nicvf_queues.c revision 296030
1/*
2 * Copyright (C) 2015 Cavium Inc.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 * $FreeBSD: head/sys/dev/vnic/nicvf_queues.c 296030 2016-02-25 14:12:51Z zbb $
27 *
28 */
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD: head/sys/dev/vnic/nicvf_queues.c 296030 2016-02-25 14:12:51Z zbb $");
31
32#include "opt_inet.h"
33#include "opt_inet6.h"
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/bitset.h>
38#include <sys/bitstring.h>
39#include <sys/buf_ring.h>
40#include <sys/bus.h>
41#include <sys/endian.h>
42#include <sys/kernel.h>
43#include <sys/malloc.h>
44#include <sys/module.h>
45#include <sys/rman.h>
46#include <sys/pciio.h>
47#include <sys/pcpu.h>
48#include <sys/proc.h>
49#include <sys/sockio.h>
50#include <sys/socket.h>
51#include <sys/stdatomic.h>
52#include <sys/cpuset.h>
53#include <sys/lock.h>
54#include <sys/mutex.h>
55#include <sys/smp.h>
56#include <sys/taskqueue.h>
57
58#include <vm/vm.h>
59#include <vm/pmap.h>
60
61#include <machine/bus.h>
62#include <machine/vmparam.h>
63
64#include <net/ethernet.h>
65#include <net/if.h>
66#include <net/if_var.h>
67#include <net/if_media.h>
68#include <net/ifq.h>
69
70#include <netinet/in_systm.h>
71#include <netinet/in.h>
72#include <netinet/if_ether.h>
73#include <netinet/ip.h>
74#include <netinet/ip6.h>
75#include <netinet/sctp.h>
76#include <netinet/tcp.h>
77#include <netinet/tcp_lro.h>
78#include <netinet/udp.h>
79
80#include <dev/pci/pcireg.h>
81#include <dev/pci/pcivar.h>
82
83#include "thunder_bgx.h"
84#include "nic_reg.h"
85#include "nic.h"
86#include "q_struct.h"
87#include "nicvf_queues.h"
88
89#define	DEBUG
90#undef DEBUG
91
92#ifdef DEBUG
93#define	dprintf(dev, fmt, ...)	device_printf(dev, fmt, ##__VA_ARGS__)
94#else
95#define	dprintf(dev, fmt, ...)
96#endif
97
98MALLOC_DECLARE(M_NICVF);
99
100static void nicvf_free_snd_queue(struct nicvf *, struct snd_queue *);
101static int nicvf_tx_mbuf_locked(struct snd_queue *, struct mbuf *);
102static struct mbuf * nicvf_get_rcv_mbuf(struct nicvf *, struct cqe_rx_t *);
103static void nicvf_sq_disable(struct nicvf *, int);
104static void nicvf_sq_enable(struct nicvf *, struct snd_queue *, int);
105static void nicvf_put_sq_desc(struct snd_queue *, int);
106static void nicvf_cmp_queue_config(struct nicvf *, struct queue_set *, int,
107    boolean_t);
108static void nicvf_sq_free_used_descs(struct nicvf *, struct snd_queue *, int);
109
110static void nicvf_rbdr_task(void *, int);
111static void nicvf_rbdr_task_nowait(void *, int);
112
113struct rbuf_info {
114	bus_dma_tag_t	dmat;
115	bus_dmamap_t	dmap;
116	struct mbuf *	mbuf;
117};
118
119#define GET_RBUF_INFO(x) ((struct rbuf_info *)((x) - NICVF_RCV_BUF_ALIGN_BYTES))
120
121/* Poll a register for a specific value */
122static int nicvf_poll_reg(struct nicvf *nic, int qidx,
123			  uint64_t reg, int bit_pos, int bits, int val)
124{
125	uint64_t bit_mask;
126	uint64_t reg_val;
127	int timeout = 10;
128
129	bit_mask = (1UL << bits) - 1;
130	bit_mask = (bit_mask << bit_pos);
131
132	while (timeout) {
133		reg_val = nicvf_queue_reg_read(nic, reg, qidx);
134		if (((reg_val & bit_mask) >> bit_pos) == val)
135			return (0);
136
137		DELAY(1000);
138		timeout--;
139	}
140	device_printf(nic->dev, "Poll on reg 0x%lx failed\n", reg);
141	return (ETIMEDOUT);
142}
143
144/* Callback for bus_dmamap_load() */
145static void
146nicvf_dmamap_q_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
147{
148	bus_addr_t *paddr;
149
150	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
151	paddr = arg;
152	*paddr = segs->ds_addr;
153}
154
155/* Allocate memory for a queue's descriptors */
156static int
157nicvf_alloc_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem,
158    int q_len, int desc_size, int align_bytes)
159{
160	int err, err_dmat;
161
162	/* Create DMA tag first */
163	err = bus_dma_tag_create(
164	    bus_get_dma_tag(nic->dev),		/* parent tag */
165	    align_bytes,			/* alignment */
166	    0,					/* boundary */
167	    BUS_SPACE_MAXADDR,			/* lowaddr */
168	    BUS_SPACE_MAXADDR,			/* highaddr */
169	    NULL, NULL,				/* filtfunc, filtfuncarg */
170	    (q_len * desc_size),		/* maxsize */
171	    1,					/* nsegments */
172	    (q_len * desc_size),		/* maxsegsize */
173	    0,					/* flags */
174	    NULL, NULL,				/* lockfunc, lockfuncarg */
175	    &dmem->dmat);			/* dmat */
176
177	if (err != 0) {
178		device_printf(nic->dev,
179		    "Failed to create busdma tag for descriptors ring\n");
180		return (err);
181	}
182
183	/* Allocate segment of continuous DMA safe memory */
184	err = bus_dmamem_alloc(
185	    dmem->dmat,				/* DMA tag */
186	    &dmem->base,			/* virtual address */
187	    (BUS_DMA_NOWAIT | BUS_DMA_ZERO),	/* flags */
188	    &dmem->dmap);			/* DMA map */
189	if (err != 0) {
190		device_printf(nic->dev, "Failed to allocate DMA safe memory for"
191		    "descriptors ring\n");
192		goto dmamem_fail;
193	}
194
195	err = bus_dmamap_load(
196	    dmem->dmat,
197	    dmem->dmap,
198	    dmem->base,
199	    (q_len * desc_size),		/* allocation size */
200	    nicvf_dmamap_q_cb,			/* map to DMA address cb. */
201	    &dmem->phys_base,			/* physical address */
202	    BUS_DMA_NOWAIT);
203	if (err != 0) {
204		device_printf(nic->dev,
205		    "Cannot load DMA map of descriptors ring\n");
206		goto dmamap_fail;
207	}
208
209	dmem->q_len = q_len;
210	dmem->size = (desc_size * q_len);
211
212	return (0);
213
214dmamap_fail:
215	bus_dmamem_free(dmem->dmat, dmem->base, dmem->dmap);
216	dmem->phys_base = 0;
217dmamem_fail:
218	err_dmat = bus_dma_tag_destroy(dmem->dmat);
219	dmem->base = NULL;
220	KASSERT(err_dmat == 0,
221	    ("%s: Trying to destroy BUSY DMA tag", __func__));
222
223	return (err);
224}
225
226/* Free queue's descriptor memory */
227static void
228nicvf_free_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem)
229{
230	int err;
231
232	if ((dmem == NULL) || (dmem->base == NULL))
233		return;
234
235	/* Unload a map */
236	bus_dmamap_sync(dmem->dmat, dmem->dmap, BUS_DMASYNC_POSTREAD);
237	bus_dmamap_unload(dmem->dmat, dmem->dmap);
238	/* Free DMA memory */
239	bus_dmamem_free(dmem->dmat, dmem->base, dmem->dmap);
240	/* Destroy DMA tag */
241	err = bus_dma_tag_destroy(dmem->dmat);
242
243	KASSERT(err == 0,
244	    ("%s: Trying to destroy BUSY DMA tag", __func__));
245
246	dmem->phys_base = 0;
247	dmem->base = NULL;
248}
249
250/*
251 * Allocate buffer for packet reception
252 * HW returns memory address where packet is DMA'ed but not a pointer
253 * into RBDR ring, so save buffer address at the start of fragment and
254 * align the start address to a cache aligned address
255 */
256static __inline int
257nicvf_alloc_rcv_buffer(struct nicvf *nic, struct rbdr *rbdr,
258    bus_dmamap_t dmap, int mflags, uint32_t buf_len, bus_addr_t *rbuf)
259{
260	struct mbuf *mbuf;
261	struct rbuf_info *rinfo;
262	bus_dma_segment_t segs[1];
263	int nsegs;
264	int err;
265
266	mbuf = m_getjcl(mflags, MT_DATA, M_PKTHDR, MCLBYTES);
267	if (mbuf == NULL)
268		return (ENOMEM);
269
270	/*
271	 * The length is equal to the actual length + one 128b line
272	 * used as a room for rbuf_info structure.
273	 */
274	mbuf->m_len = mbuf->m_pkthdr.len = buf_len;
275
276	err = bus_dmamap_load_mbuf_sg(rbdr->rbdr_buff_dmat, dmap, mbuf, segs,
277	    &nsegs, BUS_DMA_NOWAIT);
278	if (err != 0) {
279		device_printf(nic->dev,
280		    "Failed to map mbuf into DMA visible memory, err: %d\n",
281		    err);
282		m_freem(mbuf);
283		bus_dmamap_destroy(rbdr->rbdr_buff_dmat, dmap);
284		return (err);
285	}
286	if (nsegs != 1)
287		panic("Unexpected number of DMA segments for RB: %d", nsegs);
288	/*
289	 * Now use the room for rbuf_info structure
290	 * and adjust mbuf data and length.
291	 */
292	rinfo = (struct rbuf_info *)mbuf->m_data;
293	m_adj(mbuf, NICVF_RCV_BUF_ALIGN_BYTES);
294
295	rinfo->dmat = rbdr->rbdr_buff_dmat;
296	rinfo->dmap = dmap;
297	rinfo->mbuf = mbuf;
298
299	*rbuf = segs[0].ds_addr + NICVF_RCV_BUF_ALIGN_BYTES;
300
301	return (0);
302}
303
304/* Retrieve mbuf for received packet */
305static struct mbuf *
306nicvf_rb_ptr_to_mbuf(struct nicvf *nic, bus_addr_t rb_ptr)
307{
308	struct mbuf *mbuf;
309	struct rbuf_info *rinfo;
310
311	/* Get buffer start address and alignment offset */
312	rinfo = GET_RBUF_INFO(PHYS_TO_DMAP(rb_ptr));
313
314	/* Now retrieve mbuf to give to stack */
315	mbuf = rinfo->mbuf;
316	if (__predict_false(mbuf == NULL)) {
317		panic("%s: Received packet fragment with NULL mbuf",
318		    device_get_nameunit(nic->dev));
319	}
320	/*
321	 * Clear the mbuf in the descriptor to indicate
322	 * that this slot is processed and free to use.
