if_wpi.c revision 195562
1/*-
2 * Copyright (c) 2006,2007
3 *	Damien Bergamini <damien.bergamini@free.fr>
4 *	Benjamin Close <Benjamin.Close@clearchain.com>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19#define VERSION "20071127"
20
21#include <sys/cdefs.h>
22__FBSDID("$FreeBSD: head/sys/dev/wpi/if_wpi.c 195562 2009-07-10 15:28:33Z rpaulo $");
23
24/*
25 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26 *
27 * The 3945ABG network adapter doesn't use traditional hardware as
28 * many other adaptors do. Instead at run time the eeprom is set into a known
29 * state and told to load boot firmware. The boot firmware loads an init and a
30 * main  binary firmware image into SRAM on the card via DMA.
31 * Once the firmware is loaded, the driver/hw then
32 * communicate by way of circular dma rings via the the SRAM to the firmware.
33 *
34 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35 * The 4 tx data rings allow for prioritization QoS.
36 *
37 * The rx data ring consists of 32 dma buffers. Two registers are used to
38 * indicate where in the ring the driver and the firmware are up to. The
39 * driver sets the initial read index (reg1) and the initial write index (reg2),
40 * the firmware updates the read index (reg1) on rx of a packet and fires an
41 * interrupt. The driver then processes the buffers starting at reg1 indicating
42 * to the firmware which buffers have been accessed by updating reg2. At the
43 * same time allocating new memory for the processed buffer.
44 *
45 * A similar thing happens with the tx rings. The difference is the firmware
46 * stop processing buffers once the queue is full and until confirmation
47 * of a successful transmition (tx_intr) has occurred.
48 *
49 * The command ring operates in the same manner as the tx queues.
50 *
51 * All communication direct to the card (ie eeprom) is classed as Stage1
52 * communication
53 *
54 * All communication via the firmware to the card is classed as State2.
55 * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56 * firmware. The bootstrap firmware and runtime firmware are loaded
57 * from host memory via dma to the card then told to execute. From this point
58 * on the majority of communications between the driver and the card goes
59 * via the firmware.
60 */
61
62#include <sys/param.h>
63#include <sys/sysctl.h>
64#include <sys/sockio.h>
65#include <sys/mbuf.h>
66#include <sys/kernel.h>
67#include <sys/socket.h>
68#include <sys/systm.h>
69#include <sys/malloc.h>
70#include <sys/queue.h>
71#include <sys/taskqueue.h>
72#include <sys/module.h>
73#include <sys/bus.h>
74#include <sys/endian.h>
75#include <sys/linker.h>
76#include <sys/firmware.h>
77
78#include <machine/bus.h>
79#include <machine/resource.h>
80#include <sys/rman.h>
81
82#include <dev/pci/pcireg.h>
83#include <dev/pci/pcivar.h>
84
85#include <net/bpf.h>
86#include <net/if.h>
87#include <net/if_arp.h>
88#include <net/ethernet.h>
89#include <net/if_dl.h>
90#include <net/if_media.h>
91#include <net/if_types.h>
92
93#include <net80211/ieee80211_var.h>
94#include <net80211/ieee80211_radiotap.h>
95#include <net80211/ieee80211_regdomain.h>
96
97#include <netinet/in.h>
98#include <netinet/in_systm.h>
99#include <netinet/in_var.h>
100#include <netinet/ip.h>
101#include <netinet/if_ether.h>
102
103#include <dev/wpi/if_wpireg.h>
104#include <dev/wpi/if_wpivar.h>
105
106#define WPI_DEBUG
107
108#ifdef WPI_DEBUG
109#define DPRINTF(x)	do { if (wpi_debug != 0) printf x; } while (0)
110#define DPRINTFN(n, x)	do { if (wpi_debug & n) printf x; } while (0)
111#define	WPI_DEBUG_SET	(wpi_debug != 0)
112
113enum {
114	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
115	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
116	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
117	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
118	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
119	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
120	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
121	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
122	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
123	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
124	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
125	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
126	WPI_DEBUG_ANY		= 0xffffffff
127};
128
129static int wpi_debug = 1;
130SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
131TUNABLE_INT("debug.wpi", &wpi_debug);
132
133#else
134#define DPRINTF(x)
135#define DPRINTFN(n, x)
136#define WPI_DEBUG_SET	0
137#endif
138
139struct wpi_ident {
140	uint16_t	vendor;
141	uint16_t	device;
142	uint16_t	subdevice;
143	const char	*name;
144};
145
146static const struct wpi_ident wpi_ident_table[] = {
147	/* The below entries support ABG regardless of the subid */
148	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
149	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
150	/* The below entries only support BG */
151	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
152	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
153	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
154	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
155	{ 0, 0, 0, NULL }
156};
157
158static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
159		    const char name[IFNAMSIZ], int unit, int opmode,
160		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
161		    const uint8_t mac[IEEE80211_ADDR_LEN]);
162static void	wpi_vap_delete(struct ieee80211vap *);
163static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
164		    void **, bus_size_t, bus_size_t, int);
165static void	wpi_dma_contig_free(struct wpi_dma_info *);
166static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
167static int	wpi_alloc_shared(struct wpi_softc *);
168static void	wpi_free_shared(struct wpi_softc *);
169static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
170static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
171static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
172static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
173		    int, int);
174static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
175static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
176static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
177			    const uint8_t mac[IEEE80211_ADDR_LEN]);
178static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
179static void	wpi_mem_lock(struct wpi_softc *);
180static void	wpi_mem_unlock(struct wpi_softc *);
181static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
182static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
183static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
184		    const uint32_t *, int);
185static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
186static int	wpi_alloc_fwmem(struct wpi_softc *);
187static void	wpi_free_fwmem(struct wpi_softc *);
188static int	wpi_load_firmware(struct wpi_softc *);
189static void	wpi_unload_firmware(struct wpi_softc *);
190static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
191static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
192		    struct wpi_rx_data *);
193static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
194static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
195static void	wpi_notif_intr(struct wpi_softc *);
196static void	wpi_intr(void *);
197static uint8_t	wpi_plcp_signal(int);
198static void	wpi_watchdog(void *);
199static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
200		    struct ieee80211_node *, int);
201static void	wpi_start(struct ifnet *);
202static void	wpi_start_locked(struct ifnet *);
203static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
204		    const struct ieee80211_bpf_params *);
205static void	wpi_scan_start(struct ieee80211com *);
206static void	wpi_scan_end(struct ieee80211com *);
207static void	wpi_set_channel(struct ieee80211com *);
208static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
209static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
210static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
211static void	wpi_read_eeprom(struct wpi_softc *,
212		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
213static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
214static void	wpi_read_eeprom_group(struct wpi_softc *, int);
215static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
216static int	wpi_wme_update(struct ieee80211com *);
217static int	wpi_mrr_setup(struct wpi_softc *);
218static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
219static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
220#if 0
221static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
222#endif
223static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
224static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
225static int	wpi_scan(struct wpi_softc *);
226static int	wpi_config(struct wpi_softc *);
227static void	wpi_stop_master(struct wpi_softc *);
228static int	wpi_power_up(struct wpi_softc *);
229static int	wpi_reset(struct wpi_softc *);
230static void	wpi_hwreset(void *, int);
231static void	wpi_rfreset(void *, int);
232static void	wpi_hw_config(struct wpi_softc *);
233static void	wpi_init(void *);
234static void	wpi_init_locked(struct wpi_softc *, int);
235static void	wpi_stop(struct wpi_softc *);
236static void	wpi_stop_locked(struct wpi_softc *);
237
238static void	wpi_newassoc(struct ieee80211_node *, int);
239static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
240		    int);
241static void	wpi_calib_timeout(void *);
242static void	wpi_power_calibration(struct wpi_softc *, int);
243static int	wpi_get_power_index(struct wpi_softc *,
244		    struct wpi_power_group *, struct ieee80211_channel *, int);
245#ifdef WPI_DEBUG
246static const char *wpi_cmd_str(int);
247#endif
248static int wpi_probe(device_t);
249static int wpi_attach(device_t);
250static int wpi_detach(device_t);
251static int wpi_shutdown(device_t);
252static int wpi_suspend(device_t);
253static int wpi_resume(device_t);
254
255
256static device_method_t wpi_methods[] = {
257	/* Device interface */
258	DEVMETHOD(device_probe,		wpi_probe),
259	DEVMETHOD(device_attach,	wpi_attach),
260	DEVMETHOD(device_detach,	wpi_detach),
261	DEVMETHOD(device_shutdown,	wpi_shutdown),
262	DEVMETHOD(device_suspend,	wpi_suspend),
263	DEVMETHOD(device_resume,	wpi_resume),
264
265	{ 0, 0 }
266};
267
268static driver_t wpi_driver = {
269	"wpi",
270	wpi_methods,
271	sizeof (struct wpi_softc)
272};
273
274static devclass_t wpi_devclass;
275
276DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
277
278static const uint8_t wpi_ridx_to_plcp[] = {
279	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
280	/* R1-R4 (ral/ural is R4-R1) */
281	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
282	/* CCK: device-dependent */
283	10, 20, 55, 110
284};
285static const uint8_t wpi_ridx_to_rate[] = {
286	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
287	2, 4, 11, 22 /*CCK */
288};
289
290
291static int
292wpi_probe(device_t dev)
293{
294	const struct wpi_ident *ident;
295
296	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
297		if (pci_get_vendor(dev) == ident->vendor &&
298		    pci_get_device(dev) == ident->device) {
299			device_set_desc(dev, ident->name);
300			return 0;
301		}
302	}
303	return ENXIO;
304}
305
306/**
307 * Load the firmare image from disk to the allocated dma buffer.
308 * we also maintain the reference to the firmware pointer as there
309 * is times where we may need to reload the firmware but we are not
310 * in a context that can access the filesystem (ie taskq cause by restart)
311 *
312 * @return 0 on success, an errno on failure
313 */
314static int
315wpi_load_firmware(struct wpi_softc *sc)
316{
317	const struct firmware *fp;
318	struct wpi_dma_info *dma = &sc->fw_dma;
319	const struct wpi_firmware_hdr *hdr;
320	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
321	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
322	int error;
323
324	DPRINTFN(WPI_DEBUG_FIRMWARE,
325	    ("Attempting Loading Firmware from wpi_fw module\n"));
326
327	WPI_UNLOCK(sc);
328
329	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
330		device_printf(sc->sc_dev,
331		    "could not load firmware image 'wpifw'\n");
332		error = ENOENT;
333		WPI_LOCK(sc);
334		goto fail;
335	}
336
337	fp = sc->fw_fp;
338
339	WPI_LOCK(sc);
340
341	/* Validate the firmware is minimum a particular version */
342	if (fp->version < WPI_FW_MINVERSION) {
343	    device_printf(sc->sc_dev,
344			   "firmware version is too old. Need %d, got %d\n",
345			   WPI_FW_MINVERSION,
346			   fp->version);
347	    error = ENXIO;
348	    goto fail;
349	}
350
351	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
352		device_printf(sc->sc_dev,
353		    "firmware file too short: %zu bytes\n", fp->datasize);
354		error = ENXIO;
355		goto fail;
356	}
357
358	hdr = (const struct wpi_firmware_hdr *)fp->data;
359
360	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
361	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
362
363	rtextsz = le32toh(hdr->rtextsz);
364	rdatasz = le32toh(hdr->rdatasz);
365	itextsz = le32toh(hdr->itextsz);
366	idatasz = le32toh(hdr->idatasz);
367	btextsz = le32toh(hdr->btextsz);
368
369	/* check that all firmware segments are present */
370	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
371		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
372		device_printf(sc->sc_dev,
373		    "firmware file too short: %zu bytes\n", fp->datasize);
374		error = ENXIO; /* XXX appropriate error code? */
375		goto fail;
376	}
377
378	/* get pointers to firmware segments */
379	rtext = (const uint8_t *)(hdr + 1);
380	rdata = rtext + rtextsz;
381	itext = rdata + rdatasz;
382	idata = itext + itextsz;
383	btext = idata + idatasz;
384
385	DPRINTFN(WPI_DEBUG_FIRMWARE,
386	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
387	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
388	     (le32toh(hdr->version) & 0xff000000) >> 24,
389	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
390	     (le32toh(hdr->version) & 0x0000ffff),
391	     rtextsz, rdatasz,
392	     itextsz, idatasz, btextsz));
393
394	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
395	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
396	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
397	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
398	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
399
400	/* sanity checks */
401	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
402	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
403	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
404	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
405	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
406	    (btextsz & 3) != 0) {
407		device_printf(sc->sc_dev, "firmware invalid\n");
408		error = EINVAL;
409		goto fail;
410	}
411
412	/* copy initialization images into pre-allocated DMA-safe memory */
413	memcpy(dma->vaddr, idata, idatasz);
414	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
415
416	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
417
418	/* tell adapter where to find initialization images */
419	wpi_mem_lock(sc);
420	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
421	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
422	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
423	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
424	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
425	wpi_mem_unlock(sc);
426
427	/* load firmware boot code */
428	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
429	    device_printf(sc->sc_dev, "Failed to load microcode\n");
430	    goto fail;
431	}
432
433	/* now press "execute" */
434	WPI_WRITE(sc, WPI_RESET, 0);
435
436	/* wait at most one second for the first alive notification */
437	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
438		device_printf(sc->sc_dev,
439		    "timeout waiting for adapter to initialize\n");
440		goto fail;
441	}
442
443	/* copy runtime images into pre-allocated DMA-sage memory */
444	memcpy(dma->vaddr, rdata, rdatasz);
445	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
446	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
447
448	/* tell adapter where to find runtime images */
449	wpi_mem_lock(sc);
450	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
451	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
452	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
453	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
454	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
455	wpi_mem_unlock(sc);
456
457	/* wait at most one second for the first alive notification */
458	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
459		device_printf(sc->sc_dev,
460		    "timeout waiting for adapter to initialize2\n");
461		goto fail;
462	}
463
464	DPRINTFN(WPI_DEBUG_FIRMWARE,
465	    ("Firmware loaded to driver successfully\n"));
466	return error;
467fail:
468	wpi_unload_firmware(sc);
469	return error;
470}
471
472/**
473 * Free the referenced firmware image
474 */
475static void
476wpi_unload_firmware(struct wpi_softc *sc)
477{
478
479	if (sc->fw_fp) {
480		WPI_UNLOCK(sc);
481		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
482		WPI_LOCK(sc);
483		sc->fw_fp = NULL;
484	}
485}
486
487static int
488wpi_attach(device_t dev)
489{
490	struct wpi_softc *sc = device_get_softc(dev);
491	struct ifnet *ifp;
492	struct ieee80211com *ic;
493	int ac, error, supportsa = 1;
494	uint32_t tmp;
495	const struct wpi_ident *ident;
496	uint8_t macaddr[IEEE80211_ADDR_LEN];
497
498	sc->sc_dev = dev;
499
500	if (bootverbose || WPI_DEBUG_SET)
501	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
502
503	/*
504	 * Some card's only support 802.11b/g not a, check to see if
505	 * this is one such card. A 0x0 in the subdevice table indicates
506	 * the entire subdevice range is to be ignored.
