if_wpi.c revision 191746
1/*-
2 * Copyright (c) 2006,2007
3 *	Damien Bergamini <damien.bergamini@free.fr>
4 *	Benjamin Close <Benjamin.Close@clearchain.com>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19#define VERSION "20071127"
20
21#include <sys/cdefs.h>
22__FBSDID("$FreeBSD: head/sys/dev/wpi/if_wpi.c 191746 2009-05-02 15:14:18Z thompsa $");
23
24/*
25 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26 *
27 * The 3945ABG network adapter doesn't use traditional hardware as
28 * many other adaptors do. Instead at run time the eeprom is set into a known
29 * state and told to load boot firmware. The boot firmware loads an init and a
30 * main  binary firmware image into SRAM on the card via DMA.
31 * Once the firmware is loaded, the driver/hw then
32 * communicate by way of circular dma rings via the the SRAM to the firmware.
33 *
34 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35 * The 4 tx data rings allow for prioritization QoS.
36 *
37 * The rx data ring consists of 32 dma buffers. Two registers are used to
38 * indicate where in the ring the driver and the firmware are up to. The
39 * driver sets the initial read index (reg1) and the initial write index (reg2),
40 * the firmware updates the read index (reg1) on rx of a packet and fires an
41 * interrupt. The driver then processes the buffers starting at reg1 indicating
42 * to the firmware which buffers have been accessed by updating reg2. At the
43 * same time allocating new memory for the processed buffer.
44 *
45 * A similar thing happens with the tx rings. The difference is the firmware
46 * stop processing buffers once the queue is full and until confirmation
47 * of a successful transmition (tx_intr) has occurred.
48 *
49 * The command ring operates in the same manner as the tx queues.
50 *
51 * All communication direct to the card (ie eeprom) is classed as Stage1
52 * communication
53 *
54 * All communication via the firmware to the card is classed as State2.
55 * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56 * firmware. The bootstrap firmware and runtime firmware are loaded
57 * from host memory via dma to the card then told to execute. From this point
58 * on the majority of communications between the driver and the card goes
59 * via the firmware.
60 */
61
62#include <sys/param.h>
63#include <sys/sysctl.h>
64#include <sys/sockio.h>
65#include <sys/mbuf.h>
66#include <sys/kernel.h>
67#include <sys/socket.h>
68#include <sys/systm.h>
69#include <sys/malloc.h>
70#include <sys/queue.h>
71#include <sys/taskqueue.h>
72#include <sys/module.h>
73#include <sys/bus.h>
74#include <sys/endian.h>
75#include <sys/linker.h>
76#include <sys/firmware.h>
77
78#include <machine/bus.h>
79#include <machine/resource.h>
80#include <sys/rman.h>
81
82#include <dev/pci/pcireg.h>
83#include <dev/pci/pcivar.h>
84
85#include <net/bpf.h>
86#include <net/if.h>
87#include <net/if_arp.h>
88#include <net/ethernet.h>
89#include <net/if_dl.h>
90#include <net/if_media.h>
91#include <net/if_types.h>
92
93#include <net80211/ieee80211_var.h>
94#include <net80211/ieee80211_radiotap.h>
95#include <net80211/ieee80211_regdomain.h>
96
97#include <netinet/in.h>
98#include <netinet/in_systm.h>
99#include <netinet/in_var.h>
100#include <netinet/ip.h>
101#include <netinet/if_ether.h>
102
103#include <dev/wpi/if_wpireg.h>
104#include <dev/wpi/if_wpivar.h>
105
106#define WPI_DEBUG
107
108#ifdef WPI_DEBUG
109#define DPRINTF(x)	do { if (wpi_debug != 0) printf x; } while (0)
110#define DPRINTFN(n, x)	do { if (wpi_debug & n) printf x; } while (0)
111#define	WPI_DEBUG_SET	(wpi_debug != 0)
112
113enum {
114	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
115	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
116	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
117	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
118	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
119	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
120	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
121	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
122	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
123	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
124	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
125	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
126	WPI_DEBUG_ANY		= 0xffffffff
127};
128
129static int wpi_debug = 1;
130SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
131TUNABLE_INT("debug.wpi", &wpi_debug);
132
133#else
134#define DPRINTF(x)
135#define DPRINTFN(n, x)
136#define WPI_DEBUG_SET	0
137#endif
138
139struct wpi_ident {
140	uint16_t	vendor;
141	uint16_t	device;
142	uint16_t	subdevice;
143	const char	*name;
144};
145
146static const struct wpi_ident wpi_ident_table[] = {
147	/* The below entries support ABG regardless of the subid */
148	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
149	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
150	/* The below entries only support BG */
151	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
152	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
153	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
154	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
155	{ 0, 0, 0, NULL }
156};
157
158static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
159		    const char name[IFNAMSIZ], int unit, int opmode,
160		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
161		    const uint8_t mac[IEEE80211_ADDR_LEN]);
162static void	wpi_vap_delete(struct ieee80211vap *);
163static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
164		    void **, bus_size_t, bus_size_t, int);
165static void	wpi_dma_contig_free(struct wpi_dma_info *);
166static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
167static int	wpi_alloc_shared(struct wpi_softc *);
168static void	wpi_free_shared(struct wpi_softc *);
169static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
170static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
171static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
172static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
173		    int, int);
174static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
175static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
176static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
177			    const uint8_t mac[IEEE80211_ADDR_LEN]);
178static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
179static void	wpi_mem_lock(struct wpi_softc *);
180static void	wpi_mem_unlock(struct wpi_softc *);
181static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
182static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
183static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
184		    const uint32_t *, int);
185static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
186static int	wpi_alloc_fwmem(struct wpi_softc *);
187static void	wpi_free_fwmem(struct wpi_softc *);
188static int	wpi_load_firmware(struct wpi_softc *);
189static void	wpi_unload_firmware(struct wpi_softc *);
190static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
191static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
192		    struct wpi_rx_data *);
193static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
194static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
195static void	wpi_notif_intr(struct wpi_softc *);
196static void	wpi_intr(void *);
197static uint8_t	wpi_plcp_signal(int);
198static void	wpi_watchdog(void *);
199static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
200		    struct ieee80211_node *, int);
201static void	wpi_start(struct ifnet *);
202static void	wpi_start_locked(struct ifnet *);
203static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
204		    const struct ieee80211_bpf_params *);
205static void	wpi_scan_start(struct ieee80211com *);
206static void	wpi_scan_end(struct ieee80211com *);
207static void	wpi_set_channel(struct ieee80211com *);
208static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
209static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
210static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
211static void	wpi_read_eeprom(struct wpi_softc *,
212		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
213static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
214static void	wpi_read_eeprom_group(struct wpi_softc *, int);
215static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
216static int	wpi_wme_update(struct ieee80211com *);
217static int	wpi_mrr_setup(struct wpi_softc *);
218static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
219static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
220#if 0
221static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
222#endif
223static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
224static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
225static int	wpi_scan(struct wpi_softc *);
226static int	wpi_config(struct wpi_softc *);
227static void	wpi_stop_master(struct wpi_softc *);
228static int	wpi_power_up(struct wpi_softc *);
229static int	wpi_reset(struct wpi_softc *);
230static void	wpi_hwreset(void *, int);
231static void	wpi_rfreset(void *, int);
232static void	wpi_hw_config(struct wpi_softc *);
233static void	wpi_init(void *);
234static void	wpi_init_locked(struct wpi_softc *, int);
235static void	wpi_stop(struct wpi_softc *);
236static void	wpi_stop_locked(struct wpi_softc *);
237
238static void	wpi_newassoc(struct ieee80211_node *, int);
239static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
240		    int);
241static void	wpi_calib_timeout(void *);
242static void	wpi_power_calibration(struct wpi_softc *, int);
243static int	wpi_get_power_index(struct wpi_softc *,
244		    struct wpi_power_group *, struct ieee80211_channel *, int);
245#ifdef WPI_DEBUG
246static const char *wpi_cmd_str(int);
247#endif
248static int wpi_probe(device_t);
249static int wpi_attach(device_t);
250static int wpi_detach(device_t);
251static int wpi_shutdown(device_t);
252static int wpi_suspend(device_t);
253static int wpi_resume(device_t);
254
255
256static device_method_t wpi_methods[] = {
257	/* Device interface */
258	DEVMETHOD(device_probe,		wpi_probe),
259	DEVMETHOD(device_attach,	wpi_attach),
260	DEVMETHOD(device_detach,	wpi_detach),
261	DEVMETHOD(device_shutdown,	wpi_shutdown),
262	DEVMETHOD(device_suspend,	wpi_suspend),
263	DEVMETHOD(device_resume,	wpi_resume),
264
265	{ 0, 0 }
266};
267
268static driver_t wpi_driver = {
269	"wpi",
270	wpi_methods,
271	sizeof (struct wpi_softc)
272};
273
274static devclass_t wpi_devclass;
275
276DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
277
278static const uint8_t wpi_ridx_to_plcp[] = {
279	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
280	/* R1-R4 (ral/ural is R4-R1) */
281	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
282	/* CCK: device-dependent */
283	10, 20, 55, 110
284};
285static const uint8_t wpi_ridx_to_rate[] = {
286	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
287	2, 4, 11, 22 /*CCK */
288};
289
290
291static int
292wpi_probe(device_t dev)
293{
294	const struct wpi_ident *ident;
295
296	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
297		if (pci_get_vendor(dev) == ident->vendor &&
298		    pci_get_device(dev) == ident->device) {
299			device_set_desc(dev, ident->name);
300			return 0;
301		}
302	}
303	return ENXIO;
304}
305
306/**
307 * Load the firmare image from disk to the allocated dma buffer.
308 * we also maintain the reference to the firmware pointer as there
309 * is times where we may need to reload the firmware but we are not
310 * in a context that can access the filesystem (ie taskq cause by restart)
311 *
312 * @return 0 on success, an errno on failure
313 */
314static int
315wpi_load_firmware(struct wpi_softc *sc)
316{
317	const struct firmware *fp;
318	struct wpi_dma_info *dma = &sc->fw_dma;
319	const struct wpi_firmware_hdr *hdr;
320	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
321	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
322	int error;
323
324	DPRINTFN(WPI_DEBUG_FIRMWARE,
325	    ("Attempting Loading Firmware from wpi_fw module\n"));
326
327	WPI_UNLOCK(sc);
328
329	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
330		device_printf(sc->sc_dev,
331		    "could not load firmware image 'wpifw'\n");
332		error = ENOENT;
333		WPI_LOCK(sc);
334		goto fail;
335	}
336
337	fp = sc->fw_fp;
338
339	WPI_LOCK(sc);
340
341	/* Validate the firmware is minimum a particular version */
342	if (fp->version < WPI_FW_MINVERSION) {
343	    device_printf(sc->sc_dev,
344			   "firmware version is too old. Need %d, got %d\n",
345			   WPI_FW_MINVERSION,
346			   fp->version);
347	    error = ENXIO;
348	    goto fail;
349	}
350
351	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
352		device_printf(sc->sc_dev,
353		    "firmware file too short: %zu bytes\n", fp->datasize);
354		error = ENXIO;
355		goto fail;
356	}
357
358	hdr = (const struct wpi_firmware_hdr *)fp->data;
359
360	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
361	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
362
363	rtextsz = le32toh(hdr->rtextsz);
364	rdatasz = le32toh(hdr->rdatasz);
365	itextsz = le32toh(hdr->itextsz);
366	idatasz = le32toh(hdr->idatasz);
367	btextsz = le32toh(hdr->btextsz);
368
369	/* check that all firmware segments are present */
370	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
371		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
372		device_printf(sc->sc_dev,
373		    "firmware file too short: %zu bytes\n", fp->datasize);
374		error = ENXIO; /* XXX appropriate error code? */
375		goto fail;
376	}
377
378	/* get pointers to firmware segments */
379	rtext = (const uint8_t *)(hdr + 1);
380	rdata = rtext + rtextsz;
381	itext = rdata + rdatasz;
382	idata = itext + itextsz;
383	btext = idata + idatasz;
384
385	DPRINTFN(WPI_DEBUG_FIRMWARE,
386	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
387	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
388	     (le32toh(hdr->version) & 0xff000000) >> 24,
389	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
390	     (le32toh(hdr->version) & 0x0000ffff),
391	     rtextsz, rdatasz,
392	     itextsz, idatasz, btextsz));
393
394	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
395	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
396	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
397	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
398	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
399
400	/* sanity checks */
401	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
402	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
403	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
404	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
405	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
406	    (btextsz & 3) != 0) {
407		device_printf(sc->sc_dev, "firmware invalid\n");
408		error = EINVAL;
409		goto fail;
410	}
411
412	/* copy initialization images into pre-allocated DMA-safe memory */
413	memcpy(dma->vaddr, idata, idatasz);
414	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
415
416	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
417
418	/* tell adapter where to find initialization images */
419	wpi_mem_lock(sc);
420	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
421	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
422	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
423	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
424	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
425	wpi_mem_unlock(sc);
426
427	/* load firmware boot code */
428	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
429	    device_printf(sc->sc_dev, "Failed to load microcode\n");
430	    goto fail;
431	}
432
433	/* now press "execute" */
434	WPI_WRITE(sc, WPI_RESET, 0);
435
436	/* wait at most one second for the first alive notification */
437	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
438		device_printf(sc->sc_dev,
439		    "timeout waiting for adapter to initialize\n");
440		goto fail;
441	}
442
443	/* copy runtime images into pre-allocated DMA-sage memory */
444	memcpy(dma->vaddr, rdata, rdatasz);
445	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
446	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
447
448	/* tell adapter where to find runtime images */
449	wpi_mem_lock(sc);
450	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
451	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
452	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
453	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
454	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
455	wpi_mem_unlock(sc);
456
457	/* wait at most one second for the first alive notification */
458	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
459		device_printf(sc->sc_dev,
460		    "timeout waiting for adapter to initialize2\n");
461		goto fail;
462	}
463
464	DPRINTFN(WPI_DEBUG_FIRMWARE,
465	    ("Firmware loaded to driver successfully\n"));
466	return error;
467fail:
468	wpi_unload_firmware(sc);
469	return error;
470}
471
472/**
473 * Free the referenced firmware image
474 */
475static void
476wpi_unload_firmware(struct wpi_softc *sc)
477{
478
479	if (sc->fw_fp) {
480		WPI_UNLOCK(sc);
481		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
482		WPI_LOCK(sc);
483		sc->fw_fp = NULL;
484	}
485}
486
487static int
488wpi_attach(device_t dev)
489{
490	struct wpi_softc *sc = device_get_softc(dev);
491	struct ifnet *ifp;
492	struct ieee80211com *ic;
493	int ac, error, supportsa = 1;
494	uint32_t tmp;
495	const struct wpi_ident *ident;
496	uint8_t macaddr[IEEE80211_ADDR_LEN];
497
498	sc->sc_dev = dev;
499
500	if (bootverbose || WPI_DEBUG_SET)
501	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
502
503	/*
504	 * Some card's only support 802.11b/g not a, check to see if
505	 * this is one such card. A 0x0 in the subdevice table indicates
506	 * the entire subdevice range is to be ignored.