323	 */
324	rinfo->mbuf = NULL;
325
326	bus_dmamap_sync(rinfo->dmat, rinfo->dmap, BUS_DMASYNC_POSTREAD);
327	bus_dmamap_unload(rinfo->dmat, rinfo->dmap);
328
329	return (mbuf);
330}
331
332/* Allocate RBDR ring and populate receive buffers */
333static int
334nicvf_init_rbdr(struct nicvf *nic, struct rbdr *rbdr, int ring_len,
335    int buf_size, int qidx)
336{
337	bus_dmamap_t dmap;
338	bus_addr_t rbuf;
339	struct rbdr_entry_t *desc;
340	int idx;
341	int err;
342
343	/* Allocate rbdr descriptors ring */
344	err = nicvf_alloc_q_desc_mem(nic, &rbdr->dmem, ring_len,
345	    sizeof(struct rbdr_entry_t), NICVF_RCV_BUF_ALIGN_BYTES);
346	if (err != 0) {
347		device_printf(nic->dev,
348		    "Failed to create RBDR descriptors ring\n");
349		return (err);
350	}
351
352	rbdr->desc = rbdr->dmem.base;
353	/*
354	 * Buffer size has to be in multiples of 128 bytes.
355	 * Make room for metadata of size of one line (128 bytes).
356	 */
357	rbdr->dma_size = buf_size - NICVF_RCV_BUF_ALIGN_BYTES;
358	rbdr->enable = TRUE;
359	rbdr->thresh = RBDR_THRESH;
360	rbdr->nic = nic;
361	rbdr->idx = qidx;
362
363	/*
364	 * Create DMA tag for Rx buffers.
365	 * Each map created using this tag is intended to store Rx payload for
366	 * one fragment and one header structure containing rbuf_info (thus
367	 * additional 128 byte line since RB must be a multiple of 128 byte
368	 * cache line).
369	 */
370	if (buf_size > MCLBYTES) {
371		device_printf(nic->dev,
372		    "Buffer size to large for mbuf cluster\n");
373		return (EINVAL);
374	}
375	err = bus_dma_tag_create(
376	    bus_get_dma_tag(nic->dev),		/* parent tag */
377	    NICVF_RCV_BUF_ALIGN_BYTES,		/* alignment */
378	    0,					/* boundary */
379	    DMAP_MAX_PHYSADDR,			/* lowaddr */
380	    DMAP_MIN_PHYSADDR,			/* highaddr */
381	    NULL, NULL,				/* filtfunc, filtfuncarg */
382	    roundup2(buf_size, MCLBYTES),	/* maxsize */
383	    1,					/* nsegments */
384	    roundup2(buf_size, MCLBYTES),	/* maxsegsize */
385	    0,					/* flags */
386	    NULL, NULL,				/* lockfunc, lockfuncarg */
387	    &rbdr->rbdr_buff_dmat);		/* dmat */
388
389	if (err != 0) {
390		device_printf(nic->dev,
391		    "Failed to create busdma tag for RBDR buffers\n");
392		return (err);
393	}
394
395	rbdr->rbdr_buff_dmaps = malloc(sizeof(*rbdr->rbdr_buff_dmaps) *
396	    ring_len, M_NICVF, (M_WAITOK | M_ZERO));
397
398	for (idx = 0; idx < ring_len; idx++) {
399		err = bus_dmamap_create(rbdr->rbdr_buff_dmat, 0, &dmap);
400		if (err != 0) {
401			device_printf(nic->dev,
402			    "Failed to create DMA map for RB\n");
403			return (err);
404		}
405		rbdr->rbdr_buff_dmaps[idx] = dmap;
406
407		err = nicvf_alloc_rcv_buffer(nic, rbdr, dmap, M_WAITOK,
408		    DMA_BUFFER_LEN, &rbuf);
409		if (err != 0)
410			return (err);
411
412		desc = GET_RBDR_DESC(rbdr, idx);
413		desc->buf_addr = (rbuf >> NICVF_RCV_BUF_ALIGN);
414	}
415
416	/* Allocate taskqueue */
417	TASK_INIT(&rbdr->rbdr_task, 0, nicvf_rbdr_task, rbdr);
418	TASK_INIT(&rbdr->rbdr_task_nowait, 0, nicvf_rbdr_task_nowait, rbdr);
419	rbdr->rbdr_taskq = taskqueue_create_fast("nicvf_rbdr_taskq", M_WAITOK,
420	    taskqueue_thread_enqueue, &rbdr->rbdr_taskq);
421	taskqueue_start_threads(&rbdr->rbdr_taskq, 1, PI_NET, "%s: rbdr_taskq",
422	    device_get_nameunit(nic->dev));
423
424	return (0);
425}
426
427/* Free RBDR ring and its receive buffers */
428static void
429nicvf_free_rbdr(struct nicvf *nic, struct rbdr *rbdr)
430{
431	struct mbuf *mbuf;
432	struct queue_set *qs;
433	struct rbdr_entry_t *desc;
434	struct rbuf_info *rinfo;
435	bus_addr_t buf_addr;
436	int head, tail, idx;
437	int err;
438
439	qs = nic->qs;
440
441	if ((qs == NULL) || (rbdr == NULL))
442		return;
443
444	rbdr->enable = FALSE;
445	if (rbdr->rbdr_taskq != NULL) {
446		/* Remove tasks */
447		while (taskqueue_cancel(rbdr->rbdr_taskq,
448		    &rbdr->rbdr_task_nowait, NULL) != 0) {
449			/* Finish the nowait task first */
450			taskqueue_drain(rbdr->rbdr_taskq,
451			    &rbdr->rbdr_task_nowait);
452		}
453		taskqueue_free(rbdr->rbdr_taskq);
454		rbdr->rbdr_taskq = NULL;
455
456		while (taskqueue_cancel(taskqueue_thread,
457		    &rbdr->rbdr_task, NULL) != 0) {
458			/* Now finish the sleepable task */
459			taskqueue_drain(taskqueue_thread, &rbdr->rbdr_task);
460		}
461	}
462
463	/*
464	 * Free all of the memory under the RB descriptors.
465	 * There are assumptions here:
466	 * 1. Corresponding RBDR is disabled
467	 *    - it is safe to operate using head and tail indexes
468	 * 2. All bffers that were received are properly freed by
469	 *    the receive handler
470	 *    - there is no need to unload DMA map and free MBUF for other
471	 *      descriptors than unused ones
472	 */
473	if (rbdr->rbdr_buff_dmat != NULL) {
474		head = rbdr->head;
475		tail = rbdr->tail;
476		while (head != tail) {
477			desc = GET_RBDR_DESC(rbdr, head);
478			buf_addr = desc->buf_addr << NICVF_RCV_BUF_ALIGN;
479			rinfo = GET_RBUF_INFO(PHYS_TO_DMAP(buf_addr));
480			bus_dmamap_unload(rbdr->rbdr_buff_dmat, rinfo->dmap);
481			mbuf = rinfo->mbuf;
482			/* This will destroy everything including rinfo! */
483			m_freem(mbuf);
484			head++;
485			head &= (rbdr->dmem.q_len - 1);
486		}
487		/* Free tail descriptor */
488		desc = GET_RBDR_DESC(rbdr, tail);
489		buf_addr = desc->buf_addr << NICVF_RCV_BUF_ALIGN;
490		rinfo = GET_RBUF_INFO(PHYS_TO_DMAP(buf_addr));
491		bus_dmamap_unload(rbdr->rbdr_buff_dmat, rinfo->dmap);
492		mbuf = rinfo->mbuf;
493		/* This will destroy everything including rinfo! */
494		m_freem(mbuf);
495
496		/* Destroy DMA maps */
497		for (idx = 0; idx < qs->rbdr_len; idx++) {
498			if (rbdr->rbdr_buff_dmaps[idx] == NULL)
499				continue;
500			err = bus_dmamap_destroy(rbdr->rbdr_buff_dmat,
501			    rbdr->rbdr_buff_dmaps[idx]);
502			KASSERT(err == 0,
503			    ("%s: Could not destroy DMA map for RB, desc: %d",
504			    __func__, idx));
505			rbdr->rbdr_buff_dmaps[idx] = NULL;
506		}
507
508		/* Now destroy the tag */
509		err = bus_dma_tag_destroy(rbdr->rbdr_buff_dmat);
510		KASSERT(err == 0,
511		    ("%s: Trying to destroy BUSY DMA tag", __func__));
512
513		rbdr->head = 0;
514		rbdr->tail = 0;
515	}
516
517	/* Free RBDR ring */
518	nicvf_free_q_desc_mem(nic, &rbdr->dmem);
519}
520
521/*
522 * Refill receive buffer descriptors with new buffers.
523 */
524static int
525nicvf_refill_rbdr(struct rbdr *rbdr, int mflags)
526{
527	struct nicvf *nic;
528	struct queue_set *qs;
529	int rbdr_idx;
530	int tail, qcount;
531	int refill_rb_cnt;
532	struct rbdr_entry_t *desc;
533	bus_dmamap_t dmap;
534	bus_addr_t rbuf;
535	boolean_t rb_alloc_fail;
536	int new_rb;
537
538	rb_alloc_fail = TRUE;
539	new_rb = 0;
540	nic = rbdr->nic;
541	qs = nic->qs;
542	rbdr_idx = rbdr->idx;
543
544	/* Check if it's enabled */
545	if (!rbdr->enable)
546		return (0);
547
548	/* Get no of desc's to be refilled */
549	qcount = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, rbdr_idx);
550	qcount &= 0x7FFFF;
551	/* Doorbell can be ringed with a max of ring size minus 1 */
552	if (qcount >= (qs->rbdr_len - 1)) {
553		rb_alloc_fail = FALSE;
554		goto out;
555	} else
556		refill_rb_cnt = qs->rbdr_len - qcount - 1;
557
558	/* Start filling descs from tail */
559	tail = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, rbdr_idx) >> 3;
560	while (refill_rb_cnt) {
561		tail++;
562		tail &= (rbdr->dmem.q_len - 1);
563
564		dmap = rbdr->rbdr_buff_dmaps[tail];
565		if (nicvf_alloc_rcv_buffer(nic, rbdr, dmap, mflags,
566		    DMA_BUFFER_LEN, &rbuf)) {
567			/* Something went wrong. Resign */
568			break;
569		}
570		desc = GET_RBDR_DESC(rbdr, tail);
571		desc->buf_addr = (rbuf >> NICVF_RCV_BUF_ALIGN);
572		refill_rb_cnt--;
573		new_rb++;
574	}
575
576	/* make sure all memory stores are done before ringing doorbell */
577	wmb();
578
579	/* Check if buffer allocation failed */
580	if (refill_rb_cnt == 0)
581		rb_alloc_fail = FALSE;
582
583	/* Notify HW */
584	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
585			      rbdr_idx, new_rb);
586out:
587	if (!rb_alloc_fail) {
588		/*
589		 * Re-enable RBDR interrupts only
590		 * if buffer allocation is success.