507	 */
508	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
509		if (ident->subdevice &&
510		    pci_get_subdevice(dev) == ident->subdevice) {
511		    supportsa = 0;
512		    break;
513		}
514	}
515
516	/* Create the tasks that can be queued */
517	TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc);
518	TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc);
519
520	WPI_LOCK_INIT(sc);
521
522	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
523	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
524
525	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
526		device_printf(dev, "chip is in D%d power mode "
527		    "-- setting to D0\n", pci_get_powerstate(dev));
528		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
529	}
530
531	/* disable the retry timeout register */
532	pci_write_config(dev, 0x41, 0, 1);
533
534	/* enable bus-mastering */
535	pci_enable_busmaster(dev);
536
537	sc->mem_rid = PCIR_BAR(0);
538	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
539	    RF_ACTIVE);
540	if (sc->mem == NULL) {
541		device_printf(dev, "could not allocate memory resource\n");
542		error = ENOMEM;
543		goto fail;
544	}
545
546	sc->sc_st = rman_get_bustag(sc->mem);
547	sc->sc_sh = rman_get_bushandle(sc->mem);
548
549	sc->irq_rid = 0;
550	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
551	    RF_ACTIVE | RF_SHAREABLE);
552	if (sc->irq == NULL) {
553		device_printf(dev, "could not allocate interrupt resource\n");
554		error = ENOMEM;
555		goto fail;
556	}
557
558	/*
559	 * Allocate DMA memory for firmware transfers.
560	 */
561	if ((error = wpi_alloc_fwmem(sc)) != 0) {
562		printf(": could not allocate firmware memory\n");
563		error = ENOMEM;
564		goto fail;
565	}
566
567	/*
568	 * Put adapter into a known state.
569	 */
570	if ((error = wpi_reset(sc)) != 0) {
571		device_printf(dev, "could not reset adapter\n");
572		goto fail;
573	}
574
575	wpi_mem_lock(sc);
576	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
577	if (bootverbose || WPI_DEBUG_SET)
578	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
579
580	wpi_mem_unlock(sc);
581
582	/* Allocate shared page */
583	if ((error = wpi_alloc_shared(sc)) != 0) {
584		device_printf(dev, "could not allocate shared page\n");
585		goto fail;
586	}
587
588	/* tx data queues  - 4 for QoS purposes */
589	for (ac = 0; ac < WME_NUM_AC; ac++) {
590		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
591		if (error != 0) {
592		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
593		    goto fail;
594		}
595	}
596
597	/* command queue to talk to the card's firmware */
598	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
599	if (error != 0) {
600		device_printf(dev, "could not allocate command ring\n");
601		goto fail;
602	}
603
604	/* receive data queue */
605	error = wpi_alloc_rx_ring(sc, &sc->rxq);
606	if (error != 0) {
607		device_printf(dev, "could not allocate Rx ring\n");
608		goto fail;
609	}
610
611	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
612	if (ifp == NULL) {
613		device_printf(dev, "can not if_alloc()\n");
614		error = ENOMEM;
615		goto fail;
616	}
617	ic = ifp->if_l2com;
618
619	ic->ic_ifp = ifp;
620	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
621	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
622
623	/* set device capabilities */
624	ic->ic_caps =
625		  IEEE80211_C_STA		/* station mode supported */
626		| IEEE80211_C_MONITOR		/* monitor mode supported */
627		| IEEE80211_C_TXPMGT		/* tx power management */
628		| IEEE80211_C_SHSLOT		/* short slot time supported */
629		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
630		| IEEE80211_C_WPA		/* 802.11i */
631/* XXX looks like WME is partly supported? */
632#if 0
633		| IEEE80211_C_IBSS		/* IBSS mode support */
634		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
635		| IEEE80211_C_WME		/* 802.11e */
636		| IEEE80211_C_HOSTAP		/* Host access point mode */
637#endif
638		;
639
640	/*
641	 * Read in the eeprom and also setup the channels for
642	 * net80211. We don't set the rates as net80211 does this for us
643	 */
644	wpi_read_eeprom(sc, macaddr);
645
646	if (bootverbose || WPI_DEBUG_SET) {
647	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
648	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
649			  sc->type > 1 ? 'B': '?');
650	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
651			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
652	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
653			  supportsa ? "does" : "does not");
654
655	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
656	       what sc->rev really represents - benjsc 20070615 */
657	}
658
659	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
660	ifp->if_softc = sc;
661	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
662	ifp->if_init = wpi_init;
663	ifp->if_ioctl = wpi_ioctl;
664	ifp->if_start = wpi_start;
665	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
666	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
667	IFQ_SET_READY(&ifp->if_snd);
668
669	ieee80211_ifattach(ic, macaddr);
670	/* override default methods */
671	ic->ic_node_alloc = wpi_node_alloc;
672	ic->ic_newassoc = wpi_newassoc;
673	ic->ic_raw_xmit = wpi_raw_xmit;
674	ic->ic_wme.wme_update = wpi_wme_update;
675	ic->ic_scan_start = wpi_scan_start;
676	ic->ic_scan_end = wpi_scan_end;
677	ic->ic_set_channel = wpi_set_channel;
678	ic->ic_scan_curchan = wpi_scan_curchan;
679	ic->ic_scan_mindwell = wpi_scan_mindwell;
680
681	ic->ic_vap_create = wpi_vap_create;
682	ic->ic_vap_delete = wpi_vap_delete;
683
684	ieee80211_radiotap_attach(ic,
685	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
686		WPI_TX_RADIOTAP_PRESENT,
687	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
688		WPI_RX_RADIOTAP_PRESENT);
689
690	/*
691	 * Hook our interrupt after all initialization is complete.
692	 */
693	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
694	    NULL, wpi_intr, sc, &sc->sc_ih);
695	if (error != 0) {
696		device_printf(dev, "could not set up interrupt\n");
697		goto fail;
698	}
699
700	if (bootverbose)
701		ieee80211_announce(ic);
702#ifdef XXX_DEBUG
703	ieee80211_announce_channels(ic);
704#endif
705	return 0;
706
707fail:	wpi_detach(dev);
708	return ENXIO;
709}
710
711static int
712wpi_detach(device_t dev)
713{
714	struct wpi_softc *sc = device_get_softc(dev);
715	struct ifnet *ifp = sc->sc_ifp;
716	struct ieee80211com *ic = ifp->if_l2com;
717	int ac;
718
719	ieee80211_draintask(ic, &sc->sc_restarttask);
720	ieee80211_draintask(ic, &sc->sc_radiotask);
721
722	if (ifp != NULL) {
723		wpi_stop(sc);
724		callout_drain(&sc->watchdog_to);
725		callout_drain(&sc->calib_to);
726		ieee80211_ifdetach(ic);
727	}
728
729	WPI_LOCK(sc);
730	if (sc->txq[0].data_dmat) {
731		for (ac = 0; ac < WME_NUM_AC; ac++)
732			wpi_free_tx_ring(sc, &sc->txq[ac]);
733
734		wpi_free_tx_ring(sc, &sc->cmdq);
735		wpi_free_rx_ring(sc, &sc->rxq);
736		wpi_free_shared(sc);
737	}
738
739	if (sc->fw_fp != NULL) {
740		wpi_unload_firmware(sc);
741	}
742
743	if (sc->fw_dma.tag)
744		wpi_free_fwmem(sc);
745	WPI_UNLOCK(sc);
746
747	if (sc->irq != NULL) {
748		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
749		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
750	}
751
752	if (sc->mem != NULL)
753		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
754
755	if (ifp != NULL)
756		if_free(ifp);
757
758	WPI_LOCK_DESTROY(sc);
759
760	return 0;
761}
762
763static struct ieee80211vap *
764wpi_vap_create(struct ieee80211com *ic,
765	const char name[IFNAMSIZ], int unit, int opmode, int flags,
766	const uint8_t bssid[IEEE80211_ADDR_LEN],
767	const uint8_t mac[IEEE80211_ADDR_LEN])
768{
769	struct wpi_vap *wvp;
770	struct ieee80211vap *vap;
771
772	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
773		return NULL;
774	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
775	    M_80211_VAP, M_NOWAIT | M_ZERO);
776	if (wvp == NULL)
777		return NULL;
778	vap = &wvp->vap;
779	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
780	/* override with driver methods */
781	wvp->newstate = vap->iv_newstate;
782	vap->iv_newstate = wpi_newstate;
783
784	ieee80211_amrr_init(&wvp->amrr, vap,
785	    IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
786	    IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD,
787	    500 /*ms*/);
788
789	/* complete setup */
790	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
791	ic->ic_opmode = opmode;
792	return vap;
793}
794
795static void
796wpi_vap_delete(struct ieee80211vap *vap)
797{
798	struct wpi_vap *wvp = WPI_VAP(vap);
799
800	ieee80211_amrr_cleanup(&wvp->amrr);
801	ieee80211_vap_detach(vap);
802	free(wvp, M_80211_VAP);
803}
804
805static void
806wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
807{
808	if (error != 0)
809		return;
810
811	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
812
813	*(bus_addr_t *)arg = segs[0].ds_addr;
814}
815
816/*
817 * Allocates a contiguous block of dma memory of the requested size and
818 * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
819 * allocations greater than 4096 may fail. Hence if the requested alignment is
820 * greater we allocate 'alignment' size extra memory and shift the vaddr and
821 * paddr after the dma load. This bypasses the problem at the cost of a little
822 * more memory.
823 */
824static int
825wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
826    void **kvap, bus_size_t size, bus_size_t alignment, int flags)
827{
828	int error;
829	bus_size_t align;
830	bus_size_t reqsize;
831
832	DPRINTFN(WPI_DEBUG_DMA,
833	    ("Size: %zd - alignment %zd\n", size, alignment));
834
835	dma->size = size;
836	dma->tag = NULL;
837
838	if (alignment > 4096) {
839		align = PAGE_SIZE;
840		reqsize = size + alignment;
841	} else {
842		align = alignment;
843		reqsize = size;
844	}
845	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
846	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
847	    NULL, NULL, reqsize,
848	    1, reqsize, flags,
849	    NULL, NULL, &dma->tag);
850	if (error != 0) {
851		device_printf(sc->sc_dev,
852		    "could not create shared page DMA tag\n");
853		goto fail;
854	}
855	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
856	    flags | BUS_DMA_ZERO, &dma->map);
857	if (error != 0) {
858		device_printf(sc->sc_dev,
859		    "could not allocate shared page DMA memory\n");
860		goto fail;
861	}
862
863	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
864	    reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
865
866	/* Save the original pointers so we can free all the memory */
867	dma->paddr = dma->paddr_start;
868	dma->vaddr = dma->vaddr_start;
869
870	/*
871	 * Check the alignment and increment by 4096 until we get the
872	 * requested alignment. Fail if can't obtain the alignment
873	 * we requested.
874	 */
875	if ((dma->paddr & (alignment -1 )) != 0) {
876		int i;
877
878		for (i = 0; i < alignment / 4096; i++) {
879			if ((dma->paddr & (alignment - 1 )) == 0)
880				break;
881			dma->paddr += 4096;
882			dma->vaddr += 4096;
883		}
884		if (i == alignment / 4096) {
885			device_printf(sc->sc_dev,
886			    "alignment requirement was not satisfied\n");
887			goto fail;
888		}
889	}
890
891	if (error != 0) {
892		device_printf(sc->sc_dev,
893		    "could not load shared page DMA map\n");
894		goto fail;
895	}
896
897	if (kvap != NULL)
898		*kvap = dma->vaddr;
899
900	return 0;
901
902fail:
903	wpi_dma_contig_free(dma);
904	return error;
905}
906
907static void
908wpi_dma_contig_free(struct wpi_dma_info *dma)
909{
910	if (dma->tag) {
911		if (dma->map != NULL) {
912			if (dma->paddr_start != 0) {
913				bus_dmamap_sync(dma->tag, dma->map,
914				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
915				bus_dmamap_unload(dma->tag, dma->map);
916			}
917			bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
918		}
919		bus_dma_tag_destroy(dma->tag);
920	}
921}
922
923/*
924 * Allocate a shared page between host and NIC.
