1/* $NetBSD: vesagtf.c,v 1.2 2013/09/15 15:56:07 martin Exp $ */
2/* $FreeBSD$ */
3
4/*-
5 * Copyright (c) 2006 Itronix Inc.
6 * All rights reserved.
7 *
8 * Written by Garrett D'Amore for Itronix Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. The name of Itronix Inc. may not be used to endorse
19 *    or promote products derived from this software without specific
20 *    prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY ITRONIX INC. ``AS IS'' AND ANY EXPRESS
23 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
24 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL ITRONIX INC. BE LIABLE FOR ANY
26 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
28 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
30 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
31 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
32 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35/*
36 * This was derived from a userland GTF program supplied by NVIDIA.
37 * NVIDIA's original boilerplate follows.
38 *
39 * Note that I have heavily modified the program for use in the EDID
40 * kernel code for NetBSD, including removing the use of floating
41 * point operations and making significant adjustments to minimize
42 * error propagation while operating with integer only math.
43 *
44 * This has required the use of 64-bit integers in a few places, but
45 * the upshot is that for a calculation of 1920x1200x85 (as an
46 * example), the error deviates by only ~.004% relative to the
47 * floating point version.  This error is *well* within VESA
48 * tolerances.
49 */
50
51/*
52 * Copyright (c) 2001, Andy Ritger  aritger@nvidia.com
53 * All rights reserved.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 *
59 * o Redistributions of source code must retain the above copyright
60 *   notice, this list of conditions and the following disclaimer.
61 * o Redistributions in binary form must reproduce the above copyright
62 *   notice, this list of conditions and the following disclaimer
63 *   in the documentation and/or other materials provided with the
64 *   distribution.
65 * o Neither the name of NVIDIA nor the names of its contributors
66 *   may be used to endorse or promote products derived from this
67 *   software without specific prior written permission.
68 *
69 *
70 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
71 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
72 * NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
73 * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
74 * THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
75 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
76 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
77 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
78 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
79 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
80 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
81 * POSSIBILITY OF SUCH DAMAGE.
82 *
83 *
84 *
85 * This program is based on the Generalized Timing Formula(GTF TM)
86 * Standard Version: 1.0, Revision: 1.0
87 *
88 * The GTF Document contains the following Copyright information:
89 *
90 * Copyright (c) 1994, 1995, 1996 - Video Electronics Standards
91 * Association. Duplication of this document within VESA member
92 * companies for review purposes is permitted. All other rights
93 * reserved.
94 *
95 * While every precaution has been taken in the preparation
96 * of this standard, the Video Electronics Standards Association and
97 * its contributors assume no responsibility for errors or omissions,
98 * and make no warranties, expressed or implied, of functionality
99 * of suitability for any purpose. The sample code contained within
100 * this standard may be used without restriction.
101 *
102 *
103 *
104 * The GTF EXCEL(TM) SPREADSHEET, a sample (and the definitive)
105 * implementation of the GTF Timing Standard, is available at:
106 *
107 * ftp://ftp.vesa.org/pub/GTF/GTF_V1R1.xls
108 *
109 *
110 *
111 * This program takes a desired resolution and vertical refresh rate,
112 * and computes mode timings according to the GTF Timing Standard.
113 * These mode timings can then be formatted as an XFree86 modeline
114 * or a mode description for use by fbset(8).
115 *
116 *
117 *
118 * NOTES:
119 *
120 * The GTF allows for computation of "margins" (the visible border
121 * surrounding the addressable video); on most non-overscan type
122 * systems, the margin period is zero.  I've implemented the margin
123 * computations but not enabled it because 1) I don't really have
124 * any experience with this, and 2) neither XFree86 modelines nor
125 * fbset fb.modes provide an obvious way for margin timings to be
126 * included in their mode descriptions (needs more investigation).
127 *
128 * The GTF provides for computation of interlaced mode timings;
129 * I've implemented the computations but not enabled them, yet.
130 * I should probably enable and test this at some point.
131 *
132 *
133 *
134 * TODO:
135 *
136 * o Add support for interlaced modes.
137 *
138 * o Implement the other portions of the GTF: compute mode timings
139 *   given either the desired pixel clock or the desired horizontal
140 *   frequency.
141 *
142 * o It would be nice if this were more general purpose to do things
143 *   outside the scope of the GTF: like generate double scan mode
144 *   timings, for example.
145 *
146 * o Printing digits to the right of the decimal point when the
147 *   digits are 0 annoys me.