591		 */
592		nicvf_enable_intr(nic, NICVF_INTR_RBDR, rbdr_idx);
593
594		return (0);
595	}
596
597	return (ENOMEM);
598}
599
600/* Refill RBs even if sleep is needed to reclaim memory */
601static void
602nicvf_rbdr_task(void *arg, int pending)
603{
604	struct rbdr *rbdr;
605	int err;
606
607	rbdr = (struct rbdr *)arg;
608
609	err = nicvf_refill_rbdr(rbdr, M_WAITOK);
610	if (__predict_false(err != 0)) {
611		panic("%s: Failed to refill RBs even when sleep enabled",
612		    __func__);
613	}
614}
615
616/* Refill RBs as soon as possible without waiting */
617static void
618nicvf_rbdr_task_nowait(void *arg, int pending)
619{
620	struct rbdr *rbdr;
621	int err;
622
623	rbdr = (struct rbdr *)arg;
624
625	err = nicvf_refill_rbdr(rbdr, M_NOWAIT);
626	if (err != 0) {
627		/*
628		 * Schedule another, sleepable kernel thread
629		 * that will for sure refill the buffers.
630		 */
631		taskqueue_enqueue(taskqueue_thread, &rbdr->rbdr_task);
632	}
633}
634
635static int
636nicvf_rcv_pkt_handler(struct nicvf *nic, struct cmp_queue *cq,
637    struct cqe_rx_t *cqe_rx, int cqe_type)
638{
639	struct mbuf *mbuf;
640	int rq_idx;
641	int err = 0;
642
643	rq_idx = cqe_rx->rq_idx;
644
645	/* Check for errors */
646	err = nicvf_check_cqe_rx_errs(nic, cq, cqe_rx);
647	if (err && !cqe_rx->rb_cnt)
648		return (0);
649
650	mbuf = nicvf_get_rcv_mbuf(nic, cqe_rx);
651	if (mbuf == NULL) {
652		dprintf(nic->dev, "Packet not received\n");
653		return (0);
654	}
655
656	/* If error packet */
657	if (err != 0) {
658		m_freem(mbuf);
659		return (0);
660	}
661
662	/*
663	 * Push this packet to the stack later to avoid
664	 * unlocking completion task in the middle of work.
665	 */
666	err = buf_ring_enqueue(cq->rx_br, mbuf);
667	if (err != 0) {
668		/*
669		 * Failed to enqueue this mbuf.
670		 * We don't drop it, just schedule another task.
671		 */
672		return (err);
673	}
674
675	return (0);
676}
677
678static int
679nicvf_snd_pkt_handler(struct nicvf *nic, struct cmp_queue *cq,
680    struct cqe_send_t *cqe_tx, int cqe_type)
681{
682	bus_dmamap_t dmap;
683	struct mbuf *mbuf;
684	struct snd_queue *sq;
685	struct sq_hdr_subdesc *hdr;
686
687	mbuf = NULL;
688	sq = &nic->qs->sq[cqe_tx->sq_idx];
689	/* Avoid blocking here since we hold a non-sleepable NICVF_CMP_LOCK */
690	if (NICVF_TX_TRYLOCK(sq) == 0)
691		return (EAGAIN);
692
693	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, cqe_tx->sqe_ptr);
694	if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) {
695		NICVF_TX_UNLOCK(sq);
696		return (0);
697	}
698
699	dprintf(nic->dev,
700	    "%s Qset #%d SQ #%d SQ ptr #%d subdesc count %d\n",
701	    __func__, cqe_tx->sq_qs, cqe_tx->sq_idx,
702	    cqe_tx->sqe_ptr, hdr->subdesc_cnt);
703
704	dmap = (bus_dmamap_t)sq->snd_buff[cqe_tx->sqe_ptr].dmap;
705	bus_dmamap_unload(sq->snd_buff_dmat, dmap);
706
707	mbuf = (struct mbuf *)sq->snd_buff[cqe_tx->sqe_ptr].mbuf;
708	if (mbuf != NULL) {
709		m_freem(mbuf);
710		sq->snd_buff[cqe_tx->sqe_ptr].mbuf = NULL;
711	}
712
713	nicvf_check_cqe_tx_errs(nic, cq, cqe_tx);
714	nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
715
716	NICVF_TX_UNLOCK(sq);
717	return (0);
718}
719
720static int
721nicvf_cq_intr_handler(struct nicvf *nic, uint8_t cq_idx)
722{
723	struct mbuf *mbuf;
724	struct ifnet *ifp;
725	int processed_cqe, work_done = 0, tx_done = 0;
726	int cqe_count, cqe_head;
727	struct queue_set *qs = nic->qs;
728	struct cmp_queue *cq = &qs->cq[cq_idx];
729	struct cqe_rx_t *cq_desc;
730	int cmp_err;
731
732	NICVF_CMP_LOCK(cq);
733	cmp_err = 0;
734	processed_cqe = 0;
735	/* Get no of valid CQ entries to process */
736	cqe_count = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS, cq_idx);
737	cqe_count &= CQ_CQE_COUNT;
738	if (cqe_count == 0)
739		goto out;
740
741	/* Get head of the valid CQ entries */
742	cqe_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD, cq_idx) >> 9;
743	cqe_head &= 0xFFFF;
744
745	dprintf(nic->dev, "%s CQ%d cqe_count %d cqe_head %d\n",
746	    __func__, cq_idx, cqe_count, cqe_head);
747	while (processed_cqe < cqe_count) {
748		/* Get the CQ descriptor */
749		cq_desc = (struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head);
750		cqe_head++;
751		cqe_head &= (cq->dmem.q_len - 1);
752
753		dprintf(nic->dev, "CQ%d cq_desc->cqe_type %d\n", cq_idx,
754		    cq_desc->cqe_type);
755		switch (cq_desc->cqe_type) {
756		case CQE_TYPE_RX:
757			cmp_err = nicvf_rcv_pkt_handler(nic, cq, cq_desc,
758			    CQE_TYPE_RX);
759			if (__predict_false(cmp_err != 0)) {
760				/*
761				 * Ups. Cannot finish now.
762				 * Let's try again later.
763				 */
764				goto done;
765			}
766			work_done++;
767			break;
768		case CQE_TYPE_SEND:
769			cmp_err = nicvf_snd_pkt_handler(nic, cq,
770			    (void *)cq_desc, CQE_TYPE_SEND);
771			if (__predict_false(cmp_err != 0)) {
772				/*
773				 * Ups. Cannot finish now.
774				 * Let's try again later.
775				 */
776				goto done;
777			}
778
779			tx_done++;
780			break;
781		case CQE_TYPE_INVALID:
782		case CQE_TYPE_RX_SPLIT:
783		case CQE_TYPE_RX_TCP:
784		case CQE_TYPE_SEND_PTP:
785			/* Ignore for now */
786			break;
787		}
788		processed_cqe++;
789	}
790done:
791	dprintf(nic->dev,
792	    "%s CQ%d processed_cqe %d work_done %d\n",
793	    __func__, cq_idx, processed_cqe, work_done);
794
795	/* Ring doorbell to inform H/W to reuse processed CQEs */
796	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_DOOR, cq_idx, processed_cqe);
797
798	if ((tx_done > 0) &&
799	    ((if_getdrvflags(nic->ifp) & IFF_DRV_RUNNING) != 0)) {
800		/* Reenable TXQ if its stopped earlier due to SQ full */
801		if_setdrvflagbits(nic->ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
802	}
803out:
804	NICVF_CMP_UNLOCK(cq);
805
806	ifp = nic->ifp;
807	/* Push received MBUFs to the stack */
808	while (!buf_ring_empty(cq->rx_br)) {
809		mbuf = buf_ring_dequeue_mc(cq->rx_br);
810		if (__predict_true(mbuf != NULL))
811			(*ifp->if_input)(ifp, mbuf);
812	}
813
814	return (cmp_err);
815}
816
817/*
818 * Qset error interrupt handler
819 *
820 * As of now only CQ errors are handled
821 */
822static void
823nicvf_qs_err_task(void *arg, int pending)
824{
825	struct nicvf *nic;
826	struct queue_set *qs;
827	int qidx;
828	uint64_t status;
829	boolean_t enable = TRUE;
830
831	nic = (struct nicvf *)arg;
832	qs = nic->qs;
833
834	/* Deactivate network interface */
835	if_setdrvflagbits(nic->ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING);
836
837	/* Check if it is CQ err */
838	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
839		status = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS,
840		    qidx);
841		if ((status & CQ_ERR_MASK) == 0)
842			continue;
843		/* Process already queued CQEs and reconfig CQ */
844		nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
845		nicvf_sq_disable(nic, qidx);
846		(void)nicvf_cq_intr_handler(nic, qidx);
847		nicvf_cmp_queue_config(nic, qs, qidx, enable);
848		nicvf_sq_free_used_descs(nic, &qs->sq[qidx], qidx);
849		nicvf_sq_enable(nic, &qs->sq[qidx], qidx);
850		nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
851	}
852
853	if_setdrvflagbits(nic->ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
854	/* Re-enable Qset error interrupt */
855	nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
856}
857
858static void
859nicvf_cmp_task(void *arg, int pending)
860{
861	uint64_t cq_head;
862	struct cmp_queue *cq;
863	struct nicvf *nic;
864	int cmp_err;
865
866	cq = (struct cmp_queue *)arg;
867	nic = cq->nic;
868
869	/* Handle CQ descriptors */
870	cmp_err = nicvf_cq_intr_handler(nic, cq->idx);
871	/* Re-enable interrupts */
872	cq_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD, cq->idx);
873	nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->idx);
874	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_HEAD, cq->idx, cq_head);
875
876	if (__predict_false(cmp_err != 0)) {
877		/*
878		 * Schedule another thread here since we did not
879		 * process the entire CQ due to Tx or Rx CQ parse error.