507	 */
508	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
509		if (ident->subdevice &&
510		    pci_get_subdevice(dev) == ident->subdevice) {
511		    supportsa = 0;
512		    break;
513		}
514	}
515
516	/* Create the tasks that can be queued */
517	TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc);
518	TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc);
519
520	WPI_LOCK_INIT(sc);
521
522	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
523	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
524
525	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
526		device_printf(dev, "chip is in D%d power mode "
527		    "-- setting to D0\n", pci_get_powerstate(dev));
528		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
529	}
530
531	/* disable the retry timeout register */
532	pci_write_config(dev, 0x41, 0, 1);
533
534	/* enable bus-mastering */
535	pci_enable_busmaster(dev);
536
537	sc->mem_rid = PCIR_BAR(0);
538	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
539	    RF_ACTIVE);
540	if (sc->mem == NULL) {
541		device_printf(dev, "could not allocate memory resource\n");
542		error = ENOMEM;
543		goto fail;
544	}
545
546	sc->sc_st = rman_get_bustag(sc->mem);
547	sc->sc_sh = rman_get_bushandle(sc->mem);
548
549	sc->irq_rid = 0;
550	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
551	    RF_ACTIVE | RF_SHAREABLE);
552	if (sc->irq == NULL) {
553		device_printf(dev, "could not allocate interrupt resource\n");
554		error = ENOMEM;
555		goto fail;
556	}
557
558	/*
559	 * Allocate DMA memory for firmware transfers.
560	 */
561	if ((error = wpi_alloc_fwmem(sc)) != 0) {
562		printf(": could not allocate firmware memory\n");
563		error = ENOMEM;
564		goto fail;
565	}
566
567	/*
568	 * Put adapter into a known state.
569	 */
570	if ((error = wpi_reset(sc)) != 0) {
571		device_printf(dev, "could not reset adapter\n");
572		goto fail;
573	}
574
575	wpi_mem_lock(sc);
576	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
577	if (bootverbose || WPI_DEBUG_SET)
578	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
579
580	wpi_mem_unlock(sc);
581
582	/* Allocate shared page */
583	if ((error = wpi_alloc_shared(sc)) != 0) {
584		device_printf(dev, "could not allocate shared page\n");
585		goto fail;
586	}
587
588	/* tx data queues  - 4 for QoS purposes */
589	for (ac = 0; ac < WME_NUM_AC; ac++) {
590		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
591		if (error != 0) {
592		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
593		    goto fail;
594		}
595	}
596
597	/* command queue to talk to the card's firmware */
598	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
599	if (error != 0) {
600		device_printf(dev, "could not allocate command ring\n");
601		goto fail;
602	}
603
604	/* receive data queue */
605	error = wpi_alloc_rx_ring(sc, &sc->rxq);
606	if (error != 0) {
607		device_printf(dev, "could not allocate Rx ring\n");
608		goto fail;
609	}
610
611	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
612	if (ifp == NULL) {
613		device_printf(dev, "can not if_alloc()\n");
614		error = ENOMEM;
615		goto fail;
616	}
617	ic = ifp->if_l2com;
618
619	ic->ic_ifp = ifp;
620	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
621	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
622
623	/* set device capabilities */
624	ic->ic_caps =
625		  IEEE80211_C_STA		/* station mode supported */
626		| IEEE80211_C_MONITOR		/* monitor mode supported */
627		| IEEE80211_C_TXPMGT		/* tx power management */
628		| IEEE80211_C_SHSLOT		/* short slot time supported */
629		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
630		| IEEE80211_C_WPA		/* 802.11i */
631/* XXX looks like WME is partly supported? */
632#if 0
633		| IEEE80211_C_IBSS		/* IBSS mode support */
634		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
635		| IEEE80211_C_WME		/* 802.11e */
636		| IEEE80211_C_HOSTAP		/* Host access point mode */
637#endif
638		;
639
640	/*
641	 * Read in the eeprom and also setup the channels for
642	 * net80211. We don't set the rates as net80211 does this for us
643	 */
644	wpi_read_eeprom(sc, macaddr);
645
646	if (bootverbose || WPI_DEBUG_SET) {
647	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
648	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
649			  sc->type > 1 ? 'B': '?');
650	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
651			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
652	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
653			  supportsa ? "does" : "does not");
654
655	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
656	       what sc->rev really represents - benjsc 20070615 */
657	}
658
659	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
660	ifp->if_softc = sc;
661	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
662	ifp->if_init = wpi_init;
663	ifp->if_ioctl = wpi_ioctl;
664	ifp->if_start = wpi_start;
665	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
666	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
667	IFQ_SET_READY(&ifp->if_snd);
668
669	ieee80211_ifattach(ic, macaddr);
670	/* override default methods */
671	ic->ic_node_alloc = wpi_node_alloc;
672	ic->ic_newassoc = wpi_newassoc;
673	ic->ic_raw_xmit = wpi_raw_xmit;
674	ic->ic_wme.wme_update = wpi_wme_update;
675	ic->ic_scan_start = wpi_scan_start;
676	ic->ic_scan_end = wpi_scan_end;
677	ic->ic_set_channel = wpi_set_channel;
678	ic->ic_scan_curchan = wpi_scan_curchan;
679	ic->ic_scan_mindwell = wpi_scan_mindwell;
680
681	ic->ic_vap_create = wpi_vap_create;
682	ic->ic_vap_delete = wpi_vap_delete;
683
684	bpfattach(ifp, DLT_IEEE802_11_RADIO,
685	    sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap));
686
687	sc->sc_rxtap_len = sizeof sc->sc_rxtap;
688	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
689	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
690
691	sc->sc_txtap_len = sizeof sc->sc_txtap;
692	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
693	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
694
695	/*
696	 * Hook our interrupt after all initialization is complete.
697	 */
698	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
699	    NULL, wpi_intr, sc, &sc->sc_ih);
700	if (error != 0) {
701		device_printf(dev, "could not set up interrupt\n");
702		goto fail;
703	}
704
705	if (bootverbose)
706		ieee80211_announce(ic);
707#ifdef XXX_DEBUG
708	ieee80211_announce_channels(ic);
709#endif
710	return 0;
711
712fail:	wpi_detach(dev);
713	return ENXIO;
714}
715
716static int
717wpi_detach(device_t dev)
718{
719	struct wpi_softc *sc = device_get_softc(dev);
720	struct ifnet *ifp = sc->sc_ifp;
721	struct ieee80211com *ic = ifp->if_l2com;
722	int ac;
723
724	ieee80211_draintask(ic, &sc->sc_restarttask);
725	ieee80211_draintask(ic, &sc->sc_radiotask);
726
727	if (ifp != NULL) {
728		wpi_stop(sc);
729		callout_drain(&sc->watchdog_to);
730		callout_drain(&sc->calib_to);
731		bpfdetach(ifp);
732		ieee80211_ifdetach(ic);
733	}
734
735	WPI_LOCK(sc);
736	if (sc->txq[0].data_dmat) {
737		for (ac = 0; ac < WME_NUM_AC; ac++)
738			wpi_free_tx_ring(sc, &sc->txq[ac]);
739
740		wpi_free_tx_ring(sc, &sc->cmdq);
741		wpi_free_rx_ring(sc, &sc->rxq);
742		wpi_free_shared(sc);
743	}
744
745	if (sc->fw_fp != NULL) {
746		wpi_unload_firmware(sc);
747	}
748
749	if (sc->fw_dma.tag)
750		wpi_free_fwmem(sc);
751	WPI_UNLOCK(sc);
752
753	if (sc->irq != NULL) {
754		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
755		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
756	}
757
758	if (sc->mem != NULL)
759		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
760
761	if (ifp != NULL)
762		if_free(ifp);
763
764	WPI_LOCK_DESTROY(sc);
765
766	return 0;
767}
768
769static struct ieee80211vap *
770wpi_vap_create(struct ieee80211com *ic,
771	const char name[IFNAMSIZ], int unit, int opmode, int flags,
772	const uint8_t bssid[IEEE80211_ADDR_LEN],
773	const uint8_t mac[IEEE80211_ADDR_LEN])
774{
775	struct wpi_vap *wvp;
776	struct ieee80211vap *vap;
777
778	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
779		return NULL;
780	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
781	    M_80211_VAP, M_NOWAIT | M_ZERO);
782	if (wvp == NULL)
783		return NULL;
784	vap = &wvp->vap;
785	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
786	/* override with driver methods */
787	wvp->newstate = vap->iv_newstate;
788	vap->iv_newstate = wpi_newstate;
789
790	ieee80211_amrr_init(&wvp->amrr, vap,
791	    IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
792	    IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD,
793	    500 /*ms*/);
794
795	/* complete setup */
796	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
797	ic->ic_opmode = opmode;
798	return vap;
799}
800
801static void
802wpi_vap_delete(struct ieee80211vap *vap)
803{
804	struct wpi_vap *wvp = WPI_VAP(vap);
805
806	ieee80211_amrr_cleanup(&wvp->amrr);
807	ieee80211_vap_detach(vap);
808	free(wvp, M_80211_VAP);
809}
810
811static void
812wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
813{
814	if (error != 0)
815		return;
816
817	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
818
819	*(bus_addr_t *)arg = segs[0].ds_addr;
820}
821
822/*
823 * Allocates a contiguous block of dma memory of the requested size and
824 * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
825 * allocations greater than 4096 may fail. Hence if the requested alignment is
826 * greater we allocate 'alignment' size extra memory and shift the vaddr and
827 * paddr after the dma load. This bypasses the problem at the cost of a little
828 * more memory.
829 */
830static int
831wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
832    void **kvap, bus_size_t size, bus_size_t alignment, int flags)
833{
834	int error;
835	bus_size_t align;
836	bus_size_t reqsize;
837
838	DPRINTFN(WPI_DEBUG_DMA,
839	    ("Size: %zd - alignment %zd\n", size, alignment));
840
841	dma->size = size;
842	dma->tag = NULL;
843
844	if (alignment > 4096) {
845		align = PAGE_SIZE;
846		reqsize = size + alignment;
847	} else {
848		align = alignment;
849		reqsize = size;
850	}
851	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
852	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
853	    NULL, NULL, reqsize,
854	    1, reqsize, flags,
855	    NULL, NULL, &dma->tag);
856	if (error != 0) {
857		device_printf(sc->sc_dev,
858		    "could not create shared page DMA tag\n");
859		goto fail;
860	}
861	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
862	    flags | BUS_DMA_ZERO, &dma->map);
863	if (error != 0) {
864		device_printf(sc->sc_dev,
865		    "could not allocate shared page DMA memory\n");
866		goto fail;
867	}
868
869	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
870	    reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
871
872	/* Save the original pointers so we can free all the memory */
873	dma->paddr = dma->paddr_start;
874	dma->vaddr = dma->vaddr_start;
875
876	/*
877	 * Check the alignment and increment by 4096 until we get the
878	 * requested alignment. Fail if can't obtain the alignment
879	 * we requested.
