757	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1758	    BUS_DMASYNC_PREWRITE);
1759
1760	/* Finalize mbuf. */
1761	m->m_pkthdr.rcvif = ifp;
1762	m->m_data = (caddr_t)(head + 1);
1763	m->m_pkthdr.len = m->m_len = len;
1764
1765	/* Grab a reference to the source node. */
1766	wh = mtod(m, struct ieee80211_frame *);
1767	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1768
1769	if (ni != NULL)
1770		cip = ni->ni_ucastkey.wk_cipher;
1771	if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
1772	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1773	    cip != NULL && cip->ic_cipher == IEEE80211_CIPHER_AES_CCM) {
1774		if ((flags & WPI_RX_CIPHER_MASK) != WPI_RX_CIPHER_CCMP)
1775			goto fail2;
1776
1777		/* Check whether decryption was successful or not. */
1778		if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) {
1779			DPRINTF(sc, WPI_DEBUG_RECV,
1780			    "CCMP decryption failed 0x%x\n", flags);
1781			goto fail2;
1782		}
1783		m->m_flags |= M_WEP;
1784	}
1785
1786	if (ieee80211_radiotap_active(ic)) {
1787		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1788
1789		tap->wr_flags = 0;
1790		if (head->flags & htole16(WPI_STAT_FLAG_SHPREAMBLE))
1791			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1792		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1793		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1794		tap->wr_tsft = tail->tstamp;
1795		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1796		tap->wr_rate = plcp2rate(head->plcp);
1797	}
1798
1799	WPI_UNLOCK(sc);
1800
1801	/* Send the frame to the 802.11 layer. */
1802	if (ni != NULL) {
1803		(void)ieee80211_input(ni, m, stat->rssi, -WPI_RSSI_OFFSET);
1804		/* Node is no longer needed. */
1805		ieee80211_free_node(ni);
1806	} else
1807		(void)ieee80211_input_all(ic, m, stat->rssi, -WPI_RSSI_OFFSET);
1808
1809	WPI_LOCK(sc);
1810
1811	return;
1812
1813fail2:	ieee80211_free_node(ni);
1814	m_freem(m);
1815
1816fail1:	if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1817}
1818
1819static void
1820wpi_rx_statistics(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1821    struct wpi_rx_data *data)
1822{
1823	/* Ignore */
1824}
1825
1826static void
1827wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1828{
1829	struct ifnet *ifp = sc->sc_ifp;
1830	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1831	struct wpi_tx_data *data = &ring->data[desc->idx];
1832	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1833	struct mbuf *m;
1834	struct ieee80211_node *ni;
1835	struct ieee80211vap *vap;
1836	int ackfailcnt = stat->ackfailcnt;
1837	int status = le32toh(stat->status);
1838
1839	KASSERT(data->ni != NULL, ("no node"));
1840
1841	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1842
1843	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: "
1844	    "qid %d idx %d retries %d btkillcnt %d rate %x duration %d "
1845	    "status %x\n", __func__, desc->qid, desc->idx, ackfailcnt,
1846	    stat->btkillcnt, stat->rate, le32toh(stat->duration), status);
1847
1848	/* Unmap and free mbuf. */
1849	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
1850	bus_dmamap_unload(ring->data_dmat, data->map);
1851	m = data->m, data->m = NULL;
1852	ni = data->ni, data->ni = NULL;
1853	vap = ni->ni_vap;
1854
1855	/*
1856	 * Update rate control statistics for the node.
1857	 */
1858	WPI_UNLOCK(sc);
1859	if ((status & 0xff) != 1) {
1860		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1861		ieee80211_ratectl_tx_complete(vap, ni,
1862		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
1863	} else {
1864		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1865		ieee80211_ratectl_tx_complete(vap, ni,
1866		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
1867	}
1868
1869	ieee80211_tx_complete(ni, m, (status & 0xff) != 1);
1870	WPI_LOCK(sc);
1871
1872	sc->sc_tx_timer = 0;
1873	if (--ring->queued < WPI_TX_RING_LOMARK) {
1874		sc->qfullmsk &= ~(1 << ring->qid);
1875		if (sc->qfullmsk == 0 &&
1876		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
1877			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1878			wpi_start_locked(ifp);
1879		}
1880	}
1881
1882	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1883}
1884
1885/*
1886 * Process a "command done" firmware notification.  This is where we wakeup
1887 * processes waiting for a synchronous command completion.
1888 */
1889static void
1890wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1891{
1892	struct wpi_tx_ring *ring = &sc->txq[4];
1893	struct wpi_tx_data *data;
1894
1895	DPRINTF(sc, WPI_DEBUG_CMD, "cmd notification qid=%x idx=%d flags=%x "
1896				   "type=%s len=%d\n", desc->qid, desc->idx,
1897				   desc->flags, wpi_cmd_str(desc->type),
1898				   le32toh(desc->len));
1899
1900	if ((desc->qid & 7) != 4)
1901		return;	/* Not a command ack. */
1902
1903	data = &ring->data[desc->idx];
1904
1905	/* If the command was mapped in an mbuf, free it. */
1906	if (data->m != NULL) {
1907		bus_dmamap_sync(ring->data_dmat, data->map,
1908		    BUS_DMASYNC_POSTWRITE);
1909		bus_dmamap_unload(ring->data_dmat, data->map);
1910		m_freem(data->m);
1911		data->m = NULL;
1912	}
1913
1914	sc->flags &= ~WPI_FLAG_BUSY;
1915	wakeup(&ring->cmd[desc->idx]);
1916}
1917
1918static void
1919wpi_notif_intr(struct wpi_softc *sc)
1920{
1921	struct ifnet *ifp = sc->sc_ifp;
1922	struct ieee80211com *ic = ifp->if_l2com;
1923	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1924	int hw;
1925
1926	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1927	    BUS_DMASYNC_POSTREAD);
1928
1929	hw = le32toh(sc->shared->next);
1930	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1931
1932	while (sc->rxq.cur != hw) {
1933		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1934
1935		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1936		struct wpi_rx_desc *desc;
1937
1938		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1939		    BUS_DMASYNC_POSTREAD);
1940		desc = mtod(data->m, struct wpi_rx_desc *);
1941
1942		DPRINTF(sc, WPI_DEBUG_NOTIFY,
1943		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
1944		    __func__, sc->rxq.cur, desc->qid, desc->idx, desc->flags,
1945		    desc->type, wpi_cmd_str(desc->type), le32toh(desc->len));
1946
1947		if (!(desc->qid & 0x80))	/* Reply to a command. */
1948			wpi_cmd_done(sc, desc);
1949
1950		switch (desc->type) {
1951		case WPI_RX_DONE:
1952			/* An 802.11 frame has been received. */
1953			wpi_rx_done(sc, desc, data);
1954			break;
1955
1956		case WPI_TX_DONE:
1957			/* An 802.11 frame has been transmitted. */
1958			wpi_tx_done(sc, desc);
1959			break;
1960
1961		case WPI_RX_STATISTICS:
1962		case WPI_BEACON_STATISTICS:
1963			wpi_rx_statistics(sc, desc, data);
1964			break;
1965
1966		case WPI_BEACON_MISSED:
1967		{
1968			struct wpi_beacon_missed *miss =
1969			    (struct wpi_beacon_missed *)(desc + 1);
1970			int misses;
1971
1972			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1973			    BUS_DMASYNC_POSTREAD);
1974			misses = le32toh(miss->consecutive);
1975
1976			DPRINTF(sc, WPI_DEBUG_STATE,
1977			    "%s: beacons missed %d/%d\n", __func__, misses,
1978			    le32toh(miss->total));
1979
1980			if (vap->iv_state == IEEE80211_S_RUN &&
1981			    (ic->ic_flags & IEEE80211_S_SCAN) == 0) {
1982				if (misses >=  vap->iv_bmissthreshold) {
1983					WPI_UNLOCK(sc);
1984					ieee80211_beacon_miss(ic);
1985					WPI_LOCK(sc);
1986				}
1987			}
1988			break;
1989		}
1990		case WPI_UC_READY:
1991		{
1992			struct wpi_ucode_info *uc =
1993			    (struct wpi_ucode_info *)(desc + 1);
1994
1995			/* The microcontroller is ready. */
1996			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1997			    BUS_DMASYNC_POSTREAD);
1998			DPRINTF(sc, WPI_DEBUG_RESET,
1999			    "microcode alive notification version=%d.%d "
2000			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2001			    uc->subtype, le32toh(uc->valid));
2002
2003			if (le32toh(uc->valid) != 1) {
2004				device_printf(sc->sc_dev,
2005				    "microcontroller initialization failed\n");
2006				wpi_stop_locked(sc);
2007			}
2008			/* Save the address of the error log in SRAM. */
2009			sc->errptr = le32toh(uc->errptr);
2010			break;
2011		}
2012		case WPI_STATE_CHANGED:
2013		{
2014                        bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2015                            BUS_DMASYNC_POSTREAD);
2016
2017			uint32_t *status = (uint32_t *)(desc + 1);
2018
2019			DPRINTF(sc, WPI_DEBUG_STATE, "state changed to %x\n",
2020			    le32toh(*status));
2021
2022			if (le32toh(*status) & 1) {
2023				ieee80211_runtask(ic, &sc->sc_radiooff_task);
2024				return;
2025			}
2026			break;
2027		}
2028		case WPI_START_SCAN:
2029		{
2030			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2031			    BUS_DMASYNC_POSTREAD);
2032#ifdef WPI_DEBUG
2033			struct wpi_start_scan *scan =
2034			    (struct wpi_start_scan *)(desc + 1);
2035			DPRINTF(sc, WPI_DEBUG_SCAN,
2036			    "%s: scanning channel %d status %x\n",
2037			    __func__, scan->chan, le32toh(scan->status));
2038#endif
2039			break;
2040		}
2041		case WPI_STOP_SCAN:
2042		{
2043			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2044			    BUS_DMASYNC_POSTREAD);
2045#ifdef WPI_DEBUG
2046			struct wpi_stop_scan *scan =
2047			    (struct wpi_stop_scan *)(desc + 1);
2048			DPRINTF(sc, WPI_DEBUG_SCAN,
2049			    "scan finished nchan=%d status=%d chan=%d\n",
2050			    scan->nchan, scan->status, scan->chan);
2051#endif
2052			sc->sc_scan_timer = 0;
2053			WPI_UNLOCK(sc);
2054			ieee80211_scan_next(vap);
2055			WPI_LOCK(sc);
2056			break;
2057		}
2058		}
2059	}
2060
2061	/* Tell the firmware what we have processed. */
2062	wpi_update_rx_ring(sc);
2063}
2064
2065/*
2066 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2067 * from power-down sleep mode.
2068 */
2069static void
2070wpi_wakeup_intr(struct wpi_softc *sc)
2071{
2072	int qid;
2073
2074	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
2075	    "%s: ucode wakeup from power-down sleep\n", __func__);
2076
2077	/* Wakeup RX and TX rings. */
2078	if (sc->rxq.update) {
2079		sc->rxq.update = 0;
2080		wpi_update_rx_ring(sc);
2081	}
2082	for (qid = 0; qid < WPI_NTXQUEUES; qid++) {
2083		struct wpi_tx_ring *ring = &sc->txq[qid];
2084
2085		if (ring->update) {
2086			ring->update = 0;
2087			wpi_update_tx_ring(sc, ring);
2088		}
2089	}
2090
2091	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
2092}
2093
2094/*
2095 * Dump the error log of the firmware when a firmware panic occurs.  Although
2096 * we can't debug the firmware because it is neither open source nor free, it
2097 * can help us to identify certain classes of problems.
2098 */
2099static void
2100wpi_fatal_intr(struct wpi_softc *sc)
2101{
2102	struct wpi_fw_dump dump;
2103	uint32_t i, offset, count;
2104	const uint32_t size_errmsg =
2105	    (sizeof (wpi_fw_errmsg) / sizeof ((wpi_fw_errmsg)[0]));
2106
2107	/* Check that the error log address is valid. */
2108	if (sc->errptr < WPI_FW_DATA_BASE ||
2109	    sc->errptr + sizeof (dump) >
2110	    WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) {
2111		printf("%s: bad firmware error log address 0x%08x\n", __func__,
2112		    sc->errptr);
2113                return;
2114        }
2115	if (wpi_nic_lock(sc) != 0) {
2116		printf("%s: could not read firmware error log\n", __func__);
2117                return;
2118        }
2119	/* Read number of entries in the log. */
2120	count = wpi_mem_read(sc, sc->errptr);
2121	if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) {
2122		printf("%s: invalid count field (count = %u)\n", __func__,
2123		    count);
2124		wpi_nic_unlock(sc);
2125		return;
2126	}
2127	/* Skip "count" field. */
2128	offset = sc->errptr + sizeof (uint32_t);
2129	printf("firmware error log (count = %u):\n", count);
2130	for (i = 0; i < count; i++) {
2131		wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump,
2132		    sizeof (dump) / sizeof (uint32_t));
2133
2134		printf("  error type = \"%s\" (0x%08X)\n",
2135		    (dump.desc < size_errmsg) ?