880		 */
881		taskqueue_enqueue(cq->cmp_taskq, &cq->cmp_task);
882
883	}
884
885	/* Reenable interrupt (previously disabled in nicvf_intr_handler() */
886	nicvf_enable_intr(nic, NICVF_INTR_CQ, cq->idx);
887
888}
889
890/* Initialize completion queue */
891static int
892nicvf_init_cmp_queue(struct nicvf *nic, struct cmp_queue *cq, int q_len,
893    int qidx)
894{
895	int err;
896
897	/* Initizalize lock */
898	snprintf(cq->mtx_name, sizeof(cq->mtx_name), "%s: CQ(%d) lock",
899	    device_get_nameunit(nic->dev), qidx);
900	mtx_init(&cq->mtx, cq->mtx_name, NULL, MTX_DEF);
901
902	err = nicvf_alloc_q_desc_mem(nic, &cq->dmem, q_len, CMP_QUEUE_DESC_SIZE,
903				     NICVF_CQ_BASE_ALIGN_BYTES);
904
905	if (err != 0) {
906		device_printf(nic->dev,
907		    "Could not allocate DMA memory for CQ\n");
908		return (err);
909	}
910
911	cq->desc = cq->dmem.base;
912	cq->thresh = CMP_QUEUE_CQE_THRESH;
913	cq->nic = nic;
914	cq->idx = qidx;
915	nic->cq_coalesce_usecs = (CMP_QUEUE_TIMER_THRESH * 0.05) - 1;
916
917	cq->rx_br = buf_ring_alloc(CMP_QUEUE_LEN * 8, M_DEVBUF, M_WAITOK,
918	    &cq->mtx);
919
920	/* Allocate taskqueue */
921	TASK_INIT(&cq->cmp_task, 0, nicvf_cmp_task, cq);
922	cq->cmp_taskq = taskqueue_create_fast("nicvf_cmp_taskq", M_WAITOK,
923	    taskqueue_thread_enqueue, &cq->cmp_taskq);
924	taskqueue_start_threads(&cq->cmp_taskq, 1, PI_NET, "%s: cmp_taskq(%d)",
925	    device_get_nameunit(nic->dev), qidx);
926
927	return (0);
928}
929
930static void
931nicvf_free_cmp_queue(struct nicvf *nic, struct cmp_queue *cq)
932{
933
934	if (cq == NULL)
935		return;
936	/*
937	 * The completion queue itself should be disabled by now
938	 * (ref. nicvf_snd_queue_config()).
939	 * Ensure that it is safe to disable it or panic.
940	 */
941	if (cq->enable)
942		panic("%s: Trying to free working CQ(%d)", __func__, cq->idx);
943
944	if (cq->cmp_taskq != NULL) {
945		/* Remove task */
946		while (taskqueue_cancel(cq->cmp_taskq, &cq->cmp_task, NULL) != 0)
947			taskqueue_drain(cq->cmp_taskq, &cq->cmp_task);
948
949		taskqueue_free(cq->cmp_taskq);
950		cq->cmp_taskq = NULL;
951	}
952	/*
953	 * Completion interrupt will possibly enable interrupts again
954	 * so disable interrupting now after we finished processing
955	 * completion task. It is safe to do so since the corresponding CQ
956	 * was already disabled.
957	 */
958	nicvf_disable_intr(nic, NICVF_INTR_CQ, cq->idx);
959	nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->idx);
960
961	NICVF_CMP_LOCK(cq);
962	nicvf_free_q_desc_mem(nic, &cq->dmem);
963	drbr_free(cq->rx_br, M_DEVBUF);
964	NICVF_CMP_UNLOCK(cq);
965	mtx_destroy(&cq->mtx);
966	memset(cq->mtx_name, 0, sizeof(cq->mtx_name));
967}
968
969static void
970nicvf_snd_task(void *arg, int pending)
971{
972	struct snd_queue *sq = (struct snd_queue *)arg;
973	struct mbuf *mbuf;
974
975	NICVF_TX_LOCK(sq);
976	while (1) {
977		mbuf = drbr_dequeue(NULL, sq->br);
978		if (mbuf == NULL)
979			break;
980
981		if (nicvf_tx_mbuf_locked(sq, mbuf) != 0) {
982			/* XXX ARM64TODO: Increase Tx drop counter */
983			m_freem(mbuf);
984			break;
985		}
986	}
987	NICVF_TX_UNLOCK(sq);
988}
989
990/* Initialize transmit queue */
991static int
992nicvf_init_snd_queue(struct nicvf *nic, struct snd_queue *sq, int q_len,
993    int qidx)
994{
995	size_t i;
996	int err;
997
998	/* Initizalize TX lock for this queue */
999	snprintf(sq->mtx_name, sizeof(sq->mtx_name), "%s: SQ(%d) lock",
1000	    device_get_nameunit(nic->dev), qidx);
1001	mtx_init(&sq->mtx, sq->mtx_name, NULL, MTX_DEF);
1002
1003	NICVF_TX_LOCK(sq);
1004	/* Allocate buffer ring */
1005	sq->br = buf_ring_alloc(q_len / MIN_SQ_DESC_PER_PKT_XMIT, M_DEVBUF,
1006	    M_NOWAIT, &sq->mtx);
1007	if (sq->br == NULL) {
1008		device_printf(nic->dev,
1009		    "ERROR: Could not set up buf ring for SQ(%d)\n", qidx);
1010		err = ENOMEM;
1011		goto error;
1012	}
1013
1014	/* Allocate DMA memory for Tx descriptors */
1015	err = nicvf_alloc_q_desc_mem(nic, &sq->dmem, q_len, SND_QUEUE_DESC_SIZE,
1016				     NICVF_SQ_BASE_ALIGN_BYTES);
1017	if (err != 0) {
1018		device_printf(nic->dev,
1019		    "Could not allocate DMA memory for SQ\n");
1020		goto error;
1021	}
1022
1023	sq->desc = sq->dmem.base;
1024	sq->head = sq->tail = 0;
1025	atomic_store_rel_int(&sq->free_cnt, q_len - 1);
1026	sq->thresh = SND_QUEUE_THRESH;
1027	sq->idx = qidx;
1028	sq->nic = nic;
1029
1030	/*
1031	 * Allocate DMA maps for Tx buffers
1032	 */
1033
1034	/* Create DMA tag first */
1035	err = bus_dma_tag_create(
1036	    bus_get_dma_tag(nic->dev),		/* parent tag */
1037	    1,					/* alignment */
1038	    0,					/* boundary */
1039	    BUS_SPACE_MAXADDR,			/* lowaddr */
1040	    BUS_SPACE_MAXADDR,			/* highaddr */
1041	    NULL, NULL,				/* filtfunc, filtfuncarg */
1042	    NICVF_TXBUF_MAXSIZE,		/* maxsize */
1043	    NICVF_TXBUF_NSEGS,			/* nsegments */
1044	    MCLBYTES,				/* maxsegsize */
1045	    0,					/* flags */
1046	    NULL, NULL,				/* lockfunc, lockfuncarg */
1047	    &sq->snd_buff_dmat);		/* dmat */
1048
1049	if (err != 0) {
1050		device_printf(nic->dev,
1051		    "Failed to create busdma tag for Tx buffers\n");
1052		goto error;
1053	}
1054
1055	/* Allocate send buffers array */
1056	sq->snd_buff = malloc(sizeof(*sq->snd_buff) * q_len, M_NICVF,
1057	    (M_NOWAIT | M_ZERO));
1058	if (sq->snd_buff == NULL) {
1059		device_printf(nic->dev,
1060		    "Could not allocate memory for Tx buffers array\n");
1061		err = ENOMEM;
1062		goto error;
1063	}
1064
1065	/* Now populate maps */
1066	for (i = 0; i < q_len; i++) {
1067		err = bus_dmamap_create(sq->snd_buff_dmat, 0,
1068		    &sq->snd_buff[i].dmap);
1069		if (err != 0) {
1070			device_printf(nic->dev,
1071			    "Failed to create DMA maps for Tx buffers\n");
1072			goto error;
1073		}
1074	}
1075	NICVF_TX_UNLOCK(sq);
1076
1077	/* Allocate taskqueue */
1078	TASK_INIT(&sq->snd_task, 0, nicvf_snd_task, sq);
1079	sq->snd_taskq = taskqueue_create_fast("nicvf_snd_taskq", M_WAITOK,
1080	    taskqueue_thread_enqueue, &sq->snd_taskq);
1081	taskqueue_start_threads(&sq->snd_taskq, 1, PI_NET, "%s: snd_taskq(%d)",
1082	    device_get_nameunit(nic->dev), qidx);
1083
1084	return (0);
1085error:
1086	NICVF_TX_UNLOCK(sq);
1087	return (err);
1088}
1089
1090static void
1091nicvf_free_snd_queue(struct nicvf *nic, struct snd_queue *sq)
1092{
1093	struct queue_set *qs = nic->qs;
1094	size_t i;
1095	int err;
1096
1097	if (sq == NULL)
1098		return;
1099
1100	if (sq->snd_taskq != NULL) {
1101		/* Remove task */
1102		while (taskqueue_cancel(sq->snd_taskq, &sq->snd_task, NULL) != 0)
1103			taskqueue_drain(sq->snd_taskq, &sq->snd_task);
1104
1105		taskqueue_free(sq->snd_taskq);
1106		sq->snd_taskq = NULL;
1107	}
1108
1109	NICVF_TX_LOCK(sq);
1110	if (sq->snd_buff_dmat != NULL) {
1111		if (sq->snd_buff != NULL) {
1112			for (i = 0; i < qs->sq_len; i++) {
1113				m_freem(sq->snd_buff[i].mbuf);
1114				sq->snd_buff[i].mbuf = NULL;
1115
1116				bus_dmamap_unload(sq->snd_buff_dmat,
1117				    sq->snd_buff[i].dmap);
1118				err = bus_dmamap_destroy(sq->snd_buff_dmat,
1119				    sq->snd_buff[i].dmap);
1120				/*
1121				 * If bus_dmamap_destroy fails it can cause
1122				 * random panic later if the tag is also
1123				 * destroyed in the process.
