if_zyd.c revision 257743
1/*	$OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $	*/
2/*	$NetBSD: if_zyd.c,v 1.7 2007/06/21 04:04:29 kiyohara Exp $	*/
3/*	$FreeBSD: head/sys/dev/usb/wlan/if_zyd.c 257743 2013-11-06 12:57:01Z hselasky $	*/
4
5/*-
6 * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr>
7 * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 */
21
22#include <sys/cdefs.h>
23__FBSDID("$FreeBSD: head/sys/dev/usb/wlan/if_zyd.c 257743 2013-11-06 12:57:01Z hselasky $");
24
25/*
26 * ZyDAS ZD1211/ZD1211B USB WLAN driver.
27 */
28
29#include <sys/param.h>
30#include <sys/sockio.h>
31#include <sys/sysctl.h>
32#include <sys/lock.h>
33#include <sys/mutex.h>
34#include <sys/condvar.h>
35#include <sys/mbuf.h>
36#include <sys/kernel.h>
37#include <sys/socket.h>
38#include <sys/systm.h>
39#include <sys/malloc.h>
40#include <sys/module.h>
41#include <sys/bus.h>
42#include <sys/endian.h>
43#include <sys/kdb.h>
44
45#include <machine/bus.h>
46#include <machine/resource.h>
47#include <sys/rman.h>
48
49#include <net/bpf.h>
50#include <net/if.h>
51#include <net/if_var.h>
52#include <net/if_arp.h>
53#include <net/ethernet.h>
54#include <net/if_dl.h>
55#include <net/if_media.h>
56#include <net/if_types.h>
57
58#ifdef INET
59#include <netinet/in.h>
60#include <netinet/in_systm.h>
61#include <netinet/in_var.h>
62#include <netinet/if_ether.h>
63#include <netinet/ip.h>
64#endif
65
66#include <net80211/ieee80211_var.h>
67#include <net80211/ieee80211_regdomain.h>
68#include <net80211/ieee80211_radiotap.h>
69#include <net80211/ieee80211_ratectl.h>
70
71#include <dev/usb/usb.h>
72#include <dev/usb/usbdi.h>
73#include <dev/usb/usbdi_util.h>
74#include "usbdevs.h"
75
76#include <dev/usb/wlan/if_zydreg.h>
77#include <dev/usb/wlan/if_zydfw.h>
78
79#ifdef USB_DEBUG
80static int zyd_debug = 0;
81
82static SYSCTL_NODE(_hw_usb, OID_AUTO, zyd, CTLFLAG_RW, 0, "USB zyd");
83SYSCTL_INT(_hw_usb_zyd, OID_AUTO, debug, CTLFLAG_RW, &zyd_debug, 0,
84    "zyd debug level");
85
86enum {
87	ZYD_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
88	ZYD_DEBUG_RECV		= 0x00000002,	/* basic recv operation */
89	ZYD_DEBUG_RESET		= 0x00000004,	/* reset processing */
90	ZYD_DEBUG_INIT		= 0x00000008,	/* device init */
91	ZYD_DEBUG_TX_PROC	= 0x00000010,	/* tx ISR proc */
92	ZYD_DEBUG_RX_PROC	= 0x00000020,	/* rx ISR proc */
93	ZYD_DEBUG_STATE		= 0x00000040,	/* 802.11 state transitions */
94	ZYD_DEBUG_STAT		= 0x00000080,	/* statistic */
95	ZYD_DEBUG_FW		= 0x00000100,	/* firmware */
96	ZYD_DEBUG_CMD		= 0x00000200,	/* fw commands */
97	ZYD_DEBUG_ANY		= 0xffffffff
98};
99#define	DPRINTF(sc, m, fmt, ...) do {				\
100	if (zyd_debug & (m))					\
101		printf("%s: " fmt, __func__, ## __VA_ARGS__);	\
102} while (0)
103#else
104#define	DPRINTF(sc, m, fmt, ...) do {				\
105	(void) sc;						\
106} while (0)
107#endif
108
109#define	zyd_do_request(sc,req,data) \
110    usbd_do_request_flags((sc)->sc_udev, &(sc)->sc_mtx, req, data, 0, NULL, 5000)
111
112static device_probe_t zyd_match;
113static device_attach_t zyd_attach;
114static device_detach_t zyd_detach;
115
116static usb_callback_t zyd_intr_read_callback;
117static usb_callback_t zyd_intr_write_callback;
118static usb_callback_t zyd_bulk_read_callback;
119static usb_callback_t zyd_bulk_write_callback;
120
121static struct ieee80211vap *zyd_vap_create(struct ieee80211com *,
122		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
123		    const uint8_t [IEEE80211_ADDR_LEN],
124		    const uint8_t [IEEE80211_ADDR_LEN]);
125static void	zyd_vap_delete(struct ieee80211vap *);
126static void	zyd_tx_free(struct zyd_tx_data *, int);
127static void	zyd_setup_tx_list(struct zyd_softc *);
128static void	zyd_unsetup_tx_list(struct zyd_softc *);
129static int	zyd_newstate(struct ieee80211vap *, enum ieee80211_state, int);
130static int	zyd_cmd(struct zyd_softc *, uint16_t, const void *, int,
131		    void *, int, int);
132static int	zyd_read16(struct zyd_softc *, uint16_t, uint16_t *);
133static int	zyd_read32(struct zyd_softc *, uint16_t, uint32_t *);
134static int	zyd_write16(struct zyd_softc *, uint16_t, uint16_t);
135static int	zyd_write32(struct zyd_softc *, uint16_t, uint32_t);
136static int	zyd_rfwrite(struct zyd_softc *, uint32_t);
137static int	zyd_lock_phy(struct zyd_softc *);
138static int	zyd_unlock_phy(struct zyd_softc *);
139static int	zyd_rf_attach(struct zyd_softc *, uint8_t);
140static const char *zyd_rf_name(uint8_t);
141static int	zyd_hw_init(struct zyd_softc *);
142static int	zyd_read_pod(struct zyd_softc *);
143static int	zyd_read_eeprom(struct zyd_softc *);
144static int	zyd_get_macaddr(struct zyd_softc *);
145static int	zyd_set_macaddr(struct zyd_softc *, const uint8_t *);
146static int	zyd_set_bssid(struct zyd_softc *, const uint8_t *);
147static int	zyd_switch_radio(struct zyd_softc *, int);
148static int	zyd_set_led(struct zyd_softc *, int, int);
149static void	zyd_set_multi(struct zyd_softc *);
150static void	zyd_update_mcast(struct ifnet *);
151static int	zyd_set_rxfilter(struct zyd_softc *);
152static void	zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *);
153static int	zyd_set_beacon_interval(struct zyd_softc *, int);
154static void	zyd_rx_data(struct usb_xfer *, int, uint16_t);
155static int	zyd_tx_start(struct zyd_softc *, struct mbuf *,
156		    struct ieee80211_node *);
157static void	zyd_start(struct ifnet *);
158static int	zyd_raw_xmit(struct ieee80211_node *, struct mbuf *,
159		    const struct ieee80211_bpf_params *);
160static int	zyd_ioctl(struct ifnet *, u_long, caddr_t);
161static void	zyd_init_locked(struct zyd_softc *);
162static void	zyd_init(void *);
163static void	zyd_stop(struct zyd_softc *);
164static int	zyd_loadfirmware(struct zyd_softc *);
165static void	zyd_scan_start(struct ieee80211com *);
166static void	zyd_scan_end(struct ieee80211com *);
167static void	zyd_set_channel(struct ieee80211com *);
168static int	zyd_rfmd_init(struct zyd_rf *);
169static int	zyd_rfmd_switch_radio(struct zyd_rf *, int);
170static int	zyd_rfmd_set_channel(struct zyd_rf *, uint8_t);
171static int	zyd_al2230_init(struct zyd_rf *);
172static int	zyd_al2230_switch_radio(struct zyd_rf *, int);
173static int	zyd_al2230_set_channel(struct zyd_rf *, uint8_t);
174static int	zyd_al2230_set_channel_b(struct zyd_rf *, uint8_t);
175static int	zyd_al2230_init_b(struct zyd_rf *);
176static int	zyd_al7230B_init(struct zyd_rf *);
177static int	zyd_al7230B_switch_radio(struct zyd_rf *, int);
178static int	zyd_al7230B_set_channel(struct zyd_rf *, uint8_t);
179static int	zyd_al2210_init(struct zyd_rf *);
180static int	zyd_al2210_switch_radio(struct zyd_rf *, int);
181static int	zyd_al2210_set_channel(struct zyd_rf *, uint8_t);
182static int	zyd_gct_init(struct zyd_rf *);
183static int	zyd_gct_switch_radio(struct zyd_rf *, int);
184static int	zyd_gct_set_channel(struct zyd_rf *, uint8_t);
185static int	zyd_gct_mode(struct zyd_rf *);
186static int	zyd_gct_set_channel_synth(struct zyd_rf *, int, int);
187static int	zyd_gct_write(struct zyd_rf *, uint16_t);
188static int	zyd_gct_txgain(struct zyd_rf *, uint8_t);
189static int	zyd_maxim2_init(struct zyd_rf *);
190static int	zyd_maxim2_switch_radio(struct zyd_rf *, int);
191static int	zyd_maxim2_set_channel(struct zyd_rf *, uint8_t);
192
193static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
194static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
195
196/* various supported device vendors/products */
197#define ZYD_ZD1211	0
198#define ZYD_ZD1211B	1
199
200#define	ZYD_ZD1211_DEV(v,p)	\
201	{ USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211) }
202#define	ZYD_ZD1211B_DEV(v,p)	\
203	{ USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211B) }
204static const STRUCT_USB_HOST_ID zyd_devs[] = {
205	/* ZYD_ZD1211 */
206	ZYD_ZD1211_DEV(3COM2, 3CRUSB10075),
207	ZYD_ZD1211_DEV(ABOCOM, WL54),
208	ZYD_ZD1211_DEV(ASUS, WL159G),
209	ZYD_ZD1211_DEV(CYBERTAN, TG54USB),
210	ZYD_ZD1211_DEV(DRAYTEK, VIGOR550),
211	ZYD_ZD1211_DEV(PLANEX2, GWUS54GD),
212	ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL),
213	ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ),
214	ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI),
215	ZYD_ZD1211_DEV(SAGEM, XG760A),
216	ZYD_ZD1211_DEV(SENAO, NUB8301),
217	ZYD_ZD1211_DEV(SITECOMEU, WL113),
218	ZYD_ZD1211_DEV(SWEEX, ZD1211),
219	ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN),
220	ZYD_ZD1211_DEV(TEKRAM, ZD1211_1),
221	ZYD_ZD1211_DEV(TEKRAM, ZD1211_2),
222	ZYD_ZD1211_DEV(TWINMOS, G240),
223	ZYD_ZD1211_DEV(UMEDIA, ALL0298V2),
224	ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A),
225	ZYD_ZD1211_DEV(UMEDIA, TEW429UB),
226	ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G),
227	ZYD_ZD1211_DEV(ZCOM, ZD1211),
228	ZYD_ZD1211_DEV(ZYDAS, ZD1211),
229	ZYD_ZD1211_DEV(ZYXEL, AG225H),
230	ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220),
231	ZYD_ZD1211_DEV(ZYXEL, G200V2),
232	/* ZYD_ZD1211B */
233	ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG_NF),
234	ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG),
235	ZYD_ZD1211B_DEV(ACCTON, ZD1211B),
236	ZYD_ZD1211B_DEV(ASUS, A9T_WIFI),
237	ZYD_ZD1211B_DEV(BELKIN, F5D7050_V4000),
238	ZYD_ZD1211B_DEV(BELKIN, ZD1211B),
239	ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G),
240	ZYD_ZD1211B_DEV(FIBERLINE, WL430U),
241	ZYD_ZD1211B_DEV(MELCO, KG54L),
242	ZYD_ZD1211B_DEV(PHILIPS, SNU5600),
243	ZYD_ZD1211B_DEV(PLANEX2, GW_US54GXS),
244	ZYD_ZD1211B_DEV(SAGEM, XG76NA),
245	ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B),
246	ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1),
247	ZYD_ZD1211B_DEV(USR, USR5423),
248	ZYD_ZD1211B_DEV(VTECH, ZD1211B),
249	ZYD_ZD1211B_DEV(ZCOM, ZD1211B),
250	ZYD_ZD1211B_DEV(ZYDAS, ZD1211B),
251	ZYD_ZD1211B_DEV(ZYXEL, M202),
252	ZYD_ZD1211B_DEV(ZYXEL, G202),
253	ZYD_ZD1211B_DEV(ZYXEL, G220V2)
254};
255
256static const struct usb_config zyd_config[ZYD_N_TRANSFER] = {
257	[ZYD_BULK_WR] = {
258		.type = UE_BULK,
259		.endpoint = UE_ADDR_ANY,
260		.direction = UE_DIR_OUT,
261		.bufsize = ZYD_MAX_TXBUFSZ,
262		.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
263		.callback = zyd_bulk_write_callback,
264		.ep_index = 0,
265		.timeout = 10000,	/* 10 seconds */
266	},
267	[ZYD_BULK_RD] = {
268		.type = UE_BULK,
269		.endpoint = UE_ADDR_ANY,
270		.direction = UE_DIR_IN,
271		.bufsize = ZYX_MAX_RXBUFSZ,
272		.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
273		.callback = zyd_bulk_read_callback,
274		.ep_index = 0,
275	},
276	[ZYD_INTR_WR] = {
277		.type = UE_BULK_INTR,
278		.endpoint = UE_ADDR_ANY,
279		.direction = UE_DIR_OUT,
280		.bufsize = sizeof(struct zyd_cmd),
281		.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