880	 */
881	if ((dma->paddr & (alignment -1 )) != 0) {
882		int i;
883
884		for (i = 0; i < alignment / 4096; i++) {
885			if ((dma->paddr & (alignment - 1 )) == 0)
886				break;
887			dma->paddr += 4096;
888			dma->vaddr += 4096;
889		}
890		if (i == alignment / 4096) {
891			device_printf(sc->sc_dev,
892			    "alignment requirement was not satisfied\n");
893			goto fail;
894		}
895	}
896
897	if (error != 0) {
898		device_printf(sc->sc_dev,
899		    "could not load shared page DMA map\n");
900		goto fail;
901	}
902
903	if (kvap != NULL)
904		*kvap = dma->vaddr;
905
906	return 0;
907
908fail:
909	wpi_dma_contig_free(dma);
910	return error;
911}
912
913static void
914wpi_dma_contig_free(struct wpi_dma_info *dma)
915{
916	if (dma->tag) {
917		if (dma->map != NULL) {
918			if (dma->paddr_start != 0) {
919				bus_dmamap_sync(dma->tag, dma->map,
920				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
921				bus_dmamap_unload(dma->tag, dma->map);
922			}
923			bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
924		}
925		bus_dma_tag_destroy(dma->tag);
926	}
927}
928
929/*
930 * Allocate a shared page between host and NIC.
931 */
932static int
933wpi_alloc_shared(struct wpi_softc *sc)
934{
935	int error;
936
937	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
938	    (void **)&sc->shared, sizeof (struct wpi_shared),
939	    PAGE_SIZE,
940	    BUS_DMA_NOWAIT);
941
942	if (error != 0) {
943		device_printf(sc->sc_dev,
944		    "could not allocate shared area DMA memory\n");
945	}
946
947	return error;
948}
949
950static void
951wpi_free_shared(struct wpi_softc *sc)
952{
953	wpi_dma_contig_free(&sc->shared_dma);
954}
955
956static int
957wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
958{
959
960	int i, error;
961
962	ring->cur = 0;
963
964	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
965	    (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
966	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
967
968	if (error != 0) {
969		device_printf(sc->sc_dev,
970		    "%s: could not allocate rx ring DMA memory, error %d\n",
971		    __func__, error);
972		goto fail;
973	}
974
975        error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
976	    BUS_SPACE_MAXADDR_32BIT,
977            BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
978            MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
979        if (error != 0) {
980                device_printf(sc->sc_dev,
981		    "%s: bus_dma_tag_create_failed, error %d\n",
982		    __func__, error);
983                goto fail;
984        }
985
986	/*
987	 * Setup Rx buffers.
988	 */
989	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
990		struct wpi_rx_data *data = &ring->data[i];
991		struct mbuf *m;
992		bus_addr_t paddr;
993
994		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
995		if (error != 0) {
996			device_printf(sc->sc_dev,
997			    "%s: bus_dmamap_create failed, error %d\n",
998			    __func__, error);
999			goto fail;
1000		}
1001		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1002		if (m == NULL) {
1003			device_printf(sc->sc_dev,
1004			   "%s: could not allocate rx mbuf\n", __func__);
1005			error = ENOMEM;
1006			goto fail;
1007		}
1008		/* map page */
1009		error = bus_dmamap_load(ring->data_dmat, data->map,
1010		    mtod(m, caddr_t), MJUMPAGESIZE,
1011		    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1012		if (error != 0 && error != EFBIG) {
1013			device_printf(sc->sc_dev,
1014			    "%s: bus_dmamap_load failed, error %d\n",
1015			    __func__, error);
1016			m_freem(m);
1017			error = ENOMEM;	/* XXX unique code */
1018			goto fail;
1019		}
1020		bus_dmamap_sync(ring->data_dmat, data->map,
1021		    BUS_DMASYNC_PREWRITE);
1022
1023		data->m = m;
1024		ring->desc[i] = htole32(paddr);
1025	}
1026	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1027	    BUS_DMASYNC_PREWRITE);
1028	return 0;
1029fail:
1030	wpi_free_rx_ring(sc, ring);
1031	return error;
1032}
1033
1034static void
1035wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1036{
1037	int ntries;
1038
1039	wpi_mem_lock(sc);
1040
1041	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1042
1043	for (ntries = 0; ntries < 100; ntries++) {
1044		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1045			break;
1046		DELAY(10);
1047	}
1048
1049	wpi_mem_unlock(sc);
1050
1051#ifdef WPI_DEBUG
1052	if (ntries == 100 && wpi_debug > 0)
1053		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1054#endif
1055
1056	ring->cur = 0;
1057}
1058
1059static void
1060wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1061{
1062	int i;
1063
1064	wpi_dma_contig_free(&ring->desc_dma);
1065
1066	for (i = 0; i < WPI_RX_RING_COUNT; i++)
1067		if (ring->data[i].m != NULL)
1068			m_freem(ring->data[i].m);
1069}
1070
1071static int
1072wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1073	int qid)
1074{
1075	struct wpi_tx_data *data;
1076	int i, error;
1077
1078	ring->qid = qid;
1079	ring->count = count;
1080	ring->queued = 0;
1081	ring->cur = 0;
1082	ring->data = NULL;
1083
1084	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1085		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1086		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1087
1088	if (error != 0) {
1089	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1090	    goto fail;
1091	}
1092
1093	/* update shared page with ring's base address */
1094	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1095
1096	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1097		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1098		BUS_DMA_NOWAIT);
1099
1100	if (error != 0) {
1101		device_printf(sc->sc_dev,
1102		    "could not allocate tx command DMA memory\n");
1103		goto fail;
1104	}
1105
1106	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1107	    M_NOWAIT | M_ZERO);
1108	if (ring->data == NULL) {
1109		device_printf(sc->sc_dev,
1110		    "could not allocate tx data slots\n");
1111		goto fail;
1112	}
1113
1114	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1115	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1116	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1117	    &ring->data_dmat);
1118	if (error != 0) {
1119		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1120		goto fail;
1121	}
1122
1123	for (i = 0; i < count; i++) {
1124		data = &ring->data[i];
1125
1126		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1127		if (error != 0) {
1128			device_printf(sc->sc_dev,
1129			    "could not create tx buf DMA map\n");
1130			goto fail;
1131		}
1132		bus_dmamap_sync(ring->data_dmat, data->map,
1133		    BUS_DMASYNC_PREWRITE);
1134	}
1135
1136	return 0;
1137
1138fail:
1139	wpi_free_tx_ring(sc, ring);
1140	return error;
1141}
1142
1143static void
1144wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1145{
1146	struct wpi_tx_data *data;
1147	int i, ntries;
1148
1149	wpi_mem_lock(sc);
1150
1151	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1152	for (ntries = 0; ntries < 100; ntries++) {
1153		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1154			break;
1155		DELAY(10);
1156	}
1157#ifdef WPI_DEBUG
1158	if (ntries == 100 && wpi_debug > 0)
1159		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1160		    ring->qid);
1161#endif
1162	wpi_mem_unlock(sc);
1163
1164	for (i = 0; i < ring->count; i++) {
1165		data = &ring->data[i];
1166
1167		if (data->m != NULL) {
1168			bus_dmamap_unload(ring->data_dmat, data->map);
1169			m_freem(data->m);
1170			data->m = NULL;
1171		}
1172	}
1173
1174	ring->queued = 0;
1175	ring->cur = 0;
1176}
1177
1178static void
1179wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1180{
1181	struct wpi_tx_data *data;
1182	int i;
1183
1184	wpi_dma_contig_free(&ring->desc_dma);
1185	wpi_dma_contig_free(&ring->cmd_dma);
1186
1187	if (ring->data != NULL) {
1188		for (i = 0; i < ring->count; i++) {
1189			data = &ring->data[i];
1190
1191			if (data->m != NULL) {
1192				bus_dmamap_sync(ring->data_dmat, data->map,
1193				    BUS_DMASYNC_POSTWRITE);
1194				bus_dmamap_unload(ring->data_dmat, data->map);
1195				m_freem(data->m);
1196				data->m = NULL;
1197			}
1198		}
1199		free(ring->data, M_DEVBUF);
1200	}
1201
1202	if (ring->data_dmat != NULL)
1203		bus_dma_tag_destroy(ring->data_dmat);
1204}
1205
1206static int
1207wpi_shutdown(device_t dev)
1208{
1209	struct wpi_softc *sc = device_get_softc(dev);
1210
1211	WPI_LOCK(sc);
1212	wpi_stop_locked(sc);
1213	wpi_unload_firmware(sc);
1214	WPI_UNLOCK(sc);
1215
1216	return 0;
1217}
1218
1219static int
1220wpi_suspend(device_t dev)
1221{
1222	struct wpi_softc *sc = device_get_softc(dev);
1223
1224	wpi_stop(sc);
1225	return 0;
1226}
1227
1228static int
1229wpi_resume(device_t dev)
1230{
1231	struct wpi_softc *sc = device_get_softc(dev);
1232	struct ifnet *ifp = sc->sc_ifp;
1233
1234	pci_write_config(dev, 0x41, 0, 1);
1235
1236	if (ifp->if_flags & IFF_UP) {
1237		wpi_init(ifp->if_softc);
1238		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1239			wpi_start(ifp);
1240	}
1241	return 0;
1242}
1243
1244/* ARGSUSED */
1245static struct ieee80211_node *
1246wpi_node_alloc(struct ieee80211vap *vap __unused,
1247	const uint8_t mac[IEEE80211_ADDR_LEN] __unused)
1248{
1249	struct wpi_node *wn;
1250
1251	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1252
1253	return &wn->ni;
1254}
1255
1256/**
1257 * Called by net80211 when ever there is a change to 80211 state machine
1258 */
1259static int
1260wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1261{
1262	struct wpi_vap *wvp = WPI_VAP(vap);
1263	struct ieee80211com *ic = vap->iv_ic;
1264	struct ifnet *ifp = ic->ic_ifp;
1265	struct wpi_softc *sc = ifp->if_softc;
1266	int error;
1267
1268	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1269		ieee80211_state_name[vap->iv_state],
1270		ieee80211_state_name[nstate], sc->flags));
1271
1272	IEEE80211_UNLOCK(ic);
1273	WPI_LOCK(sc);
1274	if (nstate == IEEE80211_S_AUTH) {
1275		/* The node must be registered in the firmware before auth */
1276		error = wpi_auth(sc, vap);
1277		if (error != 0) {
1278			device_printf(sc->sc_dev,
1279			    "%s: could not move to auth state, error %d\n",
1280			    __func__, error);
1281		}
1282	}
1283	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1284		error = wpi_run(sc, vap);
1285		if (error != 0) {
1286			device_printf(sc->sc_dev,
1287			    "%s: could not move to run state, error %d\n",
1288			    __func__, error);
1289		}
1290	}
1291	if (nstate == IEEE80211_S_RUN) {
1292		/* RUN -> RUN transition; just restart the timers */
1293		wpi_calib_timeout(sc);
1294		/* XXX split out rate control timer */
1295	}
1296	WPI_UNLOCK(sc);
1297	IEEE80211_LOCK(ic);
1298	return wvp->newstate(vap, nstate, arg);
1299}
1300
1301/*
1302 * Grab exclusive access to NIC memory.
1303 */
1304static void
1305wpi_mem_lock(struct wpi_softc *sc)
1306{
1307	int ntries;
1308	uint32_t tmp;
1309
1310	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1311	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1312
1313	/* spin until we actually get the lock */
1314	for (ntries = 0; ntries < 100; ntries++) {
1315		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1316			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1317			break;
1318		DELAY(10);
1319	}
1320	if (ntries == 100)
1321		device_printf(sc->sc_dev, "could not lock memory\n");
1322}
1323
1324/*
1325 * Release lock on NIC memory.
1326 */
1327static void
1328wpi_mem_unlock(struct wpi_softc *sc)
1329{
1330	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1331	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1332}
1333
1334static uint32_t
1335wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1336{
1337	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1338	return WPI_READ(sc, WPI_READ_MEM_DATA);
1339}
1340
1341static void
1342wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1343{
1344	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1345	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1346}
1347
1348static void
1349wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1350    const uint32_t *data, int wlen)
1351{
1352	for (; wlen > 0; wlen--, data++, addr+=4)
1353		wpi_mem_write(sc, addr, *data);
1354}
1355
1356/*
1357 * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1358 * using the traditional bit-bang method. Data is read up until len bytes have
1359 * been obtained.
1360 */
1361static uint16_t
1362wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1363{
1364	int ntries;
1365	uint32_t val;
1366	uint8_t *out = data;
1367
1368	wpi_mem_lock(sc);
1369
1370	for (; len > 0; len -= 2, addr++) {
1371		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1372
1373		for (ntries = 0; ntries < 10; ntries++) {
1374			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1375				break;
1376			DELAY(5);
1377		}
1378
1379		if (ntries == 10) {
1380			device_printf(sc->sc_dev, "could not read EEPROM\n");
1381			return ETIMEDOUT;
1382		}
1383
1384		*out++= val >> 16;
1385		if (len > 1)
1386			*out ++= val >> 24;
1387	}
1388
1389	wpi_mem_unlock(sc);
1390
1391	return 0;
1392}
1393
1394/*
1395 * The firmware text and data segments are transferred to the NIC using DMA.
1396 * The driver just copies the firmware into DMA-safe memory and tells the NIC
1397 * where to find it.  Once the NIC has copied the firmware into its internal
1398 * memory, we can free our local copy in the driver.
