if_zyd.c revision 192984
1/*	$OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $	*/
2/*	$NetBSD: if_zyd.c,v 1.7 2007/06/21 04:04:29 kiyohara Exp $	*/
3/*	$FreeBSD: head/sys/dev/usb/wlan/if_zyd.c 192984 2009-05-28 17:36:36Z thompsa $	*/
4
5/*-
6 * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr>
7 * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 */
21
22#include <sys/cdefs.h>
23__FBSDID("$FreeBSD: head/sys/dev/usb/wlan/if_zyd.c 192984 2009-05-28 17:36:36Z thompsa $");
24
25/*
26 * ZyDAS ZD1211/ZD1211B USB WLAN driver.
27 */
28
29#include <sys/param.h>
30#include <sys/sockio.h>
31#include <sys/sysctl.h>
32#include <sys/lock.h>
33#include <sys/mutex.h>
34#include <sys/mbuf.h>
35#include <sys/kernel.h>
36#include <sys/socket.h>
37#include <sys/systm.h>
38#include <sys/malloc.h>
39#include <sys/module.h>
40#include <sys/bus.h>
41#include <sys/endian.h>
42#include <sys/kdb.h>
43
44#include <machine/bus.h>
45#include <machine/resource.h>
46#include <sys/rman.h>
47
48#include <net/bpf.h>
49#include <net/if.h>
50#include <net/if_arp.h>
51#include <net/ethernet.h>
52#include <net/if_dl.h>
53#include <net/if_media.h>
54#include <net/if_types.h>
55
56#ifdef INET
57#include <netinet/in.h>
58#include <netinet/in_systm.h>
59#include <netinet/in_var.h>
60#include <netinet/if_ether.h>
61#include <netinet/ip.h>
62#endif
63
64#include <net80211/ieee80211_var.h>
65#include <net80211/ieee80211_regdomain.h>
66#include <net80211/ieee80211_radiotap.h>
67#include <net80211/ieee80211_amrr.h>
68
69#include <dev/usb/usb.h>
70#include <dev/usb/usb_error.h>
71#include <dev/usb/usb_core.h>
72#include <dev/usb/usb_lookup.h>
73#include <dev/usb/usb_debug.h>
74#include <dev/usb/usb_request.h>
75#include <dev/usb/usb_busdma.h>
76#include <dev/usb/usb_util.h>
77#include "usbdevs.h"
78
79#include <dev/usb/wlan/if_zydreg.h>
80#include <dev/usb/wlan/if_zydfw.h>
81
82#if USB_DEBUG
83static int zyd_debug = 0;
84
85SYSCTL_NODE(_hw_usb, OID_AUTO, zyd, CTLFLAG_RW, 0, "USB zyd");
86SYSCTL_INT(_hw_usb_zyd, OID_AUTO, debug, CTLFLAG_RW, &zyd_debug, 0,
87    "zyd debug level");
88
89enum {
90	ZYD_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
91	ZYD_DEBUG_RECV		= 0x00000002,	/* basic recv operation */
92	ZYD_DEBUG_RESET		= 0x00000004,	/* reset processing */
93	ZYD_DEBUG_INIT		= 0x00000008,	/* device init */
94	ZYD_DEBUG_TX_PROC	= 0x00000010,	/* tx ISR proc */
95	ZYD_DEBUG_RX_PROC	= 0x00000020,	/* rx ISR proc */
96	ZYD_DEBUG_STATE		= 0x00000040,	/* 802.11 state transitions */
97	ZYD_DEBUG_STAT		= 0x00000080,	/* statistic */
98	ZYD_DEBUG_FW		= 0x00000100,	/* firmware */
99	ZYD_DEBUG_CMD		= 0x00000200,	/* fw commands */
100	ZYD_DEBUG_ANY		= 0xffffffff
101};
102#define	DPRINTF(sc, m, fmt, ...) do {				\
103	if (zyd_debug & (m))					\
104		printf("%s: " fmt, __func__, ## __VA_ARGS__);	\
105} while (0)
106#else
107#define	DPRINTF(sc, m, fmt, ...) do {				\
108	(void) sc;						\
109} while (0)
110#endif
111
112#define	zyd_do_request(sc,req,data) \
113    usb2_do_request_flags((sc)->sc_udev, &(sc)->sc_mtx, req, data, 0, NULL, 5000)
114
115static device_probe_t zyd_match;
116static device_attach_t zyd_attach;
117static device_detach_t zyd_detach;
118
119static usb2_callback_t zyd_intr_read_callback;
120static usb2_callback_t zyd_intr_write_callback;
121static usb2_callback_t zyd_bulk_read_callback;
122static usb2_callback_t zyd_bulk_write_callback;
123
124static struct ieee80211vap *zyd_vap_create(struct ieee80211com *,
125		    const char name[IFNAMSIZ], int unit, int opmode,