282		.callback = zyd_intr_write_callback,
283		.timeout = 1000,	/* 1 second */
284		.ep_index = 1,
285	},
286	[ZYD_INTR_RD] = {
287		.type = UE_INTERRUPT,
288		.endpoint = UE_ADDR_ANY,
289		.direction = UE_DIR_IN,
290		.bufsize = sizeof(struct zyd_cmd),
291		.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
292		.callback = zyd_intr_read_callback,
293	},
294};
295#define zyd_read16_m(sc, val, data)	do {				\
296	error = zyd_read16(sc, val, data);				\
297	if (error != 0)							\
298		goto fail;						\
299} while (0)
300#define zyd_write16_m(sc, val, data)	do {				\
301	error = zyd_write16(sc, val, data);				\
302	if (error != 0)							\
303		goto fail;						\
304} while (0)
305#define zyd_read32_m(sc, val, data)	do {				\
306	error = zyd_read32(sc, val, data);				\
307	if (error != 0)							\
308		goto fail;						\
309} while (0)
310#define zyd_write32_m(sc, val, data)	do {				\
311	error = zyd_write32(sc, val, data);				\
312	if (error != 0)							\
313		goto fail;						\
314} while (0)
315
316static int
317zyd_match(device_t dev)
318{
319	struct usb_attach_arg *uaa = device_get_ivars(dev);
320
321	if (uaa->usb_mode != USB_MODE_HOST)
322		return (ENXIO);
323	if (uaa->info.bConfigIndex != ZYD_CONFIG_INDEX)
324		return (ENXIO);
325	if (uaa->info.bIfaceIndex != ZYD_IFACE_INDEX)
326		return (ENXIO);
327
328	return (usbd_lookup_id_by_uaa(zyd_devs, sizeof(zyd_devs), uaa));
329}
330
331static int
332zyd_attach(device_t dev)
333{
334	struct usb_attach_arg *uaa = device_get_ivars(dev);
335	struct zyd_softc *sc = device_get_softc(dev);
336	struct ifnet *ifp;
337	struct ieee80211com *ic;
338	uint8_t iface_index, bands;
339	int error;
340
341	if (uaa->info.bcdDevice < 0x4330) {
342		device_printf(dev, "device version mismatch: 0x%X "
343		    "(only >= 43.30 supported)\n",
344		    uaa->info.bcdDevice);
345		return (EINVAL);
346	}
347
348	device_set_usb_desc(dev);
349	sc->sc_dev = dev;
350	sc->sc_udev = uaa->device;
351	sc->sc_macrev = USB_GET_DRIVER_INFO(uaa);
352
353	mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev),
354	    MTX_NETWORK_LOCK, MTX_DEF);
355	STAILQ_INIT(&sc->sc_rqh);
356
357	iface_index = ZYD_IFACE_INDEX;
358	error = usbd_transfer_setup(uaa->device,
359	    &iface_index, sc->sc_xfer, zyd_config,
360	    ZYD_N_TRANSFER, sc, &sc->sc_mtx);
361	if (error) {
362		device_printf(dev, "could not allocate USB transfers, "
363		    "err=%s\n", usbd_errstr(error));
364		goto detach;
365	}
366
367	ZYD_LOCK(sc);
368	if ((error = zyd_get_macaddr(sc)) != 0) {
369		device_printf(sc->sc_dev, "could not read EEPROM\n");
370		ZYD_UNLOCK(sc);
371		goto detach;
372	}
373	ZYD_UNLOCK(sc);
374
375	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
376	if (ifp == NULL) {
377		device_printf(sc->sc_dev, "can not if_alloc()\n");
378		goto detach;
379	}
380	ifp->if_softc = sc;
381	if_initname(ifp, "zyd", device_get_unit(sc->sc_dev));
382	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
383	ifp->if_init = zyd_init;
384	ifp->if_ioctl = zyd_ioctl;
385	ifp->if_start = zyd_start;
386	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
387	IFQ_SET_READY(&ifp->if_snd);
388
389	ic = ifp->if_l2com;
390	ic->ic_ifp = ifp;
391	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
392	ic->ic_opmode = IEEE80211_M_STA;
393
394	/* set device capabilities */
395	ic->ic_caps =
396		  IEEE80211_C_STA		/* station mode */
397		| IEEE80211_C_MONITOR		/* monitor mode */
398		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
399	        | IEEE80211_C_SHSLOT		/* short slot time supported */
400		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
401	        | IEEE80211_C_WPA		/* 802.11i */
402		;
403
404	bands = 0;
405	setbit(&bands, IEEE80211_MODE_11B);
406	setbit(&bands, IEEE80211_MODE_11G);
407	ieee80211_init_channels(ic, NULL, &bands);
408
409	ieee80211_ifattach(ic, sc->sc_bssid);
410	ic->ic_raw_xmit = zyd_raw_xmit;
411	ic->ic_scan_start = zyd_scan_start;
412	ic->ic_scan_end = zyd_scan_end;
413	ic->ic_set_channel = zyd_set_channel;
414
415	ic->ic_vap_create = zyd_vap_create;
416	ic->ic_vap_delete = zyd_vap_delete;
417	ic->ic_update_mcast = zyd_update_mcast;
418	ic->ic_update_promisc = zyd_update_mcast;
419
420	ieee80211_radiotap_attach(ic,
421	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
422		ZYD_TX_RADIOTAP_PRESENT,
423	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
424		ZYD_RX_RADIOTAP_PRESENT);
425
426	if (bootverbose)
427		ieee80211_announce(ic);
428
429	return (0);
430
431detach:
432	zyd_detach(dev);
433	return (ENXIO);			/* failure */
434}
435
436static int
437zyd_detach(device_t dev)
438{
439	struct zyd_softc *sc = device_get_softc(dev);
440	struct ifnet *ifp = sc->sc_ifp;
441	struct ieee80211com *ic;
442	unsigned int x;
443
444	/*
445	 * Prevent further allocations from RX/TX data
446	 * lists and ioctls:
447	 */
448	ZYD_LOCK(sc);
449	sc->sc_flags |= ZYD_FLAG_DETACHED;
450	STAILQ_INIT(&sc->tx_q);
451	STAILQ_INIT(&sc->tx_free);
452	ZYD_UNLOCK(sc);
453
454	/* drain USB transfers */
455	for (x = 0; x != ZYD_N_TRANSFER; x++)
456		usbd_transfer_drain(sc->sc_xfer[x]);
457
458	/* free TX list, if any */
459	ZYD_LOCK(sc);
460	zyd_unsetup_tx_list(sc);
461	ZYD_UNLOCK(sc);
462
463	/* free USB transfers and some data buffers */
464	usbd_transfer_unsetup(sc->sc_xfer, ZYD_N_TRANSFER);
465
466	if (ifp) {
467		ic = ifp->if_l2com;
468		ieee80211_ifdetach(ic);
469		if_free(ifp);
470	}
471	mtx_destroy(&sc->sc_mtx);
472
473	return (0);
474}
475
476static struct ieee80211vap *
477zyd_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
478    enum ieee80211_opmode opmode, int flags,
479    const uint8_t bssid[IEEE80211_ADDR_LEN],
480    const uint8_t mac[IEEE80211_ADDR_LEN])
481{
482	struct zyd_vap *zvp;
483	struct ieee80211vap *vap;
484
485	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
486		return (NULL);
487	zvp = (struct zyd_vap *) malloc(sizeof(struct zyd_vap),
488	    M_80211_VAP, M_NOWAIT | M_ZERO);
489	if (zvp == NULL)
490		return (NULL);
491	vap = &zvp->vap;
492
493	/* enable s/w bmiss handling for sta mode */
494	if (ieee80211_vap_setup(ic, vap, name, unit, opmode,
495	    flags | IEEE80211_CLONE_NOBEACONS, bssid, mac) != 0) {
496		/* out of memory */
497		free(zvp, M_80211_VAP);
498		return (NULL);
499	}
500
501	/* override state transition machine */
502	zvp->newstate = vap->iv_newstate;
503	vap->iv_newstate = zyd_newstate;
504
505	ieee80211_ratectl_init(vap);
506	ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
507
508	/* complete setup */
509	ieee80211_vap_attach(vap, ieee80211_media_change,
510	    ieee80211_media_status);
511	ic->ic_opmode = opmode;
512	return (vap);
513}
514
515static void
516zyd_vap_delete(struct ieee80211vap *vap)
517{
518	struct zyd_vap *zvp = ZYD_VAP(vap);
519
520	ieee80211_ratectl_deinit(vap);
521	ieee80211_vap_detach(vap);
522	free(zvp, M_80211_VAP);
523}
524
525static void
526zyd_tx_free(struct zyd_tx_data *data, int txerr)
527{
528	struct zyd_softc *sc = data->sc;
529
530	if (data->m != NULL) {
531		if (data->m->m_flags & M_TXCB)
532			ieee80211_process_callback(data->ni, data->m,
533			    txerr ? ETIMEDOUT : 0);
534		m_freem(data->m);
535		data->m = NULL;
536
537		ieee80211_free_node(data->ni);
538		data->ni = NULL;
539	}
540	STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
541	sc->tx_nfree++;
542}
543
544static void
545zyd_setup_tx_list(struct zyd_softc *sc)
546{
547	struct zyd_tx_data *data;
548	int i;
549
550	sc->tx_nfree = 0;
551	STAILQ_INIT(&sc->tx_q);
552	STAILQ_INIT(&sc->tx_free);
553
554	for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
555		data = &sc->tx_data[i];
556
557		data->sc = sc;
558		STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
559		sc->tx_nfree++;
560	}
561}
562
563static void
564zyd_unsetup_tx_list(struct zyd_softc *sc)
565{
566	struct zyd_tx_data *data;
567	int i;
568
569	/* make sure any subsequent use of the queues will fail */
570	sc->tx_nfree = 0;
571	STAILQ_INIT(&sc->tx_q);
572	STAILQ_INIT(&sc->tx_free);
573
574	/* free up all node references and mbufs */
575	for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
576		data = &sc->tx_data[i];
577
578		if (data->m != NULL) {
579			m_freem(data->m);
580			data->m = NULL;
581		}
582		if (data->ni != NULL) {
583			ieee80211_free_node(data->ni);
584			data->ni = NULL;
585		}
586	}
587}
588
589static int
590zyd_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
591{
592	struct zyd_vap *zvp = ZYD_VAP(vap);
593	struct ieee80211com *ic = vap->iv_ic;
594	struct zyd_softc *sc = ic->ic_ifp->if_softc;
595	int error;
596
597	DPRINTF(sc, ZYD_DEBUG_STATE, "%s: %s -> %s\n", __func__,
598	    ieee80211_state_name[vap->iv_state],
599	    ieee80211_state_name[nstate]);
600
601	IEEE80211_UNLOCK(ic);
602	ZYD_LOCK(sc);
603	switch (nstate) {
604	case IEEE80211_S_AUTH:
605		zyd_set_chan(sc, ic->ic_curchan);
606		break;
607	case IEEE80211_S_RUN:
608		if (vap->iv_opmode == IEEE80211_M_MONITOR)
609			break;
610
611		/* turn link LED on */
612		error = zyd_set_led(sc, ZYD_LED1, 1);
613		if (error != 0)
614			break;
615
616		/* make data LED blink upon Tx */
617		zyd_write32_m(sc, sc->sc_fwbase + ZYD_FW_LINK_STATUS, 1);
618
619		IEEE80211_ADDR_COPY(sc->sc_bssid, vap->iv_bss->ni_bssid);
620		zyd_set_bssid(sc, sc->sc_bssid);
621		break;
622	default:
623		break;
624	}
625fail:
626	ZYD_UNLOCK(sc);
627	IEEE80211_LOCK(ic);
628	return (zvp->newstate(vap, nstate, arg));
629}
630
631/*
632 * Callback handler for interrupt transfer
633 */
634static void
635zyd_intr_read_callback(struct usb_xfer *xfer, usb_error_t error)
636{
637	struct zyd_softc *sc = usbd_xfer_softc(xfer);
638	struct ifnet *ifp = sc->sc_ifp;
639	struct ieee80211com *ic = ifp->if_l2com;
640	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
641	struct ieee80211_node *ni;
642	struct zyd_cmd *cmd = &sc->sc_ibuf;
643	struct usb_page_cache *pc;
644	int datalen;
645	int actlen;
646
647	usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL);
648
649	switch (USB_GET_STATE(xfer)) {
650	case USB_ST_TRANSFERRED:
651		pc = usbd_xfer_get_frame(xfer, 0);
652		usbd_copy_out(pc, 0, cmd, sizeof(*cmd));
653
654		switch (le16toh(cmd->code)) {
655		case ZYD_NOTIF_RETRYSTATUS:
656		{
657			struct zyd_notif_retry *retry =
658			    (struct zyd_notif_retry *)cmd->data;
659
660			DPRINTF(sc, ZYD_DEBUG_TX_PROC,
661			    "retry intr: rate=0x%x addr=%s count=%d (0x%x)\n",
662			    le16toh(retry->rate), ether_sprintf(retry->macaddr),
663			    le16toh(retry->count)&0xff, le16toh(retry->count));
664
665			/*
666			 * Find the node to which the packet was sent and
667			 * update its retry statistics.  In BSS mode, this node
668			 * is the AP we're associated to so no lookup is
669			 * actually needed.
