if_wpi.c revision 190462
1/*-
2 * Copyright (c) 2006,2007
3 *	Damien Bergamini <damien.bergamini@free.fr>
4 *	Benjamin Close <Benjamin.Close@clearchain.com>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19#define VERSION "20071127"
20
21#include <sys/cdefs.h>
22__FBSDID("$FreeBSD: head/sys/dev/wpi/if_wpi.c 190462 2009-03-27 05:44:53Z jmallett $");
23
24/*
25 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26 *
27 * The 3945ABG network adapter doesn't use traditional hardware as
28 * many other adaptors do. Instead at run time the eeprom is set into a known
29 * state and told to load boot firmware. The boot firmware loads an init and a
30 * main  binary firmware image into SRAM on the card via DMA.
31 * Once the firmware is loaded, the driver/hw then
32 * communicate by way of circular dma rings via the the SRAM to the firmware.
33 *
34 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35 * The 4 tx data rings allow for prioritization QoS.
36 *
37 * The rx data ring consists of 32 dma buffers. Two registers are used to
38 * indicate where in the ring the driver and the firmware are up to. The
39 * driver sets the initial read index (reg1) and the initial write index (reg2),
40 * the firmware updates the read index (reg1) on rx of a packet and fires an
41 * interrupt. The driver then processes the buffers starting at reg1 indicating
42 * to the firmware which buffers have been accessed by updating reg2. At the
43 * same time allocating new memory for the processed buffer.
44 *
45 * A similar thing happens with the tx rings. The difference is the firmware
46 * stop processing buffers once the queue is full and until confirmation
47 * of a successful transmition (tx_intr) has occurred.
48 *
49 * The command ring operates in the same manner as the tx queues.
50 *
51 * All communication direct to the card (ie eeprom) is classed as Stage1
52 * communication
53 *
54 * All communication via the firmware to the card is classed as State2.
55 * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56 * firmware. The bootstrap firmware and runtime firmware are loaded
57 * from host memory via dma to the card then told to execute. From this point
58 * on the majority of communications between the driver and the card goes
59 * via the firmware.
60 */
61
62#include <sys/param.h>
63#include <sys/sysctl.h>
64#include <sys/sockio.h>
65#include <sys/mbuf.h>
66#include <sys/kernel.h>
67#include <sys/socket.h>
68#include <sys/systm.h>
69#include <sys/malloc.h>
70#include <sys/queue.h>
71#include <sys/taskqueue.h>
72#include <sys/module.h>
73#include <sys/bus.h>
74#include <sys/endian.h>
75#include <sys/linker.h>
76#include <sys/firmware.h>
77
78#include <machine/bus.h>
79#include <machine/resource.h>
80#include <sys/rman.h>
81
82#include <dev/pci/pcireg.h>
83#include <dev/pci/pcivar.h>
84
85#include <net/bpf.h>
86#include <net/if.h>
87#include <net/if_arp.h>
88#include <net/ethernet.h>
89#include <net/if_dl.h>
90#include <net/if_media.h>
91#include <net/if_types.h>
92
93#include <net80211/ieee80211_var.h>
94#include <net80211/ieee80211_radiotap.h>
95#include <net80211/ieee80211_regdomain.h>
96
97#include <netinet/in.h>
98#include <netinet/in_systm.h>
99#include <netinet/in_var.h>
100#include <netinet/ip.h>
101#include <netinet/if_ether.h>
102
103#include <dev/wpi/if_wpireg.h>
104#include <dev/wpi/if_wpivar.h>
105
106#define WPI_DEBUG
107
108#ifdef WPI_DEBUG
109#define DPRINTF(x)	do { if (wpi_debug != 0) printf x; } while (0)
110#define DPRINTFN(n, x)	do { if (wpi_debug & n) printf x; } while (0)
111#define	WPI_DEBUG_SET	(wpi_debug != 0)
112
113enum {
114	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
115	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
116	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
117	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
118	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
119	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
120	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
121	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
122	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
123	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
124	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
125	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
126	WPI_DEBUG_ANY		= 0xffffffff
127};
128
129static int wpi_debug = 1;
130SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
131TUNABLE_INT("debug.wpi", &wpi_debug);
132
133#else
134#define DPRINTF(x)
135#define DPRINTFN(n, x)
136#define WPI_DEBUG_SET	0
137#endif
138
139struct wpi_ident {
140	uint16_t	vendor;
141	uint16_t	device;
142	uint16_t	subdevice;
143	const char	*name;
144};
145
146static const struct wpi_ident wpi_ident_table[] = {
147	/* The below entries support ABG regardless of the subid */
148	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
149	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
150	/* The below entries only support BG */
151	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
152	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
153	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
154	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
155	{ 0, 0, 0, NULL }
156};
157
158static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
159		    const char name[IFNAMSIZ], int unit, int opmode,
160		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
161		    const uint8_t mac[IEEE80211_ADDR_LEN]);
162static void	wpi_vap_delete(struct ieee80211vap *);
163static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
164		    void **, bus_size_t, bus_size_t, int);
165static void	wpi_dma_contig_free(struct wpi_dma_info *);
166static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
167static int	wpi_alloc_shared(struct wpi_softc *);
168static void	wpi_free_shared(struct wpi_softc *);
169static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
170static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
171static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
172static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
173		    int, int);
174static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
175static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
176static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
177			    const uint8_t mac[IEEE80211_ADDR_LEN]);
178static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
179static void	wpi_mem_lock(struct wpi_softc *);
180static void	wpi_mem_unlock(struct wpi_softc *);
181static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
182static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
183static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
184		    const uint32_t *, int);
185static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
186static int	wpi_alloc_fwmem(struct wpi_softc *);
187static void	wpi_free_fwmem(struct wpi_softc *);
188static int	wpi_load_firmware(struct wpi_softc *);
189static void	wpi_unload_firmware(struct wpi_softc *);
190static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
191static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
192		    struct wpi_rx_data *);
193static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
194static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
195static void	wpi_bmiss(void *, int);
196static void	wpi_notif_intr(struct wpi_softc *);
197static void	wpi_intr(void *);
198static void	wpi_ops(void *, int);
199static uint8_t	wpi_plcp_signal(int);
200static int	wpi_queue_cmd(struct wpi_softc *, int, int, int);
201static void	wpi_watchdog(void *);
202static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
203		    struct ieee80211_node *, int);
204static void	wpi_start(struct ifnet *);
205static void	wpi_start_locked(struct ifnet *);
206static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
207		    const struct ieee80211_bpf_params *);
208static void	wpi_scan_start(struct ieee80211com *);
209static void	wpi_scan_end(struct ieee80211com *);
210static void	wpi_set_channel(struct ieee80211com *);
211static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
212static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
213static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
214static void	wpi_read_eeprom(struct wpi_softc *);
215static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
216static void	wpi_read_eeprom_group(struct wpi_softc *, int);
217static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
218static int	wpi_wme_update(struct ieee80211com *);
219static int	wpi_mrr_setup(struct wpi_softc *);
220static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
221static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
222#if 0
223static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
224#endif
225static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
226static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
227static int	wpi_scan(struct wpi_softc *);
228static int	wpi_config(struct wpi_softc *);
229static void	wpi_stop_master(struct wpi_softc *);
230static int	wpi_power_up(struct wpi_softc *);
231static int	wpi_reset(struct wpi_softc *);
232static void	wpi_hw_config(struct wpi_softc *);
233static void	wpi_init(void *);
234static void	wpi_init_locked(struct wpi_softc *, int);
235static void	wpi_stop(struct wpi_softc *);
236static void	wpi_stop_locked(struct wpi_softc *);
237
238static void	wpi_newassoc(struct ieee80211_node *, int);
239static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
240		    int);
241static void	wpi_calib_timeout(void *);
242static void	wpi_power_calibration(struct wpi_softc *, int);
243static int	wpi_get_power_index(struct wpi_softc *,
244		    struct wpi_power_group *, struct ieee80211_channel *, int);
245#ifdef WPI_DEBUG
246static const char *wpi_cmd_str(int);
247#endif
248static int wpi_probe(device_t);
249static int wpi_attach(device_t);
250static int wpi_detach(device_t);
251static int wpi_shutdown(device_t);
252static int wpi_suspend(device_t);
253static int wpi_resume(device_t);
254
255
256static device_method_t wpi_methods[] = {
257	/* Device interface */
258	DEVMETHOD(device_probe,		wpi_probe),
259	DEVMETHOD(device_attach,	wpi_attach),
260	DEVMETHOD(device_detach,	wpi_detach),
261	DEVMETHOD(device_shutdown,	wpi_shutdown),
262	DEVMETHOD(device_suspend,	wpi_suspend),
263	DEVMETHOD(device_resume,	wpi_resume),
264
265	{ 0, 0 }
266};
267
268static driver_t wpi_driver = {
269	"wpi",
270	wpi_methods,
271	sizeof (struct wpi_softc)
272};
273
274static devclass_t wpi_devclass;
275
276DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
277
278static const uint8_t wpi_ridx_to_plcp[] = {
279	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
280	/* R1-R4 (ral/ural is R4-R1) */
281	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
282	/* CCK: device-dependent */
283	10, 20, 55, 110
284};
285static const uint8_t wpi_ridx_to_rate[] = {
286	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
287	2, 4, 11, 22 /*CCK */
288};
289
290
291static int
292wpi_probe(device_t dev)
293{
294	const struct wpi_ident *ident;
295
296	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
297		if (pci_get_vendor(dev) == ident->vendor &&
298		    pci_get_device(dev) == ident->device) {
299			device_set_desc(dev, ident->name);
300			return 0;
301		}
302	}
303	return ENXIO;
304}
305
306/**
307 * Load the firmare image from disk to the allocated dma buffer.
308 * we also maintain the reference to the firmware pointer as there
309 * is times where we may need to reload the firmware but we are not
310 * in a context that can access the filesystem (ie taskq cause by restart)
311 *
312 * @return 0 on success, an errno on failure
313 */
314static int
315wpi_load_firmware(struct wpi_softc *sc)
316{
317	const struct firmware *fp;
318	struct wpi_dma_info *dma = &sc->fw_dma;
319	const struct wpi_firmware_hdr *hdr;
320	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
321	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
322	int error;
323
324	DPRINTFN(WPI_DEBUG_FIRMWARE,
325	    ("Attempting Loading Firmware from wpi_fw module\n"));
326
327	WPI_UNLOCK(sc);
328
329	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
330		device_printf(sc->sc_dev,
331		    "could not load firmware image 'wpifw'\n");
332		error = ENOENT;
333		WPI_LOCK(sc);
334		goto fail;
335	}
336
337	fp = sc->fw_fp;
338
339	WPI_LOCK(sc);
340
341	/* Validate the firmware is minimum a particular version */
342	if (fp->version < WPI_FW_MINVERSION) {
343	    device_printf(sc->sc_dev,
344			   "firmware version is too old. Need %d, got %d\n",
345			   WPI_FW_MINVERSION,
346			   fp->version);
347	    error = ENXIO;
348	    goto fail;
349	}
350
351	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
352		device_printf(sc->sc_dev,
353		    "firmware file too short: %zu bytes\n", fp->datasize);
354		error = ENXIO;
355		goto fail;
356	}
357
358	hdr = (const struct wpi_firmware_hdr *)fp->data;
359
360	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
361	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
362
363	rtextsz = le32toh(hdr->rtextsz);
364	rdatasz = le32toh(hdr->rdatasz);
365	itextsz = le32toh(hdr->itextsz);
366	idatasz = le32toh(hdr->idatasz);
367	btextsz = le32toh(hdr->btextsz);
368
369	/* check that all firmware segments are present */
370	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
371		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
372		device_printf(sc->sc_dev,
373		    "firmware file too short: %zu bytes\n", fp->datasize);
374		error = ENXIO; /* XXX appropriate error code? */
375		goto fail;
376	}
377
378	/* get pointers to firmware segments */
379	rtext = (const uint8_t *)(hdr + 1);
380	rdata = rtext + rtextsz;
381	itext = rdata + rdatasz;
382	idata = itext + itextsz;
383	btext = idata + idatasz;
384
385	DPRINTFN(WPI_DEBUG_FIRMWARE,
386	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
387	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
388	     (le32toh(hdr->version) & 0xff000000) >> 24,
389	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
390	     (le32toh(hdr->version) & 0x0000ffff),
391	     rtextsz, rdatasz,
392	     itextsz, idatasz, btextsz));
393
394	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
395	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
396	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
397	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
398	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
399
400	/* sanity checks */
401	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
402	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
403	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
404	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
405	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
406	    (btextsz & 3) != 0) {
407		device_printf(sc->sc_dev, "firmware invalid\n");
408		error = EINVAL;
409		goto fail;
410	}
411
412	/* copy initialization images into pre-allocated DMA-safe memory */
413	memcpy(dma->vaddr, idata, idatasz);
414	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
415
416	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
417
418	/* tell adapter where to find initialization images */
419	wpi_mem_lock(sc);
420	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
421	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
422	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
423	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
424	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
425	wpi_mem_unlock(sc);
426
427	/* load firmware boot code */
428	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
429	    device_printf(sc->sc_dev, "Failed to load microcode\n");
430	    goto fail;
431	}
432
433	/* now press "execute" */
434	WPI_WRITE(sc, WPI_RESET, 0);
435
436	/* wait at most one second for the first alive notification */
437	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
438		device_printf(sc->sc_dev,
439		    "timeout waiting for adapter to initialize\n");
440		goto fail;
441	}
442
443	/* copy runtime images into pre-allocated DMA-sage memory */
444	memcpy(dma->vaddr, rdata, rdatasz);
445	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
446	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
447
448	/* tell adapter where to find runtime images */
449	wpi_mem_lock(sc);
450	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
451	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
452	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
453	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
454	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
455	wpi_mem_unlock(sc);
456
457	/* wait at most one second for the first alive notification */
458	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
459		device_printf(sc->sc_dev,
460		    "timeout waiting for adapter to initialize2\n");
461		goto fail;
462	}
463
464	DPRINTFN(WPI_DEBUG_FIRMWARE,
465	    ("Firmware loaded to driver successfully\n"));
466	return error;
467fail:
468	wpi_unload_firmware(sc);
469	return error;
470}
471
472/**
473 * Free the referenced firmware image
474 */
475static void
476wpi_unload_firmware(struct wpi_softc *sc)
477{
478
479	if (sc->fw_fp) {
480		WPI_UNLOCK(sc);
481		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
482		WPI_LOCK(sc);
483		sc->fw_fp = NULL;
484	}
485}
486
487static int
488wpi_attach(device_t dev)
489{
490	struct wpi_softc *sc = device_get_softc(dev);
491	struct ifnet *ifp;
492	struct ieee80211com *ic;
493	int ac, error, supportsa = 1;
494	uint32_t tmp;
495	const struct wpi_ident *ident;
496
497	sc->sc_dev = dev;
498
499	if (bootverbose || WPI_DEBUG_SET)
500	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
501
502	/*
503	 * Some card's only support 802.11b/g not a, check to see if
504	 * this is one such card. A 0x0 in the subdevice table indicates
505	 * the entire subdevice range is to be ignored.