1124				 */
1125				KASSERT(err == 0,
1126				    ("%s: Could not destroy DMA map for SQ",
1127				    __func__));
1128			}
1129		}
1130
1131		free(sq->snd_buff, M_NICVF);
1132
1133		err = bus_dma_tag_destroy(sq->snd_buff_dmat);
1134		KASSERT(err == 0,
1135		    ("%s: Trying to destroy BUSY DMA tag", __func__));
1136	}
1137
1138	/* Free private driver ring for this send queue */
1139	if (sq->br != NULL)
1140		drbr_free(sq->br, M_DEVBUF);
1141
1142	if (sq->dmem.base != NULL)
1143		nicvf_free_q_desc_mem(nic, &sq->dmem);
1144
1145	NICVF_TX_UNLOCK(sq);
1146	/* Destroy Tx lock */
1147	mtx_destroy(&sq->mtx);
1148	memset(sq->mtx_name, 0, sizeof(sq->mtx_name));
1149}
1150
1151static void
1152nicvf_reclaim_snd_queue(struct nicvf *nic, struct queue_set *qs, int qidx)
1153{
1154
1155	/* Disable send queue */
1156	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, 0);
1157	/* Check if SQ is stopped */
1158	if (nicvf_poll_reg(nic, qidx, NIC_QSET_SQ_0_7_STATUS, 21, 1, 0x01))
1159		return;
1160	/* Reset send queue */
1161	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
1162}
1163
1164static void
1165nicvf_reclaim_rcv_queue(struct nicvf *nic, struct queue_set *qs, int qidx)
1166{
1167	union nic_mbx mbx = {};
1168
1169	/* Make sure all packets in the pipeline are written back into mem */
1170	mbx.msg.msg = NIC_MBOX_MSG_RQ_SW_SYNC;
1171	nicvf_send_msg_to_pf(nic, &mbx);
1172}
1173
1174static void
1175nicvf_reclaim_cmp_queue(struct nicvf *nic, struct queue_set *qs, int qidx)
1176{
1177
1178	/* Disable timer threshold (doesn't get reset upon CQ reset */
1179	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx, 0);
1180	/* Disable completion queue */
1181	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, 0);
1182	/* Reset completion queue */
1183	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
1184}
1185
1186static void
1187nicvf_reclaim_rbdr(struct nicvf *nic, struct rbdr *rbdr, int qidx)
1188{
1189	uint64_t tmp, fifo_state;
1190	int timeout = 10;
1191
1192	/* Save head and tail pointers for feeing up buffers */
1193	rbdr->head =
1194	    nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_HEAD, qidx) >> 3;
1195	rbdr->tail =
1196	    nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, qidx) >> 3;
1197
1198	/*
1199	 * If RBDR FIFO is in 'FAIL' state then do a reset first
1200	 * before relaiming.
1201	 */
1202	fifo_state = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, qidx);
1203	if (((fifo_state >> 62) & 0x03) == 0x3) {
1204		nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
1205		    qidx, NICVF_RBDR_RESET);
1206	}
1207
1208	/* Disable RBDR */
1209	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0);
1210	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
1211		return;
1212	while (1) {
1213		tmp = nicvf_queue_reg_read(nic,
1214		    NIC_QSET_RBDR_0_1_PREFETCH_STATUS, qidx);
1215		if ((tmp & 0xFFFFFFFF) == ((tmp >> 32) & 0xFFFFFFFF))
1216			break;
1217
1218		DELAY(1000);
1219		timeout--;
1220		if (!timeout) {
1221			device_printf(nic->dev,
1222			    "Failed polling on prefetch status\n");
1223			return;
1224		}
1225	}
1226	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx,
1227	    NICVF_RBDR_RESET);
1228
1229	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x02))
1230		return;
1231	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0x00);
1232	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
1233		return;
1234}
1235
1236/* Configures receive queue */
1237static void
1238nicvf_rcv_queue_config(struct nicvf *nic, struct queue_set *qs,
1239    int qidx, bool enable)
1240{
1241	union nic_mbx mbx = {};
1242	struct rcv_queue *rq;
1243	struct rq_cfg rq_cfg;
1244
1245	rq = &qs->rq[qidx];
1246	rq->enable = enable;
1247
1248	/* Disable receive queue */
1249	nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, 0);
1250
1251	if (!rq->enable) {
1252		nicvf_reclaim_rcv_queue(nic, qs, qidx);
1253		return;
1254	}
1255
1256	rq->cq_qs = qs->vnic_id;
1257	rq->cq_idx = qidx;
1258	rq->start_rbdr_qs = qs->vnic_id;
1259	rq->start_qs_rbdr_idx = qs->rbdr_cnt - 1;
1260	rq->cont_rbdr_qs = qs->vnic_id;
1261	rq->cont_qs_rbdr_idx = qs->rbdr_cnt - 1;
1262	/* all writes of RBDR data to be loaded into L2 Cache as well*/
1263	rq->caching = 1;
1264
1265	/* Send a mailbox msg to PF to config RQ */
1266	mbx.rq.msg = NIC_MBOX_MSG_RQ_CFG;
1267	mbx.rq.qs_num = qs->vnic_id;
1268	mbx.rq.rq_num = qidx;
1269	mbx.rq.cfg = (rq->caching << 26) | (rq->cq_qs << 19) |
1270	    (rq->cq_idx << 16) | (rq->cont_rbdr_qs << 9) |
1271	    (rq->cont_qs_rbdr_idx << 8) | (rq->start_rbdr_qs << 1) |
1272	    (rq->start_qs_rbdr_idx);
1273	nicvf_send_msg_to_pf(nic, &mbx);
1274
1275	mbx.rq.msg = NIC_MBOX_MSG_RQ_BP_CFG;
1276	mbx.rq.cfg = (1UL << 63) | (1UL << 62) | (qs->vnic_id << 0);
1277	nicvf_send_msg_to_pf(nic, &mbx);
1278
1279	/*
1280	 * RQ drop config
1281	 * Enable CQ drop to reserve sufficient CQEs for all tx packets
1282	 */
1283	mbx.rq.msg = NIC_MBOX_MSG_RQ_DROP_CFG;
1284	mbx.rq.cfg = (1UL << 62) | (RQ_CQ_DROP << 8);
1285	nicvf_send_msg_to_pf(nic, &mbx);
1286
1287	nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0, 0x00);
1288
1289	/* Enable Receive queue */
1290	rq_cfg.ena = 1;
1291	rq_cfg.tcp_ena = 0;
1292	nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx,
1293	    *(uint64_t *)&rq_cfg);
1294}
1295
1296/* Configures completion queue */
1297static void
1298nicvf_cmp_queue_config(struct nicvf *nic, struct queue_set *qs,
1299    int qidx, boolean_t enable)
1300{
1301	struct cmp_queue *cq;
1302	struct cq_cfg cq_cfg;
1303
1304	cq = &qs->cq[qidx];
1305	cq->enable = enable;
1306
1307	if (!cq->enable) {
1308		nicvf_reclaim_cmp_queue(nic, qs, qidx);
1309		return;
1310	}
1311
1312	/* Reset completion queue */
1313	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
1314
1315	/* Set completion queue base address */
1316	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_BASE, qidx,
1317	    (uint64_t)(cq->dmem.phys_base));
1318
1319	/* Enable Completion queue */
1320	cq_cfg.ena = 1;
1321	cq_cfg.reset = 0;
1322	cq_cfg.caching = 0;
1323	cq_cfg.qsize = CMP_QSIZE;
1324	cq_cfg.avg_con = 0;
1325	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, *(uint64_t *)&cq_cfg);
1326
1327	/* Set threshold value for interrupt generation */
1328	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_THRESH, qidx, cq->thresh);
1329	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx,
1330	    nic->cq_coalesce_usecs);
1331}
1332
1333/* Configures transmit queue */
1334static void
1335nicvf_snd_queue_config(struct nicvf *nic, struct queue_set *qs, int qidx,
1336    boolean_t enable)
1337{
1338	union nic_mbx mbx = {};
1339	struct snd_queue *sq;
1340	struct sq_cfg sq_cfg;
1341
1342	sq = &qs->sq[qidx];
1343	sq->enable = enable;
1344
1345	if (!sq->enable) {
1346		nicvf_reclaim_snd_queue(nic, qs, qidx);
1347		return;
1348	}
1349
1350	/* Reset send queue */
1351	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
1352
1353	sq->cq_qs = qs->vnic_id;
1354	sq->cq_idx = qidx;
1355
1356	/* Send a mailbox msg to PF to config SQ */
1357	mbx.sq.msg = NIC_MBOX_MSG_SQ_CFG;
1358	mbx.sq.qs_num = qs->vnic_id;
1359	mbx.sq.sq_num = qidx;
1360	mbx.sq.sqs_mode = nic->sqs_mode;
1361	mbx.sq.cfg = (sq->cq_qs << 3) | sq->cq_idx;
1362	nicvf_send_msg_to_pf(nic, &mbx);
1363
1364	/* Set queue base address */
1365	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_BASE, qidx,
1366	    (uint64_t)(sq->dmem.phys_base));
1367
1368	/* Enable send queue  & set queue size */
1369	sq_cfg.ena = 1;
1370	sq_cfg.reset = 0;
1371	sq_cfg.ldwb = 0;
1372	sq_cfg.qsize = SND_QSIZE;
1373	sq_cfg.tstmp_bgx_intf = 0;
1374	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, *(uint64_t *)&sq_cfg);
1375
1376	/* Set threshold value for interrupt generation */
1377	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_THRESH, qidx, sq->thresh);
1378}
1379
1380/* Configures receive buffer descriptor ring */
1381static void
1382nicvf_rbdr_config(struct nicvf *nic, struct queue_set *qs, int qidx,
1383    boolean_t enable)
1384{
1385	struct rbdr *rbdr;
1386	struct rbdr_cfg rbdr_cfg;
1387
1388	rbdr = &qs->rbdr[qidx];
1389	nicvf_reclaim_rbdr(nic, rbdr, qidx);
1390	if (!enable)
1391		return;
1392
1393	/* Set descriptor base address */
1394	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_BASE, qidx,
1395	    (uint64_t)(rbdr->dmem.phys_base));
1396
1397	/* Enable RBDR  & set queue size */
1398	/* Buffer size should be in multiples of 128 bytes */
1399	rbdr_cfg.ena = 1;
1400	rbdr_cfg.reset = 0;
1401	rbdr_cfg.ldwb = 0;
1402	rbdr_cfg.qsize = RBDR_SIZE;
1403	rbdr_cfg.avg_con = 0;
1404	rbdr_cfg.lines = rbdr->dma_size / 128;
1405	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx,
1406	    *(uint64_t *)&rbdr_cfg);
1407
1408	/* Notify HW */
1409	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR, qidx,
1410	    qs->rbdr_len - 1);
1411
1412	/* Set threshold value for interrupt generation */
1413	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_THRESH, qidx,
1414	    rbdr->thresh - 1);
1415}
1416
1417/* Requests PF to assign and enable Qset */
1418void
1419nicvf_qset_config(struct nicvf *nic, boolean_t enable)
1420{
1421	union nic_mbx mbx = {};
1422	struct queue_set *qs;
1423	struct qs_cfg *qs_cfg;
1424
1425	qs = nic->qs;
1426	if (qs == NULL) {
1427		device_printf(nic->dev,
1428		    "Qset is still not allocated, don't init queues\n");
1429		return;
1430	}
1431
1432	qs->enable = enable;
1433	qs->vnic_id = nic->vf_id;
1434
1435	/* Send a mailbox msg to PF to config Qset */
1436	mbx.qs.msg = NIC_MBOX_MSG_QS_CFG;
1437	mbx.qs.num = qs->vnic_id;
1438
1439	mbx.qs.cfg = 0;
1440	qs_cfg = (struct qs_cfg *)&mbx.qs.cfg;
1441	if (qs->enable) {
1442		qs_cfg->ena = 1;
1443		qs_cfg->vnic = qs->vnic_id;
1444	}
1445	nicvf_send_msg_to_pf(nic, &mbx);
1446}
1447
1448static void
1449nicvf_free_resources(struct nicvf *nic)
1450{
1451	int qidx;
1452	struct queue_set *qs;
1453
1454	qs = nic->qs;
1455	/*
1456	 * Remove QS error task first since it has to be dead
1457	 * to safely free completion queue tasks.