148 *
149 * o Error checking.
150 *
151 */
152
153
154#ifdef	_KERNEL
155#include <sys/cdefs.h>
156
157__FBSDID("$FreeBSD$");
158#include <sys/types.h>
159#include <sys/param.h>
160#include <sys/systm.h>
161#include <dev/videomode/videomode.h>
162#include <dev/videomode/vesagtf.h>
163#else
164#include <stdio.h>
165#include <stdlib.h>
166#include <sys/types.h>
167#include "videomode.h"
168#include "vesagtf.h"
169
170void print_xf86_mode(struct videomode *m);
171#endif
172
173#define CELL_GRAN         8     /* assumed character cell granularity        */
174
175/* C' and M' are part of the Blanking Duty Cycle computation */
176/*
177 * #define C_PRIME           (((C - J) * K/256.0) + J)
178 * #define M_PRIME           (K/256.0 * M)
179 */
180
181/*
182 * C' and M' multiplied by 256 to give integer math.  Make sure to
183 * scale results using these back down, appropriately.
184 */
185#define	C_PRIME256(p)	  (((p->C - p->J) * p->K) + (p->J * 256))
186#define	M_PRIME256(p)	  (p->K * p->M)
187
188#define	DIVIDE(x,y)	(((x) + ((y) / 2)) / (y))
189
190/*
191 * print_value() - print the result of the named computation; this is
192 * useful when comparing against the GTF EXCEL spreadsheet.
193 */
194
195#ifdef GTFDEBUG
196
197static void
198print_value(int n, const char *name, unsigned val)
199{
200        printf("%2d: %-27s: %u\n", n, name, val);
201}
202#else
203#define	print_value(n, name, val)
204#endif
205
206
207/*
208 * vert_refresh() - as defined by the GTF Timing Standard, compute the
209 * Stage 1 Parameters using the vertical refresh frequency.  In other
210 * words: input a desired resolution and desired refresh rate, and
211 * output the GTF mode timings.
212 *
213 * XXX All the code is in place to compute interlaced modes, but I don't
214 * feel like testing it right now.
215 *
216 * XXX margin computations are implemented but not tested (nor used by
217 * XFree86 of fbset mode descriptions, from what I can tell).
218 */
219
220void
221vesagtf_mode_params(unsigned h_pixels, unsigned v_lines, unsigned freq,
222    struct vesagtf_params *params, int flags, struct videomode *vmp)
223{
224    unsigned v_field_rqd;
225    unsigned top_margin;
226    unsigned bottom_margin;
227    unsigned interlace;
228    uint64_t h_period_est;
229    unsigned vsync_plus_bp;
230    unsigned v_back_porch __unused;
231    unsigned total_v_lines;
232    uint64_t v_field_est;
233    uint64_t h_period;
234    unsigned v_field_rate;
235    unsigned v_frame_rate __unused;
236    unsigned left_margin;
237    unsigned right_margin;
238    unsigned total_active_pixels;
239    uint64_t ideal_duty_cycle;
240    unsigned h_blank;
241    unsigned total_pixels;
242    unsigned pixel_freq;
243
244    unsigned h_sync;
245    unsigned h_front_porch;
246    unsigned v_odd_front_porch_lines;
247
248#ifdef	GTFDEBUG
249    unsigned h_freq;
250#endif
251
252    /*  1. In order to give correct results, the number of horizontal
253     *  pixels requested is first processed to ensure that it is divisible
254     *  by the character size, by rounding it to the nearest character
255     *  cell boundary:
256     *
257     *  [H PIXELS RND] = ((ROUND([H PIXELS]/[CELL GRAN RND],0))*[CELLGRAN RND])
258     */
259
260    h_pixels = DIVIDE(h_pixels, CELL_GRAN) * CELL_GRAN;
261
262    print_value(1, "[H PIXELS RND]", h_pixels);
263
264
265    /*  2. If interlace is requested, the number of vertical lines assumed
266     *  by the calculation must be halved, as the computation calculates
267     *  the number of vertical lines per field. In either case, the
268     *  number of lines is rounded to the nearest integer.