1399 */
1400static int
1401wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1402{
1403	int error, ntries;
1404
1405	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1406
1407	size /= sizeof(uint32_t);
1408
1409	wpi_mem_lock(sc);
1410
1411	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1412	    (const uint32_t *)fw, size);
1413
1414	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1415	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1416	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1417
1418	/* run microcode */
1419	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1420
1421	/* wait while the adapter is busy copying the firmware */
1422	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1423		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1424		DPRINTFN(WPI_DEBUG_HW,
1425		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1426		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1427		if (status & WPI_TX_IDLE(6)) {
1428			DPRINTFN(WPI_DEBUG_HW,
1429			    ("Status Match! - ntries = %d\n", ntries));
1430			break;
1431		}
1432		DELAY(10);
1433	}
1434	if (ntries == 1000) {
1435		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1436		error = ETIMEDOUT;
1437	}
1438
1439	/* start the microcode executing */
1440	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1441
1442	wpi_mem_unlock(sc);
1443
1444	return (error);
1445}
1446
1447static void
1448wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1449	struct wpi_rx_data *data)
1450{
1451	struct ifnet *ifp = sc->sc_ifp;
1452	struct ieee80211com *ic = ifp->if_l2com;
1453	struct wpi_rx_ring *ring = &sc->rxq;
1454	struct wpi_rx_stat *stat;
1455	struct wpi_rx_head *head;
1456	struct wpi_rx_tail *tail;
1457	struct ieee80211_node *ni;
1458	struct mbuf *m, *mnew;
1459	bus_addr_t paddr;
1460	int error;
1461
1462	stat = (struct wpi_rx_stat *)(desc + 1);
1463
1464	if (stat->len > WPI_STAT_MAXLEN) {
1465		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1466		ifp->if_ierrors++;
1467		return;
1468	}
1469
1470	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1471	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1472
1473	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1474	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1475	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1476	    (uintmax_t)le64toh(tail->tstamp)));
1477
1478	/* discard Rx frames with bad CRC early */
1479	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1480		DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1481		    le32toh(tail->flags)));
1482		ifp->if_ierrors++;
1483		return;
1484	}
1485	if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1486		DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1487		    le16toh(head->len)));
1488		ifp->if_ierrors++;
1489		return;
1490	}
1491
1492	/* XXX don't need mbuf, just dma buffer */
1493	mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1494	if (mnew == NULL) {
1495		DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1496		    __func__));
1497		ifp->if_ierrors++;
1498		return;
1499	}
1500	error = bus_dmamap_load(ring->data_dmat, data->map,
1501	    mtod(mnew, caddr_t), MJUMPAGESIZE,
1502	    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1503	if (error != 0 && error != EFBIG) {
1504		device_printf(sc->sc_dev,
1505		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1506		m_freem(mnew);
1507		ifp->if_ierrors++;
1508		return;
1509	}
1510	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1511
1512	/* finalize mbuf and swap in new one */
1513	m = data->m;
1514	m->m_pkthdr.rcvif = ifp;
1515	m->m_data = (caddr_t)(head + 1);
1516	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1517
1518	data->m = mnew;
1519	/* update Rx descriptor */
1520	ring->desc[ring->cur] = htole32(paddr);
1521
1522	if (bpf_peers_present(ifp->if_bpf)) {
1523		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1524
1525		tap->wr_flags = 0;
1526		tap->wr_chan_freq =
1527			htole16(ic->ic_channels[head->chan].ic_freq);
1528		tap->wr_chan_flags =
1529			htole16(ic->ic_channels[head->chan].ic_flags);
1530		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1531		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1532		tap->wr_tsft = tail->tstamp;
1533		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1534		switch (head->rate) {
1535		/* CCK rates */
1536		case  10: tap->wr_rate =   2; break;
1537		case  20: tap->wr_rate =   4; break;
1538		case  55: tap->wr_rate =  11; break;
1539		case 110: tap->wr_rate =  22; break;
1540		/* OFDM rates */
1541		case 0xd: tap->wr_rate =  12; break;
1542		case 0xf: tap->wr_rate =  18; break;
1543		case 0x5: tap->wr_rate =  24; break;
1544		case 0x7: tap->wr_rate =  36; break;
1545		case 0x9: tap->wr_rate =  48; break;
1546		case 0xb: tap->wr_rate =  72; break;
1547		case 0x1: tap->wr_rate =  96; break;
1548		case 0x3: tap->wr_rate = 108; break;
1549		/* unknown rate: should not happen */
1550		default:  tap->wr_rate =   0;
1551		}
1552		if (le16toh(head->flags) & 0x4)
1553			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1554
1555		bpf_mtap2(ifp->if_bpf, tap, sc->sc_rxtap_len, m);
1556	}
1557
1558	WPI_UNLOCK(sc);
1559
1560	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1561	if (ni != NULL) {
1562		(void) ieee80211_input(ni, m, stat->rssi, 0, 0);
1563		ieee80211_free_node(ni);
1564	} else
1565		(void) ieee80211_input_all(ic, m, stat->rssi, 0, 0);
1566
1567	WPI_LOCK(sc);
1568}
1569
1570static void
1571wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1572{
1573	struct ifnet *ifp = sc->sc_ifp;
1574	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1575	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1576	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1577	struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1578
1579	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1580	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1581	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1582	    le32toh(stat->status)));
1583
1584	/*
1585	 * Update rate control statistics for the node.
1586	 * XXX we should not count mgmt frames since they're always sent at
1587	 * the lowest available bit-rate.
1588	 * XXX frames w/o ACK shouldn't be used either
1589	 */
1590	wn->amn.amn_txcnt++;
1591	if (stat->ntries > 0) {
1592		DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1593		wn->amn.amn_retrycnt++;
1594	}
1595
1596	/* XXX oerrors should only count errors !maxtries */
1597	if ((le32toh(stat->status) & 0xff) != 1)
1598		ifp->if_oerrors++;
1599	else
1600		ifp->if_opackets++;
1601
1602	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1603	bus_dmamap_unload(ring->data_dmat, txdata->map);
1604	/* XXX handle M_TXCB? */
1605	m_freem(txdata->m);
1606	txdata->m = NULL;
1607	ieee80211_free_node(txdata->ni);
1608	txdata->ni = NULL;
1609
1610	ring->queued--;
1611
1612	sc->sc_tx_timer = 0;
1613	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1614	wpi_start_locked(ifp);
1615}
1616
1617static void
1618wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1619{
1620	struct wpi_tx_ring *ring = &sc->cmdq;
1621	struct wpi_tx_data *data;
1622
1623	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1624				 "type=%s len=%d\n", desc->qid, desc->idx,
1625				 desc->flags, wpi_cmd_str(desc->type),
1626				 le32toh(desc->len)));
1627
1628	if ((desc->qid & 7) != 4)
1629		return;	/* not a command ack */
1630
1631	data = &ring->data[desc->idx];
1632
1633	/* if the command was mapped in a mbuf, free it */
1634	if (data->m != NULL) {
1635		bus_dmamap_unload(ring->data_dmat, data->map);
1636		m_freem(data->m);
1637		data->m = NULL;
1638	}
1639
1640	sc->flags &= ~WPI_FLAG_BUSY;
1641	wakeup(&ring->cmd[desc->idx]);
1642}
1643
1644static void
1645wpi_notif_intr(struct wpi_softc *sc)
1646{
1647	struct ifnet *ifp = sc->sc_ifp;
1648	struct ieee80211com *ic = ifp->if_l2com;
1649	struct wpi_rx_desc *desc;
1650	struct wpi_rx_data *data;
1651	uint32_t hw;
1652
1653	hw = le32toh(sc->shared->next);
1654	while (sc->rxq.cur != hw) {
1655		data = &sc->rxq.data[sc->rxq.cur];
1656		desc = (void *)data->m->m_ext.ext_buf;
1657
1658		DPRINTFN(WPI_DEBUG_NOTIFY,
1659			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1660			  desc->qid,
1661			  desc->idx,
1662			  desc->flags,
1663			  desc->type,
1664			  le32toh(desc->len)));
1665
1666		if (!(desc->qid & 0x80))	/* reply to a command */
1667			wpi_cmd_intr(sc, desc);
1668
1669		switch (desc->type) {
1670		case WPI_RX_DONE:
1671			/* a 802.11 frame was received */
1672			wpi_rx_intr(sc, desc, data);
1673			break;
1674
1675		case WPI_TX_DONE:
1676			/* a 802.11 frame has been transmitted */
1677			wpi_tx_intr(sc, desc);
1678			break;
1679
1680		case WPI_UC_READY:
1681		{
1682			struct wpi_ucode_info *uc =
1683				(struct wpi_ucode_info *)(desc + 1);
1684
1685			/* the microcontroller is ready */
1686			DPRINTF(("microcode alive notification version %x "
1687				"alive %x\n", le32toh(uc->version),
1688				le32toh(uc->valid)));
1689
1690			if (le32toh(uc->valid) != 1) {
1691				device_printf(sc->sc_dev,
1692				    "microcontroller initialization failed\n");
1693				wpi_stop_locked(sc);
1694			}
1695			break;
1696		}
1697		case WPI_STATE_CHANGED:
1698		{
1699			uint32_t *status = (uint32_t *)(desc + 1);
1700
1701			/* enabled/disabled notification */
1702			DPRINTF(("state changed to %x\n", le32toh(*status)));
1703
1704			if (le32toh(*status) & 1) {
1705				device_printf(sc->sc_dev,
1706				    "Radio transmitter is switched off\n");
1707				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1708				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1709				/* Disable firmware commands */
1710				WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1711			}
1712			break;
1713		}
1714		case WPI_START_SCAN:
1715		{
1716#ifdef WPI_DEBUG
1717			struct wpi_start_scan *scan =
1718				(struct wpi_start_scan *)(desc + 1);
1719#endif
1720
1721			DPRINTFN(WPI_DEBUG_SCANNING,
1722				 ("scanning channel %d status %x\n",
1723			    scan->chan, le32toh(scan->status)));
1724			break;
1725		}
1726		case WPI_STOP_SCAN:
1727		{
1728#ifdef WPI_DEBUG
1729			struct wpi_stop_scan *scan =
1730				(struct wpi_stop_scan *)(desc + 1);
1731#endif
1732			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1733
1734			DPRINTFN(WPI_DEBUG_SCANNING,
1735			    ("scan finished nchan=%d status=%d chan=%d\n",
1736			     scan->nchan, scan->status, scan->chan));
1737
1738			sc->sc_scan_timer = 0;
1739			ieee80211_scan_next(vap);
1740			break;
1741		}
1742		case WPI_MISSED_BEACON:
1743		{
1744			struct wpi_missed_beacon *beacon =
1745				(struct wpi_missed_beacon *)(desc + 1);
1746			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1747
1748			if (le32toh(beacon->consecutive) >=
1749			    vap->iv_bmissthreshold) {
1750				DPRINTF(("Beacon miss: %u >= %u\n",
1751					 le32toh(beacon->consecutive),
1752					 vap->iv_bmissthreshold));
1753				ieee80211_beacon_miss(ic);
1754			}
1755			break;
1756		}
1757		}
1758
1759		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1760	}
1761
1762	/* tell the firmware what we have processed */
1763	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1764	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1765}
1766
1767static void
1768wpi_intr(void *arg)
1769{
1770	struct wpi_softc *sc = arg;
1771	uint32_t r;
1772
1773	WPI_LOCK(sc);
1774
1775	r = WPI_READ(sc, WPI_INTR);
1776	if (r == 0 || r == 0xffffffff) {
1777		WPI_UNLOCK(sc);
1778		return;
1779	}
1780
1781	/* disable interrupts */
1782	WPI_WRITE(sc, WPI_MASK, 0);
1783	/* ack interrupts */
1784	WPI_WRITE(sc, WPI_INTR, r);
1785
1786	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1787		struct ifnet *ifp = sc->sc_ifp;
1788		struct ieee80211com *ic = ifp->if_l2com;
1789
1790		device_printf(sc->sc_dev, "fatal firmware error\n");
1791		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1792				"(Hardware Error)"));
1793		ieee80211_runtask(ic, &sc->sc_restarttask);
1794		sc->flags &= ~WPI_FLAG_BUSY;
1795		WPI_UNLOCK(sc);
1796		return;
1797	}
1798
1799	if (r & WPI_RX_INTR)
1800		wpi_notif_intr(sc);
1801
1802	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1803		wakeup(sc);
1804
1805	/* re-enable interrupts */
1806	if (sc->sc_ifp->if_flags & IFF_UP)
1807		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1808
1809	WPI_UNLOCK(sc);
1810}
1811
1812static uint8_t
1813wpi_plcp_signal(int rate)
1814{
1815	switch (rate) {
1816	/* CCK rates (returned values are device-dependent) */
1817	case 2:		return 10;
1818	case 4:		return 20;
1819	case 11:	return 55;
1820	case 22:	return 110;
1821
1822	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1823	/* R1-R4 (ral/ural is R4-R1) */
1824	case 12:	return 0xd;
1825	case 18:	return 0xf;
1826	case 24:	return 0x5;
1827	case 36:	return 0x7;
1828	case 48:	return 0x9;
1829	case 72:	return 0xb;
1830	case 96:	return 0x1;
1831	case 108:	return 0x3;
1832
1833	/* unsupported rates (should not get there) */
1834	default:	return 0;
1835	}
1836}
1837
1838/* quickly determine if a given rate is CCK or OFDM */
1839#define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1840
1841/*
1842 * Construct the data packet for a transmit buffer and acutally put
1843 * the buffer onto the transmit ring, kicking the card to process the
1844 * the buffer.
