nicvf_queues.c revision 297482
1/*
2 * Copyright (C) 2015 Cavium Inc.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 * $FreeBSD: head/sys/dev/vnic/nicvf_queues.c 297482 2016-04-01 06:28:33Z sephe $
27 *
28 */
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD: head/sys/dev/vnic/nicvf_queues.c 297482 2016-04-01 06:28:33Z sephe $");
31
32#include "opt_inet.h"
33#include "opt_inet6.h"
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/bitset.h>
38#include <sys/bitstring.h>
39#include <sys/buf_ring.h>
40#include <sys/bus.h>
41#include <sys/endian.h>
42#include <sys/kernel.h>
43#include <sys/malloc.h>
44#include <sys/module.h>
45#include <sys/rman.h>
46#include <sys/pciio.h>
47#include <sys/pcpu.h>
48#include <sys/proc.h>
49#include <sys/sockio.h>
50#include <sys/socket.h>
51#include <sys/cpuset.h>
52#include <sys/lock.h>
53#include <sys/mutex.h>
54#include <sys/smp.h>
55#include <sys/taskqueue.h>
56
57#include <vm/vm.h>
58#include <vm/pmap.h>
59
60#include <machine/bus.h>
61#include <machine/vmparam.h>
62
63#include <net/if.h>
64#include <net/if_var.h>
65#include <net/if_media.h>
66#include <net/ifq.h>
67#include <net/bpf.h>
68#include <net/ethernet.h>
69
70#include <netinet/in_systm.h>
71#include <netinet/in.h>
72#include <netinet/if_ether.h>
73#include <netinet/ip.h>
74#include <netinet/ip6.h>
75#include <netinet/sctp.h>
76#include <netinet/tcp.h>
77#include <netinet/tcp_lro.h>
78#include <netinet/udp.h>
79
80#include <dev/pci/pcireg.h>
81#include <dev/pci/pcivar.h>
82
83#include "thunder_bgx.h"
84#include "nic_reg.h"
85#include "nic.h"
86#include "q_struct.h"
87#include "nicvf_queues.h"
88
89#define	DEBUG
90#undef DEBUG
91
92#ifdef DEBUG
93#define	dprintf(dev, fmt, ...)	device_printf(dev, fmt, ##__VA_ARGS__)
94#else
95#define	dprintf(dev, fmt, ...)
96#endif
97
98MALLOC_DECLARE(M_NICVF);
99
100static void nicvf_free_snd_queue(struct nicvf *, struct snd_queue *);
101static struct mbuf * nicvf_get_rcv_mbuf(struct nicvf *, struct cqe_rx_t *);
102static void nicvf_sq_disable(struct nicvf *, int);
103static void nicvf_sq_enable(struct nicvf *, struct snd_queue *, int);
104static void nicvf_put_sq_desc(struct snd_queue *, int);
105static void nicvf_cmp_queue_config(struct nicvf *, struct queue_set *, int,
106    boolean_t);
107static void nicvf_sq_free_used_descs(struct nicvf *, struct snd_queue *, int);
108
109static int nicvf_tx_mbuf_locked(struct snd_queue *, struct mbuf **);
110
111static void nicvf_rbdr_task(void *, int);
112static void nicvf_rbdr_task_nowait(void *, int);
113
114struct rbuf_info {
115	bus_dma_tag_t	dmat;
116	bus_dmamap_t	dmap;
117	struct mbuf *	mbuf;
118};
119
120#define GET_RBUF_INFO(x) ((struct rbuf_info *)((x) - NICVF_RCV_BUF_ALIGN_BYTES))
121
122/* Poll a register for a specific value */
123static int nicvf_poll_reg(struct nicvf *nic, int qidx,
124			  uint64_t reg, int bit_pos, int bits, int val)
125{
126	uint64_t bit_mask;
127	uint64_t reg_val;
128	int timeout = 10;
129
130	bit_mask = (1UL << bits) - 1;
131	bit_mask = (bit_mask << bit_pos);
132
133	while (timeout) {
134		reg_val = nicvf_queue_reg_read(nic, reg, qidx);
135		if (((reg_val & bit_mask) >> bit_pos) == val)
136			return (0);
137
138		DELAY(1000);
139		timeout--;
140	}
141	device_printf(nic->dev, "Poll on reg 0x%lx failed\n", reg);
142	return (ETIMEDOUT);
143}
144
145/* Callback for bus_dmamap_load() */
146static void
147nicvf_dmamap_q_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
148{
149	bus_addr_t *paddr;
150
151	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
152	paddr = arg;
153	*paddr = segs->ds_addr;
154}
155
156/* Allocate memory for a queue's descriptors */
157static int
158nicvf_alloc_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem,
159    int q_len, int desc_size, int align_bytes)
160{
161	int err, err_dmat;
162
163	/* Create DMA tag first */
164	err = bus_dma_tag_create(
165	    bus_get_dma_tag(nic->dev),		/* parent tag */
166	    align_bytes,			/* alignment */
167	    0,					/* boundary */
168	    BUS_SPACE_MAXADDR,			/* lowaddr */
169	    BUS_SPACE_MAXADDR,			/* highaddr */
170	    NULL, NULL,				/* filtfunc, filtfuncarg */
171	    (q_len * desc_size),		/* maxsize */
172	    1,					/* nsegments */
173	    (q_len * desc_size),		/* maxsegsize */
174	    0,					/* flags */
175	    NULL, NULL,				/* lockfunc, lockfuncarg */
176	    &dmem->dmat);			/* dmat */
177
178	if (err != 0) {
179		device_printf(nic->dev,
180		    "Failed to create busdma tag for descriptors ring\n");
181		return (err);
182	}
183
184	/* Allocate segment of continuous DMA safe memory */
185	err = bus_dmamem_alloc(
186	    dmem->dmat,				/* DMA tag */
187	    &dmem->base,			/* virtual address */
188	    (BUS_DMA_NOWAIT | BUS_DMA_ZERO),	/* flags */
189	    &dmem->dmap);			/* DMA map */
190	if (err != 0) {
191		device_printf(nic->dev, "Failed to allocate DMA safe memory for"
192		    "descriptors ring\n");
193		goto dmamem_fail;
194	}
195
196	err = bus_dmamap_load(
197	    dmem->dmat,
198	    dmem->dmap,
199	    dmem->base,
200	    (q_len * desc_size),		/* allocation size */
201	    nicvf_dmamap_q_cb,			/* map to DMA address cb. */
202	    &dmem->phys_base,			/* physical address */
203	    BUS_DMA_NOWAIT);
204	if (err != 0) {
205		device_printf(nic->dev,
206		    "Cannot load DMA map of descriptors ring\n");
207		goto dmamap_fail;
208	}
209
210	dmem->q_len = q_len;
211	dmem->size = (desc_size * q_len);
212
213	return (0);
214
215dmamap_fail:
216	bus_dmamem_free(dmem->dmat, dmem->base, dmem->dmap);
217	dmem->phys_base = 0;
218dmamem_fail:
219	err_dmat = bus_dma_tag_destroy(dmem->dmat);
220	dmem->base = NULL;
221	KASSERT(err_dmat == 0,
222	    ("%s: Trying to destroy BUSY DMA tag", __func__));
223
224	return (err);
225}
226
227/* Free queue's descriptor memory */
228static void
229nicvf_free_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem)
230{
231	int err;
232
233	if ((dmem == NULL) || (dmem->base == NULL))
234		return;
235
236	/* Unload a map */
237	bus_dmamap_sync(dmem->dmat, dmem->dmap, BUS_DMASYNC_POSTREAD);
238	bus_dmamap_unload(dmem->dmat, dmem->dmap);
239	/* Free DMA memory */
240	bus_dmamem_free(dmem->dmat, dmem->base, dmem->dmap);
241	/* Destroy DMA tag */
242	err = bus_dma_tag_destroy(dmem->dmat);
243
244	KASSERT(err == 0,
245	    ("%s: Trying to destroy BUSY DMA tag", __func__));
246
247	dmem->phys_base = 0;
248	dmem->base = NULL;
249}
250
251/*
252 * Allocate buffer for packet reception
253 * HW returns memory address where packet is DMA'ed but not a pointer
254 * into RBDR ring, so save buffer address at the start of fragment and
255 * align the start address to a cache aligned address
256 */
257static __inline int
258nicvf_alloc_rcv_buffer(struct nicvf *nic, struct rbdr *rbdr,
259    bus_dmamap_t dmap, int mflags, uint32_t buf_len, bus_addr_t *rbuf)
260{
261	struct mbuf *mbuf;
262	struct rbuf_info *rinfo;
263	bus_dma_segment_t segs[1];
264	int nsegs;
265	int err;
266
267	mbuf = m_getjcl(mflags, MT_DATA, M_PKTHDR, MCLBYTES);
268	if (mbuf == NULL)
269		return (ENOMEM);
270
271	/*
272	 * The length is equal to the actual length + one 128b line
273	 * used as a room for rbuf_info structure.
274	 */
275	mbuf->m_len = mbuf->m_pkthdr.len = buf_len;
276
277	err = bus_dmamap_load_mbuf_sg(rbdr->rbdr_buff_dmat, dmap, mbuf, segs,
278	    &nsegs, BUS_DMA_NOWAIT);
279	if (err != 0) {
280		device_printf(nic->dev,
281		    "Failed to map mbuf into DMA visible memory, err: %d\n",
282		    err);
283		m_freem(mbuf);
284		bus_dmamap_destroy(rbdr->rbdr_buff_dmat, dmap);
285		return (err);
286	}
287	if (nsegs != 1)
288		panic("Unexpected number of DMA segments for RB: %d", nsegs);
289	/*
290	 * Now use the room for rbuf_info structure
291	 * and adjust mbuf data and length.
292	 */
293	rinfo = (struct rbuf_info *)mbuf->m_data;
294	m_adj(mbuf, NICVF_RCV_BUF_ALIGN_BYTES);
295
296	rinfo->dmat = rbdr->rbdr_buff_dmat;
297	rinfo->dmap = dmap;
298	rinfo->mbuf = mbuf;
299
300	*rbuf = segs[0].ds_addr + NICVF_RCV_BUF_ALIGN_BYTES;
301
302	return (0);
303}
304
305/* Retrieve mbuf for received packet */
306static struct mbuf *
307nicvf_rb_ptr_to_mbuf(struct nicvf *nic, bus_addr_t rb_ptr)
308{
309	struct mbuf *mbuf;
310	struct rbuf_info *rinfo;
311
312	/* Get buffer start address and alignment offset */
313	rinfo = GET_RBUF_INFO(PHYS_TO_DMAP(rb_ptr));
314
315	/* Now retrieve mbuf to give to stack */
316	mbuf = rinfo->mbuf;
317	if (__predict_false(mbuf == NULL)) {
318		panic("%s: Received packet fragment with NULL mbuf",
319		    device_get_nameunit(nic->dev));
320	}
321	/*
322	 * Clear the mbuf in the descriptor to indicate
323	 * that this slot is processed and free to use.
