if_wpi.c revision 173585
1/*-
2 * Copyright (c) 2006,2007
3 *	Damien Bergamini <damien.bergamini@free.fr>
4 *	Benjamin Close <Benjamin.Close@clearchain.com>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19#define VERSION "20071102"
20
21#include <sys/cdefs.h>
22__FBSDID("$FreeBSD: head/sys/dev/wpi/if_wpi.c 173585 2007-11-13 16:12:59Z rink $");
23
24/*
25 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26 *
27 * The 3945ABG network adapter doesn't use traditional hardware as
28 * many other adaptors do. Instead at run time the eeprom is set into a known
29 * state and told to load boot firmware. The boot firmware loads an init and a
30 * main  binary firmware image into SRAM on the card via DMA.
31 * Once the firmware is loaded, the driver/hw then
32 * communicate by way of circular dma rings via the the SRAM to the firmware.
33 *
34 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35 * The 4 tx data rings allow for prioritization QoS.
36 *
37 * The rx data ring consists of 32 dma buffers. Two registers are used to
38 * indicate where in the ring the driver and the firmware are up to. The
39 * driver sets the initial read index (reg1) and the initial write index (reg2),
40 * the firmware updates the read index (reg1) on rx of a packet and fires an
41 * interrupt. The driver then processes the buffers starting at reg1 indicating
42 * to the firmware which buffers have been accessed by updating reg2. At the
43 * same time allocating new memory for the processed buffer.
44 *
45 * A similar thing happens with the tx rings. The difference is the firmware
46 * stop processing buffers once the queue is full and until confirmation
47 * of a successful transmition (tx_intr) has occurred.
48 *
49 * The command ring operates in the same manner as the tx queues.
50 *
51 * All communication direct to the card (ie eeprom) is classed as Stage1
52 * communication
53 *
54 * All communication via the firmware to the card is classed as State2.
55 * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56 * firmware. The bootstrap firmware and runtime firmware are loaded
57 * from host memory via dma to the card then told to execute. From this point
58 * on the majority of communications between the driver and the card goes
59 * via the firmware.
60 */
61
62#include <sys/param.h>
63#include <sys/sysctl.h>
64#include <sys/sockio.h>
65#include <sys/mbuf.h>
66#include <sys/kernel.h>
67#include <sys/socket.h>
68#include <sys/systm.h>
69#include <sys/malloc.h>
70#include <sys/queue.h>
71#include <sys/taskqueue.h>
72#include <sys/module.h>
73#include <sys/bus.h>
74#include <sys/endian.h>
75#include <sys/linker.h>
76#include <sys/firmware.h>
77
78#if (__FreeBSD_version > 700000)
79#define WPI_CURRENT
80#endif
81
82#include <machine/bus.h>
83#include <machine/resource.h>
84#ifndef WPI_CURRENT
85#include <machine/clock.h>
86#endif
87#include <sys/rman.h>
88
89#include <dev/pci/pcireg.h>
90#include <dev/pci/pcivar.h>
91
92#include <net/bpf.h>
93#include <net/if.h>
94#include <net/if_arp.h>
95#include <net/ethernet.h>
96#include <net/if_dl.h>
97#include <net/if_media.h>
98#include <net/if_types.h>
99
100#include <net80211/ieee80211_var.h>
101#include <net80211/ieee80211_radiotap.h>
102#include <net80211/ieee80211_regdomain.h>
103
104#include <netinet/in.h>
105#include <netinet/in_systm.h>
106#include <netinet/in_var.h>
107#include <netinet/ip.h>
108#include <netinet/if_ether.h>
109
110#include <dev/wpi/if_wpireg.h>
111#include <dev/wpi/if_wpivar.h>
112
113#define WPI_DEBUG
114
115#ifdef WPI_DEBUG
116#define DPRINTF(x)	do { if (wpi_debug != 0) printf x; } while (0)
117#define DPRINTFN(n, x)	do { if (wpi_debug & n) printf x; } while (0)
118
119enum {
120	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
121	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
122	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
123	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
124	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
125	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
126	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
127	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
128	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
129	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
130	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
131	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
132	WPI_DEBUG_ANY		= 0xffffffff
133};
134
135int wpi_debug = 0;
136SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
137
138#else
139#define DPRINTF(x)
140#define DPRINTFN(n, x)
141#endif
142
143struct wpi_ident {
144	uint16_t	vendor;
145	uint16_t	device;
146	uint16_t	subdevice;
147	const char	*name;
148};
149
150static const struct wpi_ident wpi_ident_table[] = {
151	/* The below entries support ABG regardless of the subid */
152	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
153	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
154	/* The below entries only support BG */
155	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945AB"  },
156	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945AB"  },
157	{ 0x8086, 0x4222, 0x1014, "Intel(R) PRO/Wireless 3945AB"  },
158	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945AB"  },
159	{ 0, 0, 0, NULL }
160};
161
162static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
163		    void **, bus_size_t, bus_size_t, int);
164static void	wpi_dma_contig_free(struct wpi_dma_info *);
165static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
166static int	wpi_alloc_shared(struct wpi_softc *);
167static void	wpi_free_shared(struct wpi_softc *);
168static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
169static void	wpi_free_rbuf(void *, void *);
170static int	wpi_alloc_rpool(struct wpi_softc *);
171static void	wpi_free_rpool(struct wpi_softc *);
172static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
173static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
174static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
175static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
176		    int, int);
177static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
178static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
179static struct	ieee80211_node *wpi_node_alloc(struct ieee80211_node_table *);
180static int	wpi_media_change(struct ifnet *);
181static int	wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
182static void	wpi_mem_lock(struct wpi_softc *);
183static void	wpi_mem_unlock(struct wpi_softc *);
184static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
185static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
186static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
187		    const uint32_t *, int);
188static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
189static int	wpi_alloc_fwmem(struct wpi_softc *);
190static void	wpi_free_fwmem(struct wpi_softc *);
191static int	wpi_load_firmware(struct wpi_softc *);
192static void	wpi_unload_firmware(struct wpi_softc *);
193static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
194static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
195		    struct wpi_rx_data *);
196static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
197static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
198static void	wpi_notif_intr(struct wpi_softc *);
199static void	wpi_intr(void *);
200static void	wpi_ops(void *, int);
201static uint8_t	wpi_plcp_signal(int);
202static int	wpi_queue_cmd(struct wpi_softc *, int);
203static void	wpi_tick(void *);
204#if 0
205static void	wpi_radio_on(void *, int);
206static void	wpi_radio_off(void *, int);
207#endif
208static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
209		    struct ieee80211_node *, int);
210static void	wpi_start(struct ifnet *);
211static void	wpi_scan_start(struct ieee80211com *);
212static void	wpi_scan_end(struct ieee80211com *);
213static void	wpi_set_channel(struct ieee80211com *);
214static void	wpi_scan_curchan(struct ieee80211com *, unsigned long);
215static void	wpi_scan_mindwell(struct ieee80211com *);
216static void	wpi_watchdog(struct ifnet *);
217static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
218static void	wpi_restart(void *, int);
219static void	wpi_read_eeprom(struct wpi_softc *);
220static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
221static void	wpi_read_eeprom_group(struct wpi_softc *, int);
222static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
223static int	wpi_wme_update(struct ieee80211com *);
224static int	wpi_mrr_setup(struct wpi_softc *);
225static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
226static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
227#if 0
228static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
229#endif
230static int	wpi_auth(struct wpi_softc *);
231static int	wpi_scan(struct wpi_softc *);
232static int	wpi_config(struct wpi_softc *);
233static void	wpi_stop_master(struct wpi_softc *);
234static int	wpi_power_up(struct wpi_softc *);
235static int	wpi_reset(struct wpi_softc *);
236static void	wpi_hw_config(struct wpi_softc *);
237static void	wpi_init(void *);
238static void	wpi_stop(struct wpi_softc *);
239static void	wpi_stop_locked(struct wpi_softc *);
240static void	wpi_iter_func(void *, struct ieee80211_node *);
241
242static void	wpi_newassoc(struct ieee80211_node *, int);
243static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
244		    int);
245static void	wpi_calib_timeout(void *);
246static void	wpi_power_calibration(struct wpi_softc *, int);
247static int	wpi_get_power_index(struct wpi_softc *,
248		    struct wpi_power_group *, struct ieee80211_channel *, int);
249static const char *wpi_cmd_str(int);
250static int wpi_probe(device_t);
251static int wpi_attach(device_t);
252static int wpi_detach(device_t);
253static int wpi_shutdown(device_t);
254static int wpi_suspend(device_t);
255static int wpi_resume(device_t);
256
257
258static device_method_t wpi_methods[] = {
259	/* Device interface */
260	DEVMETHOD(device_probe,		wpi_probe),
261	DEVMETHOD(device_attach,	wpi_attach),
262	DEVMETHOD(device_detach,	wpi_detach),
263	DEVMETHOD(device_shutdown,	wpi_shutdown),
264	DEVMETHOD(device_suspend,	wpi_suspend),
265	DEVMETHOD(device_resume,	wpi_resume),
266
267	{ 0, 0 }
268};
269
270static driver_t wpi_driver = {
271	"wpi",
272	wpi_methods,
273	sizeof (struct wpi_softc)
274};
275
276static devclass_t wpi_devclass;
277
278DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
279
280static const uint8_t wpi_ridx_to_plcp[] = {
281	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
282	/* R1-R4 (ral/ural is R4-R1) */
283	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
284	/* CCK: device-dependent */
285	10, 20, 55, 110
286};
287static const uint8_t wpi_ridx_to_rate[] = {
288	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
289	2, 4, 11, 22 /*CCK */
290};
291
292
293static int
294wpi_probe(device_t dev)
295{
296	const struct wpi_ident *ident;
297
298	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
299		if (pci_get_vendor(dev) == ident->vendor &&
300		    pci_get_device(dev) == ident->device) {
301			device_set_desc(dev, ident->name);
302			return 0;
303		}
304	}
305	return ENXIO;
306}
307
308/**
309 * Load the firmare image from disk to the allocated dma buffer.
310 * we also maintain the reference to the firmware pointer as there
311 * is times where we may need to reload the firmware but we are not
312 * in a context that can access the filesystem (ie taskq cause by restart)
313 *
314 * @return 0 on success, an errno on failure
315 */
316static int
317wpi_load_firmware(struct wpi_softc *sc)
318{
319#ifdef WPI_CURRENT
320	const struct firmware *fp ;
321#else
322	struct firmware *fp;
323#endif
324	struct wpi_dma_info *dma = &sc->fw_dma;
325	const struct wpi_firmware_hdr *hdr;
326	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
327	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
328	int error;
329	WPI_LOCK_DECL;
330
331	DPRINTFN(WPI_DEBUG_FIRMWARE,
332	    ("Attempting Loading Firmware from wpi_fw module\n"));
333
334	WPI_UNLOCK(sc);
335
336	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
337		device_printf(sc->sc_dev,
338		    "could not load firmware image 'wpifw'\n");
339		error = ENOENT;
340		WPI_LOCK(sc);
341		goto fail;
342	}
343
344	fp = sc->fw_fp;
345
346	WPI_LOCK(sc);
347
348	/* Validate the firmware is minimum a particular version */
349	if (fp->version < WPI_FW_MINVERSION) {
350	    device_printf(sc->sc_dev,
351			   "firmware version is too old. Need %d, got %d\n",
352			   WPI_FW_MINVERSION,
353			   fp->version);
354	    error = ENXIO;
355	    goto fail;
356	}
357
358	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
359		device_printf(sc->sc_dev,
360		    "firmware file too short: %zu bytes\n", fp->datasize);
361		error = ENXIO;
362		goto fail;
363	}
364
365	hdr = (const struct wpi_firmware_hdr *)fp->data;
366
367	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
368	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
369
370	rtextsz = le32toh(hdr->rtextsz);
371	rdatasz = le32toh(hdr->rdatasz);
372	itextsz = le32toh(hdr->itextsz);
373	idatasz = le32toh(hdr->idatasz);
374	btextsz = le32toh(hdr->btextsz);
375
376	/* check that all firmware segments are present */
377	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
378		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
379		device_printf(sc->sc_dev,
380		    "firmware file too short: %zu bytes\n", fp->datasize);
381		error = ENXIO; /* XXX appropriate error code? */
382		goto fail;
383	}
384
385	/* get pointers to firmware segments */
386	rtext = (const uint8_t *)(hdr + 1);
387	rdata = rtext + rtextsz;
388	itext = rdata + rdatasz;
389	idata = itext + itextsz;
390	btext = idata + idatasz;
391
392	DPRINTFN(WPI_DEBUG_FIRMWARE,
393	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
394	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
395	     (le32toh(hdr->version) & 0xff000000) >> 24,
396	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
397	     (le32toh(hdr->version) & 0x0000ffff),
398	     rtextsz, rdatasz,
399	     itextsz, idatasz, btextsz));
400
401	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
402	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
403	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
404	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
405	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
406
407	/* sanity checks */
408	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
409	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
410	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
411	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
412	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
413	    (btextsz & 3) != 0) {
414		device_printf(sc->sc_dev, "firmware invalid\n");
415		error = EINVAL;
416		goto fail;
417	}
418
419	/* copy initialization images into pre-allocated DMA-safe memory */
420	memcpy(dma->vaddr, idata, idatasz);
421	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
422
423	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
424
425	/* tell adapter where to find initialization images */
426	wpi_mem_lock(sc);
427	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
428	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
429	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
430	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
431	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
432	wpi_mem_unlock(sc);
433
434	/* load firmware boot code */
435	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
436	    device_printf(sc->sc_dev, "Failed to load microcode\n");
437	    goto fail;
438	}
439
440	/* now press "execute" */
441	WPI_WRITE(sc, WPI_RESET, 0);
442
443	/* wait at most one second for the first alive notification */
444	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
445		device_printf(sc->sc_dev,
446		    "timeout waiting for adapter to initialize\n");
447		goto fail;
448	}
449
450	/* copy runtime images into pre-allocated DMA-sage memory */
451	memcpy(dma->vaddr, rdata, rdatasz);
452	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
453	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
454
455	/* tell adapter where to find runtime images */
456	wpi_mem_lock(sc);
457	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
458	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
459	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
460	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
461	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
462	wpi_mem_unlock(sc);
463
464	/* wait at most one second for the first alive notification */
465	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
466		device_printf(sc->sc_dev,
467		    "timeout waiting for adapter to initialize2\n");
468		goto fail;
469	}
470
471	DPRINTFN(WPI_DEBUG_FIRMWARE,
472	    ("Firmware loaded to driver successfully\n"));
473	return error;
474fail:
475	wpi_unload_firmware(sc);
476	return error;
477}
478
479/**
480 * Free the referenced firmware image
481 */
482static void
483wpi_unload_firmware(struct wpi_softc *sc)
484{
485	WPI_LOCK_DECL;
486
487	if (sc->fw_fp) {
488		WPI_UNLOCK(sc);
489		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
490		WPI_LOCK(sc);
491		sc->fw_fp = NULL;
492	}
493}
494
495static int
496wpi_attach(device_t dev)
497{
498	struct wpi_softc *sc = device_get_softc(dev);
499	struct ifnet *ifp;
500	struct ieee80211com *ic = &sc->sc_ic;
501	int ac, error, supportsa = 1;
502	uint32_t tmp;
503	const struct wpi_ident *ident;
504
505	sc->sc_dev = dev;
506
507	if (bootverbose || wpi_debug)
508	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
509
510	/*
511	 * Some card's only support 802.11b/g not a, check to see if
512	 * this is one such card. A 0x0 in the subdevice table indicates
513	 * the entire subdevice range is to be ignored.