506	 */
507	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
508		if (ident->subdevice &&
509		    pci_get_subdevice(dev) == ident->subdevice) {
510		    supportsa = 0;
511		    break;
512		}
513	}
514
515	/*
516	 * Create the taskqueues used by the driver. Primarily
517	 * sc_tq handles most the task
518	 */
519	sc->sc_tq = taskqueue_create("wpi_taskq", M_NOWAIT | M_ZERO,
520	    taskqueue_thread_enqueue, &sc->sc_tq);
521	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
522	    device_get_nameunit(dev));
523
524	/* Create the tasks that can be queued */
525	TASK_INIT(&sc->sc_opstask, 0, wpi_ops, sc);
526	TASK_INIT(&sc->sc_bmiss_task, 0, wpi_bmiss, sc);
527
528	WPI_LOCK_INIT(sc);
529	WPI_CMD_LOCK_INIT(sc);
530
531	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
532	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
533
534	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
535		device_printf(dev, "chip is in D%d power mode "
536		    "-- setting to D0\n", pci_get_powerstate(dev));
537		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
538	}
539
540	/* disable the retry timeout register */
541	pci_write_config(dev, 0x41, 0, 1);
542
543	/* enable bus-mastering */
544	pci_enable_busmaster(dev);
545
546	sc->mem_rid = PCIR_BAR(0);
547	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
548	    RF_ACTIVE);
549	if (sc->mem == NULL) {
550		device_printf(dev, "could not allocate memory resource\n");
551		error = ENOMEM;
552		goto fail;
553	}
554
555	sc->sc_st = rman_get_bustag(sc->mem);
556	sc->sc_sh = rman_get_bushandle(sc->mem);
557
558	sc->irq_rid = 0;
559	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
560	    RF_ACTIVE | RF_SHAREABLE);
561	if (sc->irq == NULL) {
562		device_printf(dev, "could not allocate interrupt resource\n");
563		error = ENOMEM;
564		goto fail;
565	}
566
567	/*
568	 * Allocate DMA memory for firmware transfers.
569	 */
570	if ((error = wpi_alloc_fwmem(sc)) != 0) {
571		printf(": could not allocate firmware memory\n");
572		error = ENOMEM;
573		goto fail;
574	}
575
576	/*
577	 * Put adapter into a known state.
578	 */
579	if ((error = wpi_reset(sc)) != 0) {
580		device_printf(dev, "could not reset adapter\n");
581		goto fail;
582	}
583
584	wpi_mem_lock(sc);
585	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
586	if (bootverbose || WPI_DEBUG_SET)
587	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
588
589	wpi_mem_unlock(sc);
590
591	/* Allocate shared page */
592	if ((error = wpi_alloc_shared(sc)) != 0) {
593		device_printf(dev, "could not allocate shared page\n");
594		goto fail;
595	}
596
597	/* tx data queues  - 4 for QoS purposes */
598	for (ac = 0; ac < WME_NUM_AC; ac++) {
599		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
600		if (error != 0) {
601		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
602		    goto fail;
603		}
604	}
605
606	/* command queue to talk to the card's firmware */
607	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
608	if (error != 0) {
609		device_printf(dev, "could not allocate command ring\n");
610		goto fail;
611	}
612
613	/* receive data queue */
614	error = wpi_alloc_rx_ring(sc, &sc->rxq);
615	if (error != 0) {
616		device_printf(dev, "could not allocate Rx ring\n");
617		goto fail;
618	}
619
620	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
621	if (ifp == NULL) {
622		device_printf(dev, "can not if_alloc()\n");
623		error = ENOMEM;
624		goto fail;
625	}
626	ic = ifp->if_l2com;
627
628	ic->ic_ifp = ifp;
629	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
630	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
631
632	/* set device capabilities */
633	ic->ic_caps =
634		  IEEE80211_C_STA		/* station mode supported */
635		| IEEE80211_C_MONITOR		/* monitor mode supported */
636		| IEEE80211_C_TXPMGT		/* tx power management */
637		| IEEE80211_C_SHSLOT		/* short slot time supported */
638		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
639		| IEEE80211_C_WPA		/* 802.11i */
640/* XXX looks like WME is partly supported? */
641#if 0
642		| IEEE80211_C_IBSS		/* IBSS mode support */
643		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
644		| IEEE80211_C_WME		/* 802.11e */
645		| IEEE80211_C_HOSTAP		/* Host access point mode */
646#endif
647		;
648
649	/*
650	 * Read in the eeprom and also setup the channels for
651	 * net80211. We don't set the rates as net80211 does this for us
652	 */
653	wpi_read_eeprom(sc);
654
655	if (bootverbose || WPI_DEBUG_SET) {
656	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
657	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
658			  sc->type > 1 ? 'B': '?');
659	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
660			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
661	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
662			  supportsa ? "does" : "does not");
663
664	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
665	       what sc->rev really represents - benjsc 20070615 */
666	}
667
668	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
669	ifp->if_softc = sc;
670	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
671	ifp->if_init = wpi_init;
672	ifp->if_ioctl = wpi_ioctl;
673	ifp->if_start = wpi_start;
674	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
675	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
676	IFQ_SET_READY(&ifp->if_snd);
677
678	ieee80211_ifattach(ic);
679	/* override default methods */
680	ic->ic_node_alloc = wpi_node_alloc;
681	ic->ic_newassoc = wpi_newassoc;
682	ic->ic_raw_xmit = wpi_raw_xmit;
683	ic->ic_wme.wme_update = wpi_wme_update;
684	ic->ic_scan_start = wpi_scan_start;
685	ic->ic_scan_end = wpi_scan_end;
686	ic->ic_set_channel = wpi_set_channel;
687	ic->ic_scan_curchan = wpi_scan_curchan;
688	ic->ic_scan_mindwell = wpi_scan_mindwell;
689
690	ic->ic_vap_create = wpi_vap_create;
691	ic->ic_vap_delete = wpi_vap_delete;
692
693	bpfattach(ifp, DLT_IEEE802_11_RADIO,
694	    sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap));
695
696	sc->sc_rxtap_len = sizeof sc->sc_rxtap;
697	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
698	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
699
700	sc->sc_txtap_len = sizeof sc->sc_txtap;
701	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
702	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
703
704	/*
705	 * Hook our interrupt after all initialization is complete.
706	 */
707	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
708	    NULL, wpi_intr, sc, &sc->sc_ih);
709	if (error != 0) {
710		device_printf(dev, "could not set up interrupt\n");
711		goto fail;
712	}
713
714	if (bootverbose)
715		ieee80211_announce(ic);
716#ifdef XXX_DEBUG
717	ieee80211_announce_channels(ic);
718#endif
719	return 0;
720
721fail:	wpi_detach(dev);
722	return ENXIO;
723}
724
725static int
726wpi_detach(device_t dev)
727{
728	struct wpi_softc *sc = device_get_softc(dev);
729	struct ifnet *ifp = sc->sc_ifp;
730	struct ieee80211com *ic = ifp->if_l2com;
731	int ac;
732
733	if (ifp != NULL) {
734		wpi_stop(sc);
735		callout_drain(&sc->watchdog_to);
736		callout_drain(&sc->calib_to);
737		bpfdetach(ifp);
738		ieee80211_ifdetach(ic);
739	}
740
741	WPI_LOCK(sc);
742	if (sc->txq[0].data_dmat) {
743		for (ac = 0; ac < WME_NUM_AC; ac++)
744			wpi_free_tx_ring(sc, &sc->txq[ac]);
745
746		wpi_free_tx_ring(sc, &sc->cmdq);
747		wpi_free_rx_ring(sc, &sc->rxq);
748		wpi_free_shared(sc);
749	}
750
751	if (sc->fw_fp != NULL) {
752		wpi_unload_firmware(sc);
753	}
754
755	if (sc->fw_dma.tag)
756		wpi_free_fwmem(sc);
757	WPI_UNLOCK(sc);
758
759	if (sc->irq != NULL) {
760		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
761		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
762	}
763
764	if (sc->mem != NULL)
765		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
766
767	if (ifp != NULL)
768		if_free(ifp);
769
770	taskqueue_free(sc->sc_tq);
771
772	WPI_LOCK_DESTROY(sc);
773	WPI_CMD_LOCK_DESTROY(sc);
774
775	return 0;
776}
777
778static struct ieee80211vap *
779wpi_vap_create(struct ieee80211com *ic,
780	const char name[IFNAMSIZ], int unit, int opmode, int flags,
781	const uint8_t bssid[IEEE80211_ADDR_LEN],
782	const uint8_t mac[IEEE80211_ADDR_LEN])
783{
784	struct wpi_vap *wvp;
785	struct ieee80211vap *vap;
786
787	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
788		return NULL;
789	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
790	    M_80211_VAP, M_NOWAIT | M_ZERO);
791	if (wvp == NULL)
792		return NULL;
793	vap = &wvp->vap;
794	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
795	/* override with driver methods */
796	wvp->newstate = vap->iv_newstate;
797	vap->iv_newstate = wpi_newstate;
798
799	ieee80211_amrr_init(&wvp->amrr, vap,
800	    IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
801	    IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD,
802	    500 /*ms*/);
803
804	/* complete setup */
805	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
806	ic->ic_opmode = opmode;
807	return vap;
808}
809
810static void
811wpi_vap_delete(struct ieee80211vap *vap)
812{
813	struct wpi_vap *wvp = WPI_VAP(vap);
814
815	ieee80211_amrr_cleanup(&wvp->amrr);
816	ieee80211_vap_detach(vap);
817	free(wvp, M_80211_VAP);
818}
819
820static void
821wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
822{
823	if (error != 0)
824		return;
825
826	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
827
828	*(bus_addr_t *)arg = segs[0].ds_addr;
829}
830
831/*
832 * Allocates a contiguous block of dma memory of the requested size and
833 * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
834 * allocations greater than 4096 may fail. Hence if the requested alignment is
835 * greater we allocate 'alignment' size extra memory and shift the vaddr and
836 * paddr after the dma load. This bypasses the problem at the cost of a little
837 * more memory.
838 */
839static int
840wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
841    void **kvap, bus_size_t size, bus_size_t alignment, int flags)
842{
843	int error;
844	bus_size_t align;
845	bus_size_t reqsize;
846
847	DPRINTFN(WPI_DEBUG_DMA,
848	    ("Size: %zd - alignment %zd\n", size, alignment));
849
850	dma->size = size;
851	dma->tag = NULL;
852
853	if (alignment > 4096) {
854		align = PAGE_SIZE;
855		reqsize = size + alignment;
856	} else {
857		align = alignment;
858		reqsize = size;
859	}
860	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
861	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
862	    NULL, NULL, reqsize,
863	    1, reqsize, flags,
864	    NULL, NULL, &dma->tag);
865	if (error != 0) {
866		device_printf(sc->sc_dev,
867		    "could not create shared page DMA tag\n");
868		goto fail;
869	}
870	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
871	    flags | BUS_DMA_ZERO, &dma->map);
872	if (error != 0) {
873		device_printf(sc->sc_dev,
874		    "could not allocate shared page DMA memory\n");
875		goto fail;
876	}
877
878	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
879	    reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
880
881	/* Save the original pointers so we can free all the memory */
882	dma->paddr = dma->paddr_start;
883	dma->vaddr = dma->vaddr_start;
884
885	/*
886	 * Check the alignment and increment by 4096 until we get the
887	 * requested alignment. Fail if can't obtain the alignment
888	 * we requested.
889	 */
890	if ((dma->paddr & (alignment -1 )) != 0) {
891		int i;
892
893		for (i = 0; i < alignment / 4096; i++) {
894			if ((dma->paddr & (alignment - 1 )) == 0)
895				break;
896			dma->paddr += 4096;
897			dma->vaddr += 4096;
898		}
899		if (i == alignment / 4096) {
900			device_printf(sc->sc_dev,
901			    "alignment requirement was not satisfied\n");
902			goto fail;
903		}
904	}
905
906	if (error != 0) {
907		device_printf(sc->sc_dev,
908		    "could not load shared page DMA map\n");
909		goto fail;
910	}
911
912	if (kvap != NULL)
913		*kvap = dma->vaddr;
914
915	return 0;
916
917fail:
918	wpi_dma_contig_free(dma);
919	return error;
920}
921
922static void
923wpi_dma_contig_free(struct wpi_dma_info *dma)
924{
925	if (dma->tag) {
926		if (dma->map != NULL) {
927			if (dma->paddr_start != 0) {
928				bus_dmamap_sync(dma->tag, dma->map,
929				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
930				bus_dmamap_unload(dma->tag, dma->map);
931			}
932			bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
933		}
934		bus_dma_tag_destroy(dma->tag);
935	}
936}
937
938/*
939 * Allocate a shared page between host and NIC.