1845 */
1846static int
1847wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1848	int ac)
1849{
1850	struct ieee80211vap *vap = ni->ni_vap;
1851	struct ifnet *ifp = sc->sc_ifp;
1852	struct ieee80211com *ic = ifp->if_l2com;
1853	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1854	struct wpi_tx_ring *ring = &sc->txq[ac];
1855	struct wpi_tx_desc *desc;
1856	struct wpi_tx_data *data;
1857	struct wpi_tx_cmd *cmd;
1858	struct wpi_cmd_data *tx;
1859	struct ieee80211_frame *wh;
1860	const struct ieee80211_txparam *tp;
1861	struct ieee80211_key *k;
1862	struct mbuf *mnew;
1863	int i, error, nsegs, rate, hdrlen, ismcast;
1864	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1865
1866	desc = &ring->desc[ring->cur];
1867	data = &ring->data[ring->cur];
1868
1869	wh = mtod(m0, struct ieee80211_frame *);
1870
1871	hdrlen = ieee80211_hdrsize(wh);
1872	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1873
1874	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1875		k = ieee80211_crypto_encap(ni, m0);
1876		if (k == NULL) {
1877			m_freem(m0);
1878			return ENOBUFS;
1879		}
1880		/* packet header may have moved, reset our local pointer */
1881		wh = mtod(m0, struct ieee80211_frame *);
1882	}
1883
1884	cmd = &ring->cmd[ring->cur];
1885	cmd->code = WPI_CMD_TX_DATA;
1886	cmd->flags = 0;
1887	cmd->qid = ring->qid;
1888	cmd->idx = ring->cur;
1889
1890	tx = (struct wpi_cmd_data *)cmd->data;
1891	tx->flags = htole32(WPI_TX_AUTO_SEQ);
1892	tx->timeout = htole16(0);
1893	tx->ofdm_mask = 0xff;
1894	tx->cck_mask = 0x0f;
1895	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1896	tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1897	tx->len = htole16(m0->m_pkthdr.len);
1898
1899	if (!ismcast) {
1900		if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1901		    !cap->cap_wmeParams[ac].wmep_noackPolicy)
1902			tx->flags |= htole32(WPI_TX_NEED_ACK);
1903		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1904			tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1905			tx->rts_ntries = 7;
1906		}
1907	}
1908	/* pick a rate */
1909	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1910	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1911		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1912		/* tell h/w to set timestamp in probe responses */
1913		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1914			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1915		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1916		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1917			tx->timeout = htole16(3);
1918		else
1919			tx->timeout = htole16(2);
1920		rate = tp->mgmtrate;
1921	} else if (ismcast) {
1922		rate = tp->mcastrate;
1923	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1924		rate = tp->ucastrate;
1925	} else {
1926		(void) ieee80211_amrr_choose(ni, &WPI_NODE(ni)->amn);
1927		rate = ni->ni_txrate;
1928	}
1929	tx->rate = wpi_plcp_signal(rate);
1930
1931	/* be very persistant at sending frames out */
1932#if 0
1933	tx->data_ntries = tp->maxretry;
1934#else
1935	tx->data_ntries = 15;		/* XXX way too high */
1936#endif
1937
1938	if (bpf_peers_present(ifp->if_bpf)) {
1939		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1940		tap->wt_flags = 0;
1941		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1942		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1943		tap->wt_rate = rate;
1944		tap->wt_hwqueue = ac;
1945		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1946			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1947
1948		bpf_mtap2(ifp->if_bpf, tap, sc->sc_txtap_len, m0);
1949	}
1950
1951	/* save and trim IEEE802.11 header */
1952	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1953	m_adj(m0, hdrlen);
1954
1955	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
1956	    &nsegs, BUS_DMA_NOWAIT);
1957	if (error != 0 && error != EFBIG) {
1958		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1959		    error);
1960		m_freem(m0);
1961		return error;
1962	}
1963	if (error != 0) {
1964		/* XXX use m_collapse */
1965		mnew = m_defrag(m0, M_DONTWAIT);
1966		if (mnew == NULL) {
1967			device_printf(sc->sc_dev,
1968			    "could not defragment mbuf\n");
1969			m_freem(m0);
1970			return ENOBUFS;
1971		}
1972		m0 = mnew;
1973
1974		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
1975		    m0, segs, &nsegs, BUS_DMA_NOWAIT);
1976		if (error != 0) {
1977			device_printf(sc->sc_dev,
1978			    "could not map mbuf (error %d)\n", error);
1979			m_freem(m0);
1980			return error;
1981		}
1982	}
1983
1984	data->m = m0;
1985	data->ni = ni;
1986
1987	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1988	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
1989
1990	/* first scatter/gather segment is used by the tx data command */
1991	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1992	    (1 + nsegs) << 24);
1993	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1994	    ring->cur * sizeof (struct wpi_tx_cmd));
1995	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
1996	for (i = 1; i <= nsegs; i++) {
1997		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
1998		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
1999	}
2000
2001	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2002	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2003	    BUS_DMASYNC_PREWRITE);
2004
2005	ring->queued++;
2006
2007	/* kick ring */
2008	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2009	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2010
2011	return 0;
2012}
2013
2014/**
2015 * Process data waiting to be sent on the IFNET output queue
2016 */
2017static void
2018wpi_start(struct ifnet *ifp)
2019{
2020	struct wpi_softc *sc = ifp->if_softc;
2021
2022	WPI_LOCK(sc);
2023	wpi_start_locked(ifp);
2024	WPI_UNLOCK(sc);
2025}
2026
2027static void
2028wpi_start_locked(struct ifnet *ifp)
2029{
2030	struct wpi_softc *sc = ifp->if_softc;
2031	struct ieee80211_node *ni;
2032	struct mbuf *m;
2033	int ac;
2034
2035	WPI_LOCK_ASSERT(sc);
2036
2037	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2038		return;
2039
2040	for (;;) {
2041		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2042		if (m == NULL)
2043			break;
2044		ac = M_WME_GETAC(m);
2045		if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2046			/* there is no place left in this ring */
2047			IFQ_DRV_PREPEND(&ifp->if_snd, m);
2048			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2049			break;
2050		}
2051		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2052		if (wpi_tx_data(sc, m, ni, ac) != 0) {
2053			ieee80211_free_node(ni);
2054			ifp->if_oerrors++;
2055			break;
2056		}
2057		sc->sc_tx_timer = 5;
2058	}
2059}
2060
2061static int
2062wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2063	const struct ieee80211_bpf_params *params)
2064{
2065	struct ieee80211com *ic = ni->ni_ic;
2066	struct ifnet *ifp = ic->ic_ifp;
2067	struct wpi_softc *sc = ifp->if_softc;
2068
2069	/* prevent management frames from being sent if we're not ready */
2070	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2071		m_freem(m);
2072		ieee80211_free_node(ni);
2073		return ENETDOWN;
2074	}
2075	WPI_LOCK(sc);
2076
2077	/* management frames go into ring 0 */
2078	if (sc->txq[0].queued > sc->txq[0].count - 8) {
2079		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2080		m_freem(m);
2081		WPI_UNLOCK(sc);
2082		ieee80211_free_node(ni);
2083		return ENOBUFS;		/* XXX */
2084	}
2085
2086	ifp->if_opackets++;
2087	if (wpi_tx_data(sc, m, ni, 0) != 0)
2088		goto bad;
2089	sc->sc_tx_timer = 5;
2090	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2091
2092	WPI_UNLOCK(sc);
2093	return 0;
2094bad:
2095	ifp->if_oerrors++;
2096	WPI_UNLOCK(sc);
2097	ieee80211_free_node(ni);
2098	return EIO;		/* XXX */
2099}
2100
2101static int
2102wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2103{
2104	struct wpi_softc *sc = ifp->if_softc;
2105	struct ieee80211com *ic = ifp->if_l2com;
2106	struct ifreq *ifr = (struct ifreq *) data;
2107	int error = 0, startall = 0;
2108
2109	switch (cmd) {
2110	case SIOCSIFFLAGS:
2111		WPI_LOCK(sc);
2112		if ((ifp->if_flags & IFF_UP)) {
2113			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2114				wpi_init_locked(sc, 0);
2115				startall = 1;
2116			}
2117		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2118			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2119			wpi_stop_locked(sc);
2120		WPI_UNLOCK(sc);
2121		if (startall)
2122			ieee80211_start_all(ic);
2123		break;
2124	case SIOCGIFMEDIA:
2125		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2126		break;
2127	case SIOCGIFADDR:
2128		error = ether_ioctl(ifp, cmd, data);
2129		break;
2130	default:
2131		error = EINVAL;
2132		break;
2133	}
2134	return error;
2135}
2136
2137/*
2138 * Extract various information from EEPROM.
2139 */
2140static void
2141wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2142{
2143	int i;
2144
2145	/* read the hardware capabilities, revision and SKU type */
2146	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2147	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2148	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2149
2150	/* read the regulatory domain */
2151	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2152
2153	/* read in the hw MAC address */
2154	wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2155
2156	/* read the list of authorized channels */
2157	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2158		wpi_read_eeprom_channels(sc,i);
2159
2160	/* read the power level calibration info for each group */
2161	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2162		wpi_read_eeprom_group(sc,i);
2163}
2164
2165/*
2166 * Send a command to the firmware.
2167 */
2168static int
2169wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2170{
2171	struct wpi_tx_ring *ring = &sc->cmdq;
2172	struct wpi_tx_desc *desc;
2173	struct wpi_tx_cmd *cmd;
2174
2175#ifdef WPI_DEBUG
2176	if (!async) {
2177		WPI_LOCK_ASSERT(sc);
2178	}
2179#endif
2180
2181	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2182		    async));
2183
2184	if (sc->flags & WPI_FLAG_BUSY) {
2185		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2186		    __func__, code);
2187		return EAGAIN;
2188	}
2189	sc->flags|= WPI_FLAG_BUSY;
2190
2191	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2192	    code, size));
2193
2194	desc = &ring->desc[ring->cur];
2195	cmd = &ring->cmd[ring->cur];
2196
2197	cmd->code = code;
2198	cmd->flags = 0;
2199	cmd->qid = ring->qid;
2200	cmd->idx = ring->cur;
2201	memcpy(cmd->data, buf, size);
2202
2203	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2204	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2205		ring->cur * sizeof (struct wpi_tx_cmd));
2206	desc->segs[0].len  = htole32(4 + size);
2207
2208	/* kick cmd ring */
2209	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2210	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2211
2212	if (async) {
2213		sc->flags &= ~ WPI_FLAG_BUSY;
2214		return 0;
2215	}
2216
2217	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2218}
2219
2220static int
2221wpi_wme_update(struct ieee80211com *ic)
2222{
2223#define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2224#define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2225	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2226	const struct wmeParams *wmep;
2227	struct wpi_wme_setup wme;
2228	int ac;
2229
2230	/* don't override default WME values if WME is not actually enabled */
2231	if (!(ic->ic_flags & IEEE80211_F_WME))
2232		return 0;
2233
2234	wme.flags = 0;
2235	for (ac = 0; ac < WME_NUM_AC; ac++) {
2236		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2237		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2238		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2239		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2240		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2241
2242		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2243		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2244		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2245	}
2246	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2247#undef WPI_USEC
2248#undef WPI_EXP2
2249}
2250
2251/*
2252 * Configure h/w multi-rate retries.
2253 */
2254static int
2255wpi_mrr_setup(struct wpi_softc *sc)
2256{
2257	struct ifnet *ifp = sc->sc_ifp;
2258	struct ieee80211com *ic = ifp->if_l2com;
2259	struct wpi_mrr_setup mrr;
2260	int i, error;
2261
2262	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2263
2264	/* CCK rates (not used with 802.11a) */
2265	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2266		mrr.rates[i].flags = 0;
2267		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2268		/* fallback to the immediate lower CCK rate (if any) */
2269		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2270		/* try one time at this rate before falling back to "next" */
2271		mrr.rates[i].ntries = 1;
2272	}
2273
2274	/* OFDM rates (not used with 802.11b) */
2275	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2276		mrr.rates[i].flags = 0;
2277		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2278		/* fallback to the immediate lower OFDM rate (if any) */
2279		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2280		mrr.rates[i].next = (i == WPI_OFDM6) ?
2281		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2282			WPI_OFDM6 : WPI_CCK2) :
2283		    i - 1;
2284		/* try one time at this rate before falling back to "next" */
2285		mrr.rates[i].ntries = 1;
2286	}
2287
2288	/* setup MRR for control frames */
2289	mrr.which = htole32(WPI_MRR_CTL);
2290	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2291	if (error != 0) {
2292		device_printf(sc->sc_dev,
2293		    "could not setup MRR for control frames\n");
2294		return error;
2295	}
2296
2297	/* setup MRR for data frames */
2298	mrr.which = htole32(WPI_MRR_DATA);
2299	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2300	if (error != 0) {
2301		device_printf(sc->sc_dev,
2302		    "could not setup MRR for data frames\n");
2303		return error;
2304	}
2305
2306	return 0;
2307}
2308
2309static void
2310wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2311{
2312	struct wpi_cmd_led led;
2313
2314	led.which = which;
2315	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2316	led.off = off;
2317	led.on = on;
2318
2319	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2320}
2321
2322static void
2323wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2324{
2325	struct wpi_cmd_tsf tsf;
2326	uint64_t val, mod;
2327
2328	memset(&tsf, 0, sizeof tsf);
2329	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2330	tsf.bintval = htole16(ni->ni_intval);
2331	tsf.lintval = htole16(10);
2332
2333	/* compute remaining time until next beacon */
2334	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2335	mod = le64toh(tsf.tstamp) % val;
2336	tsf.binitval = htole32((uint32_t)(val - mod));
2337
2338	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2339		device_printf(sc->sc_dev, "could not enable TSF\n");
2340}
2341
2342#if 0
2343/*
2344 * Build a beacon frame that the firmware will broadcast periodically in
2345 * IBSS or HostAP modes.