925 */
926static int
927wpi_alloc_shared(struct wpi_softc *sc)
928{
929	int error;
930
931	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
932	    (void **)&sc->shared, sizeof (struct wpi_shared),
933	    PAGE_SIZE,
934	    BUS_DMA_NOWAIT);
935
936	if (error != 0) {
937		device_printf(sc->sc_dev,
938		    "could not allocate shared area DMA memory\n");
939	}
940
941	return error;
942}
943
944static void
945wpi_free_shared(struct wpi_softc *sc)
946{
947	wpi_dma_contig_free(&sc->shared_dma);
948}
949
950static int
951wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
952{
953
954	int i, error;
955
956	ring->cur = 0;
957
958	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
959	    (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
960	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
961
962	if (error != 0) {
963		device_printf(sc->sc_dev,
964		    "%s: could not allocate rx ring DMA memory, error %d\n",
965		    __func__, error);
966		goto fail;
967	}
968
969        error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
970	    BUS_SPACE_MAXADDR_32BIT,
971            BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
972            MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
973        if (error != 0) {
974                device_printf(sc->sc_dev,
975		    "%s: bus_dma_tag_create_failed, error %d\n",
976		    __func__, error);
977                goto fail;
978        }
979
980	/*
981	 * Setup Rx buffers.
982	 */
983	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
984		struct wpi_rx_data *data = &ring->data[i];
985		struct mbuf *m;
986		bus_addr_t paddr;
987
988		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
989		if (error != 0) {
990			device_printf(sc->sc_dev,
991			    "%s: bus_dmamap_create failed, error %d\n",
992			    __func__, error);
993			goto fail;
994		}
995		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
996		if (m == NULL) {
997			device_printf(sc->sc_dev,
998			   "%s: could not allocate rx mbuf\n", __func__);
999			error = ENOMEM;
1000			goto fail;
1001		}
1002		/* map page */
1003		error = bus_dmamap_load(ring->data_dmat, data->map,
1004		    mtod(m, caddr_t), MJUMPAGESIZE,
1005		    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1006		if (error != 0 && error != EFBIG) {
1007			device_printf(sc->sc_dev,
1008			    "%s: bus_dmamap_load failed, error %d\n",
1009			    __func__, error);
1010			m_freem(m);
1011			error = ENOMEM;	/* XXX unique code */
1012			goto fail;
1013		}
1014		bus_dmamap_sync(ring->data_dmat, data->map,
1015		    BUS_DMASYNC_PREWRITE);
1016
1017		data->m = m;
1018		ring->desc[i] = htole32(paddr);
1019	}
1020	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1021	    BUS_DMASYNC_PREWRITE);
1022	return 0;
1023fail:
1024	wpi_free_rx_ring(sc, ring);
1025	return error;
1026}
1027
1028static void
1029wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1030{
1031	int ntries;
1032
1033	wpi_mem_lock(sc);
1034
1035	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1036
1037	for (ntries = 0; ntries < 100; ntries++) {
1038		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1039			break;
1040		DELAY(10);
1041	}
1042
1043	wpi_mem_unlock(sc);
1044
1045#ifdef WPI_DEBUG
1046	if (ntries == 100 && wpi_debug > 0)
1047		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1048#endif
1049
1050	ring->cur = 0;
1051}
1052
1053static void
1054wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1055{
1056	int i;
1057
1058	wpi_dma_contig_free(&ring->desc_dma);
1059
1060	for (i = 0; i < WPI_RX_RING_COUNT; i++)
1061		if (ring->data[i].m != NULL)
1062			m_freem(ring->data[i].m);
1063}
1064
1065static int
1066wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1067	int qid)
1068{
1069	struct wpi_tx_data *data;
1070	int i, error;
1071
1072	ring->qid = qid;
1073	ring->count = count;
1074	ring->queued = 0;
1075	ring->cur = 0;
1076	ring->data = NULL;
1077
1078	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1079		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1080		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1081
1082	if (error != 0) {
1083	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1084	    goto fail;
1085	}
1086
1087	/* update shared page with ring's base address */
1088	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1089
1090	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1091		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1092		BUS_DMA_NOWAIT);
1093
1094	if (error != 0) {
1095		device_printf(sc->sc_dev,
1096		    "could not allocate tx command DMA memory\n");
1097		goto fail;
1098	}
1099
1100	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1101	    M_NOWAIT | M_ZERO);
1102	if (ring->data == NULL) {
1103		device_printf(sc->sc_dev,
1104		    "could not allocate tx data slots\n");
1105		goto fail;
1106	}
1107
1108	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1109	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1110	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1111	    &ring->data_dmat);
1112	if (error != 0) {
1113		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1114		goto fail;
1115	}
1116
1117	for (i = 0; i < count; i++) {
1118		data = &ring->data[i];
1119
1120		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1121		if (error != 0) {
1122			device_printf(sc->sc_dev,
1123			    "could not create tx buf DMA map\n");
1124			goto fail;
1125		}
1126		bus_dmamap_sync(ring->data_dmat, data->map,
1127		    BUS_DMASYNC_PREWRITE);
1128	}
1129
1130	return 0;
1131
1132fail:
1133	wpi_free_tx_ring(sc, ring);
1134	return error;
1135}
1136
1137static void
1138wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1139{
1140	struct wpi_tx_data *data;
1141	int i, ntries;
1142
1143	wpi_mem_lock(sc);
1144
1145	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1146	for (ntries = 0; ntries < 100; ntries++) {
1147		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1148			break;
1149		DELAY(10);
1150	}
1151#ifdef WPI_DEBUG
1152	if (ntries == 100 && wpi_debug > 0)
1153		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1154		    ring->qid);
1155#endif
1156	wpi_mem_unlock(sc);
1157
1158	for (i = 0; i < ring->count; i++) {
1159		data = &ring->data[i];
1160
1161		if (data->m != NULL) {
1162			bus_dmamap_unload(ring->data_dmat, data->map);
1163			m_freem(data->m);
1164			data->m = NULL;
1165		}
1166	}
1167
1168	ring->queued = 0;
1169	ring->cur = 0;
1170}
1171
1172static void
1173wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1174{
1175	struct wpi_tx_data *data;
1176	int i;
1177
1178	wpi_dma_contig_free(&ring->desc_dma);
1179	wpi_dma_contig_free(&ring->cmd_dma);
1180
1181	if (ring->data != NULL) {
1182		for (i = 0; i < ring->count; i++) {
1183			data = &ring->data[i];
1184
1185			if (data->m != NULL) {
1186				bus_dmamap_sync(ring->data_dmat, data->map,
1187				    BUS_DMASYNC_POSTWRITE);
1188				bus_dmamap_unload(ring->data_dmat, data->map);
1189				m_freem(data->m);
1190				data->m = NULL;
1191			}
1192		}
1193		free(ring->data, M_DEVBUF);
1194	}
1195
1196	if (ring->data_dmat != NULL)
1197		bus_dma_tag_destroy(ring->data_dmat);
1198}
1199
1200static int
1201wpi_shutdown(device_t dev)
1202{
1203	struct wpi_softc *sc = device_get_softc(dev);
1204
1205	WPI_LOCK(sc);
1206	wpi_stop_locked(sc);
1207	wpi_unload_firmware(sc);
1208	WPI_UNLOCK(sc);
1209
1210	return 0;
1211}
1212
1213static int
1214wpi_suspend(device_t dev)
1215{
1216	struct wpi_softc *sc = device_get_softc(dev);
1217
1218	wpi_stop(sc);
1219	return 0;
1220}
1221
1222static int
1223wpi_resume(device_t dev)
1224{
1225	struct wpi_softc *sc = device_get_softc(dev);
1226	struct ifnet *ifp = sc->sc_ifp;
1227
1228	pci_write_config(dev, 0x41, 0, 1);
1229
1230	if (ifp->if_flags & IFF_UP) {
1231		wpi_init(ifp->if_softc);
1232		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1233			wpi_start(ifp);
1234	}
1235	return 0;
1236}
1237
1238/* ARGSUSED */
1239static struct ieee80211_node *
1240wpi_node_alloc(struct ieee80211vap *vap __unused,
1241	const uint8_t mac[IEEE80211_ADDR_LEN] __unused)
1242{
1243	struct wpi_node *wn;
1244
1245	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1246
1247	return &wn->ni;
1248}
1249
1250/**
1251 * Called by net80211 when ever there is a change to 80211 state machine
1252 */
1253static int
1254wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1255{
1256	struct wpi_vap *wvp = WPI_VAP(vap);
1257	struct ieee80211com *ic = vap->iv_ic;
1258	struct ifnet *ifp = ic->ic_ifp;
1259	struct wpi_softc *sc = ifp->if_softc;
1260	int error;
1261
1262	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1263		ieee80211_state_name[vap->iv_state],
1264		ieee80211_state_name[nstate], sc->flags));
1265
1266	IEEE80211_UNLOCK(ic);
1267	WPI_LOCK(sc);
1268	if (nstate == IEEE80211_S_AUTH) {
1269		/* The node must be registered in the firmware before auth */
1270		error = wpi_auth(sc, vap);
1271		if (error != 0) {
1272			device_printf(sc->sc_dev,
1273			    "%s: could not move to auth state, error %d\n",
1274			    __func__, error);
1275		}
1276	}
1277	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1278		error = wpi_run(sc, vap);
1279		if (error != 0) {
1280			device_printf(sc->sc_dev,
1281			    "%s: could not move to run state, error %d\n",
1282			    __func__, error);
1283		}
1284	}
1285	if (nstate == IEEE80211_S_RUN) {
1286		/* RUN -> RUN transition; just restart the timers */
1287		wpi_calib_timeout(sc);
1288		/* XXX split out rate control timer */
1289	}
1290	WPI_UNLOCK(sc);
1291	IEEE80211_LOCK(ic);
1292	return wvp->newstate(vap, nstate, arg);
1293}
1294
1295/*
1296 * Grab exclusive access to NIC memory.
1297 */
1298static void
1299wpi_mem_lock(struct wpi_softc *sc)
1300{
1301	int ntries;
1302	uint32_t tmp;
1303
1304	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1305	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1306
1307	/* spin until we actually get the lock */
1308	for (ntries = 0; ntries < 100; ntries++) {
1309		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1310			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1311			break;
1312		DELAY(10);
1313	}
1314	if (ntries == 100)
1315		device_printf(sc->sc_dev, "could not lock memory\n");
1316}
1317
1318/*
1319 * Release lock on NIC memory.
1320 */
1321static void
1322wpi_mem_unlock(struct wpi_softc *sc)
1323{
1324	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1325	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1326}
1327
1328static uint32_t
1329wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1330{
1331	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1332	return WPI_READ(sc, WPI_READ_MEM_DATA);
1333}
1334
1335static void
1336wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1337{
1338	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1339	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1340}
1341
1342static void
1343wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1344    const uint32_t *data, int wlen)
1345{
1346	for (; wlen > 0; wlen--, data++, addr+=4)
1347		wpi_mem_write(sc, addr, *data);
1348}
1349
1350/*
1351 * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1352 * using the traditional bit-bang method. Data is read up until len bytes have
1353 * been obtained.
1354 */
1355static uint16_t
1356wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1357{
1358	int ntries;
1359	uint32_t val;
1360	uint8_t *out = data;
1361
1362	wpi_mem_lock(sc);
1363
1364	for (; len > 0; len -= 2, addr++) {
1365		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1366
1367		for (ntries = 0; ntries < 10; ntries++) {
1368			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1369				break;
1370			DELAY(5);
1371		}
1372
1373		if (ntries == 10) {
1374			device_printf(sc->sc_dev, "could not read EEPROM\n");
1375			return ETIMEDOUT;
1376		}
1377
1378		*out++= val >> 16;
1379		if (len > 1)
1380			*out ++= val >> 24;
1381	}
1382
1383	wpi_mem_unlock(sc);
1384
1385	return 0;
1386}
1387
1388/*
1389 * The firmware text and data segments are transferred to the NIC using DMA.
1390 * The driver just copies the firmware into DMA-safe memory and tells the NIC
1391 * where to find it.  Once the NIC has copied the firmware into its internal
1392 * memory, we can free our local copy in the driver.