940 */
941static int
942wpi_alloc_shared(struct wpi_softc *sc)
943{
944	int error;
945
946	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
947	    (void **)&sc->shared, sizeof (struct wpi_shared),
948	    PAGE_SIZE,
949	    BUS_DMA_NOWAIT);
950
951	if (error != 0) {
952		device_printf(sc->sc_dev,
953		    "could not allocate shared area DMA memory\n");
954	}
955
956	return error;
957}
958
959static void
960wpi_free_shared(struct wpi_softc *sc)
961{
962	wpi_dma_contig_free(&sc->shared_dma);
963}
964
965static int
966wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
967{
968
969	int i, error;
970
971	ring->cur = 0;
972
973	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
974	    (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
975	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
976
977	if (error != 0) {
978		device_printf(sc->sc_dev,
979		    "%s: could not allocate rx ring DMA memory, error %d\n",
980		    __func__, error);
981		goto fail;
982	}
983
984        error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
985	    BUS_SPACE_MAXADDR_32BIT,
986            BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
987            MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
988        if (error != 0) {
989                device_printf(sc->sc_dev,
990		    "%s: bus_dma_tag_create_failed, error %d\n",
991		    __func__, error);
992                goto fail;
993        }
994
995	/*
996	 * Setup Rx buffers.
997	 */
998	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
999		struct wpi_rx_data *data = &ring->data[i];
1000		struct mbuf *m;
1001		bus_addr_t paddr;
1002
1003		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1004		if (error != 0) {
1005			device_printf(sc->sc_dev,
1006			    "%s: bus_dmamap_create failed, error %d\n",
1007			    __func__, error);
1008			goto fail;
1009		}
1010		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1011		if (m == NULL) {
1012			device_printf(sc->sc_dev,
1013			   "%s: could not allocate rx mbuf\n", __func__);
1014			error = ENOMEM;
1015			goto fail;
1016		}
1017		/* map page */
1018		error = bus_dmamap_load(ring->data_dmat, data->map,
1019		    mtod(m, caddr_t), MJUMPAGESIZE,
1020		    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1021		if (error != 0 && error != EFBIG) {
1022			device_printf(sc->sc_dev,
1023			    "%s: bus_dmamap_load failed, error %d\n",
1024			    __func__, error);
1025			m_freem(m);
1026			error = ENOMEM;	/* XXX unique code */
1027			goto fail;
1028		}
1029		bus_dmamap_sync(ring->data_dmat, data->map,
1030		    BUS_DMASYNC_PREWRITE);
1031
1032		data->m = m;
1033		ring->desc[i] = htole32(paddr);
1034	}
1035	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1036	    BUS_DMASYNC_PREWRITE);
1037	return 0;
1038fail:
1039	wpi_free_rx_ring(sc, ring);
1040	return error;
1041}
1042
1043static void
1044wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1045{
1046	int ntries;
1047
1048	wpi_mem_lock(sc);
1049
1050	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1051
1052	for (ntries = 0; ntries < 100; ntries++) {
1053		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1054			break;
1055		DELAY(10);
1056	}
1057
1058	wpi_mem_unlock(sc);
1059
1060#ifdef WPI_DEBUG
1061	if (ntries == 100 && wpi_debug > 0)
1062		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1063#endif
1064
1065	ring->cur = 0;
1066}
1067
1068static void
1069wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1070{
1071	int i;
1072
1073	wpi_dma_contig_free(&ring->desc_dma);
1074
1075	for (i = 0; i < WPI_RX_RING_COUNT; i++)
1076		if (ring->data[i].m != NULL)
1077			m_freem(ring->data[i].m);
1078}
1079
1080static int
1081wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1082	int qid)
1083{
1084	struct wpi_tx_data *data;
1085	int i, error;
1086
1087	ring->qid = qid;
1088	ring->count = count;
1089	ring->queued = 0;
1090	ring->cur = 0;
1091	ring->data = NULL;
1092
1093	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1094		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1095		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1096
1097	if (error != 0) {
1098	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1099	    goto fail;
1100	}
1101
1102	/* update shared page with ring's base address */
1103	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1104
1105	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1106		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1107		BUS_DMA_NOWAIT);
1108
1109	if (error != 0) {
1110		device_printf(sc->sc_dev,
1111		    "could not allocate tx command DMA memory\n");
1112		goto fail;
1113	}
1114
1115	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1116	    M_NOWAIT | M_ZERO);
1117	if (ring->data == NULL) {
1118		device_printf(sc->sc_dev,
1119		    "could not allocate tx data slots\n");
1120		goto fail;
1121	}
1122
1123	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1124	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1125	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1126	    &ring->data_dmat);
1127	if (error != 0) {
1128		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1129		goto fail;
1130	}
1131
1132	for (i = 0; i < count; i++) {
1133		data = &ring->data[i];
1134
1135		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1136		if (error != 0) {
1137			device_printf(sc->sc_dev,
1138			    "could not create tx buf DMA map\n");
1139			goto fail;
1140		}
1141		bus_dmamap_sync(ring->data_dmat, data->map,
1142		    BUS_DMASYNC_PREWRITE);
1143	}
1144
1145	return 0;
1146
1147fail:
1148	wpi_free_tx_ring(sc, ring);
1149	return error;
1150}
1151
1152static void
1153wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1154{
1155	struct wpi_tx_data *data;
1156	int i, ntries;
1157
1158	wpi_mem_lock(sc);
1159
1160	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1161	for (ntries = 0; ntries < 100; ntries++) {
1162		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1163			break;
1164		DELAY(10);
1165	}
1166#ifdef WPI_DEBUG
1167	if (ntries == 100 && wpi_debug > 0)
1168		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1169		    ring->qid);
1170#endif
1171	wpi_mem_unlock(sc);
1172
1173	for (i = 0; i < ring->count; i++) {
1174		data = &ring->data[i];
1175
1176		if (data->m != NULL) {
1177			bus_dmamap_unload(ring->data_dmat, data->map);
1178			m_freem(data->m);
1179			data->m = NULL;
1180		}
1181	}
1182
1183	ring->queued = 0;
1184	ring->cur = 0;
1185}
1186
1187static void
1188wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1189{
1190	struct wpi_tx_data *data;
1191	int i;
1192
1193	wpi_dma_contig_free(&ring->desc_dma);
1194	wpi_dma_contig_free(&ring->cmd_dma);
1195
1196	if (ring->data != NULL) {
1197		for (i = 0; i < ring->count; i++) {
1198			data = &ring->data[i];
1199
1200			if (data->m != NULL) {
1201				bus_dmamap_sync(ring->data_dmat, data->map,
1202				    BUS_DMASYNC_POSTWRITE);
1203				bus_dmamap_unload(ring->data_dmat, data->map);
1204				m_freem(data->m);
1205				data->m = NULL;
1206			}
1207		}
1208		free(ring->data, M_DEVBUF);
1209	}
1210
1211	if (ring->data_dmat != NULL)
1212		bus_dma_tag_destroy(ring->data_dmat);
1213}
1214
1215static int
1216wpi_shutdown(device_t dev)
1217{
1218	struct wpi_softc *sc = device_get_softc(dev);
1219
1220	WPI_LOCK(sc);
1221	wpi_stop_locked(sc);
1222	wpi_unload_firmware(sc);
1223	WPI_UNLOCK(sc);
1224
1225	return 0;
1226}
1227
1228static int
1229wpi_suspend(device_t dev)
1230{
1231	struct wpi_softc *sc = device_get_softc(dev);
1232
1233	wpi_stop(sc);
1234	return 0;
1235}
1236
1237static int
1238wpi_resume(device_t dev)
1239{
1240	struct wpi_softc *sc = device_get_softc(dev);
1241	struct ifnet *ifp = sc->sc_ifp;
1242
1243	pci_write_config(dev, 0x41, 0, 1);
1244
1245	if (ifp->if_flags & IFF_UP) {
1246		wpi_init(ifp->if_softc);
1247		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1248			wpi_start(ifp);
1249	}
1250	return 0;
1251}
1252
1253/* ARGSUSED */
1254static struct ieee80211_node *
1255wpi_node_alloc(struct ieee80211vap *vap __unused,
1256	const uint8_t mac[IEEE80211_ADDR_LEN] __unused)
1257{
1258	struct wpi_node *wn;
1259
1260	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1261
1262	return &wn->ni;
1263}
1264
1265/**
1266 * Called by net80211 when ever there is a change to 80211 state machine
1267 */
1268static int
1269wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1270{
1271	struct wpi_vap *wvp = WPI_VAP(vap);
1272	struct ieee80211com *ic = vap->iv_ic;
1273	struct ifnet *ifp = ic->ic_ifp;
1274	struct wpi_softc *sc = ifp->if_softc;
1275	int error;
1276
1277	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1278		ieee80211_state_name[vap->iv_state],
1279		ieee80211_state_name[nstate], sc->flags));
1280
1281	if (nstate == IEEE80211_S_AUTH) {
1282		/* Delay the auth transition until we can update the firmware */
1283		error = wpi_queue_cmd(sc, WPI_AUTH, arg, WPI_QUEUE_NORMAL);
1284		return (error != 0 ? error : EINPROGRESS);
1285	}
1286	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1287		/* set the association id first */
1288		error = wpi_queue_cmd(sc, WPI_RUN, arg, WPI_QUEUE_NORMAL);
1289		return (error != 0 ? error : EINPROGRESS);
1290	}
1291	if (nstate == IEEE80211_S_RUN) {
1292		/* RUN -> RUN transition; just restart the timers */
1293		wpi_calib_timeout(sc);
1294		/* XXX split out rate control timer */
1295	}
1296	return wvp->newstate(vap, nstate, arg);
1297}
1298
1299/*
1300 * Grab exclusive access to NIC memory.
1301 */
1302static void
1303wpi_mem_lock(struct wpi_softc *sc)
1304{
1305	int ntries;
1306	uint32_t tmp;
1307
1308	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1309	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1310
1311	/* spin until we actually get the lock */
1312	for (ntries = 0; ntries < 100; ntries++) {
1313		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1314			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1315			break;
1316		DELAY(10);
1317	}
1318	if (ntries == 100)
1319		device_printf(sc->sc_dev, "could not lock memory\n");
1320}
1321
1322/*
1323 * Release lock on NIC memory.
1324 */
1325static void
1326wpi_mem_unlock(struct wpi_softc *sc)
1327{
1328	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1329	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1330}
1331
1332static uint32_t
1333wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1334{
1335	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1336	return WPI_READ(sc, WPI_READ_MEM_DATA);
1337}
1338
1339static void
1340wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1341{
1342	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1343	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1344}
1345
1346static void
1347wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1348    const uint32_t *data, int wlen)
1349{
1350	for (; wlen > 0; wlen--, data++, addr+=4)
1351		wpi_mem_write(sc, addr, *data);
1352}
1353
1354/*
1355 * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1356 * using the traditional bit-bang method. Data is read up until len bytes have
1357 * been obtained.
1358 */
1359static uint16_t
1360wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1361{
1362	int ntries;
1363	uint32_t val;
1364	uint8_t *out = data;
1365
1366	wpi_mem_lock(sc);
1367
1368	for (; len > 0; len -= 2, addr++) {
1369		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1370
1371		for (ntries = 0; ntries < 10; ntries++) {
1372			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1373				break;
1374			DELAY(5);
1375		}
1376
1377		if (ntries == 10) {
1378			device_printf(sc->sc_dev, "could not read EEPROM\n");
1379			return ETIMEDOUT;
1380		}
1381
1382		*out++= val >> 16;
1383		if (len > 1)
1384			*out ++= val >> 24;
1385	}
1386
1387	wpi_mem_unlock(sc);
1388
1389	return 0;
1390}
1391
1392/*
1393 * The firmware text and data segments are transferred to the NIC using DMA.
1394 * The driver just copies the firmware into DMA-safe memory and tells the NIC
1395 * where to find it.  Once the NIC has copied the firmware into its internal
1396 * memory, we can free our local copy in the driver.