126		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
127		    const uint8_t mac[IEEE80211_ADDR_LEN]);
128static void	zyd_vap_delete(struct ieee80211vap *);
129static void	zyd_tx_free(struct zyd_tx_data *, int);
130static void	zyd_setup_tx_list(struct zyd_softc *);
131static void	zyd_unsetup_tx_list(struct zyd_softc *);
132static struct ieee80211_node *zyd_node_alloc(struct ieee80211vap *,
133			    const uint8_t mac[IEEE80211_ADDR_LEN]);
134static int	zyd_newstate(struct ieee80211vap *, enum ieee80211_state, int);
135static int	zyd_cmd(struct zyd_softc *, uint16_t, const void *, int,
136		    void *, int, int);
137static int	zyd_read16(struct zyd_softc *, uint16_t, uint16_t *);
138static int	zyd_read32(struct zyd_softc *, uint16_t, uint32_t *);
139static int	zyd_write16(struct zyd_softc *, uint16_t, uint16_t);
140static int	zyd_write32(struct zyd_softc *, uint16_t, uint32_t);
141static int	zyd_rfwrite(struct zyd_softc *, uint32_t);
142static int	zyd_lock_phy(struct zyd_softc *);
143static int	zyd_unlock_phy(struct zyd_softc *);
144static int	zyd_rf_attach(struct zyd_softc *, uint8_t);
145static const char *zyd_rf_name(uint8_t);
146static int	zyd_hw_init(struct zyd_softc *);
147static int	zyd_read_pod(struct zyd_softc *);
148static int	zyd_read_eeprom(struct zyd_softc *);
149static int	zyd_get_macaddr(struct zyd_softc *);
150static int	zyd_set_macaddr(struct zyd_softc *, const uint8_t *);
151static int	zyd_set_bssid(struct zyd_softc *, const uint8_t *);
152static int	zyd_switch_radio(struct zyd_softc *, int);
153static int	zyd_set_led(struct zyd_softc *, int, int);
154static void	zyd_set_multi(struct zyd_softc *);
155static void	zyd_update_mcast(struct ifnet *);
156static int	zyd_set_rxfilter(struct zyd_softc *);
157static void	zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *);
158static int	zyd_set_beacon_interval(struct zyd_softc *, int);
159static void	zyd_rx_data(struct usb_xfer *, int, uint16_t);
160static int	zyd_tx_mgt(struct zyd_softc *, struct mbuf *,
161		    struct ieee80211_node *);
162static int	zyd_tx_data(struct zyd_softc *, struct mbuf *,
163		    struct ieee80211_node *);
164static void	zyd_start(struct ifnet *);
165static int	zyd_raw_xmit(struct ieee80211_node *, struct mbuf *,
166		    const struct ieee80211_bpf_params *);
167static int	zyd_ioctl(struct ifnet *, u_long, caddr_t);
168static void	zyd_init_locked(struct zyd_softc *);
169static void	zyd_init(void *);
170static void	zyd_stop(struct zyd_softc *);
171static int	zyd_loadfirmware(struct zyd_softc *);
172static void	zyd_newassoc(struct ieee80211_node *, int);
173static void	zyd_scan_start(struct ieee80211com *);
174static void	zyd_scan_end(struct ieee80211com *);
175static void	zyd_set_channel(struct ieee80211com *);
176static int	zyd_rfmd_init(struct zyd_rf *);
177static int	zyd_rfmd_switch_radio(struct zyd_rf *, int);
178static int	zyd_rfmd_set_channel(struct zyd_rf *, uint8_t);
179static int	zyd_al2230_init(struct zyd_rf *);
180static int	zyd_al2230_switch_radio(struct zyd_rf *, int);
181static int	zyd_al2230_set_channel(struct zyd_rf *, uint8_t);
182static int	zyd_al2230_set_channel_b(struct zyd_rf *, uint8_t);
183static int	zyd_al2230_init_b(struct zyd_rf *);
184static int	zyd_al7230B_init(struct zyd_rf *);
185static int	zyd_al7230B_switch_radio(struct zyd_rf *, int);
186static int	zyd_al7230B_set_channel(struct zyd_rf *, uint8_t);
187static int	zyd_al2210_init(struct zyd_rf *);
188static int	zyd_al2210_switch_radio(struct zyd_rf *, int);