1393 */
1394static int
1395wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1396{
1397	int error, ntries;
1398
1399	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1400
1401	size /= sizeof(uint32_t);
1402
1403	wpi_mem_lock(sc);
1404
1405	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1406	    (const uint32_t *)fw, size);
1407
1408	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1409	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1410	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1411
1412	/* run microcode */
1413	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1414
1415	/* wait while the adapter is busy copying the firmware */
1416	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1417		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1418		DPRINTFN(WPI_DEBUG_HW,
1419		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1420		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1421		if (status & WPI_TX_IDLE(6)) {
1422			DPRINTFN(WPI_DEBUG_HW,
1423			    ("Status Match! - ntries = %d\n", ntries));
1424			break;
1425		}
1426		DELAY(10);
1427	}
1428	if (ntries == 1000) {
1429		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1430		error = ETIMEDOUT;
1431	}
1432
1433	/* start the microcode executing */
1434	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1435
1436	wpi_mem_unlock(sc);
1437
1438	return (error);
1439}
1440
1441static void
1442wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1443	struct wpi_rx_data *data)
1444{
1445	struct ifnet *ifp = sc->sc_ifp;
1446	struct ieee80211com *ic = ifp->if_l2com;
1447	struct wpi_rx_ring *ring = &sc->rxq;
1448	struct wpi_rx_stat *stat;
1449	struct wpi_rx_head *head;
1450	struct wpi_rx_tail *tail;
1451	struct ieee80211_node *ni;
1452	struct mbuf *m, *mnew;
1453	bus_addr_t paddr;
1454	int error;
1455
1456	stat = (struct wpi_rx_stat *)(desc + 1);
1457
1458	if (stat->len > WPI_STAT_MAXLEN) {
1459		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1460		ifp->if_ierrors++;
1461		return;
1462	}
1463
1464	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1465	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1466
1467	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1468	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1469	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1470	    (uintmax_t)le64toh(tail->tstamp)));
1471
1472	/* discard Rx frames with bad CRC early */
1473	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1474		DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1475		    le32toh(tail->flags)));
1476		ifp->if_ierrors++;
1477		return;
1478	}
1479	if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1480		DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1481		    le16toh(head->len)));
1482		ifp->if_ierrors++;
1483		return;
1484	}
1485
1486	/* XXX don't need mbuf, just dma buffer */
1487	mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1488	if (mnew == NULL) {
1489		DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1490		    __func__));
1491		ifp->if_ierrors++;
1492		return;
1493	}
1494	error = bus_dmamap_load(ring->data_dmat, data->map,
1495	    mtod(mnew, caddr_t), MJUMPAGESIZE,
1496	    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1497	if (error != 0 && error != EFBIG) {
1498		device_printf(sc->sc_dev,
1499		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1500		m_freem(mnew);
1501		ifp->if_ierrors++;
1502		return;
1503	}
1504	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1505
1506	/* finalize mbuf and swap in new one */
1507	m = data->m;
1508	m->m_pkthdr.rcvif = ifp;
1509	m->m_data = (caddr_t)(head + 1);
1510	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1511
1512	data->m = mnew;
1513	/* update Rx descriptor */
1514	ring->desc[ring->cur] = htole32(paddr);
1515
1516	if (ieee80211_radiotap_active(ic)) {
1517		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1518
1519		tap->wr_flags = 0;
1520		tap->wr_chan_freq =
1521			htole16(ic->ic_channels[head->chan].ic_freq);
1522		tap->wr_chan_flags =
1523			htole16(ic->ic_channels[head->chan].ic_flags);
1524		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1525		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1526		tap->wr_tsft = tail->tstamp;
1527		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1528		switch (head->rate) {
1529		/* CCK rates */
1530		case  10: tap->wr_rate =   2; break;
1531		case  20: tap->wr_rate =   4; break;
1532		case  55: tap->wr_rate =  11; break;
1533		case 110: tap->wr_rate =  22; break;
1534		/* OFDM rates */
1535		case 0xd: tap->wr_rate =  12; break;
1536		case 0xf: tap->wr_rate =  18; break;
1537		case 0x5: tap->wr_rate =  24; break;
1538		case 0x7: tap->wr_rate =  36; break;
1539		case 0x9: tap->wr_rate =  48; break;
1540		case 0xb: tap->wr_rate =  72; break;
1541		case 0x1: tap->wr_rate =  96; break;
1542		case 0x3: tap->wr_rate = 108; break;
1543		/* unknown rate: should not happen */
1544		default:  tap->wr_rate =   0;
1545		}
1546		if (le16toh(head->flags) & 0x4)
1547			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1548	}
1549
1550	WPI_UNLOCK(sc);
1551
1552	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1553	if (ni != NULL) {
1554		(void) ieee80211_input(ni, m, stat->rssi, 0);
1555		ieee80211_free_node(ni);
1556	} else
1557		(void) ieee80211_input_all(ic, m, stat->rssi, 0);
1558
1559	WPI_LOCK(sc);
1560}
1561
1562static void
1563wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1564{
1565	struct ifnet *ifp = sc->sc_ifp;
1566	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1567	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1568	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1569	struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1570
1571	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1572	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1573	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1574	    le32toh(stat->status)));
1575
1576	/*
1577	 * Update rate control statistics for the node.
1578	 * XXX we should not count mgmt frames since they're always sent at
1579	 * the lowest available bit-rate.
1580	 * XXX frames w/o ACK shouldn't be used either
1581	 */
1582	wn->amn.amn_txcnt++;
1583	if (stat->ntries > 0) {
1584		DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1585		wn->amn.amn_retrycnt++;
1586	}
1587
1588	/* XXX oerrors should only count errors !maxtries */
1589	if ((le32toh(stat->status) & 0xff) != 1)
1590		ifp->if_oerrors++;
1591	else
1592		ifp->if_opackets++;
1593
1594	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1595	bus_dmamap_unload(ring->data_dmat, txdata->map);
1596	/* XXX handle M_TXCB? */
1597	m_freem(txdata->m);
1598	txdata->m = NULL;
1599	ieee80211_free_node(txdata->ni);
1600	txdata->ni = NULL;
1601
1602	ring->queued--;
1603
1604	sc->sc_tx_timer = 0;
1605	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1606	wpi_start_locked(ifp);
1607}
1608
1609static void
1610wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1611{
1612	struct wpi_tx_ring *ring = &sc->cmdq;
1613	struct wpi_tx_data *data;
1614
1615	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1616				 "type=%s len=%d\n", desc->qid, desc->idx,
1617				 desc->flags, wpi_cmd_str(desc->type),
1618				 le32toh(desc->len)));
1619
1620	if ((desc->qid & 7) != 4)
1621		return;	/* not a command ack */
1622
1623	data = &ring->data[desc->idx];
1624
1625	/* if the command was mapped in a mbuf, free it */
1626	if (data->m != NULL) {
1627		bus_dmamap_unload(ring->data_dmat, data->map);
1628		m_freem(data->m);
1629		data->m = NULL;
1630	}
1631
1632	sc->flags &= ~WPI_FLAG_BUSY;
1633	wakeup(&ring->cmd[desc->idx]);
1634}
1635
1636static void
1637wpi_notif_intr(struct wpi_softc *sc)
1638{
1639	struct ifnet *ifp = sc->sc_ifp;
1640	struct ieee80211com *ic = ifp->if_l2com;
1641	struct wpi_rx_desc *desc;
1642	struct wpi_rx_data *data;
1643	uint32_t hw;
1644
1645	hw = le32toh(sc->shared->next);
1646	while (sc->rxq.cur != hw) {
1647		data = &sc->rxq.data[sc->rxq.cur];
1648		desc = (void *)data->m->m_ext.ext_buf;
1649
1650		DPRINTFN(WPI_DEBUG_NOTIFY,
1651			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1652			  desc->qid,
1653			  desc->idx,
1654			  desc->flags,
1655			  desc->type,
1656			  le32toh(desc->len)));
1657
1658		if (!(desc->qid & 0x80))	/* reply to a command */
1659			wpi_cmd_intr(sc, desc);
1660
1661		switch (desc->type) {
1662		case WPI_RX_DONE:
1663			/* a 802.11 frame was received */
1664			wpi_rx_intr(sc, desc, data);
1665			break;
1666
1667		case WPI_TX_DONE:
1668			/* a 802.11 frame has been transmitted */
1669			wpi_tx_intr(sc, desc);
1670			break;
1671
1672		case WPI_UC_READY:
1673		{
1674			struct wpi_ucode_info *uc =
1675				(struct wpi_ucode_info *)(desc + 1);
1676
1677			/* the microcontroller is ready */
1678			DPRINTF(("microcode alive notification version %x "
1679				"alive %x\n", le32toh(uc->version),
1680				le32toh(uc->valid)));
1681
1682			if (le32toh(uc->valid) != 1) {
1683				device_printf(sc->sc_dev,
1684				    "microcontroller initialization failed\n");
1685				wpi_stop_locked(sc);
1686			}
1687			break;
1688		}
1689		case WPI_STATE_CHANGED:
1690		{
1691			uint32_t *status = (uint32_t *)(desc + 1);
1692
1693			/* enabled/disabled notification */
1694			DPRINTF(("state changed to %x\n", le32toh(*status)));
1695
1696			if (le32toh(*status) & 1) {
1697				device_printf(sc->sc_dev,
1698				    "Radio transmitter is switched off\n");
1699				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1700				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1701				/* Disable firmware commands */
1702				WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1703			}
1704			break;
1705		}
1706		case WPI_START_SCAN:
1707		{
1708#ifdef WPI_DEBUG
1709			struct wpi_start_scan *scan =
1710				(struct wpi_start_scan *)(desc + 1);
1711#endif
1712
1713			DPRINTFN(WPI_DEBUG_SCANNING,
1714				 ("scanning channel %d status %x\n",
1715			    scan->chan, le32toh(scan->status)));
1716			break;
1717		}
1718		case WPI_STOP_SCAN:
1719		{
1720#ifdef WPI_DEBUG
1721			struct wpi_stop_scan *scan =
1722				(struct wpi_stop_scan *)(desc + 1);
1723#endif
1724			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1725
1726			DPRINTFN(WPI_DEBUG_SCANNING,
1727			    ("scan finished nchan=%d status=%d chan=%d\n",
1728			     scan->nchan, scan->status, scan->chan));
1729
1730			sc->sc_scan_timer = 0;
1731			ieee80211_scan_next(vap);
1732			break;
1733		}
1734		case WPI_MISSED_BEACON:
1735		{
1736			struct wpi_missed_beacon *beacon =
1737				(struct wpi_missed_beacon *)(desc + 1);
1738			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1739
1740			if (le32toh(beacon->consecutive) >=
1741			    vap->iv_bmissthreshold) {
1742				DPRINTF(("Beacon miss: %u >= %u\n",
1743					 le32toh(beacon->consecutive),
1744					 vap->iv_bmissthreshold));
1745				ieee80211_beacon_miss(ic);
1746			}
1747			break;
1748		}
1749		}
1750
1751		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1752	}
1753
1754	/* tell the firmware what we have processed */
1755	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1756	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1757}
1758
1759static void
1760wpi_intr(void *arg)
1761{
1762	struct wpi_softc *sc = arg;
1763	uint32_t r;
1764
1765	WPI_LOCK(sc);
1766
1767	r = WPI_READ(sc, WPI_INTR);
1768	if (r == 0 || r == 0xffffffff) {
1769		WPI_UNLOCK(sc);
1770		return;
1771	}
1772
1773	/* disable interrupts */
1774	WPI_WRITE(sc, WPI_MASK, 0);
1775	/* ack interrupts */
1776	WPI_WRITE(sc, WPI_INTR, r);
1777
1778	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1779		struct ifnet *ifp = sc->sc_ifp;
1780		struct ieee80211com *ic = ifp->if_l2com;
1781		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1782
1783		device_printf(sc->sc_dev, "fatal firmware error\n");
1784		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1785				"(Hardware Error)"));
1786		if (vap != NULL)
1787			ieee80211_cancel_scan(vap);
1788		ieee80211_runtask(ic, &sc->sc_restarttask);
1789		sc->flags &= ~WPI_FLAG_BUSY;
1790		WPI_UNLOCK(sc);
1791		return;
1792	}
1793
1794	if (r & WPI_RX_INTR)
1795		wpi_notif_intr(sc);
1796
1797	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1798		wakeup(sc);
1799
1800	/* re-enable interrupts */
1801	if (sc->sc_ifp->if_flags & IFF_UP)
1802		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1803
1804	WPI_UNLOCK(sc);
1805}
1806
1807static uint8_t
1808wpi_plcp_signal(int rate)
1809{
1810	switch (rate) {
1811	/* CCK rates (returned values are device-dependent) */
1812	case 2:		return 10;
1813	case 4:		return 20;
1814	case 11:	return 55;
1815	case 22:	return 110;
1816
1817	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1818	/* R1-R4 (ral/ural is R4-R1) */
1819	case 12:	return 0xd;
1820	case 18:	return 0xf;
1821	case 24:	return 0x5;
1822	case 36:	return 0x7;
1823	case 48:	return 0x9;
1824	case 72:	return 0xb;
1825	case 96:	return 0x1;
1826	case 108:	return 0x3;
1827
1828	/* unsupported rates (should not get there) */
1829	default:	return 0;
1830	}
1831}
1832
1833/* quickly determine if a given rate is CCK or OFDM */
1834#define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1835
1836/*
1837 * Construct the data packet for a transmit buffer and acutally put
1838 * the buffer onto the transmit ring, kicking the card to process the
1839 * the buffer.