514	 */
515	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
516		if (ident->subdevice &&
517		    pci_get_subdevice(dev) == ident->subdevice) {
518		    supportsa = 0;
519		    break;
520		}
521	}
522
523#if __FreeBSD_version >= 700000
524	/*
525	 * Create the taskqueues used by the driver. Primarily
526	 * sc_tq handles most the task
527	 */
528	sc->sc_tq = taskqueue_create("wpi_taskq", M_NOWAIT | M_ZERO,
529	    taskqueue_thread_enqueue, &sc->sc_tq);
530	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
531	    device_get_nameunit(dev));
532
533	sc->sc_tq2 = taskqueue_create("wpi_taskq2", M_NOWAIT | M_ZERO,
534	    taskqueue_thread_enqueue, &sc->sc_tq2);
535	taskqueue_start_threads(&sc->sc_tq2, 1, PI_NET, "%s taskq2",
536	    device_get_nameunit(dev));
537#else
538#error "Sorry, this driver is not yet ready for FreeBSD < 7.0"
539#endif
540
541	/* Create the tasks that can be queued */
542#if 0
543	TASK_INIT(&sc->sc_radioontask, 0, wpi_radio_on, sc);
544	TASK_INIT(&sc->sc_radioofftask, 0, wpi_radio_off, sc);
545#endif
546	TASK_INIT(&sc->sc_opstask, 0, wpi_ops, sc);
547	TASK_INIT(&sc->sc_restarttask, 0, wpi_restart, sc);
548
549	WPI_LOCK_INIT(sc);
550	WPI_CMD_LOCK_INIT(sc);
551
552	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
553	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
554
555	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
556		device_printf(dev, "chip is in D%d power mode "
557		    "-- setting to D0\n", pci_get_powerstate(dev));
558		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
559	}
560
561	/* disable the retry timeout register */
562	pci_write_config(dev, 0x41, 0, 1);
563
564	/* enable bus-mastering */
565	pci_enable_busmaster(dev);
566
567	sc->mem_rid = PCIR_BAR(0);
568	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
569	    RF_ACTIVE);
570	if (sc->mem == NULL) {
571		device_printf(dev, "could not allocate memory resource\n");
572		error = ENOMEM;
573		goto fail;
574	}
575
576	sc->sc_st = rman_get_bustag(sc->mem);
577	sc->sc_sh = rman_get_bushandle(sc->mem);
578
579	sc->irq_rid = 0;
580	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
581	    RF_ACTIVE | RF_SHAREABLE);
582	if (sc->irq == NULL) {
583		device_printf(dev, "could not allocate interrupt resource\n");
584		error = ENOMEM;
585		goto fail;
586	}
587
588	/*
589	 * Allocate DMA memory for firmware transfers.
590	 */
591	if ((error = wpi_alloc_fwmem(sc)) != 0) {
592		printf(": could not allocate firmware memory\n");
593		error = ENOMEM;
594		goto fail;
595	}
596
597	/*
598	 * Put adapter into a known state.
599	 */
600	if ((error = wpi_reset(sc)) != 0) {
601		device_printf(dev, "could not reset adapter\n");
602		goto fail;
603	}
604
605	wpi_mem_lock(sc);
606	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
607	if (bootverbose || wpi_debug)
608	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
609
610	wpi_mem_unlock(sc);
611
612	/* Allocate shared page */
613	if ((error = wpi_alloc_shared(sc)) != 0) {
614		device_printf(dev, "could not allocate shared page\n");
615		goto fail;
616	}
617
618	/*
619	 * Allocate the receive buffer pool. The recieve buffers are
620	 * WPI_RBUF_SIZE in length (3k) this is bigger than MCLBYTES
621	 * hence we can't simply use a cluster and used mapped dma memory
622	 * instead.
623	 */
624	if ((error = wpi_alloc_rpool(sc)) != 0) {
625	    device_printf(dev, "could not allocate Rx buffers\n");
626	    goto fail;
627	}
628
629	/* tx data queues  - 4 for QoS purposes */
630	for (ac = 0; ac < WME_NUM_AC; ac++) {
631		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
632		if (error != 0) {
633		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
634		    goto fail;
635		}
636	}
637
638	/* command queue to talk to the card's firmware */
639	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
640	if (error != 0) {
641		device_printf(dev, "could not allocate command ring\n");
642		goto fail;
643	}
644
645	/* receive data queue */
646	error = wpi_alloc_rx_ring(sc, &sc->rxq);
647	if (error != 0) {
648		device_printf(dev, "could not allocate Rx ring\n");
649		goto fail;
650	}
651
652	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
653	if (ifp == NULL) {
654		device_printf(dev, "can not if_alloc()\n");
655		error = ENOMEM;
656		goto fail;
657	}
658
659	ic->ic_ifp = ifp;
660	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
661	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
662	ic->ic_state = IEEE80211_S_INIT;
663
664	/* set device capabilities */
665	ic->ic_caps =
666		  IEEE80211_C_MONITOR		/* monitor mode supported */
667		| IEEE80211_C_TXPMGT		/* tx power management */
668		| IEEE80211_C_SHSLOT		/* short slot time supported */
669		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
670		| IEEE80211_C_WPA		/* 802.11i */
671/* XXX looks like WME is partly supported? */
672#if 0
673		| IEEE80211_C_IBSS		/* IBSS mode support */
674		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
675		| IEEE80211_C_WME		/* 802.11e */
676		| IEEE80211_C_HOSTAP		/* Host access point mode */
677#endif
678		;
679
680	/*
681	 * Read in the eeprom and also setup the channels for
682	 * net80211. We don't set the rates as net80211 does this for us
683	 */
684	wpi_read_eeprom(sc);
685
686	if (bootverbose || wpi_debug) {
687	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
688	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
689			  sc->type > 1 ? 'B': '?');
690	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
691			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
692	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
693			  supportsa ? "does" : "does not");
694
695	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
696	       what sc->rev really represents - benjsc 20070615 */
697	}
698
699	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
700	ifp->if_softc = sc;
701	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
702	ifp->if_init = wpi_init;
703	ifp->if_ioctl = wpi_ioctl;
704	ifp->if_start = wpi_start;
705	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
706	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
707	IFQ_SET_READY(&ifp->if_snd);
708	ieee80211_ifattach(ic);
709
710	/* override default methods */
711	ic->ic_node_alloc = wpi_node_alloc;
712	ic->ic_newassoc = wpi_newassoc;
713	ic->ic_wme.wme_update = wpi_wme_update;
714	ic->ic_scan_start = wpi_scan_start;
715	ic->ic_scan_end = wpi_scan_end;
716	ic->ic_set_channel = wpi_set_channel;
717	ic->ic_scan_curchan = wpi_scan_curchan;
718	ic->ic_scan_mindwell = wpi_scan_mindwell;
719
720	/* override state transition machine */
721	sc->sc_newstate = ic->ic_newstate;
722	ic->ic_newstate = wpi_newstate;
723	ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
724
725	ieee80211_amrr_init(&sc->amrr, ic,
726			   IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
727			   IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD);
728
729	/* whilst ieee80211_ifattach will listen for ieee80211 frames,
730	 * we also want to listen for the lower level radio frames
731	 */
732	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
733	    sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap),
734	    &sc->sc_drvbpf);
735
736	sc->sc_rxtap_len = sizeof sc->sc_rxtap;
737	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
738	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
739
740	sc->sc_txtap_len = sizeof sc->sc_txtap;
741	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
742	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
743
744	/*
745	 * Hook our interrupt after all initialization is complete.
746	 */
747	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE ,
748#ifdef WPI_CURRENT
749	    NULL,
750#endif
751	    wpi_intr, sc, &sc->sc_ih);
752	if (error != 0) {
753		device_printf(dev, "could not set up interrupt\n");
754		goto fail;
755	}
756
757	ieee80211_announce(ic);
758#ifdef XXX_DEBUG
759	ieee80211_announce_channels(ic);
760#endif
761
762	return 0;
763
764fail:	wpi_detach(dev);
765	return ENXIO;
766}
767
768static int
769wpi_detach(device_t dev)
770{
771	struct wpi_softc *sc = device_get_softc(dev);
772	struct ieee80211com *ic = &sc->sc_ic;
773	struct ifnet *ifp = ic->ic_ifp;
774	int ac;
775	WPI_LOCK_DECL;
776
777	if (ifp != NULL) {
778		wpi_stop(sc);
779		callout_drain(&sc->watchdog_to);
780		callout_drain(&sc->calib_to);
781		bpfdetach(ifp);
782		ieee80211_ifdetach(ic);
783	}
784
785	WPI_LOCK(sc);
786	if (sc->txq[0].data_dmat) {
787		for (ac = 0; ac < WME_NUM_AC; ac++)
788			wpi_free_tx_ring(sc, &sc->txq[ac]);
789
790		wpi_free_tx_ring(sc, &sc->cmdq);
791		wpi_free_rx_ring(sc, &sc->rxq);
792		wpi_free_rpool(sc);
793		wpi_free_shared(sc);
794	}
795
796	if (sc->fw_fp != NULL) {
797		wpi_unload_firmware(sc);
798	}
799
800	if (sc->fw_dma.tag)
801		wpi_free_fwmem(sc);
802	WPI_UNLOCK(sc);
803
804	if (sc->irq != NULL) {
805		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
806		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
807	}
808
809	if (sc->mem != NULL)
810		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
811
812	if (ifp != NULL)
813		if_free(ifp);
814
815	taskqueue_free(sc->sc_tq);
816	taskqueue_free(sc->sc_tq2);
817
818	WPI_LOCK_DESTROY(sc);
819	WPI_CMD_LOCK_DESTROY(sc);
820
821	return 0;
822}
823
824static void
825wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
826{
827	if (error != 0)
828		return;
829
830	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
831
832	*(bus_addr_t *)arg = segs[0].ds_addr;
833}
834
835static int
836wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
837    void **kvap, bus_size_t size, bus_size_t alignment, int flags)
838{
839	int error;
840	int count = 0;
841
842	DPRINTFN(WPI_DEBUG_DMA,
843	    ("Size: %zd - alignement %zd\n", size, alignment));
844
845	dma->size = size;
846	dma->tag = NULL;
847
848again:
849	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
850	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
851	    NULL, NULL, size,
852	    1, size, flags,
853	    NULL, NULL, &dma->tag);
854	if (error != 0) {
855		device_printf(sc->sc_dev,
856		    "could not create shared page DMA tag\n");
857		goto fail;
858	}
859	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
860	    flags | BUS_DMA_ZERO, &dma->map);
861	if (error != 0) {
862		device_printf(sc->sc_dev,
863		    "could not allocate shared page DMA memory\n");
864		goto fail;
865	}
866
867	/**
868	 * Sadly FreeBSD can't always align on a 16k boundary, hence we give it
869	 * 10 attempts increasing the size of the allocation by 4k each time.
870	 * This should eventually align us on a 16k boundary at the cost
871	 * of chewing up dma memory
872	 */
873	if ((((uintptr_t)dma->vaddr) & (alignment-1)) && count < 10) {
874		DPRINTFN(WPI_DEBUG_DMA,
875		    ("Memory Unaligned, trying again: %d\n", count++));
876		wpi_dma_contig_free(dma);
877		size += 4096;
878		goto again;
879	}
880
881	DPRINTFN(WPI_DEBUG_DMA,("Memory, allocated & %s Aligned!\n",
882		    count == 10 ? "FAILED" : ""));
883	if (count == 10) {
884		device_printf(sc->sc_dev, "Unable to align memory\n");
885		error = ENOMEM;
886		goto fail;
887	}
888
889	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr,
890	    size,  wpi_dma_map_addr, &dma->paddr, flags);
891
892	if (error != 0) {
893		device_printf(sc->sc_dev,
894		    "could not load shared page DMA map\n");
895		goto fail;
896	}
897
898	if (kvap != NULL)
899		*kvap = dma->vaddr;
900
901	return 0;
902
903fail:
904	wpi_dma_contig_free(dma);
905	return error;
906}
907
908static void
909wpi_dma_contig_free(struct wpi_dma_info *dma)
910{
911	if (dma->tag) {
912		if (dma->map != NULL) {
913			if (dma->paddr == 0) {
914				bus_dmamap_sync(dma->tag, dma->map,
915				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
916				bus_dmamap_unload(dma->tag, dma->map);
917			}
918			bus_dmamem_free(dma->tag, &dma->vaddr, dma->map);
919		}
920		bus_dma_tag_destroy(dma->tag);
921	}
922}
923
924/*
925 * Allocate a shared page between host and NIC.
926 */
927static int
928wpi_alloc_shared(struct wpi_softc *sc)
929{
930	int error;
931
932	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
933	    (void **)&sc->shared, sizeof (struct wpi_shared),
934	    PAGE_SIZE,
935	    BUS_DMA_NOWAIT);
936
937	if (error != 0) {
938		device_printf(sc->sc_dev,
939		    "could not allocate shared area DMA memory\n");
940	}
941
942	return error;
943}
944
945static void
946wpi_free_shared(struct wpi_softc *sc)
947{
948	wpi_dma_contig_free(&sc->shared_dma);
949}
950
951struct wpi_rbuf *
952wpi_alloc_rbuf(struct wpi_softc *sc)
953{
954	struct wpi_rbuf *rbuf;
955
956	rbuf = SLIST_FIRST(&sc->rxq.freelist);
957	if (rbuf == NULL)
958		return NULL;
959	SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
960	return rbuf;
961}
962
963/*
964 * This is called automatically by the network stack when the mbuf to which our
965 * Rx buffer is attached is freed.