2136		        wpi_fw_errmsg[dump.desc] : "UNKNOWN",
2137		    dump.desc);
2138		printf("  error data      = 0x%08X\n",
2139		    dump.data);
2140		printf("  branch link     = 0x%08X%08X\n",
2141		    dump.blink[0], dump.blink[1]);
2142		printf("  interrupt link  = 0x%08X%08X\n",
2143		    dump.ilink[0], dump.ilink[1]);
2144		printf("  time            = %u\n", dump.time);
2145
2146		offset += sizeof (dump);
2147	}
2148	wpi_nic_unlock(sc);
2149	/* Dump driver status (TX and RX rings) while we're here. */
2150	printf("driver status:\n");
2151	for (i = 0; i < WPI_NTXQUEUES; i++) {
2152		struct wpi_tx_ring *ring = &sc->txq[i];
2153		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2154		    i, ring->qid, ring->cur, ring->queued);
2155	}
2156	printf("  rx ring: cur=%d\n", sc->rxq.cur);
2157}
2158
2159static void
2160wpi_intr(void *arg)
2161{
2162	struct wpi_softc *sc = arg;
2163	struct ifnet *ifp = sc->sc_ifp;
2164	uint32_t r1, r2;
2165
2166	WPI_LOCK(sc);
2167
2168	/* Disable interrupts. */
2169	WPI_WRITE(sc, WPI_INT_MASK, 0);
2170
2171	r1 = WPI_READ(sc, WPI_INT);
2172
2173	if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) {
2174		WPI_UNLOCK(sc);
2175		return;	/* Hardware gone! */
2176	}
2177
2178	r2 = WPI_READ(sc, WPI_FH_INT);
2179
2180	DPRINTF(sc, WPI_DEBUG_INTR, "%s: reg1=0x%08x reg2=0x%08x\n", __func__,
2181	    r1, r2);
2182
2183	if (r1 == 0 && r2 == 0)
2184		goto done;	/* Interrupt not for us. */
2185
2186	/* Acknowledge interrupts. */
2187	WPI_WRITE(sc, WPI_INT, r1);
2188	WPI_WRITE(sc, WPI_FH_INT, r2);
2189
2190	if (r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR)) {
2191		struct ieee80211com *ic = ifp->if_l2com;
2192
2193		device_printf(sc->sc_dev, "fatal firmware error\n");
2194		wpi_fatal_intr(sc);
2195		DPRINTF(sc, WPI_DEBUG_HW,
2196		    "(%s)\n", (r1 & WPI_INT_SW_ERR) ? "(Software Error)" :
2197		    "(Hardware Error)");
2198		ieee80211_runtask(ic, &sc->sc_reinittask);
2199		sc->flags &= ~WPI_FLAG_BUSY;
2200		WPI_UNLOCK(sc);
2201		return;
2202	}
2203
2204	if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) ||
2205	    (r2 & WPI_FH_INT_RX))
2206		wpi_notif_intr(sc);
2207
2208	if (r1 & WPI_INT_ALIVE)
2209		wakeup(sc);	/* Firmware is alive. */
2210
2211	if (r1 & WPI_INT_WAKEUP)
2212		wpi_wakeup_intr(sc);
2213
2214done:
2215	/* Re-enable interrupts. */
2216	if (ifp->if_flags & IFF_UP)
2217		WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
2218
2219	WPI_UNLOCK(sc);
2220}
2221
2222static int
2223wpi_cmd2(struct wpi_softc *sc, struct wpi_buf *buf)
2224{
2225	struct ieee80211_frame *wh;
2226	struct wpi_tx_cmd *cmd;
2227	struct wpi_tx_data *data;
2228	struct wpi_tx_desc *desc;
2229	struct wpi_tx_ring *ring;
2230	struct mbuf *m1;
2231	bus_dma_segment_t *seg, segs[WPI_MAX_SCATTER];
2232	int error, i, hdrlen, nsegs, totlen, pad;
2233
2234	WPI_LOCK_ASSERT(sc);
2235
2236	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2237
2238	wh = mtod(buf->m, struct ieee80211_frame *);
2239	hdrlen = ieee80211_anyhdrsize(wh);
2240	totlen = buf->m->m_pkthdr.len;
2241
2242	if (hdrlen & 3) {
2243		/* First segment length must be a multiple of 4. */
2244		pad = 4 - (hdrlen & 3);
2245	} else
2246		pad = 0;
2247
2248	ring = &sc->txq[buf->ac];
2249	desc = &ring->desc[ring->cur];
2250	data = &ring->data[ring->cur];
2251
2252	/* Prepare TX firmware command. */
2253	cmd = &ring->cmd[ring->cur];
2254	cmd->code = buf->code;
2255	cmd->flags = 0;
2256	cmd->qid = ring->qid;
2257	cmd->idx = ring->cur;
2258
2259	memcpy(cmd->data, buf->data, buf->size);
2260
2261	/* Save and trim IEEE802.11 header. */
2262	memcpy((uint8_t *)(cmd->data + buf->size), wh, hdrlen);
2263	m_adj(buf->m, hdrlen);
2264
2265	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, buf->m,
2266	    segs, &nsegs, BUS_DMA_NOWAIT);
2267	if (error != 0 && error != EFBIG) {
2268		device_printf(sc->sc_dev,
2269		    "%s: can't map mbuf (error %d)\n", __func__, error);
2270		m_freem(buf->m);
2271		return error;
2272	}
2273	if (error != 0) {
2274		/* Too many DMA segments, linearize mbuf. */
2275		m1 = m_collapse(buf->m, M_NOWAIT, WPI_MAX_SCATTER - 1);
2276		if (m1 == NULL) {
2277			device_printf(sc->sc_dev,
2278			    "%s: could not defrag mbuf\n", __func__);
2279			m_freem(buf->m);
2280			return ENOBUFS;
2281		}
2282		buf->m = m1;
2283
2284		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
2285		    buf->m, segs, &nsegs, BUS_DMA_NOWAIT);
2286		if (error != 0) {
2287			device_printf(sc->sc_dev,
2288			    "%s: can't map mbuf (error %d)\n", __func__, error);
2289			m_freem(buf->m);
2290			return error;
2291		}
2292	}
2293
2294	KASSERT(nsegs < WPI_MAX_SCATTER,
2295	    ("too many DMA segments, nsegs (%d) should be less than %d",
2296	     nsegs, WPI_MAX_SCATTER));
2297
2298	data->m = buf->m;
2299	data->ni = buf->ni;
2300
2301	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
2302	    __func__, ring->qid, ring->cur, totlen, nsegs);
2303
2304	/* Fill TX descriptor. */
2305	desc->nsegs = WPI_PAD32(totlen + pad) << 4 | (1 + nsegs);
2306	/* First DMA segment is used by the TX command. */
2307	desc->segs[0].addr = htole32(data->cmd_paddr);
2308	desc->segs[0].len  = htole32(4 + buf->size + hdrlen + pad);
2309	/* Other DMA segments are for data payload. */
2310	seg = &segs[0];
2311	for (i = 1; i <= nsegs; i++) {
2312		desc->segs[i].addr = htole32(seg->ds_addr);
2313		desc->segs[i].len  = htole32(seg->ds_len);
2314		seg++;
2315	}
2316
2317	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2318	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2319	    BUS_DMASYNC_PREWRITE);
2320	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2321	    BUS_DMASYNC_PREWRITE);
2322
2323	/* Kick TX ring. */
2324	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2325	wpi_update_tx_ring(sc, ring);
2326
2327	/* Mark TX ring as full if we reach a certain threshold. */
2328	if (++ring->queued > WPI_TX_RING_HIMARK)
2329		sc->qfullmsk |= 1 << ring->qid;
2330
2331	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2332
2333	return 0;
2334}
2335
2336/*
2337 * Construct the data packet for a transmit buffer.
2338 */
2339static int
2340wpi_tx_data(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2341{
2342	const struct ieee80211_txparam *tp;
2343	struct ieee80211vap *vap = ni->ni_vap;
2344	struct ieee80211com *ic = ni->ni_ic;
2345	struct wpi_node *wn = (void *)ni;
2346	struct ieee80211_channel *chan;
2347	struct ieee80211_frame *wh;
2348	struct ieee80211_key *k = NULL;
2349	struct wpi_cmd_data tx;
2350	struct wpi_buf tx_data;
2351	uint32_t flags;
2352	uint16_t qos;
2353	uint8_t tid, type;
2354	int ac, error, rate, ismcast, totlen;
2355
2356	wh = mtod(m, struct ieee80211_frame *);
2357	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2358	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2359
2360	/* Select EDCA Access Category and TX ring for this frame. */
2361	if (IEEE80211_QOS_HAS_SEQ(wh)) {
2362 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
2363		tid = qos & IEEE80211_QOS_TID;
2364	} else {
2365		qos = 0;
2366		tid = 0;
2367        }
2368	ac = M_WME_GETAC(m);
2369
2370	chan = (ni->ni_chan != IEEE80211_CHAN_ANYC) ?