1397 */
1398static int
1399wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1400{
1401	int error, ntries;
1402
1403	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1404
1405	size /= sizeof(uint32_t);
1406
1407	wpi_mem_lock(sc);
1408
1409	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1410	    (const uint32_t *)fw, size);
1411
1412	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1413	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1414	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1415
1416	/* run microcode */
1417	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1418
1419	/* wait while the adapter is busy copying the firmware */
1420	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1421		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1422		DPRINTFN(WPI_DEBUG_HW,
1423		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1424		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1425		if (status & WPI_TX_IDLE(6)) {
1426			DPRINTFN(WPI_DEBUG_HW,
1427			    ("Status Match! - ntries = %d\n", ntries));
1428			break;
1429		}
1430		DELAY(10);
1431	}
1432	if (ntries == 1000) {
1433		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1434		error = ETIMEDOUT;
1435	}
1436
1437	/* start the microcode executing */
1438	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1439
1440	wpi_mem_unlock(sc);
1441
1442	return (error);
1443}
1444
1445static void
1446wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1447	struct wpi_rx_data *data)
1448{
1449	struct ifnet *ifp = sc->sc_ifp;
1450	struct ieee80211com *ic = ifp->if_l2com;
1451	struct wpi_rx_ring *ring = &sc->rxq;
1452	struct wpi_rx_stat *stat;
1453	struct wpi_rx_head *head;
1454	struct wpi_rx_tail *tail;
1455	struct ieee80211_node *ni;
1456	struct mbuf *m, *mnew;
1457	bus_addr_t paddr;
1458	int error;
1459
1460	stat = (struct wpi_rx_stat *)(desc + 1);
1461
1462	if (stat->len > WPI_STAT_MAXLEN) {
1463		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1464		ifp->if_ierrors++;
1465		return;
1466	}
1467
1468	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1469	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1470
1471	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1472	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1473	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1474	    (uintmax_t)le64toh(tail->tstamp)));
1475
1476	/* discard Rx frames with bad CRC early */
1477	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1478		DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1479		    le32toh(tail->flags)));
1480		ifp->if_ierrors++;
1481		return;
1482	}
1483	if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1484		DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1485		    le16toh(head->len)));
1486		ifp->if_ierrors++;
1487		return;
1488	}
1489
1490	/* XXX don't need mbuf, just dma buffer */
1491	mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1492	if (mnew == NULL) {
1493		DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1494		    __func__));
1495		ifp->if_ierrors++;
1496		return;
1497	}
1498	error = bus_dmamap_load(ring->data_dmat, data->map,
1499	    mtod(mnew, caddr_t), MJUMPAGESIZE,
1500	    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1501	if (error != 0 && error != EFBIG) {
1502		device_printf(sc->sc_dev,
1503		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1504		m_freem(mnew);
1505		ifp->if_ierrors++;
1506		return;
1507	}
1508	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1509
1510	/* finalize mbuf and swap in new one */
1511	m = data->m;
1512	m->m_pkthdr.rcvif = ifp;
1513	m->m_data = (caddr_t)(head + 1);
1514	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1515
1516	data->m = mnew;
1517	/* update Rx descriptor */
1518	ring->desc[ring->cur] = htole32(paddr);
1519
1520	if (bpf_peers_present(ifp->if_bpf)) {
1521		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1522
1523		tap->wr_flags = 0;
1524		tap->wr_chan_freq =
1525			htole16(ic->ic_channels[head->chan].ic_freq);
1526		tap->wr_chan_flags =
1527			htole16(ic->ic_channels[head->chan].ic_flags);
1528		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1529		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1530		tap->wr_tsft = tail->tstamp;
1531		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1532		switch (head->rate) {
1533		/* CCK rates */
1534		case  10: tap->wr_rate =   2; break;
1535		case  20: tap->wr_rate =   4; break;
1536		case  55: tap->wr_rate =  11; break;
1537		case 110: tap->wr_rate =  22; break;
1538		/* OFDM rates */
1539		case 0xd: tap->wr_rate =  12; break;
1540		case 0xf: tap->wr_rate =  18; break;
1541		case 0x5: tap->wr_rate =  24; break;
1542		case 0x7: tap->wr_rate =  36; break;
1543		case 0x9: tap->wr_rate =  48; break;
1544		case 0xb: tap->wr_rate =  72; break;
1545		case 0x1: tap->wr_rate =  96; break;
1546		case 0x3: tap->wr_rate = 108; break;
1547		/* unknown rate: should not happen */
1548		default:  tap->wr_rate =   0;
1549		}
1550		if (le16toh(head->flags) & 0x4)
1551			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1552
1553		bpf_mtap2(ifp->if_bpf, tap, sc->sc_rxtap_len, m);
1554	}
1555
1556	WPI_UNLOCK(sc);
1557
1558	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1559	if (ni != NULL) {
1560		(void) ieee80211_input(ni, m, stat->rssi, 0, 0);
1561		ieee80211_free_node(ni);
1562	} else
1563		(void) ieee80211_input_all(ic, m, stat->rssi, 0, 0);
1564
1565	WPI_LOCK(sc);
1566}
1567
1568static void
1569wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1570{
1571	struct ifnet *ifp = sc->sc_ifp;
1572	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1573	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1574	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1575	struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1576
1577	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1578	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1579	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1580	    le32toh(stat->status)));
1581
1582	/*
1583	 * Update rate control statistics for the node.
1584	 * XXX we should not count mgmt frames since they're always sent at
1585	 * the lowest available bit-rate.
1586	 * XXX frames w/o ACK shouldn't be used either
1587	 */
1588	wn->amn.amn_txcnt++;
1589	if (stat->ntries > 0) {
1590		DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1591		wn->amn.amn_retrycnt++;
1592	}
1593
1594	/* XXX oerrors should only count errors !maxtries */
1595	if ((le32toh(stat->status) & 0xff) != 1)
1596		ifp->if_oerrors++;
1597	else
1598		ifp->if_opackets++;
1599
1600	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1601	bus_dmamap_unload(ring->data_dmat, txdata->map);
1602	/* XXX handle M_TXCB? */
1603	m_freem(txdata->m);
1604	txdata->m = NULL;
1605	ieee80211_free_node(txdata->ni);
1606	txdata->ni = NULL;
1607
1608	ring->queued--;
1609
1610	sc->sc_tx_timer = 0;
1611	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1612	wpi_start_locked(ifp);
1613}
1614
1615static void
1616wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1617{
1618	struct wpi_tx_ring *ring = &sc->cmdq;
1619	struct wpi_tx_data *data;
1620
1621	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1622				 "type=%s len=%d\n", desc->qid, desc->idx,
1623				 desc->flags, wpi_cmd_str(desc->type),
1624				 le32toh(desc->len)));
1625
1626	if ((desc->qid & 7) != 4)
1627		return;	/* not a command ack */
1628
1629	data = &ring->data[desc->idx];
1630
1631	/* if the command was mapped in a mbuf, free it */
1632	if (data->m != NULL) {
1633		bus_dmamap_unload(ring->data_dmat, data->map);
1634		m_freem(data->m);
1635		data->m = NULL;
1636	}
1637
1638	sc->flags &= ~WPI_FLAG_BUSY;
1639	wakeup(&ring->cmd[desc->idx]);
1640}
1641
1642static void
1643wpi_bmiss(void *arg, int npending)
1644{
1645	struct wpi_softc *sc = arg;
1646	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1647
1648	ieee80211_beacon_miss(ic);
1649}
1650
1651static void
1652wpi_notif_intr(struct wpi_softc *sc)
1653{
1654	struct ifnet *ifp = sc->sc_ifp;
1655	struct ieee80211com *ic = ifp->if_l2com;
1656	struct wpi_rx_desc *desc;
1657	struct wpi_rx_data *data;
1658	uint32_t hw;
1659
1660	hw = le32toh(sc->shared->next);
1661	while (sc->rxq.cur != hw) {
1662		data = &sc->rxq.data[sc->rxq.cur];
1663		desc = (void *)data->m->m_ext.ext_buf;
1664
1665		DPRINTFN(WPI_DEBUG_NOTIFY,
1666			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1667			  desc->qid,
1668			  desc->idx,
1669			  desc->flags,
1670			  desc->type,
1671			  le32toh(desc->len)));
1672
1673		if (!(desc->qid & 0x80))	/* reply to a command */
1674			wpi_cmd_intr(sc, desc);
1675
1676		switch (desc->type) {
1677		case WPI_RX_DONE:
1678			/* a 802.11 frame was received */
1679			wpi_rx_intr(sc, desc, data);
1680			break;
1681
1682		case WPI_TX_DONE:
1683			/* a 802.11 frame has been transmitted */
1684			wpi_tx_intr(sc, desc);
1685			break;
1686
1687		case WPI_UC_READY:
1688		{
1689			struct wpi_ucode_info *uc =
1690				(struct wpi_ucode_info *)(desc + 1);
1691
1692			/* the microcontroller is ready */
1693			DPRINTF(("microcode alive notification version %x "
1694				"alive %x\n", le32toh(uc->version),
1695				le32toh(uc->valid)));
1696
1697			if (le32toh(uc->valid) != 1) {
1698				device_printf(sc->sc_dev,
1699				    "microcontroller initialization failed\n");
1700				wpi_stop_locked(sc);
1701			}
1702			break;
1703		}
1704		case WPI_STATE_CHANGED:
1705		{
1706			uint32_t *status = (uint32_t *)(desc + 1);
1707
1708			/* enabled/disabled notification */
1709			DPRINTF(("state changed to %x\n", le32toh(*status)));
1710
1711			if (le32toh(*status) & 1) {
1712				device_printf(sc->sc_dev,
1713				    "Radio transmitter is switched off\n");
1714				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1715				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1716				/* Disable firmware commands */
1717				WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1718			}
1719			break;
1720		}
1721		case WPI_START_SCAN:
1722		{
1723#ifdef WPI_DEBUG
1724			struct wpi_start_scan *scan =
1725				(struct wpi_start_scan *)(desc + 1);
1726#endif
1727
1728			DPRINTFN(WPI_DEBUG_SCANNING,
1729				 ("scanning channel %d status %x\n",
1730			    scan->chan, le32toh(scan->status)));
1731			break;
1732		}
1733		case WPI_STOP_SCAN:
1734		{
1735#ifdef WPI_DEBUG
1736			struct wpi_stop_scan *scan =
1737				(struct wpi_stop_scan *)(desc + 1);
1738#endif
1739			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1740
1741			DPRINTFN(WPI_DEBUG_SCANNING,
1742			    ("scan finished nchan=%d status=%d chan=%d\n",
1743			     scan->nchan, scan->status, scan->chan));
1744
1745			sc->sc_scan_timer = 0;
1746			ieee80211_scan_next(vap);
1747			break;
1748		}
1749		case WPI_MISSED_BEACON:
1750		{
1751			struct wpi_missed_beacon *beacon =
1752				(struct wpi_missed_beacon *)(desc + 1);
1753			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1754
1755			if (le32toh(beacon->consecutive) >=
1756			    vap->iv_bmissthreshold) {
1757				DPRINTF(("Beacon miss: %u >= %u\n",
1758					 le32toh(beacon->consecutive),
1759					 vap->iv_bmissthreshold));
1760				taskqueue_enqueue(taskqueue_swi,
1761				    &sc->sc_bmiss_task);
1762			}
1763			break;
1764		}
1765		}
1766
1767		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1768	}
1769
1770	/* tell the firmware what we have processed */
1771	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1772	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1773}
1774
1775static void
1776wpi_intr(void *arg)
1777{
1778	struct wpi_softc *sc = arg;
1779	uint32_t r;
1780
1781	WPI_LOCK(sc);
1782
1783	r = WPI_READ(sc, WPI_INTR);
1784	if (r == 0 || r == 0xffffffff) {
1785		WPI_UNLOCK(sc);
1786		return;
1787	}
1788
1789	/* disable interrupts */
1790	WPI_WRITE(sc, WPI_MASK, 0);
1791	/* ack interrupts */
1792	WPI_WRITE(sc, WPI_INTR, r);
1793
1794	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1795		device_printf(sc->sc_dev, "fatal firmware error\n");
1796		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1797				"(Hardware Error)"));
1798		wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR);
1799		sc->flags &= ~WPI_FLAG_BUSY;
1800		WPI_UNLOCK(sc);
1801		return;
1802	}
1803
1804	if (r & WPI_RX_INTR)
1805		wpi_notif_intr(sc);
1806
1807	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1808		wakeup(sc);
1809
1810	/* re-enable interrupts */
1811	if (sc->sc_ifp->if_flags & IFF_UP)
1812		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1813
1814	WPI_UNLOCK(sc);
1815}
1816
1817static uint8_t
1818wpi_plcp_signal(int rate)
1819{
1820	switch (rate) {
1821	/* CCK rates (returned values are device-dependent) */
1822	case 2:		return 10;
1823	case 4:		return 20;
1824	case 11:	return 55;
1825	case 22:	return 110;
1826
1827	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1828	/* R1-R4 (ral/ural is R4-R1) */
1829	case 12:	return 0xd;
1830	case 18:	return 0xf;
1831	case 24:	return 0x5;
1832	case 36:	return 0x7;
1833	case 48:	return 0x9;
1834	case 72:	return 0xb;
1835	case 96:	return 0x1;
1836	case 108:	return 0x3;
1837
1838	/* unsupported rates (should not get there) */
1839	default:	return 0;
1840	}
1841}
1842
1843/* quickly determine if a given rate is CCK or OFDM */
1844#define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1845
1846/*
1847 * Construct the data packet for a transmit buffer and acutally put
1848 * the buffer onto the transmit ring, kicking the card to process the
1849 * the buffer.