966 */
967static void
968wpi_free_rbuf(void *buf, void *arg)
969{
970	struct wpi_rbuf *rbuf = arg;
971	struct wpi_softc *sc = rbuf->sc;
972	WPI_LOCK_DECL;
973
974	WPI_LOCK(sc);
975
976	/* put the buffer back in the free list */
977	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
978
979	WPI_UNLOCK(sc);
980}
981
982static int
983wpi_alloc_rpool(struct wpi_softc *sc)
984{
985	struct wpi_rx_ring *ring = &sc->rxq;
986	struct wpi_rbuf *rbuf;
987	int i, error;
988
989	/* allocate a big chunk of DMA'able memory.. */
990	error = wpi_dma_contig_alloc(sc, &ring->buf_dma, NULL,
991	    WPI_RBUF_COUNT * WPI_RBUF_SIZE, PAGE_SIZE, BUS_DMA_NOWAIT);
992	if (error != 0) {
993		device_printf(sc->sc_dev,
994		    "could not allocate Rx buffers DMA memory\n");
995		return error;
996	}
997
998	/* ..and split it into 3KB chunks */
999	SLIST_INIT(&ring->freelist);
1000	for (i = 0; i < WPI_RBUF_COUNT; i++) {
1001		rbuf = &ring->rbuf[i];
1002
1003		rbuf->sc = sc;	/* backpointer for callbacks */
1004		rbuf->vaddr = ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
1005		rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
1006
1007		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
1008	}
1009	return 0;
1010}
1011
1012static void
1013wpi_free_rpool(struct wpi_softc *sc)
1014{
1015	wpi_dma_contig_free(&sc->rxq.buf_dma);
1016}
1017
1018static int
1019wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1020{
1021
1022	struct wpi_rx_data *data;
1023	struct wpi_rbuf *rbuf;
1024	int i, error;
1025
1026	ring->cur = 0;
1027
1028	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1029		(void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
1030		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1031
1032	if (error != 0) {
1033	    device_printf(sc->sc_dev,
1034		"could not allocate rx ring DMA memory\n");
1035	    goto fail;
1036	}
1037
1038	/*
1039	 * Allocate Rx buffers.
1040	 */
1041	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1042		data = &ring->data[i];
1043
1044		data->m = m_get(M_DONTWAIT, MT_HEADER);
1045		if (data->m == NULL) {
1046			device_printf(sc->sc_dev,
1047			    "could not allocate rx mbuf\n");
1048			error = ENOBUFS;
1049			goto fail;
1050		}
1051
1052		if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
1053			m_freem(data->m);
1054			data->m = NULL;
1055			device_printf(sc->sc_dev,
1056			    "could not allocate rx buffer\n");
1057			error = ENOBUFS;
1058			goto fail;
1059		}
1060
1061		/* attach RxBuffer to mbuf */
1062		MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE,wpi_free_rbuf,
1063		    rbuf,0,EXT_NET_DRV);
1064
1065		if ((data->m->m_flags & M_EXT) == 0) {
1066			m_freem(data->m);
1067			data->m = NULL;
1068			error = ENOBUFS;
1069			goto fail;
1070		}
1071		ring->desc[i] = htole32(rbuf->paddr);
1072	}
1073
1074	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1075	    BUS_DMASYNC_PREWRITE);
1076
1077	return 0;
1078
1079fail:
1080	wpi_free_rx_ring(sc, ring);
1081	return error;
1082}
1083
1084static void
1085wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1086{
1087	int ntries;
1088
1089	wpi_mem_lock(sc);
1090
1091	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1092
1093	for (ntries = 0; ntries < 100; ntries++) {
1094		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1095			break;
1096		DELAY(10);
1097	}
1098
1099	wpi_mem_unlock(sc);
1100
1101#ifdef WPI_DEBUG
1102	if (ntries == 100 && wpi_debug > 0)
1103		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1104#endif
1105
1106	ring->cur = 0;
1107}
1108
1109static void
1110wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1111{
1112	int i;
1113
1114	wpi_dma_contig_free(&ring->desc_dma);
1115
1116	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1117		if (ring->data[i].m != NULL) {
1118			m_freem(ring->data[i].m);
1119			ring->data[i].m = NULL;
1120		}
1121	}
1122}
1123
1124static int
1125wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1126	int qid)
1127{
1128	struct wpi_tx_data *data;
1129	int i, error;
1130
1131	ring->qid = qid;
1132	ring->count = count;
1133	ring->queued = 0;
1134	ring->cur = 0;
1135	ring->data = NULL;
1136
1137	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1138		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1139		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1140
1141	if (error != 0) {
1142	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1143	    goto fail;
1144	}
1145
1146	/* update shared page with ring's base address */
1147	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1148
1149	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1150		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1151		BUS_DMA_NOWAIT);
1152
1153	if (error != 0) {
1154		device_printf(sc->sc_dev,
1155		    "could not allocate tx command DMA memory\n");
1156		goto fail;
1157	}
1158
1159	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1160	    M_NOWAIT | M_ZERO);
1161	if (ring->data == NULL) {
1162		device_printf(sc->sc_dev,
1163		    "could not allocate tx data slots\n");
1164		goto fail;
1165	}
1166
1167	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1168	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1169	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1170	    &ring->data_dmat);
1171	if (error != 0) {
1172		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1173		goto fail;
1174	}
1175
1176	for (i = 0; i < count; i++) {
1177		data = &ring->data[i];
1178
1179		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1180		if (error != 0) {
1181			device_printf(sc->sc_dev,
1182			    "could not create tx buf DMA map\n");
1183			goto fail;
1184		}
1185		bus_dmamap_sync(ring->data_dmat, data->map,
1186		    BUS_DMASYNC_PREWRITE);
1187	}
1188
1189	return 0;
1190
1191fail:	wpi_free_tx_ring(sc, ring);
1192	return error;
1193}
1194
1195static void
1196wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1197{
1198	struct wpi_tx_data *data;
1199	int i, ntries;
1200
1201	wpi_mem_lock(sc);
1202
1203	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1204	for (ntries = 0; ntries < 100; ntries++) {
1205		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1206			break;
1207		DELAY(10);
1208	}
1209#ifdef WPI_DEBUG
1210	if (ntries == 100 && wpi_debug > 0) {
1211		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1212		    ring->qid);
1213	}
1214#endif
1215	wpi_mem_unlock(sc);
1216
1217	for (i = 0; i < ring->count; i++) {
1218		data = &ring->data[i];
1219
1220		if (data->m != NULL) {
1221			bus_dmamap_unload(ring->data_dmat, data->map);
1222			m_freem(data->m);
1223			data->m = NULL;
1224		}
1225	}
1226
1227	ring->queued = 0;
1228	ring->cur = 0;
1229}
1230
1231static void
1232wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1233{
1234	struct wpi_tx_data *data;
1235	int i;
1236
1237	wpi_dma_contig_free(&ring->desc_dma);
1238	wpi_dma_contig_free(&ring->cmd_dma);
1239
1240	if (ring->data != NULL) {
1241		for (i = 0; i < ring->count; i++) {
1242			data = &ring->data[i];
1243
1244			if (data->m != NULL) {
1245				bus_dmamap_sync(ring->data_dmat, data->map,
1246				    BUS_DMASYNC_POSTWRITE);
1247				bus_dmamap_unload(ring->data_dmat, data->map);
1248				m_freem(data->m);
1249				data->m = NULL;
1250			}
1251		}
1252		free(ring->data, M_DEVBUF);
1253	}
1254
1255	if (ring->data_dmat != NULL)
1256		bus_dma_tag_destroy(ring->data_dmat);
1257}
1258
1259static int
1260wpi_shutdown(device_t dev)
1261{
1262	struct wpi_softc *sc = device_get_softc(dev);
1263	WPI_LOCK_DECL;
1264
1265	WPI_LOCK(sc);
1266	wpi_stop_locked(sc);
1267	wpi_unload_firmware(sc);
1268	WPI_UNLOCK(sc);
1269
1270	return 0;
1271}
1272
1273static int
1274wpi_suspend(device_t dev)
1275{
1276	struct wpi_softc *sc = device_get_softc(dev);
1277
1278	wpi_stop(sc);
1279	return 0;
1280}
1281
1282static int
1283wpi_resume(device_t dev)
1284{
1285	struct wpi_softc *sc = device_get_softc(dev);
1286	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1287
1288	pci_write_config(dev, 0x41, 0, 1);
1289
1290	if (ifp->if_flags & IFF_UP) {
1291		wpi_init(ifp->if_softc);
1292		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1293			wpi_start(ifp);
1294	}
1295	return 0;
1296}
1297
1298/* ARGSUSED */
1299static struct ieee80211_node *
1300wpi_node_alloc(struct ieee80211_node_table *ic)
1301{
1302	struct wpi_node *wn;
1303
1304	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT |M_ZERO);
1305
1306	return &wn->ni;
1307}
1308
1309static int
1310wpi_media_change(struct ifnet *ifp)
1311{
1312	int error;
1313
1314	error = ieee80211_media_change(ifp);
1315	if (error != ENETRESET)
1316		return error;
1317
1318	if ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
1319		wpi_init(ifp->if_softc);
1320
1321	return 0;
1322}
1323
1324/**
1325 * Called by net80211 when ever there is a change to 80211 state machine
1326 */
1327static int
1328wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1329{
1330	struct ifnet *ifp = ic->ic_ifp;
1331	struct wpi_softc *sc = ifp->if_softc;
1332	struct ieee80211_node *ni;
1333	int error;
1334
1335	callout_stop(&sc->calib_to);
1336
1337	switch (nstate) {
1338	case IEEE80211_S_SCAN:
1339		DPRINTF(("NEWSTATE:SCAN\n"));
1340		/* Scanning is handled in net80211 via the scan_start,
1341		 * scan_end, scan_curchan functions. Hence all we do when
1342		 * changing to the SCAN state is update the leds
1343		 */
1344
1345		/* make the link LED blink while we're scanning */
1346		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
1347		break;
1348
1349	case IEEE80211_S_ASSOC:
1350		DPRINTF(("NEWSTATE:ASSOC\n"));
1351		if (ic->ic_state != IEEE80211_S_RUN)
1352		  break;
1353		/* FALLTHROUGH */
1354
1355	case IEEE80211_S_AUTH:
1356		DPRINTF(("NEWSTATE:AUTH\n"));
1357		sc->flags |= WPI_FLAG_AUTH;
1358		sc->config.associd = 0;
1359		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
1360		wpi_queue_cmd(sc,WPI_AUTH);
1361		DPRINTF(("END AUTH\n"));
1362		break;
1363
1364	case IEEE80211_S_RUN:
1365		DPRINTF(("NEWSTATE:RUN\n"));
1366		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
1367			/* link LED blinks while monitoring */
1368			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
1369			break;
1370		}
1371
1372#if 0
1373		if (ic->ic_opmode != IEEE80211_M_STA) {
1374			(void) wpi_auth(sc);    /* XXX */
1375			wpi_setup_beacon(sc, ic->ic_bss);
1376		}
1377#endif
1378
1379		ni = ic->ic_bss;
1380		wpi_enable_tsf(sc, ni);
1381
1382		/* update adapter's configuration */
1383		sc->config.associd = htole16(ni->ni_associd & ~0xc000);
1384		/* short preamble/slot time are negotiated when associating */
1385		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
1386			WPI_CONFIG_SHSLOT);
1387		if (ic->ic_flags & IEEE80211_F_SHSLOT)
1388			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
1389		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1390			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
1391		sc->config.filter |= htole32(WPI_FILTER_BSS);
1392#if 0
1393		if (ic->ic_opmode != IEEE80211_M_STA)
1394			sc->config.filter |= htole32(WPI_FILTER_BEACON);
1395#endif
1396
1397/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
1398
1399		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
1400		    sc->config.flags));
1401		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
1402			sizeof (struct wpi_config), 1);
1403		if (error != 0) {
1404			device_printf(sc->sc_dev,
1405			    "could not update configuration\n");
1406			return error;
1407		}
1408
1409		if ((error = wpi_set_txpower(sc, ic->ic_bss->ni_chan, 1)) != 0) {
1410			device_printf(sc->sc_dev,
1411			    "could set txpower\n");
1412			return error;
1413		}
1414
1415		if (ic->ic_opmode == IEEE80211_M_STA) {
1416			/* fake a join to init the tx rate */
1417			wpi_newassoc(ic->ic_bss, 1);
1418		}
1419
1420		/* start automatic rate control timer */
1421		callout_reset(&sc->calib_to, hz/2, wpi_calib_timeout, sc);
1422
1423		/* link LED always on while associated */
1424		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
1425		break;
1426
1427	case IEEE80211_S_INIT:
1428		DPRINTF(("NEWSTATE:INIT\n"));
1429		break;
1430
1431	default:
1432		break;
1433	}
1434
1435	return (*sc->sc_newstate)(ic, nstate, arg);
1436}
1437
1438/*
1439 * Grab exclusive access to NIC memory.
1440 */
1441static void
1442wpi_mem_lock(struct wpi_softc *sc)
1443{
1444	int ntries;
1445	uint32_t tmp;
1446
1447	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1448	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1449
1450	/* spin until we actually get the lock */
1451	for (ntries = 0; ntries < 100; ntries++) {
1452		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1453			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1454			break;
1455		DELAY(10);
1456	}
1457	if (ntries == 100)
1458		device_printf(sc->sc_dev, "could not lock memory\n");
1459}
1460
1461/*
1462 * Release lock on NIC memory.
1463 */
1464static void
1465wpi_mem_unlock(struct wpi_softc *sc)
1466{
1467	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1468	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1469}
1470
1471static uint32_t
1472wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1473{
1474	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1475	return WPI_READ(sc, WPI_READ_MEM_DATA);
1476}
1477
1478static void
1479wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1480{
1481	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1482	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1483}
1484
1485static void
1486wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1487    const uint32_t *data, int wlen)
1488{
1489	for (; wlen > 0; wlen--, data++, addr+=4)
1490		wpi_mem_write(sc, addr, *data);
1491}
1492
1493/*
1494 * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1495 * using the traditional bit-bang method. Data is read up until len bytes have
1496 * been obtained.