324	 */
325	rinfo->mbuf = NULL;
326
327	bus_dmamap_sync(rinfo->dmat, rinfo->dmap, BUS_DMASYNC_POSTREAD);
328	bus_dmamap_unload(rinfo->dmat, rinfo->dmap);
329
330	return (mbuf);
331}
332
333/* Allocate RBDR ring and populate receive buffers */
334static int
335nicvf_init_rbdr(struct nicvf *nic, struct rbdr *rbdr, int ring_len,
336    int buf_size, int qidx)
337{
338	bus_dmamap_t dmap;
339	bus_addr_t rbuf;
340	struct rbdr_entry_t *desc;
341	int idx;
342	int err;
343
344	/* Allocate rbdr descriptors ring */
345	err = nicvf_alloc_q_desc_mem(nic, &rbdr->dmem, ring_len,
346	    sizeof(struct rbdr_entry_t), NICVF_RCV_BUF_ALIGN_BYTES);
347	if (err != 0) {
348		device_printf(nic->dev,
349		    "Failed to create RBDR descriptors ring\n");
350		return (err);
351	}
352
353	rbdr->desc = rbdr->dmem.base;
354	/*
355	 * Buffer size has to be in multiples of 128 bytes.
356	 * Make room for metadata of size of one line (128 bytes).
357	 */
358	rbdr->dma_size = buf_size - NICVF_RCV_BUF_ALIGN_BYTES;
359	rbdr->enable = TRUE;
360	rbdr->thresh = RBDR_THRESH;
361	rbdr->nic = nic;
362	rbdr->idx = qidx;
363
364	/*
365	 * Create DMA tag for Rx buffers.
366	 * Each map created using this tag is intended to store Rx payload for
367	 * one fragment and one header structure containing rbuf_info (thus
368	 * additional 128 byte line since RB must be a multiple of 128 byte
369	 * cache line).
370	 */
371	if (buf_size > MCLBYTES) {
372		device_printf(nic->dev,
373		    "Buffer size to large for mbuf cluster\n");
374		return (EINVAL);
375	}
376	err = bus_dma_tag_create(
377	    bus_get_dma_tag(nic->dev),		/* parent tag */
378	    NICVF_RCV_BUF_ALIGN_BYTES,		/* alignment */
379	    0,					/* boundary */
380	    DMAP_MAX_PHYSADDR,			/* lowaddr */
381	    DMAP_MIN_PHYSADDR,			/* highaddr */
382	    NULL, NULL,				/* filtfunc, filtfuncarg */
383	    roundup2(buf_size, MCLBYTES),	/* maxsize */
384	    1,					/* nsegments */
385	    roundup2(buf_size, MCLBYTES),	/* maxsegsize */
386	    0,					/* flags */
387	    NULL, NULL,				/* lockfunc, lockfuncarg */
388	    &rbdr->rbdr_buff_dmat);		/* dmat */
389
390	if (err != 0) {
391		device_printf(nic->dev,
392		    "Failed to create busdma tag for RBDR buffers\n");
393		return (err);
394	}
395
396	rbdr->rbdr_buff_dmaps = malloc(sizeof(*rbdr->rbdr_buff_dmaps) *
397	    ring_len, M_NICVF, (M_WAITOK | M_ZERO));
398
399	for (idx = 0; idx < ring_len; idx++) {
400		err = bus_dmamap_create(rbdr->rbdr_buff_dmat, 0, &dmap);
401		if (err != 0) {
402			device_printf(nic->dev,
403			    "Failed to create DMA map for RB\n");
404			return (err);
405		}
406		rbdr->rbdr_buff_dmaps[idx] = dmap;
407
408		err = nicvf_alloc_rcv_buffer(nic, rbdr, dmap, M_WAITOK,
409		    DMA_BUFFER_LEN, &rbuf);
410		if (err != 0)
411			return (err);
412
413		desc = GET_RBDR_DESC(rbdr, idx);
414		desc->buf_addr = (rbuf >> NICVF_RCV_BUF_ALIGN);
415	}
416
417	/* Allocate taskqueue */
418	TASK_INIT(&rbdr->rbdr_task, 0, nicvf_rbdr_task, rbdr);
419	TASK_INIT(&rbdr->rbdr_task_nowait, 0, nicvf_rbdr_task_nowait, rbdr);
420	rbdr->rbdr_taskq = taskqueue_create_fast("nicvf_rbdr_taskq", M_WAITOK,
421	    taskqueue_thread_enqueue, &rbdr->rbdr_taskq);
422	taskqueue_start_threads(&rbdr->rbdr_taskq, 1, PI_NET, "%s: rbdr_taskq",
423	    device_get_nameunit(nic->dev));
424
425	return (0);
426}
427
428/* Free RBDR ring and its receive buffers */
429static void
430nicvf_free_rbdr(struct nicvf *nic, struct rbdr *rbdr)
431{
432	struct mbuf *mbuf;
433	struct queue_set *qs;
434	struct rbdr_entry_t *desc;
435	struct rbuf_info *rinfo;
436	bus_addr_t buf_addr;
437	int head, tail, idx;
438	int err;
439
440	qs = nic->qs;
441
442	if ((qs == NULL) || (rbdr == NULL))
443		return;
444
445	rbdr->enable = FALSE;
446	if (rbdr->rbdr_taskq != NULL) {
447		/* Remove tasks */
448		while (taskqueue_cancel(rbdr->rbdr_taskq,
449		    &rbdr->rbdr_task_nowait, NULL) != 0) {
450			/* Finish the nowait task first */
451			taskqueue_drain(rbdr->rbdr_taskq,
452			    &rbdr->rbdr_task_nowait);
453		}
454		taskqueue_free(rbdr->rbdr_taskq);
455		rbdr->rbdr_taskq = NULL;
456
457		while (taskqueue_cancel(taskqueue_thread,
458		    &rbdr->rbdr_task, NULL) != 0) {
459			/* Now finish the sleepable task */
460			taskqueue_drain(taskqueue_thread, &rbdr->rbdr_task);
461		}
462	}
463
464	/*
465	 * Free all of the memory under the RB descriptors.
466	 * There are assumptions here:
467	 * 1. Corresponding RBDR is disabled
468	 *    - it is safe to operate using head and tail indexes
469	 * 2. All bffers that were received are properly freed by
470	 *    the receive handler
471	 *    - there is no need to unload DMA map and free MBUF for other
472	 *      descriptors than unused ones
473	 */
474	if (rbdr->rbdr_buff_dmat != NULL) {
475		head = rbdr->head;
476		tail = rbdr->tail;
477		while (head != tail) {
478			desc = GET_RBDR_DESC(rbdr, head);
479			buf_addr = desc->buf_addr << NICVF_RCV_BUF_ALIGN;
480			rinfo = GET_RBUF_INFO(PHYS_TO_DMAP(buf_addr));
481			bus_dmamap_unload(rbdr->rbdr_buff_dmat, rinfo->dmap);
482			mbuf = rinfo->mbuf;
483			/* This will destroy everything including rinfo! */
484			m_freem(mbuf);
485			head++;
486			head &= (rbdr->dmem.q_len - 1);
487		}
488		/* Free tail descriptor */
489		desc = GET_RBDR_DESC(rbdr, tail);
490		buf_addr = desc->buf_addr << NICVF_RCV_BUF_ALIGN;
491		rinfo = GET_RBUF_INFO(PHYS_TO_DMAP(buf_addr));
492		bus_dmamap_unload(rbdr->rbdr_buff_dmat, rinfo->dmap);
493		mbuf = rinfo->mbuf;
494		/* This will destroy everything including rinfo! */
495		m_freem(mbuf);
496
497		/* Destroy DMA maps */
498		for (idx = 0; idx < qs->rbdr_len; idx++) {
499			if (rbdr->rbdr_buff_dmaps[idx] == NULL)
500				continue;
501			err = bus_dmamap_destroy(rbdr->rbdr_buff_dmat,
502			    rbdr->rbdr_buff_dmaps[idx]);
503			KASSERT(err == 0,
504			    ("%s: Could not destroy DMA map for RB, desc: %d",
505			    __func__, idx));
506			rbdr->rbdr_buff_dmaps[idx] = NULL;
507		}
508
509		/* Now destroy the tag */
510		err = bus_dma_tag_destroy(rbdr->rbdr_buff_dmat);
511		KASSERT(err == 0,
512		    ("%s: Trying to destroy BUSY DMA tag", __func__));
513
514		rbdr->head = 0;
515		rbdr->tail = 0;
516	}
517
518	/* Free RBDR ring */
519	nicvf_free_q_desc_mem(nic, &rbdr->dmem);
520}
521
522/*
523 * Refill receive buffer descriptors with new buffers.
524 */
525static int
526nicvf_refill_rbdr(struct rbdr *rbdr, int mflags)
527{
528	struct nicvf *nic;
529	struct queue_set *qs;
530	int rbdr_idx;
531	int tail, qcount;
532	int refill_rb_cnt;
533	struct rbdr_entry_t *desc;
534	bus_dmamap_t dmap;
535	bus_addr_t rbuf;
536	boolean_t rb_alloc_fail;
537	int new_rb;
538
539	rb_alloc_fail = TRUE;
540	new_rb = 0;
541	nic = rbdr->nic;
542	qs = nic->qs;
543	rbdr_idx = rbdr->idx;
544
545	/* Check if it's enabled */
546	if (!rbdr->enable)
547		return (0);
548
549	/* Get no of desc's to be refilled */
550	qcount = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, rbdr_idx);
551	qcount &= 0x7FFFF;
552	/* Doorbell can be ringed with a max of ring size minus 1 */
553	if (qcount >= (qs->rbdr_len - 1)) {
554		rb_alloc_fail = FALSE;
555		goto out;
556	} else
557		refill_rb_cnt = qs->rbdr_len - qcount - 1;
558
559	/* Start filling descs from tail */
560	tail = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, rbdr_idx) >> 3;
561	while (refill_rb_cnt) {
562		tail++;
563		tail &= (rbdr->dmem.q_len - 1);
564
565		dmap = rbdr->rbdr_buff_dmaps[tail];
566		if (nicvf_alloc_rcv_buffer(nic, rbdr, dmap, mflags,
567		    DMA_BUFFER_LEN, &rbuf)) {
568			/* Something went wrong. Resign */
569			break;
570		}
571		desc = GET_RBDR_DESC(rbdr, tail);
572		desc->buf_addr = (rbuf >> NICVF_RCV_BUF_ALIGN);
573		refill_rb_cnt--;
574		new_rb++;
575	}
576
577	/* make sure all memory stores are done before ringing doorbell */
578	wmb();
579
580	/* Check if buffer allocation failed */
581	if (refill_rb_cnt == 0)
582		rb_alloc_fail = FALSE;
583
584	/* Notify HW */
585	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
586			      rbdr_idx, new_rb);
587out:
588	if (!rb_alloc_fail) {
589		/*
590		 * Re-enable RBDR interrupts only
591		 * if buffer allocation is success.