1850 */
1851static int
1852wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1853	int ac)
1854{
1855	struct ieee80211vap *vap = ni->ni_vap;
1856	struct ifnet *ifp = sc->sc_ifp;
1857	struct ieee80211com *ic = ifp->if_l2com;
1858	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1859	struct wpi_tx_ring *ring = &sc->txq[ac];
1860	struct wpi_tx_desc *desc;
1861	struct wpi_tx_data *data;
1862	struct wpi_tx_cmd *cmd;
1863	struct wpi_cmd_data *tx;
1864	struct ieee80211_frame *wh;
1865	const struct ieee80211_txparam *tp;
1866	struct ieee80211_key *k;
1867	struct mbuf *mnew;
1868	int i, error, nsegs, rate, hdrlen, ismcast;
1869	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1870
1871	desc = &ring->desc[ring->cur];
1872	data = &ring->data[ring->cur];
1873
1874	wh = mtod(m0, struct ieee80211_frame *);
1875
1876	hdrlen = ieee80211_hdrsize(wh);
1877	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1878
1879	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1880		k = ieee80211_crypto_encap(ni, m0);
1881		if (k == NULL) {
1882			m_freem(m0);
1883			return ENOBUFS;
1884		}
1885		/* packet header may have moved, reset our local pointer */
1886		wh = mtod(m0, struct ieee80211_frame *);
1887	}
1888
1889	cmd = &ring->cmd[ring->cur];
1890	cmd->code = WPI_CMD_TX_DATA;
1891	cmd->flags = 0;
1892	cmd->qid = ring->qid;
1893	cmd->idx = ring->cur;
1894
1895	tx = (struct wpi_cmd_data *)cmd->data;
1896	tx->flags = htole32(WPI_TX_AUTO_SEQ);
1897	tx->timeout = htole16(0);
1898	tx->ofdm_mask = 0xff;
1899	tx->cck_mask = 0x0f;
1900	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1901	tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1902	tx->len = htole16(m0->m_pkthdr.len);
1903
1904	if (!ismcast) {
1905		if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1906		    !cap->cap_wmeParams[ac].wmep_noackPolicy)
1907			tx->flags |= htole32(WPI_TX_NEED_ACK);
1908		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1909			tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1910			tx->rts_ntries = 7;
1911		}
1912	}
1913	/* pick a rate */
1914	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1915	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1916		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1917		/* tell h/w to set timestamp in probe responses */
1918		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1919			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1920		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1921		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1922			tx->timeout = htole16(3);
1923		else
1924			tx->timeout = htole16(2);
1925		rate = tp->mgmtrate;
1926	} else if (ismcast) {
1927		rate = tp->mcastrate;
1928	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1929		rate = tp->ucastrate;
1930	} else {
1931		(void) ieee80211_amrr_choose(ni, &WPI_NODE(ni)->amn);
1932		rate = ni->ni_txrate;
1933	}
1934	tx->rate = wpi_plcp_signal(rate);
1935
1936	/* be very persistant at sending frames out */
1937#if 0
1938	tx->data_ntries = tp->maxretry;
1939#else
1940	tx->data_ntries = 15;		/* XXX way too high */
1941#endif
1942
1943	if (bpf_peers_present(ifp->if_bpf)) {
1944		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1945		tap->wt_flags = 0;
1946		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1947		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1948		tap->wt_rate = rate;
1949		tap->wt_hwqueue = ac;
1950		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1951			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1952
1953		bpf_mtap2(ifp->if_bpf, tap, sc->sc_txtap_len, m0);
1954	}
1955
1956	/* save and trim IEEE802.11 header */
1957	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1958	m_adj(m0, hdrlen);
1959
1960	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
1961	    &nsegs, BUS_DMA_NOWAIT);
1962	if (error != 0 && error != EFBIG) {
1963		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1964		    error);
1965		m_freem(m0);
1966		return error;
1967	}
1968	if (error != 0) {
1969		/* XXX use m_collapse */
1970		mnew = m_defrag(m0, M_DONTWAIT);
1971		if (mnew == NULL) {
1972			device_printf(sc->sc_dev,
1973			    "could not defragment mbuf\n");
1974			m_freem(m0);
1975			return ENOBUFS;
1976		}
1977		m0 = mnew;
1978
1979		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
1980		    m0, segs, &nsegs, BUS_DMA_NOWAIT);
1981		if (error != 0) {
1982			device_printf(sc->sc_dev,
1983			    "could not map mbuf (error %d)\n", error);
1984			m_freem(m0);
1985			return error;
1986		}
1987	}
1988
1989	data->m = m0;
1990	data->ni = ni;
1991
1992	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1993	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
1994
1995	/* first scatter/gather segment is used by the tx data command */
1996	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1997	    (1 + nsegs) << 24);
1998	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1999	    ring->cur * sizeof (struct wpi_tx_cmd));
2000	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
2001	for (i = 1; i <= nsegs; i++) {
2002		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
2003		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
2004	}
2005
2006	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2007	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2008	    BUS_DMASYNC_PREWRITE);
2009
2010	ring->queued++;
2011
2012	/* kick ring */
2013	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2014	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2015
2016	return 0;
2017}
2018
2019/**
2020 * Process data waiting to be sent on the IFNET output queue
2021 */
2022static void
2023wpi_start(struct ifnet *ifp)
2024{
2025	struct wpi_softc *sc = ifp->if_softc;
2026
2027	WPI_LOCK(sc);
2028	wpi_start_locked(ifp);
2029	WPI_UNLOCK(sc);
2030}
2031
2032static void
2033wpi_start_locked(struct ifnet *ifp)
2034{
2035	struct wpi_softc *sc = ifp->if_softc;
2036	struct ieee80211_node *ni;
2037	struct mbuf *m;
2038	int ac;
2039
2040	WPI_LOCK_ASSERT(sc);
2041
2042	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2043		return;
2044
2045	for (;;) {
2046		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2047		if (m == NULL)
2048			break;
2049		/* no QoS encapsulation for EAPOL frames */
2050		ac = M_WME_GETAC(m);
2051		if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2052			/* there is no place left in this ring */
2053			IFQ_DRV_PREPEND(&ifp->if_snd, m);
2054			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2055			break;
2056		}
2057		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2058		m = ieee80211_encap(ni, m);
2059		if (m == NULL) {
2060			ieee80211_free_node(ni);
2061			ifp->if_oerrors++;
2062			continue;
2063		}
2064		if (wpi_tx_data(sc, m, ni, ac) != 0) {
2065			ieee80211_free_node(ni);
2066			ifp->if_oerrors++;
2067			break;
2068		}
2069		sc->sc_tx_timer = 5;
2070	}
2071}
2072
2073static int
2074wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2075	const struct ieee80211_bpf_params *params)
2076{
2077	struct ieee80211com *ic = ni->ni_ic;
2078	struct ifnet *ifp = ic->ic_ifp;
2079	struct wpi_softc *sc = ifp->if_softc;
2080
2081	/* prevent management frames from being sent if we're not ready */
2082	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2083		m_freem(m);
2084		ieee80211_free_node(ni);
2085		return ENETDOWN;
2086	}
2087	WPI_LOCK(sc);
2088
2089	/* management frames go into ring 0 */
2090	if (sc->txq[0].queued > sc->txq[0].count - 8) {
2091		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2092		m_freem(m);
2093		WPI_UNLOCK(sc);
2094		ieee80211_free_node(ni);
2095		return ENOBUFS;		/* XXX */
2096	}
2097
2098	ifp->if_opackets++;
2099	if (wpi_tx_data(sc, m, ni, 0) != 0)
2100		goto bad;
2101	sc->sc_tx_timer = 5;
2102	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2103
2104	WPI_UNLOCK(sc);
2105	return 0;
2106bad:
2107	ifp->if_oerrors++;
2108	WPI_UNLOCK(sc);
2109	ieee80211_free_node(ni);
2110	return EIO;		/* XXX */
2111}
2112
2113static int
2114wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2115{
2116	struct wpi_softc *sc = ifp->if_softc;
2117	struct ieee80211com *ic = ifp->if_l2com;
2118	struct ifreq *ifr = (struct ifreq *) data;
2119	int error = 0, startall = 0;
2120
2121	switch (cmd) {
2122	case SIOCSIFFLAGS:
2123		WPI_LOCK(sc);
2124		if ((ifp->if_flags & IFF_UP)) {
2125			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2126				wpi_init_locked(sc, 0);
2127				startall = 1;
2128			}
2129		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2130			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2131			wpi_stop_locked(sc);
2132		WPI_UNLOCK(sc);
2133		if (startall)
2134			ieee80211_start_all(ic);
2135		break;
2136	case SIOCGIFMEDIA:
2137		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2138		break;
2139	case SIOCGIFADDR:
2140		error = ether_ioctl(ifp, cmd, data);
2141		break;
2142	default:
2143		error = EINVAL;
2144		break;
2145	}
2146	return error;
2147}
2148
2149/*
2150 * Extract various information from EEPROM.
2151 */
2152static void
2153wpi_read_eeprom(struct wpi_softc *sc)
2154{
2155	struct ifnet *ifp = sc->sc_ifp;
2156	struct ieee80211com *ic = ifp->if_l2com;
2157	int i;
2158
2159	/* read the hardware capabilities, revision and SKU type */
2160	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2161	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2162	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2163
2164	/* read the regulatory domain */
2165	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2166
2167	/* read in the hw MAC address */
2168	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2169
2170	/* read the list of authorized channels */
2171	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2172		wpi_read_eeprom_channels(sc,i);
2173
2174	/* read the power level calibration info for each group */
2175	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2176		wpi_read_eeprom_group(sc,i);
2177}
2178
2179/*
2180 * Send a command to the firmware.
2181 */
2182static int
2183wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2184{
2185	struct wpi_tx_ring *ring = &sc->cmdq;
2186	struct wpi_tx_desc *desc;
2187	struct wpi_tx_cmd *cmd;
2188
2189#ifdef WPI_DEBUG
2190	if (!async) {
2191		WPI_LOCK_ASSERT(sc);
2192	}
2193#endif
2194
2195	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2196		    async));
2197
2198	if (sc->flags & WPI_FLAG_BUSY) {
2199		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2200		    __func__, code);
2201		return EAGAIN;
2202	}
2203	sc->flags|= WPI_FLAG_BUSY;
2204
2205	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2206	    code, size));
2207
2208	desc = &ring->desc[ring->cur];
2209	cmd = &ring->cmd[ring->cur];
2210
2211	cmd->code = code;
2212	cmd->flags = 0;
2213	cmd->qid = ring->qid;
2214	cmd->idx = ring->cur;
2215	memcpy(cmd->data, buf, size);
2216
2217	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2218	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2219		ring->cur * sizeof (struct wpi_tx_cmd));
2220	desc->segs[0].len  = htole32(4 + size);
2221
2222	/* kick cmd ring */
2223	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2224	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2225
2226	if (async) {
2227		sc->flags &= ~ WPI_FLAG_BUSY;
2228		return 0;
2229	}
2230
2231	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2232}
2233
2234static int
2235wpi_wme_update(struct ieee80211com *ic)
2236{
2237#define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2238#define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2239	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2240	const struct wmeParams *wmep;
2241	struct wpi_wme_setup wme;
2242	int ac;
2243
2244	/* don't override default WME values if WME is not actually enabled */
2245	if (!(ic->ic_flags & IEEE80211_F_WME))
2246		return 0;
2247
2248	wme.flags = 0;
2249	for (ac = 0; ac < WME_NUM_AC; ac++) {
2250		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2251		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2252		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2253		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2254		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2255
2256		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2257		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2258		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2259	}
2260	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2261#undef WPI_USEC
2262#undef WPI_EXP2
2263}
2264
2265/*
2266 * Configure h/w multi-rate retries.
2267 */
2268static int
2269wpi_mrr_setup(struct wpi_softc *sc)
2270{
2271	struct ifnet *ifp = sc->sc_ifp;
2272	struct ieee80211com *ic = ifp->if_l2com;
2273	struct wpi_mrr_setup mrr;
2274	int i, error;
2275
2276	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2277
2278	/* CCK rates (not used with 802.11a) */
2279	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2280		mrr.rates[i].flags = 0;
2281		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2282		/* fallback to the immediate lower CCK rate (if any) */
2283		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2284		/* try one time at this rate before falling back to "next" */
2285		mrr.rates[i].ntries = 1;
2286	}
2287
2288	/* OFDM rates (not used with 802.11b) */
2289	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2290		mrr.rates[i].flags = 0;
2291		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2292		/* fallback to the immediate lower OFDM rate (if any) */
2293		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2294		mrr.rates[i].next = (i == WPI_OFDM6) ?
2295		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2296			WPI_OFDM6 : WPI_CCK2) :
2297		    i - 1;
2298		/* try one time at this rate before falling back to "next" */
2299		mrr.rates[i].ntries = 1;
2300	}
2301
2302	/* setup MRR for control frames */
2303	mrr.which = htole32(WPI_MRR_CTL);
2304	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2305	if (error != 0) {
2306		device_printf(sc->sc_dev,
2307		    "could not setup MRR for control frames\n");
2308		return error;
2309	}
2310
2311	/* setup MRR for data frames */
2312	mrr.which = htole32(WPI_MRR_DATA);
2313	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2314	if (error != 0) {
2315		device_printf(sc->sc_dev,
2316		    "could not setup MRR for data frames\n");
2317		return error;
2318	}
2319
2320	return 0;
2321}
2322
2323static void
2324wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2325{
2326	struct wpi_cmd_led led;
2327
2328	led.which = which;
2329	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2330	led.off = off;
2331	led.on = on;
2332
2333	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2334}
2335
2336static void
2337wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2338{
2339	struct wpi_cmd_tsf tsf;
2340	uint64_t val, mod;
2341
2342	memset(&tsf, 0, sizeof tsf);
2343	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2344	tsf.bintval = htole16(ni->ni_intval);
2345	tsf.lintval = htole16(10);
2346
2347	/* compute remaining time until next beacon */
2348	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2349	mod = le64toh(tsf.tstamp) % val;
2350	tsf.binitval = htole32((uint32_t)(val - mod));
2351
2352	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2353		device_printf(sc->sc_dev, "could not enable TSF\n");
2354}
2355
2356#if 0
2357/*
2358 * Build a beacon frame that the firmware will broadcast periodically in
2359 * IBSS or HostAP modes.
2360 */
2361static int
2362wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2363{
2364	struct ifnet *ifp = sc->sc_ifp;
2365	struct ieee80211com *ic = ifp->if_l2com;
2366	struct wpi_tx_ring *ring = &sc->cmdq;
2367	struct wpi_tx_desc *desc;
2368	struct wpi_tx_data *data;
2369	struct wpi_tx_cmd *cmd;
2370	struct wpi_cmd_beacon *bcn;
2371	struct ieee80211_beacon_offsets bo;
2372	struct mbuf *m0;
2373	bus_addr_t physaddr;
2374	int error;
2375
2376	desc = &ring->desc[ring->cur];
2377	data = &ring->data[ring->cur];
2378
2379	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2380	if (m0 == NULL) {
2381		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2382		return ENOMEM;
2383	}
2384
2385	cmd = &ring->cmd[ring->cur];
2386	cmd->code = WPI_CMD_SET_BEACON;
2387	cmd->flags = 0;
2388	cmd->qid = ring->qid;
2389	cmd->idx = ring->cur;
2390
2391	bcn = (struct wpi_cmd_beacon *)cmd->data;
2392	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2393	bcn->id = WPI_ID_BROADCAST;
2394	bcn->ofdm_mask = 0xff;
2395	bcn->cck_mask = 0x0f;
2396	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2397	bcn->len = htole16(m0->m_pkthdr.len);
2398	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2399		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2400	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2401
2402	/* save and trim IEEE802.11 header */
2403	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2404	m_adj(m0, sizeof (struct ieee80211_frame));
2405
2406	/* assume beacon frame is contiguous */
2407	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2408	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2409	if (error != 0) {
2410		device_printf(sc->sc_dev, "could not map beacon\n");
2411		m_freem(m0);
2412		return error;
2413	}
2414
2415	data->m = m0;
2416
2417	/* first scatter/gather segment is used by the beacon command */
2418	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2419	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2420		ring->cur * sizeof (struct wpi_tx_cmd));
2421	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2422	desc->segs[1].addr = htole32(physaddr);
2423	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2424
2425	/* kick cmd ring */
2426	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2427	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2428
2429	return 0;
2430}
2431#endif
2432
2433static int
2434wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2435{
2436	struct ieee80211com *ic = vap->iv_ic;
2437	struct ieee80211_node *ni = vap->iv_bss;
2438	struct wpi_node_info node;
2439	int error;
2440
2441
2442	/* update adapter's configuration */
2443	sc->config.associd = 0;
2444	sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2445	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2446	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2447	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2448		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2449		    WPI_CONFIG_24GHZ);
2450	}
2451	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2452		sc->config.cck_mask  = 0;
2453		sc->config.ofdm_mask = 0x15;
2454	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2455		sc->config.cck_mask  = 0x03;
2456		sc->config.ofdm_mask = 0;
2457	} else {
2458		/* XXX assume 802.11b/g */
2459		sc->config.cck_mask  = 0x0f;
2460		sc->config.ofdm_mask = 0x15;
2461	}
2462
2463	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2464		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2465	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2466		sizeof (struct wpi_config), 1);
2467	if (error != 0) {
2468		device_printf(sc->sc_dev, "could not configure\n");
2469		return error;
2470	}
2471
2472	/* configuration has changed, set Tx power accordingly */
2473	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2474		device_printf(sc->sc_dev, "could not set Tx power\n");
2475		return error;
2476	}
2477
2478	/* add default node */
2479	memset(&node, 0, sizeof node);
2480	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2481	node.id = WPI_ID_BSS;
2482	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2483	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2484	node.action = htole32(WPI_ACTION_SET_RATE);
2485	node.antenna = WPI_ANTENNA_BOTH;
2486	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2487	if (error != 0)
2488		device_printf(sc->sc_dev, "could not add BSS node\n");
2489
2490	return (error);
2491}
2492
2493static int
2494wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2495{
2496	struct ieee80211com *ic = vap->iv_ic;
2497	struct ieee80211_node *ni = vap->iv_bss;
2498	int error;
2499
2500	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2501		/* link LED blinks while monitoring */
2502		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2503		return 0;
2504	}
2505
2506	wpi_enable_tsf(sc, ni);
2507
2508	/* update adapter's configuration */
2509	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2510	/* short preamble/slot time are negotiated when associating */
2511	sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2512	    WPI_CONFIG_SHSLOT);
2513	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2514		sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2515	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2516		sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2517	sc->config.filter |= htole32(WPI_FILTER_BSS);
2518
2519	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2520
2521	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2522		    sc->config.flags));
2523	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2524		    wpi_config), 1);
2525	if (error != 0) {
2526		device_printf(sc->sc_dev, "could not update configuration\n");
2527		return error;
2528	}
2529
2530	error = wpi_set_txpower(sc, ni->ni_chan, 1);
2531	if (error != 0) {
2532		device_printf(sc->sc_dev, "could set txpower\n");
2533		return error;
2534	}
2535
2536	/* link LED always on while associated */
2537	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2538
2539	/* start automatic rate control timer */
2540	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2541
2542	return (error);
2543}
2544
2545/*
2546 * Send a scan request to the firmware.  Since this command is huge, we map it
2547 * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2548 * much of this code is similar to that in wpi_cmd but because we must manually
2549 * construct the probe & channels, we duplicate what's needed here. XXX In the
2550 * future, this function should be modified to use wpi_cmd to help cleanup the
2551 * code base.