2371		ni->ni_chan : ic->ic_curchan;
2372	tp = &vap->iv_txparms[ieee80211_chan2mode(chan)];
2373
2374	/* Choose a TX rate index. */
2375	if (type == IEEE80211_FC0_TYPE_MGT)
2376		rate = tp->mgmtrate;
2377	else if (ismcast)
2378		rate = tp->mcastrate;
2379	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2380		rate = tp->ucastrate;
2381	else if (m->m_flags & M_EAPOL)
2382		rate = tp->mgmtrate;
2383	else {
2384		/* XXX pass pktlen */
2385		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2386		rate = ni->ni_txrate;
2387	}
2388
2389	/* Encrypt the frame if need be. */
2390	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2391		/* Retrieve key for TX. */
2392		k = ieee80211_crypto_encap(ni, m);
2393		if (k == NULL) {
2394			error = ENOBUFS;
2395			goto fail;
2396		}
2397		/* 802.11 header may have moved. */
2398		wh = mtod(m, struct ieee80211_frame *);
2399	}
2400	totlen = m->m_pkthdr.len;
2401
2402	if (ieee80211_radiotap_active_vap(vap)) {
2403		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2404
2405		tap->wt_flags = 0;
2406		tap->wt_rate = rate;
2407		if (k != NULL)
2408			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2409
2410		ieee80211_radiotap_tx(vap, m);
2411	}
2412
2413	flags = 0;
2414	if (!ismcast) {
2415		/* Unicast frame, check if an ACK is expected. */
2416		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
2417		    IEEE80211_QOS_ACKPOLICY_NOACK)
2418			flags |= WPI_TX_NEED_ACK;
2419	}
2420
2421	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2422		flags |= WPI_TX_MORE_FRAG;	/* Cannot happen yet. */
2423
2424	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2425	if (!ismcast) {
2426		/* NB: Group frames are sent using CCK in 802.11b/g. */
2427		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2428			flags |= WPI_TX_NEED_RTS;
2429		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2430		    WPI_RATE_IS_OFDM(rate)) {
2431			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2432				flags |= WPI_TX_NEED_CTS;
2433			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2434				flags |= WPI_TX_NEED_RTS;
2435		}
2436
2437		if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2438			flags |= WPI_TX_FULL_TXOP;
2439	}
2440
2441	memset(&tx, 0, sizeof (struct wpi_cmd_data));
2442	if (type == IEEE80211_FC0_TYPE_MGT) {
2443		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2444
2445		/* Tell HW to set timestamp in probe responses. */
2446		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2447			flags |= WPI_TX_INSERT_TSTAMP;
2448		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2449		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2450			tx.timeout = htole16(3);
2451		else
2452			tx.timeout = htole16(2);
2453	}
2454
2455	if (ismcast || type != IEEE80211_FC0_TYPE_DATA)
2456		tx.id = WPI_ID_BROADCAST;
2457	else {
2458		if (wn->id == WPI_ID_UNDEFINED &&
2459		    (vap->iv_opmode == IEEE80211_M_IBSS ||
2460		    vap->iv_opmode == IEEE80211_M_AHDEMO)) {
2461			error = wpi_add_ibss_node(sc, ni);
2462			if (error != 0) {
2463				device_printf(sc->sc_dev,
2464				    "%s: could not add IBSS node, error %d\n",
2465				    __func__, error);
2466				goto fail;
2467			}
2468		}
2469
2470		if (wn->id == WPI_ID_UNDEFINED) {
2471			device_printf(sc->sc_dev,
2472			    "%s: undefined node id\n", __func__);
2473			error = EINVAL;
2474			goto fail;
2475		}
2476
2477		tx.id = wn->id;
2478	}
2479
2480	if (type != IEEE80211_FC0_TYPE_MGT)
2481		tx.data_ntries = tp->maxretry;
2482
2483	tx.len = htole16(totlen);
2484	tx.flags = htole32(flags);
2485	tx.plcp = rate2plcp(rate);
2486	tx.tid = tid;
2487	tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2488	tx.ofdm_mask = 0xff;
2489	tx.cck_mask = 0x0f;
2490	tx.rts_ntries = 7;
2491
2492	if (k != NULL && k->wk_cipher->ic_cipher == IEEE80211_CIPHER_AES_CCM) {
2493		if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) {
2494			tx.security = WPI_CIPHER_CCMP;
2495			memcpy(tx.key, k->wk_key, k->wk_keylen);
2496		}
2497	}
2498
2499	tx_data.data = &tx;
2500	tx_data.ni = ni;
2501	tx_data.m = m;
2502	tx_data.size = sizeof(tx);
2503	tx_data.code = WPI_CMD_TX_DATA;
2504	tx_data.ac = ac;
2505
2506	return wpi_cmd2(sc, &tx_data);
2507
2508fail:	m_freem(m);
2509	return error;
2510}
2511
2512static int
2513wpi_tx_data_raw(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
2514    const struct ieee80211_bpf_params *params)
2515{
2516	struct ieee80211vap *vap = ni->ni_vap;
2517	struct ieee80211_frame *wh;
2518	struct wpi_cmd_data tx;
2519	struct wpi_buf tx_data;
2520	uint32_t flags;
2521	uint8_t type;
2522	int ac, rate, totlen;
2523
2524	wh = mtod(m, struct ieee80211_frame *);
2525	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2526	totlen = m->m_pkthdr.len;
2527
2528	ac = params->ibp_pri & 3;
2529
2530	/* Choose a TX rate index. */
2531	rate = params->ibp_rate0;
2532
2533	flags = 0;
2534	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
2535		flags |= WPI_TX_NEED_ACK;
2536	if (params->ibp_flags & IEEE80211_BPF_RTS)
2537		flags |= WPI_TX_NEED_RTS;
2538	if (params->ibp_flags & IEEE80211_BPF_CTS)
2539		flags |= WPI_TX_NEED_CTS;
2540	if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2541		flags |= WPI_TX_FULL_TXOP;
2542
2543	if (ieee80211_radiotap_active_vap(vap)) {
2544		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2545
2546		tap->wt_flags = 0;
2547		tap->wt_rate = rate;
2548
2549		ieee80211_radiotap_tx(vap, m);
2550	}
2551
2552	memset(&tx, 0, sizeof (struct wpi_cmd_data));
2553	if (type == IEEE80211_FC0_TYPE_MGT) {
2554		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2555
2556		/* Tell HW to set timestamp in probe responses. */
2557		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2558			flags |= WPI_TX_INSERT_TSTAMP;
2559		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2560		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2561			tx.timeout = htole16(3);
2562		else
2563			tx.timeout = htole16(2);
2564	}
2565
2566	tx.len = htole16(totlen);
2567	tx.flags = htole32(flags);
2568	tx.plcp = rate2plcp(rate);
2569	tx.id = WPI_ID_BROADCAST;
2570	tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2571	tx.rts_ntries = params->ibp_try1;
2572	tx.data_ntries = params->ibp_try0;
2573
2574	tx_data.data = &tx;
2575	tx_data.ni = ni;
2576	tx_data.m = m;
2577	tx_data.size = sizeof(tx);
2578	tx_data.code = WPI_CMD_TX_DATA;
2579	tx_data.ac = ac;
2580
2581	return wpi_cmd2(sc, &tx_data);
2582}
2583
2584static int
2585wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2586    const struct ieee80211_bpf_params *params)
2587{
2588	struct ieee80211com *ic = ni->ni_ic;
2589	struct ifnet *ifp = ic->ic_ifp;
2590	struct wpi_softc *sc = ifp->if_softc;
2591	int error = 0;
2592
2593	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2594
2595	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2596		ieee80211_free_node(ni);
2597		m_freem(m);
2598		return ENETDOWN;
2599	}
2600
2601	WPI_LOCK(sc);
2602	if (params == NULL) {
2603		/*
2604		 * Legacy path; interpret frame contents to decide
2605		 * precisely how to send the frame.
2606		 */
2607		error = wpi_tx_data(sc, m, ni);
2608	} else {
2609		/*
2610		 * Caller supplied explicit parameters to use in
2611		 * sending the frame.
2612		 */
2613		error = wpi_tx_data_raw(sc, m, ni, params);
2614	}
2615	WPI_UNLOCK(sc);
2616
2617	if (error != 0) {
2618		/* NB: m is reclaimed on tx failure */
2619		ieee80211_free_node(ni);
2620		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2621
2622		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
2623
2624		return error;
2625	}
2626
2627	sc->sc_tx_timer = 5;
2628
2629	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2630
2631	return 0;
2632}
2633
2634/**
2635 * Process data waiting to be sent on the IFNET output queue
2636 */
2637static void
2638wpi_start(struct ifnet *ifp)
2639{
2640	struct wpi_softc *sc = ifp->if_softc;
2641
2642	WPI_LOCK(sc);
2643	wpi_start_locked(ifp);
2644	WPI_UNLOCK(sc);
2645}
2646
2647static void
2648wpi_start_locked(struct ifnet *ifp)
2649{
2650	struct wpi_softc *sc = ifp->if_softc;
2651	struct ieee80211_node *ni;
2652	struct mbuf *m;
2653
2654	WPI_LOCK_ASSERT(sc);
2655
2656	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: called\n", __func__);
2657
2658	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
2659	    (ifp->if_drv_flags & IFF_DRV_OACTIVE))
2660		return;
2661
2662	for (;;) {
2663		if (sc->qfullmsk != 0) {
2664			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2665			break;
2666		}
2667		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2668		if (m == NULL)
2669			break;
2670		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
2671		if (wpi_tx_data(sc, m, ni) != 0) {
2672			WPI_UNLOCK(sc);
2673			ieee80211_free_node(ni);
2674			WPI_LOCK(sc);
2675			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2676		} else
2677			sc->sc_tx_timer = 5;
2678	}
2679
2680	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: done\n", __func__);
2681}
2682
2683static void
2684wpi_watchdog_rfkill(void *arg)
2685{
2686	struct wpi_softc *sc = arg;
2687	struct ifnet *ifp = sc->sc_ifp;
2688	struct ieee80211com *ic = ifp->if_l2com;
2689
2690	DPRINTF(sc, WPI_DEBUG_WATCHDOG, "RFkill Watchdog: tick\n");
2691
2692	/* No need to lock firmware memory. */
2693	if ((wpi_prph_read(sc, WPI_APMG_RFKILL) & 0x1) == 0) {
2694		/* Radio kill switch is still off. */
2695		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
2696		    sc);
2697	} else
2698		ieee80211_runtask(ic, &sc->sc_radioon_task);
2699}
2700
2701/**
2702 * Called every second, wpi_watchdog used by the watch dog timer
2703 * to check that the card is still alive
2704 */
2705static void
2706wpi_watchdog(void *arg)
2707{
2708	struct wpi_softc *sc = arg;
2709	struct ifnet *ifp = sc->sc_ifp;
2710	struct ieee80211com *ic = ifp->if_l2com;
2711
2712	DPRINTF(sc, WPI_DEBUG_WATCHDOG, "Watchdog: tick\n");
2713
2714	if (sc->sc_tx_timer > 0) {
2715		if (--sc->sc_tx_timer == 0) {
2716			if_printf(ifp, "device timeout\n");
2717			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2718			ieee80211_runtask(ic, &sc->sc_reinittask);
2719		}
2720	}
2721
2722	if (sc->sc_scan_timer > 0) {
2723		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2724		if (--sc->sc_scan_timer == 0 && vap != NULL) {
2725			if_printf(ifp, "scan timeout\n");
2726			ieee80211_cancel_scan(vap);
2727			ieee80211_runtask(ic, &sc->sc_reinittask);
2728		}
2729	}
2730
2731	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2732		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2733}
2734
2735static int
2736wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2737{
2738	struct wpi_softc *sc = ifp->if_softc;
2739	struct ieee80211com *ic = ifp->if_l2com;
2740	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2741	struct ifreq *ifr = (struct ifreq *) data;
2742	int error = 0, startall = 0, stop = 0;
2743
2744	switch (cmd) {
2745	case SIOCGIFADDR:
2746		error = ether_ioctl(ifp, cmd, data);
2747		break;
2748	case SIOCSIFFLAGS:
2749		WPI_LOCK(sc);
2750		if (ifp->if_flags & IFF_UP) {
2751			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2752				wpi_init_locked(sc);
2753				if (WPI_READ(sc, WPI_GP_CNTRL) &
2754				    WPI_GP_CNTRL_RFKILL)
2755					startall = 1;
2756				else
2757					stop = 1;
2758			}
2759		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2760			wpi_stop_locked(sc);
2761		WPI_UNLOCK(sc);
2762		if (startall)
2763			ieee80211_start_all(ic);
2764		else if (vap != NULL && stop)
2765			ieee80211_stop(vap);
2766		break;
2767	case SIOCGIFMEDIA:
2768		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2769		break;
2770	default:
2771		error = EINVAL;
2772		break;
2773	}
2774	return error;
2775}
2776
2777/*
2778 * Send a command to the firmware.
2779 */
2780static int
2781wpi_cmd(struct wpi_softc *sc, int code, const void *buf, size_t size,
2782    int async)
2783{
2784	struct wpi_tx_ring *ring = &sc->txq[4];
2785	struct wpi_tx_desc *desc;
2786	struct wpi_tx_data *data;
2787	struct wpi_tx_cmd *cmd;
2788	struct mbuf *m;
2789	bus_addr_t paddr;
2790	int totlen, error;
2791
2792	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2793
2794	if (async == 0)
2795		WPI_LOCK_ASSERT(sc);
2796
2797	DPRINTF(sc, WPI_DEBUG_CMD, "wpi_cmd %s size %zu async %d\n",
2798	    wpi_cmd_str(code), size, async);
2799
2800	if (sc->flags & WPI_FLAG_BUSY) {
2801		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2802		    __func__, code);
2803		return EAGAIN;
2804	}
2805	sc->flags |= WPI_FLAG_BUSY;
2806
2807	desc = &ring->desc[ring->cur];
2808	data = &ring->data[ring->cur];
2809	totlen = 4 + size;
2810
2811	if (size > sizeof cmd->data) {
2812		/* Command is too large to fit in a descriptor. */
2813		if (totlen > MCLBYTES)
2814			return EINVAL;
2815		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
2816		if (m == NULL)
2817			return ENOMEM;
2818		cmd = mtod(m, struct wpi_tx_cmd *);
2819		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
2820		    totlen, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
2821		if (error != 0) {
2822			m_freem(m);
2823			return error;
2824		}
2825		data->m = m;
2826	} else {
2827		cmd = &ring->cmd[ring->cur];
2828		paddr = data->cmd_paddr;
2829	}
2830
2831	cmd->code = code;
2832	cmd->flags = 0;
2833	cmd->qid = ring->qid;
2834	cmd->idx = ring->cur;
2835	memcpy(cmd->data, buf, size);
2836
2837	desc->nsegs = 1 + (WPI_PAD32(size) << 4);
2838	desc->segs[0].addr = htole32(paddr);
2839	desc->segs[0].len  = htole32(totlen);
2840
2841	if (size > sizeof cmd->data) {
2842		bus_dmamap_sync(ring->data_dmat, data->map,
2843		    BUS_DMASYNC_PREWRITE);
2844	} else {
2845		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2846		    BUS_DMASYNC_PREWRITE);
2847	}
2848	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2849	    BUS_DMASYNC_PREWRITE);
2850
2851	/* Kick command ring. */
2852	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2853	wpi_update_tx_ring(sc, ring);
2854
2855	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2856
2857	if (async) {
2858		sc->flags &= ~WPI_FLAG_BUSY;
2859		return 0;
2860	}
2861
2862	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2863}
2864
2865/*
2866 * Configure HW multi-rate retries.
2867 */
2868static int
2869wpi_mrr_setup(struct wpi_softc *sc)
2870{
2871	struct ifnet *ifp = sc->sc_ifp;
2872	struct ieee80211com *ic = ifp->if_l2com;
2873	struct wpi_mrr_setup mrr;
2874	int i, error;
2875
2876	/* CCK rates (not used with 802.11a). */
2877	for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) {
2878		mrr.rates[i].flags = 0;
2879		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2880		/* Fallback to the immediate lower CCK rate (if any.) */
2881		mrr.rates[i].next =
2882		    (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1;
2883		/* Try one time at this rate before falling back to "next". */
2884		mrr.rates[i].ntries = 1;
2885	}
2886	/* OFDM rates (not used with 802.11b). */
2887	for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) {
2888		mrr.rates[i].flags = 0;
2889		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2890		/* Fallback to the immediate lower rate (if any.) */
2891		/* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */
2892		mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ?