592		 */
593		nicvf_enable_intr(nic, NICVF_INTR_RBDR, rbdr_idx);
594
595		return (0);
596	}
597
598	return (ENOMEM);
599}
600
601/* Refill RBs even if sleep is needed to reclaim memory */
602static void
603nicvf_rbdr_task(void *arg, int pending)
604{
605	struct rbdr *rbdr;
606	int err;
607
608	rbdr = (struct rbdr *)arg;
609
610	err = nicvf_refill_rbdr(rbdr, M_WAITOK);
611	if (__predict_false(err != 0)) {
612		panic("%s: Failed to refill RBs even when sleep enabled",
613		    __func__);
614	}
615}
616
617/* Refill RBs as soon as possible without waiting */
618static void
619nicvf_rbdr_task_nowait(void *arg, int pending)
620{
621	struct rbdr *rbdr;
622	int err;
623
624	rbdr = (struct rbdr *)arg;
625
626	err = nicvf_refill_rbdr(rbdr, M_NOWAIT);
627	if (err != 0) {
628		/*
629		 * Schedule another, sleepable kernel thread
630		 * that will for sure refill the buffers.
631		 */
632		taskqueue_enqueue(taskqueue_thread, &rbdr->rbdr_task);
633	}
634}
635
636static int
637nicvf_rcv_pkt_handler(struct nicvf *nic, struct cmp_queue *cq,
638    struct cqe_rx_t *cqe_rx, int cqe_type)
639{
640	struct mbuf *mbuf;
641	struct rcv_queue *rq;
642	int rq_idx;
643	int err = 0;
644
645	rq_idx = cqe_rx->rq_idx;
646	rq = &nic->qs->rq[rq_idx];
647
648	/* Check for errors */
649	err = nicvf_check_cqe_rx_errs(nic, cq, cqe_rx);
650	if (err && !cqe_rx->rb_cnt)
651		return (0);
652
653	mbuf = nicvf_get_rcv_mbuf(nic, cqe_rx);
654	if (mbuf == NULL) {
655		dprintf(nic->dev, "Packet not received\n");
656		return (0);
657	}
658
659	/* If error packet */
660	if (err != 0) {
661		m_freem(mbuf);
662		return (0);
663	}
664
665	if (rq->lro_enabled &&
666	    ((cqe_rx->l3_type == L3TYPE_IPV4) && (cqe_rx->l4_type == L4TYPE_TCP)) &&
667	    (mbuf->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) ==
668            (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) {
669		/*
670		 * At this point it is known that there are no errors in the
671		 * packet. Attempt to LRO enqueue. Send to stack if no resources
672		 * or enqueue error.
673		 */
674		if ((rq->lro.lro_cnt != 0) &&
675		    (tcp_lro_rx(&rq->lro, mbuf, 0) == 0))
676			return (0);
677	}
678	/*
679	 * Push this packet to the stack later to avoid
680	 * unlocking completion task in the middle of work.
681	 */
682	err = buf_ring_enqueue(cq->rx_br, mbuf);
683	if (err != 0) {
684		/*
685		 * Failed to enqueue this mbuf.
686		 * We don't drop it, just schedule another task.
687		 */
688		return (err);
689	}
690
691	return (0);
692}
693
694static int
695nicvf_snd_pkt_handler(struct nicvf *nic, struct cmp_queue *cq,
696    struct cqe_send_t *cqe_tx, int cqe_type)
697{
698	bus_dmamap_t dmap;
699	struct mbuf *mbuf;
700	struct snd_queue *sq;
701	struct sq_hdr_subdesc *hdr;
702
703	mbuf = NULL;
704	sq = &nic->qs->sq[cqe_tx->sq_idx];
705	/* Avoid blocking here since we hold a non-sleepable NICVF_CMP_LOCK */
706	if (NICVF_TX_TRYLOCK(sq) == 0)
707		return (EAGAIN);
708
709	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, cqe_tx->sqe_ptr);
710	if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) {
711		NICVF_TX_UNLOCK(sq);
712		return (0);
713	}
714
715	dprintf(nic->dev,
716	    "%s Qset #%d SQ #%d SQ ptr #%d subdesc count %d\n",
717	    __func__, cqe_tx->sq_qs, cqe_tx->sq_idx,
718	    cqe_tx->sqe_ptr, hdr->subdesc_cnt);
719
720	dmap = (bus_dmamap_t)sq->snd_buff[cqe_tx->sqe_ptr].dmap;
721	bus_dmamap_unload(sq->snd_buff_dmat, dmap);
722
723	mbuf = (struct mbuf *)sq->snd_buff[cqe_tx->sqe_ptr].mbuf;
724	if (mbuf != NULL) {
725		m_freem(mbuf);
726		sq->snd_buff[cqe_tx->sqe_ptr].mbuf = NULL;
727		nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
728	}
729
730	nicvf_check_cqe_tx_errs(nic, cq, cqe_tx);
731
732	NICVF_TX_UNLOCK(sq);
733	return (0);
734}
735
736static int
737nicvf_cq_intr_handler(struct nicvf *nic, uint8_t cq_idx)
738{
739	struct mbuf *mbuf;
740	struct ifnet *ifp;
741	int processed_cqe, work_done = 0, tx_done = 0;
742	int cqe_count, cqe_head;
743	struct queue_set *qs = nic->qs;
744	struct cmp_queue *cq = &qs->cq[cq_idx];
745	struct snd_queue *sq = &qs->sq[cq_idx];
746	struct rcv_queue *rq;
747	struct cqe_rx_t *cq_desc;
748	struct lro_ctrl	*lro;
749	int rq_idx;
750	int cmp_err;
751
752	NICVF_CMP_LOCK(cq);
753	cmp_err = 0;
754	processed_cqe = 0;
755	/* Get no of valid CQ entries to process */
756	cqe_count = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS, cq_idx);
757	cqe_count &= CQ_CQE_COUNT;
758	if (cqe_count == 0)
759		goto out;
760
761	/* Get head of the valid CQ entries */
762	cqe_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD, cq_idx) >> 9;
763	cqe_head &= 0xFFFF;
764
765	dprintf(nic->dev, "%s CQ%d cqe_count %d cqe_head %d\n",
766	    __func__, cq_idx, cqe_count, cqe_head);
767	while (processed_cqe < cqe_count) {
768		/* Get the CQ descriptor */
769		cq_desc = (struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head);
770		cqe_head++;
771		cqe_head &= (cq->dmem.q_len - 1);
772		/* Prefetch next CQ descriptor */
773		__builtin_prefetch((struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head));
774
775		dprintf(nic->dev, "CQ%d cq_desc->cqe_type %d\n", cq_idx,
776		    cq_desc->cqe_type);
777		switch (cq_desc->cqe_type) {
778		case CQE_TYPE_RX:
779			cmp_err = nicvf_rcv_pkt_handler(nic, cq, cq_desc,
780			    CQE_TYPE_RX);
781			if (__predict_false(cmp_err != 0)) {
782				/*
783				 * Ups. Cannot finish now.
784				 * Let's try again later.
785				 */
786				goto done;
787			}
788			work_done++;
789			break;
790		case CQE_TYPE_SEND:
791			cmp_err = nicvf_snd_pkt_handler(nic, cq,
792			    (void *)cq_desc, CQE_TYPE_SEND);
793			if (__predict_false(cmp_err != 0)) {
794				/*
795				 * Ups. Cannot finish now.
796				 * Let's try again later.
797				 */
798				goto done;
799			}
800
801			tx_done++;
802			break;
803		case CQE_TYPE_INVALID:
804		case CQE_TYPE_RX_SPLIT:
805		case CQE_TYPE_RX_TCP:
806		case CQE_TYPE_SEND_PTP:
807			/* Ignore for now */
808			break;
809		}
810		processed_cqe++;
811	}
812done:
813	dprintf(nic->dev,
814	    "%s CQ%d processed_cqe %d work_done %d\n",
815	    __func__, cq_idx, processed_cqe, work_done);
816
817	/* Ring doorbell to inform H/W to reuse processed CQEs */
818	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_DOOR, cq_idx, processed_cqe);
819
820	if ((tx_done > 0) &&
821	    ((if_getdrvflags(nic->ifp) & IFF_DRV_RUNNING) != 0)) {
822		/* Reenable TXQ if its stopped earlier due to SQ full */
823		if_setdrvflagbits(nic->ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
824		taskqueue_enqueue(sq->snd_taskq, &sq->snd_task);
825	}
826out:
827	/*
828	 * Flush any outstanding LRO work
829	 */
830	rq_idx = cq_idx;
831	rq = &nic->qs->rq[rq_idx];
832	lro = &rq->lro;
833	tcp_lro_flush_all(lro);
834
835	NICVF_CMP_UNLOCK(cq);
836
837	ifp = nic->ifp;
838	/* Push received MBUFs to the stack */
839	while (!buf_ring_empty(cq->rx_br)) {
840		mbuf = buf_ring_dequeue_mc(cq->rx_br);
841		if (__predict_true(mbuf != NULL))
842			(*ifp->if_input)(ifp, mbuf);
843	}
844
845	return (cmp_err);
846}
847
848/*
849 * Qset error interrupt handler
850 *
851 * As of now only CQ errors are handled
852 */
853static void
854nicvf_qs_err_task(void *arg, int pending)
855{
856	struct nicvf *nic;
857	struct queue_set *qs;
858	int qidx;
859	uint64_t status;
860	boolean_t enable = TRUE;
861
862	nic = (struct nicvf *)arg;
863	qs = nic->qs;
864
865	/* Deactivate network interface */
866	if_setdrvflagbits(nic->ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING);
867
868	/* Check if it is CQ err */
869	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
870		status = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS,
871		    qidx);
872		if ((status & CQ_ERR_MASK) == 0)
873			continue;
874		/* Process already queued CQEs and reconfig CQ */
875		nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
876		nicvf_sq_disable(nic, qidx);
877		(void)nicvf_cq_intr_handler(nic, qidx);
878		nicvf_cmp_queue_config(nic, qs, qidx, enable);
879		nicvf_sq_free_used_descs(nic, &qs->sq[qidx], qidx);
880		nicvf_sq_enable(nic, &qs->sq[qidx], qidx);
881		nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
882	}
883
884	if_setdrvflagbits(nic->ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
885	/* Re-enable Qset error interrupt */
886	nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
887}
888
889static void
890nicvf_cmp_task(void *arg, int pending)
891{
892	struct cmp_queue *cq;
893	struct nicvf *nic;
894	int cmp_err;
895
896	cq = (struct cmp_queue *)arg;
897	nic = cq->nic;
898
899	/* Handle CQ descriptors */
900	cmp_err = nicvf_cq_intr_handler(nic, cq->idx);
901	if (__predict_false(cmp_err != 0)) {
902		/*
903		 * Schedule another thread here since we did not
904		 * process the entire CQ due to Tx or Rx CQ parse error.