670			 */
671			ni = ieee80211_find_txnode(vap, retry->macaddr);
672			if (ni != NULL) {
673				int retrycnt =
674				    (int)(le16toh(retry->count) & 0xff);
675
676				ieee80211_ratectl_tx_complete(vap, ni,
677				    IEEE80211_RATECTL_TX_FAILURE,
678				    &retrycnt, NULL);
679				ieee80211_free_node(ni);
680			}
681			if (le16toh(retry->count) & 0x100)
682				ifp->if_oerrors++;	/* too many retries */
683			break;
684		}
685		case ZYD_NOTIF_IORD:
686		{
687			struct zyd_rq *rqp;
688
689			if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT)
690				break;	/* HMAC interrupt */
691
692			datalen = actlen - sizeof(cmd->code);
693			datalen -= 2;	/* XXX: padding? */
694
695			STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) {
696				int i;
697				int count;
698
699				if (rqp->olen != datalen)
700					continue;
701				count = rqp->olen / sizeof(struct zyd_pair);
702				for (i = 0; i < count; i++) {
703					if (*(((const uint16_t *)rqp->idata) + i) !=
704					    (((struct zyd_pair *)cmd->data) + i)->reg)
705						break;
706				}
707				if (i != count)
708					continue;
709				/* copy answer into caller-supplied buffer */
710				memcpy(rqp->odata, cmd->data, rqp->olen);
711				DPRINTF(sc, ZYD_DEBUG_CMD,
712				    "command %p complete, data = %*D \n",
713				    rqp, rqp->olen, (char *)rqp->odata, ":");
714				wakeup(rqp);	/* wakeup caller */
715				break;
716			}
717			if (rqp == NULL) {
718				device_printf(sc->sc_dev,
719				    "unexpected IORD notification %*D\n",
720				    datalen, cmd->data, ":");
721			}
722			break;
723		}
724		default:
725			device_printf(sc->sc_dev, "unknown notification %x\n",
726			    le16toh(cmd->code));
727		}
728
729		/* FALLTHROUGH */
730	case USB_ST_SETUP:
731tr_setup:
732		usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
733		usbd_transfer_submit(xfer);
734		break;
735
736	default:			/* Error */
737		DPRINTF(sc, ZYD_DEBUG_CMD, "error = %s\n",
738		    usbd_errstr(error));
739
740		if (error != USB_ERR_CANCELLED) {
741			/* try to clear stall first */
742			usbd_xfer_set_stall(xfer);
743			goto tr_setup;
744		}
745		break;
746	}
747}
748
749static void
750zyd_intr_write_callback(struct usb_xfer *xfer, usb_error_t error)
751{
752	struct zyd_softc *sc = usbd_xfer_softc(xfer);
753	struct zyd_rq *rqp, *cmd;
754	struct usb_page_cache *pc;
755
756	switch (USB_GET_STATE(xfer)) {
757	case USB_ST_TRANSFERRED:
758		cmd = usbd_xfer_get_priv(xfer);
759		DPRINTF(sc, ZYD_DEBUG_CMD, "command %p transferred\n", cmd);
760		STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) {
761			/* Ensure the cached rq pointer is still valid */
762			if (rqp == cmd &&
763			    (rqp->flags & ZYD_CMD_FLAG_READ) == 0)
764				wakeup(rqp);	/* wakeup caller */
765		}
766
767		/* FALLTHROUGH */
768	case USB_ST_SETUP:
769tr_setup:
770		STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) {
771			if (rqp->flags & ZYD_CMD_FLAG_SENT)
772				continue;
773
774			pc = usbd_xfer_get_frame(xfer, 0);
775			usbd_copy_in(pc, 0, rqp->cmd, rqp->ilen);
776
777			usbd_xfer_set_frame_len(xfer, 0, rqp->ilen);
778			usbd_xfer_set_priv(xfer, rqp);
779			rqp->flags |= ZYD_CMD_FLAG_SENT;
780			usbd_transfer_submit(xfer);
781			break;
782		}
783		break;
784
785	default:			/* Error */
786		DPRINTF(sc, ZYD_DEBUG_ANY, "error = %s\n",
787		    usbd_errstr(error));
788
789		if (error != USB_ERR_CANCELLED) {
790			/* try to clear stall first */
791			usbd_xfer_set_stall(xfer);
792			goto tr_setup;
793		}
794		break;
795	}
796}
797
798static int
799zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen,
800    void *odata, int olen, int flags)
801{
802	struct zyd_cmd cmd;
803	struct zyd_rq rq;
804	int error;
805
806	if (ilen > (int)sizeof(cmd.data))
807		return (EINVAL);
808
809	cmd.code = htole16(code);
810	memcpy(cmd.data, idata, ilen);
811	DPRINTF(sc, ZYD_DEBUG_CMD, "sending cmd %p = %*D\n",
812	    &rq, ilen, idata, ":");
813
814	rq.cmd = &cmd;
815	rq.idata = idata;
816	rq.odata = odata;
817	rq.ilen = sizeof(uint16_t) + ilen;
818	rq.olen = olen;
819	rq.flags = flags;
820	STAILQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq);
821	usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]);
822	usbd_transfer_start(sc->sc_xfer[ZYD_INTR_WR]);
823
824	/* wait at most one second for command reply */
825	error = mtx_sleep(&rq, &sc->sc_mtx, 0 , "zydcmd", hz);
826	if (error)
827		device_printf(sc->sc_dev, "command timeout\n");
828	STAILQ_REMOVE(&sc->sc_rqh, &rq, zyd_rq, rq);
829	DPRINTF(sc, ZYD_DEBUG_CMD, "finsihed cmd %p, error = %d \n",
830	    &rq, error);
831
832	return (error);
833}
834
835static int
836zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val)
837{
838	struct zyd_pair tmp;
839	int error;
840
841	reg = htole16(reg);
842	error = zyd_cmd(sc, ZYD_CMD_IORD, &reg, sizeof(reg), &tmp, sizeof(tmp),
843	    ZYD_CMD_FLAG_READ);
844	if (error == 0)
845		*val = le16toh(tmp.val);
846	return (error);
847}
848
849static int
850zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val)
851{
852	struct zyd_pair tmp[2];
853	uint16_t regs[2];
854	int error;
855
856	regs[0] = htole16(ZYD_REG32_HI(reg));
857	regs[1] = htole16(ZYD_REG32_LO(reg));
858	error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp),
859	    ZYD_CMD_FLAG_READ);
860	if (error == 0)
861		*val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val);
862	return (error);
863}
864
865static int
866zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
867{
868	struct zyd_pair pair;
869
870	pair.reg = htole16(reg);
871	pair.val = htole16(val);
872
873	return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0);
874}
875
876static int
877zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
878{
879	struct zyd_pair pair[2];
880
881	pair[0].reg = htole16(ZYD_REG32_HI(reg));
882	pair[0].val = htole16(val >> 16);
883	pair[1].reg = htole16(ZYD_REG32_LO(reg));
884	pair[1].val = htole16(val & 0xffff);
885
886	return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0);
887}
888
889static int
890zyd_rfwrite(struct zyd_softc *sc, uint32_t val)
891{
892	struct zyd_rf *rf = &sc->sc_rf;
893	struct zyd_rfwrite_cmd req;
894	uint16_t cr203;
895	int error, i;
896
897	zyd_read16_m(sc, ZYD_CR203, &cr203);
898	cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
899
900	req.code  = htole16(2);
901	req.width = htole16(rf->width);
902	for (i = 0; i < rf->width; i++) {
903		req.bit[i] = htole16(cr203);
904		if (val & (1 << (rf->width - 1 - i)))
905			req.bit[i] |= htole16(ZYD_RF_DATA);
906	}
907	error = zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0);
908fail:
909	return (error);
910}
911
912static int
913zyd_rfwrite_cr(struct zyd_softc *sc, uint32_t val)
914{
915	int error;
916
917	zyd_write16_m(sc, ZYD_CR244, (val >> 16) & 0xff);
918	zyd_write16_m(sc, ZYD_CR243, (val >>  8) & 0xff);
919	zyd_write16_m(sc, ZYD_CR242, (val >>  0) & 0xff);
920fail:
921	return (error);
922}
923
924static int
925zyd_lock_phy(struct zyd_softc *sc)
926{
927	int error;
928	uint32_t tmp;
929
930	zyd_read32_m(sc, ZYD_MAC_MISC, &tmp);
931	tmp &= ~ZYD_UNLOCK_PHY_REGS;
932	zyd_write32_m(sc, ZYD_MAC_MISC, tmp);
933fail:
934	return (error);
935}
936
937static int
938zyd_unlock_phy(struct zyd_softc *sc)
939{
940	int error;
941	uint32_t tmp;
942
943	zyd_read32_m(sc, ZYD_MAC_MISC, &tmp);
944	tmp |= ZYD_UNLOCK_PHY_REGS;
945	zyd_write32_m(sc, ZYD_MAC_MISC, tmp);
946fail:
947	return (error);
948}
949
950/*
951 * RFMD RF methods.
952 */
953static int
954zyd_rfmd_init(struct zyd_rf *rf)
955{
956#define N(a)	((int)(sizeof(a) / sizeof((a)[0])))
957	struct zyd_softc *sc = rf->rf_sc;
958	static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
959	static const uint32_t rfini[] = ZYD_RFMD_RF;
960	int i, error;
961
962	/* init RF-dependent PHY registers */
963	for (i = 0; i < N(phyini); i++) {
964		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
965	}
966
967	/* init RFMD radio */
968	for (i = 0; i < N(rfini); i++) {
969		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
970			return (error);
971	}
972fail:
973	return (error);
974#undef N
975}
976
977static int
978zyd_rfmd_switch_radio(struct zyd_rf *rf, int on)
979{
980	int error;
981	struct zyd_softc *sc = rf->rf_sc;
982
983	zyd_write16_m(sc, ZYD_CR10, on ? 0x89 : 0x15);
984	zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x81);
985fail:
986	return (error);
987}
988
989static int
990zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan)
991{
992	int error;
993	struct zyd_softc *sc = rf->rf_sc;
994	static const struct {
995		uint32_t	r1, r2;
996	} rfprog[] = ZYD_RFMD_CHANTABLE;
997
998	error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
999	if (error != 0)
1000		goto fail;
1001	error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
1002	if (error != 0)
1003		goto fail;
1004
1005fail:
1006	return (error);
1007}
1008
1009/*
1010 * AL2230 RF methods.