1458	 */
1459	if (qs->qs_err_taskq != NULL) {
1460		/* Shut down QS error tasks */
1461		while (taskqueue_cancel(qs->qs_err_taskq,
1462		    &qs->qs_err_task,  NULL) != 0) {
1463			taskqueue_drain(qs->qs_err_taskq, &qs->qs_err_task);
1464
1465		}
1466		taskqueue_free(qs->qs_err_taskq);
1467		qs->qs_err_taskq = NULL;
1468	}
1469	/* Free receive buffer descriptor ring */
1470	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1471		nicvf_free_rbdr(nic, &qs->rbdr[qidx]);
1472
1473	/* Free completion queue */
1474	for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1475		nicvf_free_cmp_queue(nic, &qs->cq[qidx]);
1476
1477	/* Free send queue */
1478	for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1479		nicvf_free_snd_queue(nic, &qs->sq[qidx]);
1480}
1481
1482static int
1483nicvf_alloc_resources(struct nicvf *nic)
1484{
1485	struct queue_set *qs = nic->qs;
1486	int qidx;
1487
1488	/* Alloc receive buffer descriptor ring */
1489	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
1490		if (nicvf_init_rbdr(nic, &qs->rbdr[qidx], qs->rbdr_len,
1491				    DMA_BUFFER_LEN, qidx))
1492			goto alloc_fail;
1493	}
1494
1495	/* Alloc send queue */
1496	for (qidx = 0; qidx < qs->sq_cnt; qidx++) {
1497		if (nicvf_init_snd_queue(nic, &qs->sq[qidx], qs->sq_len, qidx))
1498			goto alloc_fail;
1499	}
1500
1501	/* Alloc completion queue */
1502	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1503		if (nicvf_init_cmp_queue(nic, &qs->cq[qidx], qs->cq_len, qidx))
1504			goto alloc_fail;
1505	}
1506
1507	/* Allocate QS error taskqueue */
1508	TASK_INIT(&qs->qs_err_task, 0, nicvf_qs_err_task, nic);
1509	qs->qs_err_taskq = taskqueue_create_fast("nicvf_qs_err_taskq", M_WAITOK,
1510	    taskqueue_thread_enqueue, &qs->qs_err_taskq);
1511	taskqueue_start_threads(&qs->qs_err_taskq, 1, PI_NET, "%s: qs_taskq",
1512	    device_get_nameunit(nic->dev));
1513
1514	return (0);
1515alloc_fail:
1516	nicvf_free_resources(nic);
1517	return (ENOMEM);
1518}
1519
1520int
1521nicvf_set_qset_resources(struct nicvf *nic)
1522{
1523	struct queue_set *qs;
1524
1525	qs = malloc(sizeof(*qs), M_NICVF, (M_ZERO | M_WAITOK));
1526	nic->qs = qs;
1527
1528	/* Set count of each queue */
1529	qs->rbdr_cnt = RBDR_CNT;
1530	/* With no RSS we stay with single RQ */
1531	qs->rq_cnt = 1;
1532
1533	qs->sq_cnt = SND_QUEUE_CNT;
1534	qs->cq_cnt = CMP_QUEUE_CNT;
1535
1536	/* Set queue lengths */
1537	qs->rbdr_len = RCV_BUF_COUNT;
1538	qs->sq_len = SND_QUEUE_LEN;
1539	qs->cq_len = CMP_QUEUE_LEN;
1540
1541	nic->rx_queues = qs->rq_cnt;
1542	nic->tx_queues = qs->sq_cnt;
1543
1544	return (0);
1545}
1546
1547int
1548nicvf_config_data_transfer(struct nicvf *nic, boolean_t enable)
1549{
1550	boolean_t disable = FALSE;
1551	struct queue_set *qs;
1552	int qidx;
1553
1554	qs = nic->qs;
1555	if (qs == NULL)
1556		return (0);
1557
1558	if (enable) {
1559		if (nicvf_alloc_resources(nic) != 0)
1560			return (ENOMEM);
1561
1562		for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1563			nicvf_snd_queue_config(nic, qs, qidx, enable);
1564		for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1565			nicvf_cmp_queue_config(nic, qs, qidx, enable);
1566		for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1567			nicvf_rbdr_config(nic, qs, qidx, enable);
1568		for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1569			nicvf_rcv_queue_config(nic, qs, qidx, enable);
1570	} else {
1571		for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1572			nicvf_rcv_queue_config(nic, qs, qidx, disable);
1573		for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1574			nicvf_rbdr_config(nic, qs, qidx, disable);
1575		for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1576			nicvf_snd_queue_config(nic, qs, qidx, disable);
1577		for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1578			nicvf_cmp_queue_config(nic, qs, qidx, disable);
1579
1580		nicvf_free_resources(nic);
1581	}
1582
1583	return (0);
1584}
1585
1586/*
1587 * Get a free desc from SQ
1588 * returns descriptor ponter & descriptor number
1589 */
1590static __inline int
1591nicvf_get_sq_desc(struct snd_queue *sq, int desc_cnt)
1592{
1593	int qentry;
1594
1595	qentry = sq->tail;
1596	atomic_subtract_int(&sq->free_cnt, desc_cnt);
1597	sq->tail += desc_cnt;
1598	sq->tail &= (sq->dmem.q_len - 1);
1599
1600	return (qentry);
1601}
1602
1603/* Free descriptor back to SQ for future use */
1604static void
1605nicvf_put_sq_desc(struct snd_queue *sq, int desc_cnt)
1606{
1607
1608	atomic_add_int(&sq->free_cnt, desc_cnt);
1609	sq->head += desc_cnt;
1610	sq->head &= (sq->dmem.q_len - 1);
1611}
1612
1613static __inline int
1614nicvf_get_nxt_sqentry(struct snd_queue *sq, int qentry)
1615{
1616	qentry++;
1617	qentry &= (sq->dmem.q_len - 1);
1618	return (qentry);
1619}
1620
1621static void
1622nicvf_sq_enable(struct nicvf *nic, struct snd_queue *sq, int qidx)
1623{
1624	uint64_t sq_cfg;
1625
1626	sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
1627	sq_cfg |= NICVF_SQ_EN;
1628	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
1629	/* Ring doorbell so that H/W restarts processing SQEs */
1630	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, qidx, 0);
1631}
1632
1633static void
1634nicvf_sq_disable(struct nicvf *nic, int qidx)
1635{
1636	uint64_t sq_cfg;
1637
1638	sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
1639	sq_cfg &= ~NICVF_SQ_EN;
1640	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
1641}
1642
1643static void
1644nicvf_sq_free_used_descs(struct nicvf *nic, struct snd_queue *sq, int qidx)
1645{
1646	uint64_t head, tail;
1647	struct snd_buff *snd_buff;
1648	struct sq_hdr_subdesc *hdr;
1649
1650	NICVF_TX_LOCK(sq);
1651	head = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_HEAD, qidx) >> 4;
1652	tail = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_TAIL, qidx) >> 4;
1653	while (sq->head != head) {
1654		hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
1655		if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) {
1656			nicvf_put_sq_desc(sq, 1);
1657			continue;
1658		}
1659		snd_buff = &sq->snd_buff[sq->head];
1660		if (snd_buff->mbuf != NULL) {
1661			bus_dmamap_unload(sq->snd_buff_dmat, snd_buff->dmap);
1662			m_freem(snd_buff->mbuf);
1663			sq->snd_buff[sq->head].mbuf = NULL;
1664		}
1665		nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
1666	}
1667	NICVF_TX_UNLOCK(sq);
1668}
1669
1670/*
1671 * Add SQ HEADER subdescriptor.
1672 * First subdescriptor for every send descriptor.
