if_vte.c revision 257176
1/*-
2 * Copyright (c) 2010, Pyun YongHyeon <yongari@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/* Driver for DM&P Electronics, Inc, Vortex86 RDC R6040 FastEthernet. */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/vte/if_vte.c 257176 2013-10-26 17:58:36Z glebius $");
32
33#include <sys/param.h>
34#include <sys/systm.h>
35#include <sys/bus.h>
36#include <sys/endian.h>
37#include <sys/kernel.h>
38#include <sys/lock.h>
39#include <sys/malloc.h>
40#include <sys/mbuf.h>
41#include <sys/module.h>
42#include <sys/mutex.h>
43#include <sys/rman.h>
44#include <sys/socket.h>
45#include <sys/sockio.h>
46#include <sys/sysctl.h>
47
48#include <net/bpf.h>
49#include <net/if.h>
50#include <net/if_var.h>
51#include <net/if_arp.h>
52#include <net/ethernet.h>
53#include <net/if_dl.h>
54#include <net/if_llc.h>
55#include <net/if_media.h>
56#include <net/if_types.h>
57#include <net/if_vlan_var.h>
58
59#include <netinet/in.h>
60#include <netinet/in_systm.h>
61
62#include <dev/mii/mii.h>
63#include <dev/mii/miivar.h>
64
65#include <dev/pci/pcireg.h>
66#include <dev/pci/pcivar.h>
67
68#include <machine/bus.h>
69
70#include <dev/vte/if_vtereg.h>
71#include <dev/vte/if_vtevar.h>
72
73/* "device miibus" required.  See GENERIC if you get errors here. */
74#include "miibus_if.h"
75
76MODULE_DEPEND(vte, pci, 1, 1, 1);
77MODULE_DEPEND(vte, ether, 1, 1, 1);
78MODULE_DEPEND(vte, miibus, 1, 1, 1);
79
80/* Tunables. */
81static int tx_deep_copy = 1;
82TUNABLE_INT("hw.vte.tx_deep_copy", &tx_deep_copy);
83
84/*
85 * Devices supported by this driver.
86 */
87static const struct vte_ident vte_ident_table[] = {
88	{ VENDORID_RDC, DEVICEID_RDC_R6040, "RDC R6040 FastEthernet"},
89	{ 0, 0, NULL}
90};
91
92static int	vte_attach(device_t);
93static int	vte_detach(device_t);
94static int	vte_dma_alloc(struct vte_softc *);
95static void	vte_dma_free(struct vte_softc *);
96static void	vte_dmamap_cb(void *, bus_dma_segment_t *, int, int);
97static struct vte_txdesc *
98		vte_encap(struct vte_softc *, struct mbuf **);
99static const struct vte_ident *
100		vte_find_ident(device_t);
101#ifndef __NO_STRICT_ALIGNMENT
102static struct mbuf *
103		vte_fixup_rx(struct ifnet *, struct mbuf *);
104#endif
105static void	vte_get_macaddr(struct vte_softc *);
106static void	vte_init(void *);
107static void	vte_init_locked(struct vte_softc *);
108static int	vte_init_rx_ring(struct vte_softc *);
109static int	vte_init_tx_ring(struct vte_softc *);
110static void	vte_intr(void *);
111static int	vte_ioctl(struct ifnet *, u_long, caddr_t);
112static void	vte_mac_config(struct vte_softc *);
113static int	vte_miibus_readreg(device_t, int, int);
114static void	vte_miibus_statchg(device_t);
115static int	vte_miibus_writereg(device_t, int, int, int);
116static int	vte_mediachange(struct ifnet *);
117static int	vte_mediachange_locked(struct ifnet *);
118static void	vte_mediastatus(struct ifnet *, struct ifmediareq *);
119static int	vte_newbuf(struct vte_softc *, struct vte_rxdesc *);
120static int	vte_probe(device_t);
121static void	vte_reset(struct vte_softc *);
122static int	vte_resume(device_t);
123static void	vte_rxeof(struct vte_softc *);
124static void	vte_rxfilter(struct vte_softc *);
125static int	vte_shutdown(device_t);
126static void	vte_start(struct ifnet *);
127static void	vte_start_locked(struct vte_softc *);
128static void	vte_start_mac(struct vte_softc *);
129static void	vte_stats_clear(struct vte_softc *);
130static void	vte_stats_update(struct vte_softc *);
131static void	vte_stop(struct vte_softc *);
132static void	vte_stop_mac(struct vte_softc *);
133static int	vte_suspend(device_t);
134static void	vte_sysctl_node(struct vte_softc *);
135static void	vte_tick(void *);
136static void	vte_txeof(struct vte_softc *);
137static void	vte_watchdog(struct vte_softc *);
138static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
139static int	sysctl_hw_vte_int_mod(SYSCTL_HANDLER_ARGS);
140
141static device_method_t vte_methods[] = {
142	/* Device interface. */
143	DEVMETHOD(device_probe,		vte_probe),
144	DEVMETHOD(device_attach,	vte_attach),
145	DEVMETHOD(device_detach,	vte_detach),
146	DEVMETHOD(device_shutdown,	vte_shutdown),
147	DEVMETHOD(device_suspend,	vte_suspend),
148	DEVMETHOD(device_resume,	vte_resume),
149
150	/* MII interface. */
151	DEVMETHOD(miibus_readreg,	vte_miibus_readreg),
152	DEVMETHOD(miibus_writereg,	vte_miibus_writereg),
153	DEVMETHOD(miibus_statchg,	vte_miibus_statchg),
154
155	DEVMETHOD_END
156};
157
158static driver_t vte_driver = {
159	"vte",
160	vte_methods,
161	sizeof(struct vte_softc)
162};
163
164static devclass_t vte_devclass;
165
166DRIVER_MODULE(vte, pci, vte_driver, vte_devclass, 0, 0);
167DRIVER_MODULE(miibus, vte, miibus_driver, miibus_devclass, 0, 0);
168
169static int
170vte_miibus_readreg(device_t dev, int phy, int reg)
171{
172	struct vte_softc *sc;
173	int i;
174
175	sc = device_get_softc(dev);
176
177	CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_READ |
178	    (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
179	for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
180		DELAY(5);
181		if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_READ) == 0)
182			break;
183	}
184
185	if (i == 0) {
186		device_printf(sc->vte_dev, "phy read timeout : %d\n", reg);
187		return (0);
188	}
189
190	return (CSR_READ_2(sc, VTE_MMRD));
191}
192
193static int
194vte_miibus_writereg(device_t dev, int phy, int reg, int val)
195{
196	struct vte_softc *sc;
197	int i;
198
199	sc = device_get_softc(dev);
200
201	CSR_WRITE_2(sc, VTE_MMWD, val);
202	CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_WRITE |
203	    (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
204	for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
205		DELAY(5);
206		if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_WRITE) == 0)
207			break;
208	}
209
210	if (i == 0)
211		device_printf(sc->vte_dev, "phy write timeout : %d\n", reg);
212
213	return (0);
214}
215
216static void
217vte_miibus_statchg(device_t dev)
218{
219	struct vte_softc *sc;
220	struct mii_data *mii;
221	struct ifnet *ifp;
222	uint16_t val;
223
224	sc = device_get_softc(dev);
225
226	mii = device_get_softc(sc->vte_miibus);
227	ifp = sc->vte_ifp;
228	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
229		return;
230
231	sc->vte_flags &= ~VTE_FLAG_LINK;
232	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
233	    (IFM_ACTIVE | IFM_AVALID)) {
234		switch (IFM_SUBTYPE(mii->mii_media_active)) {
235		case IFM_10_T:
236		case IFM_100_TX:
237			sc->vte_flags |= VTE_FLAG_LINK;
238			break;
239		default:
240			break;
241		}
242	}
243
244	/* Stop RX/TX MACs. */
245	vte_stop_mac(sc);
246	/* Program MACs with resolved duplex and flow control. */
247	if ((sc->vte_flags & VTE_FLAG_LINK) != 0) {
248		/*
249		 * Timer waiting time : (63 + TIMER * 64) MII clock.
250		 * MII clock : 25MHz(100Mbps) or 2.5MHz(10Mbps).
251		 */
252		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
253			val = 18 << VTE_IM_TIMER_SHIFT;
254		else
255			val = 1 << VTE_IM_TIMER_SHIFT;
256		val |= sc->vte_int_rx_mod << VTE_IM_BUNDLE_SHIFT;
257		/* 48.6us for 100Mbps, 50.8us for 10Mbps */
258		CSR_WRITE_2(sc, VTE_MRICR, val);
259
260		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
261			val = 18 << VTE_IM_TIMER_SHIFT;
262		else
263			val = 1 << VTE_IM_TIMER_SHIFT;
264		val |= sc->vte_int_tx_mod << VTE_IM_BUNDLE_SHIFT;
265		/* 48.6us for 100Mbps, 50.8us for 10Mbps */
266		CSR_WRITE_2(sc, VTE_MTICR, val);
267
268		vte_mac_config(sc);
269		vte_start_mac(sc);
270	}
271}
272
273static void
274vte_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
275{
276	struct vte_softc *sc;
277	struct mii_data *mii;
278
279	sc = ifp->if_softc;
280	VTE_LOCK(sc);
281	if ((ifp->if_flags & IFF_UP) == 0) {
282		VTE_UNLOCK(sc);
283		return;
284	}
285	mii = device_get_softc(sc->vte_miibus);
286
287	mii_pollstat(mii);
288	ifmr->ifm_status = mii->mii_media_status;
289	ifmr->ifm_active = mii->mii_media_active;
290	VTE_UNLOCK(sc);
291}
292
293static int
294vte_mediachange(struct ifnet *ifp)
295{
296	struct vte_softc *sc;
297	int error;
298
299	sc = ifp->if_softc;
300	VTE_LOCK(sc);
301	error = vte_mediachange_locked(ifp);
302	VTE_UNLOCK(sc);
303	return (error);
304}
305
306static int
307vte_mediachange_locked(struct ifnet *ifp)
308{
309	struct vte_softc *sc;
310	struct mii_data *mii;
311	struct mii_softc *miisc;
312	int error;
313
314	sc = ifp->if_softc;
315	mii = device_get_softc(sc->vte_miibus);
316	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
317		PHY_RESET(miisc);
318	error = mii_mediachg(mii);
319
320	return (error);
321}
322
323static const struct vte_ident *
324vte_find_ident(device_t dev)
325{
326	const struct vte_ident *ident;
327	uint16_t vendor, devid;
328
329	vendor = pci_get_vendor(dev);
330	devid = pci_get_device(dev);
331	for (ident = vte_ident_table; ident->name != NULL; ident++) {
332		if (vendor == ident->vendorid && devid == ident->deviceid)
333			return (ident);
334	}
335
336	return (NULL);
337}
338
339static int
340vte_probe(device_t dev)
341{
342	const struct vte_ident *ident;
343
344	ident = vte_find_ident(dev);
345	if (ident != NULL) {
346		device_set_desc(dev, ident->name);
347		return (BUS_PROBE_DEFAULT);
348	}
349
350	return (ENXIO);
351}
352
353static void
354vte_get_macaddr(struct vte_softc *sc)
355{
356	uint16_t mid;
357
358	/*
359	 * It seems there is no way to reload station address and
360	 * it is supposed to be set by BIOS.