1011 */
1012static int
1013zyd_al2230_init(struct zyd_rf *rf)
1014{
1015#define N(a)	((int)(sizeof(a) / sizeof((a)[0])))
1016	struct zyd_softc *sc = rf->rf_sc;
1017	static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
1018	static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
1019	static const struct zyd_phy_pair phypll[] = {
1020		{ ZYD_CR251, 0x2f }, { ZYD_CR251, 0x3f },
1021		{ ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 }
1022	};
1023	static const uint32_t rfini1[] = ZYD_AL2230_RF_PART1;
1024	static const uint32_t rfini2[] = ZYD_AL2230_RF_PART2;
1025	static const uint32_t rfini3[] = ZYD_AL2230_RF_PART3;
1026	int i, error;
1027
1028	/* init RF-dependent PHY registers */
1029	for (i = 0; i < N(phyini); i++)
1030		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1031
1032	if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) {
1033		for (i = 0; i < N(phy2230s); i++)
1034			zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val);
1035	}
1036
1037	/* init AL2230 radio */
1038	for (i = 0; i < N(rfini1); i++) {
1039		error = zyd_rfwrite(sc, rfini1[i]);
1040		if (error != 0)
1041			goto fail;
1042	}
1043
1044	if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0)
1045		error = zyd_rfwrite(sc, 0x000824);
1046	else
1047		error = zyd_rfwrite(sc, 0x0005a4);
1048	if (error != 0)
1049		goto fail;
1050
1051	for (i = 0; i < N(rfini2); i++) {
1052		error = zyd_rfwrite(sc, rfini2[i]);
1053		if (error != 0)
1054			goto fail;
1055	}
1056
1057	for (i = 0; i < N(phypll); i++)
1058		zyd_write16_m(sc, phypll[i].reg, phypll[i].val);
1059
1060	for (i = 0; i < N(rfini3); i++) {
1061		error = zyd_rfwrite(sc, rfini3[i]);
1062		if (error != 0)
1063			goto fail;
1064	}
1065fail:
1066	return (error);
1067#undef N
1068}
1069
1070static int
1071zyd_al2230_fini(struct zyd_rf *rf)
1072{
1073#define N(a)	((int)(sizeof(a) / sizeof((a)[0])))
1074	int error, i;
1075	struct zyd_softc *sc = rf->rf_sc;
1076	static const struct zyd_phy_pair phy[] = ZYD_AL2230_PHY_FINI_PART1;
1077
1078	for (i = 0; i < N(phy); i++)
1079		zyd_write16_m(sc, phy[i].reg, phy[i].val);
1080
1081	if (sc->sc_newphy != 0)
1082		zyd_write16_m(sc, ZYD_CR9, 0xe1);
1083
1084	zyd_write16_m(sc, ZYD_CR203, 0x6);
1085fail:
1086	return (error);
1087#undef N
1088}
1089
1090static int
1091zyd_al2230_init_b(struct zyd_rf *rf)
1092{
1093#define N(a)	((int)(sizeof(a) / sizeof((a)[0])))
1094	struct zyd_softc *sc = rf->rf_sc;
1095	static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1;
1096	static const struct zyd_phy_pair phy2[] = ZYD_AL2230_PHY_PART2;
1097	static const struct zyd_phy_pair phy3[] = ZYD_AL2230_PHY_PART3;
1098	static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
1099	static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
1100	static const uint32_t rfini_part1[] = ZYD_AL2230_RF_B_PART1;
1101	static const uint32_t rfini_part2[] = ZYD_AL2230_RF_B_PART2;
1102	static const uint32_t rfini_part3[] = ZYD_AL2230_RF_B_PART3;
1103	static const uint32_t zyd_al2230_chtable[][3] = ZYD_AL2230_CHANTABLE;
1104	int i, error;
1105
1106	for (i = 0; i < N(phy1); i++)
1107		zyd_write16_m(sc, phy1[i].reg, phy1[i].val);
1108
1109	/* init RF-dependent PHY registers */
1110	for (i = 0; i < N(phyini); i++)
1111		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1112
1113	if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) {
1114		for (i = 0; i < N(phy2230s); i++)
1115			zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val);
1116	}
1117
1118	for (i = 0; i < 3; i++) {
1119		error = zyd_rfwrite_cr(sc, zyd_al2230_chtable[0][i]);
1120		if (error != 0)
1121			return (error);
1122	}
1123
1124	for (i = 0; i < N(rfini_part1); i++) {
1125		error = zyd_rfwrite_cr(sc, rfini_part1[i]);
1126		if (error != 0)
1127			return (error);
1128	}
1129
1130	if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0)
1131		error = zyd_rfwrite(sc, 0x241000);
1132	else
1133		error = zyd_rfwrite(sc, 0x25a000);
1134	if (error != 0)
1135		goto fail;
1136
1137	for (i = 0; i < N(rfini_part2); i++) {
1138		error = zyd_rfwrite_cr(sc, rfini_part2[i]);
1139		if (error != 0)
1140			return (error);
1141	}
1142
1143	for (i = 0; i < N(phy2); i++)
1144		zyd_write16_m(sc, phy2[i].reg, phy2[i].val);
1145
1146	for (i = 0; i < N(rfini_part3); i++) {
1147		error = zyd_rfwrite_cr(sc, rfini_part3[i]);
1148		if (error != 0)
1149			return (error);
1150	}
1151
1152	for (i = 0; i < N(phy3); i++)
1153		zyd_write16_m(sc, phy3[i].reg, phy3[i].val);
1154
1155	error = zyd_al2230_fini(rf);
1156fail:
1157	return (error);
1158#undef N
1159}
1160
1161static int
1162zyd_al2230_switch_radio(struct zyd_rf *rf, int on)
1163{
1164	struct zyd_softc *sc = rf->rf_sc;
1165	int error, on251 = (sc->sc_macrev == ZYD_ZD1211) ? 0x3f : 0x7f;
1166
1167	zyd_write16_m(sc, ZYD_CR11,  on ? 0x00 : 0x04);
1168	zyd_write16_m(sc, ZYD_CR251, on ? on251 : 0x2f);
1169fail:
1170	return (error);
1171}
1172
1173static int
1174zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan)
1175{
1176#define N(a)	((int)(sizeof(a) / sizeof((a)[0])))
1177	int error, i;
1178	struct zyd_softc *sc = rf->rf_sc;
1179	static const struct zyd_phy_pair phy1[] = {
1180		{ ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 },
1181	};
1182	static const struct {
1183		uint32_t	r1, r2, r3;
1184	} rfprog[] = ZYD_AL2230_CHANTABLE;
1185
1186	error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
1187	if (error != 0)
1188		goto fail;
1189	error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
1190	if (error != 0)
1191		goto fail;
1192	error = zyd_rfwrite(sc, rfprog[chan - 1].r3);
1193	if (error != 0)
1194		goto fail;
1195
1196	for (i = 0; i < N(phy1); i++)
1197		zyd_write16_m(sc, phy1[i].reg, phy1[i].val);
1198fail:
1199	return (error);
1200#undef N
1201}
1202
1203static int
1204zyd_al2230_set_channel_b(struct zyd_rf *rf, uint8_t chan)
1205{
1206#define N(a)	((int)(sizeof(a) / sizeof((a)[0])))
1207	int error, i;
1208	struct zyd_softc *sc = rf->rf_sc;
1209	static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1;
1210	static const struct {
1211		uint32_t	r1, r2, r3;
1212	} rfprog[] = ZYD_AL2230_CHANTABLE_B;
1213
1214	for (i = 0; i < N(phy1); i++)
1215		zyd_write16_m(sc, phy1[i].reg, phy1[i].val);
1216
1217	error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r1);
1218	if (error != 0)
1219		goto fail;
1220	error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r2);
1221	if (error != 0)
1222		goto fail;
1223	error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r3);
1224	if (error != 0)
1225		goto fail;
1226	error = zyd_al2230_fini(rf);
1227fail:
1228	return (error);
1229#undef N
1230}
1231
1232#define	ZYD_AL2230_PHY_BANDEDGE6					\
1233{									\
1234	{ ZYD_CR128, 0x14 }, { ZYD_CR129, 0x12 }, { ZYD_CR130, 0x10 },	\
1235	{ ZYD_CR47,  0x1e }						\
1236}
1237
1238static int
1239zyd_al2230_bandedge6(struct zyd_rf *rf, struct ieee80211_channel *c)
1240{
1241#define N(a)	((int)(sizeof(a) / sizeof((a)[0])))
1242	int error = 0, i;
1243	struct zyd_softc *sc = rf->rf_sc;
1244	struct ifnet *ifp = sc->sc_ifp;
1245	struct ieee80211com *ic = ifp->if_l2com;
1246	struct zyd_phy_pair r[] = ZYD_AL2230_PHY_BANDEDGE6;
1247	int chan = ieee80211_chan2ieee(ic, c);
1248
1249	if (chan == 1 || chan == 11)
1250		r[0].val = 0x12;
1251
1252	for (i = 0; i < N(r); i++)
1253		zyd_write16_m(sc, r[i].reg, r[i].val);
1254fail:
1255	return (error);
1256#undef N
1257}
1258
1259/*
1260 * AL7230B RF methods.
1261 */
1262static int
1263zyd_al7230B_init(struct zyd_rf *rf)
1264{
1265#define N(a)	((int)(sizeof(a) / sizeof((a)[0])))
1266	struct zyd_softc *sc = rf->rf_sc;
1267	static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
1268	static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
1269	static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
1270	static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
1271	static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
1272	int i, error;
1273
1274	/* for AL7230B, PHY and RF need to be initialized in "phases" */
1275
1276	/* init RF-dependent PHY registers, part one */
1277	for (i = 0; i < N(phyini_1); i++)
1278		zyd_write16_m(sc, phyini_1[i].reg, phyini_1[i].val);
1279
1280	/* init AL7230B radio, part one */
1281	for (i = 0; i < N(rfini_1); i++) {
1282		if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0)
1283			return (error);
1284	}
1285	/* init RF-dependent PHY registers, part two */
1286	for (i = 0; i < N(phyini_2); i++)
1287		zyd_write16_m(sc, phyini_2[i].reg, phyini_2[i].val);
1288
1289	/* init AL7230B radio, part two */
1290	for (i = 0; i < N(rfini_2); i++) {
1291		if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0)
1292			return (error);
1293	}
1294	/* init RF-dependent PHY registers, part three */
1295	for (i = 0; i < N(phyini_3); i++)
1296		zyd_write16_m(sc, phyini_3[i].reg, phyini_3[i].val);
1297fail:
1298	return (error);
1299#undef N
1300}
1301
1302static int
1303zyd_al7230B_switch_radio(struct zyd_rf *rf, int on)
1304{
1305	int error;
1306	struct zyd_softc *sc = rf->rf_sc;
1307
1308	zyd_write16_m(sc, ZYD_CR11,  on ? 0x00 : 0x04);
1309	zyd_write16_m(sc, ZYD_CR251, on ? 0x3f : 0x2f);
1310fail:
1311	return (error);
1312}
1313
1314static int
1315zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan)
1316{
1317#define N(a)	((int)(sizeof(a) / sizeof((a)[0])))
1318	struct zyd_softc *sc = rf->rf_sc;
1319	static const struct {
1320		uint32_t	r1, r2;
1321	} rfprog[] = ZYD_AL7230B_CHANTABLE;
1322	static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
1323	int i, error;
1324
1325	zyd_write16_m(sc, ZYD_CR240, 0x57);
1326	zyd_write16_m(sc, ZYD_CR251, 0x2f);
1327
1328	for (i = 0; i < N(rfsc); i++) {
1329		if ((error = zyd_rfwrite(sc, rfsc[i])) != 0)
1330			return (error);
1331	}
1332
1333	zyd_write16_m(sc, ZYD_CR128, 0x14);
1334	zyd_write16_m(sc, ZYD_CR129, 0x12);
1335	zyd_write16_m(sc, ZYD_CR130, 0x10);
1336	zyd_write16_m(sc, ZYD_CR38,  0x38);
1337	zyd_write16_m(sc, ZYD_CR136, 0xdf);
1338
1339	error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
1340	if (error != 0)
1341		goto fail;
1342	error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
1343	if (error != 0)
1344		goto fail;
1345	error = zyd_rfwrite(sc, 0x3c9000);
1346	if (error != 0)
1347		goto fail;
1348
1349	zyd_write16_m(sc, ZYD_CR251, 0x3f);
1350	zyd_write16_m(sc, ZYD_CR203, 0x06);
1351	zyd_write16_m(sc, ZYD_CR240, 0x08);
1352fail:
1353	return (error);
1354#undef N
1355}
1356
1357/*
1358 * AL2210 RF methods.
1359 */
1360static int
1361zyd_al2210_init(struct zyd_rf *rf)
1362{
1363#define N(a)	((int)(sizeof(a) / sizeof((a)[0])))
1364	struct zyd_softc *sc = rf->rf_sc;
1365	static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
1366	static const uint32_t rfini[] = ZYD_AL2210_RF;
1367	uint32_t tmp;
1368	int i, error;
1369
1370	zyd_write32_m(sc, ZYD_CR18, 2);
1371
1372	/* init RF-dependent PHY registers */
1373	for (i = 0; i < N(phyini); i++)
1374		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1375
1376	/* init AL2210 radio */
1377	for (i = 0; i < N(rfini); i++) {
1378		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1379			return (error);
1380	}
1381	zyd_write16_m(sc, ZYD_CR47, 0x1e);
1382	zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp);
1383	zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1384	zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1);
1385	zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05);
1386	zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00);
1387	zyd_write16_m(sc, ZYD_CR47, 0x1e);
1388	zyd_write32_m(sc, ZYD_CR18, 3);
1389fail:
1390	return (error);
1391#undef N
1392}
1393
1394static int
1395zyd_al2210_switch_radio(struct zyd_rf *rf, int on)
1396{
1397	/* vendor driver does nothing for this RF chip */
1398
1399	return (0);
1400}
1401
1402static int
1403zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan)
1404{
1405	int error;
1406	struct zyd_softc *sc = rf->rf_sc;
1407	static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
1408	uint32_t tmp;
1409
1410	zyd_write32_m(sc, ZYD_CR18, 2);
1411	zyd_write16_m(sc, ZYD_CR47, 0x1e);
1412	zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp);
1413	zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1414	zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1);
1415	zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05);
1416	zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00);
1417	zyd_write16_m(sc, ZYD_CR47, 0x1e);
1418
1419	/* actually set the channel */
1420	error = zyd_rfwrite(sc, rfprog[chan - 1]);
1421	if (error != 0)
1422		goto fail;
1423
1424	zyd_write32_m(sc, ZYD_CR18, 3);
1425fail:
1426	return (error);
1427}
1428
1429/*
1430 * GCT RF methods.