905		 */
906		taskqueue_enqueue(cq->cmp_taskq, &cq->cmp_task);
907
908	}
909
910	nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->idx);
911	/* Reenable interrupt (previously disabled in nicvf_intr_handler() */
912	nicvf_enable_intr(nic, NICVF_INTR_CQ, cq->idx);
913
914}
915
916/* Initialize completion queue */
917static int
918nicvf_init_cmp_queue(struct nicvf *nic, struct cmp_queue *cq, int q_len,
919    int qidx)
920{
921	int err;
922
923	/* Initizalize lock */
924	snprintf(cq->mtx_name, sizeof(cq->mtx_name), "%s: CQ(%d) lock",
925	    device_get_nameunit(nic->dev), qidx);
926	mtx_init(&cq->mtx, cq->mtx_name, NULL, MTX_DEF);
927
928	err = nicvf_alloc_q_desc_mem(nic, &cq->dmem, q_len, CMP_QUEUE_DESC_SIZE,
929				     NICVF_CQ_BASE_ALIGN_BYTES);
930
931	if (err != 0) {
932		device_printf(nic->dev,
933		    "Could not allocate DMA memory for CQ\n");
934		return (err);
935	}
936
937	cq->desc = cq->dmem.base;
938	cq->thresh = pass1_silicon(nic->dev) ? 0 : CMP_QUEUE_CQE_THRESH;
939	cq->nic = nic;
940	cq->idx = qidx;
941	nic->cq_coalesce_usecs = (CMP_QUEUE_TIMER_THRESH * 0.05) - 1;
942
943	cq->rx_br = buf_ring_alloc(CMP_QUEUE_LEN * 8, M_DEVBUF, M_WAITOK,
944	    &cq->mtx);
945
946	/* Allocate taskqueue */
947	TASK_INIT(&cq->cmp_task, 0, nicvf_cmp_task, cq);
948	cq->cmp_taskq = taskqueue_create_fast("nicvf_cmp_taskq", M_WAITOK,
949	    taskqueue_thread_enqueue, &cq->cmp_taskq);
950	taskqueue_start_threads(&cq->cmp_taskq, 1, PI_NET, "%s: cmp_taskq(%d)",
951	    device_get_nameunit(nic->dev), qidx);
952
953	return (0);
954}
955
956static void
957nicvf_free_cmp_queue(struct nicvf *nic, struct cmp_queue *cq)
958{
959
960	if (cq == NULL)
961		return;
962	/*
963	 * The completion queue itself should be disabled by now
964	 * (ref. nicvf_snd_queue_config()).
965	 * Ensure that it is safe to disable it or panic.
966	 */
967	if (cq->enable)
968		panic("%s: Trying to free working CQ(%d)", __func__, cq->idx);
969
970	if (cq->cmp_taskq != NULL) {
971		/* Remove task */
972		while (taskqueue_cancel(cq->cmp_taskq, &cq->cmp_task, NULL) != 0)
973			taskqueue_drain(cq->cmp_taskq, &cq->cmp_task);
974
975		taskqueue_free(cq->cmp_taskq);
976		cq->cmp_taskq = NULL;
977	}
978	/*
979	 * Completion interrupt will possibly enable interrupts again
980	 * so disable interrupting now after we finished processing
981	 * completion task. It is safe to do so since the corresponding CQ
982	 * was already disabled.
983	 */
984	nicvf_disable_intr(nic, NICVF_INTR_CQ, cq->idx);
985	nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->idx);
986
987	NICVF_CMP_LOCK(cq);
988	nicvf_free_q_desc_mem(nic, &cq->dmem);
989	drbr_free(cq->rx_br, M_DEVBUF);
990	NICVF_CMP_UNLOCK(cq);
991	mtx_destroy(&cq->mtx);
992	memset(cq->mtx_name, 0, sizeof(cq->mtx_name));
993}
994
995int
996nicvf_xmit_locked(struct snd_queue *sq)
997{
998	struct nicvf *nic;
999	struct ifnet *ifp;
1000	struct mbuf *next;
1001	int err;
1002
1003	NICVF_TX_LOCK_ASSERT(sq);
1004
1005	nic = sq->nic;
1006	ifp = nic->ifp;
1007	err = 0;
1008
1009	while ((next = drbr_peek(ifp, sq->br)) != NULL) {
1010		err = nicvf_tx_mbuf_locked(sq, &next);
1011		if (err != 0) {
1012			if (next == NULL)
1013				drbr_advance(ifp, sq->br);
1014			else
1015				drbr_putback(ifp, sq->br, next);
1016
1017			break;
1018		}
1019		drbr_advance(ifp, sq->br);
1020		/* Send a copy of the frame to the BPF listener */
1021		ETHER_BPF_MTAP(ifp, next);
1022	}
1023	return (err);
1024}
1025
1026static void
1027nicvf_snd_task(void *arg, int pending)
1028{
1029	struct snd_queue *sq = (struct snd_queue *)arg;
1030	struct nicvf *nic;
1031	struct ifnet *ifp;
1032	int err;
1033
1034	nic = sq->nic;
1035	ifp = nic->ifp;
1036
1037	/*
1038	 * Skip sending anything if the driver is not running,
1039	 * SQ full or link is down.
1040	 */
1041	if (((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1042	    IFF_DRV_RUNNING) || !nic->link_up)
1043		return;
1044
1045	NICVF_TX_LOCK(sq);
1046	err = nicvf_xmit_locked(sq);
1047	NICVF_TX_UNLOCK(sq);
1048	/* Try again */
1049	if (err != 0)
1050		taskqueue_enqueue(sq->snd_taskq, &sq->snd_task);
1051}
1052
1053/* Initialize transmit queue */
1054static int
1055nicvf_init_snd_queue(struct nicvf *nic, struct snd_queue *sq, int q_len,
1056    int qidx)
1057{
1058	size_t i;
1059	int err;
1060
1061	/* Initizalize TX lock for this queue */
1062	snprintf(sq->mtx_name, sizeof(sq->mtx_name), "%s: SQ(%d) lock",
1063	    device_get_nameunit(nic->dev), qidx);
1064	mtx_init(&sq->mtx, sq->mtx_name, NULL, MTX_DEF);
1065
1066	NICVF_TX_LOCK(sq);
1067	/* Allocate buffer ring */
1068	sq->br = buf_ring_alloc(q_len / MIN_SQ_DESC_PER_PKT_XMIT, M_DEVBUF,
1069	    M_NOWAIT, &sq->mtx);
1070	if (sq->br == NULL) {
1071		device_printf(nic->dev,
1072		    "ERROR: Could not set up buf ring for SQ(%d)\n", qidx);
1073		err = ENOMEM;
1074		goto error;
1075	}
1076
1077	/* Allocate DMA memory for Tx descriptors */
1078	err = nicvf_alloc_q_desc_mem(nic, &sq->dmem, q_len, SND_QUEUE_DESC_SIZE,
1079				     NICVF_SQ_BASE_ALIGN_BYTES);
1080	if (err != 0) {
1081		device_printf(nic->dev,
1082		    "Could not allocate DMA memory for SQ\n");
1083		goto error;
1084	}
1085
1086	sq->desc = sq->dmem.base;
1087	sq->head = sq->tail = 0;
1088	sq->free_cnt = q_len - 1;
1089	sq->thresh = SND_QUEUE_THRESH;
1090	sq->idx = qidx;
1091	sq->nic = nic;
1092
1093	/*
1094	 * Allocate DMA maps for Tx buffers
1095	 */
1096
1097	/* Create DMA tag first */
1098	err = bus_dma_tag_create(
1099	    bus_get_dma_tag(nic->dev),		/* parent tag */
1100	    1,					/* alignment */
1101	    0,					/* boundary */
1102	    BUS_SPACE_MAXADDR,			/* lowaddr */
1103	    BUS_SPACE_MAXADDR,			/* highaddr */
1104	    NULL, NULL,				/* filtfunc, filtfuncarg */
1105	    NICVF_TSO_MAXSIZE,			/* maxsize */
1106	    NICVF_TSO_NSEGS,			/* nsegments */
1107	    MCLBYTES,				/* maxsegsize */
1108	    0,					/* flags */
1109	    NULL, NULL,				/* lockfunc, lockfuncarg */
1110	    &sq->snd_buff_dmat);		/* dmat */
1111
1112	if (err != 0) {
1113		device_printf(nic->dev,
1114		    "Failed to create busdma tag for Tx buffers\n");
1115		goto error;
1116	}
1117
1118	/* Allocate send buffers array */
1119	sq->snd_buff = malloc(sizeof(*sq->snd_buff) * q_len, M_NICVF,
1120	    (M_NOWAIT | M_ZERO));
1121	if (sq->snd_buff == NULL) {
1122		device_printf(nic->dev,
1123		    "Could not allocate memory for Tx buffers array\n");
1124		err = ENOMEM;
1125		goto error;
1126	}
1127
1128	/* Now populate maps */
1129	for (i = 0; i < q_len; i++) {
1130		err = bus_dmamap_create(sq->snd_buff_dmat, 0,
1131		    &sq->snd_buff[i].dmap);
1132		if (err != 0) {
1133			device_printf(nic->dev,
1134			    "Failed to create DMA maps for Tx buffers\n");
1135			goto error;
1136		}
1137	}
1138	NICVF_TX_UNLOCK(sq);
1139
1140	/* Allocate taskqueue */
1141	TASK_INIT(&sq->snd_task, 0, nicvf_snd_task, sq);
1142	sq->snd_taskq = taskqueue_create_fast("nicvf_snd_taskq", M_WAITOK,
1143	    taskqueue_thread_enqueue, &sq->snd_taskq);
1144	taskqueue_start_threads(&sq->snd_taskq, 1, PI_NET, "%s: snd_taskq(%d)",
1145	    device_get_nameunit(nic->dev), qidx);
1146
1147	return (0);
1148error:
1149	NICVF_TX_UNLOCK(sq);
1150	return (err);
1151}
1152
1153static void
1154nicvf_free_snd_queue(struct nicvf *nic, struct snd_queue *sq)
1155{
1156	struct queue_set *qs = nic->qs;
1157	size_t i;
1158	int err;
1159
1160	if (sq == NULL)
1161		return;
1162
1163	if (sq->snd_taskq != NULL) {
1164		/* Remove task */
1165		while (taskqueue_cancel(sq->snd_taskq, &sq->snd_task, NULL) != 0)
1166			taskqueue_drain(sq->snd_taskq, &sq->snd_task);
1167
1168		taskqueue_free(sq->snd_taskq);
1169		sq->snd_taskq = NULL;
1170	}
1171
1172	NICVF_TX_LOCK(sq);
1173	if (sq->snd_buff_dmat != NULL) {
1174		if (sq->snd_buff != NULL) {
1175			for (i = 0; i < qs->sq_len; i++) {
1176				m_freem(sq->snd_buff[i].mbuf);
1177				sq->snd_buff[i].mbuf = NULL;
1178
1179				bus_dmamap_unload(sq->snd_buff_dmat,
1180				    sq->snd_buff[i].dmap);
1181				err = bus_dmamap_destroy(sq->snd_buff_dmat,
1182				    sq->snd_buff[i].dmap);
1183				/*
1184				 * If bus_dmamap_destroy fails it can cause
1185				 * random panic later if the tag is also
1186				 * destroyed in the process.