2893		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2894			WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) :
2895		    i - 1;
2896		/* Try one time at this rate before falling back to "next". */
2897		mrr.rates[i].ntries = 1;
2898	}
2899	/* Setup MRR for control frames. */
2900	mrr.which = htole32(WPI_MRR_CTL);
2901	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2902	if (error != 0) {
2903		device_printf(sc->sc_dev,
2904		    "could not setup MRR for control frames\n");
2905		return error;
2906	}
2907	/* Setup MRR for data frames. */
2908	mrr.which = htole32(WPI_MRR_DATA);
2909	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2910	if (error != 0) {
2911		device_printf(sc->sc_dev,
2912		    "could not setup MRR for data frames\n");
2913		return error;
2914	}
2915	return 0;
2916}
2917
2918static int
2919wpi_add_node(struct wpi_softc *sc, struct ieee80211_node *ni)
2920{
2921	struct ieee80211com *ic = ni->ni_ic;
2922	struct wpi_node *wn = (void *)ni;
2923	struct wpi_node_info node;
2924
2925	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
2926
2927	if (wn->id == WPI_ID_UNDEFINED)
2928		return EINVAL;
2929
2930	memset(&node, 0, sizeof node);
2931	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
2932	node.id = wn->id;
2933	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2934	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
2935	node.action = htole32(WPI_ACTION_SET_RATE);
2936	node.antenna = WPI_ANTENNA_BOTH;
2937
2938	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2939}
2940
2941/*
2942 * Broadcast node is used to send group-addressed and management frames.
2943 */
2944static int
2945wpi_add_broadcast_node(struct wpi_softc *sc, int async)
2946{
2947	struct ifnet *ifp = sc->sc_ifp;
2948	struct ieee80211com *ic = ifp->if_l2com;
2949	struct wpi_node_info node;
2950
2951	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
2952
2953	memset(&node, 0, sizeof node);
2954	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
2955	node.id = WPI_ID_BROADCAST;
2956	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2957	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
2958	node.action = htole32(WPI_ACTION_SET_RATE);
2959	node.antenna = WPI_ANTENNA_BOTH;
2960
2961	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, async);
2962}
2963
2964static int
2965wpi_add_ibss_node(struct wpi_softc *sc, struct ieee80211_node *ni)
2966{
2967	struct wpi_node *wn = (void *)ni;
2968
2969	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
2970
2971	if (wn->id != WPI_ID_UNDEFINED)
2972		return EINVAL;
2973
2974	wn->id = alloc_unrl(sc->sc_unr);
2975
2976	if (wn->id == (uint8_t)-1)
2977		return ENOBUFS;
2978
2979	return wpi_add_node(sc, ni);
2980}
2981
2982static void
2983wpi_del_node(struct wpi_softc *sc, struct ieee80211_node *ni)
2984{
2985	struct wpi_node *wn = (void *)ni;
2986	struct wpi_cmd_del_node node;
2987	int error;
2988
2989	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
2990
2991	if (wn->id == WPI_ID_UNDEFINED) {
2992		device_printf(sc->sc_dev, "%s: undefined node id passed\n",
2993		    __func__);
2994		return;
2995	}
2996
2997	memset(&node, 0, sizeof node);
2998	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
2999	node.count = 1;
3000
3001	error = wpi_cmd(sc, WPI_CMD_DEL_NODE, &node, sizeof node, 1);
3002	if (error != 0) {
3003		device_printf(sc->sc_dev,
3004		    "%s: could not delete node %u, error %d\n", __func__,
3005		    wn->id, error);
3006	}
3007}
3008
3009static int
3010wpi_updateedca(struct ieee80211com *ic)
3011{
3012#define WPI_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3013	struct wpi_softc *sc = ic->ic_ifp->if_softc;
3014	struct wpi_edca_params cmd;
3015	int aci, error;
3016
3017	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3018
3019	memset(&cmd, 0, sizeof cmd);
3020	cmd.flags = htole32(WPI_EDCA_UPDATE);
3021	for (aci = 0; aci < WME_NUM_AC; aci++) {
3022		const struct wmeParams *ac =
3023		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
3024		cmd.ac[aci].aifsn = ac->wmep_aifsn;
3025		cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->wmep_logcwmin));
3026		cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->wmep_logcwmax));
3027		cmd.ac[aci].txoplimit =
3028		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
3029
3030		DPRINTF(sc, WPI_DEBUG_EDCA,
3031		    "setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
3032		    "txoplimit=%d\n", aci, cmd.ac[aci].aifsn,
3033		    cmd.ac[aci].cwmin, cmd.ac[aci].cwmax,
3034		    cmd.ac[aci].txoplimit);
3035	}
3036	IEEE80211_UNLOCK(ic);
3037	WPI_LOCK(sc);
3038	error = wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
3039	WPI_UNLOCK(sc);
3040	IEEE80211_LOCK(ic);
3041
3042	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3043
3044	return error;
3045#undef WPI_EXP2
3046}
3047
3048static void
3049wpi_set_promisc(struct wpi_softc *sc)
3050{
3051	struct ifnet *ifp = sc->sc_ifp;
3052	uint32_t promisc_filter;
3053
3054	promisc_filter = WPI_FILTER_PROMISC | WPI_FILTER_CTL;
3055
3056	if (ifp->if_flags & IFF_PROMISC)
3057		sc->rxon.filter |= htole32(promisc_filter);
3058	else
3059		sc->rxon.filter &= ~htole32(promisc_filter);
3060}
3061
3062static void
3063wpi_update_promisc(struct ifnet *ifp)
3064{
3065	struct wpi_softc *sc = ifp->if_softc;
3066
3067	wpi_set_promisc(sc);
3068
3069	WPI_LOCK(sc);
3070	if (wpi_send_rxon(sc, 1, 1) != 0) {
3071		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3072		    __func__);
3073	}
3074	WPI_UNLOCK(sc);
3075}
3076
3077static void
3078wpi_update_mcast(struct ifnet *ifp)
3079{
3080	/* Ignore */
3081}
3082
3083static void
3084wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3085{
3086	struct wpi_cmd_led led;
3087
3088	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3089
3090	led.which = which;
3091	led.unit = htole32(100000);	/* on/off in unit of 100ms */
3092	led.off = off;
3093	led.on = on;
3094	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
3095}
3096
3097static int
3098wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni)
3099{
3100	struct wpi_cmd_timing cmd;
3101	uint64_t val, mod;
3102
3103	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3104
3105	memset(&cmd, 0, sizeof cmd);
3106	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3107	cmd.bintval = htole16(ni->ni_intval);
3108	cmd.lintval = htole16(10);
3109
3110	/* Compute remaining time until next beacon. */
3111	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
3112	mod = le64toh(cmd.tstamp) % val;
3113	cmd.binitval = htole32((uint32_t)(val - mod));
3114
3115	DPRINTF(sc, WPI_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
3116	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
3117
3118	return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1);
3119}
3120
3121/*
3122 * This function is called periodically (every 60 seconds) to adjust output
3123 * power to temperature changes.
3124 */
3125static void
3126wpi_power_calibration(struct wpi_softc *sc)
3127{
3128	int temp;
3129
3130	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3131
3132	/* Update sensor data. */
3133	temp = (int)WPI_READ(sc, WPI_UCODE_GP2);
3134	DPRINTF(sc, WPI_DEBUG_TEMP, "Temp in calibration is: %d\n", temp);
3135
3136	/* Sanity-check read value. */
3137	if (temp < -260 || temp > 25) {
3138		/* This can't be correct, ignore. */
3139		DPRINTF(sc, WPI_DEBUG_TEMP,
3140		    "out-of-range temperature reported: %d\n", temp);
3141		return;
3142	}
3143
3144	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d->%d\n", sc->temp, temp);
3145
3146	/* Adjust Tx power if need be. */
3147	if (abs(temp - sc->temp) <= 6)
3148		return;
3149
3150	sc->temp = temp;
3151
3152	if (wpi_set_txpower(sc, 1) != 0) {
3153		/* just warn, too bad for the automatic calibration... */
3154		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3155	}
3156}
3157
3158/*
3159 * Set TX power for current channel.
3160 */
3161static int
3162wpi_set_txpower(struct wpi_softc *sc, int async)
3163{
3164	struct ifnet *ifp = sc->sc_ifp;
3165	struct ieee80211com *ic = ifp->if_l2com;
3166	struct ieee80211_channel *ch;
3167	struct wpi_power_group *group;
3168	struct wpi_cmd_txpower cmd;
3169	uint8_t chan;
3170	int idx, i;
3171
3172	/* Retrieve current channel from last RXON. */
3173	chan = sc->rxon.chan;
3174	ch = &ic->ic_channels[chan];
3175
3176	/* Find the TX power group to which this channel belongs. */
3177	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3178		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3179			if (chan <= group->chan)
3180				break;
3181	} else
3182		group = &sc->groups[0];
3183
3184	memset(&cmd, 0, sizeof cmd);
3185	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3186	cmd.chan = htole16(chan);
3187
3188	/* Set TX power for all OFDM and CCK rates. */
3189	for (i = 0; i <= WPI_RIDX_MAX ; i++) {
3190		/* Retrieve TX power for this channel/rate. */
3191		idx = wpi_get_power_index(sc, group, ch, i);
3192
3193		cmd.rates[i].plcp = wpi_ridx_to_plcp[i];
3194
3195		if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3196			cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
3197			cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
3198		} else {
3199			cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
3200			cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
3201		}
3202		DPRINTF(sc, WPI_DEBUG_TEMP,
3203		    "chan %d/ridx %d: power index %d\n", chan, i, idx);
3204	}
3205
3206	return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async);
3207}
3208
3209/*
3210 * Determine Tx power index for a given channel/rate combination.
3211 * This takes into account the regulatory information from EEPROM and the
3212 * current temperature.
3213 */
3214static int
3215wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3216    struct ieee80211_channel *c, int ridx)
3217{
3218/* Fixed-point arithmetic division using a n-bit fractional part. */
3219#define fdivround(a, b, n)      \
3220	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3221
3222/* Linear interpolation. */
3223#define interpolate(x, x1, y1, x2, y2, n)       \
3224	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3225
3226	struct ifnet *ifp = sc->sc_ifp;
3227	struct ieee80211com *ic = ifp->if_l2com;
3228	struct wpi_power_sample *sample;
3229	int pwr, idx;
3230	u_int chan;
3231
3232	/* Get channel number. */
3233	chan = ieee80211_chan2ieee(ic, c);
3234
3235	/* Default TX power is group maximum TX power minus 3dB. */
3236	pwr = group->maxpwr / 2;
3237
3238	/* Decrease TX power for highest OFDM rates to reduce distortion. */
3239	switch (ridx) {
3240	case WPI_RIDX_OFDM36:
3241		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3242		break;
3243	case WPI_RIDX_OFDM48:
3244		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3245		break;
3246	case WPI_RIDX_OFDM54:
3247		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3248		break;
3249	}
3250
3251	/* Never exceed the channel maximum allowed TX power. */
3252	pwr = min(pwr, sc->maxpwr[chan]);
3253
3254	/* Retrieve TX power index into gain tables from samples. */
3255	for (sample = group->samples; sample < &group->samples[3]; sample++)
3256		if (pwr > sample[1].power)
3257			break;
3258	/* Fixed-point linear interpolation using a 19-bit fractional part. */
3259	idx = interpolate(pwr, sample[0].power, sample[0].index,
3260	    sample[1].power, sample[1].index, 19);
3261
3262	/*-
3263	 * Adjust power index based on current temperature:
3264	 * - if cooler than factory-calibrated: decrease output power
3265	 * - if warmer than factory-calibrated: increase output power
3266	 */
3267	idx -= (sc->temp - group->temp) * 11 / 100;
3268
3269	/* Decrease TX power for CCK rates (-5dB). */
3270	if (ridx >= WPI_RIDX_CCK1)
3271		idx += 10;
3272
3273	/* Make sure idx stays in a valid range. */
3274	if (idx < 0)
3275		return 0;
3276	if (idx > WPI_MAX_PWR_INDEX)
3277		return WPI_MAX_PWR_INDEX;
3278	return idx;
3279
3280#undef interpolate
3281#undef fdivround
3282}
3283
3284/*
3285 * Set STA mode power saving level (between 0 and 5).