189static int	zyd_al2210_set_channel(struct zyd_rf *, uint8_t);
190static int	zyd_gct_init(struct zyd_rf *);
191static int	zyd_gct_switch_radio(struct zyd_rf *, int);
192static int	zyd_gct_set_channel(struct zyd_rf *, uint8_t);
193static int	zyd_maxim_init(struct zyd_rf *);
194static int	zyd_maxim_switch_radio(struct zyd_rf *, int);
195static int	zyd_maxim_set_channel(struct zyd_rf *, uint8_t);
196static int	zyd_maxim2_init(struct zyd_rf *);
197static int	zyd_maxim2_switch_radio(struct zyd_rf *, int);
198static int	zyd_maxim2_set_channel(struct zyd_rf *, uint8_t);
199
200static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
201static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
202
203/* various supported device vendors/products */
204#define ZYD_ZD1211	0
205#define ZYD_ZD1211B	1
206
207static const struct usb_device_id zyd_devs[] = {
208    /* ZYD_ZD1211 */
209    {USB_VPI(USB_VENDOR_3COM2, USB_PRODUCT_3COM2_3CRUSB10075, ZYD_ZD1211)},
210    {USB_VPI(USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_WL54, ZYD_ZD1211)},
211    {USB_VPI(USB_VENDOR_ASUS, USB_PRODUCT_ASUS_WL159G, ZYD_ZD1211)},
212    {USB_VPI(USB_VENDOR_CYBERTAN, USB_PRODUCT_CYBERTAN_TG54USB, ZYD_ZD1211)},
213    {USB_VPI(USB_VENDOR_DRAYTEK, USB_PRODUCT_DRAYTEK_VIGOR550, ZYD_ZD1211)},
214    {USB_VPI(USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54GD, ZYD_ZD1211)},
215    {USB_VPI(USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54GZL, ZYD_ZD1211)},
216    {USB_VPI(USB_VENDOR_PLANEX3, USB_PRODUCT_PLANEX3_GWUS54GZ, ZYD_ZD1211)},
217    {USB_VPI(USB_VENDOR_PLANEX3, USB_PRODUCT_PLANEX3_GWUS54MINI, ZYD_ZD1211)},
218    {USB_VPI(USB_VENDOR_SAGEM, USB_PRODUCT_SAGEM_XG760A, ZYD_ZD1211)},
219    {USB_VPI(USB_VENDOR_SENAO, USB_PRODUCT_SENAO_NUB8301, ZYD_ZD1211)},
220    {USB_VPI(USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113, ZYD_ZD1211)},
221    {USB_VPI(USB_VENDOR_SWEEX, USB_PRODUCT_SWEEX_ZD1211, ZYD_ZD1211)},
222    {USB_VPI(USB_VENDOR_TEKRAM, USB_PRODUCT_TEKRAM_QUICKWLAN, ZYD_ZD1211)},
223    {USB_VPI(USB_VENDOR_TEKRAM, USB_PRODUCT_TEKRAM_ZD1211_1, ZYD_ZD1211)},
224    {USB_VPI(USB_VENDOR_TEKRAM, USB_PRODUCT_TEKRAM_ZD1211_2, ZYD_ZD1211)},
225    {USB_VPI(USB_VENDOR_TWINMOS, USB_PRODUCT_TWINMOS_G240, ZYD_ZD1211)},
226    {USB_VPI(USB_VENDOR_UMEDIA, USB_PRODUCT_UMEDIA_ALL0298V2, ZYD_ZD1211)},
227    {USB_VPI(USB_VENDOR_UMEDIA, USB_PRODUCT_UMEDIA_TEW429UB_A, ZYD_ZD1211)},
228    {USB_VPI(USB_VENDOR_UMEDIA, USB_PRODUCT_UMEDIA_TEW429UB, ZYD_ZD1211)},
229    {USB_VPI(USB_VENDOR_WISTRONNEWEB, USB_PRODUCT_WISTRONNEWEB_UR055G, ZYD_ZD1211)},
230    {USB_VPI(USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_ZD1211, ZYD_ZD1211)},
231    {USB_VPI(USB_VENDOR_ZYDAS, USB_PRODUCT_ZYDAS_ZD1211, ZYD_ZD1211)},
232    {USB_VPI(USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_AG225H, ZYD_ZD1211)},
233    {USB_VPI(USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_ZYAIRG220, ZYD_ZD1211)},
234    {USB_VPI(USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_G200V2, ZYD_ZD1211)},
235    {USB_VPI(USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_G202, ZYD_ZD1211)},
236    /* ZYD_ZD1211B */
237    {USB_VPI(USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_SMCWUSBG, ZYD_ZD1211B)},
238    {USB_VPI(USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_ZD1211B, ZYD_ZD1211B)},
239    {USB_VPI(USB_VENDOR_ASUS, USB_PRODUCT_ASUS_A9T_WIFI, ZYD_ZD1211B)},
240    {USB_VPI(USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050_V4000, ZYD_ZD1211B)},