1673 */
1674static __inline int
1675nicvf_sq_add_hdr_subdesc(struct snd_queue *sq, int qentry,
1676			 int subdesc_cnt, struct mbuf *mbuf, int len)
1677{
1678	struct sq_hdr_subdesc *hdr;
1679	struct ether_vlan_header *eh;
1680#ifdef INET
1681	struct ip *ip;
1682#endif
1683	uint16_t etype;
1684	int ehdrlen, iphlen, poff;
1685
1686	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1687	sq->snd_buff[qentry].mbuf = mbuf;
1688
1689	memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1690	hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1691	/* Enable notification via CQE after processing SQE */
1692	hdr->post_cqe = 1;
1693	/* No of subdescriptors following this */
1694	hdr->subdesc_cnt = subdesc_cnt;
1695	hdr->tot_len = len;
1696
1697	if (mbuf->m_pkthdr.csum_flags != 0) {
1698		hdr->csum_l3 = 1; /* Enable IP csum calculation */
1699
1700		eh = mtod(mbuf, struct ether_vlan_header *);
1701		if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
1702			ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1703			etype = ntohs(eh->evl_proto);
1704		} else {
1705			ehdrlen = ETHER_HDR_LEN;
1706			etype = ntohs(eh->evl_encap_proto);
1707		}
1708
1709		if (mbuf->m_len < ehdrlen + sizeof(struct ip)) {
1710			mbuf = m_pullup(mbuf, ehdrlen + sizeof(struct ip));
1711			sq->snd_buff[qentry].mbuf = mbuf;
1712			if (mbuf == NULL)
1713				return (ENOBUFS);
1714		}
1715
1716		switch (etype) {
1717#ifdef INET6
1718		case ETHERTYPE_IPV6:
1719			/* ARM64TODO: Add support for IPv6 */
1720			hdr->csum_l3 = 0;
1721			sq->snd_buff[qentry].mbuf = NULL;
1722			return (ENXIO);
1723#endif
1724#ifdef INET
1725		case ETHERTYPE_IP:
1726			ip = (struct ip *)(mbuf->m_data + ehdrlen);
1727			ip->ip_sum = 0;
1728			iphlen = ip->ip_hl << 2;
1729			poff = ehdrlen + iphlen;
1730
1731			switch (ip->ip_p) {
1732			case IPPROTO_TCP:
1733				if ((mbuf->m_pkthdr.csum_flags & CSUM_TCP) == 0)
1734					break;
1735
1736				if (mbuf->m_len < (poff + sizeof(struct tcphdr))) {
1737					mbuf = m_pullup(mbuf, poff + sizeof(struct tcphdr));
1738					sq->snd_buff[qentry].mbuf = mbuf;
1739					if (mbuf == NULL)
1740						return (ENOBUFS);
1741				}
1742				hdr->csum_l4 = SEND_L4_CSUM_TCP;
1743				break;
1744			case IPPROTO_UDP:
1745				if ((mbuf->m_pkthdr.csum_flags & CSUM_UDP) == 0)
1746					break;
1747
1748				if (mbuf->m_len < (poff + sizeof(struct udphdr))) {
1749					mbuf = m_pullup(mbuf, poff + sizeof(struct udphdr));
1750					sq->snd_buff[qentry].mbuf = mbuf;
1751					if (mbuf == NULL)
1752						return (ENOBUFS);
1753				}
1754				hdr->csum_l4 = SEND_L4_CSUM_UDP;
1755				break;
1756			case IPPROTO_SCTP:
1757				if ((mbuf->m_pkthdr.csum_flags & CSUM_SCTP) == 0)
1758					break;
1759
1760				if (mbuf->m_len < (poff + sizeof(struct sctphdr))) {
1761					mbuf = m_pullup(mbuf, poff + sizeof(struct sctphdr));
1762					sq->snd_buff[qentry].mbuf = mbuf;
1763					if (mbuf == NULL)
1764						return (ENOBUFS);
1765				}
1766				hdr->csum_l4 = SEND_L4_CSUM_SCTP;
1767				break;
1768			default:
1769				break;
1770			}
1771			break;
1772#endif
1773		default:
1774			hdr->csum_l3 = 0;
1775			return (0);
1776		}
1777
1778		hdr->l3_offset = ehdrlen;
1779		hdr->l4_offset = ehdrlen + iphlen;
1780	} else
1781		hdr->csum_l3 = 0;
1782
1783	return (0);
1784}
1785
1786/*
1787 * SQ GATHER subdescriptor
1788 * Must follow HDR descriptor
1789 */
1790static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
1791					       int size, uint64_t data)
1792{
1793	struct sq_gather_subdesc *gather;
1794
1795	qentry &= (sq->dmem.q_len - 1);
1796	gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, qentry);
1797
1798	memset(gather, 0, SND_QUEUE_DESC_SIZE);
1799	gather->subdesc_type = SQ_DESC_TYPE_GATHER;
1800	gather->ld_type = NIC_SEND_LD_TYPE_E_LDD;
1801	gather->size = size;
1802	gather->addr = data;
1803}
1804
1805/* Put an mbuf to a SQ for packet transfer. */
1806static int
1807nicvf_tx_mbuf_locked(struct snd_queue *sq, struct mbuf *mbuf)
1808{
1809	bus_dma_segment_t segs[256];
1810	struct snd_buff *snd_buff;
1811	size_t seg;
1812	int nsegs, qentry;
1813	int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT - 1;
1814	int err;
1815
1816	NICVF_TX_LOCK_ASSERT(sq);
1817
1818	if (sq->free_cnt == 0)
1819		return (ENOBUFS);
1820
1821	snd_buff = &sq->snd_buff[sq->tail];
1822
1823	err = bus_dmamap_load_mbuf_sg(sq->snd_buff_dmat, snd_buff->dmap,
1824	    mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
1825	if (err != 0) {
1826		/* ARM64TODO: Add mbuf defragmenting if we lack maps */
1827		return (err);
1828	}
1829
1830	/* Set how many subdescriptors is required */
1831	subdesc_cnt += nsegs;
1832
1833	if (subdesc_cnt > sq->free_cnt) {
1834		/* ARM64TODO: Add mbuf defragmentation if we lack descriptors */
1835		bus_dmamap_unload(sq->snd_buff_dmat, snd_buff->dmap);
1836		return (ENOBUFS);
1837	}
1838
1839	qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
1840
1841	/* Add SQ header subdesc */
1842	err = nicvf_sq_add_hdr_subdesc(sq, qentry, subdesc_cnt - 1, mbuf,
1843	    mbuf->m_pkthdr.len);
1844	if (err != 0) {
1845		bus_dmamap_unload(sq->snd_buff_dmat, snd_buff->dmap);
1846		return (err);
1847	}
1848
1849	/* Add SQ gather subdescs */
1850	for (seg = 0; seg < nsegs; seg++) {
1851		qentry = nicvf_get_nxt_sqentry(sq, qentry);
1852		nicvf_sq_add_gather_subdesc(sq, qentry, segs[seg].ds_len,
1853		    segs[seg].ds_addr);
1854	}
1855
1856	/* make sure all memory stores are done before ringing doorbell */
1857	bus_dmamap_sync(sq->dmem.dmat, sq->dmem.dmap, BUS_DMASYNC_PREWRITE);
1858
1859	dprintf(sq->nic->dev, "%s: sq->idx: %d, subdesc_cnt: %d\n",
1860	    __func__, sq->idx, subdesc_cnt);
1861	/* Inform HW to xmit new packet */
1862	nicvf_queue_reg_write(sq->nic, NIC_QSET_SQ_0_7_DOOR,
1863	    sq->idx, subdesc_cnt);
1864	return (0);
1865}
1866
1867static __inline u_int
1868frag_num(u_int i)
1869{
1870#if BYTE_ORDER == BIG_ENDIAN
1871	return ((i & ~3) + 3 - (i & 3));
1872#else
1873	return (i);
1874#endif
1875}
1876
1877/* Returns MBUF for a received packet */
1878struct mbuf *
1879nicvf_get_rcv_mbuf(struct nicvf *nic, struct cqe_rx_t *cqe_rx)
1880{
1881	int frag;
1882	int payload_len = 0;
1883	struct mbuf *mbuf;
1884	struct mbuf *mbuf_frag;
1885	uint16_t *rb_lens = NULL;
1886	uint64_t *rb_ptrs = NULL;
1887
1888	mbuf = NULL;
1889	rb_lens = (uint16_t *)((uint8_t *)cqe_rx + (3 * sizeof(uint64_t)));
1890	rb_ptrs = (uint64_t *)((uint8_t *)cqe_rx + (6 * sizeof(uint64_t)));
1891
1892	dprintf(nic->dev, "%s rb_cnt %d rb0_ptr %lx rb0_sz %d\n",
1893	    __func__, cqe_rx->rb_cnt, cqe_rx->rb0_ptr, cqe_rx->rb0_sz);
1894
1895	for (frag = 0; frag < cqe_rx->rb_cnt; frag++) {
1896		payload_len = rb_lens[frag_num(frag)];
1897		if (frag == 0) {
1898			/* First fragment */
1899			mbuf = nicvf_rb_ptr_to_mbuf(nic,
1900			    (*rb_ptrs - cqe_rx->align_pad));
1901			mbuf->m_len = payload_len;
1902			mbuf->m_data += cqe_rx->align_pad;
1903			if_setrcvif(mbuf, nic->ifp);
1904		} else {
1905			/* Add fragments */
1906			mbuf_frag = nicvf_rb_ptr_to_mbuf(nic, *rb_ptrs);
1907			m_append(mbuf, payload_len, mbuf_frag->m_data);
1908			m_freem(mbuf_frag);
1909		}
1910		/* Next buffer pointer */
1911		rb_ptrs++;
1912	}
1913
1914	if (__predict_true(mbuf != NULL)) {
1915		m_fixhdr(mbuf);
1916		mbuf->m_pkthdr.flowid = cqe_rx->rq_idx;
1917		M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE);
1918		if (__predict_true((if_getcapenable(nic->ifp) & IFCAP_RXCSUM) != 0)) {
1919			/*
1920			 * HW by default verifies IP & TCP/UDP/SCTP checksums
1921			 */
1922
1923			/* XXX: Do we need to include IP with options too? */
1924			if (__predict_true(cqe_rx->l3_type == L3TYPE_IPV4 ||
1925			    cqe_rx->l3_type == L3TYPE_IPV6)) {
1926				mbuf->m_pkthdr.csum_flags =
1927				    (CSUM_IP_CHECKED | CSUM_IP_VALID);
1928			}
1929			if (cqe_rx->l4_type == L4TYPE_TCP ||
1930			    cqe_rx->l4_type == L4TYPE_UDP ||
1931			    cqe_rx->l4_type == L4TYPE_SCTP) {
1932				mbuf->m_pkthdr.csum_flags |=
1933				    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1934				mbuf->m_pkthdr.csum_data = htons(0xffff);
1935			}
1936		}
1937	}
1938
1939	return (mbuf);
1940}
1941
1942/* Enable interrupt */
1943void
1944nicvf_enable_intr(struct nicvf *nic, int int_type, int q_idx)
1945{
1946	uint64_t reg_val;
1947
1948	reg_val = nicvf_reg_read(nic, NIC_VF_ENA_W1S);
1949
1950	switch (int_type) {
1951	case NICVF_INTR_CQ:
1952		reg_val |= ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
1953		break;
1954	case NICVF_INTR_SQ:
1955		reg_val |= ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
1956		break;
1957	case NICVF_INTR_RBDR:
1958		reg_val |= ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1959		break;
1960	case NICVF_INTR_PKT_DROP:
1961		reg_val |= (1UL << NICVF_INTR_PKT_DROP_SHIFT);
1962		break;
1963	case NICVF_INTR_TCP_TIMER:
1964		reg_val |= (1UL << NICVF_INTR_TCP_TIMER_SHIFT);
1965		break;
1966	case NICVF_INTR_MBOX:
1967		reg_val |= (1UL << NICVF_INTR_MBOX_SHIFT);
1968		break;
1969	case NICVF_INTR_QS_ERR:
1970		reg_val |= (1UL << NICVF_INTR_QS_ERR_SHIFT);
1971		break;
1972	default:
1973		device_printf(nic->dev,
1974			   "Failed to enable interrupt: unknown type\n");
1975		break;
1976	}
1977
1978	nicvf_reg_write(nic, NIC_VF_ENA_W1S, reg_val);
1979}
1980
1981/* Disable interrupt */
1982void
1983nicvf_disable_intr(struct nicvf *nic, int int_type, int q_idx)
1984{
1985	uint64_t reg_val = 0;
1986
1987	switch (int_type) {
1988	case NICVF_INTR_CQ:
1989		reg_val |= ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
1990		break;
1991	case NICVF_INTR_SQ:
1992		reg_val |= ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
1993		break;
1994	case NICVF_INTR_RBDR:
1995		reg_val |= ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1996		break;
1997	case NICVF_INTR_PKT_DROP:
1998		reg_val |= (1UL << NICVF_INTR_PKT_DROP_SHIFT);
1999		break;
2000	case NICVF_INTR_TCP_TIMER:
2001		reg_val |= (1UL << NICVF_INTR_TCP_TIMER_SHIFT);
2002		break;
2003	case NICVF_INTR_MBOX:
2004		reg_val |= (1UL << NICVF_INTR_MBOX_SHIFT);
2005		break;
2006	case NICVF_INTR_QS_ERR:
2007		reg_val |= (1UL << NICVF_INTR_QS_ERR_SHIFT);
2008		break;
2009	default:
2010		device_printf(nic->dev,
2011			   "Failed to disable interrupt: unknown type\n");
2012		break;
2013	}
2014
2015	nicvf_reg_write(nic, NIC_VF_ENA_W1C, reg_val);
2016}
2017
2018/* Clear interrupt */
2019void
2020nicvf_clear_intr(struct nicvf *nic, int int_type, int q_idx)
2021{
2022	uint64_t reg_val = 0;
2023
2024	switch (int_type) {
2025	case NICVF_INTR_CQ:
2026		reg_val = ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2027		break;
2028	case NICVF_INTR_SQ:
2029		reg_val = ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2030		break;
2031	case NICVF_INTR_RBDR:
2032		reg_val = ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2033		break;
2034	case NICVF_INTR_PKT_DROP:
2035		reg_val = (1UL << NICVF_INTR_PKT_DROP_SHIFT);
2036		break;
2037	case NICVF_INTR_TCP_TIMER:
2038		reg_val = (1UL << NICVF_INTR_TCP_TIMER_SHIFT);
2039		break;
2040	case NICVF_INTR_MBOX:
2041		reg_val = (1UL << NICVF_INTR_MBOX_SHIFT);
2042		break;
2043	case NICVF_INTR_QS_ERR:
2044		reg_val |= (1UL << NICVF_INTR_QS_ERR_SHIFT);
2045		break;
2046	default:
2047		device_printf(nic->dev,
2048			   "Failed to clear interrupt: unknown type\n");
2049		break;
2050	}
2051
2052	nicvf_reg_write(nic, NIC_VF_INT, reg_val);
2053}
2054
2055/* Check if interrupt is enabled */
2056int
2057nicvf_is_intr_enabled(struct nicvf *nic, int int_type, int q_idx)
2058{
2059	uint64_t reg_val;
2060	uint64_t mask = 0xff;
2061
2062	reg_val = nicvf_reg_read(nic, NIC_VF_ENA_W1S);
2063
2064	switch (int_type) {
2065	case NICVF_INTR_CQ:
2066		mask = ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2067		break;
2068	case NICVF_INTR_SQ:
2069		mask = ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2070		break;
2071	case NICVF_INTR_RBDR:
2072		mask = ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2073		break;
2074	case NICVF_INTR_PKT_DROP:
2075		mask = NICVF_INTR_PKT_DROP_MASK;
2076		break;
2077	case NICVF_INTR_TCP_TIMER:
2078		mask = NICVF_INTR_TCP_TIMER_MASK;
2079		break;
2080	case NICVF_INTR_MBOX:
2081		mask = NICVF_INTR_MBOX_MASK;
2082		break;
2083	case NICVF_INTR_QS_ERR:
2084		mask = NICVF_INTR_QS_ERR_MASK;
2085		break;
2086	default:
2087		device_printf(nic->dev,
2088			   "Failed to check interrupt enable: unknown type\n");
2089		break;
2090	}
2091
2092	return (reg_val & mask);
2093}
2094
2095void
2096nicvf_update_rq_stats(struct nicvf *nic, int rq_idx)
2097{
2098	struct rcv_queue *rq;
2099
2100#define GET_RQ_STATS(reg) \
2101	nicvf_reg_read(nic, NIC_QSET_RQ_0_7_STAT_0_1 |\
2102			    (rq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
2103
2104	rq = &nic->qs->rq[rq_idx];
2105	rq->stats.bytes = GET_RQ_STATS(RQ_SQ_STATS_OCTS);
2106	rq->stats.pkts = GET_RQ_STATS(RQ_SQ_STATS_PKTS);
2107}
2108
2109void
2110nicvf_update_sq_stats(struct nicvf *nic, int sq_idx)
2111{
2112	struct snd_queue *sq;
2113
2114#define GET_SQ_STATS(reg) \
2115	nicvf_reg_read(nic, NIC_QSET_SQ_0_7_STAT_0_1 |\
2116			    (sq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
2117
2118	sq = &nic->qs->sq[sq_idx];
2119	sq->stats.bytes = GET_SQ_STATS(RQ_SQ_STATS_OCTS);
2120	sq->stats.pkts = GET_SQ_STATS(RQ_SQ_STATS_PKTS);
2121}
2122
2123/* Check for errors in the receive cmp.queue entry */
2124int
2125nicvf_check_cqe_rx_errs(struct nicvf *nic, struct cmp_queue *cq,
2126    struct cqe_rx_t *cqe_rx)
2127{
2128	struct nicvf_hw_stats *stats = &nic->hw_stats;
2129	struct nicvf_drv_stats *drv_stats = &nic->drv_stats;
2130
2131	if (!cqe_rx->err_level && !cqe_rx->err_opcode) {
2132		drv_stats->rx_frames_ok++;
2133		return (0);
2134	}
2135
2136	switch (cqe_rx->err_opcode) {
2137	case CQ_RX_ERROP_RE_PARTIAL:
2138		stats->rx_bgx_truncated_pkts++;
2139		break;
2140	case CQ_RX_ERROP_RE_JABBER:
2141		stats->rx_jabber_errs++;
2142		break;
2143	case CQ_RX_ERROP_RE_FCS:
2144		stats->rx_fcs_errs++;
2145		break;
2146	case CQ_RX_ERROP_RE_RX_CTL:
2147		stats->rx_bgx_errs++;
2148		break;
2149	case CQ_RX_ERROP_PREL2_ERR:
2150		stats->rx_prel2_errs++;
2151		break;
2152	case CQ_RX_ERROP_L2_MAL:
2153		stats->rx_l2_hdr_malformed++;
2154		break;
2155	case CQ_RX_ERROP_L2_OVERSIZE:
2156		stats->rx_oversize++;
2157		break;
2158	case CQ_RX_ERROP_L2_UNDERSIZE:
2159		stats->rx_undersize++;
2160		break;
2161	case CQ_RX_ERROP_L2_LENMISM:
2162		stats->rx_l2_len_mismatch++;
2163		break;
2164	case CQ_RX_ERROP_L2_PCLP:
2165		stats->rx_l2_pclp++;
2166		break;
2167	case CQ_RX_ERROP_IP_NOT:
2168		stats->rx_ip_ver_errs++;
2169		break;
2170	case CQ_RX_ERROP_IP_CSUM_ERR:
2171		stats->rx_ip_csum_errs++;
2172		break;
2173	case CQ_RX_ERROP_IP_MAL:
2174		stats->rx_ip_hdr_malformed++;
2175		break;
2176	case CQ_RX_ERROP_IP_MALD:
2177		stats->rx_ip_payload_malformed++;
2178		break;
2179	case CQ_RX_ERROP_IP_HOP:
2180		stats->rx_ip_ttl_errs++;
2181		break;
2182	case CQ_RX_ERROP_L3_PCLP:
2183		stats->rx_l3_pclp++;
2184		break;
2185	case CQ_RX_ERROP_L4_MAL:
2186		stats->rx_l4_malformed++;
2187		break;
2188	case CQ_RX_ERROP_L4_CHK:
2189		stats->rx_l4_csum_errs++;
2190		break;
2191	case CQ_RX_ERROP_UDP_LEN:
2192		stats->rx_udp_len_errs++;
2193		break;
2194	case CQ_RX_ERROP_L4_PORT:
2195		stats->rx_l4_port_errs++;
2196		break;
2197	case CQ_RX_ERROP_TCP_FLAG:
2198		stats->rx_tcp_flag_errs++;
2199		break;
2200	case CQ_RX_ERROP_TCP_OFFSET:
2201		stats->rx_tcp_offset_errs++;
2202		break;
2203	case CQ_RX_ERROP_L4_PCLP:
2204		stats->rx_l4_pclp++;
2205		break;
2206	case CQ_RX_ERROP_RBDR_TRUNC:
2207		stats->rx_truncated_pkts++;
2208		break;
2209	}
2210
2211	return (1);
2212}
2213
2214/* Check for errors in the send cmp.queue entry */
2215int
2216nicvf_check_cqe_tx_errs(struct nicvf *nic, struct cmp_queue *cq,
2217    struct cqe_send_t *cqe_tx)
2218{
2219	struct cmp_queue_stats *stats = &cq->stats;
2220
2221	switch (cqe_tx->send_status) {
2222	case CQ_TX_ERROP_GOOD:
2223		stats->tx.good++;
2224		return (0);
2225	case CQ_TX_ERROP_DESC_FAULT:
2226		stats->tx.desc_fault++;
2227		break;
2228	case CQ_TX_ERROP_HDR_CONS_ERR:
2229		stats->tx.hdr_cons_err++;
2230		break;
2231	case CQ_TX_ERROP_SUBDC_ERR:
2232		stats->tx.subdesc_err++;
2233		break;
2234	case CQ_TX_ERROP_IMM_SIZE_OFLOW:
2235		stats->tx.imm_size_oflow++;
2236		break;
2237	case CQ_TX_ERROP_DATA_SEQUENCE_ERR:
2238		stats->tx.data_seq_err++;
2239		break;
2240	case CQ_TX_ERROP_MEM_SEQUENCE_ERR:
2241		stats->tx.mem_seq_err++;
2242		break;
2243	case CQ_TX_ERROP_LOCK_VIOL:
2244		stats->tx.lock_viol++;
2245		break;
2246	case CQ_TX_ERROP_DATA_FAULT:
2247		stats->tx.data_fault++;
2248		break;
2249	case CQ_TX_ERROP_TSTMP_CONFLICT:
2250		stats->tx.tstmp_conflict++;
2251		break;
2252	case CQ_TX_ERROP_TSTMP_TIMEOUT:
2253		stats->tx.tstmp_timeout++;
2254		break;
2255	case CQ_TX_ERROP_MEM_FAULT:
2256		stats->tx.mem_fault++;
2257		break;
2258	case CQ_TX_ERROP_CK_OVERLAP:
2259		stats->tx.csum_overlap++;
2260		break;
2261	case CQ_TX_ERROP_CK_OFLOW:
2262		stats->tx.csum_overflow++;
2263		break;
2264	}
2265
2266	return (1);
2267}
2268