3286 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
3287 */
3288static int
3289wpi_set_pslevel(struct wpi_softc *sc, uint8_t dtim, int level, int async)
3290{
3291	struct wpi_pmgt_cmd cmd;
3292	const struct wpi_pmgt *pmgt;
3293	uint32_t max, skip_dtim;
3294	uint32_t reg;
3295	int i;
3296
3297	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
3298	    "%s: dtim=%d, level=%d, async=%d\n",
3299	    __func__, dtim, level, async);
3300
3301	/* Select which PS parameters to use. */
3302	if (dtim <= 10)
3303		pmgt = &wpi_pmgt[0][level];
3304	else
3305		pmgt = &wpi_pmgt[1][level];
3306
3307	memset(&cmd, 0, sizeof cmd);
3308	if (level != 0)	/* not CAM */
3309		cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP);
3310	/* Retrieve PCIe Active State Power Management (ASPM). */
3311	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
3312	if (!(reg & 0x1))	/* L0s Entry disabled. */
3313		cmd.flags |= htole16(WPI_PS_PCI_PMGT);
3314
3315	cmd.rxtimeout = htole32(pmgt->rxtimeout * IEEE80211_DUR_TU);
3316	cmd.txtimeout = htole32(pmgt->txtimeout * IEEE80211_DUR_TU);
3317
3318	if (dtim == 0) {
3319		dtim = 1;
3320		skip_dtim = 0;
3321	} else
3322		skip_dtim = pmgt->skip_dtim;
3323
3324	if (skip_dtim != 0) {
3325		cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM);
3326		max = pmgt->intval[4];
3327		if (max == (uint32_t)-1)
3328			max = dtim * (skip_dtim + 1);
3329		else if (max > dtim)
3330			max = (max / dtim) * dtim;
3331	} else
3332		max = dtim;
3333
3334	for (i = 0; i < 5; i++)
3335		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
3336
3337	return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
3338}
3339
3340static int
3341wpi_send_btcoex(struct wpi_softc *sc)
3342{
3343	struct wpi_bluetooth cmd;
3344
3345        memset(&cmd, 0, sizeof cmd);
3346        cmd.flags = WPI_BT_COEX_MODE_4WIRE;
3347        cmd.lead_time = WPI_BT_LEAD_TIME_DEF;
3348        cmd.max_kill = WPI_BT_MAX_KILL_DEF;
3349	DPRINTF(sc, WPI_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
3350	    __func__);
3351        return wpi_cmd(sc, WPI_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
3352}
3353
3354static int
3355wpi_send_rxon(struct wpi_softc *sc, int assoc, int async)
3356{
3357	int error;
3358
3359	if (assoc && (sc->rxon.filter & htole32(WPI_FILTER_BSS))) {
3360		struct wpi_assoc rxon_assoc;
3361
3362		rxon_assoc.flags = sc->rxon.flags;
3363		rxon_assoc.filter = sc->rxon.filter;
3364		rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask;
3365		rxon_assoc.cck_mask = sc->rxon.cck_mask;
3366		rxon_assoc.reserved = 0;
3367
3368		error = wpi_cmd(sc, WPI_CMD_RXON_ASSOC, &rxon_assoc,
3369		    sizeof (struct wpi_assoc), async);
3370	} else {
3371		error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3372		    sizeof (struct wpi_rxon), async);
3373	}
3374	if (error != 0) {
3375		device_printf(sc->sc_dev, "RXON command failed, error %d\n",
3376		    error);
3377		return error;
3378	}
3379
3380	/* Configuration has changed, set Tx power accordingly. */
3381	if ((error = wpi_set_txpower(sc, async)) != 0) {
3382		device_printf(sc->sc_dev,
3383		    "%s: could not set TX power, error %d\n", __func__, error);
3384		return error;
3385	}
3386
3387	if (!(sc->rxon.filter & htole32(WPI_FILTER_BSS))) {
3388		/* Add broadcast node. */
3389		error = wpi_add_broadcast_node(sc, async);
3390		if (error != 0) {
3391			device_printf(sc->sc_dev,
3392			    "could not add broadcast node, error %d\n", error);
3393			return error;
3394		}
3395	}
3396
3397	return 0;
3398}
3399
3400/**
3401 * Configure the card to listen to a particular channel, this transisions the
3402 * card in to being able to receive frames from remote devices.
3403 */
3404static int
3405wpi_config(struct wpi_softc *sc)
3406{
3407	struct ifnet *ifp = sc->sc_ifp;
3408	struct ieee80211com *ic = ifp->if_l2com;
3409	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3410	uint32_t flags;
3411	int error;
3412
3413	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3414
3415	/* Set power saving level to CAM during initialization. */
3416	if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) {
3417		device_printf(sc->sc_dev,
3418		    "%s: could not set power saving level\n", __func__);
3419		return error;
3420	}
3421
3422	/* Configure bluetooth coexistence. */
3423	if ((error = wpi_send_btcoex(sc)) != 0) {
3424		device_printf(sc->sc_dev,
3425		    "could not configure bluetooth coexistence\n");
3426		return error;
3427	}
3428
3429	/* Configure adapter. */
3430	memset(&sc->rxon, 0, sizeof (struct wpi_rxon));
3431	IEEE80211_ADDR_COPY(sc->rxon.myaddr, vap->iv_myaddr);
3432
3433	/* Set default channel. */
3434	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
3435	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3436	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
3437		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3438
3439	sc->rxon.filter = WPI_FILTER_MULTICAST;
3440	switch (ic->ic_opmode) {
3441	case IEEE80211_M_STA:
3442		sc->rxon.mode = WPI_MODE_STA;
3443		break;
3444	case IEEE80211_M_IBSS:
3445		sc->rxon.mode = WPI_MODE_IBSS;
3446		sc->rxon.filter |= WPI_FILTER_BEACON;
3447		break;
3448	/* XXX workaround for passive channels selection */
3449	case IEEE80211_M_AHDEMO:
3450	case IEEE80211_M_HOSTAP:
3451		sc->rxon.mode = WPI_MODE_HOSTAP;
3452		break;
3453	case IEEE80211_M_MONITOR:
3454		sc->rxon.mode = WPI_MODE_MONITOR;
3455		break;
3456	default:
3457		device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
3458		return EINVAL;
3459	}
3460	sc->rxon.filter = htole32(sc->rxon.filter);
3461	wpi_set_promisc(sc);
3462	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
3463	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
3464
3465	if ((error = wpi_send_rxon(sc, 0, 0)) != 0) {
3466		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3467		    __func__);
3468		return error;
3469	}
3470
3471	/* Setup rate scalling. */
3472	if ((error = wpi_mrr_setup(sc)) != 0) {
3473		device_printf(sc->sc_dev, "could not setup MRR, error %d\n",
3474		    error);
3475		return error;
3476	}
3477
3478	/* Disable beacon notifications (unused). */
3479	flags = WPI_STATISTICS_BEACON_DISABLE;
3480	error = wpi_cmd(sc, WPI_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3481	if (error != 0) {
3482		device_printf(sc->sc_dev,
3483		    "could not disable beacon statistics, error %d\n", error);
3484		return error;
3485	}
3486
3487	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3488
3489	return 0;
3490}
3491
3492static uint16_t
3493wpi_get_active_dwell_time(struct wpi_softc *sc,
3494    struct ieee80211_channel *c, uint8_t n_probes)
3495{
3496	/* No channel? Default to 2GHz settings. */
3497	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
3498		return (WPI_ACTIVE_DWELL_TIME_2GHZ +
3499		WPI_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
3500	}
3501
3502	/* 5GHz dwell time. */
3503	return (WPI_ACTIVE_DWELL_TIME_5GHZ +
3504	    WPI_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
3505}
3506
3507/*
3508 * Limit the total dwell time to 85% of the beacon interval.
3509 *
3510 * Returns the dwell time in milliseconds.
3511 */
3512static uint16_t
3513wpi_limit_dwell(struct wpi_softc *sc, uint16_t dwell_time)
3514{
3515	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3516	struct ieee80211vap *vap = NULL;
3517	int bintval = 0;
3518
3519	/* bintval is in TU (1.024mS) */
3520	if (! TAILQ_EMPTY(&ic->ic_vaps)) {
3521		vap = TAILQ_FIRST(&ic->ic_vaps);
3522		bintval = vap->iv_bss->ni_intval;
3523	}
3524
3525	/*
3526	 * If it's non-zero, we should calculate the minimum of
3527	 * it and the DWELL_BASE.
3528	 *
3529	 * XXX Yes, the math should take into account that bintval
3530	 * is 1.024mS, not 1mS..
3531	 */
3532	if (bintval > 0) {
3533		DPRINTF(sc, WPI_DEBUG_SCAN, "%s: bintval=%d\n", __func__,
3534		    bintval);
3535		return (MIN(WPI_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
3536	}
3537
3538	/* No association context? Default. */
3539	return (WPI_PASSIVE_DWELL_BASE);
3540}
3541
3542static uint16_t
3543wpi_get_passive_dwell_time(struct wpi_softc *sc, struct ieee80211_channel *c)
3544{
3545	uint16_t passive;
3546
3547	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c))
3548		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_2GHZ;
3549	else
3550		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_5GHZ;
3551
3552	/* Clamp to the beacon interval if we're associated. */
3553	return (wpi_limit_dwell(sc, passive));
3554}
3555
3556/*
3557 * Send a scan request to the firmware.
3558 */
3559static int
3560wpi_scan(struct wpi_softc *sc, struct ieee80211_channel *c)
3561{
3562	struct ifnet *ifp = sc->sc_ifp;
3563	struct ieee80211com *ic = ifp->if_l2com;
3564	struct ieee80211_scan_state *ss = ic->ic_scan;
3565	struct ieee80211vap *vap = ss->ss_vap;
3566	struct wpi_scan_hdr *hdr;
3567	struct wpi_cmd_data *tx;
3568	struct wpi_scan_essid *essids;
3569	struct wpi_scan_chan *chan;
3570	struct ieee80211_frame *wh;
3571	struct ieee80211_rateset *rs;
3572	uint16_t dwell_active, dwell_passive;
3573	uint8_t *buf, *frm;
3574	int buflen, error, i, nssid;
3575
3576	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3577
3578	/*
3579	 * We are absolutely not allowed to send a scan command when another
3580	 * scan command is pending.
3581	 */
3582	if (sc->sc_scan_timer) {
3583		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
3584		    __func__);
3585		return (EAGAIN);
3586	}
3587
3588	buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
3589	if (buf == NULL) {
3590		device_printf(sc->sc_dev,
3591		    "%s: could not allocate buffer for scan command\n",
3592		    __func__);
3593		return ENOMEM;
3594	}
3595	hdr = (struct wpi_scan_hdr *)buf;
3596
3597	/*
3598	 * Move to the next channel if no packets are received within 10 msecs
3599	 * after sending the probe request.
3600	 */
3601	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
3602	hdr->quiet_threshold = htole16(1);	/* min # of packets */
3603	/*
3604	 * Max needs to be greater than active and passive and quiet!
3605	 * It's also in microseconds!
3606	 */
3607	hdr->max_svc = htole32(250 * IEEE80211_DUR_TU);
3608	hdr->pause_svc = htole32((4 << 24) |
3609	    (100 * IEEE80211_DUR_TU));	/* Hardcode for now */
3610	hdr->filter = htole32(WPI_FILTER_MULTICAST | WPI_FILTER_BEACON);
3611
3612	tx = (struct wpi_cmd_data *)(hdr + 1);
3613	tx->flags = htole32(WPI_TX_AUTO_SEQ);
3614	tx->id = WPI_ID_BROADCAST;
3615	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
3616
3617	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3618		/* Send probe requests at 6Mbps. */
3619		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_OFDM6];
3620		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
3621	} else {
3622		hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO);
3623		/* Send probe requests at 1Mbps. */
3624		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3625		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
3626	}
3627
3628	essids = (struct wpi_scan_essid *)(tx + 1);
3629	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
3630	for (i = 0; i < nssid; i++) {
3631		essids[i].id = IEEE80211_ELEMID_SSID;
3632		essids[i].len = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN);
3633		memcpy(essids[i].data, ss->ss_ssid[i].ssid, essids[i].len);
3634#ifdef WPI_DEBUG
3635		if (sc->sc_debug & WPI_DEBUG_SCAN) {
3636			printf("Scanning Essid: ");
3637			ieee80211_print_essid(essids[i].data, essids[i].len);
3638			printf("\n");
3639		}
3640#endif
3641	}
3642
3643	/*
3644	 * Build a probe request frame.  Most of the following code is a
3645	 * copy & paste of what is done in net80211.
3646	 */
3647	wh = (struct ieee80211_frame *)(essids + WPI_SCAN_MAX_ESSIDS);
3648	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3649		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
3650	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3651	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3652	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3653	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
3654	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
3655	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
3656
3657	frm = (uint8_t *)(wh + 1);
3658	frm = ieee80211_add_ssid(frm, NULL, 0);
3659	frm = ieee80211_add_rates(frm, rs);
3660	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
3661		frm = ieee80211_add_xrates(frm, rs);
3662
3663	/* Set length of probe request. */
3664	tx->len = htole16(frm - (uint8_t *)wh);
3665
3666	/*
3667	 * Construct information about the channel that we
3668	 * want to scan. The firmware expects this to be directly
3669	 * after the scan probe request
3670	 */
3671	chan = (struct wpi_scan_chan *)frm;
3672	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
3673	chan->flags = 0;
3674	if (nssid) {
3675		hdr->crc_threshold = WPI_SCAN_CRC_TH_DEFAULT;
3676		chan->flags |= WPI_CHAN_NPBREQS(nssid);
3677	} else
3678		hdr->crc_threshold = WPI_SCAN_CRC_TH_NEVER;
3679
3680	if (!IEEE80211_IS_CHAN_PASSIVE(c))
3681		chan->flags |= WPI_CHAN_ACTIVE;
3682
3683	/*
3684	 * Calculate the active/passive dwell times.