2346 */
2347static int
2348wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2349{
2350	struct ifnet *ifp = sc->sc_ifp;
2351	struct ieee80211com *ic = ifp->if_l2com;
2352	struct wpi_tx_ring *ring = &sc->cmdq;
2353	struct wpi_tx_desc *desc;
2354	struct wpi_tx_data *data;
2355	struct wpi_tx_cmd *cmd;
2356	struct wpi_cmd_beacon *bcn;
2357	struct ieee80211_beacon_offsets bo;
2358	struct mbuf *m0;
2359	bus_addr_t physaddr;
2360	int error;
2361
2362	desc = &ring->desc[ring->cur];
2363	data = &ring->data[ring->cur];
2364
2365	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2366	if (m0 == NULL) {
2367		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2368		return ENOMEM;
2369	}
2370
2371	cmd = &ring->cmd[ring->cur];
2372	cmd->code = WPI_CMD_SET_BEACON;
2373	cmd->flags = 0;
2374	cmd->qid = ring->qid;
2375	cmd->idx = ring->cur;
2376
2377	bcn = (struct wpi_cmd_beacon *)cmd->data;
2378	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2379	bcn->id = WPI_ID_BROADCAST;
2380	bcn->ofdm_mask = 0xff;
2381	bcn->cck_mask = 0x0f;
2382	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2383	bcn->len = htole16(m0->m_pkthdr.len);
2384	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2385		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2386	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2387
2388	/* save and trim IEEE802.11 header */
2389	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2390	m_adj(m0, sizeof (struct ieee80211_frame));
2391
2392	/* assume beacon frame is contiguous */
2393	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2394	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2395	if (error != 0) {
2396		device_printf(sc->sc_dev, "could not map beacon\n");
2397		m_freem(m0);
2398		return error;
2399	}
2400
2401	data->m = m0;
2402
2403	/* first scatter/gather segment is used by the beacon command */
2404	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2405	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2406		ring->cur * sizeof (struct wpi_tx_cmd));
2407	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2408	desc->segs[1].addr = htole32(physaddr);
2409	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2410
2411	/* kick cmd ring */
2412	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2413	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2414
2415	return 0;
2416}
2417#endif
2418
2419static int
2420wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2421{
2422	struct ieee80211com *ic = vap->iv_ic;
2423	struct ieee80211_node *ni = vap->iv_bss;
2424	struct wpi_node_info node;
2425	int error;
2426
2427
2428	/* update adapter's configuration */
2429	sc->config.associd = 0;
2430	sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2431	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2432	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2433	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2434		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2435		    WPI_CONFIG_24GHZ);
2436	}
2437	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2438		sc->config.cck_mask  = 0;
2439		sc->config.ofdm_mask = 0x15;
2440	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2441		sc->config.cck_mask  = 0x03;
2442		sc->config.ofdm_mask = 0;
2443	} else {
2444		/* XXX assume 802.11b/g */
2445		sc->config.cck_mask  = 0x0f;
2446		sc->config.ofdm_mask = 0x15;
2447	}
2448
2449	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2450		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2451	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2452		sizeof (struct wpi_config), 1);
2453	if (error != 0) {
2454		device_printf(sc->sc_dev, "could not configure\n");
2455		return error;
2456	}
2457
2458	/* configuration has changed, set Tx power accordingly */
2459	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2460		device_printf(sc->sc_dev, "could not set Tx power\n");
2461		return error;
2462	}
2463
2464	/* add default node */
2465	memset(&node, 0, sizeof node);
2466	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2467	node.id = WPI_ID_BSS;
2468	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2469	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2470	node.action = htole32(WPI_ACTION_SET_RATE);
2471	node.antenna = WPI_ANTENNA_BOTH;
2472	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2473	if (error != 0)
2474		device_printf(sc->sc_dev, "could not add BSS node\n");
2475
2476	return (error);
2477}
2478
2479static int
2480wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2481{
2482	struct ieee80211com *ic = vap->iv_ic;
2483	struct ieee80211_node *ni = vap->iv_bss;
2484	int error;
2485
2486	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2487		/* link LED blinks while monitoring */
2488		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2489		return 0;
2490	}
2491
2492	wpi_enable_tsf(sc, ni);
2493
2494	/* update adapter's configuration */
2495	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2496	/* short preamble/slot time are negotiated when associating */
2497	sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2498	    WPI_CONFIG_SHSLOT);
2499	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2500		sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2501	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2502		sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2503	sc->config.filter |= htole32(WPI_FILTER_BSS);
2504
2505	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2506
2507	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2508		    sc->config.flags));
2509	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2510		    wpi_config), 1);
2511	if (error != 0) {
2512		device_printf(sc->sc_dev, "could not update configuration\n");
2513		return error;
2514	}
2515
2516	error = wpi_set_txpower(sc, ni->ni_chan, 1);
2517	if (error != 0) {
2518		device_printf(sc->sc_dev, "could set txpower\n");
2519		return error;
2520	}
2521
2522	/* link LED always on while associated */
2523	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2524
2525	/* start automatic rate control timer */
2526	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2527
2528	return (error);
2529}
2530
2531/*
2532 * Send a scan request to the firmware.  Since this command is huge, we map it
2533 * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2534 * much of this code is similar to that in wpi_cmd but because we must manually
2535 * construct the probe & channels, we duplicate what's needed here. XXX In the
2536 * future, this function should be modified to use wpi_cmd to help cleanup the
2537 * code base.
2538 */
2539static int
2540wpi_scan(struct wpi_softc *sc)
2541{
2542	struct ifnet *ifp = sc->sc_ifp;
2543	struct ieee80211com *ic = ifp->if_l2com;
2544	struct ieee80211_scan_state *ss = ic->ic_scan;
2545	struct wpi_tx_ring *ring = &sc->cmdq;
2546	struct wpi_tx_desc *desc;
2547	struct wpi_tx_data *data;
2548	struct wpi_tx_cmd *cmd;
2549	struct wpi_scan_hdr *hdr;
2550	struct wpi_scan_chan *chan;
2551	struct ieee80211_frame *wh;
2552	struct ieee80211_rateset *rs;
2553	struct ieee80211_channel *c;
2554	enum ieee80211_phymode mode;
2555	uint8_t *frm;
2556	int nrates, pktlen, error, i, nssid;
2557	bus_addr_t physaddr;
2558
2559	desc = &ring->desc[ring->cur];
2560	data = &ring->data[ring->cur];
2561
2562	data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2563	if (data->m == NULL) {
2564		device_printf(sc->sc_dev,
2565		    "could not allocate mbuf for scan command\n");
2566		return ENOMEM;
2567	}
2568
2569	cmd = mtod(data->m, struct wpi_tx_cmd *);
2570	cmd->code = WPI_CMD_SCAN;
2571	cmd->flags = 0;
2572	cmd->qid = ring->qid;
2573	cmd->idx = ring->cur;
2574
2575	hdr = (struct wpi_scan_hdr *)cmd->data;
2576	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2577
2578	/*
2579	 * Move to the next channel if no packets are received within 5 msecs
2580	 * after sending the probe request (this helps to reduce the duration
2581	 * of active scans).
2582	 */
2583	hdr->quiet = htole16(5);
2584	hdr->threshold = htole16(1);
2585
2586	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2587		/* send probe requests at 6Mbps */
2588		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2589
2590		/* Enable crc checking */
2591		hdr->promotion = htole16(1);
2592	} else {
2593		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2594		/* send probe requests at 1Mbps */
2595		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2596	}
2597	hdr->tx.id = WPI_ID_BROADCAST;
2598	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2599	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2600
2601	memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2602	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2603	for (i = 0; i < nssid; i++) {
2604		hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2605		hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2606		memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2607		    hdr->scan_essids[i].esslen);
2608#ifdef WPI_DEBUG
2609		if (wpi_debug & WPI_DEBUG_SCANNING) {
2610			printf("Scanning Essid: ");
2611			ieee80211_print_essid(hdr->scan_essids[i].essid,
2612			    hdr->scan_essids[i].esslen);
2613			printf("\n");
2614		}
2615#endif
2616	}
2617
2618	/*
2619	 * Build a probe request frame.  Most of the following code is a
2620	 * copy & paste of what is done in net80211.
2621	 */
2622	wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2623	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2624		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2625	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2626	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2627	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2628	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2629	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2630	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2631
2632	frm = (uint8_t *)(wh + 1);
2633
2634	/* add essid IE, the hardware will fill this in for us */
2635	*frm++ = IEEE80211_ELEMID_SSID;
2636	*frm++ = 0;
2637
2638	mode = ieee80211_chan2mode(ic->ic_curchan);
2639	rs = &ic->ic_sup_rates[mode];
2640
2641	/* add supported rates IE */
2642	*frm++ = IEEE80211_ELEMID_RATES;
2643	nrates = rs->rs_nrates;
2644	if (nrates > IEEE80211_RATE_SIZE)
2645		nrates = IEEE80211_RATE_SIZE;
2646	*frm++ = nrates;
2647	memcpy(frm, rs->rs_rates, nrates);
2648	frm += nrates;
2649
2650	/* add supported xrates IE */
2651	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2652		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2653		*frm++ = IEEE80211_ELEMID_XRATES;
2654		*frm++ = nrates;
2655		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2656		frm += nrates;
2657	}
2658
2659	/* setup length of probe request */
2660	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2661
2662	/*
2663	 * Construct information about the channel that we
2664	 * want to scan. The firmware expects this to be directly
2665	 * after the scan probe request
2666	 */
2667	c = ic->ic_curchan;
2668	chan = (struct wpi_scan_chan *)frm;
2669	chan->chan = ieee80211_chan2ieee(ic, c);
2670	chan->flags = 0;
2671	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2672		chan->flags |= WPI_CHAN_ACTIVE;
2673		if (nssid != 0)
2674			chan->flags |= WPI_CHAN_DIRECT;
2675	}
2676	chan->gain_dsp = 0x6e; /* Default level */
2677	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2678		chan->active = htole16(10);
2679		chan->passive = htole16(ss->ss_maxdwell);
2680		chan->gain_radio = 0x3b;
2681	} else {
2682		chan->active = htole16(20);
2683		chan->passive = htole16(ss->ss_maxdwell);
2684		chan->gain_radio = 0x28;
2685	}
2686
2687	DPRINTFN(WPI_DEBUG_SCANNING,
2688	    ("Scanning %u Passive: %d\n",
2689	     chan->chan,
2690	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2691
2692	hdr->nchan++;
2693	chan++;
2694
2695	frm += sizeof (struct wpi_scan_chan);
2696#if 0
2697	// XXX All Channels....
2698	for (c  = &ic->ic_channels[1];
2699	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2700		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2701			continue;
2702
2703		chan->chan = ieee80211_chan2ieee(ic, c);
2704		chan->flags = 0;
2705		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2706		    chan->flags |= WPI_CHAN_ACTIVE;
2707		    if (ic->ic_des_ssid[0].len != 0)
2708			chan->flags |= WPI_CHAN_DIRECT;
2709		}
2710		chan->gain_dsp = 0x6e; /* Default level */
2711		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2712			chan->active = htole16(10);
2713			chan->passive = htole16(110);
2714			chan->gain_radio = 0x3b;
2715		} else {
2716			chan->active = htole16(20);
2717			chan->passive = htole16(120);
2718			chan->gain_radio = 0x28;
2719		}
2720
2721		DPRINTFN(WPI_DEBUG_SCANNING,
2722			 ("Scanning %u Passive: %d\n",
2723			  chan->chan,
2724			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2725
2726		hdr->nchan++;
2727		chan++;
2728
2729		frm += sizeof (struct wpi_scan_chan);
2730	}
2731#endif
2732
2733	hdr->len = htole16(frm - (uint8_t *)hdr);
2734	pktlen = frm - (uint8_t *)cmd;
2735
2736	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2737	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2738	if (error != 0) {
2739		device_printf(sc->sc_dev, "could not map scan command\n");
2740		m_freem(data->m);
2741		data->m = NULL;
2742		return error;
2743	}
2744
2745	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2746	desc->segs[0].addr = htole32(physaddr);
2747	desc->segs[0].len  = htole32(pktlen);
2748
2749	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2750	    BUS_DMASYNC_PREWRITE);
2751	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2752
2753	/* kick cmd ring */
2754	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2755	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2756
2757	sc->sc_scan_timer = 5;
2758	return 0;	/* will be notified async. of failure/success */
2759}
2760
2761/**
2762 * Configure the card to listen to a particular channel, this transisions the
2763 * card in to being able to receive frames from remote devices.