1431 */
1432static int
1433zyd_gct_init(struct zyd_rf *rf)
1434{
1435#define	ZYD_GCT_INTR_REG	0x85c1
1436#define N(a)	((int)(sizeof(a) / sizeof((a)[0])))
1437	struct zyd_softc *sc = rf->rf_sc;
1438	static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
1439	static const uint32_t rfini[] = ZYD_GCT_RF;
1440	static const uint16_t vco[11][7] = ZYD_GCT_VCO;
1441	int i, idx = -1, error;
1442	uint16_t data;
1443
1444	/* init RF-dependent PHY registers */
1445	for (i = 0; i < N(phyini); i++)
1446		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1447
1448	/* init cgt radio */
1449	for (i = 0; i < N(rfini); i++) {
1450		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1451			return (error);
1452	}
1453
1454	error = zyd_gct_mode(rf);
1455	if (error != 0)
1456		return (error);
1457
1458	for (i = 0; i < (int)(N(vco) - 1); i++) {
1459		error = zyd_gct_set_channel_synth(rf, 1, 0);
1460		if (error != 0)
1461			goto fail;
1462		error = zyd_gct_write(rf, vco[i][0]);
1463		if (error != 0)
1464			goto fail;
1465		zyd_write16_m(sc, ZYD_GCT_INTR_REG, 0xf);
1466		zyd_read16_m(sc, ZYD_GCT_INTR_REG, &data);
1467		if ((data & 0xf) == 0) {
1468			idx = i;
1469			break;
1470		}
1471	}
1472	if (idx == -1) {
1473		error = zyd_gct_set_channel_synth(rf, 1, 1);
1474		if (error != 0)
1475			goto fail;
1476		error = zyd_gct_write(rf, 0x6662);
1477		if (error != 0)
1478			goto fail;
1479	}
1480
1481	rf->idx = idx;
1482	zyd_write16_m(sc, ZYD_CR203, 0x6);
1483fail:
1484	return (error);
1485#undef N
1486#undef ZYD_GCT_INTR_REG
1487}
1488
1489static int
1490zyd_gct_mode(struct zyd_rf *rf)
1491{
1492#define N(a)	((int)(sizeof(a) / sizeof((a)[0])))
1493	struct zyd_softc *sc = rf->rf_sc;
1494	static const uint32_t mode[] = {
1495		0x25f98, 0x25f9a, 0x25f94, 0x27fd4
1496	};
1497	int i, error;
1498
1499	for (i = 0; i < N(mode); i++) {
1500		if ((error = zyd_rfwrite(sc, mode[i])) != 0)
1501			break;
1502	}
1503	return (error);
1504#undef N
1505}
1506
1507static int
1508zyd_gct_set_channel_synth(struct zyd_rf *rf, int chan, int acal)
1509{
1510	int error, idx = chan - 1;
1511	struct zyd_softc *sc = rf->rf_sc;
1512	static uint32_t acal_synth[] = ZYD_GCT_CHANNEL_ACAL;
1513	static uint32_t std_synth[] = ZYD_GCT_CHANNEL_STD;
1514	static uint32_t div_synth[] = ZYD_GCT_CHANNEL_DIV;
1515
1516	error = zyd_rfwrite(sc,
1517	    (acal == 1) ? acal_synth[idx] : std_synth[idx]);
1518	if (error != 0)
1519		return (error);
1520	return zyd_rfwrite(sc, div_synth[idx]);
1521}
1522
1523static int
1524zyd_gct_write(struct zyd_rf *rf, uint16_t value)
1525{
1526	struct zyd_softc *sc = rf->rf_sc;
1527
1528	return zyd_rfwrite(sc, 0x300000 | 0x40000 | value);
1529}
1530
1531static int
1532zyd_gct_switch_radio(struct zyd_rf *rf, int on)
1533{
1534	int error;
1535	struct zyd_softc *sc = rf->rf_sc;
1536
1537	error = zyd_rfwrite(sc, on ? 0x25f94 : 0x25f90);
1538	if (error != 0)
1539		return (error);
1540
1541	zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04);
1542	zyd_write16_m(sc, ZYD_CR251,
1543	    on ? ((sc->sc_macrev == ZYD_ZD1211B) ? 0x7f : 0x3f) : 0x2f);
1544fail:
1545	return (error);
1546}
1547
1548static int
1549zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan)
1550{
1551#define N(a)	((int)(sizeof(a) / sizeof((a)[0])))
1552	int error, i;
1553	struct zyd_softc *sc = rf->rf_sc;
1554	static const struct zyd_phy_pair cmd[] = {
1555		{ ZYD_CR80, 0x30 }, { ZYD_CR81, 0x30 }, { ZYD_CR79, 0x58 },
1556		{ ZYD_CR12, 0xf0 }, { ZYD_CR77, 0x1b }, { ZYD_CR78, 0x58 },
1557	};
1558	static const uint16_t vco[11][7] = ZYD_GCT_VCO;
1559
1560	error = zyd_gct_set_channel_synth(rf, chan, 0);
1561	if (error != 0)
1562		goto fail;
1563	error = zyd_gct_write(rf, (rf->idx == -1) ? 0x6662 :
1564	    vco[rf->idx][((chan - 1) / 2)]);
1565	if (error != 0)
1566		goto fail;
1567	error = zyd_gct_mode(rf);
1568	if (error != 0)
1569		return (error);
1570	for (i = 0; i < N(cmd); i++)
1571		zyd_write16_m(sc, cmd[i].reg, cmd[i].val);
1572	error = zyd_gct_txgain(rf, chan);
1573	if (error != 0)
1574		return (error);
1575	zyd_write16_m(sc, ZYD_CR203, 0x6);
1576fail:
1577	return (error);
1578#undef N
1579}
1580
1581static int
1582zyd_gct_txgain(struct zyd_rf *rf, uint8_t chan)
1583{
1584#define N(a)	(sizeof(a) / sizeof((a)[0]))
1585	struct zyd_softc *sc = rf->rf_sc;
1586	static uint32_t txgain[] = ZYD_GCT_TXGAIN;
1587	uint8_t idx = sc->sc_pwrint[chan - 1];
1588
1589	if (idx >= N(txgain)) {
1590		device_printf(sc->sc_dev, "could not set TX gain (%d %#x)\n",
1591		    chan, idx);
1592		return 0;
1593	}
1594
1595	return zyd_rfwrite(sc, 0x700000 | txgain[idx]);
1596#undef N
1597}
1598
1599/*
1600 * Maxim2 RF methods.
1601 */
1602static int
1603zyd_maxim2_init(struct zyd_rf *rf)
1604{
1605#define N(a)	((int)(sizeof(a) / sizeof((a)[0])))
1606	struct zyd_softc *sc = rf->rf_sc;
1607	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1608	static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1609	uint16_t tmp;
1610	int i, error;
1611
1612	/* init RF-dependent PHY registers */
1613	for (i = 0; i < N(phyini); i++)
1614		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1615
1616	zyd_read16_m(sc, ZYD_CR203, &tmp);
1617	zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4));
1618
1619	/* init maxim2 radio */
1620	for (i = 0; i < N(rfini); i++) {
1621		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1622			return (error);
1623	}
1624	zyd_read16_m(sc, ZYD_CR203, &tmp);
1625	zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4));
1626fail:
1627	return (error);
1628#undef N
1629}
1630
1631static int
1632zyd_maxim2_switch_radio(struct zyd_rf *rf, int on)
1633{
1634
1635	/* vendor driver does nothing for this RF chip */
1636	return (0);
1637}
1638
1639static int
1640zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan)
1641{
1642#define N(a)	((int)(sizeof(a) / sizeof((a)[0])))
1643	struct zyd_softc *sc = rf->rf_sc;
1644	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1645	static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1646	static const struct {
1647		uint32_t	r1, r2;
1648	} rfprog[] = ZYD_MAXIM2_CHANTABLE;
1649	uint16_t tmp;
1650	int i, error;
1651
1652	/*
1653	 * Do the same as we do when initializing it, except for the channel
1654	 * values coming from the two channel tables.
1655	 */
1656
1657	/* init RF-dependent PHY registers */
1658	for (i = 0; i < N(phyini); i++)
1659		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1660
1661	zyd_read16_m(sc, ZYD_CR203, &tmp);
1662	zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4));
1663
1664	/* first two values taken from the chantables */
1665	error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
1666	if (error != 0)
1667		goto fail;
1668	error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
1669	if (error != 0)
1670		goto fail;
1671
1672	/* init maxim2 radio - skipping the two first values */
1673	for (i = 2; i < N(rfini); i++) {
1674		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1675			return (error);
1676	}
1677	zyd_read16_m(sc, ZYD_CR203, &tmp);
1678	zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4));
1679fail:
1680	return (error);
1681#undef N
1682}
1683
1684static int
1685zyd_rf_attach(struct zyd_softc *sc, uint8_t type)
1686{
1687	struct zyd_rf *rf = &sc->sc_rf;
1688
1689	rf->rf_sc = sc;
1690	rf->update_pwr = 1;
1691
1692	switch (type) {
1693	case ZYD_RF_RFMD:
1694		rf->init         = zyd_rfmd_init;
1695		rf->switch_radio = zyd_rfmd_switch_radio;
1696		rf->set_channel  = zyd_rfmd_set_channel;
1697		rf->width        = 24;	/* 24-bit RF values */
1698		break;
1699	case ZYD_RF_AL2230:
1700	case ZYD_RF_AL2230S:
1701		if (sc->sc_macrev == ZYD_ZD1211B) {
1702			rf->init = zyd_al2230_init_b;
1703			rf->set_channel = zyd_al2230_set_channel_b;
1704		} else {
1705			rf->init = zyd_al2230_init;
1706			rf->set_channel = zyd_al2230_set_channel;
1707		}
1708		rf->switch_radio = zyd_al2230_switch_radio;
1709		rf->bandedge6	 = zyd_al2230_bandedge6;
1710		rf->width        = 24;	/* 24-bit RF values */
1711		break;
1712	case ZYD_RF_AL7230B:
1713		rf->init         = zyd_al7230B_init;
1714		rf->switch_radio = zyd_al7230B_switch_radio;
1715		rf->set_channel  = zyd_al7230B_set_channel;
1716		rf->width        = 24;	/* 24-bit RF values */
1717		break;
1718	case ZYD_RF_AL2210:
1719		rf->init         = zyd_al2210_init;
1720		rf->switch_radio = zyd_al2210_switch_radio;
1721		rf->set_channel  = zyd_al2210_set_channel;
1722		rf->width        = 24;	/* 24-bit RF values */
1723		break;
1724	case ZYD_RF_MAXIM_NEW:
1725	case ZYD_RF_GCT:
1726		rf->init         = zyd_gct_init;
1727		rf->switch_radio = zyd_gct_switch_radio;
1728		rf->set_channel  = zyd_gct_set_channel;
1729		rf->width        = 24;	/* 24-bit RF values */
1730		rf->update_pwr   = 0;
1731		break;
1732	case ZYD_RF_MAXIM_NEW2:
1733		rf->init         = zyd_maxim2_init;
1734		rf->switch_radio = zyd_maxim2_switch_radio;
1735		rf->set_channel  = zyd_maxim2_set_channel;
1736		rf->width        = 18;	/* 18-bit RF values */
1737		break;
1738	default:
1739		device_printf(sc->sc_dev,
1740		    "sorry, radio \"%s\" is not supported yet\n",
1741		    zyd_rf_name(type));
1742		return (EINVAL);
1743	}
1744	return (0);
1745}
1746
1747static const char *
1748zyd_rf_name(uint8_t type)
1749{
1750	static const char * const zyd_rfs[] = {
1751		"unknown", "unknown", "UW2451",   "UCHIP",     "AL2230",
1752		"AL7230B", "THETA",   "AL2210",   "MAXIM_NEW", "GCT",
1753		"AL2230S",  "RALINK",  "INTERSIL", "RFMD",      "MAXIM_NEW2",
1754		"PHILIPS"
1755	};
1756
1757	return zyd_rfs[(type > 15) ? 0 : type];
1758}
1759
1760static int
1761zyd_hw_init(struct zyd_softc *sc)
1762{
1763	int error;
1764	const struct zyd_phy_pair *phyp;
1765	struct zyd_rf *rf = &sc->sc_rf;
1766	uint16_t val;
1767
1768	/* specify that the plug and play is finished */
1769	zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1);
1770	zyd_read16_m(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->sc_fwbase);
1771	DPRINTF(sc, ZYD_DEBUG_FW, "firmware base address=0x%04x\n",
1772	    sc->sc_fwbase);
1773
1774	/* retrieve firmware revision number */
1775	zyd_read16_m(sc, sc->sc_fwbase + ZYD_FW_FIRMWARE_REV, &sc->sc_fwrev);
1776	zyd_write32_m(sc, ZYD_CR_GPI_EN, 0);
1777	zyd_write32_m(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
1778	/* set mandatory rates - XXX assumes 802.11b/g */
1779	zyd_write32_m(sc, ZYD_MAC_MAN_RATE, 0x150f);
1780
1781	/* disable interrupts */
1782	zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0);
1783
1784	if ((error = zyd_read_pod(sc)) != 0) {
1785		device_printf(sc->sc_dev, "could not read EEPROM\n");
1786		goto fail;
1787	}
1788
1789	/* PHY init (resetting) */
1790	error = zyd_lock_phy(sc);
1791	if (error != 0)
1792		goto fail;
1793	phyp = (sc->sc_macrev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
1794	for (; phyp->reg != 0; phyp++)
1795		zyd_write16_m(sc, phyp->reg, phyp->val);
1796	if (sc->sc_macrev == ZYD_ZD1211 && sc->sc_fix_cr157 != 0) {
1797		zyd_read16_m(sc, ZYD_EEPROM_PHY_REG, &val);
1798		zyd_write32_m(sc, ZYD_CR157, val >> 8);
1799	}
1800	error = zyd_unlock_phy(sc);
1801	if (error != 0)
1802		goto fail;
1803
1804	/* HMAC init */
1805	zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000020);
1806	zyd_write32_m(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
1807	zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0x00000000);
1808	zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0x00000000);
1809	zyd_write32_m(sc, ZYD_MAC_GHTBL, 0x00000000);
1810	zyd_write32_m(sc, ZYD_MAC_GHTBH, 0x80000000);
1811	zyd_write32_m(sc, ZYD_MAC_MISC, 0x000000a4);
1812	zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
1813	zyd_write32_m(sc, ZYD_MAC_BCNCFG, 0x00f00401);
1814	zyd_write32_m(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
1815	zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000080);
1816	zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
1817	zyd_write32_m(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
1818	zyd_write32_m(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
1819	zyd_write32_m(sc, ZYD_CR_PS_CTRL, 0x10000000);
1820	zyd_write32_m(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
1821	zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1);
1822	zyd_write32_m(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
1823	zyd_write32_m(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0a47c032);