3685	 */
3686
3687	dwell_active = wpi_get_active_dwell_time(sc, c, nssid);
3688	dwell_passive = wpi_get_passive_dwell_time(sc, c);
3689
3690	/* Make sure they're valid. */
3691	if (dwell_passive <= dwell_active)
3692		dwell_passive = dwell_active + 1;
3693
3694	chan->active = htole16(dwell_active);
3695	chan->passive = htole16(dwell_passive);
3696
3697	chan->dsp_gain = 0x6e;  /* Default level */
3698
3699	if (IEEE80211_IS_CHAN_5GHZ(c))
3700		chan->rf_gain = 0x3b;
3701	else
3702		chan->rf_gain = 0x28;
3703
3704	DPRINTF(sc, WPI_DEBUG_SCAN, "Scanning %u Passive: %d\n",
3705	     chan->chan, IEEE80211_IS_CHAN_PASSIVE(c));
3706
3707	hdr->nchan++;
3708	chan++;
3709
3710	buflen = (uint8_t *)chan - buf;
3711	hdr->len = htole16(buflen);
3712
3713	DPRINTF(sc, WPI_DEBUG_CMD, "sending scan command nchan=%d\n",
3714	    hdr->nchan);
3715	error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1);
3716	free(buf, M_DEVBUF);
3717
3718	sc->sc_scan_timer = 5;
3719
3720	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3721
3722	return error;
3723}
3724
3725static int
3726wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
3727{
3728	struct ieee80211com *ic = vap->iv_ic;
3729	struct ieee80211_node *ni = vap->iv_bss;
3730	int error;
3731
3732	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3733
3734	/* Update adapter configuration. */
3735	sc->rxon.associd = 0;
3736	sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
3737	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
3738	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
3739	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3740	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
3741		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3742	if (ic->ic_flags & IEEE80211_F_SHSLOT)
3743		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
3744	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
3745		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
3746	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
3747		sc->rxon.cck_mask  = 0;
3748		sc->rxon.ofdm_mask = 0x15;
3749	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
3750		sc->rxon.cck_mask  = 0x03;
3751		sc->rxon.ofdm_mask = 0;
3752	} else {
3753		/* Assume 802.11b/g. */
3754		sc->rxon.cck_mask  = 0x0f;
3755		sc->rxon.ofdm_mask = 0x15;
3756	}
3757
3758	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
3759	    sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask,
3760	    sc->rxon.ofdm_mask);
3761
3762	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
3763		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3764		    __func__);
3765	}
3766
3767	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3768
3769	return error;
3770}
3771
3772static int
3773wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
3774{
3775	struct ifnet *ifp = sc->sc_ifp;
3776	struct ieee80211com *ic = ifp->if_l2com;
3777	struct ieee80211vap *vap = ni->ni_vap;
3778	struct wpi_vap *wvp = WPI_VAP(vap);
3779	struct wpi_buf *bcn = &wvp->wv_bcbuf;
3780	struct ieee80211_beacon_offsets bo;
3781	struct wpi_cmd_beacon *cmd;
3782	struct mbuf *m;
3783	int totlen;
3784
3785	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3786
3787	if (ni->ni_chan == IEEE80211_CHAN_ANYC)
3788		return EINVAL;
3789
3790	m = ieee80211_beacon_alloc(ni, &bo);
3791	if (m == NULL) {
3792		device_printf(sc->sc_dev,
3793		    "%s: could not allocate beacon frame\n", __func__);
3794		return ENOMEM;
3795	}
3796	totlen = m->m_pkthdr.len;
3797
3798	if (bcn->data == NULL) {
3799		cmd = malloc(sizeof(struct wpi_cmd_beacon), M_DEVBUF,
3800		    M_NOWAIT | M_ZERO);
3801
3802		if (cmd == NULL) {
3803			device_printf(sc->sc_dev,
3804			    "could not allocate buffer for beacon command\n");
3805			m_freem(m);
3806			return ENOMEM;
3807		}
3808
3809		cmd->id = WPI_ID_BROADCAST;
3810		cmd->ofdm_mask = 0xff;
3811		cmd->cck_mask = 0x0f;
3812		cmd->lifetime = htole32(WPI_LIFETIME_INFINITE);
3813		cmd->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
3814
3815		bcn->data = cmd;
3816		bcn->ni = NULL;
3817		bcn->code = WPI_CMD_SET_BEACON;
3818		bcn->ac = 4;
3819		bcn->size = sizeof(struct wpi_cmd_beacon);
3820	} else
3821		cmd = bcn->data;
3822
3823	cmd->len = htole16(totlen);
3824	cmd->plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3825	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3826
3827	/* NB: m will be freed in wpi_cmd_done() */
3828	bcn->m = m;
3829
3830	return wpi_cmd2(sc, bcn);
3831}
3832
3833static void
3834wpi_update_beacon(struct ieee80211vap *vap, int item)
3835{
3836	struct ieee80211_node *ni = vap->iv_bss;
3837	struct ifnet *ifp = vap->iv_ifp;
3838	struct wpi_softc *sc = ifp->if_softc;
3839	int error;
3840
3841	WPI_LOCK(sc);
3842	if ((error = wpi_setup_beacon(sc, ni)) != 0) {
3843		device_printf(sc->sc_dev,
3844		    "%s: could not update beacon frame, error %d", __func__,
3845		    error);
3846	}
3847	WPI_UNLOCK(sc);
3848}
3849
3850static int
3851wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
3852{
3853	struct ieee80211com *ic = vap->iv_ic;
3854	struct ieee80211_node *ni = vap->iv_bss;
3855	int error;
3856
3857	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3858
3859	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
3860		/* Link LED blinks while monitoring. */
3861		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3862		return 0;
3863	}
3864
3865	/* XXX kernel panic workaround */
3866	if (ni->ni_chan == IEEE80211_CHAN_ANYC) {
3867		device_printf(sc->sc_dev, "%s: incomplete configuration\n",
3868		    __func__);
3869		return EINVAL;
3870	}
3871
3872	if ((error = wpi_set_timing(sc, ni)) != 0) {
3873		device_printf(sc->sc_dev,
3874		    "%s: could not set timing, error %d\n", __func__, error);
3875		return error;
3876	}
3877
3878	/* Update adapter configuration. */
3879	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
3880	sc->rxon.associd = htole16(IEEE80211_NODE_AID(ni));
3881	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
3882	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3883	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
3884		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3885	/* Short preamble and slot time are negotiated when associating. */
3886	sc->rxon.flags &= ~htole32(WPI_RXON_SHPREAMBLE | WPI_RXON_SHSLOT);
3887	if (ic->ic_flags & IEEE80211_F_SHSLOT)
3888		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
3889	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
3890		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
3891	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
3892		sc->rxon.cck_mask  = 0;
3893		sc->rxon.ofdm_mask = 0x15;
3894	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
3895		sc->rxon.cck_mask  = 0x03;
3896		sc->rxon.ofdm_mask = 0;
3897	} else {
3898		/* Assume 802.11b/g. */
3899		sc->rxon.cck_mask  = 0x0f;
3900		sc->rxon.ofdm_mask = 0x15;
3901	}
3902	sc->rxon.filter |= htole32(WPI_FILTER_BSS);
3903
3904	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
3905
3906	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x\n",
3907	    sc->rxon.chan, sc->rxon.flags);
3908
3909	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
3910		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3911		    __func__);
3912		return error;
3913	}
3914
3915	if (vap->iv_opmode == IEEE80211_M_IBSS) {
3916		if ((error = wpi_setup_beacon(sc, ni)) != 0) {
3917			device_printf(sc->sc_dev,
3918			    "%s: could not setup beacon, error %d\n", __func__,
3919			    error);
3920			return error;
3921		}
3922	}
3923
3924	if (vap->iv_opmode == IEEE80211_M_STA) {
3925		/* Add BSS node. */
3926		((struct wpi_node *)ni)->id = WPI_ID_BSS;
3927		if ((error = wpi_add_node(sc, ni)) != 0) {
3928			device_printf(sc->sc_dev,
3929			    "%s: could not add BSS node, error %d\n", __func__,
3930			    error);
3931			return error;
3932		}
3933	}
3934
3935	/* Link LED always on while associated. */
3936	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3937
3938	/* Start periodic calibration timer. */
3939	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3940
3941	/* Enable power-saving mode if requested by user. */
3942	if (vap->iv_flags & IEEE80211_F_PMGTON)
3943		(void)wpi_set_pslevel(sc, 0, 3, 1);
3944	else
3945		(void)wpi_set_pslevel(sc, 0, 0, 1);
3946
3947	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3948
3949	return 0;
3950}
3951
3952static int
3953wpi_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
3954    ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
3955{
3956	struct ifnet *ifp = vap->iv_ifp;
3957	struct wpi_softc *sc = ifp->if_softc;
3958
3959	if (!(&vap->iv_nw_keys[0] <= k &&
3960	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
3961		if (k->wk_flags & IEEE80211_KEY_GROUP) {
3962			/* should not happen */
3963			DPRINTF(sc, WPI_DEBUG_KEY, "%s: bogus group key\n",
3964			    __func__);
3965			return 0;
3966		}
3967		*keyix = 0;	/* NB: use key index 0 for ucast key */
3968	} else {
3969		*keyix = *rxkeyix = k - vap->iv_nw_keys;
3970
3971		if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_AES_CCM)
3972			k->wk_flags |= IEEE80211_KEY_SWCRYPT;
3973	}
3974	return 1;
3975}
3976
3977static int
3978wpi_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
3979    const uint8_t mac[IEEE80211_ADDR_LEN])
3980{
3981	const struct ieee80211_cipher *cip = k->wk_cipher;
3982	struct ieee80211com *ic = vap->iv_ic;
3983	struct ieee80211_node *ni = vap->iv_bss;
3984	struct wpi_softc *sc = ic->ic_ifp->if_softc;
3985	struct wpi_node *wn = (void *)ni;
3986	struct wpi_node_info node;
3987	uint16_t kflags;
3988	int error;
3989
3990	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3991
3992	switch (cip->ic_cipher) {
3993	case IEEE80211_CIPHER_AES_CCM:
3994		if (k->wk_flags & IEEE80211_KEY_GROUP)
3995			return 1;
3996
3997		kflags = WPI_KFLAG_CCMP;
3998		break;
3999	default:
4000		/* null_key_set() */
4001		return 1;
4002	}
4003
4004	if (wn->id == WPI_ID_UNDEFINED)
4005		return 0;
4006
4007	kflags |= WPI_KFLAG_KID(k->wk_keyix);
4008	if (k->wk_flags & IEEE80211_KEY_GROUP)
4009		kflags |= WPI_KFLAG_MULTICAST;
4010
4011	memset(&node, 0, sizeof node);
4012	node.id = wn->id;
4013	node.control = WPI_NODE_UPDATE;
4014	node.flags = WPI_FLAG_KEY_SET;
4015	node.kflags = htole16(kflags);
4016	memcpy(node.key, k->wk_key, k->wk_keylen);
4017
4018	DPRINTF(sc, WPI_DEBUG_KEY, "set key id=%d for node %d\n", k->wk_keyix,
4019	    node.id);
4020
4021	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4022	if (error != 0) {
4023		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4024		    error);
4025		return 0;
4026	}
4027
4028	return 1;
4029}
4030
4031static int
4032wpi_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
4033{
4034	const struct ieee80211_cipher *cip = k->wk_cipher;
4035	struct ieee80211com *ic = vap->iv_ic;
4036	struct ieee80211_node *ni = vap->iv_bss;
4037	struct wpi_softc *sc = ic->ic_ifp->if_softc;
4038	struct wpi_node *wn = (void *)ni;
4039	struct wpi_node_info node;
4040
4041	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4042
4043	switch (cip->ic_cipher) {
4044	case IEEE80211_CIPHER_AES_CCM:
4045		break;
4046	default:
4047		/* null_key_delete() */
4048		return 1;
4049	}
4050
4051	if (vap->iv_state != IEEE80211_S_RUN ||
4052	    (k->wk_flags & IEEE80211_KEY_GROUP))
4053		return 1; /* Nothing to do. */
4054
4055	memset(&node, 0, sizeof node);
4056	node.id = wn->id;
4057	node.control = WPI_NODE_UPDATE;
4058	node.flags = WPI_FLAG_KEY_SET;
4059
4060	DPRINTF(sc, WPI_DEBUG_KEY, "delete keys for node %d\n", node.id);
4061	(void)wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4062
4063	return 1;
4064}
4065
4066/*
4067 * This function is called after the runtime firmware notifies us of its
4068 * readiness (called in a process context).