2552 */
2553static int
2554wpi_scan(struct wpi_softc *sc)
2555{
2556	struct ifnet *ifp = sc->sc_ifp;
2557	struct ieee80211com *ic = ifp->if_l2com;
2558	struct ieee80211_scan_state *ss = ic->ic_scan;
2559	struct wpi_tx_ring *ring = &sc->cmdq;
2560	struct wpi_tx_desc *desc;
2561	struct wpi_tx_data *data;
2562	struct wpi_tx_cmd *cmd;
2563	struct wpi_scan_hdr *hdr;
2564	struct wpi_scan_chan *chan;
2565	struct ieee80211_frame *wh;
2566	struct ieee80211_rateset *rs;
2567	struct ieee80211_channel *c;
2568	enum ieee80211_phymode mode;
2569	uint8_t *frm;
2570	int nrates, pktlen, error, i, nssid;
2571	bus_addr_t physaddr;
2572
2573	desc = &ring->desc[ring->cur];
2574	data = &ring->data[ring->cur];
2575
2576	data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2577	if (data->m == NULL) {
2578		device_printf(sc->sc_dev,
2579		    "could not allocate mbuf for scan command\n");
2580		return ENOMEM;
2581	}
2582
2583	cmd = mtod(data->m, struct wpi_tx_cmd *);
2584	cmd->code = WPI_CMD_SCAN;
2585	cmd->flags = 0;
2586	cmd->qid = ring->qid;
2587	cmd->idx = ring->cur;
2588
2589	hdr = (struct wpi_scan_hdr *)cmd->data;
2590	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2591
2592	/*
2593	 * Move to the next channel if no packets are received within 5 msecs
2594	 * after sending the probe request (this helps to reduce the duration
2595	 * of active scans).
2596	 */
2597	hdr->quiet = htole16(5);
2598	hdr->threshold = htole16(1);
2599
2600	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2601		/* send probe requests at 6Mbps */
2602		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2603
2604		/* Enable crc checking */
2605		hdr->promotion = htole16(1);
2606	} else {
2607		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2608		/* send probe requests at 1Mbps */
2609		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2610	}
2611	hdr->tx.id = WPI_ID_BROADCAST;
2612	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2613	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2614
2615	memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2616	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2617	for (i = 0; i < nssid; i++) {
2618		hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2619		hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2620		memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2621		    hdr->scan_essids[i].esslen);
2622#ifdef WPI_DEBUG
2623		if (wpi_debug & WPI_DEBUG_SCANNING) {
2624			printf("Scanning Essid: ");
2625			ieee80211_print_essid(hdr->scan_essids[i].essid,
2626			    hdr->scan_essids[i].esslen);
2627			printf("\n");
2628		}
2629#endif
2630	}
2631
2632	/*
2633	 * Build a probe request frame.  Most of the following code is a
2634	 * copy & paste of what is done in net80211.
2635	 */
2636	wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2637	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2638		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2639	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2640	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2641	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2642	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2643	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2644	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2645
2646	frm = (uint8_t *)(wh + 1);
2647
2648	/* add essid IE, the hardware will fill this in for us */
2649	*frm++ = IEEE80211_ELEMID_SSID;
2650	*frm++ = 0;
2651
2652	mode = ieee80211_chan2mode(ic->ic_curchan);
2653	rs = &ic->ic_sup_rates[mode];
2654
2655	/* add supported rates IE */
2656	*frm++ = IEEE80211_ELEMID_RATES;
2657	nrates = rs->rs_nrates;
2658	if (nrates > IEEE80211_RATE_SIZE)
2659		nrates = IEEE80211_RATE_SIZE;
2660	*frm++ = nrates;
2661	memcpy(frm, rs->rs_rates, nrates);
2662	frm += nrates;
2663
2664	/* add supported xrates IE */
2665	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2666		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2667		*frm++ = IEEE80211_ELEMID_XRATES;
2668		*frm++ = nrates;
2669		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2670		frm += nrates;
2671	}
2672
2673	/* setup length of probe request */
2674	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2675
2676	/*
2677	 * Construct information about the channel that we
2678	 * want to scan. The firmware expects this to be directly
2679	 * after the scan probe request
2680	 */
2681	c = ic->ic_curchan;
2682	chan = (struct wpi_scan_chan *)frm;
2683	chan->chan = ieee80211_chan2ieee(ic, c);
2684	chan->flags = 0;
2685	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2686		chan->flags |= WPI_CHAN_ACTIVE;
2687		if (nssid != 0)
2688			chan->flags |= WPI_CHAN_DIRECT;
2689	}
2690	chan->gain_dsp = 0x6e; /* Default level */
2691	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2692		chan->active = htole16(10);
2693		chan->passive = htole16(ss->ss_maxdwell);
2694		chan->gain_radio = 0x3b;
2695	} else {
2696		chan->active = htole16(20);
2697		chan->passive = htole16(ss->ss_maxdwell);
2698		chan->gain_radio = 0x28;
2699	}
2700
2701	DPRINTFN(WPI_DEBUG_SCANNING,
2702	    ("Scanning %u Passive: %d\n",
2703	     chan->chan,
2704	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2705
2706	hdr->nchan++;
2707	chan++;
2708
2709	frm += sizeof (struct wpi_scan_chan);
2710#if 0
2711	// XXX All Channels....
2712	for (c  = &ic->ic_channels[1];
2713	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2714		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2715			continue;
2716
2717		chan->chan = ieee80211_chan2ieee(ic, c);
2718		chan->flags = 0;
2719		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2720		    chan->flags |= WPI_CHAN_ACTIVE;
2721		    if (ic->ic_des_ssid[0].len != 0)
2722			chan->flags |= WPI_CHAN_DIRECT;
2723		}
2724		chan->gain_dsp = 0x6e; /* Default level */
2725		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2726			chan->active = htole16(10);
2727			chan->passive = htole16(110);
2728			chan->gain_radio = 0x3b;
2729		} else {
2730			chan->active = htole16(20);
2731			chan->passive = htole16(120);
2732			chan->gain_radio = 0x28;
2733		}
2734
2735		DPRINTFN(WPI_DEBUG_SCANNING,
2736			 ("Scanning %u Passive: %d\n",
2737			  chan->chan,
2738			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2739
2740		hdr->nchan++;
2741		chan++;
2742
2743		frm += sizeof (struct wpi_scan_chan);
2744	}
2745#endif
2746
2747	hdr->len = htole16(frm - (uint8_t *)hdr);
2748	pktlen = frm - (uint8_t *)cmd;
2749
2750	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2751	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2752	if (error != 0) {
2753		device_printf(sc->sc_dev, "could not map scan command\n");
2754		m_freem(data->m);
2755		data->m = NULL;
2756		return error;
2757	}
2758
2759	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2760	desc->segs[0].addr = htole32(physaddr);
2761	desc->segs[0].len  = htole32(pktlen);
2762
2763	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2764	    BUS_DMASYNC_PREWRITE);
2765	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2766
2767	/* kick cmd ring */
2768	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2769	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2770
2771	sc->sc_scan_timer = 5;
2772	return 0;	/* will be notified async. of failure/success */
2773}
2774
2775/**
2776 * Configure the card to listen to a particular channel, this transisions the
2777 * card in to being able to receive frames from remote devices.
2778 */
2779static int
2780wpi_config(struct wpi_softc *sc)
2781{
2782	struct ifnet *ifp = sc->sc_ifp;
2783	struct ieee80211com *ic = ifp->if_l2com;
2784	struct wpi_power power;
2785	struct wpi_bluetooth bluetooth;
2786	struct wpi_node_info node;
2787	int error;
2788
2789	/* set power mode */
2790	memset(&power, 0, sizeof power);
2791	power.flags = htole32(WPI_POWER_CAM|0x8);
2792	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2793	if (error != 0) {
2794		device_printf(sc->sc_dev, "could not set power mode\n");
2795		return error;
2796	}
2797
2798	/* configure bluetooth coexistence */
2799	memset(&bluetooth, 0, sizeof bluetooth);
2800	bluetooth.flags = 3;
2801	bluetooth.lead = 0xaa;
2802	bluetooth.kill = 1;
2803	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2804	    0);
2805	if (error != 0) {
2806		device_printf(sc->sc_dev,
2807		    "could not configure bluetooth coexistence\n");
2808		return error;
2809	}
2810
2811	/* configure adapter */
2812	memset(&sc->config, 0, sizeof (struct wpi_config));
2813	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2814	/*set default channel*/
2815	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2816	sc->config.flags = htole32(WPI_CONFIG_TSF);
2817	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2818		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2819		    WPI_CONFIG_24GHZ);
2820	}
2821	sc->config.filter = 0;
2822	switch (ic->ic_opmode) {
2823	case IEEE80211_M_STA:
2824	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2825		sc->config.mode = WPI_MODE_STA;
2826		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2827		break;
2828	case IEEE80211_M_IBSS:
2829	case IEEE80211_M_AHDEMO:
2830		sc->config.mode = WPI_MODE_IBSS;
2831		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2832					     WPI_FILTER_MULTICAST);
2833		break;
2834	case IEEE80211_M_HOSTAP:
2835		sc->config.mode = WPI_MODE_HOSTAP;
2836		break;
2837	case IEEE80211_M_MONITOR:
2838		sc->config.mode = WPI_MODE_MONITOR;
2839		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2840			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2841		break;
2842	}
2843	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2844	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2845	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2846		sizeof (struct wpi_config), 0);
2847	if (error != 0) {
2848		device_printf(sc->sc_dev, "configure command failed\n");
2849		return error;
2850	}
2851
2852	/* configuration has changed, set Tx power accordingly */
2853	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2854	    device_printf(sc->sc_dev, "could not set Tx power\n");
2855	    return error;
2856	}
2857
2858	/* add broadcast node */
2859	memset(&node, 0, sizeof node);
2860	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2861	node.id = WPI_ID_BROADCAST;
2862	node.rate = wpi_plcp_signal(2);
2863	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2864	if (error != 0) {
2865		device_printf(sc->sc_dev, "could not add broadcast node\n");
2866		return error;
2867	}
2868
2869	/* Setup rate scalling */
2870	error = wpi_mrr_setup(sc);
2871	if (error != 0) {
2872		device_printf(sc->sc_dev, "could not setup MRR\n");
2873		return error;
2874	}
2875
2876	return 0;
2877}
2878
2879static void
2880wpi_stop_master(struct wpi_softc *sc)
2881{
2882	uint32_t tmp;
2883	int ntries;
2884
2885	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2886
2887	tmp = WPI_READ(sc, WPI_RESET);
2888	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2889
2890	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2891	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2892		return;	/* already asleep */
2893
2894	for (ntries = 0; ntries < 100; ntries++) {
2895		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2896			break;
2897		DELAY(10);
2898	}
2899	if (ntries == 100) {
2900		device_printf(sc->sc_dev, "timeout waiting for master\n");
2901	}
2902}
2903
2904static int
2905wpi_power_up(struct wpi_softc *sc)
2906{
2907	uint32_t tmp;
2908	int ntries;
2909
2910	wpi_mem_lock(sc);
2911	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2912	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2913	wpi_mem_unlock(sc);
2914
2915	for (ntries = 0; ntries < 5000; ntries++) {
2916		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2917			break;
2918		DELAY(10);
2919	}
2920	if (ntries == 5000) {
2921		device_printf(sc->sc_dev,
2922		    "timeout waiting for NIC to power up\n");
2923		return ETIMEDOUT;
2924	}
2925	return 0;
2926}
2927
2928static int
2929wpi_reset(struct wpi_softc *sc)
2930{
2931	uint32_t tmp;
2932	int ntries;
2933
2934	DPRINTFN(WPI_DEBUG_HW,
2935	    ("Resetting the card - clearing any uploaded firmware\n"));
2936
2937	/* clear any pending interrupts */
2938	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2939
2940	tmp = WPI_READ(sc, WPI_PLL_CTL);
2941	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2942
2943	tmp = WPI_READ(sc, WPI_CHICKEN);
2944	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2945
2946	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2947	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2948
2949	/* wait for clock stabilization */
2950	for (ntries = 0; ntries < 25000; ntries++) {
2951		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2952			break;
2953		DELAY(10);
2954	}
2955	if (ntries == 25000) {
2956		device_printf(sc->sc_dev,
2957		    "timeout waiting for clock stabilization\n");
2958		return ETIMEDOUT;
2959	}
2960
2961	/* initialize EEPROM */
2962	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2963
2964	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2965		device_printf(sc->sc_dev, "EEPROM not found\n");
2966		return EIO;
2967	}
2968	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2969
2970	return 0;
2971}
2972
2973static void
2974wpi_hw_config(struct wpi_softc *sc)
2975{
2976	uint32_t rev, hw;
2977
2978	/* voodoo from the Linux "driver".. */