1824	zyd_write32_m(sc, ZYD_MAC_CAM_MODE, 0x3);
1825
1826	if (sc->sc_macrev == ZYD_ZD1211) {
1827		zyd_write32_m(sc, ZYD_MAC_RETRY, 0x00000002);
1828		zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
1829	} else {
1830		zyd_write32_m(sc, ZYD_MACB_MAX_RETRY, 0x02020202);
1831		zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
1832		zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
1833		zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
1834		zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
1835		zyd_write32_m(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
1836		zyd_write32_m(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
1837		zyd_write32_m(sc, ZYD_MACB_TXOP, 0x01800824);
1838		zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0eff);
1839	}
1840
1841	/* init beacon interval to 100ms */
1842	if ((error = zyd_set_beacon_interval(sc, 100)) != 0)
1843		goto fail;
1844
1845	if ((error = zyd_rf_attach(sc, sc->sc_rfrev)) != 0) {
1846		device_printf(sc->sc_dev, "could not attach RF, rev 0x%x\n",
1847		    sc->sc_rfrev);
1848		goto fail;
1849	}
1850
1851	/* RF chip init */
1852	error = zyd_lock_phy(sc);
1853	if (error != 0)
1854		goto fail;
1855	error = (*rf->init)(rf);
1856	if (error != 0) {
1857		device_printf(sc->sc_dev,
1858		    "radio initialization failed, error %d\n", error);
1859		goto fail;
1860	}
1861	error = zyd_unlock_phy(sc);
1862	if (error != 0)
1863		goto fail;
1864
1865	if ((error = zyd_read_eeprom(sc)) != 0) {
1866		device_printf(sc->sc_dev, "could not read EEPROM\n");
1867		goto fail;
1868	}
1869
1870fail:	return (error);
1871}
1872
1873static int
1874zyd_read_pod(struct zyd_softc *sc)
1875{
1876	int error;
1877	uint32_t tmp;
1878
1879	zyd_read32_m(sc, ZYD_EEPROM_POD, &tmp);
1880	sc->sc_rfrev     = tmp & 0x0f;
1881	sc->sc_ledtype   = (tmp >>  4) & 0x01;
1882	sc->sc_al2230s   = (tmp >>  7) & 0x01;
1883	sc->sc_cckgain   = (tmp >>  8) & 0x01;
1884	sc->sc_fix_cr157 = (tmp >> 13) & 0x01;
1885	sc->sc_parev     = (tmp >> 16) & 0x0f;
1886	sc->sc_bandedge6 = (tmp >> 21) & 0x01;
1887	sc->sc_newphy    = (tmp >> 31) & 0x01;
1888	sc->sc_txled     = ((tmp & (1 << 24)) && (tmp & (1 << 29))) ? 0 : 1;
1889fail:
1890	return (error);
1891}
1892
1893static int
1894zyd_read_eeprom(struct zyd_softc *sc)
1895{
1896	uint16_t val;
1897	int error, i;
1898
1899	/* read Tx power calibration tables */
1900	for (i = 0; i < 7; i++) {
1901		zyd_read16_m(sc, ZYD_EEPROM_PWR_CAL + i, &val);
1902		sc->sc_pwrcal[i * 2] = val >> 8;
1903		sc->sc_pwrcal[i * 2 + 1] = val & 0xff;
1904		zyd_read16_m(sc, ZYD_EEPROM_PWR_INT + i, &val);
1905		sc->sc_pwrint[i * 2] = val >> 8;
1906		sc->sc_pwrint[i * 2 + 1] = val & 0xff;
1907		zyd_read16_m(sc, ZYD_EEPROM_36M_CAL + i, &val);
1908		sc->sc_ofdm36_cal[i * 2] = val >> 8;
1909		sc->sc_ofdm36_cal[i * 2 + 1] = val & 0xff;
1910		zyd_read16_m(sc, ZYD_EEPROM_48M_CAL + i, &val);
1911		sc->sc_ofdm48_cal[i * 2] = val >> 8;
1912		sc->sc_ofdm48_cal[i * 2 + 1] = val & 0xff;
1913		zyd_read16_m(sc, ZYD_EEPROM_54M_CAL + i, &val);
1914		sc->sc_ofdm54_cal[i * 2] = val >> 8;
1915		sc->sc_ofdm54_cal[i * 2 + 1] = val & 0xff;
1916	}
1917fail:
1918	return (error);
1919}
1920
1921static int
1922zyd_get_macaddr(struct zyd_softc *sc)
1923{
1924	struct usb_device_request req;
1925	usb_error_t error;
1926
1927	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1928	req.bRequest = ZYD_READFWDATAREQ;
1929	USETW(req.wValue, ZYD_EEPROM_MAC_ADDR_P1);
1930	USETW(req.wIndex, 0);
1931	USETW(req.wLength, IEEE80211_ADDR_LEN);
1932
1933	error = zyd_do_request(sc, &req, sc->sc_bssid);
1934	if (error != 0) {
1935		device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
1936		    usbd_errstr(error));
1937	}
1938
1939	return (error);
1940}
1941
1942static int
1943zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr)
1944{
1945	int error;
1946	uint32_t tmp;
1947
1948	tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1949	zyd_write32_m(sc, ZYD_MAC_MACADRL, tmp);
1950	tmp = addr[5] << 8 | addr[4];
1951	zyd_write32_m(sc, ZYD_MAC_MACADRH, tmp);
1952fail:
1953	return (error);
1954}
1955
1956static int
1957zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr)
1958{
1959	int error;
1960	uint32_t tmp;
1961
1962	tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1963	zyd_write32_m(sc, ZYD_MAC_BSSADRL, tmp);
1964	tmp = addr[5] << 8 | addr[4];
1965	zyd_write32_m(sc, ZYD_MAC_BSSADRH, tmp);
1966fail:
1967	return (error);
1968}
1969
1970static int
1971zyd_switch_radio(struct zyd_softc *sc, int on)
1972{
1973	struct zyd_rf *rf = &sc->sc_rf;
1974	int error;
1975
1976	error = zyd_lock_phy(sc);
1977	if (error != 0)
1978		goto fail;
1979	error = (*rf->switch_radio)(rf, on);
1980	if (error != 0)
1981		goto fail;
1982	error = zyd_unlock_phy(sc);
1983fail:
1984	return (error);
1985}
1986
1987static int
1988zyd_set_led(struct zyd_softc *sc, int which, int on)
1989{
1990	int error;
1991	uint32_t tmp;
1992
1993	zyd_read32_m(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
1994	tmp &= ~which;
1995	if (on)
1996		tmp |= which;
1997	zyd_write32_m(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
1998fail:
1999	return (error);
2000}
2001
2002static void
2003zyd_set_multi(struct zyd_softc *sc)
2004{
2005	int error;
2006	struct ifnet *ifp = sc->sc_ifp;
2007	struct ieee80211com *ic = ifp->if_l2com;
2008	struct ifmultiaddr *ifma;
2009	uint32_t low, high;
2010	uint8_t v;
2011
2012	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2013		return;
2014
2015	low = 0x00000000;
2016	high = 0x80000000;
2017
2018	if (ic->ic_opmode == IEEE80211_M_MONITOR ||
2019	    (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC))) {
2020		low = 0xffffffff;
2021		high = 0xffffffff;
2022	} else {
2023		if_maddr_rlock(ifp);
2024		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2025			if (ifma->ifma_addr->sa_family != AF_LINK)
2026				continue;
2027			v = ((uint8_t *)LLADDR((struct sockaddr_dl *)
2028			    ifma->ifma_addr))[5] >> 2;
2029			if (v < 32)
2030				low |= 1 << v;
2031			else
2032				high |= 1 << (v - 32);
2033		}
2034		if_maddr_runlock(ifp);
2035	}
2036
2037	/* reprogram multicast global hash table */
2038	zyd_write32_m(sc, ZYD_MAC_GHTBL, low);
2039	zyd_write32_m(sc, ZYD_MAC_GHTBH, high);
2040fail:
2041	if (error != 0)
2042		device_printf(sc->sc_dev,
2043		    "could not set multicast hash table\n");
2044}
2045
2046static void
2047zyd_update_mcast(struct ifnet *ifp)
2048{
2049	struct zyd_softc *sc = ifp->if_softc;
2050
2051	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2052		return;
2053
2054	ZYD_LOCK(sc);
2055	zyd_set_multi(sc);
2056	ZYD_UNLOCK(sc);
2057}
2058
2059static int
2060zyd_set_rxfilter(struct zyd_softc *sc)
2061{
2062	struct ifnet *ifp = sc->sc_ifp;
2063	struct ieee80211com *ic = ifp->if_l2com;
2064	uint32_t rxfilter;
2065
2066	switch (ic->ic_opmode) {
2067	case IEEE80211_M_STA:
2068		rxfilter = ZYD_FILTER_BSS;
2069		break;
2070	case IEEE80211_M_IBSS:
2071	case IEEE80211_M_HOSTAP:
2072		rxfilter = ZYD_FILTER_HOSTAP;
2073		break;
2074	case IEEE80211_M_MONITOR:
2075		rxfilter = ZYD_FILTER_MONITOR;
2076		break;
2077	default:
2078		/* should not get there */
2079		return (EINVAL);
2080	}
2081	return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
2082}
2083
2084static void
2085zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c)
2086{
2087	int error;
2088	struct ifnet *ifp = sc->sc_ifp;
2089	struct ieee80211com *ic = ifp->if_l2com;
2090	struct zyd_rf *rf = &sc->sc_rf;
2091	uint32_t tmp;
2092	int chan;
2093
2094	chan = ieee80211_chan2ieee(ic, c);
2095	if (chan == 0 || chan == IEEE80211_CHAN_ANY) {
2096		/* XXX should NEVER happen */
2097		device_printf(sc->sc_dev,
2098		    "%s: invalid channel %x\n", __func__, chan);
2099		return;
2100	}
2101
2102	error = zyd_lock_phy(sc);
2103	if (error != 0)
2104		goto fail;
2105
2106	error = (*rf->set_channel)(rf, chan);
2107	if (error != 0)
2108		goto fail;
2109
2110	if (rf->update_pwr) {
2111		/* update Tx power */
2112		zyd_write16_m(sc, ZYD_CR31, sc->sc_pwrint[chan - 1]);
2113
2114		if (sc->sc_macrev == ZYD_ZD1211B) {
2115			zyd_write16_m(sc, ZYD_CR67,
2116			    sc->sc_ofdm36_cal[chan - 1]);
2117			zyd_write16_m(sc, ZYD_CR66,
2118			    sc->sc_ofdm48_cal[chan - 1]);
2119			zyd_write16_m(sc, ZYD_CR65,
2120			    sc->sc_ofdm54_cal[chan - 1]);
2121			zyd_write16_m(sc, ZYD_CR68, sc->sc_pwrcal[chan - 1]);
2122			zyd_write16_m(sc, ZYD_CR69, 0x28);
2123			zyd_write16_m(sc, ZYD_CR69, 0x2a);
2124		}
2125	}
2126	if (sc->sc_cckgain) {
2127		/* set CCK baseband gain from EEPROM */
2128		if (zyd_read32(sc, ZYD_EEPROM_PHY_REG, &tmp) == 0)
2129			zyd_write16_m(sc, ZYD_CR47, tmp & 0xff);
2130	}
2131	if (sc->sc_bandedge6 && rf->bandedge6 != NULL) {
2132		error = (*rf->bandedge6)(rf, c);
2133		if (error != 0)
2134			goto fail;
2135	}
2136	zyd_write32_m(sc, ZYD_CR_CONFIG_PHILIPS, 0);
2137
2138	error = zyd_unlock_phy(sc);
2139	if (error != 0)
2140		goto fail;
2141
2142	sc->sc_rxtap.wr_chan_freq = sc->sc_txtap.wt_chan_freq =
2143	    htole16(c->ic_freq);
2144	sc->sc_rxtap.wr_chan_flags = sc->sc_txtap.wt_chan_flags =
2145	    htole16(c->ic_flags);
2146fail:
2147	return;
2148}
2149
2150static int
2151zyd_set_beacon_interval(struct zyd_softc *sc, int bintval)
2152{
2153	int error;
2154	uint32_t val;
2155
2156	zyd_read32_m(sc, ZYD_CR_ATIM_WND_PERIOD, &val);
2157	sc->sc_atim_wnd = val;
2158	zyd_read32_m(sc, ZYD_CR_PRE_TBTT, &val);
2159	sc->sc_pre_tbtt = val;
2160	sc->sc_bcn_int = bintval;
2161
2162	if (sc->sc_bcn_int <= 5)
2163		sc->sc_bcn_int = 5;
2164	if (sc->sc_pre_tbtt < 4 || sc->sc_pre_tbtt >= sc->sc_bcn_int)
2165		sc->sc_pre_tbtt = sc->sc_bcn_int - 1;
2166	if (sc->sc_atim_wnd >= sc->sc_pre_tbtt)
2167		sc->sc_atim_wnd = sc->sc_pre_tbtt - 1;
2168
2169	zyd_write32_m(sc, ZYD_CR_ATIM_WND_PERIOD, sc->sc_atim_wnd);
2170	zyd_write32_m(sc, ZYD_CR_PRE_TBTT, sc->sc_pre_tbtt);
2171	zyd_write32_m(sc, ZYD_CR_BCN_INTERVAL, sc->sc_bcn_int);
2172fail:
2173	return (error);
2174}
2175
2176static void
2177zyd_rx_data(struct usb_xfer *xfer, int offset, uint16_t len)
2178{
2179	struct zyd_softc *sc = usbd_xfer_softc(xfer);
2180	struct ifnet *ifp = sc->sc_ifp;
2181	struct ieee80211com *ic = ifp->if_l2com;
2182	struct zyd_plcphdr plcp;
2183	struct zyd_rx_stat stat;
2184	struct usb_page_cache *pc;
2185	struct mbuf *m;
2186	int rlen, rssi;
2187
2188	if (len < ZYD_MIN_FRAGSZ) {
2189		DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too short (length=%d)\n",
2190		    device_get_nameunit(sc->sc_dev), len);
2191		ifp->if_ierrors++;
2192		return;
2193	}
2194	pc = usbd_xfer_get_frame(xfer, 0);
2195	usbd_copy_out(pc, offset, &plcp, sizeof(plcp));
2196	usbd_copy_out(pc, offset + len - sizeof(stat), &stat, sizeof(stat));
2197
2198	if (stat.flags & ZYD_RX_ERROR) {
2199		DPRINTF(sc, ZYD_DEBUG_RECV,
2200		    "%s: RX status indicated error (%x)\n",
2201		    device_get_nameunit(sc->sc_dev), stat.flags);
2202		ifp->if_ierrors++;
2203		return;
2204	}
2205
2206	/* compute actual frame length */
2207	rlen = len - sizeof(struct zyd_plcphdr) -
2208	    sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN;
2209
2210	/* allocate a mbuf to store the frame */
2211	if (rlen > (int)MCLBYTES) {
2212		DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too long (length=%d)\n",
2213		    device_get_nameunit(sc->sc_dev), rlen);
2214		ifp->if_ierrors++;
2215		return;
2216	} else if (rlen > (int)MHLEN)
2217		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2218	else
2219		m = m_gethdr(M_NOWAIT, MT_DATA);
2220	if (m == NULL) {
2221		DPRINTF(sc, ZYD_DEBUG_RECV, "%s: could not allocate rx mbuf\n",
2222		    device_get_nameunit(sc->sc_dev));
2223		ifp->if_ierrors++;
2224		return;
2225	}
2226	m->m_pkthdr.rcvif = ifp;
2227	m->m_pkthdr.len = m->m_len = rlen;
2228	usbd_copy_out(pc, offset + sizeof(plcp), mtod(m, uint8_t *), rlen);
2229
2230	if (ieee80211_radiotap_active(ic)) {
2231		struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
2232
2233		tap->wr_flags = 0;
2234		if (stat.flags & (ZYD_RX_BADCRC16 | ZYD_RX_BADCRC32))
2235			tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
2236		/* XXX toss, no way to express errors */
2237		if (stat.flags & ZYD_RX_DECRYPTERR)
2238			tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
2239		tap->wr_rate = ieee80211_plcp2rate(plcp.signal,
2240		    (stat.flags & ZYD_RX_OFDM) ?