269     *
270     *  [V LINES RND] = IF([INT RQD?]="y", ROUND([V LINES]/2,0),
271     *                                     ROUND([V LINES],0))
272     */
273
274    v_lines = (flags & VESAGTF_FLAG_ILACE) ? DIVIDE(v_lines, 2) : v_lines;
275
276    print_value(2, "[V LINES RND]", v_lines);
277
278
279    /*  3. Find the frame rate required:
280     *
281     *  [V FIELD RATE RQD] = IF([INT RQD?]="y", [I/P FREQ RQD]*2,
282     *                                          [I/P FREQ RQD])
283     */
284
285    v_field_rqd = (flags & VESAGTF_FLAG_ILACE) ? (freq * 2) : (freq);
286
287    print_value(3, "[V FIELD RATE RQD]", v_field_rqd);
288
289
290    /*  4. Find number of lines in Top margin:
291     *  5. Find number of lines in Bottom margin:
292     *
293     *  [TOP MARGIN (LINES)] = IF([MARGINS RQD?]="Y",
294     *          ROUND(([MARGIN%]/100*[V LINES RND]),0),
295     *          0)
296     *
297     *  Ditto for bottom margin.  Note that instead of %, we use PPT, which
298     *  is parts per thousand.  This helps us with integer math.
299     */
300
301    top_margin = bottom_margin = (flags & VESAGTF_FLAG_MARGINS) ?
302	DIVIDE(v_lines * params->margin_ppt, 1000) : 0;
303
304    print_value(4, "[TOP MARGIN (LINES)]", top_margin);
305    print_value(5, "[BOT MARGIN (LINES)]", bottom_margin);
306
307
308    /*  6. If interlace is required, then set variable [INTERLACE]=0.5:
309     *
310     *  [INTERLACE]=(IF([INT RQD?]="y",0.5,0))
311     *
312     *  To make this integer friendly, we use some special hacks in step
313     *  7 below.  Please read those comments to understand why I am using
314     *  a whole number of 1.0 instead of 0.5 here.
315     */
316    interlace = (flags & VESAGTF_FLAG_ILACE) ? 1 : 0;
317
318    print_value(6, "[2*INTERLACE]", interlace);
319
320
321    /*  7. Estimate the Horizontal period
322     *
323     *  [H PERIOD EST] = ((1/[V FIELD RATE RQD]) - [MIN VSYNC+BP]/1000000) /
324     *                    ([V LINES RND] + (2*[TOP MARGIN (LINES)]) +
325     *                     [MIN PORCH RND]+[INTERLACE]) * 1000000
326     *
327     *  To make it integer friendly, we pre-multiply the 1000000 to get to
328     *  usec.  This gives us:
329     *
330     *  [H PERIOD EST] = ((1000000/[V FIELD RATE RQD]) - [MIN VSYNC+BP]) /
331     *			([V LINES RND] + (2 * [TOP MARGIN (LINES)]) +
332     *			 [MIN PORCH RND]+[INTERLACE])
333     *
334     *  The other problem is that the interlace value is wrong.  To get
335     *  the interlace to a whole number, we multiply both the numerator and
336     *  divisor by 2, so we can use a value of either 1 or 0 for the interlace
337     *  factor.
338     *
339     * This gives us:
340     *
341     * [H PERIOD EST] = ((2*((1000000/[V FIELD RATE RQD]) - [MIN VSYNC+BP])) /
342     *			 (2*([V LINES RND] + (2*[TOP MARGIN (LINES)]) +
343     *			  [MIN PORCH RND]) + [2*INTERLACE]))
344     *
345     * Finally we multiply by another 1000, to get value in picosec.
346     * Why picosec?  To minimize rounding errors.  Gotta love integer
347     * math and error propagation.
348     */
349
350    h_period_est = DIVIDE(((DIVIDE(2000000000000ULL, v_field_rqd)) -
351			      (2000000 * params->min_vsbp)),
352	((2 * (v_lines + (2 * top_margin) + params->min_porch)) + interlace));
353
354    print_value(7, "[H PERIOD EST (ps)]", h_period_est);
355
356
357    /*  8. Find the number of lines in V sync + back porch:
358     *
359     *  [V SYNC+BP] = ROUND(([MIN VSYNC+BP]/[H PERIOD EST]),0)
360     *
361     *  But recall that h_period_est is in psec. So multiply by 1000000.
362     */
363
364    vsync_plus_bp = DIVIDE(params->min_vsbp * 1000000, h_period_est);
365
366    print_value(8, "[V SYNC+BP]", vsync_plus_bp);
367
368
369    /*  9. Find the number of lines in V back porch alone:
370     *
371     *  [V BACK PORCH] = [V SYNC+BP] - [V SYNC RND]
372     *
373     *  XXX is "[V SYNC RND]" a typo? should be [V SYNC RQD]?