1187				 */
1188				KASSERT(err == 0,
1189				    ("%s: Could not destroy DMA map for SQ",
1190				    __func__));
1191			}
1192		}
1193
1194		free(sq->snd_buff, M_NICVF);
1195
1196		err = bus_dma_tag_destroy(sq->snd_buff_dmat);
1197		KASSERT(err == 0,
1198		    ("%s: Trying to destroy BUSY DMA tag", __func__));
1199	}
1200
1201	/* Free private driver ring for this send queue */
1202	if (sq->br != NULL)
1203		drbr_free(sq->br, M_DEVBUF);
1204
1205	if (sq->dmem.base != NULL)
1206		nicvf_free_q_desc_mem(nic, &sq->dmem);
1207
1208	NICVF_TX_UNLOCK(sq);
1209	/* Destroy Tx lock */
1210	mtx_destroy(&sq->mtx);
1211	memset(sq->mtx_name, 0, sizeof(sq->mtx_name));
1212}
1213
1214static void
1215nicvf_reclaim_snd_queue(struct nicvf *nic, struct queue_set *qs, int qidx)
1216{
1217
1218	/* Disable send queue */
1219	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, 0);
1220	/* Check if SQ is stopped */
1221	if (nicvf_poll_reg(nic, qidx, NIC_QSET_SQ_0_7_STATUS, 21, 1, 0x01))
1222		return;
1223	/* Reset send queue */
1224	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
1225}
1226
1227static void
1228nicvf_reclaim_rcv_queue(struct nicvf *nic, struct queue_set *qs, int qidx)
1229{
1230	union nic_mbx mbx = {};
1231
1232	/* Make sure all packets in the pipeline are written back into mem */
1233	mbx.msg.msg = NIC_MBOX_MSG_RQ_SW_SYNC;
1234	nicvf_send_msg_to_pf(nic, &mbx);
1235}
1236
1237static void
1238nicvf_reclaim_cmp_queue(struct nicvf *nic, struct queue_set *qs, int qidx)
1239{
1240
1241	/* Disable timer threshold (doesn't get reset upon CQ reset */
1242	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx, 0);
1243	/* Disable completion queue */
1244	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, 0);
1245	/* Reset completion queue */
1246	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
1247}
1248
1249static void
1250nicvf_reclaim_rbdr(struct nicvf *nic, struct rbdr *rbdr, int qidx)
1251{
1252	uint64_t tmp, fifo_state;
1253	int timeout = 10;
1254
1255	/* Save head and tail pointers for feeing up buffers */
1256	rbdr->head =
1257	    nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_HEAD, qidx) >> 3;
1258	rbdr->tail =
1259	    nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, qidx) >> 3;
1260
1261	/*
1262	 * If RBDR FIFO is in 'FAIL' state then do a reset first
1263	 * before relaiming.
1264	 */
1265	fifo_state = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, qidx);
1266	if (((fifo_state >> 62) & 0x03) == 0x3) {
1267		nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
1268		    qidx, NICVF_RBDR_RESET);
1269	}
1270
1271	/* Disable RBDR */
1272	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0);
1273	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
1274		return;
1275	while (1) {
1276		tmp = nicvf_queue_reg_read(nic,
1277		    NIC_QSET_RBDR_0_1_PREFETCH_STATUS, qidx);
1278		if ((tmp & 0xFFFFFFFF) == ((tmp >> 32) & 0xFFFFFFFF))
1279			break;
1280
1281		DELAY(1000);
1282		timeout--;
1283		if (!timeout) {
1284			device_printf(nic->dev,
1285			    "Failed polling on prefetch status\n");
1286			return;
1287		}
1288	}
1289	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx,
1290	    NICVF_RBDR_RESET);
1291
1292	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x02))
1293		return;
1294	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0x00);
1295	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
1296		return;
1297}
1298
1299/* Configures receive queue */
1300static void
1301nicvf_rcv_queue_config(struct nicvf *nic, struct queue_set *qs,
1302    int qidx, bool enable)
1303{
1304	union nic_mbx mbx = {};
1305	struct rcv_queue *rq;
1306	struct rq_cfg rq_cfg;
1307	struct ifnet *ifp;
1308	struct lro_ctrl	*lro;
1309
1310	ifp = nic->ifp;
1311
1312	rq = &qs->rq[qidx];
1313	rq->enable = enable;
1314
1315	lro = &rq->lro;
1316
1317	/* Disable receive queue */
1318	nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, 0);
1319
1320	if (!rq->enable) {
1321		nicvf_reclaim_rcv_queue(nic, qs, qidx);
1322		/* Free LRO memory */
1323		tcp_lro_free(lro);
1324		rq->lro_enabled = FALSE;
1325		return;
1326	}
1327
1328	/* Configure LRO if enabled */
1329	rq->lro_enabled = FALSE;
1330	if ((if_getcapenable(ifp) & IFCAP_LRO) != 0) {
1331		if (tcp_lro_init(lro) != 0) {
1332			device_printf(nic->dev,
1333			    "Failed to initialize LRO for RXQ%d\n", qidx);
1334		} else {
1335			rq->lro_enabled = TRUE;
1336			lro->ifp = nic->ifp;
1337		}
1338	}
1339
1340	rq->cq_qs = qs->vnic_id;
1341	rq->cq_idx = qidx;
1342	rq->start_rbdr_qs = qs->vnic_id;
1343	rq->start_qs_rbdr_idx = qs->rbdr_cnt - 1;
1344	rq->cont_rbdr_qs = qs->vnic_id;
1345	rq->cont_qs_rbdr_idx = qs->rbdr_cnt - 1;
1346	/* all writes of RBDR data to be loaded into L2 Cache as well*/
1347	rq->caching = 1;
1348
1349	/* Send a mailbox msg to PF to config RQ */
1350	mbx.rq.msg = NIC_MBOX_MSG_RQ_CFG;
1351	mbx.rq.qs_num = qs->vnic_id;
1352	mbx.rq.rq_num = qidx;
1353	mbx.rq.cfg = (rq->caching << 26) | (rq->cq_qs << 19) |
1354	    (rq->cq_idx << 16) | (rq->cont_rbdr_qs << 9) |
1355	    (rq->cont_qs_rbdr_idx << 8) | (rq->start_rbdr_qs << 1) |
1356	    (rq->start_qs_rbdr_idx);
1357	nicvf_send_msg_to_pf(nic, &mbx);
1358
1359	mbx.rq.msg = NIC_MBOX_MSG_RQ_BP_CFG;
1360	mbx.rq.cfg = (1UL << 63) | (1UL << 62) | (qs->vnic_id << 0);
1361	nicvf_send_msg_to_pf(nic, &mbx);
1362
1363	/*
1364	 * RQ drop config
1365	 * Enable CQ drop to reserve sufficient CQEs for all tx packets
1366	 */
1367	mbx.rq.msg = NIC_MBOX_MSG_RQ_DROP_CFG;
1368	mbx.rq.cfg = (1UL << 62) | (RQ_CQ_DROP << 8);
1369	nicvf_send_msg_to_pf(nic, &mbx);
1370
1371	nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0, 0x00);
1372
1373	/* Enable Receive queue */
1374	rq_cfg.ena = 1;
1375	rq_cfg.tcp_ena = 0;
1376	nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx,
1377	    *(uint64_t *)&rq_cfg);
1378}
1379
1380/* Configures completion queue */
1381static void
1382nicvf_cmp_queue_config(struct nicvf *nic, struct queue_set *qs,
1383    int qidx, boolean_t enable)
1384{
1385	struct cmp_queue *cq;
1386	struct cq_cfg cq_cfg;
1387
1388	cq = &qs->cq[qidx];
1389	cq->enable = enable;
1390
1391	if (!cq->enable) {
1392		nicvf_reclaim_cmp_queue(nic, qs, qidx);
1393		return;
1394	}
1395
1396	/* Reset completion queue */
1397	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
1398
1399	/* Set completion queue base address */
1400	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_BASE, qidx,
1401	    (uint64_t)(cq->dmem.phys_base));
1402
1403	/* Enable Completion queue */
1404	cq_cfg.ena = 1;
1405	cq_cfg.reset = 0;
1406	cq_cfg.caching = 0;
1407	cq_cfg.qsize = CMP_QSIZE;
1408	cq_cfg.avg_con = 0;
1409	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, *(uint64_t *)&cq_cfg);
1410
1411	/* Set threshold value for interrupt generation */
1412	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_THRESH, qidx, cq->thresh);
1413	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx,
1414	    nic->cq_coalesce_usecs);
1415}
1416
1417/* Configures transmit queue */
1418static void
1419nicvf_snd_queue_config(struct nicvf *nic, struct queue_set *qs, int qidx,
1420    boolean_t enable)
1421{
1422	union nic_mbx mbx = {};
1423	struct snd_queue *sq;
1424	struct sq_cfg sq_cfg;
1425
1426	sq = &qs->sq[qidx];
1427	sq->enable = enable;
1428
1429	if (!sq->enable) {
1430		nicvf_reclaim_snd_queue(nic, qs, qidx);
1431		return;
1432	}
1433
1434	/* Reset send queue */
1435	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
1436
1437	sq->cq_qs = qs->vnic_id;
1438	sq->cq_idx = qidx;
1439
1440	/* Send a mailbox msg to PF to config SQ */
1441	mbx.sq.msg = NIC_MBOX_MSG_SQ_CFG;
1442	mbx.sq.qs_num = qs->vnic_id;
1443	mbx.sq.sq_num = qidx;
1444	mbx.sq.sqs_mode = nic->sqs_mode;
1445	mbx.sq.cfg = (sq->cq_qs << 3) | sq->cq_idx;
1446	nicvf_send_msg_to_pf(nic, &mbx);
1447
1448	/* Set queue base address */
1449	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_BASE, qidx,
1450	    (uint64_t)(sq->dmem.phys_base));
1451
1452	/* Enable send queue  & set queue size */
1453	sq_cfg.ena = 1;
1454	sq_cfg.reset = 0;
1455	sq_cfg.ldwb = 0;
1456	sq_cfg.qsize = SND_QSIZE;
1457	sq_cfg.tstmp_bgx_intf = 0;
1458	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, *(uint64_t *)&sq_cfg);
1459
1460	/* Set threshold value for interrupt generation */
1461	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_THRESH, qidx, sq->thresh);
1462}
1463
1464/* Configures receive buffer descriptor ring */
1465static void
1466nicvf_rbdr_config(struct nicvf *nic, struct queue_set *qs, int qidx,
1467    boolean_t enable)
1468{
1469	struct rbdr *rbdr;
1470	struct rbdr_cfg rbdr_cfg;
1471
1472	rbdr = &qs->rbdr[qidx];
1473	nicvf_reclaim_rbdr(nic, rbdr, qidx);
1474	if (!enable)
1475		return;
1476
1477	/* Set descriptor base address */
1478	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_BASE, qidx,
1479	    (uint64_t)(rbdr->dmem.phys_base));
1480
1481	/* Enable RBDR  & set queue size */
1482	/* Buffer size should be in multiples of 128 bytes */
1483	rbdr_cfg.ena = 1;
1484	rbdr_cfg.reset = 0;
1485	rbdr_cfg.ldwb = 0;
1486	rbdr_cfg.qsize = RBDR_SIZE;
1487	rbdr_cfg.avg_con = 0;
1488	rbdr_cfg.lines = rbdr->dma_size / 128;
1489	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx,
1490	    *(uint64_t *)&rbdr_cfg);
1491
1492	/* Notify HW */
1493	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR, qidx,
1494	    qs->rbdr_len - 1);
1495
1496	/* Set threshold value for interrupt generation */
1497	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_THRESH, qidx,
1498	    rbdr->thresh - 1);
1499}
1500
1501/* Requests PF to assign and enable Qset */
1502void
1503nicvf_qset_config(struct nicvf *nic, boolean_t enable)
1504{
1505	union nic_mbx mbx = {};
1506	struct queue_set *qs;
1507	struct qs_cfg *qs_cfg;
1508
1509	qs = nic->qs;
1510	if (qs == NULL) {
1511		device_printf(nic->dev,
1512		    "Qset is still not allocated, don't init queues\n");
1513		return;
1514	}
1515
1516	qs->enable = enable;
1517	qs->vnic_id = nic->vf_id;
1518
1519	/* Send a mailbox msg to PF to config Qset */
1520	mbx.qs.msg = NIC_MBOX_MSG_QS_CFG;
1521	mbx.qs.num = qs->vnic_id;
1522
1523	mbx.qs.cfg = 0;
1524	qs_cfg = (struct qs_cfg *)&mbx.qs.cfg;
1525	if (qs->enable) {
1526		qs_cfg->ena = 1;
1527		qs_cfg->vnic = qs->vnic_id;
1528	}
1529	nicvf_send_msg_to_pf(nic, &mbx);
1530}
1531
1532static void
1533nicvf_free_resources(struct nicvf *nic)
1534{
1535	int qidx;
1536	struct queue_set *qs;
1537
1538	qs = nic->qs;
1539	/*
1540	 * Remove QS error task first since it has to be dead
1541	 * to safely free completion queue tasks.