361	 */
362	mid = CSR_READ_2(sc, VTE_MID0L);
363	sc->vte_eaddr[0] = (mid >> 0) & 0xFF;
364	sc->vte_eaddr[1] = (mid >> 8) & 0xFF;
365	mid = CSR_READ_2(sc, VTE_MID0M);
366	sc->vte_eaddr[2] = (mid >> 0) & 0xFF;
367	sc->vte_eaddr[3] = (mid >> 8) & 0xFF;
368	mid = CSR_READ_2(sc, VTE_MID0H);
369	sc->vte_eaddr[4] = (mid >> 0) & 0xFF;
370	sc->vte_eaddr[5] = (mid >> 8) & 0xFF;
371}
372
373static int
374vte_attach(device_t dev)
375{
376	struct vte_softc *sc;
377	struct ifnet *ifp;
378	uint16_t macid;
379	int error, rid;
380
381	error = 0;
382	sc = device_get_softc(dev);
383	sc->vte_dev = dev;
384
385	mtx_init(&sc->vte_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
386	    MTX_DEF);
387	callout_init_mtx(&sc->vte_tick_ch, &sc->vte_mtx, 0);
388	sc->vte_ident = vte_find_ident(dev);
389
390	/* Map the device. */
391	pci_enable_busmaster(dev);
392	sc->vte_res_id = PCIR_BAR(1);
393	sc->vte_res_type = SYS_RES_MEMORY;
394	sc->vte_res = bus_alloc_resource_any(dev, sc->vte_res_type,
395	    &sc->vte_res_id, RF_ACTIVE);
396	if (sc->vte_res == NULL) {
397		sc->vte_res_id = PCIR_BAR(0);
398		sc->vte_res_type = SYS_RES_IOPORT;
399		sc->vte_res = bus_alloc_resource_any(dev, sc->vte_res_type,
400		    &sc->vte_res_id, RF_ACTIVE);
401		if (sc->vte_res == NULL) {
402			device_printf(dev, "cannot map memory/ports.\n");
403			mtx_destroy(&sc->vte_mtx);
404			return (ENXIO);
405		}
406	}
407	if (bootverbose) {
408		device_printf(dev, "using %s space register mapping\n",
409		    sc->vte_res_type == SYS_RES_MEMORY ? "memory" : "I/O");
410		device_printf(dev, "MAC Identifier : 0x%04x\n",
411		    CSR_READ_2(sc, VTE_MACID));
412		macid = CSR_READ_2(sc, VTE_MACID_REV);
413		device_printf(dev, "MAC Id. 0x%02x, Rev. 0x%02x\n",
414		    (macid & VTE_MACID_MASK) >> VTE_MACID_SHIFT,
415		    (macid & VTE_MACID_REV_MASK) >> VTE_MACID_REV_SHIFT);
416	}
417
418	rid = 0;
419	sc->vte_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
420	    RF_SHAREABLE | RF_ACTIVE);
421	if (sc->vte_irq == NULL) {
422		device_printf(dev, "cannot allocate IRQ resources.\n");
423		error = ENXIO;
424		goto fail;
425	}
426
427	/* Reset the ethernet controller. */
428	vte_reset(sc);
429
430	if ((error = vte_dma_alloc(sc) != 0))
431		goto fail;
432
433	/* Create device sysctl node. */
434	vte_sysctl_node(sc);
435
436	/* Load station address. */
437	vte_get_macaddr(sc);
438
439	ifp = sc->vte_ifp = if_alloc(IFT_ETHER);
440	if (ifp == NULL) {
441		device_printf(dev, "cannot allocate ifnet structure.\n");
442		error = ENXIO;
443		goto fail;
444	}
445
446	ifp->if_softc = sc;
447	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
448	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
449	ifp->if_ioctl = vte_ioctl;
450	ifp->if_start = vte_start;
451	ifp->if_init = vte_init;
452	ifp->if_snd.ifq_drv_maxlen = VTE_TX_RING_CNT - 1;
453	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
454	IFQ_SET_READY(&ifp->if_snd);
455
456	/*
457	 * Set up MII bus.
458	 * BIOS would have initialized VTE_MPSCCR to catch PHY
459	 * status changes so driver may be able to extract
460	 * configured PHY address.  Since it's common to see BIOS
461	 * fails to initialize the register(including the sample
462	 * board I have), let mii(4) probe it.  This is more
463	 * reliable than relying on BIOS's initialization.
464	 *
465	 * Advertising flow control capability to mii(4) was
466	 * intentionally disabled due to severe problems in TX
467	 * pause frame generation.  See vte_rxeof() for more
468	 * details.
469	 */
470	error = mii_attach(dev, &sc->vte_miibus, ifp, vte_mediachange,
471	    vte_mediastatus, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
472	if (error != 0) {
473		device_printf(dev, "attaching PHYs failed\n");
474		goto fail;
475	}
476
477	ether_ifattach(ifp, sc->vte_eaddr);
478
479	/* VLAN capability setup. */
480	ifp->if_capabilities |= IFCAP_VLAN_MTU;
481	ifp->if_capenable = ifp->if_capabilities;
482	/* Tell the upper layer we support VLAN over-sized frames. */
483	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
484
485	error = bus_setup_intr(dev, sc->vte_irq, INTR_TYPE_NET | INTR_MPSAFE,
486	    NULL, vte_intr, sc, &sc->vte_intrhand);
487	if (error != 0) {
488		device_printf(dev, "could not set up interrupt handler.\n");
489		ether_ifdetach(ifp);
490		goto fail;
491	}
492
493fail:
494	if (error != 0)
495		vte_detach(dev);
496
497	return (error);
498}
499
500static int
501vte_detach(device_t dev)
502{
503	struct vte_softc *sc;
504	struct ifnet *ifp;
505
506	sc = device_get_softc(dev);
507
508	ifp = sc->vte_ifp;
509	if (device_is_attached(dev)) {
510		VTE_LOCK(sc);
511		vte_stop(sc);
512		VTE_UNLOCK(sc);
513		callout_drain(&sc->vte_tick_ch);
514		ether_ifdetach(ifp);
515	}
516
517	if (sc->vte_miibus != NULL) {
518		device_delete_child(dev, sc->vte_miibus);
519		sc->vte_miibus = NULL;
520	}
521	bus_generic_detach(dev);
522
523	if (sc->vte_intrhand != NULL) {
524		bus_teardown_intr(dev, sc->vte_irq, sc->vte_intrhand);
525		sc->vte_intrhand = NULL;
526	}
527	if (sc->vte_irq != NULL) {
528		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vte_irq);
529		sc->vte_irq = NULL;
530	}
531	if (sc->vte_res != NULL) {
532		bus_release_resource(dev, sc->vte_res_type, sc->vte_res_id,
533		    sc->vte_res);
534		sc->vte_res = NULL;
535	}
536	if (ifp != NULL) {
537		if_free(ifp);
538		sc->vte_ifp = NULL;
539	}
540	vte_dma_free(sc);
541	mtx_destroy(&sc->vte_mtx);
542
543	return (0);
544}
545
546#define	VTE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
547	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
548
549static void
550vte_sysctl_node(struct vte_softc *sc)
551{
552	struct sysctl_ctx_list *ctx;
553	struct sysctl_oid_list *child, *parent;
554	struct sysctl_oid *tree;
555	struct vte_hw_stats *stats;
556	int error;
557
558	stats = &sc->vte_stats;
559	ctx = device_get_sysctl_ctx(sc->vte_dev);
560	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->vte_dev));
561
562	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
563	    CTLTYPE_INT | CTLFLAG_RW, &sc->vte_int_rx_mod, 0,
564	    sysctl_hw_vte_int_mod, "I", "vte RX interrupt moderation");
565	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
566	    CTLTYPE_INT | CTLFLAG_RW, &sc->vte_int_tx_mod, 0,
567	    sysctl_hw_vte_int_mod, "I", "vte TX interrupt moderation");
568	/* Pull in device tunables. */
569	sc->vte_int_rx_mod = VTE_IM_RX_BUNDLE_DEFAULT;
570	error = resource_int_value(device_get_name(sc->vte_dev),
571	    device_get_unit(sc->vte_dev), "int_rx_mod", &sc->vte_int_rx_mod);
572	if (error == 0) {
573		if (sc->vte_int_rx_mod < VTE_IM_BUNDLE_MIN ||
574		    sc->vte_int_rx_mod > VTE_IM_BUNDLE_MAX) {
575			device_printf(sc->vte_dev, "int_rx_mod value out of "
576			    "range; using default: %d\n",
577			    VTE_IM_RX_BUNDLE_DEFAULT);
578			sc->vte_int_rx_mod = VTE_IM_RX_BUNDLE_DEFAULT;
579		}
580	}
581
582	sc->vte_int_tx_mod = VTE_IM_TX_BUNDLE_DEFAULT;
583	error = resource_int_value(device_get_name(sc->vte_dev),
584	    device_get_unit(sc->vte_dev), "int_tx_mod", &sc->vte_int_tx_mod);
585	if (error == 0) {