1840 */
1841static int
1842wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1843	int ac)
1844{
1845	struct ieee80211vap *vap = ni->ni_vap;
1846	struct ifnet *ifp = sc->sc_ifp;
1847	struct ieee80211com *ic = ifp->if_l2com;
1848	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1849	struct wpi_tx_ring *ring = &sc->txq[ac];
1850	struct wpi_tx_desc *desc;
1851	struct wpi_tx_data *data;
1852	struct wpi_tx_cmd *cmd;
1853	struct wpi_cmd_data *tx;
1854	struct ieee80211_frame *wh;
1855	const struct ieee80211_txparam *tp;
1856	struct ieee80211_key *k;
1857	struct mbuf *mnew;
1858	int i, error, nsegs, rate, hdrlen, ismcast;
1859	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1860
1861	desc = &ring->desc[ring->cur];
1862	data = &ring->data[ring->cur];
1863
1864	wh = mtod(m0, struct ieee80211_frame *);
1865
1866	hdrlen = ieee80211_hdrsize(wh);
1867	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1868
1869	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1870		k = ieee80211_crypto_encap(ni, m0);
1871		if (k == NULL) {
1872			m_freem(m0);
1873			return ENOBUFS;
1874		}
1875		/* packet header may have moved, reset our local pointer */
1876		wh = mtod(m0, struct ieee80211_frame *);
1877	}
1878
1879	cmd = &ring->cmd[ring->cur];
1880	cmd->code = WPI_CMD_TX_DATA;
1881	cmd->flags = 0;
1882	cmd->qid = ring->qid;
1883	cmd->idx = ring->cur;
1884
1885	tx = (struct wpi_cmd_data *)cmd->data;
1886	tx->flags = htole32(WPI_TX_AUTO_SEQ);
1887	tx->timeout = htole16(0);
1888	tx->ofdm_mask = 0xff;
1889	tx->cck_mask = 0x0f;
1890	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1891	tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1892	tx->len = htole16(m0->m_pkthdr.len);
1893
1894	if (!ismcast) {
1895		if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1896		    !cap->cap_wmeParams[ac].wmep_noackPolicy)
1897			tx->flags |= htole32(WPI_TX_NEED_ACK);
1898		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1899			tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1900			tx->rts_ntries = 7;
1901		}
1902	}
1903	/* pick a rate */
1904	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1905	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1906		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1907		/* tell h/w to set timestamp in probe responses */
1908		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1909			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1910		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1911		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1912			tx->timeout = htole16(3);
1913		else
1914			tx->timeout = htole16(2);
1915		rate = tp->mgmtrate;
1916	} else if (ismcast) {
1917		rate = tp->mcastrate;
1918	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1919		rate = tp->ucastrate;
1920	} else {
1921		(void) ieee80211_amrr_choose(ni, &WPI_NODE(ni)->amn);
1922		rate = ni->ni_txrate;
1923	}
1924	tx->rate = wpi_plcp_signal(rate);
1925
1926	/* be very persistant at sending frames out */
1927#if 0
1928	tx->data_ntries = tp->maxretry;
1929#else
1930	tx->data_ntries = 15;		/* XXX way too high */
1931#endif
1932
1933	if (ieee80211_radiotap_active_vap(vap)) {
1934		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1935		tap->wt_flags = 0;
1936		tap->wt_rate = rate;
1937		tap->wt_hwqueue = ac;
1938		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1939			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1940
1941		ieee80211_radiotap_tx(vap, m0);
1942	}
1943
1944	/* save and trim IEEE802.11 header */
1945	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1946	m_adj(m0, hdrlen);
1947
1948	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
1949	    &nsegs, BUS_DMA_NOWAIT);
1950	if (error != 0 && error != EFBIG) {
1951		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1952		    error);
1953		m_freem(m0);
1954		return error;
1955	}
1956	if (error != 0) {
1957		/* XXX use m_collapse */
1958		mnew = m_defrag(m0, M_DONTWAIT);
1959		if (mnew == NULL) {
1960			device_printf(sc->sc_dev,
1961			    "could not defragment mbuf\n");
1962			m_freem(m0);
1963			return ENOBUFS;
1964		}
1965		m0 = mnew;
1966
1967		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
1968		    m0, segs, &nsegs, BUS_DMA_NOWAIT);
1969		if (error != 0) {
1970			device_printf(sc->sc_dev,
1971			    "could not map mbuf (error %d)\n", error);
1972			m_freem(m0);
1973			return error;
1974		}
1975	}
1976
1977	data->m = m0;
1978	data->ni = ni;
1979
1980	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1981	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
1982
1983	/* first scatter/gather segment is used by the tx data command */
1984	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1985	    (1 + nsegs) << 24);
1986	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1987	    ring->cur * sizeof (struct wpi_tx_cmd));
1988	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
1989	for (i = 1; i <= nsegs; i++) {
1990		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
1991		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
1992	}
1993
1994	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1995	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1996	    BUS_DMASYNC_PREWRITE);
1997
1998	ring->queued++;
1999
2000	/* kick ring */
2001	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2002	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2003
2004	return 0;
2005}
2006
2007/**
2008 * Process data waiting to be sent on the IFNET output queue
2009 */
2010static void
2011wpi_start(struct ifnet *ifp)
2012{
2013	struct wpi_softc *sc = ifp->if_softc;
2014
2015	WPI_LOCK(sc);
2016	wpi_start_locked(ifp);
2017	WPI_UNLOCK(sc);
2018}
2019
2020static void
2021wpi_start_locked(struct ifnet *ifp)
2022{
2023	struct wpi_softc *sc = ifp->if_softc;
2024	struct ieee80211_node *ni;
2025	struct mbuf *m;
2026	int ac;
2027
2028	WPI_LOCK_ASSERT(sc);
2029
2030	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2031		return;
2032
2033	for (;;) {
2034		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2035		if (m == NULL)
2036			break;
2037		ac = M_WME_GETAC(m);
2038		if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2039			/* there is no place left in this ring */
2040			IFQ_DRV_PREPEND(&ifp->if_snd, m);
2041			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2042			break;
2043		}
2044		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2045		if (wpi_tx_data(sc, m, ni, ac) != 0) {
2046			ieee80211_free_node(ni);
2047			ifp->if_oerrors++;
2048			break;
2049		}
2050		sc->sc_tx_timer = 5;
2051	}
2052}
2053
2054static int
2055wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2056	const struct ieee80211_bpf_params *params)
2057{
2058	struct ieee80211com *ic = ni->ni_ic;
2059	struct ifnet *ifp = ic->ic_ifp;
2060	struct wpi_softc *sc = ifp->if_softc;
2061
2062	/* prevent management frames from being sent if we're not ready */
2063	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2064		m_freem(m);
2065		ieee80211_free_node(ni);
2066		return ENETDOWN;
2067	}
2068	WPI_LOCK(sc);
2069
2070	/* management frames go into ring 0 */
2071	if (sc->txq[0].queued > sc->txq[0].count - 8) {
2072		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2073		m_freem(m);
2074		WPI_UNLOCK(sc);
2075		ieee80211_free_node(ni);
2076		return ENOBUFS;		/* XXX */
2077	}
2078
2079	ifp->if_opackets++;
2080	if (wpi_tx_data(sc, m, ni, 0) != 0)
2081		goto bad;
2082	sc->sc_tx_timer = 5;
2083	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2084
2085	WPI_UNLOCK(sc);
2086	return 0;
2087bad:
2088	ifp->if_oerrors++;
2089	WPI_UNLOCK(sc);
2090	ieee80211_free_node(ni);
2091	return EIO;		/* XXX */
2092}
2093
2094static int
2095wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2096{
2097	struct wpi_softc *sc = ifp->if_softc;
2098	struct ieee80211com *ic = ifp->if_l2com;
2099	struct ifreq *ifr = (struct ifreq *) data;
2100	int error = 0, startall = 0;
2101
2102	switch (cmd) {
2103	case SIOCSIFFLAGS:
2104		WPI_LOCK(sc);
2105		if ((ifp->if_flags & IFF_UP)) {
2106			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2107				wpi_init_locked(sc, 0);
2108				startall = 1;
2109			}
2110		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2111			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2112			wpi_stop_locked(sc);
2113		WPI_UNLOCK(sc);
2114		if (startall)
2115			ieee80211_start_all(ic);
2116		break;
2117	case SIOCGIFMEDIA:
2118		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2119		break;
2120	case SIOCGIFADDR:
2121		error = ether_ioctl(ifp, cmd, data);
2122		break;
2123	default:
2124		error = EINVAL;
2125		break;
2126	}
2127	return error;
2128}
2129
2130/*
2131 * Extract various information from EEPROM.
2132 */
2133static void
2134wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2135{
2136	int i;
2137
2138	/* read the hardware capabilities, revision and SKU type */
2139	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2140	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2141	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2142
2143	/* read the regulatory domain */
2144	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2145
2146	/* read in the hw MAC address */
2147	wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2148
2149	/* read the list of authorized channels */
2150	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2151		wpi_read_eeprom_channels(sc,i);
2152
2153	/* read the power level calibration info for each group */
2154	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2155		wpi_read_eeprom_group(sc,i);
2156}
2157
2158/*
2159 * Send a command to the firmware.
2160 */
2161static int
2162wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2163{
2164	struct wpi_tx_ring *ring = &sc->cmdq;
2165	struct wpi_tx_desc *desc;
2166	struct wpi_tx_cmd *cmd;
2167
2168#ifdef WPI_DEBUG
2169	if (!async) {
2170		WPI_LOCK_ASSERT(sc);
2171	}
2172#endif
2173
2174	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2175		    async));
2176
2177	if (sc->flags & WPI_FLAG_BUSY) {
2178		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2179		    __func__, code);
2180		return EAGAIN;
2181	}
2182	sc->flags|= WPI_FLAG_BUSY;
2183
2184	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2185	    code, size));
2186
2187	desc = &ring->desc[ring->cur];
2188	cmd = &ring->cmd[ring->cur];
2189
2190	cmd->code = code;
2191	cmd->flags = 0;
2192	cmd->qid = ring->qid;
2193	cmd->idx = ring->cur;
2194	memcpy(cmd->data, buf, size);
2195
2196	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2197	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2198		ring->cur * sizeof (struct wpi_tx_cmd));
2199	desc->segs[0].len  = htole32(4 + size);
2200
2201	/* kick cmd ring */
2202	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2203	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2204
2205	if (async) {
2206		sc->flags &= ~ WPI_FLAG_BUSY;
2207		return 0;
2208	}
2209
2210	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2211}
2212
2213static int
2214wpi_wme_update(struct ieee80211com *ic)
2215{
2216#define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2217#define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2218	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2219	const struct wmeParams *wmep;
2220	struct wpi_wme_setup wme;
2221	int ac;
2222
2223	/* don't override default WME values if WME is not actually enabled */
2224	if (!(ic->ic_flags & IEEE80211_F_WME))
2225		return 0;
2226
2227	wme.flags = 0;
2228	for (ac = 0; ac < WME_NUM_AC; ac++) {
2229		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2230		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2231		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2232		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2233		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2234
2235		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2236		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2237		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2238	}
2239	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2240#undef WPI_USEC
2241#undef WPI_EXP2
2242}
2243
2244/*
2245 * Configure h/w multi-rate retries.
2246 */
2247static int
2248wpi_mrr_setup(struct wpi_softc *sc)
2249{
2250	struct ifnet *ifp = sc->sc_ifp;
2251	struct ieee80211com *ic = ifp->if_l2com;
2252	struct wpi_mrr_setup mrr;
2253	int i, error;
2254
2255	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2256
2257	/* CCK rates (not used with 802.11a) */
2258	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2259		mrr.rates[i].flags = 0;
2260		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2261		/* fallback to the immediate lower CCK rate (if any) */
2262		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2263		/* try one time at this rate before falling back to "next" */
2264		mrr.rates[i].ntries = 1;
2265	}
2266
2267	/* OFDM rates (not used with 802.11b) */
2268	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2269		mrr.rates[i].flags = 0;
2270		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2271		/* fallback to the immediate lower OFDM rate (if any) */
2272		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2273		mrr.rates[i].next = (i == WPI_OFDM6) ?
2274		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2275			WPI_OFDM6 : WPI_CCK2) :
2276		    i - 1;
2277		/* try one time at this rate before falling back to "next" */
2278		mrr.rates[i].ntries = 1;
2279	}
2280
2281	/* setup MRR for control frames */
2282	mrr.which = htole32(WPI_MRR_CTL);
2283	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2284	if (error != 0) {
2285		device_printf(sc->sc_dev,
2286		    "could not setup MRR for control frames\n");
2287		return error;
2288	}
2289
2290	/* setup MRR for data frames */
2291	mrr.which = htole32(WPI_MRR_DATA);
2292	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2293	if (error != 0) {
2294		device_printf(sc->sc_dev,
2295		    "could not setup MRR for data frames\n");
2296		return error;
2297	}
2298
2299	return 0;
2300}
2301
2302static void
2303wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2304{
2305	struct wpi_cmd_led led;
2306
2307	led.which = which;
2308	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2309	led.off = off;
2310	led.on = on;
2311
2312	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2313}
2314
2315static void
2316wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2317{
2318	struct wpi_cmd_tsf tsf;
2319	uint64_t val, mod;
2320
2321	memset(&tsf, 0, sizeof tsf);
2322	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2323	tsf.bintval = htole16(ni->ni_intval);
2324	tsf.lintval = htole16(10);
2325
2326	/* compute remaining time until next beacon */
2327	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2328	mod = le64toh(tsf.tstamp) % val;
2329	tsf.binitval = htole32((uint32_t)(val - mod));
2330
2331	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2332		device_printf(sc->sc_dev, "could not enable TSF\n");
2333}
2334
2335#if 0
2336/*
2337 * Build a beacon frame that the firmware will broadcast periodically in
2338 * IBSS or HostAP modes.