1542	 */
1543	if (qs->qs_err_taskq != NULL) {
1544		/* Shut down QS error tasks */
1545		while (taskqueue_cancel(qs->qs_err_taskq,
1546		    &qs->qs_err_task,  NULL) != 0) {
1547			taskqueue_drain(qs->qs_err_taskq, &qs->qs_err_task);
1548
1549		}
1550		taskqueue_free(qs->qs_err_taskq);
1551		qs->qs_err_taskq = NULL;
1552	}
1553	/* Free receive buffer descriptor ring */
1554	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1555		nicvf_free_rbdr(nic, &qs->rbdr[qidx]);
1556
1557	/* Free completion queue */
1558	for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1559		nicvf_free_cmp_queue(nic, &qs->cq[qidx]);
1560
1561	/* Free send queue */
1562	for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1563		nicvf_free_snd_queue(nic, &qs->sq[qidx]);
1564}
1565
1566static int
1567nicvf_alloc_resources(struct nicvf *nic)
1568{
1569	struct queue_set *qs = nic->qs;
1570	int qidx;
1571
1572	/* Alloc receive buffer descriptor ring */
1573	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
1574		if (nicvf_init_rbdr(nic, &qs->rbdr[qidx], qs->rbdr_len,
1575				    DMA_BUFFER_LEN, qidx))
1576			goto alloc_fail;
1577	}
1578
1579	/* Alloc send queue */
1580	for (qidx = 0; qidx < qs->sq_cnt; qidx++) {
1581		if (nicvf_init_snd_queue(nic, &qs->sq[qidx], qs->sq_len, qidx))
1582			goto alloc_fail;
1583	}
1584
1585	/* Alloc completion queue */
1586	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1587		if (nicvf_init_cmp_queue(nic, &qs->cq[qidx], qs->cq_len, qidx))
1588			goto alloc_fail;
1589	}
1590
1591	/* Allocate QS error taskqueue */
1592	TASK_INIT(&qs->qs_err_task, 0, nicvf_qs_err_task, nic);
1593	qs->qs_err_taskq = taskqueue_create_fast("nicvf_qs_err_taskq", M_WAITOK,
1594	    taskqueue_thread_enqueue, &qs->qs_err_taskq);
1595	taskqueue_start_threads(&qs->qs_err_taskq, 1, PI_NET, "%s: qs_taskq",
1596	    device_get_nameunit(nic->dev));
1597
1598	return (0);
1599alloc_fail:
1600	nicvf_free_resources(nic);
1601	return (ENOMEM);
1602}
1603
1604int
1605nicvf_set_qset_resources(struct nicvf *nic)
1606{
1607	struct queue_set *qs;
1608
1609	qs = malloc(sizeof(*qs), M_NICVF, (M_ZERO | M_WAITOK));
1610	nic->qs = qs;
1611
1612	/* Set count of each queue */
1613	qs->rbdr_cnt = RBDR_CNT;
1614	/* With no RSS we stay with single RQ */
1615	qs->rq_cnt = 1;
1616
1617	qs->sq_cnt = SND_QUEUE_CNT;
1618	qs->cq_cnt = CMP_QUEUE_CNT;
1619
1620	/* Set queue lengths */
1621	qs->rbdr_len = RCV_BUF_COUNT;
1622	qs->sq_len = SND_QUEUE_LEN;
1623	qs->cq_len = CMP_QUEUE_LEN;
1624
1625	nic->rx_queues = qs->rq_cnt;
1626	nic->tx_queues = qs->sq_cnt;
1627
1628	return (0);
1629}
1630
1631int
1632nicvf_config_data_transfer(struct nicvf *nic, boolean_t enable)
1633{
1634	boolean_t disable = FALSE;
1635	struct queue_set *qs;
1636	int qidx;
1637
1638	qs = nic->qs;
1639	if (qs == NULL)
1640		return (0);
1641
1642	if (enable) {
1643		if (nicvf_alloc_resources(nic) != 0)
1644			return (ENOMEM);
1645
1646		for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1647			nicvf_snd_queue_config(nic, qs, qidx, enable);
1648		for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1649			nicvf_cmp_queue_config(nic, qs, qidx, enable);
1650		for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1651			nicvf_rbdr_config(nic, qs, qidx, enable);
1652		for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1653			nicvf_rcv_queue_config(nic, qs, qidx, enable);
1654	} else {
1655		for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1656			nicvf_rcv_queue_config(nic, qs, qidx, disable);
1657		for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1658			nicvf_rbdr_config(nic, qs, qidx, disable);
1659		for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1660			nicvf_snd_queue_config(nic, qs, qidx, disable);
1661		for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1662			nicvf_cmp_queue_config(nic, qs, qidx, disable);
1663
1664		nicvf_free_resources(nic);
1665	}
1666
1667	return (0);
1668}
1669
1670/*
1671 * Get a free desc from SQ
1672 * returns descriptor ponter & descriptor number
1673 */
1674static __inline int
1675nicvf_get_sq_desc(struct snd_queue *sq, int desc_cnt)
1676{
1677	int qentry;
1678
1679	qentry = sq->tail;
1680	sq->free_cnt -= desc_cnt;
1681	sq->tail += desc_cnt;
1682	sq->tail &= (sq->dmem.q_len - 1);
1683
1684	return (qentry);
1685}
1686
1687/* Free descriptor back to SQ for future use */
1688static void
1689nicvf_put_sq_desc(struct snd_queue *sq, int desc_cnt)
1690{
1691
1692	sq->free_cnt += desc_cnt;
1693	sq->head += desc_cnt;
1694	sq->head &= (sq->dmem.q_len - 1);
1695}
1696
1697static __inline int
1698nicvf_get_nxt_sqentry(struct snd_queue *sq, int qentry)
1699{
1700	qentry++;
1701	qentry &= (sq->dmem.q_len - 1);
1702	return (qentry);
1703}
1704
1705static void
1706nicvf_sq_enable(struct nicvf *nic, struct snd_queue *sq, int qidx)
1707{
1708	uint64_t sq_cfg;
1709
1710	sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
1711	sq_cfg |= NICVF_SQ_EN;
1712	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
1713	/* Ring doorbell so that H/W restarts processing SQEs */
1714	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, qidx, 0);
1715}
1716
1717static void
1718nicvf_sq_disable(struct nicvf *nic, int qidx)
1719{
1720	uint64_t sq_cfg;
1721
1722	sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
1723	sq_cfg &= ~NICVF_SQ_EN;
1724	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
1725}
1726
1727static void
1728nicvf_sq_free_used_descs(struct nicvf *nic, struct snd_queue *sq, int qidx)
1729{
1730	uint64_t head, tail;
1731	struct snd_buff *snd_buff;
1732	struct sq_hdr_subdesc *hdr;
1733
1734	NICVF_TX_LOCK(sq);
1735	head = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_HEAD, qidx) >> 4;
1736	tail = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_TAIL, qidx) >> 4;
1737	while (sq->head != head) {
1738		hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
1739		if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) {
1740			nicvf_put_sq_desc(sq, 1);
1741			continue;
1742		}
1743		snd_buff = &sq->snd_buff[sq->head];
1744		if (snd_buff->mbuf != NULL) {
1745			bus_dmamap_unload(sq->snd_buff_dmat, snd_buff->dmap);
1746			m_freem(snd_buff->mbuf);
1747			sq->snd_buff[sq->head].mbuf = NULL;
1748		}
1749		nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
1750	}
1751	NICVF_TX_UNLOCK(sq);
1752}
1753
1754/*
1755 * Add SQ HEADER subdescriptor.
1756 * First subdescriptor for every send descriptor.
1757 */
1758static __inline int
1759nicvf_sq_add_hdr_subdesc(struct snd_queue *sq, int qentry,
1760			 int subdesc_cnt, struct mbuf *mbuf, int len)
1761{
1762	struct nicvf *nic;
1763	struct sq_hdr_subdesc *hdr;
1764	struct ether_vlan_header *eh;
1765#ifdef INET
1766	struct ip *ip;
1767	struct tcphdr *th;
1768#endif
1769	uint16_t etype;
1770	int ehdrlen, iphlen, poff;
1771
1772	nic = sq->nic;
1773
1774	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1775	sq->snd_buff[qentry].mbuf = mbuf;
1776
1777	memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1778	hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1779	/* Enable notification via CQE after processing SQE */
1780	hdr->post_cqe = 1;
1781	/* No of subdescriptors following this */
1782	hdr->subdesc_cnt = subdesc_cnt;
1783	hdr->tot_len = len;
1784
1785	eh = mtod(mbuf, struct ether_vlan_header *);
1786	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
1787		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1788		etype = ntohs(eh->evl_proto);
1789	} else {
1790		ehdrlen = ETHER_HDR_LEN;
1791		etype = ntohs(eh->evl_encap_proto);
1792	}
1793
1794	switch (etype) {
1795#ifdef INET6
1796	case ETHERTYPE_IPV6:
1797		/* ARM64TODO: Add support for IPv6 */
1798		hdr->csum_l3 = 0;
1799		sq->snd_buff[qentry].mbuf = NULL;
1800		return (ENXIO);
1801#endif
1802#ifdef INET
1803	case ETHERTYPE_IP:
1804		if (mbuf->m_len < ehdrlen + sizeof(struct ip)) {
1805			mbuf = m_pullup(mbuf, ehdrlen + sizeof(struct ip));
1806			sq->snd_buff[qentry].mbuf = mbuf;
1807			if (mbuf == NULL)
1808				return (ENOBUFS);
1809		}
1810
1811		ip = (struct ip *)(mbuf->m_data + ehdrlen);
1812		iphlen = ip->ip_hl << 2;
1813		poff = ehdrlen + iphlen;
1814
1815		if (mbuf->m_pkthdr.csum_flags != 0) {
1816			hdr->csum_l3 = 1; /* Enable IP csum calculation */
1817			switch (ip->ip_p) {
1818			case IPPROTO_TCP:
1819				if ((mbuf->m_pkthdr.csum_flags & CSUM_TCP) == 0)
1820					break;
1821
1822				if (mbuf->m_len < (poff + sizeof(struct tcphdr))) {
1823					mbuf = m_pullup(mbuf, poff + sizeof(struct tcphdr));
1824					sq->snd_buff[qentry].mbuf = mbuf;
1825					if (mbuf == NULL)
1826						return (ENOBUFS);
1827				}
1828				hdr->csum_l4 = SEND_L4_CSUM_TCP;
1829				break;
1830			case IPPROTO_UDP:
1831				if ((mbuf->m_pkthdr.csum_flags & CSUM_UDP) == 0)
1832					break;
1833
1834				if (mbuf->m_len < (poff + sizeof(struct udphdr))) {
1835					mbuf = m_pullup(mbuf, poff + sizeof(struct udphdr));
1836					sq->snd_buff[qentry].mbuf = mbuf;
1837					if (mbuf == NULL)
1838						return (ENOBUFS);
1839				}
1840				hdr->csum_l4 = SEND_L4_CSUM_UDP;
1841				break;
1842			case IPPROTO_SCTP:
1843				if ((mbuf->m_pkthdr.csum_flags & CSUM_SCTP) == 0)
1844					break;
1845
1846				if (mbuf->m_len < (poff + sizeof(struct sctphdr))) {
1847					mbuf = m_pullup(mbuf, poff + sizeof(struct sctphdr));
1848					sq->snd_buff[qentry].mbuf = mbuf;
1849					if (mbuf == NULL)
1850						return (ENOBUFS);
1851				}
1852				hdr->csum_l4 = SEND_L4_CSUM_SCTP;
1853				break;
1854			default:
1855				break;
1856			}
1857			hdr->l3_offset = ehdrlen;
1858			hdr->l4_offset = ehdrlen + iphlen;
1859		}
1860
1861		if ((mbuf->m_pkthdr.tso_segsz != 0) && nic->hw_tso) {
1862			/*
1863			 * Extract ip again as m_data could have been modified.