586		if (sc->vte_int_tx_mod < VTE_IM_BUNDLE_MIN ||
587		    sc->vte_int_tx_mod > VTE_IM_BUNDLE_MAX) {
588			device_printf(sc->vte_dev, "int_tx_mod value out of "
589			    "range; using default: %d\n",
590			    VTE_IM_TX_BUNDLE_DEFAULT);
591			sc->vte_int_tx_mod = VTE_IM_TX_BUNDLE_DEFAULT;
592		}
593	}
594
595	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
596	    NULL, "VTE statistics");
597	parent = SYSCTL_CHILDREN(tree);
598
599	/* RX statistics. */
600	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
601	    NULL, "RX MAC statistics");
602	child = SYSCTL_CHILDREN(tree);
603	VTE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
604	    &stats->rx_frames, "Good frames");
605	VTE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
606	    &stats->rx_bcast_frames, "Good broadcast frames");
607	VTE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
608	    &stats->rx_mcast_frames, "Good multicast frames");
609	VTE_SYSCTL_STAT_ADD32(ctx, child, "runt",
610	    &stats->rx_runts, "Too short frames");
611	VTE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
612	    &stats->rx_crcerrs, "CRC errors");
613	VTE_SYSCTL_STAT_ADD32(ctx, child, "long_frames",
614	    &stats->rx_long_frames,
615	    "Frames that have longer length than maximum packet length");
616	VTE_SYSCTL_STAT_ADD32(ctx, child, "fifo_full",
617	    &stats->rx_fifo_full, "FIFO full");
618	VTE_SYSCTL_STAT_ADD32(ctx, child, "desc_unavail",
619	    &stats->rx_desc_unavail, "Descriptor unavailable frames");
620	VTE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
621	    &stats->rx_pause_frames, "Pause control frames");
622
623	/* TX statistics. */
624	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
625	    NULL, "TX MAC statistics");
626	child = SYSCTL_CHILDREN(tree);
627	VTE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
628	    &stats->tx_frames, "Good frames");
629	VTE_SYSCTL_STAT_ADD32(ctx, child, "underruns",
630	    &stats->tx_underruns, "FIFO underruns");
631	VTE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
632	    &stats->tx_late_colls, "Late collisions");
633	VTE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
634	    &stats->tx_pause_frames, "Pause control frames");
635}
636
637#undef VTE_SYSCTL_STAT_ADD32
638
639struct vte_dmamap_arg {
640	bus_addr_t	vte_busaddr;
641};
642
643static void
644vte_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
645{
646	struct vte_dmamap_arg *ctx;
647
648	if (error != 0)
649		return;
650
651	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
652
653	ctx = (struct vte_dmamap_arg *)arg;
654	ctx->vte_busaddr = segs[0].ds_addr;
655}
656
657static int
658vte_dma_alloc(struct vte_softc *sc)
659{
660	struct vte_txdesc *txd;
661	struct vte_rxdesc *rxd;
662	struct vte_dmamap_arg ctx;
663	int error, i;
664
665	/* Create parent DMA tag. */
666	error = bus_dma_tag_create(
667	    bus_get_dma_tag(sc->vte_dev), /* parent */
668	    1, 0,			/* alignment, boundary */
669	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
670	    BUS_SPACE_MAXADDR,		/* highaddr */
671	    NULL, NULL,			/* filter, filterarg */
672	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
673	    0,				/* nsegments */
674	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
675	    0,				/* flags */
676	    NULL, NULL,			/* lockfunc, lockarg */
677	    &sc->vte_cdata.vte_parent_tag);
678	if (error != 0) {
679		device_printf(sc->vte_dev,
680		    "could not create parent DMA tag.\n");
681		goto fail;
682	}
683
684	/* Create DMA tag for TX descriptor ring. */
685	error = bus_dma_tag_create(
686	    sc->vte_cdata.vte_parent_tag, /* parent */
687	    VTE_TX_RING_ALIGN, 0,	/* alignment, boundary */
688	    BUS_SPACE_MAXADDR,		/* lowaddr */
689	    BUS_SPACE_MAXADDR,		/* highaddr */
690	    NULL, NULL,			/* filter, filterarg */
691	    VTE_TX_RING_SZ,		/* maxsize */
692	    1,				/* nsegments */
693	    VTE_TX_RING_SZ,		/* maxsegsize */
694	    0,				/* flags */
695	    NULL, NULL,			/* lockfunc, lockarg */
696	    &sc->vte_cdata.vte_tx_ring_tag);
697	if (error != 0) {
698		device_printf(sc->vte_dev,
699		    "could not create TX ring DMA tag.\n");
700		goto fail;
701	}
702
703	/* Create DMA tag for RX free descriptor ring. */
704	error = bus_dma_tag_create(
705	    sc->vte_cdata.vte_parent_tag, /* parent */
706	    VTE_RX_RING_ALIGN, 0,	/* alignment, boundary */
707	    BUS_SPACE_MAXADDR,		/* lowaddr */
708	    BUS_SPACE_MAXADDR,		/* highaddr */
709	    NULL, NULL,			/* filter, filterarg */
710	    VTE_RX_RING_SZ,		/* maxsize */
711	    1,				/* nsegments */
712	    VTE_RX_RING_SZ,		/* maxsegsize */
713	    0,				/* flags */
714	    NULL, NULL,			/* lockfunc, lockarg */
715	    &sc->vte_cdata.vte_rx_ring_tag);
716	if (error != 0) {
717		device_printf(sc->vte_dev,
718		    "could not create RX ring DMA tag.\n");
719		goto fail;
720	}
721
722	/* Allocate DMA'able memory and load the DMA map for TX ring. */
723	error = bus_dmamem_alloc(sc->vte_cdata.vte_tx_ring_tag,
724	    (void **)&sc->vte_cdata.vte_tx_ring,
725	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
726	    &sc->vte_cdata.vte_tx_ring_map);
727	if (error != 0) {
728		device_printf(sc->vte_dev,
729		    "could not allocate DMA'able memory for TX ring.\n");
730		goto fail;
731	}
732	ctx.vte_busaddr = 0;
733	error = bus_dmamap_load(sc->vte_cdata.vte_tx_ring_tag,
734	    sc->vte_cdata.vte_tx_ring_map, sc->vte_cdata.vte_tx_ring,
735	    VTE_TX_RING_SZ, vte_dmamap_cb, &ctx, 0);
736	if (error != 0 || ctx.vte_busaddr == 0) {
737		device_printf(sc->vte_dev,
738		    "could not load DMA'able memory for TX ring.\n");
739		goto fail;
740	}
741	sc->vte_cdata.vte_tx_ring_paddr = ctx.vte_busaddr;
742
743	/* Allocate DMA'able memory and load the DMA map for RX ring. */
744	error = bus_dmamem_alloc(sc->vte_cdata.vte_rx_ring_tag,
745	    (void **)&sc->vte_cdata.vte_rx_ring,
746	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
747	    &sc->vte_cdata.vte_rx_ring_map);
748	if (error != 0) {
749		device_printf(sc->vte_dev,
750		    "could not allocate DMA'able memory for RX ring.\n");
751		goto fail;
752	}
753	ctx.vte_busaddr = 0;
754	error = bus_dmamap_load(sc->vte_cdata.vte_rx_ring_tag,
755	    sc->vte_cdata.vte_rx_ring_map, sc->vte_cdata.vte_rx_ring,
756	    VTE_RX_RING_SZ, vte_dmamap_cb, &ctx, 0);
757	if (error != 0 || ctx.vte_busaddr == 0) {
758		device_printf(sc->vte_dev,
759		    "could not load DMA'able memory for RX ring.\n");
760		goto fail;
761	}
762	sc->vte_cdata.vte_rx_ring_paddr = ctx.vte_busaddr;
763
764	/* Create TX buffer parent tag. */
765	error = bus_dma_tag_create(
766	    bus_get_dma_tag(sc->vte_dev), /* parent */
767	    1, 0,			/* alignment, boundary */
768	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
769	    BUS_SPACE_MAXADDR,		/* highaddr */
770	    NULL, NULL,			/* filter, filterarg */
771	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
772	    0,				/* nsegments */
773	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
774	    0,				/* flags */
775	    NULL, NULL,			/* lockfunc, lockarg */
776	    &sc->vte_cdata.vte_buffer_tag);
777	if (error != 0) {