2979	hw = WPI_READ(sc, WPI_HWCONFIG);
2980
2981	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2982	if ((rev & 0xc0) == 0x40)
2983		hw |= WPI_HW_ALM_MB;
2984	else if (!(rev & 0x80))
2985		hw |= WPI_HW_ALM_MM;
2986
2987	if (sc->cap == 0x80)
2988		hw |= WPI_HW_SKU_MRC;
2989
2990	hw &= ~WPI_HW_REV_D;
2991	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2992		hw |= WPI_HW_REV_D;
2993
2994	if (sc->type > 1)
2995		hw |= WPI_HW_TYPE_B;
2996
2997	WPI_WRITE(sc, WPI_HWCONFIG, hw);
2998}
2999
3000static void
3001wpi_rfkill_resume(struct wpi_softc *sc)
3002{
3003	struct ifnet *ifp = sc->sc_ifp;
3004	struct ieee80211com *ic = ifp->if_l2com;
3005	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3006	int ntries;
3007
3008	/* enable firmware again */
3009	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3010	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3011
3012	/* wait for thermal sensors to calibrate */
3013	for (ntries = 0; ntries < 1000; ntries++) {
3014		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3015			break;
3016		DELAY(10);
3017	}
3018
3019	if (ntries == 1000) {
3020		device_printf(sc->sc_dev,
3021		    "timeout waiting for thermal calibration\n");
3022		WPI_UNLOCK(sc);
3023		return;
3024	}
3025	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3026
3027	if (wpi_config(sc) != 0) {
3028		device_printf(sc->sc_dev, "device config failed\n");
3029		WPI_UNLOCK(sc);
3030		return;
3031	}
3032
3033	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3034	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3035	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3036
3037	if (vap != NULL) {
3038		if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3039			if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3040				taskqueue_enqueue(taskqueue_swi,
3041				    &sc->sc_bmiss_task);
3042				wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3043			} else
3044				wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3045		} else {
3046			ieee80211_scan_next(vap);
3047			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3048		}
3049	}
3050
3051	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3052}
3053
3054static void
3055wpi_init_locked(struct wpi_softc *sc, int force)
3056{
3057	struct ifnet *ifp = sc->sc_ifp;
3058	uint32_t tmp;
3059	int ntries, qid;
3060
3061	wpi_stop_locked(sc);
3062	(void)wpi_reset(sc);
3063
3064	wpi_mem_lock(sc);
3065	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3066	DELAY(20);
3067	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3068	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3069	wpi_mem_unlock(sc);
3070
3071	(void)wpi_power_up(sc);
3072	wpi_hw_config(sc);
3073
3074	/* init Rx ring */
3075	wpi_mem_lock(sc);
3076	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3077	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3078	    offsetof(struct wpi_shared, next));
3079	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3080	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3081	wpi_mem_unlock(sc);
3082
3083	/* init Tx rings */
3084	wpi_mem_lock(sc);
3085	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3086	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3087	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3088	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3089	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3090	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3091	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3092
3093	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3094	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3095
3096	for (qid = 0; qid < 6; qid++) {
3097		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3098		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3099		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3100	}
3101	wpi_mem_unlock(sc);
3102
3103	/* clear "radio off" and "disable command" bits (reversed logic) */
3104	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3105	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3106	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3107
3108	/* clear any pending interrupts */
3109	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3110
3111	/* enable interrupts */
3112	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3113
3114	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3115	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3116
3117	if ((wpi_load_firmware(sc)) != 0) {
3118	    device_printf(sc->sc_dev,
3119		"A problem occurred loading the firmware to the driver\n");
3120	    return;
3121	}
3122
3123	/* At this point the firmware is up and running. If the hardware
3124	 * RF switch is turned off thermal calibration will fail, though
3125	 * the card is still happy to continue to accept commands, catch
3126	 * this case and schedule a task to watch for it to be turned on.
3127	 */
3128	wpi_mem_lock(sc);
3129	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3130	wpi_mem_unlock(sc);
3131
3132	if (!(tmp & 0x1)) {
3133		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3134		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3135		goto out;
3136	}
3137
3138	/* wait for thermal sensors to calibrate */
3139	for (ntries = 0; ntries < 1000; ntries++) {
3140		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3141			break;
3142		DELAY(10);
3143	}
3144
3145	if (ntries == 1000) {
3146		device_printf(sc->sc_dev,
3147		    "timeout waiting for thermal sensors calibration\n");
3148		return;
3149	}
3150	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3151
3152	if (wpi_config(sc) != 0) {
3153		device_printf(sc->sc_dev, "device config failed\n");
3154		return;
3155	}
3156
3157	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3158	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3159out:
3160	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3161}
3162
3163static void
3164wpi_init(void *arg)
3165{
3166	struct wpi_softc *sc = arg;
3167	struct ifnet *ifp = sc->sc_ifp;
3168	struct ieee80211com *ic = ifp->if_l2com;
3169
3170	WPI_LOCK(sc);
3171	wpi_init_locked(sc, 0);
3172	WPI_UNLOCK(sc);
3173
3174	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3175		ieee80211_start_all(ic);		/* start all vaps */
3176}
3177
3178static void
3179wpi_stop_locked(struct wpi_softc *sc)
3180{
3181	struct ifnet *ifp = sc->sc_ifp;
3182	uint32_t tmp;
3183	int ac;
3184
3185	sc->sc_tx_timer = 0;
3186	sc->sc_scan_timer = 0;
3187	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3188	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3189	callout_stop(&sc->watchdog_to);
3190	callout_stop(&sc->calib_to);
3191
3192
3193	/* disable interrupts */
3194	WPI_WRITE(sc, WPI_MASK, 0);
3195	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3196	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3197	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3198
3199	/* Clear any commands left in the command buffer */
3200	memset(sc->sc_cmd, 0, sizeof(sc->sc_cmd));
3201	memset(sc->sc_cmd_arg, 0, sizeof(sc->sc_cmd_arg));
3202	sc->sc_cmd_cur = 0;
3203	sc->sc_cmd_next = 0;
3204
3205	wpi_mem_lock(sc);
3206	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3207	wpi_mem_unlock(sc);
3208
3209	/* reset all Tx rings */
3210	for (ac = 0; ac < 4; ac++)
3211		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3212	wpi_reset_tx_ring(sc, &sc->cmdq);
3213
3214	/* reset Rx ring */
3215	wpi_reset_rx_ring(sc, &sc->rxq);
3216
3217	wpi_mem_lock(sc);
3218	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3219	wpi_mem_unlock(sc);
3220
3221	DELAY(5);
3222
3223	wpi_stop_master(sc);
3224
3225	tmp = WPI_READ(sc, WPI_RESET);
3226	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3227	sc->flags &= ~WPI_FLAG_BUSY;
3228}
3229
3230static void
3231wpi_stop(struct wpi_softc *sc)
3232{
3233	WPI_LOCK(sc);
3234	wpi_stop_locked(sc);
3235	WPI_UNLOCK(sc);
3236}
3237
3238static void
3239wpi_newassoc(struct ieee80211_node *ni, int isnew)
3240{
3241	struct ieee80211vap *vap = ni->ni_vap;
3242	struct wpi_vap *wvp = WPI_VAP(vap);
3243
3244	ieee80211_amrr_node_init(&wvp->amrr, &WPI_NODE(ni)->amn, ni);
3245}
3246
3247static void
3248wpi_calib_timeout(void *arg)
3249{
3250	struct wpi_softc *sc = arg;
3251	struct ifnet *ifp = sc->sc_ifp;
3252	struct ieee80211com *ic = ifp->if_l2com;
3253	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3254	int temp;
3255
3256	if (vap->iv_state != IEEE80211_S_RUN)
3257		return;
3258
3259	/* update sensor data */
3260	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3261	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3262
3263	wpi_power_calibration(sc, temp);
3264
3265	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3266}
3267
3268/*
3269 * This function is called periodically (every 60 seconds) to adjust output
3270 * power to temperature changes.
3271 */
3272static void
3273wpi_power_calibration(struct wpi_softc *sc, int temp)
3274{
3275	struct ifnet *ifp = sc->sc_ifp;
3276	struct ieee80211com *ic = ifp->if_l2com;
3277	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3278
3279	/* sanity-check read value */
3280	if (temp < -260 || temp > 25) {
3281		/* this can't be correct, ignore */
3282		DPRINTFN(WPI_DEBUG_TEMP,
3283		    ("out-of-range temperature reported: %d\n", temp));
3284		return;
3285	}
3286
3287	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3288
3289	/* adjust Tx power if need be */
3290	if (abs(temp - sc->temp) <= 6)
3291		return;
3292
3293	sc->temp = temp;
3294
3295	if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3296		/* just warn, too bad for the automatic calibration... */
3297		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3298	}
3299}
3300
3301/**
3302 * Read the eeprom to find out what channels are valid for the given
3303 * band and update net80211 with what we find.
3304 */
3305static void
3306wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3307{
3308	struct ifnet *ifp = sc->sc_ifp;
3309	struct ieee80211com *ic = ifp->if_l2com;
3310	const struct wpi_chan_band *band = &wpi_bands[n];
3311	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3312	struct ieee80211_channel *c;
3313	int chan, i, passive;
3314
3315	wpi_read_prom_data(sc, band->addr, channels,
3316	    band->nchan * sizeof (struct wpi_eeprom_chan));
3317
3318	for (i = 0; i < band->nchan; i++) {
3319		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3320			DPRINTFN(WPI_DEBUG_HW,
3321			    ("Channel Not Valid: %d, band %d\n",
3322			     band->chan[i],n));
3323			continue;
3324		}
3325
3326		passive = 0;
3327		chan = band->chan[i];
3328		c = &ic->ic_channels[ic->ic_nchans++];
3329
3330		/* is active scan allowed on this channel? */
3331		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3332			passive = IEEE80211_CHAN_PASSIVE;
3333		}
3334
3335		if (n == 0) {	/* 2GHz band */
3336			c->ic_ieee = chan;
3337			c->ic_freq = ieee80211_ieee2mhz(chan,
3338			    IEEE80211_CHAN_2GHZ);
3339			c->ic_flags = IEEE80211_CHAN_B | passive;
3340
3341			c = &ic->ic_channels[ic->ic_nchans++];
3342			c->ic_ieee = chan;
3343			c->ic_freq = ieee80211_ieee2mhz(chan,
3344			    IEEE80211_CHAN_2GHZ);
3345			c->ic_flags = IEEE80211_CHAN_G | passive;
3346
3347		} else {	/* 5GHz band */
3348			/*
3349			 * Some 3945ABG adapters support channels 7, 8, 11
3350			 * and 12 in the 2GHz *and* 5GHz bands.
3351			 * Because of limitations in our net80211(9) stack,
3352			 * we can't support these channels in 5GHz band.
3353			 * XXX not true; just need to map to proper frequency
3354			 */
3355			if (chan <= 14)
3356				continue;
3357
3358			c->ic_ieee = chan;
3359			c->ic_freq = ieee80211_ieee2mhz(chan,
3360			    IEEE80211_CHAN_5GHZ);
3361			c->ic_flags = IEEE80211_CHAN_A | passive;
3362		}
3363
3364		/* save maximum allowed power for this channel */
3365		sc->maxpwr[chan] = channels[i].maxpwr;
3366
3367#if 0
3368		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3369		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3370		//ic->ic_channels[chan].ic_minpower...
3371		//ic->ic_channels[chan].ic_maxregtxpower...
3372#endif
3373
3374		DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3375		    " passive=%d, offset %d\n", chan, c->ic_freq,
3376		    channels[i].flags, sc->maxpwr[chan],
3377		    (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3378		    ic->ic_nchans));
3379	}
3380}
3381
3382static void
3383wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3384{
3385	struct wpi_power_group *group = &sc->groups[n];
3386	struct wpi_eeprom_group rgroup;
3387	int i;
3388
3389	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3390	    sizeof rgroup);
3391
3392	/* save power group information */
3393	group->chan   = rgroup.chan;
3394	group->maxpwr = rgroup.maxpwr;
3395	/* temperature at which the samples were taken */
3396	group->temp   = (int16_t)le16toh(rgroup.temp);
3397
3398	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3399		    group->chan, group->maxpwr, group->temp));
3400
3401	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3402		group->samples[i].index = rgroup.samples[i].index;
3403		group->samples[i].power = rgroup.samples[i].power;
3404
3405		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3406			    group->samples[i].index, group->samples[i].power));
3407	}
3408}
3409
3410/*
3411 * Update Tx power to match what is defined for channel `c'.