374     */
375
376    v_back_porch = vsync_plus_bp - params->vsync_rqd;
377
378    print_value(9, "[V BACK PORCH]", v_back_porch);
379
380
381    /*  10. Find the total number of lines in Vertical field period:
382     *
383     *  [TOTAL V LINES] = [V LINES RND] + [TOP MARGIN (LINES)] +
384     *                    [BOT MARGIN (LINES)] + [V SYNC+BP] + [INTERLACE] +
385     *                    [MIN PORCH RND]
386     */
387
388    total_v_lines = v_lines + top_margin + bottom_margin + vsync_plus_bp +
389        interlace + params->min_porch;
390
391    print_value(10, "[TOTAL V LINES]", total_v_lines);
392
393
394    /*  11. Estimate the Vertical field frequency:
395     *
396     *  [V FIELD RATE EST] = 1 / [H PERIOD EST] / [TOTAL V LINES] * 1000000
397     *
398     *  Again, we want to pre multiply by 10^9 to convert for nsec, thereby
399     *  making it usable in integer math.
400     *
401     *  So we get:
402     *
403     *  [V FIELD RATE EST] = 1000000000 / [H PERIOD EST] / [TOTAL V LINES]
404     *
405     *  This is all scaled to get the result in uHz.  Again, we're trying to
406     *  minimize error propagation.
407     */
408    v_field_est = DIVIDE(DIVIDE(1000000000000000ULL, h_period_est),
409	total_v_lines);
410
411    print_value(11, "[V FIELD RATE EST(uHz)]", v_field_est);
412
413
414    /*  12. Find the actual horizontal period:
415     *
416     *  [H PERIOD] = [H PERIOD EST] / ([V FIELD RATE RQD] / [V FIELD RATE EST])
417     */
418
419    h_period = DIVIDE(h_period_est * v_field_est, v_field_rqd * 1000);
420
421    print_value(12, "[H PERIOD(ps)]", h_period);
422
423
424    /*  13. Find the actual Vertical field frequency:
425     *
426     *  [V FIELD RATE] = 1 / [H PERIOD] / [TOTAL V LINES] * 1000000
427     *
428     *  And again, we convert to nsec ahead of time, giving us:
429     *
430     *  [V FIELD RATE] = 1000000 / [H PERIOD] / [TOTAL V LINES]
431     *
432     *  And another rescaling back to mHz.  Gotta love it.
433     */
434
435    v_field_rate = DIVIDE(1000000000000ULL, h_period * total_v_lines);
436
437    print_value(13, "[V FIELD RATE]", v_field_rate);
438
439
440    /*  14. Find the Vertical frame frequency:
441     *
442     *  [V FRAME RATE] = (IF([INT RQD?]="y", [V FIELD RATE]/2, [V FIELD RATE]))
443     *
444     *  N.B. that the result here is in mHz.
445     */
446
447    v_frame_rate = (flags & VESAGTF_FLAG_ILACE) ?
448	v_field_rate / 2 : v_field_rate;
449
450    print_value(14, "[V FRAME RATE]", v_frame_rate);
451
452
453    /*  15. Find number of pixels in left margin:
454     *  16. Find number of pixels in right margin:
455     *
456     *  [LEFT MARGIN (PIXELS)] = (IF( [MARGINS RQD?]="Y",
457     *          (ROUND( ([H PIXELS RND] * [MARGIN%] / 100 /
458     *                   [CELL GRAN RND]),0)) * [CELL GRAN RND],
459     *          0))
460     *
461     *  Again, we deal with margin percentages as PPT (parts per thousand).
462     *  And the calculations for left and right are the same.
463     */
464
465    left_margin = right_margin = (flags & VESAGTF_FLAG_MARGINS) ?
466	DIVIDE(DIVIDE(h_pixels * params->margin_ppt, 1000),
467	    CELL_GRAN) * CELL_GRAN : 0;
468
469    print_value(15, "[LEFT MARGIN (PIXELS)]", left_margin);
470    print_value(16, "[RIGHT MARGIN (PIXELS)]", right_margin);
471
472
473    /*  17. Find total number of active pixels in image and left and right
474     *  margins:
475     *
476     *  [TOTAL ACTIVE PIXELS] = [H PIXELS RND] + [LEFT MARGIN (PIXELS)] +
477     *                          [RIGHT MARGIN (PIXELS)]
478     */
479
480    total_active_pixels = h_pixels + left_margin + right_margin;
481
482    print_value(17, "[TOTAL ACTIVE PIXELS]", total_active_pixels);
483
484
485    /*  18. Find the ideal blanking duty cycle from the blanking duty cycle
486     *  equation:
487     *
488     *  [IDEAL DUTY CYCLE] = [C'] - ([M']*[H PERIOD]/1000)
489     *
490     *  However, we have modified values for [C'] as [256*C'] and
491     *  [M'] as [256*M'].  Again the idea here is to get good scaling.