2339 */
2340static int
2341wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2342{
2343	struct ifnet *ifp = sc->sc_ifp;
2344	struct ieee80211com *ic = ifp->if_l2com;
2345	struct wpi_tx_ring *ring = &sc->cmdq;
2346	struct wpi_tx_desc *desc;
2347	struct wpi_tx_data *data;
2348	struct wpi_tx_cmd *cmd;
2349	struct wpi_cmd_beacon *bcn;
2350	struct ieee80211_beacon_offsets bo;
2351	struct mbuf *m0;
2352	bus_addr_t physaddr;
2353	int error;
2354
2355	desc = &ring->desc[ring->cur];
2356	data = &ring->data[ring->cur];
2357
2358	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2359	if (m0 == NULL) {
2360		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2361		return ENOMEM;
2362	}
2363
2364	cmd = &ring->cmd[ring->cur];
2365	cmd->code = WPI_CMD_SET_BEACON;
2366	cmd->flags = 0;
2367	cmd->qid = ring->qid;
2368	cmd->idx = ring->cur;
2369
2370	bcn = (struct wpi_cmd_beacon *)cmd->data;
2371	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2372	bcn->id = WPI_ID_BROADCAST;
2373	bcn->ofdm_mask = 0xff;
2374	bcn->cck_mask = 0x0f;
2375	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2376	bcn->len = htole16(m0->m_pkthdr.len);
2377	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2378		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2379	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2380
2381	/* save and trim IEEE802.11 header */
2382	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2383	m_adj(m0, sizeof (struct ieee80211_frame));
2384
2385	/* assume beacon frame is contiguous */
2386	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2387	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2388	if (error != 0) {
2389		device_printf(sc->sc_dev, "could not map beacon\n");
2390		m_freem(m0);
2391		return error;
2392	}
2393
2394	data->m = m0;
2395
2396	/* first scatter/gather segment is used by the beacon command */
2397	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2398	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2399		ring->cur * sizeof (struct wpi_tx_cmd));
2400	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2401	desc->segs[1].addr = htole32(physaddr);
2402	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2403
2404	/* kick cmd ring */
2405	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2406	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2407
2408	return 0;
2409}
2410#endif
2411
2412static int
2413wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2414{
2415	struct ieee80211com *ic = vap->iv_ic;
2416	struct ieee80211_node *ni = vap->iv_bss;
2417	struct wpi_node_info node;
2418	int error;
2419
2420
2421	/* update adapter's configuration */
2422	sc->config.associd = 0;
2423	sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2424	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2425	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2426	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2427		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2428		    WPI_CONFIG_24GHZ);
2429	}
2430	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2431		sc->config.cck_mask  = 0;
2432		sc->config.ofdm_mask = 0x15;
2433	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2434		sc->config.cck_mask  = 0x03;
2435		sc->config.ofdm_mask = 0;
2436	} else {
2437		/* XXX assume 802.11b/g */
2438		sc->config.cck_mask  = 0x0f;
2439		sc->config.ofdm_mask = 0x15;
2440	}
2441
2442	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2443		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2444	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2445		sizeof (struct wpi_config), 1);
2446	if (error != 0) {
2447		device_printf(sc->sc_dev, "could not configure\n");
2448		return error;
2449	}
2450
2451	/* configuration has changed, set Tx power accordingly */
2452	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2453		device_printf(sc->sc_dev, "could not set Tx power\n");
2454		return error;
2455	}
2456
2457	/* add default node */
2458	memset(&node, 0, sizeof node);
2459	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2460	node.id = WPI_ID_BSS;
2461	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2462	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2463	node.action = htole32(WPI_ACTION_SET_RATE);
2464	node.antenna = WPI_ANTENNA_BOTH;
2465	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2466	if (error != 0)
2467		device_printf(sc->sc_dev, "could not add BSS node\n");
2468
2469	return (error);
2470}
2471
2472static int
2473wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2474{
2475	struct ieee80211com *ic = vap->iv_ic;
2476	struct ieee80211_node *ni = vap->iv_bss;
2477	int error;
2478
2479	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2480		/* link LED blinks while monitoring */
2481		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2482		return 0;
2483	}
2484
2485	wpi_enable_tsf(sc, ni);
2486
2487	/* update adapter's configuration */
2488	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2489	/* short preamble/slot time are negotiated when associating */
2490	sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2491	    WPI_CONFIG_SHSLOT);
2492	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2493		sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2494	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2495		sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2496	sc->config.filter |= htole32(WPI_FILTER_BSS);
2497
2498	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2499
2500	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2501		    sc->config.flags));
2502	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2503		    wpi_config), 1);
2504	if (error != 0) {
2505		device_printf(sc->sc_dev, "could not update configuration\n");
2506		return error;
2507	}
2508
2509	error = wpi_set_txpower(sc, ni->ni_chan, 1);
2510	if (error != 0) {
2511		device_printf(sc->sc_dev, "could set txpower\n");
2512		return error;
2513	}
2514
2515	/* link LED always on while associated */
2516	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2517
2518	/* start automatic rate control timer */
2519	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2520
2521	return (error);
2522}
2523
2524/*
2525 * Send a scan request to the firmware.  Since this command is huge, we map it
2526 * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2527 * much of this code is similar to that in wpi_cmd but because we must manually
2528 * construct the probe & channels, we duplicate what's needed here. XXX In the
2529 * future, this function should be modified to use wpi_cmd to help cleanup the
2530 * code base.
2531 */
2532static int
2533wpi_scan(struct wpi_softc *sc)
2534{
2535	struct ifnet *ifp = sc->sc_ifp;
2536	struct ieee80211com *ic = ifp->if_l2com;
2537	struct ieee80211_scan_state *ss = ic->ic_scan;
2538	struct wpi_tx_ring *ring = &sc->cmdq;
2539	struct wpi_tx_desc *desc;
2540	struct wpi_tx_data *data;
2541	struct wpi_tx_cmd *cmd;
2542	struct wpi_scan_hdr *hdr;
2543	struct wpi_scan_chan *chan;
2544	struct ieee80211_frame *wh;
2545	struct ieee80211_rateset *rs;
2546	struct ieee80211_channel *c;
2547	enum ieee80211_phymode mode;
2548	uint8_t *frm;
2549	int nrates, pktlen, error, i, nssid;
2550	bus_addr_t physaddr;
2551
2552	desc = &ring->desc[ring->cur];
2553	data = &ring->data[ring->cur];
2554
2555	data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2556	if (data->m == NULL) {
2557		device_printf(sc->sc_dev,
2558		    "could not allocate mbuf for scan command\n");
2559		return ENOMEM;
2560	}
2561
2562	cmd = mtod(data->m, struct wpi_tx_cmd *);
2563	cmd->code = WPI_CMD_SCAN;
2564	cmd->flags = 0;
2565	cmd->qid = ring->qid;
2566	cmd->idx = ring->cur;
2567
2568	hdr = (struct wpi_scan_hdr *)cmd->data;
2569	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2570
2571	/*
2572	 * Move to the next channel if no packets are received within 5 msecs
2573	 * after sending the probe request (this helps to reduce the duration
2574	 * of active scans).
2575	 */
2576	hdr->quiet = htole16(5);
2577	hdr->threshold = htole16(1);
2578
2579	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2580		/* send probe requests at 6Mbps */
2581		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2582
2583		/* Enable crc checking */
2584		hdr->promotion = htole16(1);
2585	} else {
2586		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2587		/* send probe requests at 1Mbps */
2588		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2589	}
2590	hdr->tx.id = WPI_ID_BROADCAST;
2591	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2592	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2593
2594	memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2595	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2596	for (i = 0; i < nssid; i++) {
2597		hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2598		hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2599		memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2600		    hdr->scan_essids[i].esslen);
2601#ifdef WPI_DEBUG
2602		if (wpi_debug & WPI_DEBUG_SCANNING) {
2603			printf("Scanning Essid: ");
2604			ieee80211_print_essid(hdr->scan_essids[i].essid,
2605			    hdr->scan_essids[i].esslen);
2606			printf("\n");
2607		}
2608#endif
2609	}
2610
2611	/*
2612	 * Build a probe request frame.  Most of the following code is a
2613	 * copy & paste of what is done in net80211.
2614	 */
2615	wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2616	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2617		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2618	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2619	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2620	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2621	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2622	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2623	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2624
2625	frm = (uint8_t *)(wh + 1);
2626
2627	/* add essid IE, the hardware will fill this in for us */
2628	*frm++ = IEEE80211_ELEMID_SSID;
2629	*frm++ = 0;
2630
2631	mode = ieee80211_chan2mode(ic->ic_curchan);
2632	rs = &ic->ic_sup_rates[mode];
2633
2634	/* add supported rates IE */
2635	*frm++ = IEEE80211_ELEMID_RATES;
2636	nrates = rs->rs_nrates;
2637	if (nrates > IEEE80211_RATE_SIZE)
2638		nrates = IEEE80211_RATE_SIZE;
2639	*frm++ = nrates;
2640	memcpy(frm, rs->rs_rates, nrates);
2641	frm += nrates;
2642
2643	/* add supported xrates IE */
2644	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2645		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2646		*frm++ = IEEE80211_ELEMID_XRATES;
2647		*frm++ = nrates;
2648		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2649		frm += nrates;
2650	}
2651
2652	/* setup length of probe request */
2653	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2654
2655	/*
2656	 * Construct information about the channel that we
2657	 * want to scan. The firmware expects this to be directly
2658	 * after the scan probe request
2659	 */
2660	c = ic->ic_curchan;
2661	chan = (struct wpi_scan_chan *)frm;
2662	chan->chan = ieee80211_chan2ieee(ic, c);
2663	chan->flags = 0;
2664	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2665		chan->flags |= WPI_CHAN_ACTIVE;
2666		if (nssid != 0)
2667			chan->flags |= WPI_CHAN_DIRECT;
2668	}
2669	chan->gain_dsp = 0x6e; /* Default level */
2670	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2671		chan->active = htole16(10);
2672		chan->passive = htole16(ss->ss_maxdwell);
2673		chan->gain_radio = 0x3b;
2674	} else {
2675		chan->active = htole16(20);
2676		chan->passive = htole16(ss->ss_maxdwell);
2677		chan->gain_radio = 0x28;
2678	}
2679
2680	DPRINTFN(WPI_DEBUG_SCANNING,
2681	    ("Scanning %u Passive: %d\n",
2682	     chan->chan,
2683	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2684
2685	hdr->nchan++;
2686	chan++;
2687
2688	frm += sizeof (struct wpi_scan_chan);
2689#if 0
2690	// XXX All Channels....
2691	for (c  = &ic->ic_channels[1];
2692	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2693		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2694			continue;
2695
2696		chan->chan = ieee80211_chan2ieee(ic, c);
2697		chan->flags = 0;
2698		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2699		    chan->flags |= WPI_CHAN_ACTIVE;
2700		    if (ic->ic_des_ssid[0].len != 0)
2701			chan->flags |= WPI_CHAN_DIRECT;
2702		}
2703		chan->gain_dsp = 0x6e; /* Default level */
2704		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2705			chan->active = htole16(10);
2706			chan->passive = htole16(110);
2707			chan->gain_radio = 0x3b;
2708		} else {
2709			chan->active = htole16(20);
2710			chan->passive = htole16(120);
2711			chan->gain_radio = 0x28;
2712		}
2713
2714		DPRINTFN(WPI_DEBUG_SCANNING,
2715			 ("Scanning %u Passive: %d\n",
2716			  chan->chan,
2717			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2718
2719		hdr->nchan++;
2720		chan++;
2721
2722		frm += sizeof (struct wpi_scan_chan);
2723	}
2724#endif
2725
2726	hdr->len = htole16(frm - (uint8_t *)hdr);
2727	pktlen = frm - (uint8_t *)cmd;
2728
2729	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2730	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2731	if (error != 0) {
2732		device_printf(sc->sc_dev, "could not map scan command\n");
2733		m_freem(data->m);
2734		data->m = NULL;
2735		return error;
2736	}
2737
2738	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2739	desc->segs[0].addr = htole32(physaddr);
2740	desc->segs[0].len  = htole32(pktlen);
2741
2742	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2743	    BUS_DMASYNC_PREWRITE);
2744	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2745
2746	/* kick cmd ring */
2747	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2748	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2749
2750	sc->sc_scan_timer = 5;
2751	return 0;	/* will be notified async. of failure/success */
2752}
2753
2754/**
2755 * Configure the card to listen to a particular channel, this transisions the
2756 * card in to being able to receive frames from remote devices.