4069 */
4070static int
4071wpi_post_alive(struct wpi_softc *sc)
4072{
4073	int ntries, error;
4074
4075	/* Check (again) that the radio is not disabled. */
4076	if ((error = wpi_nic_lock(sc)) != 0)
4077		return error;
4078
4079	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4080
4081	/* NB: Runtime firmware must be up and running. */
4082	if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) {
4083 		device_printf(sc->sc_dev,
4084		    "RF switch: radio disabled (%s)\n", __func__);
4085		wpi_nic_unlock(sc);
4086		return EPERM;   /* :-) */
4087	}
4088	wpi_nic_unlock(sc);
4089
4090	/* Wait for thermal sensor to calibrate. */
4091	for (ntries = 0; ntries < 1000; ntries++) {
4092		if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0)
4093			break;
4094		DELAY(10);
4095	}
4096
4097	if (ntries == 1000) {
4098		device_printf(sc->sc_dev,
4099		    "timeout waiting for thermal sensor calibration\n");
4100                return ETIMEDOUT;
4101        }
4102
4103        DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d\n", sc->temp);
4104        return 0;
4105}
4106
4107/*
4108 * The firmware boot code is small and is intended to be copied directly into
4109 * the NIC internal memory (no DMA transfer).
4110 */
4111static int
4112wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
4113{
4114	int error, ntries;
4115
4116	DPRINTF(sc, WPI_DEBUG_HW, "Loading microcode size 0x%x\n", size);
4117
4118	size /= sizeof (uint32_t);
4119
4120	if ((error = wpi_nic_lock(sc)) != 0)
4121		return error;
4122
4123	/* Copy microcode image into NIC memory. */
4124	wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE,
4125	    (const uint32_t *)ucode, size);
4126
4127	wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0);
4128	wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE);
4129	wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size);
4130
4131	/* Start boot load now. */
4132	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START);
4133
4134	/* Wait for transfer to complete. */
4135	for (ntries = 0; ntries < 1000; ntries++) {
4136		uint32_t status = WPI_READ(sc, WPI_FH_TX_STATUS);
4137		DPRINTF(sc, WPI_DEBUG_HW,
4138		    "firmware status=0x%x, val=0x%x, result=0x%x\n", status,
4139		    WPI_FH_TX_STATUS_IDLE(6),
4140		    status & WPI_FH_TX_STATUS_IDLE(6));
4141		if (status & WPI_FH_TX_STATUS_IDLE(6)) {
4142			DPRINTF(sc, WPI_DEBUG_HW,
4143			    "Status Match! - ntries = %d\n", ntries);
4144			break;
4145		}
4146		DELAY(10);
4147	}
4148	if (ntries == 1000) {
4149		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4150		    __func__);
4151		wpi_nic_unlock(sc);
4152		return ETIMEDOUT;
4153	}
4154
4155	/* Enable boot after power up. */
4156	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN);
4157
4158	wpi_nic_unlock(sc);
4159	return 0;
4160}
4161
4162static int
4163wpi_load_firmware(struct wpi_softc *sc)
4164{
4165	struct wpi_fw_info *fw = &sc->fw;
4166	struct wpi_dma_info *dma = &sc->fw_dma;
4167	int error;
4168
4169	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4170
4171	/* Copy initialization sections into pre-allocated DMA-safe memory. */
4172	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
4173	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4174	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->init.text, fw->init.textsz);
4175	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4176
4177	/* Tell adapter where to find initialization sections. */
4178	if ((error = wpi_nic_lock(sc)) != 0)
4179		return error;
4180	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4181	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz);
4182	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4183	    dma->paddr + WPI_FW_DATA_MAXSZ);
4184	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
4185	wpi_nic_unlock(sc);
4186
4187	/* Load firmware boot code. */
4188	error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
4189	if (error != 0) {
4190		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4191		    __func__);
4192		return error;
4193	}
4194
4195	/* Now press "execute". */
4196	WPI_WRITE(sc, WPI_RESET, 0);
4197
4198	/* Wait at most one second for first alive notification. */
4199	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
4200		device_printf(sc->sc_dev,
4201		    "%s: timeout waiting for adapter to initialize, error %d\n",
4202		    __func__, error);
4203		return error;
4204	}
4205
4206	/* Copy runtime sections into pre-allocated DMA-safe memory. */
4207	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
4208	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4209	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->main.text, fw->main.textsz);
4210	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4211
4212	/* Tell adapter where to find runtime sections. */
4213	if ((error = wpi_nic_lock(sc)) != 0)
4214		return error;
4215	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4216	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz);
4217	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4218	    dma->paddr + WPI_FW_DATA_MAXSZ);
4219	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE,
4220	    WPI_FW_UPDATED | fw->main.textsz);
4221	wpi_nic_unlock(sc);
4222
4223	return 0;
4224}
4225
4226static int
4227wpi_read_firmware(struct wpi_softc *sc)
4228{
4229	const struct firmware *fp;
4230	struct wpi_fw_info *fw = &sc->fw;
4231	const struct wpi_firmware_hdr *hdr;
4232	int error;
4233
4234	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4235
4236	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
4237	    "Attempting Loading Firmware from %s module\n", WPI_FW_NAME);
4238
4239	WPI_UNLOCK(sc);
4240	fp = firmware_get(WPI_FW_NAME);
4241	WPI_LOCK(sc);
4242
4243	if (fp == NULL) {
4244		device_printf(sc->sc_dev,
4245		    "could not load firmware image '%s'\n", WPI_FW_NAME);
4246		return EINVAL;
4247	}
4248
4249	sc->fw_fp = fp;
4250
4251	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
4252		device_printf(sc->sc_dev,
4253		    "firmware file too short: %zu bytes\n", fp->datasize);
4254		error = EINVAL;
4255		goto fail;
4256	}
4257
4258	fw->size = fp->datasize;
4259	fw->data = (const uint8_t *)fp->data;
4260
4261	/* Extract firmware header information. */
4262	hdr = (const struct wpi_firmware_hdr *)fw->data;
4263
4264	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
4265	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
4266
4267	fw->main.textsz = le32toh(hdr->rtextsz);
4268	fw->main.datasz = le32toh(hdr->rdatasz);
4269	fw->init.textsz = le32toh(hdr->itextsz);
4270	fw->init.datasz = le32toh(hdr->idatasz);
4271	fw->boot.textsz = le32toh(hdr->btextsz);
4272	fw->boot.datasz = 0;
4273
4274	/* Sanity-check firmware header. */
4275	if (fw->main.textsz > WPI_FW_TEXT_MAXSZ ||
4276	    fw->main.datasz > WPI_FW_DATA_MAXSZ ||
4277	    fw->init.textsz > WPI_FW_TEXT_MAXSZ ||
4278	    fw->init.datasz > WPI_FW_DATA_MAXSZ ||
4279	    fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
4280	    (fw->boot.textsz & 3) != 0) {
4281		device_printf(sc->sc_dev, "invalid firmware header\n");
4282		error = EINVAL;
4283		goto fail;
4284	}
4285
4286	/* Check that all firmware sections fit. */
4287	if (fw->size < sizeof (*hdr) + fw->main.textsz + fw->main.datasz +
4288	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
4289		device_printf(sc->sc_dev,
4290		    "firmware file too short: %zu bytes\n", fw->size);
4291		error = EINVAL;
4292		goto fail;
4293	}
4294
4295	/* Get pointers to firmware sections. */
4296	fw->main.text = (const uint8_t *)(hdr + 1);
4297	fw->main.data = fw->main.text + fw->main.textsz;
4298	fw->init.text = fw->main.data + fw->main.datasz;
4299	fw->init.data = fw->init.text + fw->init.textsz;
4300	fw->boot.text = fw->init.data + fw->init.datasz;
4301
4302	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
4303	    "Firmware Version: Major %d, Minor %d, Driver %d, \n"
4304	    "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
4305	    hdr->major, hdr->minor, le32toh(hdr->driver),
4306	    fw->main.textsz, fw->main.datasz,
4307	    fw->init.textsz, fw->init.datasz, fw->boot.textsz);
4308
4309	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.text %p\n", fw->main.text);
4310	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.data %p\n", fw->main.data);
4311	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.text %p\n", fw->init.text);
4312	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.data %p\n", fw->init.data);
4313	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->boot.text %p\n", fw->boot.text);
4314
4315	return 0;
4316
4317fail:	wpi_unload_firmware(sc);
4318	return error;
4319}
4320
4321/**
4322 * Free the referenced firmware image
4323 */
4324static void
4325wpi_unload_firmware(struct wpi_softc *sc)
4326{
4327	if (sc->fw_fp != NULL) {
4328		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
4329		sc->fw_fp = NULL;
4330	}
4331}
4332
4333static int
4334wpi_clock_wait(struct wpi_softc *sc)
4335{
4336	int ntries;
4337
4338	/* Set "initialization complete" bit. */
4339	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
4340
4341	/* Wait for clock stabilization. */
4342	for (ntries = 0; ntries < 2500; ntries++) {
4343		if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY)
4344			return 0;
4345		DELAY(100);
4346	}
4347	device_printf(sc->sc_dev,
4348	    "%s: timeout waiting for clock stabilization\n", __func__);
4349
4350	return ETIMEDOUT;
4351}
4352
4353static int
4354wpi_apm_init(struct wpi_softc *sc)
4355{
4356	uint32_t reg;
4357	int error;
4358
4359	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4360
4361	/* Disable L0s exit timer (NMI bug workaround). */
4362	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_DIS_L0S_TIMER);
4363	/* Don't wait for ICH L0s (ICH bug workaround). */
4364	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX);
4365
4366	/* Set FH wait threshold to max (HW bug under stress workaround). */
4367	WPI_SETBITS(sc, WPI_DBG_HPET_MEM, 0xffff0000);
4368
4369	/* Retrieve PCIe Active State Power Management (ASPM). */
4370	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
4371	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
4372	if (reg & 0x02)	/* L1 Entry enabled. */
4373		WPI_SETBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
4374	else
4375		WPI_CLRBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
4376
4377	WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT);
4378
4379	/* Wait for clock stabilization before accessing prph. */
4380	if ((error = wpi_clock_wait(sc)) != 0)
4381		return error;
4382
4383	if ((error = wpi_nic_lock(sc)) != 0)
4384		return error;
4385	/* Enable DMA and BSM (Bootstrap State Machine). */
4386	wpi_prph_write(sc, WPI_APMG_CLK_EN,
4387	    WPI_APMG_CLK_CTRL_DMA_CLK_RQT | WPI_APMG_CLK_CTRL_BSM_CLK_RQT);
4388	DELAY(20);
4389	/* Disable L1-Active. */
4390	wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS);
4391	/* ??? */
4392	wpi_prph_clrbits(sc, WPI_APMG_PS, 0x00000E00);
4393	wpi_nic_unlock(sc);
4394
4395	return 0;
4396}
4397
4398static void
4399wpi_apm_stop_master(struct wpi_softc *sc)
4400{
4401	int ntries;
4402
4403	/* Stop busmaster DMA activity. */
4404	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER);
4405
4406	if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) ==
4407	    WPI_GP_CNTRL_MAC_PS)
4408		return; /* Already asleep. */
4409
4410	for (ntries = 0; ntries < 100; ntries++) {
4411		if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED)
4412			return;
4413		DELAY(10);
4414	}
4415	device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
4416}
4417
4418static void
4419wpi_apm_stop(struct wpi_softc *sc)
4420{
4421	wpi_apm_stop_master(sc);
4422
4423	/* Reset the entire device. */
4424	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW);
4425	DELAY(10);
4426	/* Clear "initialization complete" bit. */
4427	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
4428}
4429
4430static void
4431wpi_nic_config(struct wpi_softc *sc)
4432{
4433	uint32_t rev;
4434
4435	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4436
4437	/* voodoo from the Linux "driver".. */
4438	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
4439	if ((rev & 0xc0) == 0x40)
4440		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB);
4441	else if (!(rev & 0x80))
4442		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM);
4443
4444	if (sc->cap == 0x80)
4445		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC);
4446
4447	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
4448		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
4449	else
4450		WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
4451
4452	if (sc->type > 1)
4453		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B);
4454}
4455
4456static int
4457wpi_hw_init(struct wpi_softc *sc)
4458{
4459	int chnl, ntries, error;
4460
4461	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4462
4463	/* Clear pending interrupts. */