1497 */
1498static uint16_t
1499wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1500{
1501	int ntries;
1502	uint32_t val;
1503	uint8_t *out = data;
1504
1505	wpi_mem_lock(sc);
1506
1507	for (; len > 0; len -= 2, addr++) {
1508		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1509
1510		for (ntries = 0; ntries < 10; ntries++) {
1511			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1512				break;
1513			DELAY(5);
1514		}
1515
1516		if (ntries == 10) {
1517			device_printf(sc->sc_dev, "could not read EEPROM\n");
1518			return ETIMEDOUT;
1519		}
1520
1521		*out++= val >> 16;
1522		if (len > 1)
1523			*out ++= val >> 24;
1524	}
1525
1526	wpi_mem_unlock(sc);
1527
1528	return 0;
1529}
1530
1531/*
1532 * The firmware text and data segments are transferred to the NIC using DMA.
1533 * The driver just copies the firmware into DMA-safe memory and tells the NIC
1534 * where to find it.  Once the NIC has copied the firmware into its internal
1535 * memory, we can free our local copy in the driver.
1536 */
1537static int
1538wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1539{
1540	int error, ntries;
1541
1542	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1543
1544	size /= sizeof(uint32_t);
1545
1546	wpi_mem_lock(sc);
1547
1548	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1549	    (const uint32_t *)fw, size);
1550
1551	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1552	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1553	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1554
1555	/* run microcode */
1556	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1557
1558	/* wait while the adapter is busy copying the firmware */
1559	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1560		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1561		DPRINTFN(WPI_DEBUG_HW,
1562		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1563		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1564		if (status & WPI_TX_IDLE(6)) {
1565			DPRINTFN(WPI_DEBUG_HW,
1566			    ("Status Match! - ntries = %d\n", ntries));
1567			break;
1568		}
1569		DELAY(10);
1570	}
1571	if (ntries == 1000) {
1572		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1573		error = ETIMEDOUT;
1574	}
1575
1576	/* start the microcode executing */
1577	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1578
1579	wpi_mem_unlock(sc);
1580
1581	return (error);
1582}
1583
1584static void
1585wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1586	struct wpi_rx_data *data)
1587{
1588	struct ieee80211com *ic = &sc->sc_ic;
1589	struct ifnet *ifp = ic->ic_ifp;
1590	struct wpi_rx_ring *ring = &sc->rxq;
1591	struct wpi_rx_stat *stat;
1592	struct wpi_rx_head *head;
1593	struct wpi_rx_tail *tail;
1594	struct wpi_rbuf *rbuf;
1595	struct ieee80211_frame *wh;
1596	struct ieee80211_node *ni;
1597	struct mbuf *m, *mnew;
1598	WPI_LOCK_DECL;
1599
1600	stat = (struct wpi_rx_stat *)(desc + 1);
1601
1602	if (stat->len > WPI_STAT_MAXLEN) {
1603		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1604		ifp->if_ierrors++;
1605		return;
1606	}
1607
1608	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1609	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1610
1611	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1612	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1613	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1614	    (uintmax_t)le64toh(tail->tstamp)));
1615
1616	m = data->m;
1617
1618	/* finalize mbuf */
1619	m->m_pkthdr.rcvif = ifp;
1620	m->m_data = (caddr_t)(head + 1);
1621	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1622
1623	if ((rbuf = SLIST_FIRST(&sc->rxq.freelist)) != NULL) {
1624		mnew = m_gethdr(M_DONTWAIT,MT_DATA);
1625		if (mnew == NULL) {
1626			ifp->if_ierrors++;
1627			return;
1628		}
1629
1630		/* attach Rx buffer to mbuf */
1631		MEXTADD(mnew,rbuf->vaddr,WPI_RBUF_SIZE, wpi_free_rbuf, rbuf, 0,
1632		    EXT_NET_DRV);
1633		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
1634		data->m = mnew;
1635
1636		/* update Rx descriptor */
1637		ring->desc[ring->cur] = htole32(rbuf->paddr);
1638	} else {
1639		/* no free rbufs, copy frame */
1640		m = m_dup(m, M_DONTWAIT);
1641		if (m == NULL) {
1642			/* no free mbufs either, drop frame */
1643			ifp->if_ierrors++;
1644			return;
1645		}
1646	}
1647
1648#ifndef WPI_CURRENT
1649	if (sc->sc_drvbpf != NULL) {
1650#else
1651	if (bpf_peers_present(sc->sc_drvbpf)) {
1652#endif
1653		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1654
1655		tap->wr_flags = 0;
1656		tap->wr_chan_freq =
1657			htole16(ic->ic_channels[head->chan].ic_freq);
1658		tap->wr_chan_flags =
1659			htole16(ic->ic_channels[head->chan].ic_flags);
1660		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1661		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1662		tap->wr_tsft = tail->tstamp;
1663		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1664		switch (head->rate) {
1665		/* CCK rates */
1666		case  10: tap->wr_rate =   2; break;
1667		case  20: tap->wr_rate =   4; break;
1668		case  55: tap->wr_rate =  11; break;
1669		case 110: tap->wr_rate =  22; break;
1670		/* OFDM rates */
1671		case 0xd: tap->wr_rate =  12; break;
1672		case 0xf: tap->wr_rate =  18; break;
1673		case 0x5: tap->wr_rate =  24; break;
1674		case 0x7: tap->wr_rate =  36; break;
1675		case 0x9: tap->wr_rate =  48; break;
1676		case 0xb: tap->wr_rate =  72; break;
1677		case 0x1: tap->wr_rate =  96; break;
1678		case 0x3: tap->wr_rate = 108; break;
1679		/* unknown rate: should not happen */
1680		default:  tap->wr_rate =   0;
1681		}
1682		if (le16toh(head->flags) & 0x4)
1683			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1684
1685		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1686	}
1687
1688	wh = mtod(m, struct ieee80211_frame *);
1689	WPI_UNLOCK(sc);
1690
1691	/* XXX frame length > sizeof(struct ieee80211_frame_min)? */
1692	/* grab a reference to the source node */
1693	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1694
1695	/* send the frame to the 802.11 layer */
1696	ieee80211_input(ic, m, ni, stat->rssi, 0, 0);
1697
1698	/* release node reference */
1699	ieee80211_free_node(ni);
1700	WPI_LOCK(sc);
1701}
1702
1703static void
1704wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1705{
1706	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1707	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1708	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1709	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1710	struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1711
1712	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1713	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1714	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1715	    le32toh(stat->status)));
1716
1717	/*
1718	 * Update rate control statistics for the node.
1719	 * XXX we should not count mgmt frames since they're always sent at
1720	 * the lowest available bit-rate.
1721	 * XXX frames w/o ACK shouldn't be used either
1722	 */
1723	wn->amn.amn_txcnt++;
1724	if (stat->ntries > 0) {
1725		DPRINTFN(3, ("%d retries\n", stat->ntries));
1726		wn->amn.amn_retrycnt++;
1727	}
1728
1729	/* XXX oerrors should only count errors !maxtries */
1730	if ((le32toh(stat->status) & 0xff) != 1)
1731		ifp->if_oerrors++;
1732	else
1733		ifp->if_opackets++;
1734
1735	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1736	bus_dmamap_unload(ring->data_dmat, txdata->map);
1737	/* XXX handle M_TXCB? */
1738	m_freem(txdata->m);
1739	txdata->m = NULL;
1740	ieee80211_free_node(txdata->ni);
1741	txdata->ni = NULL;
1742
1743	ring->queued--;
1744
1745	sc->sc_tx_timer = 0;
1746	sc->watchdog_cnt = 0;
1747	callout_stop(&sc->watchdog_to);
1748	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1749	wpi_start(ifp);
1750}
1751
1752static void
1753wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1754{
1755	struct wpi_tx_ring *ring = &sc->cmdq;
1756	struct wpi_tx_data *data;
1757
1758	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1759				 "type=%s len=%d\n", desc->qid, desc->idx,
1760				 desc->flags, wpi_cmd_str(desc->type),
1761				 le32toh(desc->len)));
1762
1763	if ((desc->qid & 7) != 4)
1764		return;	/* not a command ack */
1765
1766	data = &ring->data[desc->idx];
1767
1768	/* if the command was mapped in a mbuf, free it */
1769	if (data->m != NULL) {
1770		bus_dmamap_unload(ring->data_dmat, data->map);
1771		m_freem(data->m);
1772		data->m = NULL;
1773	}
1774
1775	sc->flags &= ~WPI_FLAG_BUSY;
1776	wakeup(&ring->cmd[desc->idx]);
1777}
1778
1779static void
1780wpi_notif_intr(struct wpi_softc *sc)
1781{
1782	struct ieee80211com *ic = &sc->sc_ic;
1783	struct wpi_rx_desc *desc;
1784	struct wpi_rx_data *data;
1785	uint32_t hw;
1786
1787	hw = le32toh(sc->shared->next);
1788	while (sc->rxq.cur != hw) {
1789		data = &sc->rxq.data[sc->rxq.cur];
1790		desc = (void *)data->m->m_ext.ext_buf;
1791
1792		DPRINTFN(WPI_DEBUG_NOTIFY,
1793			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1794			  desc->qid,
1795			  desc->idx,
1796			  desc->flags,
1797			  desc->type,
1798			  le32toh(desc->len)));
1799
1800		if (!(desc->qid & 0x80))	/* reply to a command */
1801			wpi_cmd_intr(sc, desc);
1802
1803		/* XXX beacon miss handling? */
1804		switch (desc->type) {
1805		case WPI_RX_DONE:
1806			/* a 802.11 frame was received */
1807			wpi_rx_intr(sc, desc, data);
1808			break;
1809
1810		case WPI_TX_DONE:
1811			/* a 802.11 frame has been transmitted */
1812			wpi_tx_intr(sc, desc);
1813			break;
1814
1815		case WPI_UC_READY:
1816		{
1817			struct wpi_ucode_info *uc =
1818				(struct wpi_ucode_info *)(desc + 1);
1819
1820			/* the microcontroller is ready */
1821			DPRINTF(("microcode alive notification version %x "
1822				"alive %x\n", le32toh(uc->version),
1823				le32toh(uc->valid)));
1824
1825			if (le32toh(uc->valid) != 1) {
1826				device_printf(sc->sc_dev,
1827				    "microcontroller initialization failed\n");
1828				wpi_stop_locked(sc);
1829			}
1830			break;
1831		}
1832		case WPI_STATE_CHANGED:
1833		{
1834			uint32_t *status = (uint32_t *)(desc + 1);
1835
1836			/* enabled/disabled notification */
1837			DPRINTF(("state changed to %x\n", le32toh(*status)));
1838
1839			if (le32toh(*status) & 1) {
1840				device_printf(sc->sc_dev,
1841				    "Radio transmitter is switched off\n");
1842				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1843				break;
1844			}
1845			sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
1846			break;
1847		}
1848		case WPI_START_SCAN:
1849		{
1850			struct wpi_start_scan *scan =
1851				(struct wpi_start_scan *)(desc + 1);
1852
1853			DPRINTFN(WPI_DEBUG_SCANNING,
1854				 ("scanning channel %d status %x\n",
1855			    scan->chan, le32toh(scan->status)));
1856
1857			/* fix current channel */
1858			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1859			break;
1860		}
1861		case WPI_STOP_SCAN:
1862		{
1863			struct wpi_stop_scan *scan =
1864				(struct wpi_stop_scan *)(desc + 1);
1865
1866			DPRINTFN(WPI_DEBUG_SCANNING,
1867			    ("scan finished nchan=%d status=%d chan=%d\n",
1868			     scan->nchan, scan->status, scan->chan));
1869
1870			wpi_queue_cmd(sc, WPI_SCAN_NEXT);
1871			break;
1872		}
1873		}
1874
1875		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1876	}
1877
1878	/* tell the firmware what we have processed */
1879	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1880	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1881
1882}
1883
1884static void
1885wpi_intr(void *arg)
1886{
1887	struct wpi_softc *sc = arg;
1888	uint32_t r;
1889	WPI_LOCK_DECL;
1890
1891	WPI_LOCK(sc);
1892
1893	r = WPI_READ(sc, WPI_INTR);
1894	if (r == 0 || r == 0xffffffff) {
1895		WPI_UNLOCK(sc);
1896		return;
1897	}
1898
1899	/* disable interrupts */
1900	WPI_WRITE(sc, WPI_MASK, 0);
1901	/* ack interrupts */
1902	WPI_WRITE(sc, WPI_INTR, r);
1903
1904	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1905		device_printf(sc->sc_dev, "fatal firmware error\n");
1906		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1907				"(Hardware Error)"));
1908		taskqueue_enqueue(sc->sc_tq2, &sc->sc_restarttask);
1909		sc->flags &= ~WPI_FLAG_BUSY;
1910		WPI_UNLOCK(sc);
1911		return;
1912	}
1913
1914	if (r & WPI_RX_INTR)
1915		wpi_notif_intr(sc);
1916
1917	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1918		wakeup(sc);
1919
1920	/* re-enable interrupts */
1921	if (sc->sc_ifp->if_flags & IFF_UP)
1922		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1923
1924	WPI_UNLOCK(sc);
1925}
1926
1927static uint8_t
1928wpi_plcp_signal(int rate)
1929{
1930	switch (rate) {
1931	/* CCK rates (returned values are device-dependent) */
1932	case 2:		return 10;
1933	case 4:		return 20;
1934	case 11:	return 55;
1935	case 22:	return 110;
1936
1937	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1938	/* R1-R4 (ral/ural is R4-R1) */
1939	case 12:	return 0xd;
1940	case 18:	return 0xf;
1941	case 24:	return 0x5;
1942	case 36:	return 0x7;
1943	case 48:	return 0x9;
1944	case 72:	return 0xb;
1945	case 96:	return 0x1;
1946	case 108:	return 0x3;
1947
1948	/* unsupported rates (should not get there) */
1949	default:	return 0;
1950	}
1951}
1952
1953/* quickly determine if a given rate is CCK or OFDM */
1954#define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1955
1956/*
1957 * Construct the data packet for a transmit buffer and acutally put
1958 * the buffer onto the transmit ring, kicking the card to process the
1959 * the buffer.