778		device_printf(sc->vte_dev,
779		    "could not create parent buffer DMA tag.\n");
780		goto fail;
781	}
782
783	/* Create DMA tag for TX buffers. */
784	error = bus_dma_tag_create(
785	    sc->vte_cdata.vte_buffer_tag, /* parent */
786	    1, 0,			/* alignment, boundary */
787	    BUS_SPACE_MAXADDR,		/* lowaddr */
788	    BUS_SPACE_MAXADDR,		/* highaddr */
789	    NULL, NULL,			/* filter, filterarg */
790	    MCLBYTES,			/* maxsize */
791	    1,				/* nsegments */
792	    MCLBYTES,			/* maxsegsize */
793	    0,				/* flags */
794	    NULL, NULL,			/* lockfunc, lockarg */
795	    &sc->vte_cdata.vte_tx_tag);
796	if (error != 0) {
797		device_printf(sc->vte_dev, "could not create TX DMA tag.\n");
798		goto fail;
799	}
800
801	/* Create DMA tag for RX buffers. */
802	error = bus_dma_tag_create(
803	    sc->vte_cdata.vte_buffer_tag, /* parent */
804	    VTE_RX_BUF_ALIGN, 0,	/* alignment, boundary */
805	    BUS_SPACE_MAXADDR,		/* lowaddr */
806	    BUS_SPACE_MAXADDR,		/* highaddr */
807	    NULL, NULL,			/* filter, filterarg */
808	    MCLBYTES,			/* maxsize */
809	    1,				/* nsegments */
810	    MCLBYTES,			/* maxsegsize */
811	    0,				/* flags */
812	    NULL, NULL,			/* lockfunc, lockarg */
813	    &sc->vte_cdata.vte_rx_tag);
814	if (error != 0) {
815		device_printf(sc->vte_dev, "could not create RX DMA tag.\n");
816		goto fail;
817	}
818	/* Create DMA maps for TX buffers. */
819	for (i = 0; i < VTE_TX_RING_CNT; i++) {
820		txd = &sc->vte_cdata.vte_txdesc[i];
821		txd->tx_m = NULL;
822		txd->tx_dmamap = NULL;
823		error = bus_dmamap_create(sc->vte_cdata.vte_tx_tag, 0,
824		    &txd->tx_dmamap);
825		if (error != 0) {
826			device_printf(sc->vte_dev,
827			    "could not create TX dmamap.\n");
828			goto fail;
829		}
830	}
831	/* Create DMA maps for RX buffers. */
832	if ((error = bus_dmamap_create(sc->vte_cdata.vte_rx_tag, 0,
833	    &sc->vte_cdata.vte_rx_sparemap)) != 0) {
834		device_printf(sc->vte_dev,
835		    "could not create spare RX dmamap.\n");
836		goto fail;
837	}
838	for (i = 0; i < VTE_RX_RING_CNT; i++) {
839		rxd = &sc->vte_cdata.vte_rxdesc[i];
840		rxd->rx_m = NULL;
841		rxd->rx_dmamap = NULL;
842		error = bus_dmamap_create(sc->vte_cdata.vte_rx_tag, 0,
843		    &rxd->rx_dmamap);
844		if (error != 0) {
845			device_printf(sc->vte_dev,
846			    "could not create RX dmamap.\n");
847			goto fail;
848		}
849	}
850
851fail:
852	return (error);
853}
854
855static void
856vte_dma_free(struct vte_softc *sc)
857{
858	struct vte_txdesc *txd;
859	struct vte_rxdesc *rxd;
860	int i;
861
862	/* TX buffers. */
863	if (sc->vte_cdata.vte_tx_tag != NULL) {
864		for (i = 0; i < VTE_TX_RING_CNT; i++) {
865			txd = &sc->vte_cdata.vte_txdesc[i];
866			if (txd->tx_dmamap != NULL) {
867				bus_dmamap_destroy(sc->vte_cdata.vte_tx_tag,
868				    txd->tx_dmamap);
869				txd->tx_dmamap = NULL;
870			}
871		}
872		bus_dma_tag_destroy(sc->vte_cdata.vte_tx_tag);
873		sc->vte_cdata.vte_tx_tag = NULL;
874	}
875	/* RX buffers */
876	if (sc->vte_cdata.vte_rx_tag != NULL) {
877		for (i = 0; i < VTE_RX_RING_CNT; i++) {
878			rxd = &sc->vte_cdata.vte_rxdesc[i];
879			if (rxd->rx_dmamap != NULL) {
880				bus_dmamap_destroy(sc->vte_cdata.vte_rx_tag,
881				    rxd->rx_dmamap);
882				rxd->rx_dmamap = NULL;
883			}
884		}
885		if (sc->vte_cdata.vte_rx_sparemap != NULL) {
886			bus_dmamap_destroy(sc->vte_cdata.vte_rx_tag,
887			    sc->vte_cdata.vte_rx_sparemap);
888			sc->vte_cdata.vte_rx_sparemap = NULL;
889		}
890		bus_dma_tag_destroy(sc->vte_cdata.vte_rx_tag);
891		sc->vte_cdata.vte_rx_tag = NULL;
892	}
893	/* TX descriptor ring. */
894	if (sc->vte_cdata.vte_tx_ring_tag != NULL) {
895		if (sc->vte_cdata.vte_tx_ring_map != NULL)
896			bus_dmamap_unload(sc->vte_cdata.vte_tx_ring_tag,
897			    sc->vte_cdata.vte_tx_ring_map);
898		if (sc->vte_cdata.vte_tx_ring_map != NULL &&
899		    sc->vte_cdata.vte_tx_ring != NULL)
900			bus_dmamem_free(sc->vte_cdata.vte_tx_ring_tag,
901			    sc->vte_cdata.vte_tx_ring,
902			    sc->vte_cdata.vte_tx_ring_map);
903		sc->vte_cdata.vte_tx_ring = NULL;
904		sc->vte_cdata.vte_tx_ring_map = NULL;
905		bus_dma_tag_destroy(sc->vte_cdata.vte_tx_ring_tag);
906		sc->vte_cdata.vte_tx_ring_tag = NULL;
907	}
908	/* RX ring. */
909	if (sc->vte_cdata.vte_rx_ring_tag != NULL) {
910		if (sc->vte_cdata.vte_rx_ring_map != NULL)
911			bus_dmamap_unload(sc->vte_cdata.vte_rx_ring_tag,
912			    sc->vte_cdata.vte_rx_ring_map);
913		if (sc->vte_cdata.vte_rx_ring_map != NULL &&
914		    sc->vte_cdata.vte_rx_ring != NULL)
915			bus_dmamem_free(sc->vte_cdata.vte_rx_ring_tag,
916			    sc->vte_cdata.vte_rx_ring,
917			    sc->vte_cdata.vte_rx_ring_map);
918		sc->vte_cdata.vte_rx_ring = NULL;
919		sc->vte_cdata.vte_rx_ring_map = NULL;
920		bus_dma_tag_destroy(sc->vte_cdata.vte_rx_ring_tag);
921		sc->vte_cdata.vte_rx_ring_tag = NULL;
922	}
923	if (sc->vte_cdata.vte_buffer_tag != NULL) {
924		bus_dma_tag_destroy(sc->vte_cdata.vte_buffer_tag);
925		sc->vte_cdata.vte_buffer_tag = NULL;
926	}
927	if (sc->vte_cdata.vte_parent_tag != NULL) {
928		bus_dma_tag_destroy(sc->vte_cdata.vte_parent_tag);
929		sc->vte_cdata.vte_parent_tag = NULL;
930	}
931}
932
933static int
934vte_shutdown(device_t dev)
935{
936
937	return (vte_suspend(dev));
938}
939
940static int
941vte_suspend(device_t dev)
942{
943	struct vte_softc *sc;
944	struct ifnet *ifp;
945
946	sc = device_get_softc(dev);
947
948	VTE_LOCK(sc);
949	ifp = sc->vte_ifp;
950	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
951		vte_stop(sc);
952	VTE_UNLOCK(sc);
953
954	return (0);
955}
956
957static int
958vte_resume(device_t dev)
959{
960	struct vte_softc *sc;
961	struct ifnet *ifp;
962
963	sc = device_get_softc(dev);
964
965	VTE_LOCK(sc);
966	ifp = sc->vte_ifp;
967	if ((ifp->if_flags & IFF_UP) != 0) {
968		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
969		vte_init_locked(sc);
970	}
971	VTE_UNLOCK(sc);
972
973	return (0);
974}
975
976static struct vte_txdesc *
977vte_encap(struct vte_softc *sc, struct mbuf **m_head)
978{
979	struct vte_txdesc *txd;
980	struct mbuf *m, *n;
981	bus_dma_segment_t txsegs[1];
982	int copy, error, nsegs, padlen;
983
984	VTE_LOCK_ASSERT(sc);
985
986	M_ASSERTPKTHDR((*m_head));
987
988	txd = &sc->vte_cdata.vte_txdesc[sc->vte_cdata.vte_tx_prod];
989	m = *m_head;
990	/*
991	 * Controller doesn't auto-pad, so we have to make sure pad
992	 * short frames out to the minimum frame length.
993	 */
994	if (m->m_pkthdr.len < VTE_MIN_FRAMELEN)
995		padlen = VTE_MIN_FRAMELEN - m->m_pkthdr.len;
996	else
997		padlen = 0;
998
999	/*
1000	 * Controller does not support multi-fragmented TX buffers.
1001	 * Controller spends most of its TX processing time in
1002	 * de-fragmenting TX buffers.  Either faster CPU or more
1003	 * advanced controller DMA engine is required to speed up
1004	 * TX path processing.
1005	 * To mitigate the de-fragmenting issue, perform deep copy
1006	 * from fragmented mbuf chains to a pre-allocated mbuf
1007	 * cluster with extra cost of kernel memory.  For frames
1008	 * that is composed of single TX buffer, the deep copy is
1009	 * bypassed.