4464	WPI_WRITE(sc, WPI_INT, 0xffffffff);
4465
4466	if ((error = wpi_apm_init(sc)) != 0) {
4467		device_printf(sc->sc_dev,
4468		    "%s: could not power ON adapter, error %d\n", __func__,
4469		    error);
4470		return error;
4471	}
4472
4473	/* Select VMAIN power source. */
4474	if ((error = wpi_nic_lock(sc)) != 0)
4475		return error;
4476	wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK);
4477	wpi_nic_unlock(sc);
4478	/* Spin until VMAIN gets selected. */
4479	for (ntries = 0; ntries < 5000; ntries++) {
4480		if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN)
4481			break;
4482		DELAY(10);
4483	}
4484	if (ntries == 5000) {
4485		device_printf(sc->sc_dev, "timeout selecting power source\n");
4486		return ETIMEDOUT;
4487	}
4488
4489	/* Perform adapter initialization. */
4490	wpi_nic_config(sc);
4491
4492	/* Initialize RX ring. */
4493	if ((error = wpi_nic_lock(sc)) != 0)
4494		return error;
4495	/* Set physical address of RX ring. */
4496	WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr);
4497	/* Set physical address of RX read pointer. */
4498	WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr +
4499	    offsetof(struct wpi_shared, next));
4500	WPI_WRITE(sc, WPI_FH_RX_WPTR, 0);
4501	/* Enable RX. */
4502	WPI_WRITE(sc, WPI_FH_RX_CONFIG,
4503	    WPI_FH_RX_CONFIG_DMA_ENA |
4504	    WPI_FH_RX_CONFIG_RDRBD_ENA |
4505	    WPI_FH_RX_CONFIG_WRSTATUS_ENA |
4506	    WPI_FH_RX_CONFIG_MAXFRAG |
4507	    WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) |
4508	    WPI_FH_RX_CONFIG_IRQ_DST_HOST |
4509	    WPI_FH_RX_CONFIG_IRQ_TIMEOUT(1));
4510	(void)WPI_READ(sc, WPI_FH_RSSR_TBL);	/* barrier */
4511	wpi_nic_unlock(sc);
4512	WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7);
4513
4514	/* Initialize TX rings. */
4515	if ((error = wpi_nic_lock(sc)) != 0)
4516		return error;
4517	wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2);	/* bypass mode */
4518	wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1);	/* enable RA0 */
4519	/* Enable all 6 TX rings. */
4520	wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f);
4521	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000);
4522	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002);
4523	wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4);
4524	wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5);
4525	/* Set physical address of TX rings. */
4526	WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr);
4527	WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5);
4528
4529	/* Enable all DMA channels. */
4530	for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
4531		WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0);
4532		WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0);
4533		WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008);
4534	}
4535	wpi_nic_unlock(sc);
4536	(void)WPI_READ(sc, WPI_FH_TX_BASE);	/* barrier */
4537
4538	/* Clear "radio off" and "commands blocked" bits. */
4539	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
4540	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED);
4541
4542	/* Clear pending interrupts. */
4543	WPI_WRITE(sc, WPI_INT, 0xffffffff);
4544	/* Enable interrupts. */
4545	WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
4546
4547	/* _Really_ make sure "radio off" bit is cleared! */
4548	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
4549	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
4550
4551	if ((error = wpi_load_firmware(sc)) != 0) {
4552		device_printf(sc->sc_dev,
4553		    "%s: could not load firmware, error %d\n", __func__,
4554		    error);
4555		return error;
4556	}
4557	/* Wait at most one second for firmware alive notification. */
4558	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
4559		device_printf(sc->sc_dev,
4560		    "%s: timeout waiting for adapter to initialize, error %d\n",
4561		    __func__, error);
4562		return error;
4563	}
4564
4565	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4566
4567	/* Do post-firmware initialization. */
4568	return wpi_post_alive(sc);
4569}
4570
4571static void
4572wpi_hw_stop(struct wpi_softc *sc)
4573{
4574	int chnl, qid, ntries;
4575
4576	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4577
4578	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP)
4579		wpi_nic_lock(sc);
4580
4581	WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO);
4582
4583	/* Disable interrupts. */
4584	WPI_WRITE(sc, WPI_INT_MASK, 0);
4585	WPI_WRITE(sc, WPI_INT, 0xffffffff);
4586	WPI_WRITE(sc, WPI_FH_INT, 0xffffffff);
4587
4588	/* Make sure we no longer hold the NIC lock. */
4589	wpi_nic_unlock(sc);
4590
4591	if (wpi_nic_lock(sc) == 0) {
4592		/* Stop TX scheduler. */
4593		wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0);
4594		wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0);
4595
4596		/* Stop all DMA channels. */
4597		for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
4598			WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0);
4599			for (ntries = 0; ntries < 200; ntries++) {
4600				if (WPI_READ(sc, WPI_FH_TX_STATUS) &
4601				    WPI_FH_TX_STATUS_IDLE(chnl))
4602					break;
4603				DELAY(10);
4604			}
4605		}
4606		wpi_nic_unlock(sc);
4607	}
4608
4609	/* Stop RX ring. */
4610	wpi_reset_rx_ring(sc);
4611
4612	/* Reset all TX rings. */
4613	for (qid = 0; qid < WPI_NTXQUEUES; qid++)
4614		wpi_reset_tx_ring(sc, &sc->txq[qid]);
4615
4616	if (wpi_nic_lock(sc) == 0) {
4617		wpi_prph_write(sc, WPI_APMG_CLK_DIS,
4618		    WPI_APMG_CLK_CTRL_DMA_CLK_RQT);
4619		wpi_nic_unlock(sc);
4620	}
4621	DELAY(5);
4622	/* Power OFF adapter. */
4623	wpi_apm_stop(sc);
4624}
4625
4626static void
4627wpi_radio_on(void *arg0, int pending)
4628{
4629	struct wpi_softc *sc = arg0;
4630	struct ifnet *ifp = sc->sc_ifp;
4631	struct ieee80211com *ic = ifp->if_l2com;
4632	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4633
4634	device_printf(sc->sc_dev, "RF switch: radio enabled\n");
4635
4636	if (vap != NULL) {
4637		wpi_init(sc);
4638		ieee80211_init(vap);
4639	}
4640
4641	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL) {
4642		WPI_LOCK(sc);
4643		callout_stop(&sc->watchdog_rfkill);
4644		WPI_UNLOCK(sc);
4645	}
4646}
4647
4648static void
4649wpi_radio_off(void *arg0, int pending)
4650{
4651	struct wpi_softc *sc = arg0;
4652	struct ifnet *ifp = sc->sc_ifp;
4653	struct ieee80211com *ic = ifp->if_l2com;
4654	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4655
4656	device_printf(sc->sc_dev, "RF switch: radio disabled\n");
4657
4658	wpi_stop(sc);
4659	if (vap != NULL)
4660		ieee80211_stop(vap);
4661
4662	callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, sc);
4663}
4664
4665static void
4666wpi_init_locked(struct wpi_softc *sc)
4667{
4668	struct ifnet *ifp = sc->sc_ifp;
4669	int error;
4670
4671	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4672
4673	WPI_LOCK_ASSERT(sc);
4674
4675	/* Check that the radio is not disabled by hardware switch. */
4676	if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) {
4677		device_printf(sc->sc_dev,
4678		    "RF switch: radio disabled (%s)\n", __func__);
4679		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
4680		    sc);
4681		return;
4682	}
4683
4684	/* Read firmware images from the filesystem. */
4685	if ((error = wpi_read_firmware(sc)) != 0) {
4686		device_printf(sc->sc_dev,
4687		    "%s: could not read firmware, error %d\n", __func__,
4688		    error);
4689		goto fail;
4690	}
4691
4692	/* Initialize hardware and upload firmware. */
4693	error = wpi_hw_init(sc);
4694	wpi_unload_firmware(sc);
4695	if (error != 0) {
4696		device_printf(sc->sc_dev,
4697		    "%s: could not initialize hardware, error %d\n", __func__,
4698		    error);
4699		goto fail;
4700	}
4701
4702	/* Configure adapter now that it is ready. */
4703	if ((error = wpi_config(sc)) != 0) {
4704		device_printf(sc->sc_dev,
4705		    "%s: could not configure device, error %d\n", __func__,
4706		    error);
4707		goto fail;
4708	}
4709
4710	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4711	ifp->if_drv_flags |= IFF_DRV_RUNNING;
4712
4713	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
4714
4715	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4716
4717	return;
4718
4719fail:	wpi_stop_locked(sc);
4720	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
4721}
4722
4723static void
4724wpi_init(void *arg)
4725{
4726	struct wpi_softc *sc = arg;
4727	struct ifnet *ifp = sc->sc_ifp;
4728	struct ieee80211com *ic = ifp->if_l2com;
4729
4730	WPI_LOCK(sc);
4731	wpi_init_locked(sc);
4732	WPI_UNLOCK(sc);
4733
4734	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4735		ieee80211_start_all(ic);
4736}
4737
4738static void
4739wpi_stop_locked(struct wpi_softc *sc)
4740{
4741	struct ifnet *ifp = sc->sc_ifp;
4742
4743	WPI_LOCK_ASSERT(sc);
4744
4745	sc->sc_scan_timer = 0;
4746	sc->sc_tx_timer = 0;
4747	callout_stop(&sc->watchdog_to);
4748	callout_stop(&sc->calib_to);
4749	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4750
4751	/* Power OFF hardware. */
4752	wpi_hw_stop(sc);
4753}
4754
4755static void
4756wpi_stop(struct wpi_softc *sc)
4757{
4758	WPI_LOCK(sc);
4759	wpi_stop_locked(sc);
4760	WPI_UNLOCK(sc);
4761}
4762
4763/*
4764 * Callback from net80211 to start a scan.
4765 */
4766static void
4767wpi_scan_start(struct ieee80211com *ic)
4768{
4769	struct ifnet *ifp = ic->ic_ifp;
4770	struct wpi_softc *sc = ifp->if_softc;
4771
4772	WPI_LOCK(sc);
4773	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
4774	WPI_UNLOCK(sc);
4775}
4776
4777/*
4778 * Callback from net80211 to terminate a scan.
4779 */
4780static void
4781wpi_scan_end(struct ieee80211com *ic)
4782{
4783	struct ifnet *ifp = ic->ic_ifp;
4784	struct wpi_softc *sc = ifp->if_softc;
4785	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4786
4787	if (vap->iv_state == IEEE80211_S_RUN) {
4788		WPI_LOCK(sc);
4789		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
4790		WPI_UNLOCK(sc);
4791	}
4792}
4793
4794/**
4795 * Called by the net80211 framework to indicate to the driver
4796 * that the channel should be changed
4797 */
4798static void
4799wpi_set_channel(struct ieee80211com *ic)
4800{
4801	const struct ieee80211_channel *c = ic->ic_curchan;
4802	struct ifnet *ifp = ic->ic_ifp;
4803	struct wpi_softc *sc = ifp->if_softc;
4804	int error;
4805
4806	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4807
4808	WPI_LOCK(sc);
4809	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
4810	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
4811	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
4812	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
4813
4814	/*
4815	 * Only need to set the channel in Monitor mode. AP scanning and auth
4816	 * are already taken care of by their respective firmware commands.
4817	 */
4818	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4819		sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4820		if (IEEE80211_IS_CHAN_2GHZ(c)) {
4821			sc->rxon.flags |= htole32(WPI_RXON_AUTO |
4822			    WPI_RXON_24GHZ);
4823		} else {
4824			sc->rxon.flags &= ~htole32(WPI_RXON_AUTO |
4825			    WPI_RXON_24GHZ);
4826		}
4827		if ((error = wpi_send_rxon(sc, 0, 0)) != 0)
4828			device_printf(sc->sc_dev,
4829			    "%s: error %d settting channel\n", __func__,
4830			    error);
4831	}
4832	WPI_UNLOCK(sc);
4833}
4834
4835/**
4836 * Called by net80211 to indicate that we need to scan the current
4837 * channel. The channel is previously be set via the wpi_set_channel
4838 * callback.
4839 */
4840static void
4841wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
4842{
4843	struct ieee80211vap *vap = ss->ss_vap;
4844	struct ieee80211com *ic = vap->iv_ic;
4845	struct ifnet *ifp = ic->ic_ifp;
4846	struct wpi_softc *sc = ifp->if_softc;
4847	int error;
4848
4849	if (sc->rxon.chan != ieee80211_chan2ieee(ic, ic->ic_curchan)) {
4850		WPI_LOCK(sc);
4851		error = wpi_scan(sc, ic->ic_curchan);
4852		WPI_UNLOCK(sc);
4853		if (error != 0)
4854			ieee80211_cancel_scan(vap);
4855	} else {
4856		/* Send probe request when associated. */
4857		sc->sc_scan_curchan(ss, maxdwell);
4858	}
4859}
4860
4861/**
4862 * Called by the net80211 framework to indicate
4863 * the minimum dwell time has been met, terminate the scan.
4864 * We don't actually terminate the scan as the firmware will notify
4865 * us when it's finished and we have no way to interrupt it.
4866 */
4867static void
4868wpi_scan_mindwell(struct ieee80211_scan_state *ss)
4869{
4870	/* NB: don't try to abort scan; wait for firmware to finish */
4871}
4872
4873static void
4874wpi_hw_reset(void *arg, int pending)
4875{
4876	struct wpi_softc *sc = arg;
4877	struct ifnet *ifp = sc->sc_ifp;
4878	struct ieee80211com *ic = ifp->if_l2com;
4879	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4880
4881	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4882
4883	wpi_stop(sc);
4884	if (vap != NULL)
4885		ieee80211_stop(vap);
4886	wpi_init(sc);
4887	if (vap != NULL)
4888		ieee80211_init(vap);
4889}
4890