1864			 */
1865			ip = (struct ip *)(mbuf->m_data + ehdrlen);
1866			th = (struct tcphdr *)((caddr_t)ip + iphlen);
1867
1868			hdr->tso = 1;
1869			hdr->tso_start = ehdrlen + iphlen + (th->th_off * 4);
1870			hdr->tso_max_paysize = mbuf->m_pkthdr.tso_segsz;
1871			hdr->inner_l3_offset = ehdrlen - 2;
1872			nic->drv_stats.tx_tso++;
1873		}
1874		break;
1875#endif
1876	default:
1877		hdr->csum_l3 = 0;
1878	}
1879
1880	return (0);
1881}
1882
1883/*
1884 * SQ GATHER subdescriptor
1885 * Must follow HDR descriptor
1886 */
1887static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
1888					       int size, uint64_t data)
1889{
1890	struct sq_gather_subdesc *gather;
1891
1892	qentry &= (sq->dmem.q_len - 1);
1893	gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, qentry);
1894
1895	memset(gather, 0, SND_QUEUE_DESC_SIZE);
1896	gather->subdesc_type = SQ_DESC_TYPE_GATHER;
1897	gather->ld_type = NIC_SEND_LD_TYPE_E_LDD;
1898	gather->size = size;
1899	gather->addr = data;
1900}
1901
1902/* Put an mbuf to a SQ for packet transfer. */
1903static int
1904nicvf_tx_mbuf_locked(struct snd_queue *sq, struct mbuf **mbufp)
1905{
1906	bus_dma_segment_t segs[256];
1907	struct nicvf *nic;
1908	struct snd_buff *snd_buff;
1909	size_t seg;
1910	int nsegs, qentry;
1911	int subdesc_cnt;
1912	int err;
1913
1914	NICVF_TX_LOCK_ASSERT(sq);
1915
1916	if (sq->free_cnt == 0)
1917		return (ENOBUFS);
1918
1919	snd_buff = &sq->snd_buff[sq->tail];
1920
1921	err = bus_dmamap_load_mbuf_sg(sq->snd_buff_dmat, snd_buff->dmap,
1922	    *mbufp, segs, &nsegs, BUS_DMA_NOWAIT);
1923	if (__predict_false(err != 0)) {
1924		/* ARM64TODO: Add mbuf defragmenting if we lack maps */
1925		m_freem(*mbufp);
1926		*mbufp = NULL;
1927		return (err);
1928	}
1929
1930	/* Set how many subdescriptors is required */
1931	nic = sq->nic;
1932	if ((*mbufp)->m_pkthdr.tso_segsz != 0 && nic->hw_tso)
1933		subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT;
1934	else
1935		subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT + nsegs - 1;
1936
1937	if (subdesc_cnt > sq->free_cnt) {
1938		/* ARM64TODO: Add mbuf defragmentation if we lack descriptors */
1939		bus_dmamap_unload(sq->snd_buff_dmat, snd_buff->dmap);
1940		return (ENOBUFS);
1941	}
1942
1943	qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
1944
1945	/* Add SQ header subdesc */
1946	err = nicvf_sq_add_hdr_subdesc(sq, qentry, subdesc_cnt - 1, *mbufp,
1947	    (*mbufp)->m_pkthdr.len);
1948	if (err != 0) {
1949		nicvf_put_sq_desc(sq, subdesc_cnt);
1950		bus_dmamap_unload(sq->snd_buff_dmat, snd_buff->dmap);
1951		if (err == ENOBUFS) {
1952			m_freem(*mbufp);
1953			*mbufp = NULL;
1954		}
1955		return (err);
1956	}
1957
1958	/* Add SQ gather subdescs */
1959	for (seg = 0; seg < nsegs; seg++) {
1960		qentry = nicvf_get_nxt_sqentry(sq, qentry);
1961		nicvf_sq_add_gather_subdesc(sq, qentry, segs[seg].ds_len,
1962		    segs[seg].ds_addr);
1963	}
1964
1965	/* make sure all memory stores are done before ringing doorbell */
1966	bus_dmamap_sync(sq->dmem.dmat, sq->dmem.dmap, BUS_DMASYNC_PREWRITE);
1967
1968	dprintf(sq->nic->dev, "%s: sq->idx: %d, subdesc_cnt: %d\n",
1969	    __func__, sq->idx, subdesc_cnt);
1970	/* Inform HW to xmit new packet */
1971	nicvf_queue_reg_write(sq->nic, NIC_QSET_SQ_0_7_DOOR,
1972	    sq->idx, subdesc_cnt);
1973	return (0);
1974}
1975
1976static __inline u_int
1977frag_num(u_int i)
1978{
1979#if BYTE_ORDER == BIG_ENDIAN
1980	return ((i & ~3) + 3 - (i & 3));
1981#else
1982	return (i);
1983#endif
1984}
1985
1986/* Returns MBUF for a received packet */
1987struct mbuf *
1988nicvf_get_rcv_mbuf(struct nicvf *nic, struct cqe_rx_t *cqe_rx)
1989{
1990	int frag;
1991	int payload_len = 0;
1992	struct mbuf *mbuf;
1993	struct mbuf *mbuf_frag;
1994	uint16_t *rb_lens = NULL;
1995	uint64_t *rb_ptrs = NULL;
1996
1997	mbuf = NULL;
1998	rb_lens = (uint16_t *)((uint8_t *)cqe_rx + (3 * sizeof(uint64_t)));
1999	rb_ptrs = (uint64_t *)((uint8_t *)cqe_rx + (6 * sizeof(uint64_t)));
2000
2001	dprintf(nic->dev, "%s rb_cnt %d rb0_ptr %lx rb0_sz %d\n",
2002	    __func__, cqe_rx->rb_cnt, cqe_rx->rb0_ptr, cqe_rx->rb0_sz);
2003
2004	for (frag = 0; frag < cqe_rx->rb_cnt; frag++) {
2005		payload_len = rb_lens[frag_num(frag)];
2006		if (frag == 0) {
2007			/* First fragment */
2008			mbuf = nicvf_rb_ptr_to_mbuf(nic,
2009			    (*rb_ptrs - cqe_rx->align_pad));
2010			mbuf->m_len = payload_len;
2011			mbuf->m_data += cqe_rx->align_pad;
2012			if_setrcvif(mbuf, nic->ifp);
2013		} else {
2014			/* Add fragments */
2015			mbuf_frag = nicvf_rb_ptr_to_mbuf(nic, *rb_ptrs);
2016			m_append(mbuf, payload_len, mbuf_frag->m_data);
2017			m_freem(mbuf_frag);
2018		}
2019		/* Next buffer pointer */
2020		rb_ptrs++;
2021	}
2022
2023	if (__predict_true(mbuf != NULL)) {
2024		m_fixhdr(mbuf);
2025		mbuf->m_pkthdr.flowid = cqe_rx->rq_idx;
2026		M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE);
2027		if (__predict_true((if_getcapenable(nic->ifp) & IFCAP_RXCSUM) != 0)) {
2028			/*
2029			 * HW by default verifies IP & TCP/UDP/SCTP checksums
2030			 */
2031			if (__predict_true(cqe_rx->l3_type == L3TYPE_IPV4)) {
2032				mbuf->m_pkthdr.csum_flags =
2033				    (CSUM_IP_CHECKED | CSUM_IP_VALID);
2034			}
2035
2036			switch (cqe_rx->l4_type) {
2037			case L4TYPE_UDP:
2038			case L4TYPE_TCP: /* fall through */
2039				mbuf->m_pkthdr.csum_flags |=
2040				    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
2041				mbuf->m_pkthdr.csum_data = 0xffff;
2042				break;
2043			case L4TYPE_SCTP:
2044				mbuf->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
2045				break;
2046			default:
2047				break;
2048			}
2049		}
2050	}
2051
2052	return (mbuf);
2053}
2054
2055/* Enable interrupt */
2056void
2057nicvf_enable_intr(struct nicvf *nic, int int_type, int q_idx)
2058{
2059	uint64_t reg_val;
2060
2061	reg_val = nicvf_reg_read(nic, NIC_VF_ENA_W1S);
2062
2063	switch (int_type) {
2064	case NICVF_INTR_CQ:
2065		reg_val |= ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2066		break;
2067	case NICVF_INTR_SQ:
2068		reg_val |= ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2069		break;
2070	case NICVF_INTR_RBDR:
2071		reg_val |= ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2072		break;
2073	case NICVF_INTR_PKT_DROP:
2074		reg_val |= (1UL << NICVF_INTR_PKT_DROP_SHIFT);
2075		break;
2076	case NICVF_INTR_TCP_TIMER:
2077		reg_val |= (1UL << NICVF_INTR_TCP_TIMER_SHIFT);
2078		break;
2079	case NICVF_INTR_MBOX:
2080		reg_val |= (1UL << NICVF_INTR_MBOX_SHIFT);
2081		break;
2082	case NICVF_INTR_QS_ERR:
2083		reg_val |= (1UL << NICVF_INTR_QS_ERR_SHIFT);
2084		break;
2085	default:
2086		device_printf(nic->dev,
2087			   "Failed to enable interrupt: unknown type\n");
2088		break;
2089	}
2090
2091	nicvf_reg_write(nic, NIC_VF_ENA_W1S, reg_val);
2092}
2093
2094/* Disable interrupt */
2095void
2096nicvf_disable_intr(struct nicvf *nic, int int_type, int q_idx)
2097{
2098	uint64_t reg_val = 0;
2099
2100	switch (int_type) {
2101	case NICVF_INTR_CQ:
2102		reg_val |= ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2103		break;
2104	case NICVF_INTR_SQ:
2105		reg_val |= ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2106		break;
2107	case NICVF_INTR_RBDR:
2108		reg_val |= ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2109		break;