2757 */
2758static int
2759wpi_config(struct wpi_softc *sc)
2760{
2761	struct ifnet *ifp = sc->sc_ifp;
2762	struct ieee80211com *ic = ifp->if_l2com;
2763	struct wpi_power power;
2764	struct wpi_bluetooth bluetooth;
2765	struct wpi_node_info node;
2766	int error;
2767
2768	/* set power mode */
2769	memset(&power, 0, sizeof power);
2770	power.flags = htole32(WPI_POWER_CAM|0x8);
2771	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2772	if (error != 0) {
2773		device_printf(sc->sc_dev, "could not set power mode\n");
2774		return error;
2775	}
2776
2777	/* configure bluetooth coexistence */
2778	memset(&bluetooth, 0, sizeof bluetooth);
2779	bluetooth.flags = 3;
2780	bluetooth.lead = 0xaa;
2781	bluetooth.kill = 1;
2782	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2783	    0);
2784	if (error != 0) {
2785		device_printf(sc->sc_dev,
2786		    "could not configure bluetooth coexistence\n");
2787		return error;
2788	}
2789
2790	/* configure adapter */
2791	memset(&sc->config, 0, sizeof (struct wpi_config));
2792	IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2793	/*set default channel*/
2794	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2795	sc->config.flags = htole32(WPI_CONFIG_TSF);
2796	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2797		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2798		    WPI_CONFIG_24GHZ);
2799	}
2800	sc->config.filter = 0;
2801	switch (ic->ic_opmode) {
2802	case IEEE80211_M_STA:
2803	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2804		sc->config.mode = WPI_MODE_STA;
2805		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2806		break;
2807	case IEEE80211_M_IBSS:
2808	case IEEE80211_M_AHDEMO:
2809		sc->config.mode = WPI_MODE_IBSS;
2810		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2811					     WPI_FILTER_MULTICAST);
2812		break;
2813	case IEEE80211_M_HOSTAP:
2814		sc->config.mode = WPI_MODE_HOSTAP;
2815		break;
2816	case IEEE80211_M_MONITOR:
2817		sc->config.mode = WPI_MODE_MONITOR;
2818		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2819			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2820		break;
2821	default:
2822		device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2823		return EINVAL;
2824	}
2825	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2826	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2827	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2828		sizeof (struct wpi_config), 0);
2829	if (error != 0) {
2830		device_printf(sc->sc_dev, "configure command failed\n");
2831		return error;
2832	}
2833
2834	/* configuration has changed, set Tx power accordingly */
2835	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2836	    device_printf(sc->sc_dev, "could not set Tx power\n");
2837	    return error;
2838	}
2839
2840	/* add broadcast node */
2841	memset(&node, 0, sizeof node);
2842	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2843	node.id = WPI_ID_BROADCAST;
2844	node.rate = wpi_plcp_signal(2);
2845	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2846	if (error != 0) {
2847		device_printf(sc->sc_dev, "could not add broadcast node\n");
2848		return error;
2849	}
2850
2851	/* Setup rate scalling */
2852	error = wpi_mrr_setup(sc);
2853	if (error != 0) {
2854		device_printf(sc->sc_dev, "could not setup MRR\n");
2855		return error;
2856	}
2857
2858	return 0;
2859}
2860
2861static void
2862wpi_stop_master(struct wpi_softc *sc)
2863{
2864	uint32_t tmp;
2865	int ntries;
2866
2867	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2868
2869	tmp = WPI_READ(sc, WPI_RESET);
2870	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2871
2872	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2873	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2874		return;	/* already asleep */
2875
2876	for (ntries = 0; ntries < 100; ntries++) {
2877		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2878			break;
2879		DELAY(10);
2880	}
2881	if (ntries == 100) {
2882		device_printf(sc->sc_dev, "timeout waiting for master\n");
2883	}
2884}
2885
2886static int
2887wpi_power_up(struct wpi_softc *sc)
2888{
2889	uint32_t tmp;
2890	int ntries;
2891
2892	wpi_mem_lock(sc);
2893	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2894	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2895	wpi_mem_unlock(sc);
2896
2897	for (ntries = 0; ntries < 5000; ntries++) {
2898		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2899			break;
2900		DELAY(10);
2901	}
2902	if (ntries == 5000) {
2903		device_printf(sc->sc_dev,
2904		    "timeout waiting for NIC to power up\n");
2905		return ETIMEDOUT;
2906	}
2907	return 0;
2908}
2909
2910static int
2911wpi_reset(struct wpi_softc *sc)
2912{
2913	uint32_t tmp;
2914	int ntries;
2915
2916	DPRINTFN(WPI_DEBUG_HW,
2917	    ("Resetting the card - clearing any uploaded firmware\n"));
2918
2919	/* clear any pending interrupts */
2920	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2921
2922	tmp = WPI_READ(sc, WPI_PLL_CTL);
2923	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2924
2925	tmp = WPI_READ(sc, WPI_CHICKEN);
2926	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2927
2928	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2929	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2930
2931	/* wait for clock stabilization */
2932	for (ntries = 0; ntries < 25000; ntries++) {
2933		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2934			break;
2935		DELAY(10);
2936	}
2937	if (ntries == 25000) {
2938		device_printf(sc->sc_dev,
2939		    "timeout waiting for clock stabilization\n");
2940		return ETIMEDOUT;
2941	}
2942
2943	/* initialize EEPROM */
2944	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2945
2946	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2947		device_printf(sc->sc_dev, "EEPROM not found\n");
2948		return EIO;
2949	}
2950	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2951
2952	return 0;
2953}
2954
2955static void
2956wpi_hw_config(struct wpi_softc *sc)
2957{
2958	uint32_t rev, hw;
2959
2960	/* voodoo from the Linux "driver".. */
2961	hw = WPI_READ(sc, WPI_HWCONFIG);
2962
2963	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2964	if ((rev & 0xc0) == 0x40)
2965		hw |= WPI_HW_ALM_MB;
2966	else if (!(rev & 0x80))
2967		hw |= WPI_HW_ALM_MM;
2968
2969	if (sc->cap == 0x80)
2970		hw |= WPI_HW_SKU_MRC;
2971
2972	hw &= ~WPI_HW_REV_D;
2973	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2974		hw |= WPI_HW_REV_D;
2975
2976	if (sc->type > 1)
2977		hw |= WPI_HW_TYPE_B;
2978
2979	WPI_WRITE(sc, WPI_HWCONFIG, hw);
2980}
2981
2982static void
2983wpi_rfkill_resume(struct wpi_softc *sc)
2984{
2985	struct ifnet *ifp = sc->sc_ifp;
2986	struct ieee80211com *ic = ifp->if_l2com;
2987	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2988	int ntries;
2989
2990	/* enable firmware again */
2991	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
2992	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
2993
2994	/* wait for thermal sensors to calibrate */
2995	for (ntries = 0; ntries < 1000; ntries++) {
2996		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
2997			break;
2998		DELAY(10);
2999	}
3000
3001	if (ntries == 1000) {
3002		device_printf(sc->sc_dev,
3003		    "timeout waiting for thermal calibration\n");
3004		WPI_UNLOCK(sc);
3005		return;
3006	}
3007	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3008
3009	if (wpi_config(sc) != 0) {
3010		device_printf(sc->sc_dev, "device config failed\n");
3011		WPI_UNLOCK(sc);
3012		return;
3013	}
3014
3015	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3016	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3017	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3018
3019	if (vap != NULL) {
3020		if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3021			if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3022				ieee80211_beacon_miss(ic);
3023				wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3024			} else
3025				wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3026		} else {
3027			ieee80211_scan_next(vap);
3028			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3029		}
3030	}
3031
3032	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3033}
3034
3035static void
3036wpi_init_locked(struct wpi_softc *sc, int force)
3037{
3038	struct ifnet *ifp = sc->sc_ifp;
3039	uint32_t tmp;
3040	int ntries, qid;
3041
3042	wpi_stop_locked(sc);
3043	(void)wpi_reset(sc);
3044
3045	wpi_mem_lock(sc);
3046	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3047	DELAY(20);
3048	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3049	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3050	wpi_mem_unlock(sc);
3051
3052	(void)wpi_power_up(sc);
3053	wpi_hw_config(sc);
3054
3055	/* init Rx ring */
3056	wpi_mem_lock(sc);
3057	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3058	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3059	    offsetof(struct wpi_shared, next));
3060	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3061	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3062	wpi_mem_unlock(sc);
3063
3064	/* init Tx rings */
3065	wpi_mem_lock(sc);
3066	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3067	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3068	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3069	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3070	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3071	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3072	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3073
3074	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3075	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3076
3077	for (qid = 0; qid < 6; qid++) {
3078		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3079		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3080		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3081	}
3082	wpi_mem_unlock(sc);
3083
3084	/* clear "radio off" and "disable command" bits (reversed logic) */
3085	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3086	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3087	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3088
3089	/* clear any pending interrupts */
3090	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3091
3092	/* enable interrupts */
3093	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3094
3095	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3096	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3097
3098	if ((wpi_load_firmware(sc)) != 0) {
3099	    device_printf(sc->sc_dev,
3100		"A problem occurred loading the firmware to the driver\n");
3101	    return;
3102	}
3103
3104	/* At this point the firmware is up and running. If the hardware
3105	 * RF switch is turned off thermal calibration will fail, though
3106	 * the card is still happy to continue to accept commands, catch
3107	 * this case and schedule a task to watch for it to be turned on.
3108	 */
3109	wpi_mem_lock(sc);
3110	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3111	wpi_mem_unlock(sc);
3112
3113	if (!(tmp & 0x1)) {
3114		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3115		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3116		goto out;
3117	}
3118
3119	/* wait for thermal sensors to calibrate */
3120	for (ntries = 0; ntries < 1000; ntries++) {
3121		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3122			break;
3123		DELAY(10);
3124	}
3125
3126	if (ntries == 1000) {
3127		device_printf(sc->sc_dev,
3128		    "timeout waiting for thermal sensors calibration\n");
3129		return;
3130	}
3131	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3132
3133	if (wpi_config(sc) != 0) {
3134		device_printf(sc->sc_dev, "device config failed\n");
3135		return;
3136	}
3137
3138	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3139	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3140out:
3141	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3142}
3143
3144static void
3145wpi_init(void *arg)
3146{
3147	struct wpi_softc *sc = arg;
3148	struct ifnet *ifp = sc->sc_ifp;
3149	struct ieee80211com *ic = ifp->if_l2com;
3150
3151	WPI_LOCK(sc);
3152	wpi_init_locked(sc, 0);
3153	WPI_UNLOCK(sc);
3154
3155	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3156		ieee80211_start_all(ic);		/* start all vaps */
3157}
3158
3159static void
3160wpi_stop_locked(struct wpi_softc *sc)
3161{
3162	struct ifnet *ifp = sc->sc_ifp;
3163	uint32_t tmp;
3164	int ac;
3165
3166	sc->sc_tx_timer = 0;
3167	sc->sc_scan_timer = 0;
3168	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3169	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3170	callout_stop(&sc->watchdog_to);
3171	callout_stop(&sc->calib_to);
3172
3173
3174	/* disable interrupts */
3175	WPI_WRITE(sc, WPI_MASK, 0);
3176	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3177	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3178	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3179
3180	wpi_mem_lock(sc);
3181	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3182	wpi_mem_unlock(sc);
3183
3184	/* reset all Tx rings */
3185	for (ac = 0; ac < 4; ac++)
3186		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3187	wpi_reset_tx_ring(sc, &sc->cmdq);
3188
3189	/* reset Rx ring */
3190	wpi_reset_rx_ring(sc, &sc->rxq);
3191
3192	wpi_mem_lock(sc);
3193	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3194	wpi_mem_unlock(sc);
3195
3196	DELAY(5);
3197
3198	wpi_stop_master(sc);
3199
3200	tmp = WPI_READ(sc, WPI_RESET);
3201	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3202	sc->flags &= ~WPI_FLAG_BUSY;
3203}
3204
3205static void
3206wpi_stop(struct wpi_softc *sc)
3207{
3208	WPI_LOCK(sc);
3209	wpi_stop_locked(sc);
3210	WPI_UNLOCK(sc);
3211}
3212
3213static void
3214wpi_newassoc(struct ieee80211_node *ni, int isnew)
3215{
3216	struct ieee80211vap *vap = ni->ni_vap;
3217	struct wpi_vap *wvp = WPI_VAP(vap);
3218
3219	ieee80211_amrr_node_init(&wvp->amrr, &WPI_NODE(ni)->amn, ni);
3220}
3221
3222static void
3223wpi_calib_timeout(void *arg)
3224{
3225	struct wpi_softc *sc = arg;
3226	struct ifnet *ifp = sc->sc_ifp;
3227	struct ieee80211com *ic = ifp->if_l2com;
3228	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3229	int temp;
3230
3231	if (vap->iv_state != IEEE80211_S_RUN)
3232		return;
3233
3234	/* update sensor data */
3235	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3236	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3237
3238	wpi_power_calibration(sc, temp);
3239
3240	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3241}
3242
3243/*
3244 * This function is called periodically (every 60 seconds) to adjust output
3245 * power to temperature changes.
3246 */
3247static void
3248wpi_power_calibration(struct wpi_softc *sc, int temp)
3249{
3250	struct ifnet *ifp = sc->sc_ifp;
3251	struct ieee80211com *ic = ifp->if_l2com;
3252	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3253
3254	/* sanity-check read value */
3255	if (temp < -260 || temp > 25) {
3256		/* this can't be correct, ignore */
3257		DPRINTFN(WPI_DEBUG_TEMP,
3258		    ("out-of-range temperature reported: %d\n", temp));
3259		return;
3260	}
3261
3262	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3263
3264	/* adjust Tx power if need be */
3265	if (abs(temp - sc->temp) <= 6)
3266		return;
3267
3268	sc->temp = temp;
3269
3270	if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3271		/* just warn, too bad for the automatic calibration... */
3272		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3273	}
3274}
3275
3276/**
3277 * Read the eeprom to find out what channels are valid for the given
3278 * band and update net80211 with what we find.