2241			IEEE80211_T_OFDM : IEEE80211_T_CCK);
2242		tap->wr_antsignal = stat.rssi + -95;
2243		tap->wr_antnoise = -95;	/* XXX */
2244	}
2245	rssi = (stat.rssi > 63) ? 127 : 2 * stat.rssi;
2246
2247	sc->sc_rx_data[sc->sc_rx_count].rssi = rssi;
2248	sc->sc_rx_data[sc->sc_rx_count].m = m;
2249	sc->sc_rx_count++;
2250}
2251
2252static void
2253zyd_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
2254{
2255	struct zyd_softc *sc = usbd_xfer_softc(xfer);
2256	struct ifnet *ifp = sc->sc_ifp;
2257	struct ieee80211com *ic = ifp->if_l2com;
2258	struct ieee80211_node *ni;
2259	struct zyd_rx_desc desc;
2260	struct mbuf *m;
2261	struct usb_page_cache *pc;
2262	uint32_t offset;
2263	uint8_t rssi;
2264	int8_t nf;
2265	int i;
2266	int actlen;
2267
2268	usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL);
2269
2270	sc->sc_rx_count = 0;
2271	switch (USB_GET_STATE(xfer)) {
2272	case USB_ST_TRANSFERRED:
2273		pc = usbd_xfer_get_frame(xfer, 0);
2274		usbd_copy_out(pc, actlen - sizeof(desc), &desc, sizeof(desc));
2275
2276		offset = 0;
2277		if (UGETW(desc.tag) == ZYD_TAG_MULTIFRAME) {
2278			DPRINTF(sc, ZYD_DEBUG_RECV,
2279			    "%s: received multi-frame transfer\n", __func__);
2280
2281			for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) {
2282				uint16_t len16 = UGETW(desc.len[i]);
2283
2284				if (len16 == 0 || len16 > actlen)
2285					break;
2286
2287				zyd_rx_data(xfer, offset, len16);
2288
2289				/* next frame is aligned on a 32-bit boundary */
2290				len16 = (len16 + 3) & ~3;
2291				offset += len16;
2292				if (len16 > actlen)
2293					break;
2294				actlen -= len16;
2295			}
2296		} else {
2297			DPRINTF(sc, ZYD_DEBUG_RECV,
2298			    "%s: received single-frame transfer\n", __func__);
2299
2300			zyd_rx_data(xfer, 0, actlen);
2301		}
2302		/* FALLTHROUGH */
2303	case USB_ST_SETUP:
2304tr_setup:
2305		usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
2306		usbd_transfer_submit(xfer);
2307
2308		/*
2309		 * At the end of a USB callback it is always safe to unlock
2310		 * the private mutex of a device! That is why we do the
2311		 * "ieee80211_input" here, and not some lines up!
2312		 */
2313		ZYD_UNLOCK(sc);
2314		for (i = 0; i < sc->sc_rx_count; i++) {
2315			rssi = sc->sc_rx_data[i].rssi;
2316			m = sc->sc_rx_data[i].m;
2317			sc->sc_rx_data[i].m = NULL;
2318
2319			nf = -95;	/* XXX */
2320
2321			ni = ieee80211_find_rxnode(ic,
2322			    mtod(m, struct ieee80211_frame_min *));
2323			if (ni != NULL) {
2324				(void)ieee80211_input(ni, m, rssi, nf);
2325				ieee80211_free_node(ni);
2326			} else
2327				(void)ieee80211_input_all(ic, m, rssi, nf);
2328		}
2329		if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 &&
2330		    !IFQ_IS_EMPTY(&ifp->if_snd))
2331			zyd_start(ifp);
2332		ZYD_LOCK(sc);
2333		break;
2334
2335	default:			/* Error */
2336		DPRINTF(sc, ZYD_DEBUG_ANY, "frame error: %s\n", usbd_errstr(error));
2337
2338		if (error != USB_ERR_CANCELLED) {
2339			/* try to clear stall first */
2340			usbd_xfer_set_stall(xfer);
2341			goto tr_setup;
2342		}
2343		break;
2344	}
2345}
2346
2347static uint8_t
2348zyd_plcp_signal(struct zyd_softc *sc, int rate)
2349{
2350	switch (rate) {
2351	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
2352	case 12:
2353		return (0xb);
2354	case 18:
2355		return (0xf);
2356	case 24:
2357		return (0xa);
2358	case 36:
2359		return (0xe);
2360	case 48:
2361		return (0x9);
2362	case 72:
2363		return (0xd);
2364	case 96:
2365		return (0x8);
2366	case 108:
2367		return (0xc);
2368	/* CCK rates (NB: not IEEE std, device-specific) */
2369	case 2:
2370		return (0x0);
2371	case 4:
2372		return (0x1);
2373	case 11:
2374		return (0x2);
2375	case 22:
2376		return (0x3);
2377	}
2378
2379	device_printf(sc->sc_dev, "unsupported rate %d\n", rate);
2380	return (0x0);
2381}
2382
2383static void
2384zyd_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
2385{
2386	struct zyd_softc *sc = usbd_xfer_softc(xfer);
2387	struct ifnet *ifp = sc->sc_ifp;
2388	struct ieee80211vap *vap;
2389	struct zyd_tx_data *data;
2390	struct mbuf *m;
2391	struct usb_page_cache *pc;
2392	int actlen;
2393
2394	usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL);
2395
2396	switch (USB_GET_STATE(xfer)) {
2397	case USB_ST_TRANSFERRED:
2398		DPRINTF(sc, ZYD_DEBUG_ANY, "transfer complete, %u bytes\n",
2399		    actlen);
2400
2401		/* free resources */
2402		data = usbd_xfer_get_priv(xfer);
2403		zyd_tx_free(data, 0);
2404		usbd_xfer_set_priv(xfer, NULL);
2405
2406		ifp->if_opackets++;
2407		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2408
2409		/* FALLTHROUGH */
2410	case USB_ST_SETUP:
2411tr_setup:
2412		data = STAILQ_FIRST(&sc->tx_q);
2413		if (data) {
2414			STAILQ_REMOVE_HEAD(&sc->tx_q, next);
2415			m = data->m;
2416
2417			if (m->m_pkthdr.len > (int)ZYD_MAX_TXBUFSZ) {
2418				DPRINTF(sc, ZYD_DEBUG_ANY, "data overflow, %u bytes\n",
2419				    m->m_pkthdr.len);
2420				m->m_pkthdr.len = ZYD_MAX_TXBUFSZ;
2421			}
2422			pc = usbd_xfer_get_frame(xfer, 0);
2423			usbd_copy_in(pc, 0, &data->desc, ZYD_TX_DESC_SIZE);
2424			usbd_m_copy_in(pc, ZYD_TX_DESC_SIZE, m, 0,
2425			    m->m_pkthdr.len);
2426
2427			vap = data->ni->ni_vap;
2428			if (ieee80211_radiotap_active_vap(vap)) {
2429				struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2430
2431				tap->wt_flags = 0;
2432				tap->wt_rate = data->rate;
2433
2434				ieee80211_radiotap_tx(vap, m);
2435			}
2436
2437			usbd_xfer_set_frame_len(xfer, 0, ZYD_TX_DESC_SIZE + m->m_pkthdr.len);
2438			usbd_xfer_set_priv(xfer, data);
2439			usbd_transfer_submit(xfer);
2440		}
2441		ZYD_UNLOCK(sc);
2442		zyd_start(ifp);
2443		ZYD_LOCK(sc);
2444		break;
2445
2446	default:			/* Error */
2447		DPRINTF(sc, ZYD_DEBUG_ANY, "transfer error, %s\n",
2448		    usbd_errstr(error));
2449
2450		ifp->if_oerrors++;
2451		data = usbd_xfer_get_priv(xfer);
2452		usbd_xfer_set_priv(xfer, NULL);
2453		if (data != NULL)
2454			zyd_tx_free(data, error);
2455
2456		if (error != USB_ERR_CANCELLED) {
2457			if (error == USB_ERR_TIMEOUT)
2458				device_printf(sc->sc_dev, "device timeout\n");
2459
2460			/*
2461			 * Try to clear stall first, also if other
2462			 * errors occur, hence clearing stall
2463			 * introduces a 50 ms delay:
2464			 */
2465			usbd_xfer_set_stall(xfer);
2466			goto tr_setup;
2467		}
2468		break;
2469	}
2470}
2471
2472static int
2473zyd_tx_start(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2474{
2475	struct ieee80211vap *vap = ni->ni_vap;
2476	struct ieee80211com *ic = ni->ni_ic;
2477	struct zyd_tx_desc *desc;
2478	struct zyd_tx_data *data;
2479	struct ieee80211_frame *wh;
2480	const struct ieee80211_txparam *tp;
2481	struct ieee80211_key *k;
2482	int rate, totlen;
2483	static uint8_t ratediv[] = ZYD_TX_RATEDIV;
2484	uint8_t phy;
2485	uint16_t pktlen;
2486	uint32_t bits;
2487
2488	wh = mtod(m0, struct ieee80211_frame *);
2489	data = STAILQ_FIRST(&sc->tx_free);
2490	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
2491	sc->tx_nfree--;
2492
2493	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT ||
2494	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_CTL) {
2495		tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2496		rate = tp->mgmtrate;
2497	} else {
2498		tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
2499		/* for data frames */
2500		if (IEEE80211_IS_MULTICAST(wh->i_addr1))
2501			rate = tp->mcastrate;
2502		else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2503			rate = tp->ucastrate;
2504		else {
2505			(void) ieee80211_ratectl_rate(ni, NULL, 0);
2506			rate = ni->ni_txrate;
2507		}
2508	}
2509
2510	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2511		k = ieee80211_crypto_encap(ni, m0);
2512		if (k == NULL) {
2513			m_freem(m0);
2514			return (ENOBUFS);
2515		}
2516		/* packet header may have moved, reset our local pointer */
2517		wh = mtod(m0, struct ieee80211_frame *);
2518	}
2519
2520	data->ni = ni;
2521	data->m = m0;
2522	data->rate = rate;
2523
2524	/* fill Tx descriptor */
2525	desc = &data->desc;
2526	phy = zyd_plcp_signal(sc, rate);
2527	desc->phy = phy;
2528	if (ZYD_RATE_IS_OFDM(rate)) {
2529		desc->phy |= ZYD_TX_PHY_OFDM;
2530		if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
2531			desc->phy |= ZYD_TX_PHY_5GHZ;
2532	} else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2533		desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2534
2535	totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2536	desc->len = htole16(totlen);
2537
2538	desc->flags = ZYD_TX_FLAG_BACKOFF;
2539	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2540		/* multicast frames are not sent at OFDM rates in 802.11b/g */
2541		if (totlen > vap->iv_rtsthreshold) {
2542			desc->flags |= ZYD_TX_FLAG_RTS;
2543		} else if (ZYD_RATE_IS_OFDM(rate) &&
2544		    (ic->ic_flags & IEEE80211_F_USEPROT)) {
2545			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2546				desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2547			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2548				desc->flags |= ZYD_TX_FLAG_RTS;
2549		}
2550	} else
2551		desc->flags |= ZYD_TX_FLAG_MULTICAST;
2552	if ((wh->i_fc[0] &
2553	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2554	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2555		desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2556
2557	/* actual transmit length (XXX why +10?) */
2558	pktlen = ZYD_TX_DESC_SIZE + 10;
2559	if (sc->sc_macrev == ZYD_ZD1211)
2560		pktlen += totlen;
2561	desc->pktlen = htole16(pktlen);
2562
2563	bits = (rate == 11) ? (totlen * 16) + 10 :
2564	    ((rate == 22) ? (totlen * 8) + 10 : (totlen * 8));
2565	desc->plcp_length = htole16(bits / ratediv[phy]);
2566	desc->plcp_service = 0;
2567	if (rate == 22 && (bits % 11) > 0 && (bits % 11) <= 3)
2568		desc->plcp_service |= ZYD_PLCP_LENGEXT;
2569	desc->nextlen = 0;
2570
2571	if (ieee80211_radiotap_active_vap(vap)) {
2572		struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2573
2574		tap->wt_flags = 0;
2575		tap->wt_rate = rate;
2576
2577		ieee80211_radiotap_tx(vap, m0);
2578	}
2579
2580	DPRINTF(sc, ZYD_DEBUG_XMIT,
2581	    "%s: sending data frame len=%zu rate=%u\n",
2582	    device_get_nameunit(sc->sc_dev), (size_t)m0->m_pkthdr.len,
2583		rate);
2584
2585	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
2586	usbd_transfer_start(sc->sc_xfer[ZYD_BULK_WR]);
2587
2588	return (0);
2589}
2590
2591static void
2592zyd_start(struct ifnet *ifp)
2593{
2594	struct zyd_softc *sc = ifp->if_softc;
2595	struct ieee80211_node *ni;
2596	struct mbuf *m;
2597
2598	ZYD_LOCK(sc);
2599	for (;;) {
2600		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2601		if (m == NULL)
2602			break;
2603		if (sc->tx_nfree == 0) {
2604			IFQ_DRV_PREPEND(&ifp->if_snd, m);
2605			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2606			break;
2607		}
2608		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
2609		if (zyd_tx_start(sc, m, ni) != 0) {
2610			ieee80211_free_node(ni);
2611			ifp->if_oerrors++;
2612			break;
2613		}
2614	}
2615	ZYD_UNLOCK(sc);
2616}
2617
2618static int
2619zyd_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2620	const struct ieee80211_bpf_params *params)
2621{
2622	struct ieee80211com *ic = ni->ni_ic;
2623	struct ifnet *ifp = ic->ic_ifp;
2624	struct zyd_softc *sc = ifp->if_softc;
2625
2626	ZYD_LOCK(sc);
2627	/* prevent management frames from being sent if we're not ready */
2628	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2629		ZYD_UNLOCK(sc);
2630		m_freem(m);
2631		ieee80211_free_node(ni);
2632		return (ENETDOWN);
2633	}
2634	if (sc->tx_nfree == 0) {
2635		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2636		ZYD_UNLOCK(sc);
2637		m_freem(m);
2638		ieee80211_free_node(ni);
2639		return (ENOBUFS);		/* XXX */
2640	}
2641
2642	/*
2643	 * Legacy path; interpret frame contents to decide
2644	 * precisely how to send the frame.