2764 */
2765static int
2766wpi_config(struct wpi_softc *sc)
2767{
2768	struct ifnet *ifp = sc->sc_ifp;
2769	struct ieee80211com *ic = ifp->if_l2com;
2770	struct wpi_power power;
2771	struct wpi_bluetooth bluetooth;
2772	struct wpi_node_info node;
2773	int error;
2774
2775	/* set power mode */
2776	memset(&power, 0, sizeof power);
2777	power.flags = htole32(WPI_POWER_CAM|0x8);
2778	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2779	if (error != 0) {
2780		device_printf(sc->sc_dev, "could not set power mode\n");
2781		return error;
2782	}
2783
2784	/* configure bluetooth coexistence */
2785	memset(&bluetooth, 0, sizeof bluetooth);
2786	bluetooth.flags = 3;
2787	bluetooth.lead = 0xaa;
2788	bluetooth.kill = 1;
2789	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2790	    0);
2791	if (error != 0) {
2792		device_printf(sc->sc_dev,
2793		    "could not configure bluetooth coexistence\n");
2794		return error;
2795	}
2796
2797	/* configure adapter */
2798	memset(&sc->config, 0, sizeof (struct wpi_config));
2799	IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2800	/*set default channel*/
2801	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2802	sc->config.flags = htole32(WPI_CONFIG_TSF);
2803	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2804		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2805		    WPI_CONFIG_24GHZ);
2806	}
2807	sc->config.filter = 0;
2808	switch (ic->ic_opmode) {
2809	case IEEE80211_M_STA:
2810	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2811		sc->config.mode = WPI_MODE_STA;
2812		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2813		break;
2814	case IEEE80211_M_IBSS:
2815	case IEEE80211_M_AHDEMO:
2816		sc->config.mode = WPI_MODE_IBSS;
2817		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2818					     WPI_FILTER_MULTICAST);
2819		break;
2820	case IEEE80211_M_HOSTAP:
2821		sc->config.mode = WPI_MODE_HOSTAP;
2822		break;
2823	case IEEE80211_M_MONITOR:
2824		sc->config.mode = WPI_MODE_MONITOR;
2825		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2826			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2827		break;
2828	}
2829	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2830	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2831	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2832		sizeof (struct wpi_config), 0);
2833	if (error != 0) {
2834		device_printf(sc->sc_dev, "configure command failed\n");
2835		return error;
2836	}
2837
2838	/* configuration has changed, set Tx power accordingly */
2839	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2840	    device_printf(sc->sc_dev, "could not set Tx power\n");
2841	    return error;
2842	}
2843
2844	/* add broadcast node */
2845	memset(&node, 0, sizeof node);
2846	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2847	node.id = WPI_ID_BROADCAST;
2848	node.rate = wpi_plcp_signal(2);
2849	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2850	if (error != 0) {
2851		device_printf(sc->sc_dev, "could not add broadcast node\n");
2852		return error;
2853	}
2854
2855	/* Setup rate scalling */
2856	error = wpi_mrr_setup(sc);
2857	if (error != 0) {
2858		device_printf(sc->sc_dev, "could not setup MRR\n");
2859		return error;
2860	}
2861
2862	return 0;
2863}
2864
2865static void
2866wpi_stop_master(struct wpi_softc *sc)
2867{
2868	uint32_t tmp;
2869	int ntries;
2870
2871	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2872
2873	tmp = WPI_READ(sc, WPI_RESET);
2874	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2875
2876	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2877	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2878		return;	/* already asleep */
2879
2880	for (ntries = 0; ntries < 100; ntries++) {
2881		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2882			break;
2883		DELAY(10);
2884	}
2885	if (ntries == 100) {
2886		device_printf(sc->sc_dev, "timeout waiting for master\n");
2887	}
2888}
2889
2890static int
2891wpi_power_up(struct wpi_softc *sc)
2892{
2893	uint32_t tmp;
2894	int ntries;
2895
2896	wpi_mem_lock(sc);
2897	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2898	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2899	wpi_mem_unlock(sc);
2900
2901	for (ntries = 0; ntries < 5000; ntries++) {
2902		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2903			break;
2904		DELAY(10);
2905	}
2906	if (ntries == 5000) {
2907		device_printf(sc->sc_dev,
2908		    "timeout waiting for NIC to power up\n");
2909		return ETIMEDOUT;
2910	}
2911	return 0;
2912}
2913
2914static int
2915wpi_reset(struct wpi_softc *sc)
2916{
2917	uint32_t tmp;
2918	int ntries;
2919
2920	DPRINTFN(WPI_DEBUG_HW,
2921	    ("Resetting the card - clearing any uploaded firmware\n"));
2922
2923	/* clear any pending interrupts */
2924	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2925
2926	tmp = WPI_READ(sc, WPI_PLL_CTL);
2927	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2928
2929	tmp = WPI_READ(sc, WPI_CHICKEN);
2930	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2931
2932	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2933	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2934
2935	/* wait for clock stabilization */
2936	for (ntries = 0; ntries < 25000; ntries++) {
2937		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2938			break;
2939		DELAY(10);
2940	}
2941	if (ntries == 25000) {
2942		device_printf(sc->sc_dev,
2943		    "timeout waiting for clock stabilization\n");
2944		return ETIMEDOUT;
2945	}
2946
2947	/* initialize EEPROM */
2948	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2949
2950	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2951		device_printf(sc->sc_dev, "EEPROM not found\n");
2952		return EIO;
2953	}
2954	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2955
2956	return 0;
2957}
2958
2959static void
2960wpi_hw_config(struct wpi_softc *sc)
2961{
2962	uint32_t rev, hw;
2963
2964	/* voodoo from the Linux "driver".. */
2965	hw = WPI_READ(sc, WPI_HWCONFIG);
2966
2967	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2968	if ((rev & 0xc0) == 0x40)
2969		hw |= WPI_HW_ALM_MB;
2970	else if (!(rev & 0x80))
2971		hw |= WPI_HW_ALM_MM;
2972
2973	if (sc->cap == 0x80)
2974		hw |= WPI_HW_SKU_MRC;
2975
2976	hw &= ~WPI_HW_REV_D;
2977	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2978		hw |= WPI_HW_REV_D;
2979
2980	if (sc->type > 1)
2981		hw |= WPI_HW_TYPE_B;
2982
2983	WPI_WRITE(sc, WPI_HWCONFIG, hw);
2984}
2985
2986static void
2987wpi_rfkill_resume(struct wpi_softc *sc)
2988{
2989	struct ifnet *ifp = sc->sc_ifp;
2990	struct ieee80211com *ic = ifp->if_l2com;
2991	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2992	int ntries;
2993
2994	/* enable firmware again */
2995	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
2996	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
2997
2998	/* wait for thermal sensors to calibrate */
2999	for (ntries = 0; ntries < 1000; ntries++) {
3000		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3001			break;
3002		DELAY(10);
3003	}
3004
3005	if (ntries == 1000) {
3006		device_printf(sc->sc_dev,
3007		    "timeout waiting for thermal calibration\n");
3008		WPI_UNLOCK(sc);
3009		return;
3010	}
3011	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3012
3013	if (wpi_config(sc) != 0) {
3014		device_printf(sc->sc_dev, "device config failed\n");
3015		WPI_UNLOCK(sc);
3016		return;
3017	}
3018
3019	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3020	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3021	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3022
3023	if (vap != NULL) {
3024		if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3025			if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3026				ieee80211_beacon_miss(ic);
3027				wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3028			} else
3029				wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3030		} else {
3031			ieee80211_scan_next(vap);
3032			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3033		}
3034	}
3035
3036	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3037}
3038
3039static void
3040wpi_init_locked(struct wpi_softc *sc, int force)
3041{
3042	struct ifnet *ifp = sc->sc_ifp;
3043	uint32_t tmp;
3044	int ntries, qid;
3045
3046	wpi_stop_locked(sc);
3047	(void)wpi_reset(sc);
3048
3049	wpi_mem_lock(sc);
3050	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3051	DELAY(20);
3052	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3053	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3054	wpi_mem_unlock(sc);
3055
3056	(void)wpi_power_up(sc);
3057	wpi_hw_config(sc);
3058
3059	/* init Rx ring */
3060	wpi_mem_lock(sc);
3061	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3062	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3063	    offsetof(struct wpi_shared, next));
3064	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3065	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3066	wpi_mem_unlock(sc);
3067
3068	/* init Tx rings */
3069	wpi_mem_lock(sc);
3070	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3071	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3072	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3073	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3074	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3075	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3076	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3077
3078	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3079	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3080
3081	for (qid = 0; qid < 6; qid++) {
3082		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3083		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3084		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3085	}
3086	wpi_mem_unlock(sc);
3087
3088	/* clear "radio off" and "disable command" bits (reversed logic) */
3089	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3090	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3091	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3092
3093	/* clear any pending interrupts */
3094	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3095
3096	/* enable interrupts */
3097	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3098
3099	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3100	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3101
3102	if ((wpi_load_firmware(sc)) != 0) {
3103	    device_printf(sc->sc_dev,
3104		"A problem occurred loading the firmware to the driver\n");
3105	    return;
3106	}
3107
3108	/* At this point the firmware is up and running. If the hardware
3109	 * RF switch is turned off thermal calibration will fail, though
3110	 * the card is still happy to continue to accept commands, catch
3111	 * this case and schedule a task to watch for it to be turned on.
3112	 */
3113	wpi_mem_lock(sc);
3114	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3115	wpi_mem_unlock(sc);
3116
3117	if (!(tmp & 0x1)) {
3118		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3119		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3120		goto out;
3121	}
3122
3123	/* wait for thermal sensors to calibrate */
3124	for (ntries = 0; ntries < 1000; ntries++) {
3125		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3126			break;
3127		DELAY(10);
3128	}
3129
3130	if (ntries == 1000) {
3131		device_printf(sc->sc_dev,
3132		    "timeout waiting for thermal sensors calibration\n");
3133		return;
3134	}
3135	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3136
3137	if (wpi_config(sc) != 0) {
3138		device_printf(sc->sc_dev, "device config failed\n");
3139		return;
3140	}
3141
3142	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3143	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3144out:
3145	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3146}
3147
3148static void
3149wpi_init(void *arg)
3150{
3151	struct wpi_softc *sc = arg;
3152	struct ifnet *ifp = sc->sc_ifp;
3153	struct ieee80211com *ic = ifp->if_l2com;
3154
3155	WPI_LOCK(sc);
3156	wpi_init_locked(sc, 0);
3157	WPI_UNLOCK(sc);
3158
3159	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3160		ieee80211_start_all(ic);		/* start all vaps */
3161}
3162
3163static void
3164wpi_stop_locked(struct wpi_softc *sc)
3165{
3166	struct ifnet *ifp = sc->sc_ifp;
3167	uint32_t tmp;
3168	int ac;
3169
3170	sc->sc_tx_timer = 0;
3171	sc->sc_scan_timer = 0;
3172	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3173	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3174	callout_stop(&sc->watchdog_to);
3175	callout_stop(&sc->calib_to);
3176
3177
3178	/* disable interrupts */
3179	WPI_WRITE(sc, WPI_MASK, 0);
3180	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3181	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3182	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3183
3184	wpi_mem_lock(sc);
3185	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3186	wpi_mem_unlock(sc);
3187
3188	/* reset all Tx rings */
3189	for (ac = 0; ac < 4; ac++)
3190		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3191	wpi_reset_tx_ring(sc, &sc->cmdq);
3192
3193	/* reset Rx ring */
3194	wpi_reset_rx_ring(sc, &sc->rxq);
3195
3196	wpi_mem_lock(sc);
3197	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3198	wpi_mem_unlock(sc);
3199
3200	DELAY(5);
3201
3202	wpi_stop_master(sc);
3203
3204	tmp = WPI_READ(sc, WPI_RESET);
3205	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3206	sc->flags &= ~WPI_FLAG_BUSY;
3207}
3208
3209static void
3210wpi_stop(struct wpi_softc *sc)
3211{
3212	WPI_LOCK(sc);
3213	wpi_stop_locked(sc);
3214	WPI_UNLOCK(sc);
3215}
3216
3217static void
3218wpi_newassoc(struct ieee80211_node *ni, int isnew)
3219{
3220	struct ieee80211vap *vap = ni->ni_vap;
3221	struct wpi_vap *wvp = WPI_VAP(vap);
3222
3223	ieee80211_amrr_node_init(&wvp->amrr, &WPI_NODE(ni)->amn, ni);
3224}
3225
3226static void
3227wpi_calib_timeout(void *arg)
3228{
3229	struct wpi_softc *sc = arg;
3230	struct ifnet *ifp = sc->sc_ifp;
3231	struct ieee80211com *ic = ifp->if_l2com;
3232	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3233	int temp;
3234
3235	if (vap->iv_state != IEEE80211_S_RUN)
3236		return;
3237
3238	/* update sensor data */
3239	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3240	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3241
3242	wpi_power_calibration(sc, temp);
3243
3244	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3245}
3246
3247/*
3248 * This function is called periodically (every 60 seconds) to adjust output
3249 * power to temperature changes.
3250 */
3251static void
3252wpi_power_calibration(struct wpi_softc *sc, int temp)
3253{
3254	struct ifnet *ifp = sc->sc_ifp;
3255	struct ieee80211com *ic = ifp->if_l2com;
3256	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3257
3258	/* sanity-check read value */
3259	if (temp < -260 || temp > 25) {
3260		/* this can't be correct, ignore */
3261		DPRINTFN(WPI_DEBUG_TEMP,
3262		    ("out-of-range temperature reported: %d\n", temp));
3263		return;
3264	}
3265
3266	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3267
3268	/* adjust Tx power if need be */
3269	if (abs(temp - sc->temp) <= 6)
3270		return;
3271
3272	sc->temp = temp;
3273
3274	if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3275		/* just warn, too bad for the automatic calibration... */
3276		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3277	}
3278}
3279
3280/**
3281 * Read the eeprom to find out what channels are valid for the given
3282 * band and update net80211 with what we find.