1960 */
1961static int
1962wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1963	int ac)
1964{
1965	struct ieee80211com *ic = &sc->sc_ic;
1966	struct wpi_tx_ring *ring = &sc->txq[ac];
1967	struct wpi_tx_desc *desc;
1968	struct wpi_tx_data *data;
1969	struct wpi_tx_cmd *cmd;
1970	struct wpi_cmd_data *tx;
1971	struct ieee80211_frame *wh;
1972	struct ieee80211_key *k;
1973	const struct chanAccParams *cap;
1974	struct mbuf *mnew;
1975	int i, error, nsegs, rate, hdrlen, noack = 0;
1976	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1977
1978	desc = &ring->desc[ring->cur];
1979	data = &ring->data[ring->cur];
1980
1981	wh = mtod(m0, struct ieee80211_frame *);
1982
1983	if (IEEE80211_QOS_HAS_SEQ(wh)) {
1984		hdrlen = sizeof (struct ieee80211_qosframe);
1985		cap = &ic->ic_wme.wme_chanParams;
1986		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1987	} else
1988		hdrlen = sizeof (struct ieee80211_frame);
1989
1990	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1991		if ((k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
1992			m_freem(m0);
1993			return ENOBUFS;
1994		}
1995
1996		/* packet header may have moved, reset our local pointer */
1997		wh = mtod(m0, struct ieee80211_frame *);
1998	}
1999
2000	/* pickup a rate */
2001	if (IEEE80211_IS_MULTICAST(wh->i_addr1)||
2002	    ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
2003		IEEE80211_FC0_TYPE_MGT)) {
2004		/*
2005		 * mgmt/multicast frames are sent at the lowest available
2006		 * bit-rate
2007		 */
2008		rate = ni->ni_rates.rs_rates[0];
2009	} else {
2010		if (ic->ic_fixed_rate != -1) {
2011			rate = ic->ic_sup_rates[ic->ic_curmode].
2012				rs_rates[ic->ic_fixed_rate];
2013		} else
2014			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
2015	}
2016	rate &= IEEE80211_RATE_VAL;
2017
2018#ifndef WPI_CURRENT
2019	if (sc->sc_drvbpf != NULL) {
2020#else
2021	if (bpf_peers_present(sc->sc_drvbpf)) {
2022#endif
2023
2024		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2025
2026		tap->wt_flags = 0;
2027		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
2028		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
2029		tap->wt_rate = rate;
2030		tap->wt_hwqueue = ac;
2031		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2032			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2033
2034		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2035	}
2036
2037	cmd = &ring->cmd[ring->cur];
2038	cmd->code = WPI_CMD_TX_DATA;
2039	cmd->flags = 0;
2040	cmd->qid = ring->qid;
2041	cmd->idx = ring->cur;
2042
2043	tx = (struct wpi_cmd_data *)cmd->data;
2044	tx->flags = 0;
2045
2046	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2047		tx->flags |= htole32(WPI_TX_NEED_ACK);
2048	} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
2049		tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
2050	}
2051
2052	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
2053
2054	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
2055	  WPI_ID_BSS;
2056
2057	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
2058		IEEE80211_FC0_TYPE_MGT) {
2059		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2060		/* tell h/w to set timestamp in probe responses */
2061		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2062			    tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
2063
2064		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2065			    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2066			tx->timeout = htole16(3);
2067		else
2068			tx->timeout = htole16(2);
2069	} else
2070		tx->timeout = htole16(0);
2071
2072	tx->rate = wpi_plcp_signal(rate);
2073
2074	/* be very persistant at sending frames out */
2075	tx->rts_ntries = 7;
2076	tx->data_ntries = 15;
2077
2078	tx->ofdm_mask = 0xff;
2079	tx->cck_mask = 0x0f;
2080	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2081
2082	tx->len = htole16(m0->m_pkthdr.len);
2083
2084	/* save and trim IEEE802.11 header */
2085	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
2086	m_adj(m0, hdrlen);
2087
2088	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
2089	    &nsegs, BUS_DMA_NOWAIT);
2090	if (error != 0 && error != EFBIG) {
2091		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
2092		    error);
2093		m_freem(m0);
2094		return error;
2095	}
2096	if (error != 0) {
2097		/* XXX use ath_defrag */
2098		mnew = m_defrag(m0, M_DONTWAIT);
2099		if (mnew == NULL) {
2100			device_printf(sc->sc_dev,
2101			    "could not defragment mbuf\n");
2102			m_freem(m0);
2103			return ENOBUFS;
2104		}
2105		m0 = mnew;
2106
2107		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
2108		    m0, segs, &nsegs, BUS_DMA_NOWAIT);
2109		if (error != 0) {
2110			device_printf(sc->sc_dev,
2111			    "could not map mbuf (error %d)\n", error);
2112			m_freem(m0);
2113			return error;
2114		}
2115	}
2116
2117	data->m = m0;
2118	data->ni = ni;
2119
2120	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2121	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
2122
2123	/* first scatter/gather segment is used by the tx data command */
2124	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
2125	    (1 + nsegs) << 24);
2126	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2127	    ring->cur * sizeof (struct wpi_tx_cmd));
2128	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
2129	for (i = 1; i <= nsegs; i++) {
2130		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
2131		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
2132	}
2133
2134	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2135	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2136	    BUS_DMASYNC_PREWRITE);
2137
2138	ring->queued++;
2139
2140	/* kick ring */
2141	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2142	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2143
2144	return 0;
2145}
2146
2147/**
2148 * Process data waiting to be sent on the IFNET output queue
2149 */
2150static void
2151wpi_start(struct ifnet *ifp)
2152{
2153	struct wpi_softc *sc = ifp->if_softc;
2154	struct ieee80211com *ic = &sc->sc_ic;
2155	struct ieee80211_node *ni;
2156	struct ether_header *eh;
2157	struct mbuf *m0;
2158	int ac;
2159	WPI_LOCK_DECL;
2160
2161	WPI_LOCK(sc);
2162
2163	for (;;) {
2164		IF_POLL(&ic->ic_mgtq, m0);
2165		if (m0 != NULL) {
2166			IF_DEQUEUE(&ic->ic_mgtq, m0);
2167
2168			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2169			m0->m_pkthdr.rcvif = NULL;
2170
2171			/* management frames go into ring 0 */
2172			if (sc->txq[0].queued > sc->txq[0].count - 8) {
2173				ifp->if_oerrors++;
2174				continue;
2175			}
2176
2177			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
2178				ifp->if_oerrors++;
2179				break;
2180			}
2181		} else {
2182			if (ic->ic_state != IEEE80211_S_RUN)
2183				break;
2184
2185			IFQ_POLL(&ifp->if_snd, m0);
2186			if (m0 == NULL)
2187				break;
2188
2189			/*
2190			 * Cancel any background scan.
2191			 */
2192			if (ic->ic_flags & IEEE80211_F_SCAN)
2193				ieee80211_cancel_scan(ic);
2194
2195			if (m0->m_len < sizeof (*eh) &&
2196			    (m0 = m_pullup(m0, sizeof (*eh))) != NULL) {
2197				ifp->if_oerrors++;
2198				continue;
2199			}
2200			eh = mtod(m0, struct ether_header *);
2201			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2202			if (ni == NULL) {
2203				m_freem(m0);
2204				ifp->if_oerrors++;
2205				continue;
2206			}
2207
2208			/* classify mbuf so we can find which tx ring to use */
2209			if (ieee80211_classify(ic, m0, ni) != 0) {
2210				m_freem(m0);
2211				ieee80211_free_node(ni);
2212				ifp->if_oerrors++;
2213				continue;
2214			}
2215
2216			/* no QoS encapsulation for EAPOL frames */
2217			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
2218			    M_WME_GETAC(m0) : WME_AC_BE;
2219
2220			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2221				/* there is no place left in this ring */
2222				IFQ_DRV_PREPEND(&ifp->if_snd, m0);
2223				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2224				break;
2225			}
2226
2227			IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
2228			BPF_MTAP(ifp, m0);
2229
2230			m0 = ieee80211_encap(ic, m0, ni);
2231			if (m0 == NULL) {
2232				ieee80211_free_node(ni);
2233				ifp->if_oerrors++;
2234				continue;
2235			}
2236
2237#ifndef WPI_CURRENT
2238			if (ic->ic_rawbpf != NULL)
2239#else
2240			if (bpf_peers_present(ic->ic_rawbpf))
2241#endif
2242				bpf_mtap(ic->ic_rawbpf, m0);
2243
2244			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2245				ieee80211_free_node(ni);
2246				ifp->if_oerrors++;
2247				break;
2248			}
2249		}
2250
2251		sc->sc_tx_timer = 5;
2252		sc->watchdog_cnt = 5;
2253		ic->ic_lastdata = ticks;
2254	}
2255
2256	WPI_UNLOCK(sc);
2257}
2258
2259static void
2260wpi_watchdog(struct ifnet *ifp)
2261{
2262	struct wpi_softc *sc = ifp->if_softc;
2263	WPI_LOCK_DECL;
2264
2265	WPI_LOCK(sc);
2266
2267	DPRINTFN(WPI_DEBUG_WATCHDOG, ("watchdog_cnt: %d\n", sc->watchdog_cnt));
2268
2269	if (sc->watchdog_cnt == 0 || --sc->watchdog_cnt)
2270		goto done;
2271
2272	if (--sc->sc_tx_timer != 0) {
2273		device_printf(sc->sc_dev,"device timeout\n");
2274		ifp->if_oerrors++;
2275		taskqueue_enqueue(sc->sc_tq2, &sc->sc_restarttask);
2276	}
2277done:
2278	WPI_UNLOCK(sc);
2279}
2280
2281static int
2282wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2283{
2284	struct wpi_softc *sc = ifp->if_softc;
2285	struct ieee80211com *ic = &sc->sc_ic;
2286	int error = 0;
2287	WPI_LOCK_DECL;
2288
2289	WPI_LOCK(sc);
2290
2291	switch (cmd) {
2292	case SIOCSIFFLAGS:
2293		if ((ifp->if_flags & IFF_UP)) {
2294			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
2295				wpi_init(sc);
2296		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2297			wpi_stop_locked(sc);
2298		break;
2299	default:
2300		WPI_UNLOCK(sc);
2301		error = ieee80211_ioctl(ic, cmd, data);
2302		WPI_LOCK(sc);
2303	}
2304
2305	if (error == ENETRESET) {
2306		if ((ifp->if_flags & IFF_UP) &&
2307		    (ifp->if_drv_flags & IFF_DRV_RUNNING) &&
2308		    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2309			wpi_init(sc);
2310		error = 0;
2311	}
2312
2313	WPI_UNLOCK(sc);
2314
2315	return error;
2316}
2317
2318/*
2319 * Extract various information from EEPROM.
2320 */
2321static void
2322wpi_read_eeprom(struct wpi_softc *sc)
2323{
2324	struct ieee80211com *ic = &sc->sc_ic;
2325	int i;
2326
2327	/* read the hardware capabilities, revision and SKU type */
2328	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2329	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2330	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2331
2332	/* read the regulatory domain */
2333	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2334
2335	/* read in the hw MAC address */
2336	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2337
2338	/* read the list of authorized channels */
2339	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2340		wpi_read_eeprom_channels(sc,i);
2341
2342	/* read the power level calibration info for each group */
2343	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2344		wpi_read_eeprom_group(sc,i);
2345}
2346
2347/*
2348 * Send a command to the firmware.
2349 */
2350static int
2351wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2352{
2353	struct wpi_tx_ring *ring = &sc->cmdq;
2354	struct wpi_tx_desc *desc;
2355	struct wpi_tx_cmd *cmd;
2356
2357#ifdef WPI_DEBUG
2358	if (!async) {
2359		WPI_LOCK_ASSERT(sc);
2360	}
2361#endif
2362
2363	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2364		    async));
2365
2366	if (sc->flags & WPI_FLAG_BUSY) {
2367		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2368		    __func__, code);
2369		return EAGAIN;
2370	}
2371	sc->flags|= WPI_FLAG_BUSY;
2372
2373	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2374	    code, size));
2375
2376	desc = &ring->desc[ring->cur];
2377	cmd = &ring->cmd[ring->cur];
2378
2379	cmd->code = code;
2380	cmd->flags = 0;
2381	cmd->qid = ring->qid;
2382	cmd->idx = ring->cur;
2383	memcpy(cmd->data, buf, size);
2384
2385	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2386	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2387		ring->cur * sizeof (struct wpi_tx_cmd));
2388	desc->segs[0].len  = htole32(4 + size);
2389
2390	/* kick cmd ring */
2391	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2392	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2393
2394	if (async) {
2395		sc->flags &= ~ WPI_FLAG_BUSY;
2396		return 0;
2397	}
2398
2399	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2400}
2401
2402static int
2403wpi_wme_update(struct ieee80211com *ic)
2404{
2405#define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2406#define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2407	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2408	const struct wmeParams *wmep;
2409	struct wpi_wme_setup wme;
2410	int ac;
2411
2412	/* don't override default WME values if WME is not actually enabled */
2413	if (!(ic->ic_flags & IEEE80211_F_WME))
2414		return 0;
2415
2416	wme.flags = 0;
2417	for (ac = 0; ac < WME_NUM_AC; ac++) {
2418		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2419		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2420		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2421		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2422		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2423
2424		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2425		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2426		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2427	}
2428
2429	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2430#undef WPI_USEC
2431#undef WPI_EXP2
2432}
2433
2434/*
2435 * Configure h/w multi-rate retries.
2436 */
2437static int
2438wpi_mrr_setup(struct wpi_softc *sc)
2439{
2440	struct ieee80211com *ic = &sc->sc_ic;
2441	struct wpi_mrr_setup mrr;
2442	int i, error;
2443
2444	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2445
2446	/* CCK rates (not used with 802.11a) */
2447	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2448		mrr.rates[i].flags = 0;
2449		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2450		/* fallback to the immediate lower CCK rate (if any) */
2451		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2452		/* try one time at this rate before falling back to "next" */
2453		mrr.rates[i].ntries = 1;
2454	}
2455
2456	/* OFDM rates (not used with 802.11b) */
2457	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2458		mrr.rates[i].flags = 0;
2459		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2460		/* fallback to the immediate lower OFDM rate (if any) */
2461		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2462		mrr.rates[i].next = (i == WPI_OFDM6) ?