2645	 * XXX raw path
2646	 */
2647	if (zyd_tx_start(sc, m, ni) != 0) {
2648		ZYD_UNLOCK(sc);
2649		ifp->if_oerrors++;
2650		ieee80211_free_node(ni);
2651		return (EIO);
2652	}
2653	ZYD_UNLOCK(sc);
2654	return (0);
2655}
2656
2657static int
2658zyd_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2659{
2660	struct zyd_softc *sc = ifp->if_softc;
2661	struct ieee80211com *ic = ifp->if_l2com;
2662	struct ifreq *ifr = (struct ifreq *) data;
2663	int error;
2664	int startall = 0;
2665
2666	ZYD_LOCK(sc);
2667	error = (sc->sc_flags & ZYD_FLAG_DETACHED) ? ENXIO : 0;
2668	ZYD_UNLOCK(sc);
2669	if (error)
2670		return (error);
2671
2672	switch (cmd) {
2673	case SIOCSIFFLAGS:
2674		ZYD_LOCK(sc);
2675		if (ifp->if_flags & IFF_UP) {
2676			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2677				zyd_init_locked(sc);
2678				startall = 1;
2679			} else
2680				zyd_set_multi(sc);
2681		} else {
2682			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2683				zyd_stop(sc);
2684		}
2685		ZYD_UNLOCK(sc);
2686		if (startall)
2687			ieee80211_start_all(ic);
2688		break;
2689	case SIOCGIFMEDIA:
2690		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2691		break;
2692	case SIOCGIFADDR:
2693		error = ether_ioctl(ifp, cmd, data);
2694		break;
2695	default:
2696		error = EINVAL;
2697		break;
2698	}
2699	return (error);
2700}
2701
2702static void
2703zyd_init_locked(struct zyd_softc *sc)
2704{
2705	struct ifnet *ifp = sc->sc_ifp;
2706	struct ieee80211com *ic = ifp->if_l2com;
2707	struct usb_config_descriptor *cd;
2708	int error;
2709	uint32_t val;
2710
2711	ZYD_LOCK_ASSERT(sc, MA_OWNED);
2712
2713	if (!(sc->sc_flags & ZYD_FLAG_INITONCE)) {
2714		error = zyd_loadfirmware(sc);
2715		if (error != 0) {
2716			device_printf(sc->sc_dev,
2717			    "could not load firmware (error=%d)\n", error);
2718			goto fail;
2719		}
2720
2721		/* reset device */
2722		cd = usbd_get_config_descriptor(sc->sc_udev);
2723		error = usbd_req_set_config(sc->sc_udev, &sc->sc_mtx,
2724		    cd->bConfigurationValue);
2725		if (error)
2726			device_printf(sc->sc_dev, "reset failed, continuing\n");
2727
2728		error = zyd_hw_init(sc);
2729		if (error) {
2730			device_printf(sc->sc_dev,
2731			    "hardware initialization failed\n");
2732			goto fail;
2733		}
2734
2735		device_printf(sc->sc_dev,
2736		    "HMAC ZD1211%s, FW %02x.%02x, RF %s S%x, PA%x LED %x "
2737		    "BE%x NP%x Gain%x F%x\n",
2738		    (sc->sc_macrev == ZYD_ZD1211) ? "": "B",
2739		    sc->sc_fwrev >> 8, sc->sc_fwrev & 0xff,
2740		    zyd_rf_name(sc->sc_rfrev), sc->sc_al2230s, sc->sc_parev,
2741		    sc->sc_ledtype, sc->sc_bandedge6, sc->sc_newphy,
2742		    sc->sc_cckgain, sc->sc_fix_cr157);
2743
2744		/* read regulatory domain (currently unused) */
2745		zyd_read32_m(sc, ZYD_EEPROM_SUBID, &val);
2746		sc->sc_regdomain = val >> 16;
2747		DPRINTF(sc, ZYD_DEBUG_INIT, "regulatory domain %x\n",
2748		    sc->sc_regdomain);
2749
2750		/* we'll do software WEP decryption for now */
2751		DPRINTF(sc, ZYD_DEBUG_INIT, "%s: setting encryption type\n",
2752		    __func__);
2753		zyd_write32_m(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
2754
2755		sc->sc_flags |= ZYD_FLAG_INITONCE;
2756	}
2757
2758	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2759		zyd_stop(sc);
2760
2761	DPRINTF(sc, ZYD_DEBUG_INIT, "setting MAC address to %6D\n",
2762	    IF_LLADDR(ifp), ":");
2763	error = zyd_set_macaddr(sc, IF_LLADDR(ifp));
2764	if (error != 0)
2765		return;
2766
2767	/* set basic rates */
2768	if (ic->ic_curmode == IEEE80211_MODE_11B)
2769		zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x0003);
2770	else if (ic->ic_curmode == IEEE80211_MODE_11A)
2771		zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x1500);
2772	else	/* assumes 802.11b/g */
2773		zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0xff0f);
2774
2775	/* promiscuous mode */
2776	zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0);
2777	/* multicast setup */
2778	zyd_set_multi(sc);
2779	/* set RX filter  */
2780	error = zyd_set_rxfilter(sc);
2781	if (error != 0)
2782		goto fail;
2783
2784	/* switch radio transmitter ON */
2785	error = zyd_switch_radio(sc, 1);
2786	if (error != 0)
2787		goto fail;
2788	/* set default BSS channel */
2789	zyd_set_chan(sc, ic->ic_curchan);
2790
2791	/*
2792	 * Allocate Tx and Rx xfer queues.
2793	 */
2794	zyd_setup_tx_list(sc);
2795
2796	/* enable interrupts */
2797	zyd_write32_m(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
2798
2799	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2800	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2801	usbd_xfer_set_stall(sc->sc_xfer[ZYD_BULK_WR]);
2802	usbd_transfer_start(sc->sc_xfer[ZYD_BULK_RD]);
2803	usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]);
2804
2805	return;
2806
2807fail:	zyd_stop(sc);
2808	return;
2809}
2810
2811static void
2812zyd_init(void *priv)
2813{
2814	struct zyd_softc *sc = priv;
2815	struct ifnet *ifp = sc->sc_ifp;
2816	struct ieee80211com *ic = ifp->if_l2com;
2817
2818	ZYD_LOCK(sc);
2819	zyd_init_locked(sc);
2820	ZYD_UNLOCK(sc);
2821
2822	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2823		ieee80211_start_all(ic);		/* start all vap's */
2824}
2825
2826static void
2827zyd_stop(struct zyd_softc *sc)
2828{
2829	struct ifnet *ifp = sc->sc_ifp;
2830	int error;
2831
2832	ZYD_LOCK_ASSERT(sc, MA_OWNED);
2833
2834	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2835
2836	/*
2837	 * Drain all the transfers, if not already drained:
2838	 */
2839	ZYD_UNLOCK(sc);
2840	usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_WR]);
2841	usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_RD]);
2842	ZYD_LOCK(sc);
2843
2844	zyd_unsetup_tx_list(sc);
2845
2846	/* Stop now if the device was never set up */
2847	if (!(sc->sc_flags & ZYD_FLAG_INITONCE))
2848		return;
2849
2850	/* switch radio transmitter OFF */
2851	error = zyd_switch_radio(sc, 0);
2852	if (error != 0)
2853		goto fail;
2854	/* disable Rx */
2855	zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0);
2856	/* disable interrupts */
2857	zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0);
2858
2859fail:
2860	return;
2861}
2862
2863static int
2864zyd_loadfirmware(struct zyd_softc *sc)
2865{
2866	struct usb_device_request req;
2867	size_t size;
2868	u_char *fw;
2869	uint8_t stat;
2870	uint16_t addr;
2871
2872	if (sc->sc_flags & ZYD_FLAG_FWLOADED)
2873		return (0);
2874
2875	if (sc->sc_macrev == ZYD_ZD1211) {
2876		fw = (u_char *)zd1211_firmware;
2877		size = sizeof(zd1211_firmware);
2878	} else {
2879		fw = (u_char *)zd1211b_firmware;
2880		size = sizeof(zd1211b_firmware);
2881	}
2882
2883	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2884	req.bRequest = ZYD_DOWNLOADREQ;
2885	USETW(req.wIndex, 0);
2886
2887	addr = ZYD_FIRMWARE_START_ADDR;
2888	while (size > 0) {
2889		/*
2890		 * When the transfer size is 4096 bytes, it is not
2891		 * likely to be able to transfer it.
2892		 * The cause is port or machine or chip?
2893		 */
2894		const int mlen = min(size, 64);
2895
2896		DPRINTF(sc, ZYD_DEBUG_FW,
2897		    "loading firmware block: len=%d, addr=0x%x\n", mlen, addr);
2898
2899		USETW(req.wValue, addr);
2900		USETW(req.wLength, mlen);
2901		if (zyd_do_request(sc, &req, fw) != 0)
2902			return (EIO);
2903
2904		addr += mlen / 2;
2905		fw   += mlen;
2906		size -= mlen;
2907	}
2908
2909	/* check whether the upload succeeded */
2910	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2911	req.bRequest = ZYD_DOWNLOADSTS;
2912	USETW(req.wValue, 0);
2913	USETW(req.wIndex, 0);
2914	USETW(req.wLength, sizeof(stat));
2915	if (zyd_do_request(sc, &req, &stat) != 0)
2916		return (EIO);
2917
2918	sc->sc_flags |= ZYD_FLAG_FWLOADED;
2919
2920	return (stat & 0x80) ? (EIO) : (0);
2921}
2922
2923static void
2924zyd_scan_start(struct ieee80211com *ic)
2925{
2926	struct ifnet *ifp = ic->ic_ifp;
2927	struct zyd_softc *sc = ifp->if_softc;
2928
2929	ZYD_LOCK(sc);
2930	/* want broadcast address while scanning */
2931	zyd_set_bssid(sc, ifp->if_broadcastaddr);
2932	ZYD_UNLOCK(sc);
2933}
2934
2935static void
2936zyd_scan_end(struct ieee80211com *ic)
2937{
2938	struct zyd_softc *sc = ic->ic_ifp->if_softc;
2939
2940	ZYD_LOCK(sc);
2941	/* restore previous bssid */
2942	zyd_set_bssid(sc, sc->sc_bssid);
2943	ZYD_UNLOCK(sc);
2944}
2945
2946static void
2947zyd_set_channel(struct ieee80211com *ic)
2948{
2949	struct zyd_softc *sc = ic->ic_ifp->if_softc;
2950
2951	ZYD_LOCK(sc);
2952	zyd_set_chan(sc, ic->ic_curchan);
2953	ZYD_UNLOCK(sc);
2954}
2955
2956static device_method_t zyd_methods[] = {
2957        /* Device interface */
2958        DEVMETHOD(device_probe, zyd_match),
2959        DEVMETHOD(device_attach, zyd_attach),
2960        DEVMETHOD(device_detach, zyd_detach),
2961	DEVMETHOD_END
2962};
2963
2964static driver_t zyd_driver = {
2965	.name = "zyd",
2966	.methods = zyd_methods,
2967	.size = sizeof(struct zyd_softc)
2968};
2969
2970static devclass_t zyd_devclass;
2971
2972DRIVER_MODULE(zyd, uhub, zyd_driver, zyd_devclass, NULL, 0);
2973MODULE_DEPEND(zyd, usb, 1, 1, 1);
2974MODULE_DEPEND(zyd, wlan, 1, 1, 1);
2975MODULE_VERSION(zyd, 1);
2976