3412 */
3413static int
3414wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3415{
3416	struct ifnet *ifp = sc->sc_ifp;
3417	struct ieee80211com *ic = ifp->if_l2com;
3418	struct wpi_power_group *group;
3419	struct wpi_cmd_txpower txpower;
3420	u_int chan;
3421	int i;
3422
3423	/* get channel number */
3424	chan = ieee80211_chan2ieee(ic, c);
3425
3426	/* find the power group to which this channel belongs */
3427	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3428		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3429			if (chan <= group->chan)
3430				break;
3431	} else
3432		group = &sc->groups[0];
3433
3434	memset(&txpower, 0, sizeof txpower);
3435	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3436	txpower.channel = htole16(chan);
3437
3438	/* set Tx power for all OFDM and CCK rates */
3439	for (i = 0; i <= 11 ; i++) {
3440		/* retrieve Tx power for this channel/rate combination */
3441		int idx = wpi_get_power_index(sc, group, c,
3442		    wpi_ridx_to_rate[i]);
3443
3444		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3445
3446		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3447			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3448			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3449		} else {
3450			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3451			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3452		}
3453		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3454			    chan, wpi_ridx_to_rate[i], idx));
3455	}
3456
3457	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3458}
3459
3460/*
3461 * Determine Tx power index for a given channel/rate combination.
3462 * This takes into account the regulatory information from EEPROM and the
3463 * current temperature.
3464 */
3465static int
3466wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3467    struct ieee80211_channel *c, int rate)
3468{
3469/* fixed-point arithmetic division using a n-bit fractional part */
3470#define fdivround(a, b, n)      \
3471	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3472
3473/* linear interpolation */
3474#define interpolate(x, x1, y1, x2, y2, n)       \
3475	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3476
3477	struct ifnet *ifp = sc->sc_ifp;
3478	struct ieee80211com *ic = ifp->if_l2com;
3479	struct wpi_power_sample *sample;
3480	int pwr, idx;
3481	u_int chan;
3482
3483	/* get channel number */
3484	chan = ieee80211_chan2ieee(ic, c);
3485
3486	/* default power is group's maximum power - 3dB */
3487	pwr = group->maxpwr / 2;
3488
3489	/* decrease power for highest OFDM rates to reduce distortion */
3490	switch (rate) {
3491		case 72:	/* 36Mb/s */
3492			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3493			break;
3494		case 96:	/* 48Mb/s */
3495			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3496			break;
3497		case 108:	/* 54Mb/s */
3498			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3499			break;
3500	}
3501
3502	/* never exceed channel's maximum allowed Tx power */
3503	pwr = min(pwr, sc->maxpwr[chan]);
3504
3505	/* retrieve power index into gain tables from samples */
3506	for (sample = group->samples; sample < &group->samples[3]; sample++)
3507		if (pwr > sample[1].power)
3508			break;
3509	/* fixed-point linear interpolation using a 19-bit fractional part */
3510	idx = interpolate(pwr, sample[0].power, sample[0].index,
3511	    sample[1].power, sample[1].index, 19);
3512
3513	/*
3514	 *  Adjust power index based on current temperature
3515	 *	- if colder than factory-calibrated: decreate output power
3516	 *	- if warmer than factory-calibrated: increase output power
3517	 */
3518	idx -= (sc->temp - group->temp) * 11 / 100;
3519
3520	/* decrease power for CCK rates (-5dB) */
3521	if (!WPI_RATE_IS_OFDM(rate))
3522		idx += 10;
3523
3524	/* keep power index in a valid range */
3525	if (idx < 0)
3526		return 0;
3527	if (idx > WPI_MAX_PWR_INDEX)
3528		return WPI_MAX_PWR_INDEX;
3529	return idx;
3530
3531#undef interpolate
3532#undef fdivround
3533}
3534
3535/**
3536 * Called by net80211 framework to indicate that a scan
3537 * is starting. This function doesn't actually do the scan,
3538 * wpi_scan_curchan starts things off. This function is more
3539 * of an early warning from the framework we should get ready
3540 * for the scan.
3541 */
3542static void
3543wpi_scan_start(struct ieee80211com *ic)
3544{
3545	struct ifnet *ifp = ic->ic_ifp;
3546	struct wpi_softc *sc = ifp->if_softc;
3547
3548	wpi_queue_cmd(sc, WPI_SCAN_START, 0, WPI_QUEUE_NORMAL);
3549}
3550
3551/**
3552 * Called by the net80211 framework, indicates that the
3553 * scan has ended. If there is a scan in progress on the card
3554 * then it should be aborted.
3555 */
3556static void
3557wpi_scan_end(struct ieee80211com *ic)
3558{
3559	struct ifnet *ifp = ic->ic_ifp;
3560	struct wpi_softc *sc = ifp->if_softc;
3561
3562	wpi_queue_cmd(sc, WPI_SCAN_STOP, 0, WPI_QUEUE_NORMAL);
3563}
3564
3565/**
3566 * Called by the net80211 framework to indicate to the driver
3567 * that the channel should be changed
3568 */
3569static void
3570wpi_set_channel(struct ieee80211com *ic)
3571{
3572	struct ifnet *ifp = ic->ic_ifp;
3573	struct wpi_softc *sc = ifp->if_softc;
3574
3575	/*
3576	 * Only need to set the channel in Monitor mode. AP scanning and auth
3577	 * are already taken care of by their respective firmware commands.
3578	 */
3579	if (ic->ic_opmode == IEEE80211_M_MONITOR)
3580		wpi_queue_cmd(sc, WPI_SET_CHAN, 0, WPI_QUEUE_NORMAL);
3581}
3582
3583/**
3584 * Called by net80211 to indicate that we need to scan the current
3585 * channel. The channel is previously be set via the wpi_set_channel
3586 * callback.
3587 */
3588static void
3589wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3590{
3591	struct ieee80211vap *vap = ss->ss_vap;
3592	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3593	struct wpi_softc *sc = ifp->if_softc;
3594
3595	wpi_queue_cmd(sc, WPI_SCAN_CURCHAN, 0, WPI_QUEUE_NORMAL);
3596}
3597
3598/**
3599 * Called by the net80211 framework to indicate
3600 * the minimum dwell time has been met, terminate the scan.
3601 * We don't actually terminate the scan as the firmware will notify
3602 * us when it's finished and we have no way to interrupt it.
3603 */
3604static void
3605wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3606{
3607	/* NB: don't try to abort scan; wait for firmware to finish */
3608}
3609
3610/**
3611 * The ops function is called to perform some actual work.
3612 * because we can't sleep from any of the ic callbacks, we queue an
3613 * op task with wpi_queue_cmd and have the taskqueue process that task.
3614 * The task that gets cued is a op task, which ends up calling this function.
3615 */
3616static void
3617wpi_ops(void *arg0, int pending)
3618{
3619	struct wpi_softc *sc = arg0;
3620	struct ifnet *ifp = sc->sc_ifp;
3621	struct ieee80211com *ic = ifp->if_l2com;
3622	int cmd, arg, error;
3623	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3624
3625again:
3626	WPI_CMD_LOCK(sc);
3627	cmd = sc->sc_cmd[sc->sc_cmd_cur];
3628	arg = sc->sc_cmd_arg[sc->sc_cmd_cur];
3629
3630	if (cmd == 0) {
3631		/* No more commands to process */
3632		WPI_CMD_UNLOCK(sc);
3633		return;
3634	}
3635	sc->sc_cmd[sc->sc_cmd_cur] = 0; /* free the slot */
3636	sc->sc_cmd_arg[sc->sc_cmd_cur] = 0; /* free the slot */
3637	sc->sc_cmd_cur = (sc->sc_cmd_cur + 1) % WPI_CMD_MAXOPS;
3638	WPI_CMD_UNLOCK(sc);
3639	WPI_LOCK(sc);
3640
3641	DPRINTFN(WPI_DEBUG_OPS,("wpi_ops: command: %d\n", cmd));
3642
3643	switch (cmd) {
3644	case WPI_RESTART:
3645		wpi_init_locked(sc, 0);
3646		WPI_UNLOCK(sc);
3647		return;
3648
3649	case WPI_RF_RESTART:
3650		wpi_rfkill_resume(sc);
3651		WPI_UNLOCK(sc);
3652		return;
3653	}
3654
3655	if (!(sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3656		WPI_UNLOCK(sc);
3657		return;
3658	}
3659
3660	switch (cmd) {
3661	case WPI_SCAN_START:
3662		/* make the link LED blink while we're scanning */
3663		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3664		sc->flags |= WPI_FLAG_SCANNING;
3665		break;
3666
3667	case WPI_SCAN_STOP:
3668		sc->flags &= ~WPI_FLAG_SCANNING;
3669		break;
3670
3671	case WPI_SCAN_CURCHAN:
3672		if (wpi_scan(sc))
3673			ieee80211_cancel_scan(vap);
3674		break;
3675
3676	case WPI_SET_CHAN:
3677		error = wpi_config(sc);
3678		if (error != 0)
3679			device_printf(sc->sc_dev,
3680			    "error %d settting channel\n", error);
3681		break;
3682
3683	case WPI_AUTH:
3684		/* The node must be registered in the firmware before auth */
3685		error = wpi_auth(sc, vap);
3686		WPI_UNLOCK(sc);
3687		if (error != 0) {
3688			device_printf(sc->sc_dev,
3689			    "%s: could not move to auth state, error %d\n",
3690			    __func__, error);
3691			return;
3692		}
3693		IEEE80211_LOCK(ic);
3694		WPI_VAP(vap)->newstate(vap, IEEE80211_S_AUTH, arg);
3695		if (vap->iv_newstate_cb != NULL)
3696			vap->iv_newstate_cb(vap, IEEE80211_S_AUTH, arg);
3697		IEEE80211_UNLOCK(ic);
3698		goto again;
3699
3700	case WPI_RUN:
3701		error = wpi_run(sc, vap);
3702		WPI_UNLOCK(sc);
3703		if (error != 0) {
3704			device_printf(sc->sc_dev,
3705			    "%s: could not move to run state, error %d\n",
3706			    __func__, error);
3707			return;
3708		}
3709		IEEE80211_LOCK(ic);
3710		WPI_VAP(vap)->newstate(vap, IEEE80211_S_RUN, arg);
3711		if (vap->iv_newstate_cb != NULL)
3712			vap->iv_newstate_cb(vap, IEEE80211_S_RUN, arg);
3713		IEEE80211_UNLOCK(ic);
3714		goto again;
3715	}
3716	WPI_UNLOCK(sc);
3717
3718	/* Take another pass */
3719	goto again;
3720}
3721
3722/**
3723 * queue a command for later execution in a different thread.
3724 * This is needed as the net80211 callbacks do not allow
3725 * sleeping, since we need to sleep to confirm commands have
3726 * been processed by the firmware, we must defer execution to
3727 * a sleep enabled thread.
3728 */
3729static int
3730wpi_queue_cmd(struct wpi_softc *sc, int cmd, int arg, int flush)
3731{
3732	WPI_CMD_LOCK(sc);
3733
3734	if (flush) {
3735		memset(sc->sc_cmd, 0, sizeof (sc->sc_cmd));
3736		memset(sc->sc_cmd_arg, 0, sizeof (sc->sc_cmd_arg));
3737		sc->sc_cmd_cur = 0;
3738		sc->sc_cmd_next = 0;
3739	}
3740
3741	if (sc->sc_cmd[sc->sc_cmd_next] != 0) {
3742		WPI_CMD_UNLOCK(sc);
3743		DPRINTF(("%s: command %d dropped\n", __func__, cmd));
3744		return (EBUSY);
3745	}
3746
3747	sc->sc_cmd[sc->sc_cmd_next] = cmd;
3748	sc->sc_cmd_arg[sc->sc_cmd_next] = arg;
3749	sc->sc_cmd_next = (sc->sc_cmd_next + 1) % WPI_CMD_MAXOPS;
3750
3751	taskqueue_enqueue(sc->sc_tq, &sc->sc_opstask);
3752
3753	WPI_CMD_UNLOCK(sc);
3754
3755	return 0;
3756}
3757
3758/*
3759 * Allocate DMA-safe memory for firmware transfer.
3760 */
3761static int
3762wpi_alloc_fwmem(struct wpi_softc *sc)
3763{
3764	/* allocate enough contiguous space to store text and data */
3765	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3766	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3767	    BUS_DMA_NOWAIT);
3768}
3769
3770static void
3771wpi_free_fwmem(struct wpi_softc *sc)
3772{
3773	wpi_dma_contig_free(&sc->fw_dma);
3774}
3775
3776/**
3777 * Called every second, wpi_watchdog used by the watch dog timer
3778 * to check that the card is still alive
3779 */
3780static void
3781wpi_watchdog(void *arg)
3782{
3783	struct wpi_softc *sc = arg;
3784	struct ifnet *ifp = sc->sc_ifp;
3785	uint32_t tmp;
3786
3787	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3788
3789	if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3790		/* No need to lock firmware memory */
3791		tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3792
3793		if ((tmp & 0x1) == 0) {
3794			/* Radio kill switch is still off */
3795			callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3796			return;
3797		}
3798
3799		device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3800		wpi_queue_cmd(sc, WPI_RF_RESTART, 0, WPI_QUEUE_CLEAR);
3801		return;
3802	}
3803
3804	if (sc->sc_tx_timer > 0) {
3805		if (--sc->sc_tx_timer == 0) {
3806			device_printf(sc->sc_dev,"device timeout\n");
3807			ifp->if_oerrors++;
3808			wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR);
3809		}
3810	}
3811	if (sc->sc_scan_timer > 0) {
3812		struct ifnet *ifp = sc->sc_ifp;
3813		struct ieee80211com *ic = ifp->if_l2com;
3814		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3815		if (--sc->sc_scan_timer == 0 && vap != NULL) {
3816			device_printf(sc->sc_dev,"scan timeout\n");
3817			ieee80211_cancel_scan(vap);
3818			wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR);
3819		}
3820	}
3821
3822	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3823		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3824}
3825
3826#ifdef WPI_DEBUG
3827static const char *wpi_cmd_str(int cmd)
3828{
3829	switch (cmd) {
3830	case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3831	case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3832	case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3833	case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3834	case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3835	case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3836	case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3837	case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3838	case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3839	case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3840	case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3841	case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3842	case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3843	case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3844
3845	default:
3846		KASSERT(1, ("Unknown Command: %d\n", cmd));
3847		return "UNKNOWN CMD";	/* Make the compiler happy */
3848	}
3849}
3850#endif
3851
3852MODULE_DEPEND(wpi, pci,  1, 1, 1);
3853MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3854MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3855MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1);
3856