3279 */
3280static void
3281wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3282{
3283	struct ifnet *ifp = sc->sc_ifp;
3284	struct ieee80211com *ic = ifp->if_l2com;
3285	const struct wpi_chan_band *band = &wpi_bands[n];
3286	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3287	struct ieee80211_channel *c;
3288	int chan, i, passive;
3289
3290	wpi_read_prom_data(sc, band->addr, channels,
3291	    band->nchan * sizeof (struct wpi_eeprom_chan));
3292
3293	for (i = 0; i < band->nchan; i++) {
3294		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3295			DPRINTFN(WPI_DEBUG_HW,
3296			    ("Channel Not Valid: %d, band %d\n",
3297			     band->chan[i],n));
3298			continue;
3299		}
3300
3301		passive = 0;
3302		chan = band->chan[i];
3303		c = &ic->ic_channels[ic->ic_nchans++];
3304
3305		/* is active scan allowed on this channel? */
3306		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3307			passive = IEEE80211_CHAN_PASSIVE;
3308		}
3309
3310		if (n == 0) {	/* 2GHz band */
3311			c->ic_ieee = chan;
3312			c->ic_freq = ieee80211_ieee2mhz(chan,
3313			    IEEE80211_CHAN_2GHZ);
3314			c->ic_flags = IEEE80211_CHAN_B | passive;
3315
3316			c = &ic->ic_channels[ic->ic_nchans++];
3317			c->ic_ieee = chan;
3318			c->ic_freq = ieee80211_ieee2mhz(chan,
3319			    IEEE80211_CHAN_2GHZ);
3320			c->ic_flags = IEEE80211_CHAN_G | passive;
3321
3322		} else {	/* 5GHz band */
3323			/*
3324			 * Some 3945ABG adapters support channels 7, 8, 11
3325			 * and 12 in the 2GHz *and* 5GHz bands.
3326			 * Because of limitations in our net80211(9) stack,
3327			 * we can't support these channels in 5GHz band.
3328			 * XXX not true; just need to map to proper frequency
3329			 */
3330			if (chan <= 14)
3331				continue;
3332
3333			c->ic_ieee = chan;
3334			c->ic_freq = ieee80211_ieee2mhz(chan,
3335			    IEEE80211_CHAN_5GHZ);
3336			c->ic_flags = IEEE80211_CHAN_A | passive;
3337		}
3338
3339		/* save maximum allowed power for this channel */
3340		sc->maxpwr[chan] = channels[i].maxpwr;
3341
3342#if 0
3343		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3344		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3345		//ic->ic_channels[chan].ic_minpower...
3346		//ic->ic_channels[chan].ic_maxregtxpower...
3347#endif
3348
3349		DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3350		    " passive=%d, offset %d\n", chan, c->ic_freq,
3351		    channels[i].flags, sc->maxpwr[chan],
3352		    (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3353		    ic->ic_nchans));
3354	}
3355}
3356
3357static void
3358wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3359{
3360	struct wpi_power_group *group = &sc->groups[n];
3361	struct wpi_eeprom_group rgroup;
3362	int i;
3363
3364	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3365	    sizeof rgroup);
3366
3367	/* save power group information */
3368	group->chan   = rgroup.chan;
3369	group->maxpwr = rgroup.maxpwr;
3370	/* temperature at which the samples were taken */
3371	group->temp   = (int16_t)le16toh(rgroup.temp);
3372
3373	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3374		    group->chan, group->maxpwr, group->temp));
3375
3376	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3377		group->samples[i].index = rgroup.samples[i].index;
3378		group->samples[i].power = rgroup.samples[i].power;
3379
3380		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3381			    group->samples[i].index, group->samples[i].power));
3382	}
3383}
3384
3385/*
3386 * Update Tx power to match what is defined for channel `c'.
3387 */
3388static int
3389wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3390{
3391	struct ifnet *ifp = sc->sc_ifp;
3392	struct ieee80211com *ic = ifp->if_l2com;
3393	struct wpi_power_group *group;
3394	struct wpi_cmd_txpower txpower;
3395	u_int chan;
3396	int i;
3397
3398	/* get channel number */
3399	chan = ieee80211_chan2ieee(ic, c);
3400
3401	/* find the power group to which this channel belongs */
3402	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3403		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3404			if (chan <= group->chan)
3405				break;
3406	} else
3407		group = &sc->groups[0];
3408
3409	memset(&txpower, 0, sizeof txpower);
3410	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3411	txpower.channel = htole16(chan);
3412
3413	/* set Tx power for all OFDM and CCK rates */
3414	for (i = 0; i <= 11 ; i++) {
3415		/* retrieve Tx power for this channel/rate combination */
3416		int idx = wpi_get_power_index(sc, group, c,
3417		    wpi_ridx_to_rate[i]);
3418
3419		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3420
3421		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3422			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3423			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3424		} else {
3425			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3426			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3427		}
3428		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3429			    chan, wpi_ridx_to_rate[i], idx));
3430	}
3431
3432	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3433}
3434
3435/*
3436 * Determine Tx power index for a given channel/rate combination.
3437 * This takes into account the regulatory information from EEPROM and the
3438 * current temperature.
3439 */
3440static int
3441wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3442    struct ieee80211_channel *c, int rate)
3443{
3444/* fixed-point arithmetic division using a n-bit fractional part */
3445#define fdivround(a, b, n)      \
3446	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3447
3448/* linear interpolation */
3449#define interpolate(x, x1, y1, x2, y2, n)       \
3450	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3451
3452	struct ifnet *ifp = sc->sc_ifp;
3453	struct ieee80211com *ic = ifp->if_l2com;
3454	struct wpi_power_sample *sample;
3455	int pwr, idx;
3456	u_int chan;
3457
3458	/* get channel number */
3459	chan = ieee80211_chan2ieee(ic, c);
3460
3461	/* default power is group's maximum power - 3dB */
3462	pwr = group->maxpwr / 2;
3463
3464	/* decrease power for highest OFDM rates to reduce distortion */
3465	switch (rate) {
3466		case 72:	/* 36Mb/s */
3467			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3468			break;
3469		case 96:	/* 48Mb/s */
3470			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3471			break;
3472		case 108:	/* 54Mb/s */
3473			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3474			break;
3475	}
3476
3477	/* never exceed channel's maximum allowed Tx power */
3478	pwr = min(pwr, sc->maxpwr[chan]);
3479
3480	/* retrieve power index into gain tables from samples */
3481	for (sample = group->samples; sample < &group->samples[3]; sample++)
3482		if (pwr > sample[1].power)
3483			break;
3484	/* fixed-point linear interpolation using a 19-bit fractional part */
3485	idx = interpolate(pwr, sample[0].power, sample[0].index,
3486	    sample[1].power, sample[1].index, 19);
3487
3488	/*
3489	 *  Adjust power index based on current temperature
3490	 *	- if colder than factory-calibrated: decreate output power
3491	 *	- if warmer than factory-calibrated: increase output power
3492	 */
3493	idx -= (sc->temp - group->temp) * 11 / 100;
3494
3495	/* decrease power for CCK rates (-5dB) */
3496	if (!WPI_RATE_IS_OFDM(rate))
3497		idx += 10;
3498
3499	/* keep power index in a valid range */
3500	if (idx < 0)
3501		return 0;
3502	if (idx > WPI_MAX_PWR_INDEX)
3503		return WPI_MAX_PWR_INDEX;
3504	return idx;
3505
3506#undef interpolate
3507#undef fdivround
3508}
3509
3510/**
3511 * Called by net80211 framework to indicate that a scan
3512 * is starting. This function doesn't actually do the scan,
3513 * wpi_scan_curchan starts things off. This function is more
3514 * of an early warning from the framework we should get ready
3515 * for the scan.
3516 */
3517static void
3518wpi_scan_start(struct ieee80211com *ic)
3519{
3520	struct ifnet *ifp = ic->ic_ifp;
3521	struct wpi_softc *sc = ifp->if_softc;
3522
3523	WPI_LOCK(sc);
3524	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3525	WPI_UNLOCK(sc);
3526}
3527
3528/**
3529 * Called by the net80211 framework, indicates that the
3530 * scan has ended. If there is a scan in progress on the card
3531 * then it should be aborted.
3532 */
3533static void
3534wpi_scan_end(struct ieee80211com *ic)
3535{
3536	/* XXX ignore */
3537}
3538
3539/**
3540 * Called by the net80211 framework to indicate to the driver
3541 * that the channel should be changed
3542 */
3543static void
3544wpi_set_channel(struct ieee80211com *ic)
3545{
3546	struct ifnet *ifp = ic->ic_ifp;
3547	struct wpi_softc *sc = ifp->if_softc;
3548	int error;
3549
3550	/*
3551	 * Only need to set the channel in Monitor mode. AP scanning and auth
3552	 * are already taken care of by their respective firmware commands.
3553	 */
3554	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3555		error = wpi_config(sc);
3556		if (error != 0)
3557			device_printf(sc->sc_dev,
3558			    "error %d settting channel\n", error);
3559	}
3560}
3561
3562/**
3563 * Called by net80211 to indicate that we need to scan the current
3564 * channel. The channel is previously be set via the wpi_set_channel
3565 * callback.
3566 */
3567static void
3568wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3569{
3570	struct ieee80211vap *vap = ss->ss_vap;
3571	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3572	struct wpi_softc *sc = ifp->if_softc;
3573
3574	WPI_LOCK(sc);
3575	if (wpi_scan(sc))
3576		ieee80211_cancel_scan(vap);
3577	WPI_UNLOCK(sc);
3578}
3579
3580/**
3581 * Called by the net80211 framework to indicate
3582 * the minimum dwell time has been met, terminate the scan.
3583 * We don't actually terminate the scan as the firmware will notify
3584 * us when it's finished and we have no way to interrupt it.
3585 */
3586static void
3587wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3588{
3589	/* NB: don't try to abort scan; wait for firmware to finish */
3590}
3591
3592static void
3593wpi_hwreset(void *arg, int pending)
3594{
3595	struct wpi_softc *sc = arg;
3596
3597	WPI_LOCK(sc);
3598	wpi_init_locked(sc, 0);
3599	WPI_UNLOCK(sc);
3600}
3601
3602static void
3603wpi_rfreset(void *arg, int pending)
3604{
3605	struct wpi_softc *sc = arg;
3606
3607	WPI_LOCK(sc);
3608	wpi_rfkill_resume(sc);
3609	WPI_UNLOCK(sc);
3610}
3611
3612/*
3613 * Allocate DMA-safe memory for firmware transfer.
3614 */
3615static int
3616wpi_alloc_fwmem(struct wpi_softc *sc)
3617{
3618	/* allocate enough contiguous space to store text and data */
3619	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3620	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3621	    BUS_DMA_NOWAIT);
3622}
3623
3624static void
3625wpi_free_fwmem(struct wpi_softc *sc)
3626{
3627	wpi_dma_contig_free(&sc->fw_dma);
3628}
3629
3630/**
3631 * Called every second, wpi_watchdog used by the watch dog timer
3632 * to check that the card is still alive
3633 */
3634static void
3635wpi_watchdog(void *arg)
3636{
3637	struct wpi_softc *sc = arg;
3638	struct ifnet *ifp = sc->sc_ifp;
3639	struct ieee80211com *ic = ifp->if_l2com;
3640	uint32_t tmp;
3641
3642	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3643
3644	if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3645		/* No need to lock firmware memory */
3646		tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3647
3648		if ((tmp & 0x1) == 0) {
3649			/* Radio kill switch is still off */
3650			callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3651			return;
3652		}
3653
3654		device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3655		ieee80211_runtask(ic, &sc->sc_radiotask);
3656		return;
3657	}
3658
3659	if (sc->sc_tx_timer > 0) {
3660		if (--sc->sc_tx_timer == 0) {
3661			device_printf(sc->sc_dev,"device timeout\n");
3662			ifp->if_oerrors++;
3663			ieee80211_runtask(ic, &sc->sc_restarttask);
3664		}
3665	}
3666	if (sc->sc_scan_timer > 0) {
3667		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3668		if (--sc->sc_scan_timer == 0 && vap != NULL) {
3669			device_printf(sc->sc_dev,"scan timeout\n");
3670			ieee80211_cancel_scan(vap);
3671			ieee80211_runtask(ic, &sc->sc_restarttask);
3672		}
3673	}
3674
3675	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3676		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3677}
3678
3679#ifdef WPI_DEBUG
3680static const char *wpi_cmd_str(int cmd)
3681{
3682	switch (cmd) {
3683	case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3684	case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3685	case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3686	case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3687	case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3688	case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3689	case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3690	case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3691	case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3692	case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3693	case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3694	case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3695	case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3696	case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3697
3698	default:
3699		KASSERT(1, ("Unknown Command: %d\n", cmd));
3700		return "UNKNOWN CMD";	/* Make the compiler happy */
3701	}
3702}
3703#endif
3704
3705MODULE_DEPEND(wpi, pci,  1, 1, 1);
3706MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3707MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3708MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1);
3709