1010	 */
1011	if (tx_deep_copy != 0) {
1012		copy = 0;
1013		if (m->m_next != NULL)
1014			copy++;
1015		if (padlen > 0 && (M_WRITABLE(m) == 0 ||
1016		    padlen > M_TRAILINGSPACE(m)))
1017			copy++;
1018		if (copy != 0) {
1019			/* Avoid expensive m_defrag(9) and do deep copy. */
1020			n = sc->vte_cdata.vte_txmbufs[sc->vte_cdata.vte_tx_prod];
1021			m_copydata(m, 0, m->m_pkthdr.len, mtod(n, char *));
1022			n->m_pkthdr.len = m->m_pkthdr.len;
1023			n->m_len = m->m_pkthdr.len;
1024			m = n;
1025			txd->tx_flags |= VTE_TXMBUF;
1026		}
1027
1028		if (padlen > 0) {
1029			/* Zero out the bytes in the pad area. */
1030			bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1031			m->m_pkthdr.len += padlen;
1032			m->m_len = m->m_pkthdr.len;
1033		}
1034	} else {
1035		if (M_WRITABLE(m) == 0) {
1036			if (m->m_next != NULL || padlen > 0) {
1037				/* Get a writable copy. */
1038				m = m_dup(*m_head, M_NOWAIT);
1039				/* Release original mbuf chains. */
1040				m_freem(*m_head);
1041				if (m == NULL) {
1042					*m_head = NULL;
1043					return (NULL);
1044				}
1045				*m_head = m;
1046			}
1047		}
1048
1049		if (m->m_next != NULL) {
1050			m = m_defrag(*m_head, M_NOWAIT);
1051			if (m == NULL) {
1052				m_freem(*m_head);
1053				*m_head = NULL;
1054				return (NULL);
1055			}
1056			*m_head = m;
1057		}
1058
1059		if (padlen > 0) {
1060			if (M_TRAILINGSPACE(m) < padlen) {
1061				m = m_defrag(*m_head, M_NOWAIT);
1062				if (m == NULL) {
1063					m_freem(*m_head);
1064					*m_head = NULL;
1065					return (NULL);
1066				}
1067				*m_head = m;
1068			}
1069			/* Zero out the bytes in the pad area. */
1070			bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1071			m->m_pkthdr.len += padlen;
1072			m->m_len = m->m_pkthdr.len;
1073		}
1074	}
1075
1076	error = bus_dmamap_load_mbuf_sg(sc->vte_cdata.vte_tx_tag,
1077	    txd->tx_dmamap, m, txsegs, &nsegs, 0);
1078	if (error != 0) {
1079		txd->tx_flags &= ~VTE_TXMBUF;
1080		return (NULL);
1081	}
1082	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1083	bus_dmamap_sync(sc->vte_cdata.vte_tx_tag, txd->tx_dmamap,
1084	    BUS_DMASYNC_PREWRITE);
1085
1086	txd->tx_desc->dtlen = htole16(VTE_TX_LEN(txsegs[0].ds_len));
1087	txd->tx_desc->dtbp = htole32(txsegs[0].ds_addr);
1088	sc->vte_cdata.vte_tx_cnt++;
1089	/* Update producer index. */
1090	VTE_DESC_INC(sc->vte_cdata.vte_tx_prod, VTE_TX_RING_CNT);
1091
1092	/* Finally hand over ownership to controller. */
1093	txd->tx_desc->dtst = htole16(VTE_DTST_TX_OWN);
1094	txd->tx_m = m;
1095
1096	return (txd);
1097}
1098
1099static void
1100vte_start(struct ifnet *ifp)
1101{
1102	struct vte_softc *sc;
1103
1104	sc = ifp->if_softc;
1105	VTE_LOCK(sc);
1106	vte_start_locked(sc);
1107	VTE_UNLOCK(sc);
1108}
1109
1110static void
1111vte_start_locked(struct vte_softc *sc)
1112{
1113	struct ifnet *ifp;
1114	struct vte_txdesc *txd;
1115	struct mbuf *m_head;
1116	int enq;
1117
1118	ifp = sc->vte_ifp;
1119
1120	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1121	    IFF_DRV_RUNNING || (sc->vte_flags & VTE_FLAG_LINK) == 0)
1122		return;
1123
1124	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1125		/* Reserve one free TX descriptor. */
1126		if (sc->vte_cdata.vte_tx_cnt >= VTE_TX_RING_CNT - 1) {
1127			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1128			break;
1129		}
1130		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1131		if (m_head == NULL)
1132			break;
1133		/*
1134		 * Pack the data into the transmit ring. If we
1135		 * don't have room, set the OACTIVE flag and wait
1136		 * for the NIC to drain the ring.
1137		 */
1138		if ((txd = vte_encap(sc, &m_head)) == NULL) {
1139			if (m_head != NULL)
1140				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1141			break;
1142		}
1143
1144		enq++;
1145		/*
1146		 * If there's a BPF listener, bounce a copy of this frame
1147		 * to him.
1148		 */
1149		ETHER_BPF_MTAP(ifp, m_head);
1150		/* Free consumed TX frame. */
1151		if ((txd->tx_flags & VTE_TXMBUF) != 0)
1152			m_freem(m_head);
1153	}
1154
1155	if (enq > 0) {
1156		bus_dmamap_sync(sc->vte_cdata.vte_tx_ring_tag,
1157		    sc->vte_cdata.vte_tx_ring_map, BUS_DMASYNC_PREREAD |
1158		    BUS_DMASYNC_PREWRITE);
1159		CSR_WRITE_2(sc, VTE_TX_POLL, TX_POLL_START);
1160		sc->vte_watchdog_timer = VTE_TX_TIMEOUT;
1161	}
1162}
1163
1164static void
1165vte_watchdog(struct vte_softc *sc)
1166{
1167	struct ifnet *ifp;
1168
1169	VTE_LOCK_ASSERT(sc);
1170
1171	if (sc->vte_watchdog_timer == 0 || --sc->vte_watchdog_timer)
1172		return;
1173
1174	ifp = sc->vte_ifp;
1175	if_printf(sc->vte_ifp, "watchdog timeout -- resetting\n");
1176	ifp->if_oerrors++;
1177	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1178	vte_init_locked(sc);
1179	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1180		vte_start_locked(sc);
1181}
1182
1183static int
1184vte_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1185{
1186	struct vte_softc *sc;
1187	struct ifreq *ifr;
1188	struct mii_data *mii;
1189	int error;
1190
1191	sc = ifp->if_softc;
1192	ifr = (struct ifreq *)data;
1193	error = 0;
1194	switch (cmd) {
1195	case SIOCSIFFLAGS:
1196		VTE_LOCK(sc);
1197		if ((ifp->if_flags & IFF_UP) != 0) {
1198			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
1199			    ((ifp->if_flags ^ sc->vte_if_flags) &
1200			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1201				vte_rxfilter(sc);
1202			else
1203				vte_init_locked(sc);
1204		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1205			vte_stop(sc);
1206		sc->vte_if_flags = ifp->if_flags;
1207		VTE_UNLOCK(sc);
1208		break;
1209	case SIOCADDMULTI:
1210	case SIOCDELMULTI:
1211		VTE_LOCK(sc);
1212		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1213			vte_rxfilter(sc);
1214		VTE_UNLOCK(sc);
1215		break;
1216	case SIOCSIFMEDIA:
1217	case SIOCGIFMEDIA:
1218		mii = device_get_softc(sc->vte_miibus);
1219		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1220		break;
1221	default:
1222		error = ether_ioctl(ifp, cmd, data);
1223		break;
1224	}
1225
1226	return (error);
1227}
1228
1229static void
1230vte_mac_config(struct vte_softc *sc)
1231{
1232	struct mii_data *mii;
1233	uint16_t mcr;
1234
1235	VTE_LOCK_ASSERT(sc);
1236
1237	mii = device_get_softc(sc->vte_miibus);
1238	mcr = CSR_READ_2(sc, VTE_MCR0);
1239	mcr &= ~(MCR0_FC_ENB | MCR0_FULL_DUPLEX);
1240	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1241		mcr |= MCR0_FULL_DUPLEX;
1242#ifdef notyet
1243		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1244			mcr |= MCR0_FC_ENB;
1245		/*
1246		 * The data sheet is not clear whether the controller
1247		 * honors received pause frames or not.  The is no
1248		 * separate control bit for RX pause frame so just
1249		 * enable MCR0_FC_ENB bit.
1250		 */
1251		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1252			mcr |= MCR0_FC_ENB;
1253#endif
1254	}
1255	CSR_WRITE_2(sc, VTE_MCR0, mcr);
1256}
1257
1258static void
1259vte_stats_clear(struct vte_softc *sc)
1260{
1261
1262	/* Reading counter registers clears its contents. */
1263	CSR_READ_2(sc, VTE_CNT_RX_DONE);
1264	CSR_READ_2(sc, VTE_CNT_MECNT0);
1265	CSR_READ_2(sc, VTE_CNT_MECNT1);
1266	CSR_READ_2(sc, VTE_CNT_MECNT2);
1267	CSR_READ_2(sc, VTE_CNT_MECNT3);
1268	CSR_READ_2(sc, VTE_CNT_TX_DONE);
1269	CSR_READ_2(sc, VTE_CNT_MECNT4);
1270	CSR_READ_2(sc, VTE_CNT_PAUSE);
1271}
1272
1273static void
1274vte_stats_update(struct vte_softc *sc)
1275{
1276	struct vte_hw_stats *stat;
1277	struct ifnet *ifp;
1278	uint16_t value;
1279
1280	VTE_LOCK_ASSERT(sc);
1281
1282	ifp = sc->vte_ifp;
1283	stat = &sc->vte_stats;
1284
1285	CSR_READ_2(sc, VTE_MECISR);
1286	/* RX stats. */
1287	stat->rx_frames += CSR_READ_2(sc, VTE_CNT_RX_DONE);
1288	value = CSR_READ_2(sc, VTE_CNT_MECNT0);
1289	stat->rx_bcast_frames += (value >> 8);
1290	stat->rx_mcast_frames += (value & 0xFF);
1291	value = CSR_READ_2(sc, VTE_CNT_MECNT1);
1292	stat->rx_runts += (value >> 8);
1293	stat->rx_crcerrs += (value & 0xFF);
1294	value = CSR_READ_2(sc, VTE_CNT_MECNT2);
1295	stat->rx_long_frames += (value & 0xFF);
1296	value = CSR_READ_2(sc, VTE_CNT_MECNT3);
1297	stat->rx_fifo_full += (value >> 8);
1298	stat->rx_desc_unavail += (value & 0xFF);
1299
1300	/* TX stats. */
1301	stat->tx_frames += CSR_READ_2(sc, VTE_CNT_TX_DONE);
1302	value = CSR_READ_2(sc, VTE_CNT_MECNT4);
1303	stat->tx_underruns += (value >> 8);
1304	stat->tx_late_colls += (value & 0xFF);
1305
1306	value = CSR_READ_2(sc, VTE_CNT_PAUSE);
1307	stat->tx_pause_frames += (value >> 8);
1308	stat->rx_pause_frames += (value & 0xFF);
1309
1310	/* Update ifp counters. */
1311	ifp->if_opackets = stat->tx_frames;
1312	ifp->if_collisions = stat->tx_late_colls;
1313	ifp->if_oerrors = stat->tx_late_colls + stat->tx_underruns;
1314	ifp->if_ipackets = stat->rx_frames;
1315	ifp->if_ierrors = stat->rx_crcerrs + stat->rx_runts +
1316	    stat->rx_long_frames + stat->rx_fifo_full;
1317}
1318
1319static void
1320vte_intr(void *arg)
1321{
1322	struct vte_softc *sc;
1323	struct ifnet *ifp;
1324	uint16_t status;
1325	int n;
1326
1327	sc = (struct vte_softc *)arg;
1328	VTE_LOCK(sc);
1329
1330	ifp = sc->vte_ifp;
1331	/* Reading VTE_MISR acknowledges interrupts. */
1332	status = CSR_READ_2(sc, VTE_MISR);
1333	if ((status & VTE_INTRS) == 0) {
1334		/* Not ours. */
1335		VTE_UNLOCK(sc);
1336		return;
1337	}
1338
1339	/* Disable interrupts. */
1340	CSR_WRITE_2(sc, VTE_MIER, 0);
1341	for (n = 8; (status & VTE_INTRS) != 0;) {
1342		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1343			break;
1344		if ((status & (MISR_RX_DONE | MISR_RX_DESC_UNAVAIL |
1345		    MISR_RX_FIFO_FULL)) != 0)
1346			vte_rxeof(sc);
1347		if ((status & MISR_TX_DONE) != 0)
1348			vte_txeof(sc);
1349		if ((status & MISR_EVENT_CNT_OFLOW) != 0)
1350			vte_stats_update(sc);
1351		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1352			vte_start_locked(sc);
1353		if (--n > 0)
1354			status = CSR_READ_2(sc, VTE_MISR);
1355		else
1356			break;
1357	}
1358
1359	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1360		/* Re-enable interrupts. */
1361		CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
1362	}
1363	VTE_UNLOCK(sc);
1364}
1365
1366static void
1367vte_txeof(struct vte_softc *sc)
1368{
1369	struct ifnet *ifp;
1370	struct vte_txdesc *txd;
1371	uint16_t status;
1372	int cons, prog;
1373
1374	VTE_LOCK_ASSERT(sc);
1375
1376	ifp = sc->vte_ifp;
1377
1378	if (sc->vte_cdata.vte_tx_cnt == 0)
1379		return;
1380	bus_dmamap_sync(sc->vte_cdata.vte_tx_ring_tag,
1381	    sc->vte_cdata.vte_tx_ring_map, BUS_DMASYNC_POSTREAD |
1382	    BUS_DMASYNC_POSTWRITE);
1383	cons = sc->vte_cdata.vte_tx_cons;
1384	/*
1385	 * Go through our TX list and free mbufs for those
1386	 * frames which have been transmitted.