2463		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2464			WPI_OFDM6 : WPI_CCK2) :
2465		    i - 1;
2466		/* try one time at this rate before falling back to "next" */
2467		mrr.rates[i].ntries = 1;
2468	}
2469
2470	/* setup MRR for control frames */
2471	mrr.which = htole32(WPI_MRR_CTL);
2472	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2473	if (error != 0) {
2474		device_printf(sc->sc_dev,
2475		    "could not setup MRR for control frames\n");
2476		return error;
2477	}
2478
2479	/* setup MRR for data frames */
2480	mrr.which = htole32(WPI_MRR_DATA);
2481	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2482	if (error != 0) {
2483		device_printf(sc->sc_dev,
2484		    "could not setup MRR for data frames\n");
2485		return error;
2486	}
2487
2488	return 0;
2489}
2490
2491static void
2492wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2493{
2494	struct wpi_cmd_led led;
2495
2496	led.which = which;
2497	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2498	led.off = off;
2499	led.on = on;
2500
2501	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2502}
2503
2504static void
2505wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2506{
2507	struct wpi_cmd_tsf tsf;
2508	uint64_t val, mod;
2509
2510	memset(&tsf, 0, sizeof tsf);
2511	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2512	tsf.bintval = htole16(ni->ni_intval);
2513	tsf.lintval = htole16(10);
2514
2515	/* compute remaining time until next beacon */
2516	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2517	mod = le64toh(tsf.tstamp) % val;
2518	tsf.binitval = htole32((uint32_t)(val - mod));
2519
2520	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2521		device_printf(sc->sc_dev, "could not enable TSF\n");
2522}
2523
2524#if 0
2525/*
2526 * Build a beacon frame that the firmware will broadcast periodically in
2527 * IBSS or HostAP modes.
2528 */
2529static int
2530wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2531{
2532	struct ieee80211com *ic = &sc->sc_ic;
2533	struct wpi_tx_ring *ring = &sc->cmdq;
2534	struct wpi_tx_desc *desc;
2535	struct wpi_tx_data *data;
2536	struct wpi_tx_cmd *cmd;
2537	struct wpi_cmd_beacon *bcn;
2538	struct ieee80211_beacon_offsets bo;
2539	struct mbuf *m0;
2540	bus_addr_t physaddr;
2541	int error;
2542
2543	desc = &ring->desc[ring->cur];
2544	data = &ring->data[ring->cur];
2545
2546	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2547	if (m0 == NULL) {
2548		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2549		return ENOMEM;
2550	}
2551
2552	cmd = &ring->cmd[ring->cur];
2553	cmd->code = WPI_CMD_SET_BEACON;
2554	cmd->flags = 0;
2555	cmd->qid = ring->qid;
2556	cmd->idx = ring->cur;
2557
2558	bcn = (struct wpi_cmd_beacon *)cmd->data;
2559	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2560	bcn->id = WPI_ID_BROADCAST;
2561	bcn->ofdm_mask = 0xff;
2562	bcn->cck_mask = 0x0f;
2563	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2564	bcn->len = htole16(m0->m_pkthdr.len);
2565	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2566		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2567	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2568
2569	/* save and trim IEEE802.11 header */
2570	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2571	m_adj(m0, sizeof (struct ieee80211_frame));
2572
2573	/* assume beacon frame is contiguous */
2574	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2575	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2576	if (error != 0) {
2577		device_printf(sc->sc_dev, "could not map beacon\n");
2578		m_freem(m0);
2579		return error;
2580	}
2581
2582	data->m = m0;
2583
2584	/* first scatter/gather segment is used by the beacon command */
2585	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2586	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2587		ring->cur * sizeof (struct wpi_tx_cmd));
2588	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2589	desc->segs[1].addr = htole32(physaddr);
2590	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2591
2592	/* kick cmd ring */
2593	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2594	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2595
2596	return 0;
2597}
2598#endif
2599
2600static int
2601wpi_auth(struct wpi_softc *sc)
2602{
2603	struct ieee80211com *ic = &sc->sc_ic;
2604	struct ieee80211_node *ni = ic->ic_bss;
2605	struct wpi_node_info node;
2606	int error;
2607
2608	/* update adapter's configuration */
2609	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2610	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2611	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2612		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2613		    WPI_CONFIG_24GHZ);
2614	}
2615	switch (ic->ic_curmode) {
2616	case IEEE80211_MODE_11A:
2617		sc->config.cck_mask  = 0;
2618		sc->config.ofdm_mask = 0x15;
2619		break;
2620	case IEEE80211_MODE_11B:
2621		sc->config.cck_mask  = 0x03;
2622		sc->config.ofdm_mask = 0;
2623		break;
2624	default:	/* assume 802.11b/g */
2625		sc->config.cck_mask  = 0x0f;
2626		sc->config.ofdm_mask = 0x15;
2627	}
2628
2629	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2630		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2631	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2632		sizeof (struct wpi_config), 1);
2633	if (error != 0) {
2634		device_printf(sc->sc_dev, "could not configure\n");
2635		return error;
2636	}
2637
2638	/* configuration has changed, set Tx power accordingly */
2639	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2640		device_printf(sc->sc_dev, "could not set Tx power\n");
2641		return error;
2642	}
2643
2644	/* add default node */
2645	memset(&node, 0, sizeof node);
2646	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2647	node.id = WPI_ID_BSS;
2648	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2649	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2650	node.action = htole32(WPI_ACTION_SET_RATE);
2651	node.antenna = WPI_ANTENNA_BOTH;
2652	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2653	if (error != 0) {
2654		device_printf(sc->sc_dev, "could not add BSS node\n");
2655		return error;
2656	}
2657
2658	sc->flags &= ~WPI_FLAG_AUTH;
2659
2660	return 0;
2661}
2662
2663/*
2664 * Send a scan request to the firmware.  Since this command is huge, we map it
2665 * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2666 * much of this code is similar to that in wpi_cmd but because we must manually
2667 * construct the probe & channels, we duplicate what's needed here. XXX In the
2668 * future, this function should be modified to use wpi_cmd to help cleanup the
2669 * code base.
2670 */
2671static int
2672wpi_scan(struct wpi_softc *sc)
2673{
2674	struct ieee80211com *ic = &sc->sc_ic;
2675	struct wpi_tx_ring *ring = &sc->cmdq;
2676	struct wpi_tx_desc *desc;
2677	struct wpi_tx_data *data;
2678	struct wpi_tx_cmd *cmd;
2679	struct wpi_scan_hdr *hdr;
2680	struct wpi_scan_chan *chan;
2681	struct ieee80211_frame *wh;
2682	struct ieee80211_rateset *rs;
2683	struct ieee80211_channel *c;
2684	enum ieee80211_phymode mode;
2685	uint8_t *frm;
2686	int nrates, pktlen, error;
2687	bus_addr_t physaddr;
2688	struct ifnet *ifp = ic->ic_ifp;
2689
2690	desc = &ring->desc[ring->cur];
2691	data = &ring->data[ring->cur];
2692
2693	data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2694	if (data->m == NULL) {
2695		device_printf(sc->sc_dev,
2696		    "could not allocate mbuf for scan command\n");
2697		return ENOMEM;
2698	}
2699
2700	cmd = mtod(data->m, struct wpi_tx_cmd *);
2701	cmd->code = WPI_CMD_SCAN;
2702	cmd->flags = 0;
2703	cmd->qid = ring->qid;
2704	cmd->idx = ring->cur;
2705
2706	hdr = (struct wpi_scan_hdr *)cmd->data;
2707	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2708
2709	/*
2710	 * Move to the next channel if no packets are received within 5 msecs
2711	 * after sending the probe request (this helps to reduce the duration
2712	 * of active scans).
2713	 */
2714	hdr->quiet = htole16(5);
2715	hdr->threshold = htole16(1);
2716
2717	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2718		/* send probe requests at 6Mbps */
2719		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2720
2721		/* Enable crc checking */
2722		hdr->promotion = htole16(1);
2723	} else {
2724		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2725		/* send probe requests at 1Mbps */
2726		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2727	}
2728	hdr->tx.id = WPI_ID_BROADCAST;
2729	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2730	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2731
2732	/*XXX Need to cater for multiple essids */
2733	memset(&hdr->scan_essids[0], 0, 4 * sizeof(hdr->scan_essids[0]));
2734	hdr->scan_essids[0].id = IEEE80211_ELEMID_SSID;
2735	hdr->scan_essids[0].esslen = ic->ic_des_ssid[0].len;
2736	memcpy(hdr->scan_essids[0].essid, ic->ic_des_ssid[0].ssid,
2737	    ic->ic_des_ssid[0].len);
2738
2739	if (wpi_debug & WPI_DEBUG_SCANNING) {
2740		printf("Scanning Essid: ");
2741		ieee80211_print_essid(ic->ic_des_ssid[0].ssid,
2742		    ic->ic_des_ssid[0].len);
2743		printf("\n");
2744	}
2745
2746	/*
2747	 * Build a probe request frame.  Most of the following code is a
2748	 * copy & paste of what is done in net80211.
2749	 */
2750	wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2751	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2752		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2753	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2754	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2755	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2756	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2757	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2758	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2759
2760	frm = (uint8_t *)(wh + 1);
2761
2762	/* add essid IE, the hardware will fill this in for us */
2763	*frm++ = IEEE80211_ELEMID_SSID;
2764	*frm++ = 0;
2765
2766	mode = ieee80211_chan2mode(ic->ic_curchan);
2767	rs = &ic->ic_sup_rates[mode];
2768
2769	/* add supported rates IE */
2770	*frm++ = IEEE80211_ELEMID_RATES;
2771	nrates = rs->rs_nrates;
2772	if (nrates > IEEE80211_RATE_SIZE)
2773		nrates = IEEE80211_RATE_SIZE;
2774	*frm++ = nrates;
2775	memcpy(frm, rs->rs_rates, nrates);
2776	frm += nrates;
2777
2778	/* add supported xrates IE */
2779	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2780		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2781		*frm++ = IEEE80211_ELEMID_XRATES;
2782		*frm++ = nrates;
2783		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2784		frm += nrates;
2785	}
2786
2787	/* setup length of probe request */
2788	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2789
2790	/*
2791	 * Construct information about the channel that we
2792	 * want to scan. The firmware expects this to be directly
2793	 * after the scan probe request
2794	 */
2795	c = ic->ic_curchan;
2796	chan = (struct wpi_scan_chan *)frm;
2797	chan->chan = ieee80211_chan2ieee(ic, c);
2798	chan->flags = 0;
2799	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2800		chan->flags |= WPI_CHAN_ACTIVE;
2801		if (ic->ic_des_ssid[0].len != 0)
2802			chan->flags |= WPI_CHAN_DIRECT;
2803	}
2804	chan->gain_dsp = 0x6e; /* Default level */
2805	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2806		chan->active = htole16(10);
2807		chan->passive = htole16(sc->maxdwell);
2808		chan->gain_radio = 0x3b;
2809	} else {
2810		chan->active = htole16(20);
2811		chan->passive = htole16(sc->maxdwell);
2812		chan->gain_radio = 0x28;
2813	}
2814
2815	DPRINTFN(WPI_DEBUG_SCANNING,
2816	    ("Scanning %u Passive: %d\n",
2817	     chan->chan,
2818	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2819
2820	hdr->nchan++;
2821	chan++;
2822
2823	frm += sizeof (struct wpi_scan_chan);
2824#if 0
2825	// XXX All Channels....
2826	for (c  = &ic->ic_channels[1];
2827	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2828		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2829			continue;
2830
2831		chan->chan = ieee80211_chan2ieee(ic, c);
2832		chan->flags = 0;
2833		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2834		    chan->flags |= WPI_CHAN_ACTIVE;
2835		    if (ic->ic_des_ssid[0].len != 0)
2836			chan->flags |= WPI_CHAN_DIRECT;
2837		}
2838		chan->gain_dsp = 0x6e; /* Default level */
2839		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2840			chan->active = htole16(10);
2841			chan->passive = htole16(110);
2842			chan->gain_radio = 0x3b;
2843		} else {
2844			chan->active = htole16(20);
2845			chan->passive = htole16(120);
2846			chan->gain_radio = 0x28;
2847		}
2848
2849		DPRINTFN(WPI_DEBUG_SCANNING,
2850			 ("Scanning %u Passive: %d\n",
2851			  chan->chan,
2852			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2853
2854		hdr->nchan++;
2855		chan++;
2856
2857		frm += sizeof (struct wpi_scan_chan);
2858	}
2859#endif
2860
2861	hdr->len = htole16(frm - (uint8_t *)hdr);
2862	pktlen = frm - (uint8_t *)cmd;
2863
2864	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2865	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2866	if (error != 0) {
2867		device_printf(sc->sc_dev, "could not map scan command\n");
2868		m_freem(data->m);
2869		data->m = NULL;
2870		return error;
2871	}
2872
2873	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2874	desc->segs[0].addr = htole32(physaddr);
2875	desc->segs[0].len  = htole32(pktlen);
2876
2877	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2878	    BUS_DMASYNC_PREWRITE);
2879	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2880
2881	/* kick cmd ring */
2882	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2883	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2884
2885	return 0;	/* will be notified async. of failure/success */
2886}
2887
2888/**
2889 * Configure the card to listen to a particular channel, this transisions the
2890 * card in to being able to receive frames from remote devices.