492     *  We use 256 as the factor to make the math fast.
493     *
494     *  Note that this means that we have to scale it appropriately in
495     *  later calculations.
496     *
497     *  The ending result is that our ideal_duty_cycle is 256000x larger
498     *  than the duty cycle used by VESA.  But again, this reduces error
499     *  propagation.
500     */
501
502    ideal_duty_cycle =
503	((C_PRIME256(params) * 1000) -
504	    (M_PRIME256(params) * h_period / 1000000));
505
506    print_value(18, "[IDEAL DUTY CYCLE]", ideal_duty_cycle);
507
508
509    /*  19. Find the number of pixels in the blanking time to the nearest
510     *  double character cell:
511     *
512     *  [H BLANK (PIXELS)] = (ROUND(([TOTAL ACTIVE PIXELS] *
513     *                               [IDEAL DUTY CYCLE] /
514     *                               (100-[IDEAL DUTY CYCLE]) /
515     *                               (2*[CELL GRAN RND])), 0))
516     *                       * (2*[CELL GRAN RND])
517     *
518     *  Of course, we adjust to make this rounding work in integer math.
519     */
520
521    h_blank = DIVIDE(DIVIDE(total_active_pixels * ideal_duty_cycle,
522			 (256000 * 100ULL) - ideal_duty_cycle),
523	2 * CELL_GRAN) * (2 * CELL_GRAN);
524
525    print_value(19, "[H BLANK (PIXELS)]", h_blank);
526
527
528    /*  20. Find total number of pixels:
529     *
530     *  [TOTAL PIXELS] = [TOTAL ACTIVE PIXELS] + [H BLANK (PIXELS)]
531     */
532
533    total_pixels = total_active_pixels + h_blank;
534
535    print_value(20, "[TOTAL PIXELS]", total_pixels);
536
537
538    /*  21. Find pixel clock frequency:
539     *
540     *  [PIXEL FREQ] = [TOTAL PIXELS] / [H PERIOD]
541     *
542     *  We calculate this in Hz rather than MHz, to get a value that
543     *  is usable with integer math.  Recall that the [H PERIOD] is in
544     *  nsec.
545     */
546
547    pixel_freq = DIVIDE(total_pixels * 1000000, DIVIDE(h_period, 1000));
548
549    print_value(21, "[PIXEL FREQ]", pixel_freq);
550
551
552    /*  22. Find horizontal frequency:
553     *
554     *  [H FREQ] = 1000 / [H PERIOD]
555     *
556     *  I've ifdef'd this out, because we don't need it for any of
557     *  our calculations.
558     *  We calculate this in Hz rather than kHz, to avoid rounding
559     *  errors.  Recall that the [H PERIOD] is in usec.
560     */
561
562#ifdef	GTFDEBUG
563    h_freq = 1000000000 / h_period;
564
565    print_value(22, "[H FREQ]", h_freq);
566#endif
567
568
569
570    /* Stage 1 computations are now complete; I should really pass
571       the results to another function and do the Stage 2
572       computations, but I only need a few more values so I'll just
573       append the computations here for now */
574
575
576
577    /*  17. Find the number of pixels in the horizontal sync period:
578     *
579     *  [H SYNC (PIXELS)] =(ROUND(([H SYNC%] / 100 * [TOTAL PIXELS] /
580     *                             [CELL GRAN RND]),0))*[CELL GRAN RND]
581     *
582     *  Rewriting for integer math:
583     *
584     *  [H SYNC (PIXELS)]=(ROUND((H SYNC%] * [TOTAL PIXELS] / 100 /
585     *				   [CELL GRAN RND),0))*[CELL GRAN RND]
586     */
587
588    h_sync = DIVIDE(((params->hsync_pct * total_pixels) / 100), CELL_GRAN) *
589	CELL_GRAN;
590
591    print_value(17, "[H SYNC (PIXELS)]", h_sync);
592
593
594    /*  18. Find the number of pixels in the horizontal front porch period:
595     *
596     *  [H FRONT PORCH (PIXELS)] = ([H BLANK (PIXELS)]/2)-[H SYNC (PIXELS)]
597     *
598     *  Note that h_blank is always an even number of characters (i.e.