1387	 */
1388	for (prog = 0; sc->vte_cdata.vte_tx_cnt > 0; prog++) {
1389		txd = &sc->vte_cdata.vte_txdesc[cons];
1390		status = le16toh(txd->tx_desc->dtst);
1391		if ((status & VTE_DTST_TX_OWN) != 0)
1392			break;
1393		sc->vte_cdata.vte_tx_cnt--;
1394		/* Reclaim transmitted mbufs. */
1395		bus_dmamap_sync(sc->vte_cdata.vte_tx_tag, txd->tx_dmamap,
1396		    BUS_DMASYNC_POSTWRITE);
1397		bus_dmamap_unload(sc->vte_cdata.vte_tx_tag, txd->tx_dmamap);
1398		if ((txd->tx_flags & VTE_TXMBUF) == 0)
1399			m_freem(txd->tx_m);
1400		txd->tx_flags &= ~VTE_TXMBUF;
1401		txd->tx_m = NULL;
1402		prog++;
1403		VTE_DESC_INC(cons, VTE_TX_RING_CNT);
1404	}
1405
1406	if (prog > 0) {
1407		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1408		sc->vte_cdata.vte_tx_cons = cons;
1409		/*
1410		 * Unarm watchdog timer only when there is no pending
1411		 * frames in TX queue.
1412		 */
1413		if (sc->vte_cdata.vte_tx_cnt == 0)
1414			sc->vte_watchdog_timer = 0;
1415	}
1416}
1417
1418static int
1419vte_newbuf(struct vte_softc *sc, struct vte_rxdesc *rxd)
1420{
1421	struct mbuf *m;
1422	bus_dma_segment_t segs[1];
1423	bus_dmamap_t map;
1424	int nsegs;
1425
1426	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1427	if (m == NULL)
1428		return (ENOBUFS);
1429	m->m_len = m->m_pkthdr.len = MCLBYTES;
1430	m_adj(m, sizeof(uint32_t));
1431
1432	if (bus_dmamap_load_mbuf_sg(sc->vte_cdata.vte_rx_tag,
1433	    sc->vte_cdata.vte_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1434		m_freem(m);
1435		return (ENOBUFS);
1436	}
1437	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1438
1439	if (rxd->rx_m != NULL) {
1440		bus_dmamap_sync(sc->vte_cdata.vte_rx_tag, rxd->rx_dmamap,
1441		    BUS_DMASYNC_POSTREAD);
1442		bus_dmamap_unload(sc->vte_cdata.vte_rx_tag, rxd->rx_dmamap);
1443	}
1444	map = rxd->rx_dmamap;
1445	rxd->rx_dmamap = sc->vte_cdata.vte_rx_sparemap;
1446	sc->vte_cdata.vte_rx_sparemap = map;
1447	bus_dmamap_sync(sc->vte_cdata.vte_rx_tag, rxd->rx_dmamap,
1448	    BUS_DMASYNC_PREREAD);
1449	rxd->rx_m = m;
1450	rxd->rx_desc->drbp = htole32(segs[0].ds_addr);
1451	rxd->rx_desc->drlen = htole16(VTE_RX_LEN(segs[0].ds_len));
1452	rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1453
1454	return (0);
1455}
1456
1457/*
1458 * It's not supposed to see this controller on strict-alignment
1459 * architectures but make it work for completeness.
1460 */
1461#ifndef __NO_STRICT_ALIGNMENT
1462static struct mbuf *
1463vte_fixup_rx(struct ifnet *ifp, struct mbuf *m)
1464{
1465        uint16_t *src, *dst;
1466        int i;
1467
1468	src = mtod(m, uint16_t *);
1469	dst = src - 1;
1470
1471	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1472		*dst++ = *src++;
1473	m->m_data -= ETHER_ALIGN;
1474	return (m);
1475}
1476#endif
1477
1478static void
1479vte_rxeof(struct vte_softc *sc)
1480{
1481	struct ifnet *ifp;
1482	struct vte_rxdesc *rxd;
1483	struct mbuf *m;
1484	uint16_t status, total_len;
1485	int cons, prog;
1486
1487	bus_dmamap_sync(sc->vte_cdata.vte_rx_ring_tag,
1488	    sc->vte_cdata.vte_rx_ring_map, BUS_DMASYNC_POSTREAD |
1489	    BUS_DMASYNC_POSTWRITE);
1490	cons = sc->vte_cdata.vte_rx_cons;
1491	ifp = sc->vte_ifp;
1492	for (prog = 0; (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0; prog++,
1493	    VTE_DESC_INC(cons, VTE_RX_RING_CNT)) {
1494		rxd = &sc->vte_cdata.vte_rxdesc[cons];
1495		status = le16toh(rxd->rx_desc->drst);
1496		if ((status & VTE_DRST_RX_OWN) != 0)
1497			break;
1498		total_len = VTE_RX_LEN(le16toh(rxd->rx_desc->drlen));
1499		m = rxd->rx_m;
1500		if ((status & VTE_DRST_RX_OK) == 0) {
1501			/* Discard errored frame. */
1502			rxd->rx_desc->drlen =
1503			    htole16(MCLBYTES - sizeof(uint32_t));
1504			rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1505			continue;
1506		}
1507		if (vte_newbuf(sc, rxd) != 0) {
1508			ifp->if_iqdrops++;
1509			rxd->rx_desc->drlen =
1510			    htole16(MCLBYTES - sizeof(uint32_t));
1511			rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1512			continue;
1513		}
1514
1515		/*
1516		 * It seems there is no way to strip FCS bytes.
1517		 */
1518		m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
1519		m->m_pkthdr.rcvif = ifp;
1520#ifndef __NO_STRICT_ALIGNMENT
1521		vte_fixup_rx(ifp, m);
1522#endif
1523		VTE_UNLOCK(sc);
1524		(*ifp->if_input)(ifp, m);
1525		VTE_LOCK(sc);
1526	}
1527
1528	if (prog > 0) {
1529		/* Update the consumer index. */
1530		sc->vte_cdata.vte_rx_cons = cons;
1531		/*
1532		 * Sync updated RX descriptors such that controller see
1533		 * modified RX buffer addresses.
1534		 */
1535		bus_dmamap_sync(sc->vte_cdata.vte_rx_ring_tag,
1536		    sc->vte_cdata.vte_rx_ring_map,
1537		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1538#ifdef notyet
1539		/*
1540		 * Update residue counter.  Controller does not
1541		 * keep track of number of available RX descriptors
1542		 * such that driver should have to update VTE_MRDCR
1543		 * to make controller know how many free RX
1544		 * descriptors were added to controller.  This is
1545		 * a similar mechanism used in VIA velocity
1546		 * controllers and it indicates controller just
1547		 * polls OWN bit of current RX descriptor pointer.
1548		 * A couple of severe issues were seen on sample
1549		 * board where the controller continuously emits TX
1550		 * pause frames once RX pause threshold crossed.
1551		 * Once triggered it never recovered form that
1552		 * state, I couldn't find a way to make it back to
1553		 * work at least.  This issue effectively
1554		 * disconnected the system from network.  Also, the
1555		 * controller used 00:00:00:00:00:00 as source
1556		 * station address of TX pause frame. Probably this
1557		 * is one of reason why vendor recommends not to
1558		 * enable flow control on R6040 controller.