2110	case NICVF_INTR_PKT_DROP:
2111		reg_val |= (1UL << NICVF_INTR_PKT_DROP_SHIFT);
2112		break;
2113	case NICVF_INTR_TCP_TIMER:
2114		reg_val |= (1UL << NICVF_INTR_TCP_TIMER_SHIFT);
2115		break;
2116	case NICVF_INTR_MBOX:
2117		reg_val |= (1UL << NICVF_INTR_MBOX_SHIFT);
2118		break;
2119	case NICVF_INTR_QS_ERR:
2120		reg_val |= (1UL << NICVF_INTR_QS_ERR_SHIFT);
2121		break;
2122	default:
2123		device_printf(nic->dev,
2124			   "Failed to disable interrupt: unknown type\n");
2125		break;
2126	}
2127
2128	nicvf_reg_write(nic, NIC_VF_ENA_W1C, reg_val);
2129}
2130
2131/* Clear interrupt */
2132void
2133nicvf_clear_intr(struct nicvf *nic, int int_type, int q_idx)
2134{
2135	uint64_t reg_val = 0;
2136
2137	switch (int_type) {
2138	case NICVF_INTR_CQ:
2139		reg_val = ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2140		break;
2141	case NICVF_INTR_SQ:
2142		reg_val = ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2143		break;
2144	case NICVF_INTR_RBDR:
2145		reg_val = ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2146		break;
2147	case NICVF_INTR_PKT_DROP:
2148		reg_val = (1UL << NICVF_INTR_PKT_DROP_SHIFT);
2149		break;
2150	case NICVF_INTR_TCP_TIMER:
2151		reg_val = (1UL << NICVF_INTR_TCP_TIMER_SHIFT);
2152		break;
2153	case NICVF_INTR_MBOX:
2154		reg_val = (1UL << NICVF_INTR_MBOX_SHIFT);
2155		break;
2156	case NICVF_INTR_QS_ERR:
2157		reg_val |= (1UL << NICVF_INTR_QS_ERR_SHIFT);
2158		break;
2159	default:
2160		device_printf(nic->dev,
2161			   "Failed to clear interrupt: unknown type\n");
2162		break;
2163	}
2164
2165	nicvf_reg_write(nic, NIC_VF_INT, reg_val);
2166}
2167
2168/* Check if interrupt is enabled */
2169int
2170nicvf_is_intr_enabled(struct nicvf *nic, int int_type, int q_idx)
2171{
2172	uint64_t reg_val;
2173	uint64_t mask = 0xff;
2174
2175	reg_val = nicvf_reg_read(nic, NIC_VF_ENA_W1S);
2176
2177	switch (int_type) {
2178	case NICVF_INTR_CQ:
2179		mask = ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2180		break;
2181	case NICVF_INTR_SQ:
2182		mask = ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2183		break;
2184	case NICVF_INTR_RBDR:
2185		mask = ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2186		break;
2187	case NICVF_INTR_PKT_DROP:
2188		mask = NICVF_INTR_PKT_DROP_MASK;
2189		break;
2190	case NICVF_INTR_TCP_TIMER:
2191		mask = NICVF_INTR_TCP_TIMER_MASK;
2192		break;
2193	case NICVF_INTR_MBOX:
2194		mask = NICVF_INTR_MBOX_MASK;
2195		break;
2196	case NICVF_INTR_QS_ERR:
2197		mask = NICVF_INTR_QS_ERR_MASK;
2198		break;
2199	default:
2200		device_printf(nic->dev,
2201			   "Failed to check interrupt enable: unknown type\n");
2202		break;
2203	}
2204
2205	return (reg_val & mask);
2206}
2207
2208void
2209nicvf_update_rq_stats(struct nicvf *nic, int rq_idx)
2210{
2211	struct rcv_queue *rq;
2212
2213#define GET_RQ_STATS(reg) \
2214	nicvf_reg_read(nic, NIC_QSET_RQ_0_7_STAT_0_1 |\
2215			    (rq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
2216
2217	rq = &nic->qs->rq[rq_idx];
2218	rq->stats.bytes = GET_RQ_STATS(RQ_SQ_STATS_OCTS);
2219	rq->stats.pkts = GET_RQ_STATS(RQ_SQ_STATS_PKTS);
2220}
2221
2222void
2223nicvf_update_sq_stats(struct nicvf *nic, int sq_idx)
2224{
2225	struct snd_queue *sq;
2226
2227#define GET_SQ_STATS(reg) \
2228	nicvf_reg_read(nic, NIC_QSET_SQ_0_7_STAT_0_1 |\
2229			    (sq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
2230
2231	sq = &nic->qs->sq[sq_idx];
2232	sq->stats.bytes = GET_SQ_STATS(RQ_SQ_STATS_OCTS);
2233	sq->stats.pkts = GET_SQ_STATS(RQ_SQ_STATS_PKTS);
2234}
2235
2236/* Check for errors in the receive cmp.queue entry */
2237int
2238nicvf_check_cqe_rx_errs(struct nicvf *nic, struct cmp_queue *cq,
2239    struct cqe_rx_t *cqe_rx)
2240{
2241	struct nicvf_hw_stats *stats = &nic->hw_stats;
2242	struct nicvf_drv_stats *drv_stats = &nic->drv_stats;
2243
2244	if (!cqe_rx->err_level && !cqe_rx->err_opcode) {
2245		drv_stats->rx_frames_ok++;
2246		return (0);
2247	}
2248
2249	switch (cqe_rx->err_opcode) {
2250	case CQ_RX_ERROP_RE_PARTIAL:
2251		stats->rx_bgx_truncated_pkts++;
2252		break;
2253	case CQ_RX_ERROP_RE_JABBER:
2254		stats->rx_jabber_errs++;
2255		break;
2256	case CQ_RX_ERROP_RE_FCS:
2257		stats->rx_fcs_errs++;
2258		break;
2259	case CQ_RX_ERROP_RE_RX_CTL:
2260		stats->rx_bgx_errs++;
2261		break;
2262	case CQ_RX_ERROP_PREL2_ERR:
2263		stats->rx_prel2_errs++;
2264		break;
2265	case CQ_RX_ERROP_L2_MAL:
2266		stats->rx_l2_hdr_malformed++;
2267		break;
2268	case CQ_RX_ERROP_L2_OVERSIZE:
2269		stats->rx_oversize++;
2270		break;
2271	case CQ_RX_ERROP_L2_UNDERSIZE:
2272		stats->rx_undersize++;
2273		break;
2274	case CQ_RX_ERROP_L2_LENMISM:
2275		stats->rx_l2_len_mismatch++;
2276		break;
2277	case CQ_RX_ERROP_L2_PCLP:
2278		stats->rx_l2_pclp++;
2279		break;
2280	case CQ_RX_ERROP_IP_NOT:
2281		stats->rx_ip_ver_errs++;
2282		break;
2283	case CQ_RX_ERROP_IP_CSUM_ERR:
2284		stats->rx_ip_csum_errs++;
2285		break;
2286	case CQ_RX_ERROP_IP_MAL:
2287		stats->rx_ip_hdr_malformed++;
2288		break;
2289	case CQ_RX_ERROP_IP_MALD:
2290		stats->rx_ip_payload_malformed++;
2291		break;
2292	case CQ_RX_ERROP_IP_HOP:
2293		stats->rx_ip_ttl_errs++;
2294		break;
2295	case CQ_RX_ERROP_L3_PCLP:
2296		stats->rx_l3_pclp++;
2297		break;
2298	case CQ_RX_ERROP_L4_MAL:
2299		stats->rx_l4_malformed++;
2300		break;
2301	case CQ_RX_ERROP_L4_CHK:
2302		stats->rx_l4_csum_errs++;
2303		break;
2304	case CQ_RX_ERROP_UDP_LEN:
2305		stats->rx_udp_len_errs++;
2306		break;
2307	case CQ_RX_ERROP_L4_PORT:
2308		stats->rx_l4_port_errs++;
2309		break;
2310	case CQ_RX_ERROP_TCP_FLAG:
2311		stats->rx_tcp_flag_errs++;
2312		break;
2313	case CQ_RX_ERROP_TCP_OFFSET:
2314		stats->rx_tcp_offset_errs++;
2315		break;
2316	case CQ_RX_ERROP_L4_PCLP:
2317		stats->rx_l4_pclp++;
2318		break;
2319	case CQ_RX_ERROP_RBDR_TRUNC:
2320		stats->rx_truncated_pkts++;
2321		break;
2322	}
2323
2324	return (1);
2325}
2326
2327/* Check for errors in the send cmp.queue entry */
2328int
2329nicvf_check_cqe_tx_errs(struct nicvf *nic, struct cmp_queue *cq,
2330    struct cqe_send_t *cqe_tx)
2331{
2332	struct cmp_queue_stats *stats = &cq->stats;
2333
2334	switch (cqe_tx->send_status) {
2335	case CQ_TX_ERROP_GOOD:
2336		stats->tx.good++;
2337		return (0);
2338	case CQ_TX_ERROP_DESC_FAULT:
2339		stats->tx.desc_fault++;
2340		break;
2341	case CQ_TX_ERROP_HDR_CONS_ERR:
2342		stats->tx.hdr_cons_err++;
2343		break;
2344	case CQ_TX_ERROP_SUBDC_ERR:
2345		stats->tx.subdesc_err++;
2346		break;
2347	case CQ_TX_ERROP_IMM_SIZE_OFLOW:
2348		stats->tx.imm_size_oflow++;
2349		break;
2350	case CQ_TX_ERROP_DATA_SEQUENCE_ERR:
2351		stats->tx.data_seq_err++;
2352		break;
2353	case CQ_TX_ERROP_MEM_SEQUENCE_ERR:
2354		stats->tx.mem_seq_err++;
2355		break;
2356	case CQ_TX_ERROP_LOCK_VIOL:
2357		stats->tx.lock_viol++;
2358		break;
2359	case CQ_TX_ERROP_DATA_FAULT:
2360		stats->tx.data_fault++;
2361		break;
2362	case CQ_TX_ERROP_TSTMP_CONFLICT:
2363		stats->tx.tstmp_conflict++;
2364		break;
2365	case CQ_TX_ERROP_TSTMP_TIMEOUT:
2366		stats->tx.tstmp_timeout++;
2367		break;
2368	case CQ_TX_ERROP_MEM_FAULT:
2369		stats->tx.mem_fault++;
2370		break;
2371	case CQ_TX_ERROP_CK_OVERLAP:
2372		stats->tx.csum_overlap++;
2373		break;
2374	case CQ_TX_ERROP_CK_OFLOW:
2375		stats->tx.csum_overflow++;
2376		break;
2377	}
2378
2379	return (1);
2380}
2381