2891 */
2892static int
2893wpi_config(struct wpi_softc *sc)
2894{
2895	struct ieee80211com *ic = &sc->sc_ic;
2896	struct ifnet *ifp = ic->ic_ifp;
2897	struct wpi_power power;
2898	struct wpi_bluetooth bluetooth;
2899	struct wpi_node_info node;
2900	int error;
2901
2902	/* set power mode */
2903	memset(&power, 0, sizeof power);
2904	power.flags = htole32(WPI_POWER_CAM|0x8);
2905	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2906	if (error != 0) {
2907		device_printf(sc->sc_dev, "could not set power mode\n");
2908		return error;
2909	}
2910
2911	/* configure bluetooth coexistence */
2912	memset(&bluetooth, 0, sizeof bluetooth);
2913	bluetooth.flags = 3;
2914	bluetooth.lead = 0xaa;
2915	bluetooth.kill = 1;
2916	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2917	    0);
2918	if (error != 0) {
2919		device_printf(sc->sc_dev,
2920		    "could not configure bluetooth coexistence\n");
2921		return error;
2922	}
2923
2924	/* configure adapter */
2925	memset(&sc->config, 0, sizeof (struct wpi_config));
2926	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2927	/*set default channel*/
2928	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2929	sc->config.flags = htole32(WPI_CONFIG_TSF);
2930	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2931		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2932		    WPI_CONFIG_24GHZ);
2933	}
2934	sc->config.filter = 0;
2935	switch (ic->ic_opmode) {
2936	case IEEE80211_M_STA:
2937	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2938		sc->config.mode = WPI_MODE_STA;
2939		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2940		break;
2941	case IEEE80211_M_IBSS:
2942	case IEEE80211_M_AHDEMO:
2943		sc->config.mode = WPI_MODE_IBSS;
2944		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2945					     WPI_FILTER_MULTICAST);
2946		break;
2947	case IEEE80211_M_HOSTAP:
2948		sc->config.mode = WPI_MODE_HOSTAP;
2949		break;
2950	case IEEE80211_M_MONITOR:
2951		sc->config.mode = WPI_MODE_MONITOR;
2952		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2953			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2954		break;
2955	}
2956	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2957	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2958	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2959		sizeof (struct wpi_config), 0);
2960	if (error != 0) {
2961		device_printf(sc->sc_dev, "configure command failed\n");
2962		return error;
2963	}
2964
2965	/* configuration has changed, set Tx power accordingly */
2966	if ((error = wpi_set_txpower(sc, ic->ic_curchan,0)) != 0) {
2967	    device_printf(sc->sc_dev, "could not set Tx power\n");
2968	    return error;
2969	}
2970
2971	/* add broadcast node */
2972	memset(&node, 0, sizeof node);
2973	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2974	node.id = WPI_ID_BROADCAST;
2975	node.rate = wpi_plcp_signal(2);
2976	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2977	if (error != 0) {
2978		device_printf(sc->sc_dev, "could not add broadcast node\n");
2979		return error;
2980	}
2981
2982	/* Setup rate scalling */
2983	error = wpi_mrr_setup(sc);
2984	if (error != 0) {
2985		device_printf(sc->sc_dev, "could not setup MRR\n");
2986		return error;
2987	}
2988
2989	return 0;
2990}
2991
2992static void
2993wpi_stop_master(struct wpi_softc *sc)
2994{
2995	uint32_t tmp;
2996	int ntries;
2997
2998	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2999
3000	tmp = WPI_READ(sc, WPI_RESET);
3001	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
3002
3003	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3004	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
3005		return;	/* already asleep */
3006
3007	for (ntries = 0; ntries < 100; ntries++) {
3008		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
3009			break;
3010		DELAY(10);
3011	}
3012	if (ntries == 100) {
3013		device_printf(sc->sc_dev, "timeout waiting for master\n");
3014	}
3015}
3016
3017static int
3018wpi_power_up(struct wpi_softc *sc)
3019{
3020	uint32_t tmp;
3021	int ntries;
3022
3023	wpi_mem_lock(sc);
3024	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
3025	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
3026	wpi_mem_unlock(sc);
3027
3028	for (ntries = 0; ntries < 5000; ntries++) {
3029		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
3030			break;
3031		DELAY(10);
3032	}
3033	if (ntries == 5000) {
3034		device_printf(sc->sc_dev,
3035		    "timeout waiting for NIC to power up\n");
3036		return ETIMEDOUT;
3037	}
3038	return 0;
3039}
3040
3041static int
3042wpi_reset(struct wpi_softc *sc)
3043{
3044	uint32_t tmp;
3045	int ntries;
3046
3047	DPRINTFN(WPI_DEBUG_HW,
3048	    ("Resetting the card - clearing any uploaded firmware\n"));
3049
3050	/* clear any pending interrupts */
3051	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3052
3053	tmp = WPI_READ(sc, WPI_PLL_CTL);
3054	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
3055
3056	tmp = WPI_READ(sc, WPI_CHICKEN);
3057	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
3058
3059	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3060	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
3061
3062	/* wait for clock stabilization */
3063	for (ntries = 0; ntries < 25000; ntries++) {
3064		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
3065			break;
3066		DELAY(10);
3067	}
3068	if (ntries == 25000) {
3069		device_printf(sc->sc_dev,
3070		    "timeout waiting for clock stabilization\n");
3071		return ETIMEDOUT;
3072	}
3073
3074	/* initialize EEPROM */
3075	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
3076
3077	if ((tmp & WPI_EEPROM_VERSION) == 0) {
3078		device_printf(sc->sc_dev, "EEPROM not found\n");
3079		return EIO;
3080	}
3081	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
3082
3083	return 0;
3084}
3085
3086static void
3087wpi_hw_config(struct wpi_softc *sc)
3088{
3089	uint32_t rev, hw;
3090
3091	/* voodoo from the Linux "driver".. */
3092	hw = WPI_READ(sc, WPI_HWCONFIG);
3093
3094	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
3095	if ((rev & 0xc0) == 0x40)
3096		hw |= WPI_HW_ALM_MB;
3097	else if (!(rev & 0x80))
3098		hw |= WPI_HW_ALM_MM;
3099
3100	if (sc->cap == 0x80)
3101		hw |= WPI_HW_SKU_MRC;
3102
3103	hw &= ~WPI_HW_REV_D;
3104	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
3105		hw |= WPI_HW_REV_D;
3106
3107	if (sc->type > 1)
3108		hw |= WPI_HW_TYPE_B;
3109
3110	WPI_WRITE(sc, WPI_HWCONFIG, hw);
3111}
3112
3113static void
3114wpi_init(void *arg)
3115{
3116	struct wpi_softc *sc = arg;
3117	struct ieee80211com *ic = &sc->sc_ic;
3118	struct ifnet *ifp = ic->ic_ifp;
3119	uint32_t tmp;
3120	int ntries, error, qid;
3121	WPI_LOCK_DECL;
3122
3123	WPI_LOCK(sc);
3124
3125	wpi_stop_locked(sc);
3126	(void)wpi_reset(sc);
3127
3128	wpi_mem_lock(sc);
3129	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3130	DELAY(20);
3131	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3132	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3133	wpi_mem_unlock(sc);
3134
3135	(void)wpi_power_up(sc);
3136	wpi_hw_config(sc);
3137
3138	/* init Rx ring */
3139	wpi_mem_lock(sc);
3140	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3141	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3142	    offsetof(struct wpi_shared, next));
3143	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3144	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3145	wpi_mem_unlock(sc);
3146
3147	/* init Tx rings */
3148	wpi_mem_lock(sc);
3149	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3150	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3151	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3152	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3153	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3154	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3155	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3156
3157	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3158	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3159
3160	for (qid = 0; qid < 6; qid++) {
3161		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3162		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3163		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3164	}
3165	wpi_mem_unlock(sc);
3166
3167	/* clear "radio off" and "disable command" bits (reversed logic) */
3168	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3169	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3170	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3171
3172	/* clear any pending interrupts */
3173	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3174
3175	/* enable interrupts */
3176	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3177
3178	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3179	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3180
3181	if ((error = wpi_load_firmware(sc)) != 0) {
3182	    device_printf(sc->sc_dev,
3183		"A problem occurred loading the firmware to the driver\n");
3184	    return;
3185	}
3186
3187	/* At this point the firmware is up and running. If the hardware
3188	 * RF switch is turned off thermal calibration will fail, though
3189	 * the card is still happy to continue to accept commands, catch
3190	 * this case and record the hw is disabled.
3191	 */
3192	wpi_mem_lock(sc);
3193	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3194	wpi_mem_unlock(sc);
3195
3196	if (!(tmp & 0x1)) {
3197		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3198		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3199		ifp->if_drv_flags |= IFF_DRV_RUNNING;
3200		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3201		return;
3202	}
3203
3204	/* wait for thermal sensors to calibrate */
3205	for (ntries = 0; ntries < 1000; ntries++) {
3206		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3207			break;
3208		DELAY(10);
3209	}
3210
3211	if (ntries == 1000) {
3212		device_printf(sc->sc_dev,
3213		    "timeout waiting for thermal sensors calibration\n");
3214		error = ETIMEDOUT;
3215		return;
3216	}
3217	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3218
3219	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3220	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3221	callout_reset(&sc->watchdog_to, hz, wpi_tick, sc);
3222	WPI_UNLOCK(sc);
3223
3224	if (ic->ic_opmode == IEEE80211_M_MONITOR)
3225		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3226	else if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3227		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3228}
3229
3230static void
3231wpi_stop(struct wpi_softc *sc)
3232{
3233	WPI_LOCK_DECL;
3234
3235	WPI_LOCK(sc);
3236	wpi_stop_locked(sc);
3237	WPI_UNLOCK(sc);
3238
3239}
3240static void
3241wpi_stop_locked(struct wpi_softc *sc)
3242
3243{
3244	struct ieee80211com *ic = &sc->sc_ic;
3245	struct ifnet *ifp = ic->ic_ifp;
3246	uint32_t tmp;
3247	int ac;
3248
3249	sc->watchdog_cnt = sc->sc_tx_timer = 0;
3250	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3251
3252	/* disable interrupts */
3253	WPI_WRITE(sc, WPI_MASK, 0);
3254	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3255	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3256	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3257
3258	/* Clear any commands left in the command buffer */
3259	memset(sc->sc_cmd, 0, sizeof(sc->sc_cmd));
3260
3261	wpi_mem_lock(sc);
3262	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3263	wpi_mem_unlock(sc);
3264
3265	/* reset all Tx rings */
3266	for (ac = 0; ac < 4; ac++)
3267		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3268	wpi_reset_tx_ring(sc, &sc->cmdq);
3269
3270	/* reset Rx ring */
3271	wpi_reset_rx_ring(sc, &sc->rxq);
3272
3273	wpi_mem_lock(sc);
3274	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3275	wpi_mem_unlock(sc);
3276
3277	DELAY(5);
3278
3279	wpi_stop_master(sc);
3280
3281	tmp = WPI_READ(sc, WPI_RESET);
3282	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3283	sc->flags &= ~WPI_FLAG_BUSY;
3284
3285	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3286}
3287
3288static void
3289wpi_iter_func(void *arg, struct ieee80211_node *ni)
3290{
3291	struct wpi_softc *sc = arg;
3292	struct wpi_node *wn = (struct wpi_node *)ni;
3293
3294	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
3295}
3296
3297static void
3298wpi_newassoc(struct ieee80211_node *ni, int isnew)
3299{
3300	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
3301	int i;
3302
3303	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
3304
3305	for (i = ni->ni_rates.rs_nrates - 1;
3306	    i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
3307	    i--);
3308	ni->ni_txrate = i;
3309}
3310
3311static void
3312wpi_calib_timeout(void *arg)
3313{
3314	struct wpi_softc *sc = arg;
3315	struct ieee80211com *ic = &sc->sc_ic;
3316	int temp;
3317	WPI_LOCK_DECL;
3318
3319	/* automatic rate control triggered every 500ms */
3320	if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
3321		WPI_LOCK(sc);
3322		if (ic->ic_opmode == IEEE80211_M_STA)
3323			wpi_iter_func(sc, ic->ic_bss);
3324		else
3325			ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
3326		WPI_UNLOCK(sc);
3327	}
3328
3329	/* update sensor data */
3330	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3331	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3332#if 0
3333	//XXX Used by OpenBSD Sensor Framework
3334	sc->sensor.value = temp + 260;
3335#endif
3336
3337	/* automatic power calibration every 60s */
3338	if (++sc->calib_cnt >= 120) {
3339		wpi_power_calibration(sc, temp);
3340		sc->calib_cnt = 0;
3341	}
3342
3343	callout_reset(&sc->calib_to, hz/2, wpi_calib_timeout, sc);
3344}
3345
3346/*
3347 * This function is called periodically (every 60 seconds) to adjust output
3348 * power to temperature changes.
3349 */
3350static void
3351wpi_power_calibration(struct wpi_softc *sc, int temp)
3352{
3353	/* sanity-check read value */
3354	if (temp < -260 || temp > 25) {
3355		/* this can't be correct, ignore */
3356		DPRINTFN(WPI_DEBUG_TEMP,
3357		    ("out-of-range temperature reported: %d\n", temp));
3358		return;
3359	}
3360
3361	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3362
3363	/* adjust Tx power if need be */
3364	if (abs(temp - sc->temp) <= 6)
3365		return;
3366
3367	sc->temp = temp;
3368
3369	if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan,1) != 0) {
3370		/* just warn, too bad for the automatic calibration... */
3371		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3372	}
3373}
3374
3375/**
3376 * Read the eeprom to find out what channels are valid for the given
3377 * band and update net80211 with what we find.
3378 */
3379static void
3380wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3381{
3382	struct ieee80211com *ic = &sc->sc_ic;
3383	const struct wpi_chan_band *band = &wpi_bands[n];
3384	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3385	int chan, i, offset, passive;
3386
3387	wpi_read_prom_data(sc, band->addr, channels,
3388	    band->nchan * sizeof (struct wpi_eeprom_chan));
3389
3390	for (i = 0; i < band->nchan; i++) {
3391		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3392			DPRINTFN(WPI_DEBUG_HW,
3393			    ("Channel Not Valid: %d, band %d\n",
3394			     band->chan[i],n));
3395			continue;
3396		}
3397
3398		passive = 0;
3399		chan = band->chan[i];
3400		offset = ic->ic_nchans;
3401
3402		/* is active scan allowed on this channel? */
3403		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3404			passive = IEEE80211_CHAN_PASSIVE;
3405		}
3406
3407		if (n == 0) {	/* 2GHz band */
3408			ic->ic_channels[offset].ic_ieee = chan;
3409			ic->ic_channels[offset].ic_freq =
3410			ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
3411			ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_B | passive;
3412			offset++;
3413			ic->ic_channels[offset].ic_ieee = chan;
3414			ic->ic_channels[offset].ic_freq =
3415			ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
3416			ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_G | passive;
3417			offset++;
3418
3419		} else {	/* 5GHz band */
3420			/*
3421			 * Some 3945ABG adapters support channels 7, 8, 11
3422			 * and 12 in the 2GHz *and* 5GHz bands.
3423			 * Because of limitations in our net80211(9) stack,
3424			 * we can't support these channels in 5GHz band.
3425			 * XXX not true; just need to map to proper frequency
3426			 */
3427			if (chan <= 14)
3428				continue;
3429
3430			ic->ic_channels[offset].ic_ieee = chan;
3431			ic->ic_channels[offset].ic_freq =
3432			ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
3433			ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_A | passive;
3434			offset++;
3435		}
3436
3437		/* save maximum allowed power for this channel */
3438		sc->maxpwr[chan] = channels[i].maxpwr;
3439
3440		ic->ic_nchans = offset;
3441
3442#if 0
3443		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3444		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3445		//ic->ic_channels[chan].ic_minpower...