1559		 */
1560		CSR_WRITE_2(sc, VTE_MRDCR, prog |
1561		    (((VTE_RX_RING_CNT * 2) / 10) <<
1562		    VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1563#endif
1564	}
1565}
1566
1567static void
1568vte_tick(void *arg)
1569{
1570	struct vte_softc *sc;
1571	struct mii_data *mii;
1572
1573	sc = (struct vte_softc *)arg;
1574
1575	VTE_LOCK_ASSERT(sc);
1576
1577	mii = device_get_softc(sc->vte_miibus);
1578	mii_tick(mii);
1579	vte_stats_update(sc);
1580	vte_txeof(sc);
1581	vte_watchdog(sc);
1582	callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
1583}
1584
1585static void
1586vte_reset(struct vte_softc *sc)
1587{
1588	uint16_t mcr;
1589	int i;
1590
1591	mcr = CSR_READ_2(sc, VTE_MCR1);
1592	CSR_WRITE_2(sc, VTE_MCR1, mcr | MCR1_MAC_RESET);
1593	for (i = VTE_RESET_TIMEOUT; i > 0; i--) {
1594		DELAY(10);
1595		if ((CSR_READ_2(sc, VTE_MCR1) & MCR1_MAC_RESET) == 0)
1596			break;
1597	}
1598	if (i == 0)
1599		device_printf(sc->vte_dev, "reset timeout(0x%04x)!\n", mcr);
1600	/*
1601	 * Follow the guide of vendor recommended way to reset MAC.
1602	 * Vendor confirms relying on MCR1_MAC_RESET of VTE_MCR1 is
1603	 * not reliable so manually reset internal state machine.
1604	 */
1605	CSR_WRITE_2(sc, VTE_MACSM, 0x0002);
1606	CSR_WRITE_2(sc, VTE_MACSM, 0);
1607	DELAY(5000);
1608}
1609
1610static void
1611vte_init(void *xsc)
1612{
1613	struct vte_softc *sc;
1614
1615	sc = (struct vte_softc *)xsc;
1616	VTE_LOCK(sc);
1617	vte_init_locked(sc);
1618	VTE_UNLOCK(sc);
1619}
1620
1621static void
1622vte_init_locked(struct vte_softc *sc)
1623{
1624	struct ifnet *ifp;
1625	bus_addr_t paddr;
1626	uint8_t *eaddr;
1627
1628	VTE_LOCK_ASSERT(sc);
1629
1630	ifp = sc->vte_ifp;
1631
1632	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1633		return;
1634	/*
1635	 * Cancel any pending I/O.
1636	 */
1637	vte_stop(sc);
1638	/*
1639	 * Reset the chip to a known state.
1640	 */
1641	vte_reset(sc);
1642
1643	/* Initialize RX descriptors. */
1644	if (vte_init_rx_ring(sc) != 0) {
1645		device_printf(sc->vte_dev, "no memory for RX buffers.\n");
1646		vte_stop(sc);
1647		return;
1648	}
1649	if (vte_init_tx_ring(sc) != 0) {
1650		device_printf(sc->vte_dev, "no memory for TX buffers.\n");
1651		vte_stop(sc);
1652		return;
1653	}
1654
1655	/*
1656	 * Reprogram the station address.  Controller supports up
1657	 * to 4 different station addresses so driver programs the
1658	 * first station address as its own ethernet address and
1659	 * configure the remaining three addresses as perfect
1660	 * multicast addresses.
1661	 */
1662	eaddr = IF_LLADDR(sc->vte_ifp);
1663	CSR_WRITE_2(sc, VTE_MID0L, eaddr[1] << 8 | eaddr[0]);
1664	CSR_WRITE_2(sc, VTE_MID0M, eaddr[3] << 8 | eaddr[2]);
1665	CSR_WRITE_2(sc, VTE_MID0H, eaddr[5] << 8 | eaddr[4]);
1666
1667	/* Set TX descriptor base addresses. */
1668	paddr = sc->vte_cdata.vte_tx_ring_paddr;
1669	CSR_WRITE_2(sc, VTE_MTDSA1, paddr >> 16);
1670	CSR_WRITE_2(sc, VTE_MTDSA0, paddr & 0xFFFF);
1671	/* Set RX descriptor base addresses. */
1672	paddr = sc->vte_cdata.vte_rx_ring_paddr;
1673	CSR_WRITE_2(sc, VTE_MRDSA1, paddr >> 16);
1674	CSR_WRITE_2(sc, VTE_MRDSA0, paddr & 0xFFFF);
1675	/*
1676	 * Initialize RX descriptor residue counter and set RX
1677	 * pause threshold to 20% of available RX descriptors.
1678	 * See comments on vte_rxeof() for details on flow control
1679	 * issues.
1680	 */
1681	CSR_WRITE_2(sc, VTE_MRDCR, (VTE_RX_RING_CNT & VTE_MRDCR_RESIDUE_MASK) |
1682	    (((VTE_RX_RING_CNT * 2) / 10) << VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1683
1684	/*
1685	 * Always use maximum frame size that controller can
1686	 * support.  Otherwise received frames that has longer
1687	 * frame length than vte(4) MTU would be silently dropped
1688	 * in controller.  This would break path-MTU discovery as
1689	 * sender wouldn't get any responses from receiver. The
1690	 * RX buffer size should be multiple of 4.
1691	 * Note, jumbo frames are silently ignored by controller
1692	 * and even MAC counters do not detect them.
1693	 */
1694	CSR_WRITE_2(sc, VTE_MRBSR, VTE_RX_BUF_SIZE_MAX);
1695
1696	/* Configure FIFO. */
1697	CSR_WRITE_2(sc, VTE_MBCR, MBCR_FIFO_XFER_LENGTH_16 |
1698	    MBCR_TX_FIFO_THRESH_64 | MBCR_RX_FIFO_THRESH_16 |
1699	    MBCR_SDRAM_BUS_REQ_TIMER_DEFAULT);
1700
1701	/*
1702	 * Configure TX/RX MACs.  Actual resolved duplex and flow
1703	 * control configuration is done after detecting a valid
1704	 * link.  Note, we don't generate early interrupt here
1705	 * as well since FreeBSD does not have interrupt latency
1706	 * problems like Windows.
1707	 */
1708	CSR_WRITE_2(sc, VTE_MCR0, MCR0_ACCPT_LONG_PKT);
1709	/*
1710	 * We manually keep track of PHY status changes to
1711	 * configure resolved duplex and flow control since only
1712	 * duplex configuration can be automatically reflected to
1713	 * MCR0.
1714	 */
1715	CSR_WRITE_2(sc, VTE_MCR1, MCR1_PKT_LENGTH_1537 |
1716	    MCR1_EXCESS_COL_RETRY_16);
1717
1718	/* Initialize RX filter. */
1719	vte_rxfilter(sc);
1720
1721	/* Disable TX/RX interrupt moderation control. */
1722	CSR_WRITE_2(sc, VTE_MRICR, 0);
1723	CSR_WRITE_2(sc, VTE_MTICR, 0);
1724
1725	/* Enable MAC event counter interrupts. */
1726	CSR_WRITE_2(sc, VTE_MECIER, VTE_MECIER_INTRS);
1727	/* Clear MAC statistics. */
1728	vte_stats_clear(sc);
1729
1730	/* Acknowledge all pending interrupts and clear it. */
1731	CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
1732	CSR_WRITE_2(sc, VTE_MISR, 0);
1733
1734	sc->vte_flags &= ~VTE_FLAG_LINK;
1735	/* Switch to the current media. */
1736	vte_mediachange_locked(ifp);
1737
1738	callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
1739
1740	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1741	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1742}
1743
1744static void
1745vte_stop(struct vte_softc *sc)
1746{
1747	struct ifnet *ifp;
1748	struct vte_txdesc *txd;
1749	struct vte_rxdesc *rxd;
1750	int i;
1751
1752	VTE_LOCK_ASSERT(sc);
1753	/*
1754	 * Mark the interface down and cancel the watchdog timer.
1755	 */
1756	ifp = sc->vte_ifp;
1757	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1758	sc->vte_flags &= ~VTE_FLAG_LINK;
1759	callout_stop(&sc->vte_tick_ch);
1760	sc->vte_watchdog_timer = 0;
1761	vte_stats_update(sc);
1762	/* Disable interrupts. */
1763	CSR_WRITE_2(sc, VTE_MIER, 0);
1764	CSR_WRITE_2(sc, VTE_MECIER, 0);
1765	/* Stop RX/TX MACs. */
1766	vte_stop_mac(sc);
1767	/* Clear interrupts. */
1768	CSR_READ_2(sc, VTE_MISR);
1769	/*
1770	 * Free TX/RX mbufs still in the queues.