3283 */
3284static void
3285wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3286{
3287	struct ifnet *ifp = sc->sc_ifp;
3288	struct ieee80211com *ic = ifp->if_l2com;
3289	const struct wpi_chan_band *band = &wpi_bands[n];
3290	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3291	struct ieee80211_channel *c;
3292	int chan, i, passive;
3293
3294	wpi_read_prom_data(sc, band->addr, channels,
3295	    band->nchan * sizeof (struct wpi_eeprom_chan));
3296
3297	for (i = 0; i < band->nchan; i++) {
3298		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3299			DPRINTFN(WPI_DEBUG_HW,
3300			    ("Channel Not Valid: %d, band %d\n",
3301			     band->chan[i],n));
3302			continue;
3303		}
3304
3305		passive = 0;
3306		chan = band->chan[i];
3307		c = &ic->ic_channels[ic->ic_nchans++];
3308
3309		/* is active scan allowed on this channel? */
3310		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3311			passive = IEEE80211_CHAN_PASSIVE;
3312		}
3313
3314		if (n == 0) {	/* 2GHz band */
3315			c->ic_ieee = chan;
3316			c->ic_freq = ieee80211_ieee2mhz(chan,
3317			    IEEE80211_CHAN_2GHZ);
3318			c->ic_flags = IEEE80211_CHAN_B | passive;
3319
3320			c = &ic->ic_channels[ic->ic_nchans++];
3321			c->ic_ieee = chan;
3322			c->ic_freq = ieee80211_ieee2mhz(chan,
3323			    IEEE80211_CHAN_2GHZ);
3324			c->ic_flags = IEEE80211_CHAN_G | passive;
3325
3326		} else {	/* 5GHz band */
3327			/*
3328			 * Some 3945ABG adapters support channels 7, 8, 11
3329			 * and 12 in the 2GHz *and* 5GHz bands.
3330			 * Because of limitations in our net80211(9) stack,
3331			 * we can't support these channels in 5GHz band.
3332			 * XXX not true; just need to map to proper frequency
3333			 */
3334			if (chan <= 14)
3335				continue;
3336
3337			c->ic_ieee = chan;
3338			c->ic_freq = ieee80211_ieee2mhz(chan,
3339			    IEEE80211_CHAN_5GHZ);
3340			c->ic_flags = IEEE80211_CHAN_A | passive;
3341		}
3342
3343		/* save maximum allowed power for this channel */
3344		sc->maxpwr[chan] = channels[i].maxpwr;
3345
3346#if 0
3347		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3348		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3349		//ic->ic_channels[chan].ic_minpower...
3350		//ic->ic_channels[chan].ic_maxregtxpower...
3351#endif
3352
3353		DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3354		    " passive=%d, offset %d\n", chan, c->ic_freq,
3355		    channels[i].flags, sc->maxpwr[chan],
3356		    (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3357		    ic->ic_nchans));
3358	}
3359}
3360
3361static void
3362wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3363{
3364	struct wpi_power_group *group = &sc->groups[n];
3365	struct wpi_eeprom_group rgroup;
3366	int i;
3367
3368	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3369	    sizeof rgroup);
3370
3371	/* save power group information */
3372	group->chan   = rgroup.chan;
3373	group->maxpwr = rgroup.maxpwr;
3374	/* temperature at which the samples were taken */
3375	group->temp   = (int16_t)le16toh(rgroup.temp);
3376
3377	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3378		    group->chan, group->maxpwr, group->temp));
3379
3380	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3381		group->samples[i].index = rgroup.samples[i].index;
3382		group->samples[i].power = rgroup.samples[i].power;
3383
3384		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3385			    group->samples[i].index, group->samples[i].power));
3386	}
3387}
3388
3389/*
3390 * Update Tx power to match what is defined for channel `c'.
3391 */
3392static int
3393wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3394{
3395	struct ifnet *ifp = sc->sc_ifp;
3396	struct ieee80211com *ic = ifp->if_l2com;
3397	struct wpi_power_group *group;
3398	struct wpi_cmd_txpower txpower;
3399	u_int chan;
3400	int i;
3401
3402	/* get channel number */
3403	chan = ieee80211_chan2ieee(ic, c);
3404
3405	/* find the power group to which this channel belongs */
3406	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3407		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3408			if (chan <= group->chan)
3409				break;
3410	} else
3411		group = &sc->groups[0];
3412
3413	memset(&txpower, 0, sizeof txpower);
3414	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3415	txpower.channel = htole16(chan);
3416
3417	/* set Tx power for all OFDM and CCK rates */
3418	for (i = 0; i <= 11 ; i++) {
3419		/* retrieve Tx power for this channel/rate combination */
3420		int idx = wpi_get_power_index(sc, group, c,
3421		    wpi_ridx_to_rate[i]);
3422
3423		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3424
3425		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3426			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3427			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3428		} else {
3429			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3430			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3431		}
3432		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3433			    chan, wpi_ridx_to_rate[i], idx));
3434	}
3435
3436	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3437}
3438
3439/*
3440 * Determine Tx power index for a given channel/rate combination.
3441 * This takes into account the regulatory information from EEPROM and the
3442 * current temperature.
3443 */
3444static int
3445wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3446    struct ieee80211_channel *c, int rate)
3447{
3448/* fixed-point arithmetic division using a n-bit fractional part */
3449#define fdivround(a, b, n)      \
3450	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3451
3452/* linear interpolation */
3453#define interpolate(x, x1, y1, x2, y2, n)       \
3454	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3455
3456	struct ifnet *ifp = sc->sc_ifp;
3457	struct ieee80211com *ic = ifp->if_l2com;
3458	struct wpi_power_sample *sample;
3459	int pwr, idx;
3460	u_int chan;
3461
3462	/* get channel number */
3463	chan = ieee80211_chan2ieee(ic, c);
3464
3465	/* default power is group's maximum power - 3dB */
3466	pwr = group->maxpwr / 2;
3467
3468	/* decrease power for highest OFDM rates to reduce distortion */
3469	switch (rate) {
3470		case 72:	/* 36Mb/s */
3471			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3472			break;
3473		case 96:	/* 48Mb/s */
3474			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3475			break;
3476		case 108:	/* 54Mb/s */
3477			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3478			break;
3479	}
3480
3481	/* never exceed channel's maximum allowed Tx power */
3482	pwr = min(pwr, sc->maxpwr[chan]);
3483
3484	/* retrieve power index into gain tables from samples */
3485	for (sample = group->samples; sample < &group->samples[3]; sample++)
3486		if (pwr > sample[1].power)
3487			break;
3488	/* fixed-point linear interpolation using a 19-bit fractional part */
3489	idx = interpolate(pwr, sample[0].power, sample[0].index,
3490	    sample[1].power, sample[1].index, 19);
3491
3492	/*
3493	 *  Adjust power index based on current temperature
3494	 *	- if colder than factory-calibrated: decreate output power
3495	 *	- if warmer than factory-calibrated: increase output power
3496	 */
3497	idx -= (sc->temp - group->temp) * 11 / 100;
3498
3499	/* decrease power for CCK rates (-5dB) */
3500	if (!WPI_RATE_IS_OFDM(rate))
3501		idx += 10;
3502
3503	/* keep power index in a valid range */
3504	if (idx < 0)
3505		return 0;
3506	if (idx > WPI_MAX_PWR_INDEX)
3507		return WPI_MAX_PWR_INDEX;
3508	return idx;
3509
3510#undef interpolate
3511#undef fdivround
3512}
3513
3514/**
3515 * Called by net80211 framework to indicate that a scan
3516 * is starting. This function doesn't actually do the scan,
3517 * wpi_scan_curchan starts things off. This function is more
3518 * of an early warning from the framework we should get ready
3519 * for the scan.
3520 */
3521static void
3522wpi_scan_start(struct ieee80211com *ic)
3523{
3524	struct ifnet *ifp = ic->ic_ifp;
3525	struct wpi_softc *sc = ifp->if_softc;
3526
3527	WPI_LOCK(sc);
3528	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3529	WPI_UNLOCK(sc);
3530}
3531
3532/**
3533 * Called by the net80211 framework, indicates that the
3534 * scan has ended. If there is a scan in progress on the card
3535 * then it should be aborted.
3536 */
3537static void
3538wpi_scan_end(struct ieee80211com *ic)
3539{
3540	/* XXX ignore */
3541}
3542
3543/**
3544 * Called by the net80211 framework to indicate to the driver
3545 * that the channel should be changed
3546 */
3547static void
3548wpi_set_channel(struct ieee80211com *ic)
3549{
3550	struct ifnet *ifp = ic->ic_ifp;
3551	struct wpi_softc *sc = ifp->if_softc;
3552	int error;
3553
3554	/*
3555	 * Only need to set the channel in Monitor mode. AP scanning and auth
3556	 * are already taken care of by their respective firmware commands.
3557	 */
3558	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3559		error = wpi_config(sc);
3560		if (error != 0)
3561			device_printf(sc->sc_dev,
3562			    "error %d settting channel\n", error);
3563	}
3564}
3565
3566/**
3567 * Called by net80211 to indicate that we need to scan the current
3568 * channel. The channel is previously be set via the wpi_set_channel
3569 * callback.
3570 */
3571static void
3572wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3573{
3574	struct ieee80211vap *vap = ss->ss_vap;
3575	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3576	struct wpi_softc *sc = ifp->if_softc;
3577
3578	WPI_LOCK(sc);
3579	if (wpi_scan(sc))
3580		ieee80211_cancel_scan(vap);
3581	WPI_UNLOCK(sc);
3582}
3583
3584/**
3585 * Called by the net80211 framework to indicate
3586 * the minimum dwell time has been met, terminate the scan.
3587 * We don't actually terminate the scan as the firmware will notify
3588 * us when it's finished and we have no way to interrupt it.
3589 */
3590static void
3591wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3592{
3593	/* NB: don't try to abort scan; wait for firmware to finish */
3594}
3595
3596static void
3597wpi_hwreset(void *arg, int pending)
3598{
3599	struct wpi_softc *sc = arg;
3600
3601	WPI_LOCK(sc);
3602	wpi_init_locked(sc, 0);
3603	WPI_UNLOCK(sc);
3604}
3605
3606static void
3607wpi_rfreset(void *arg, int pending)
3608{
3609	struct wpi_softc *sc = arg;
3610
3611	WPI_LOCK(sc);
3612	wpi_rfkill_resume(sc);
3613	WPI_UNLOCK(sc);
3614}
3615
3616/*
3617 * Allocate DMA-safe memory for firmware transfer.
3618 */
3619static int
3620wpi_alloc_fwmem(struct wpi_softc *sc)
3621{
3622	/* allocate enough contiguous space to store text and data */
3623	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3624	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3625	    BUS_DMA_NOWAIT);
3626}
3627
3628static void
3629wpi_free_fwmem(struct wpi_softc *sc)
3630{
3631	wpi_dma_contig_free(&sc->fw_dma);
3632}
3633
3634/**
3635 * Called every second, wpi_watchdog used by the watch dog timer
3636 * to check that the card is still alive
3637 */
3638static void
3639wpi_watchdog(void *arg)
3640{
3641	struct wpi_softc *sc = arg;
3642	struct ifnet *ifp = sc->sc_ifp;
3643	struct ieee80211com *ic = ifp->if_l2com;
3644	uint32_t tmp;
3645
3646	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3647
3648	if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3649		/* No need to lock firmware memory */
3650		tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3651
3652		if ((tmp & 0x1) == 0) {
3653			/* Radio kill switch is still off */
3654			callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3655			return;
3656		}
3657
3658		device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3659		ieee80211_runtask(ic, &sc->sc_radiotask);
3660		return;
3661	}
3662
3663	if (sc->sc_tx_timer > 0) {
3664		if (--sc->sc_tx_timer == 0) {
3665			device_printf(sc->sc_dev,"device timeout\n");
3666			ifp->if_oerrors++;
3667			ieee80211_runtask(ic, &sc->sc_restarttask);
3668		}
3669	}
3670	if (sc->sc_scan_timer > 0) {
3671		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3672		if (--sc->sc_scan_timer == 0 && vap != NULL) {
3673			device_printf(sc->sc_dev,"scan timeout\n");
3674			ieee80211_cancel_scan(vap);
3675			ieee80211_runtask(ic, &sc->sc_restarttask);
3676		}
3677	}
3678
3679	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3680		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3681}
3682
3683#ifdef WPI_DEBUG
3684static const char *wpi_cmd_str(int cmd)
3685{
3686	switch (cmd) {
3687	case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3688	case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3689	case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3690	case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3691	case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3692	case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3693	case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3694	case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3695	case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3696	case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3697	case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3698	case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3699	case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3700	case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3701
3702	default:
3703		KASSERT(1, ("Unknown Command: %d\n", cmd));
3704		return "UNKNOWN CMD";	/* Make the compiler happy */
3705	}
3706}
3707#endif
3708
3709MODULE_DEPEND(wpi, pci,  1, 1, 1);
3710MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3711MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3712MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1);
3713