3446		//ic->ic_channels[chan].ic_maxregtxpower...
3447#endif
3448
3449		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d, offset %d\n",
3450			    chan, channels[i].flags, sc->maxpwr[chan], offset));
3451	}
3452}
3453
3454static void
3455wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3456{
3457	struct wpi_power_group *group = &sc->groups[n];
3458	struct wpi_eeprom_group rgroup;
3459	int i;
3460
3461	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3462	    sizeof rgroup);
3463
3464	/* save power group information */
3465	group->chan   = rgroup.chan;
3466	group->maxpwr = rgroup.maxpwr;
3467	/* temperature at which the samples were taken */
3468	group->temp   = (int16_t)le16toh(rgroup.temp);
3469
3470	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3471		    group->chan, group->maxpwr, group->temp));
3472
3473	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3474		group->samples[i].index = rgroup.samples[i].index;
3475		group->samples[i].power = rgroup.samples[i].power;
3476
3477		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3478			    group->samples[i].index, group->samples[i].power));
3479	}
3480}
3481
3482/*
3483 * Update Tx power to match what is defined for channel `c'.
3484 */
3485static int
3486wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3487{
3488	struct ieee80211com *ic = &sc->sc_ic;
3489	struct wpi_power_group *group;
3490	struct wpi_cmd_txpower txpower;
3491	u_int chan;
3492	int i;
3493
3494	/* get channel number */
3495	chan = ieee80211_chan2ieee(ic, c);
3496
3497	/* find the power group to which this channel belongs */
3498	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3499		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3500			if (chan <= group->chan)
3501				break;
3502	} else
3503		group = &sc->groups[0];
3504
3505	memset(&txpower, 0, sizeof txpower);
3506	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3507	txpower.channel = htole16(chan);
3508
3509	/* set Tx power for all OFDM and CCK rates */
3510	for (i = 0; i <= 11 ; i++) {
3511		/* retrieve Tx power for this channel/rate combination */
3512		int idx = wpi_get_power_index(sc, group, c,
3513		    wpi_ridx_to_rate[i]);
3514
3515		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3516
3517		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3518			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3519			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3520		} else {
3521			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3522			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3523		}
3524		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3525			    chan, wpi_ridx_to_rate[i], idx));
3526	}
3527
3528	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3529}
3530
3531/*
3532 * Determine Tx power index for a given channel/rate combination.
3533 * This takes into account the regulatory information from EEPROM and the
3534 * current temperature.
3535 */
3536static int
3537wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3538    struct ieee80211_channel *c, int rate)
3539{
3540/* fixed-point arithmetic division using a n-bit fractional part */
3541#define fdivround(a, b, n)      \
3542	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3543
3544/* linear interpolation */
3545#define interpolate(x, x1, y1, x2, y2, n)       \
3546	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3547
3548	struct ieee80211com *ic = &sc->sc_ic;
3549	struct wpi_power_sample *sample;
3550	int pwr, idx;
3551	u_int chan;
3552
3553	/* get channel number */
3554	chan = ieee80211_chan2ieee(ic, c);
3555
3556	/* default power is group's maximum power - 3dB */
3557	pwr = group->maxpwr / 2;
3558
3559	/* decrease power for highest OFDM rates to reduce distortion */
3560	switch (rate) {
3561		case 72:	/* 36Mb/s */
3562			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3563			break;
3564		case 96:	/* 48Mb/s */
3565			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3566			break;
3567		case 108:	/* 54Mb/s */
3568			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3569			break;
3570	}
3571
3572	/* never exceed channel's maximum allowed Tx power */
3573	pwr = min(pwr, sc->maxpwr[chan]);
3574
3575	/* retrieve power index into gain tables from samples */
3576	for (sample = group->samples; sample < &group->samples[3]; sample++)
3577		if (pwr > sample[1].power)
3578			break;
3579	/* fixed-point linear interpolation using a 19-bit fractional part */
3580	idx = interpolate(pwr, sample[0].power, sample[0].index,
3581	    sample[1].power, sample[1].index, 19);
3582
3583	/*
3584	 *  Adjust power index based on current temperature
3585	 *	- if colder than factory-calibrated: decreate output power
3586	 *	- if warmer than factory-calibrated: increase output power
3587	 */
3588	idx -= (sc->temp - group->temp) * 11 / 100;
3589
3590	/* decrease power for CCK rates (-5dB) */
3591	if (!WPI_RATE_IS_OFDM(rate))
3592		idx += 10;
3593
3594	/* keep power index in a valid range */
3595	if (idx < 0)
3596		return 0;
3597	if (idx > WPI_MAX_PWR_INDEX)
3598		return WPI_MAX_PWR_INDEX;
3599	return idx;
3600
3601#undef interpolate
3602#undef fdivround
3603}
3604
3605#if 0
3606static void
3607wpi_radio_on(void *arg, int pending)
3608{
3609	struct wpi_softc *sc = arg;
3610
3611	device_printf(sc->sc_dev, "radio turned on\n");
3612}
3613
3614static void
3615wpi_radio_off(void *arg, int pending)
3616{
3617	struct wpi_softc *sc = arg;
3618
3619	device_printf(sc->sc_dev, "radio turned off\n");
3620}
3621#endif
3622
3623/**
3624 * Called by net80211 framework to indicate that a scan
3625 * is starting. This function doesn't actually do the scan,
3626 * wpi_scan_curchan starts things off. This function is more
3627 * of an early warning from the framework we should get ready
3628 * for the scan.
3629 */
3630static void
3631wpi_scan_start(struct ieee80211com *ic)
3632{
3633	struct ifnet *ifp = ic->ic_ifp;
3634	struct wpi_softc *sc = ifp->if_softc;
3635
3636	wpi_queue_cmd(sc, WPI_SCAN_START);
3637}
3638
3639/**
3640 * Called by the net80211 framework, indicates that the
3641 * scan has ended. If there is a scan in progress on the card
3642 * then it should be aborted.
3643 */
3644static void
3645wpi_scan_end(struct ieee80211com *ic)
3646{
3647	struct ifnet *ifp = ic->ic_ifp;
3648	struct wpi_softc *sc = ifp->if_softc;
3649
3650	wpi_queue_cmd(sc, WPI_SCAN_STOP);
3651}
3652
3653/**
3654 * Called by the net80211 framework to indicate to the driver
3655 * that the channel should be changed
3656 */
3657static void
3658wpi_set_channel(struct ieee80211com *ic)
3659{
3660	struct ifnet *ifp = ic->ic_ifp;
3661	struct wpi_softc *sc = ifp->if_softc;
3662
3663	wpi_queue_cmd(sc, WPI_SET_CHAN);
3664}
3665
3666/**
3667 * Called by net80211 to indicate that we need to scan the current
3668 * channel. The channel is previously be set via the wpi_set_channel
3669 * callback.
3670 */
3671static void
3672wpi_scan_curchan(struct ieee80211com *ic, unsigned long maxdwell)
3673{
3674	struct ifnet *ifp = ic->ic_ifp;
3675	struct wpi_softc *sc = ifp->if_softc;
3676
3677	sc->maxdwell = maxdwell;
3678
3679	wpi_queue_cmd(sc, WPI_SCAN_CURCHAN);
3680}
3681
3682/**
3683 * Called by the net80211 framework to indicate
3684 * the minimum dwell time has been met, terminate the scan.
3685 * We don't actually terminate the scan as the firmware will notify
3686 * us when it's finished and we have no way to interrupt it.
3687 */
3688static void
3689wpi_scan_mindwell(struct ieee80211com *ic)
3690{
3691	/* NB: don't try to abort scan; wait for firmware to finish */
3692}
3693
3694/**
3695 * The ops function is called to perform some actual work.
3696 * because we can't sleep from any of the ic callbacks, we queue an
3697 * op task with wpi_queue_cmd and have the taskqueue process that task.
3698 * The task that gets cued is a op task, which ends up calling this function.
3699 */
3700static void
3701wpi_ops(void *arg, int pending)
3702{
3703	struct wpi_softc *sc = arg;
3704	struct ieee80211com *ic = &sc->sc_ic;
3705	WPI_LOCK_DECL;
3706	int cmd;
3707
3708again:
3709	WPI_CMD_LOCK(sc);
3710	cmd = sc->sc_cmd[sc->sc_cmd_cur];
3711
3712	if (cmd == 0) {
3713		/* No more commands to process */
3714		WPI_CMD_UNLOCK(sc);
3715		return;
3716	}
3717	sc->sc_cmd[sc->sc_cmd_cur] = 0; /* free the slot */
3718	sc->sc_cmd_cur = (sc->sc_cmd_cur + 1) % WPI_CMD_MAXOPS;
3719	WPI_CMD_UNLOCK(sc);
3720	WPI_LOCK(sc);
3721
3722	if (!(sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3723		WPI_UNLOCK(sc);
3724		return;
3725	}
3726
3727	{
3728	const char *name[]={"SCAN_START", "SCAN_CURCHAN",0,"STOP",0,0,0,"CHAN",
3729		0,0,0,0,0,0,"AUTH",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,"NEXT"};
3730	DPRINTFN(WPI_DEBUG_OPS,("wpi_ops: command: %d %s\n", cmd, name[cmd-1]));
3731	}
3732
3733	switch (cmd) {
3734	case WPI_SCAN_START:
3735		if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3736			DPRINTF(("HERER\n"));
3737			ieee80211_cancel_scan(ic);
3738		} else
3739			sc->flags |= WPI_FLAG_SCANNING;
3740		break;
3741
3742	case WPI_SCAN_STOP:
3743		sc->flags &= ~WPI_FLAG_SCANNING;
3744		break;
3745
3746	case WPI_SCAN_NEXT:
3747		DPRINTF(("NEXT\n"));
3748		WPI_UNLOCK(sc);
3749		ieee80211_scan_next(ic);
3750		WPI_LOCK(sc);
3751		break;
3752
3753	case WPI_SCAN_CURCHAN:
3754		if (wpi_scan(sc))
3755			ieee80211_cancel_scan(ic);
3756		break;
3757
3758	case WPI_SET_CHAN:
3759		if (sc->flags&WPI_FLAG_AUTH) {
3760			DPRINTF(("Authenticating, not changing channel\n"));
3761			break;
3762		}
3763		if (wpi_config(sc)) {
3764			DPRINTF(("Scan cancelled\n"));
3765			WPI_UNLOCK(sc);
3766			ieee80211_cancel_scan(ic);
3767			WPI_LOCK(sc);
3768			sc->flags &= ~WPI_FLAG_SCANNING;
3769			wpi_restart(sc,0);
3770			WPI_UNLOCK(sc);
3771			return;
3772		}
3773		break;
3774
3775	case WPI_AUTH:
3776		if (wpi_auth(sc) != 0) {
3777			device_printf(sc->sc_dev,
3778			    "could not send authentication request\n");
3779			wpi_stop_locked(sc);
3780			WPI_UNLOCK(sc);
3781			return;
3782		}
3783		WPI_UNLOCK(sc);
3784		ieee80211_node_authorize(ic->ic_bss);
3785		ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
3786		WPI_LOCK(sc);
3787		break;
3788	}
3789	WPI_UNLOCK(sc);
3790
3791	/* Take another pass */
3792	goto again;
3793}
3794
3795/**
3796 * queue a command for later execution in a different thread.
3797 * This is needed as the net80211 callbacks do not allow
3798 * sleeping, since we need to sleep to confirm commands have
3799 * been processed by the firmware, we must defer execution to
3800 * a sleep enabled thread.
3801 */
3802static int
3803wpi_queue_cmd(struct wpi_softc *sc, int cmd)
3804{
3805	WPI_CMD_LOCK(sc);
3806
3807	if (sc->sc_cmd[sc->sc_cmd_next] != 0) {
3808		WPI_CMD_UNLOCK(sc);
3809		DPRINTF(("%s: command %d dropped\n", __func__, cmd));
3810		return (EBUSY);
3811	}
3812
3813	sc->sc_cmd[sc->sc_cmd_next] = cmd;
3814	sc->sc_cmd_next = (sc->sc_cmd_next + 1) % WPI_CMD_MAXOPS;
3815
3816	taskqueue_enqueue(sc->sc_tq, &sc->sc_opstask);
3817
3818	WPI_CMD_UNLOCK(sc);
3819
3820	return 0;
3821}
3822
3823static void
3824wpi_restart(void * arg, int pending)
3825{
3826#if 0
3827	struct wpi_softc *sc = arg;
3828	struct ieee80211com *ic = &sc->sc_ic;
3829	WPI_LOCK_DECL;
3830
3831	DPRINTF(("Device failed, restarting device\n"));
3832	WPI_LOCK(sc);
3833	wpi_stop(sc);
3834	wpi_init(sc);
3835	WPI_UNLOCK(sc);
3836	ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3837#endif
3838}
3839
3840/*
3841 * Allocate DMA-safe memory for firmware transfer.
3842 */
3843static int
3844wpi_alloc_fwmem(struct wpi_softc *sc)
3845{
3846	/* allocate enough contiguous space to store text and data */
3847	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3848	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3849	    BUS_DMA_NOWAIT);
3850}
3851
3852static void
3853wpi_free_fwmem(struct wpi_softc *sc)
3854{
3855	wpi_dma_contig_free(&sc->fw_dma);
3856}
3857
3858/**
3859 * Called every second, wpi_tick used by the watch dog timer
3860 * to check that the card is still alive
3861 */
3862static void
3863wpi_tick(void *arg)
3864{
3865	struct wpi_softc *sc = arg;
3866
3867	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3868
3869	wpi_watchdog(sc->sc_ifp);
3870	callout_reset(&sc->watchdog_to, hz, wpi_tick, sc);
3871}
3872
3873#ifdef WPI_DEBUG
3874static const char *wpi_cmd_str(int cmd)
3875{
3876	switch(cmd) {
3877		case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3878		case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3879		case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3880		case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3881		case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3882		case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3883		case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3884		case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3885		case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3886		case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3887		case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3888		case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3889		case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3890		case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3891
3892		default:
3893		KASSERT(1, ("Unknown Command: %d\n", cmd));
3894		return "UNKNOWN CMD"; // Make the compiler happy
3895	}
3896}
3897#endif
3898
3899MODULE_DEPEND(wpi, pci,  1, 1, 1);
3900MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3901MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3902MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1);
3903