1771	 */
1772	for (i = 0; i < VTE_RX_RING_CNT; i++) {
1773		rxd = &sc->vte_cdata.vte_rxdesc[i];
1774		if (rxd->rx_m != NULL) {
1775			bus_dmamap_sync(sc->vte_cdata.vte_rx_tag,
1776			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
1777			bus_dmamap_unload(sc->vte_cdata.vte_rx_tag,
1778			    rxd->rx_dmamap);
1779			m_freem(rxd->rx_m);
1780			rxd->rx_m = NULL;
1781		}
1782	}
1783	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1784		txd = &sc->vte_cdata.vte_txdesc[i];
1785		if (txd->tx_m != NULL) {
1786			bus_dmamap_sync(sc->vte_cdata.vte_tx_tag,
1787			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1788			bus_dmamap_unload(sc->vte_cdata.vte_tx_tag,
1789			    txd->tx_dmamap);
1790			if ((txd->tx_flags & VTE_TXMBUF) == 0)
1791				m_freem(txd->tx_m);
1792			txd->tx_m = NULL;
1793			txd->tx_flags &= ~VTE_TXMBUF;
1794		}
1795	}
1796	/* Free TX mbuf pools used for deep copy. */
1797	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1798		if (sc->vte_cdata.vte_txmbufs[i] != NULL) {
1799			m_freem(sc->vte_cdata.vte_txmbufs[i]);
1800			sc->vte_cdata.vte_txmbufs[i] = NULL;
1801		}
1802	}
1803}
1804
1805static void
1806vte_start_mac(struct vte_softc *sc)
1807{
1808	uint16_t mcr;
1809	int i;
1810
1811	VTE_LOCK_ASSERT(sc);
1812
1813	/* Enable RX/TX MACs. */
1814	mcr = CSR_READ_2(sc, VTE_MCR0);
1815	if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) !=
1816	    (MCR0_RX_ENB | MCR0_TX_ENB)) {
1817		mcr |= MCR0_RX_ENB | MCR0_TX_ENB;
1818		CSR_WRITE_2(sc, VTE_MCR0, mcr);
1819		for (i = VTE_TIMEOUT; i > 0; i--) {
1820			mcr = CSR_READ_2(sc, VTE_MCR0);
1821			if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) ==
1822			    (MCR0_RX_ENB | MCR0_TX_ENB))
1823				break;
1824			DELAY(10);
1825		}
1826		if (i == 0)
1827			device_printf(sc->vte_dev,
1828			    "could not enable RX/TX MAC(0x%04x)!\n", mcr);
1829	}
1830}
1831
1832static void
1833vte_stop_mac(struct vte_softc *sc)
1834{
1835	uint16_t mcr;
1836	int i;
1837
1838	VTE_LOCK_ASSERT(sc);
1839
1840	/* Disable RX/TX MACs. */
1841	mcr = CSR_READ_2(sc, VTE_MCR0);
1842	if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) != 0) {
1843		mcr &= ~(MCR0_RX_ENB | MCR0_TX_ENB);
1844		CSR_WRITE_2(sc, VTE_MCR0, mcr);
1845		for (i = VTE_TIMEOUT; i > 0; i--) {
1846			mcr = CSR_READ_2(sc, VTE_MCR0);
1847			if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) == 0)
1848				break;
1849			DELAY(10);
1850		}
1851		if (i == 0)
1852			device_printf(sc->vte_dev,
1853			    "could not disable RX/TX MAC(0x%04x)!\n", mcr);
1854	}
1855}
1856
1857static int
1858vte_init_tx_ring(struct vte_softc *sc)
1859{
1860	struct vte_tx_desc *desc;
1861	struct vte_txdesc *txd;
1862	bus_addr_t addr;
1863	int i;
1864
1865	VTE_LOCK_ASSERT(sc);
1866
1867	sc->vte_cdata.vte_tx_prod = 0;
1868	sc->vte_cdata.vte_tx_cons = 0;
1869	sc->vte_cdata.vte_tx_cnt = 0;
1870
1871	/* Pre-allocate TX mbufs for deep copy. */
1872	if (tx_deep_copy != 0) {
1873		for (i = 0; i < VTE_TX_RING_CNT; i++) {
1874			sc->vte_cdata.vte_txmbufs[i] = m_getcl(M_NOWAIT,
1875			    MT_DATA, M_PKTHDR);
1876			if (sc->vte_cdata.vte_txmbufs[i] == NULL)
1877				return (ENOBUFS);
1878			sc->vte_cdata.vte_txmbufs[i]->m_pkthdr.len = MCLBYTES;
1879			sc->vte_cdata.vte_txmbufs[i]->m_len = MCLBYTES;
1880		}
1881	}
1882	desc = sc->vte_cdata.vte_tx_ring;
1883	bzero(desc, VTE_TX_RING_SZ);
1884	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1885		txd = &sc->vte_cdata.vte_txdesc[i];
1886		txd->tx_m = NULL;
1887		if (i != VTE_TX_RING_CNT - 1)
1888			addr = sc->vte_cdata.vte_tx_ring_paddr +
1889			    sizeof(struct vte_tx_desc) * (i + 1);
1890		else
1891			addr = sc->vte_cdata.vte_tx_ring_paddr +
1892			    sizeof(struct vte_tx_desc) * 0;
1893		desc = &sc->vte_cdata.vte_tx_ring[i];
1894		desc->dtnp = htole32(addr);
1895		txd->tx_desc = desc;
1896	}
1897
1898	bus_dmamap_sync(sc->vte_cdata.vte_tx_ring_tag,
1899	    sc->vte_cdata.vte_tx_ring_map, BUS_DMASYNC_PREREAD |
1900	    BUS_DMASYNC_PREWRITE);
1901	return (0);
1902}
1903
1904static int
1905vte_init_rx_ring(struct vte_softc *sc)
1906{
1907	struct vte_rx_desc *desc;
1908	struct vte_rxdesc *rxd;
1909	bus_addr_t addr;
1910	int i;
1911
1912	VTE_LOCK_ASSERT(sc);
1913
1914	sc->vte_cdata.vte_rx_cons = 0;
1915	desc = sc->vte_cdata.vte_rx_ring;
1916	bzero(desc, VTE_RX_RING_SZ);
1917	for (i = 0; i < VTE_RX_RING_CNT; i++) {
1918		rxd = &sc->vte_cdata.vte_rxdesc[i];
1919		rxd->rx_m = NULL;
1920		if (i != VTE_RX_RING_CNT - 1)
1921			addr = sc->vte_cdata.vte_rx_ring_paddr +
1922			    sizeof(struct vte_rx_desc) * (i + 1);
1923		else
1924			addr = sc->vte_cdata.vte_rx_ring_paddr +
1925			    sizeof(struct vte_rx_desc) * 0;
1926		desc = &sc->vte_cdata.vte_rx_ring[i];
1927		desc->drnp = htole32(addr);
1928		rxd->rx_desc = desc;
1929		if (vte_newbuf(sc, rxd) != 0)
1930			return (ENOBUFS);
1931	}
1932
1933	bus_dmamap_sync(sc->vte_cdata.vte_rx_ring_tag,
1934	    sc->vte_cdata.vte_rx_ring_map, BUS_DMASYNC_PREREAD |
1935	    BUS_DMASYNC_PREWRITE);
1936
1937	return (0);
1938}
1939
1940static void
1941vte_rxfilter(struct vte_softc *sc)
1942{
1943	struct ifnet *ifp;
1944	struct ifmultiaddr *ifma;
1945	uint8_t *eaddr;
1946	uint32_t crc;
1947	uint16_t rxfilt_perf[VTE_RXFILT_PERFECT_CNT][3];
1948	uint16_t mchash[4], mcr;
1949	int i, nperf;
1950
1951	VTE_LOCK_ASSERT(sc);
1952
1953	ifp = sc->vte_ifp;
1954
1955	bzero(mchash, sizeof(mchash));
1956	for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
1957		rxfilt_perf[i][0] = 0xFFFF;
1958		rxfilt_perf[i][1] = 0xFFFF;
1959		rxfilt_perf[i][2] = 0xFFFF;
1960	}
1961
1962	mcr = CSR_READ_2(sc, VTE_MCR0);
1963	mcr &= ~(MCR0_PROMISC | MCR0_MULTICAST);
1964	mcr |= MCR0_BROADCAST_DIS;
1965	if ((ifp->if_flags & IFF_BROADCAST) != 0)
1966		mcr &= ~MCR0_BROADCAST_DIS;
1967	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
1968		if ((ifp->if_flags & IFF_PROMISC) != 0)
1969			mcr |= MCR0_PROMISC;
1970		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
1971			mcr |= MCR0_MULTICAST;
1972		mchash[0] = 0xFFFF;
1973		mchash[1] = 0xFFFF;
1974		mchash[2] = 0xFFFF;
1975		mchash[3] = 0xFFFF;
1976		goto chipit;
1977	}
1978
1979	nperf = 0;
1980	if_maddr_rlock(ifp);
1981	TAILQ_FOREACH(ifma, &sc->vte_ifp->if_multiaddrs, ifma_link) {
1982		if (ifma->ifma_addr->sa_family != AF_LINK)
1983			continue;
1984		/*
1985		 * Program the first 3 multicast groups into
1986		 * the perfect filter.  For all others, use the
1987		 * hash table.
1988		 */
1989		if (nperf < VTE_RXFILT_PERFECT_CNT) {
1990			eaddr = LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
1991			rxfilt_perf[nperf][0] = eaddr[1] << 8 | eaddr[0];
1992			rxfilt_perf[nperf][1] = eaddr[3] << 8 | eaddr[2];
1993			rxfilt_perf[nperf][2] = eaddr[5] << 8 | eaddr[4];
1994			nperf++;
1995			continue;
1996		}
1997		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
1998		    ifma->ifma_addr), ETHER_ADDR_LEN);
1999		mchash[crc >> 30] |= 1 << ((crc >> 26) & 0x0F);
2000	}
2001	if_maddr_runlock(ifp);
2002	if (mchash[0] != 0 || mchash[1] != 0 || mchash[2] != 0 ||
2003	    mchash[3] != 0)
2004		mcr |= MCR0_MULTICAST;
2005
2006chipit:
2007	/* Program multicast hash table. */
2008	CSR_WRITE_2(sc, VTE_MAR0, mchash[0]);
2009	CSR_WRITE_2(sc, VTE_MAR1, mchash[1]);
2010	CSR_WRITE_2(sc, VTE_MAR2, mchash[2]);
2011	CSR_WRITE_2(sc, VTE_MAR3, mchash[3]);
2012	/* Program perfect filter table. */
2013	for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
2014		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 0,
2015		    rxfilt_perf[i][0]);
2016		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 2,
2017		    rxfilt_perf[i][1]);
2018		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 4,
2019		    rxfilt_perf[i][2]);
2020	}
2021	CSR_WRITE_2(sc, VTE_MCR0, mcr);
2022	CSR_READ_2(sc, VTE_MCR0);
2023}
2024
2025static int
2026sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2027{
2028	int error, value;
2029
2030	if (arg1 == NULL)
2031		return (EINVAL);
2032	value = *(int *)arg1;
2033	error = sysctl_handle_int(oidp, &value, 0, req);
2034	if (error || req->newptr == NULL)
2035		return (error);
2036	if (value < low || value > high)
2037		return (EINVAL);
2038	*(int *)arg1 = value;
2039
2040	return (0);
2041}
2042
2043static int
2044sysctl_hw_vte_int_mod(SYSCTL_HANDLER_ARGS)
2045{
2046
2047	return (sysctl_int_range(oidp, arg1, arg2, req,
2048	    VTE_IM_BUNDLE_MIN, VTE_IM_BUNDLE_MAX));
2049}
2050