599     *  h_blank % (CELL_GRAN * 2) == 0)
600     */
601
602    h_front_porch = (h_blank / 2) - h_sync;
603
604    print_value(18, "[H FRONT PORCH (PIXELS)]", h_front_porch);
605
606
607    /*  36. Find the number of lines in the odd front porch period:
608     *
609     *  [V ODD FRONT PORCH(LINES)]=([MIN PORCH RND]+[INTERLACE])
610     *
611     *  Adjusting for the fact that the interlace is scaled:
612     *
613     *  [V ODD FRONT PORCH(LINES)]=(([MIN PORCH RND] * 2) + [2*INTERLACE]) / 2
614     */
615
616    v_odd_front_porch_lines = ((2 * params->min_porch) + interlace) / 2;
617
618    print_value(36, "[V ODD FRONT PORCH(LINES)]", v_odd_front_porch_lines);
619
620
621    /* finally, pack the results in the mode struct */
622
623    vmp->hsync_start = h_pixels + h_front_porch;
624    vmp->hsync_end = vmp->hsync_start + h_sync;
625    vmp->htotal = total_pixels;
626    vmp->hdisplay = h_pixels;
627
628    vmp->vsync_start = v_lines + v_odd_front_porch_lines;
629    vmp->vsync_end = vmp->vsync_start + params->vsync_rqd;
630    vmp->vtotal = total_v_lines;
631    vmp->vdisplay = v_lines;
632
633    vmp->dot_clock = pixel_freq;
634
635}
636
637void
638vesagtf_mode(unsigned x, unsigned y, unsigned refresh, struct videomode *vmp)
639{
640	struct vesagtf_params	params;
641
642	params.margin_ppt = VESAGTF_MARGIN_PPT;
643	params.min_porch = VESAGTF_MIN_PORCH;
644	params.vsync_rqd = VESAGTF_VSYNC_RQD;
645	params.hsync_pct = VESAGTF_HSYNC_PCT;
646	params.min_vsbp = VESAGTF_MIN_VSBP;
647	params.M = VESAGTF_M;
648	params.C = VESAGTF_C;
649	params.K = VESAGTF_K;
650	params.J = VESAGTF_J;
651
652	vesagtf_mode_params(x, y, refresh, &params, 0, vmp);
653}
654
655/*
656 * The tidbit here is so that you can compile this file as a
657 * standalone user program to generate X11 modelines using VESA GTF.
658 * This also allows for testing of the code itself, without
659 * necessitating a full kernel recompile.
660 */
661
662/* print_xf86_mode() - print the XFree86 modeline, given mode timings. */
663
664#ifndef _KERNEL
665void
666print_xf86_mode (struct videomode *vmp)
667{
668	float	vf, hf;
669
670	hf = 1000.0 * vmp->dot_clock / vmp->htotal;
671	vf = 1.0 * hf / vmp->vtotal;
672
673    printf("\n");
674    printf("  # %dx%d @ %.2f Hz (GTF) hsync: %.2f kHz; pclk: %.2f MHz\n",
675	vmp->hdisplay, vmp->vdisplay, vf, hf, vmp->dot_clock / 1000.0);
676
677    printf("  Modeline \"%dx%d_%.2f\"  %.2f"
678	"  %d %d %d %d"
679	"  %d %d %d %d"
680	"  -HSync +Vsync\n\n",
681	vmp->hdisplay, vmp->vdisplay, vf, (vmp->dot_clock / 1000.0),
682	vmp->hdisplay, vmp->hsync_start, vmp->hsync_end, vmp->htotal,
683	vmp->vdisplay, vmp->vsync_start, vmp->vsync_end, vmp->vtotal);
684}
685
686int
687main (int argc, char *argv[])
688{
689	struct videomode m;
690
691	if (argc != 4) {
692		printf("usage: %s x y refresh\n", argv[0]);
693		exit(1);
694	}
695
696	vesagtf_mode(atoi(argv[1]), atoi(argv[2]), atoi(argv[3]), &m);
697
698        print_xf86_mode(&m);
699
700	return 0;
701
702}
703#endif
704