241    {USB_VPI(USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_ZD1211B, ZYD_ZD1211B)},
242    {USB_VPI(USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSBF54G, ZYD_ZD1211B)},
243    {USB_VPI(USB_VENDOR_FIBERLINE, USB_PRODUCT_FIBERLINE_WL430U, ZYD_ZD1211B)},
244    {USB_VPI(USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54L, ZYD_ZD1211B)},
245    {USB_VPI(USB_VENDOR_PHILIPS, USB_PRODUCT_PHILIPS_SNU5600, ZYD_ZD1211B)},
246    {USB_VPI(USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GW_US54GXS, ZYD_ZD1211B)},
247    {USB_VPI(USB_VENDOR_SAGEM, USB_PRODUCT_SAGEM_XG76NA, ZYD_ZD1211B)},
248    {USB_VPI(USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_ZD1211B, ZYD_ZD1211B)},
249    {USB_VPI(USB_VENDOR_UMEDIA, USB_PRODUCT_UMEDIA_TEW429UBC1, ZYD_ZD1211B)},
250    {USB_VPI(USB_VENDOR_USR, USB_PRODUCT_USR_USR5423, ZYD_ZD1211B)},
251    {USB_VPI(USB_VENDOR_VTECH, USB_PRODUCT_VTECH_ZD1211B, ZYD_ZD1211B)},
252    {USB_VPI(USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_ZD1211B, ZYD_ZD1211B)},
253    {USB_VPI(USB_VENDOR_ZYDAS, USB_PRODUCT_ZYDAS_ZD1211B, ZYD_ZD1211B)},
254    {USB_VPI(USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_M202, ZYD_ZD1211B)},
255    {USB_VPI(USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_G220V2, ZYD_ZD1211B)},
256};
257
258static const struct usb_config zyd_config[ZYD_N_TRANSFER] = {
259	[ZYD_BULK_WR] = {
260		.type = UE_BULK,
261		.endpoint = UE_ADDR_ANY,
262		.direction = UE_DIR_OUT,
263		.bufsize = ZYD_MAX_TXBUFSZ,
264		.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
265		.callback = zyd_bulk_write_callback,
266		.ep_index = 0,
267		.timeout = 10000,	/* 10 seconds */
268	},
269	[ZYD_BULK_RD] = {
270		.type = UE_BULK,
271		.endpoint = UE_ADDR_ANY,
272		.direction = UE_DIR_IN,
273		.bufsize = ZYX_MAX_RXBUFSZ,
274		.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
275		.callback = zyd_bulk_read_callback,
276		.ep_index = 0,
277	},
278	[ZYD_INTR_WR] = {
279		.type = UE_BULK_INTR,
280		.endpoint = UE_ADDR_ANY,
281		.direction = UE_DIR_OUT,
282		.bufsize = sizeof(struct zyd_cmd),
283		.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
284		.callback = zyd_intr_write_callback,
285		.timeout = 1000,	/* 1 second */
286		.ep_index = 1,
287	},
288	[ZYD_INTR_RD] = {
289		.type = UE_INTERRUPT,
290		.endpoint = UE_ADDR_ANY,
291		.direction = UE_DIR_IN,
292		.bufsize = sizeof(struct zyd_cmd),
293		.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
294		.callback = zyd_intr_read_callback,
295	},
296};
297#define zyd_read16_m(sc, val, data)	do {				\
298	error = zyd_read16(sc, val, data);				\
299	if (error != 0)							\
300		goto fail;						\
301} while (0)
302#define zyd_write16_m(sc, val, data)	do {				\
303	error = zyd_write16(sc, val, data);				\
304	if (error != 0)							\
305		goto fail;						\
306} while (0)
307#define zyd_read32_m(sc, val, data)	do {				\
308	error = zyd_read32(sc, val, data);				\
309	if (error != 0)							\
310		goto fail;						\
311} while (0)
312#define zyd_write32_m(sc, val, data)	do {				\
313	error = zyd_write32(sc, val, data);				\
314	if (error != 0)							\
315		goto fail;						\
316} while (0)
317
318static int
319zyd_match(device_t dev)
320{
321	struct usb_attach_arg *uaa = device_get_ivars(dev);
322
323	if (uaa->usb_mode != USB_MODE_HOST)
324		return (ENXIO);
325	if (uaa->info.bConfigIndex != ZYD_CONFIG_INDEX)
326		return (ENXIO);
327	if (uaa->info.bIfaceIndex != ZYD_IFACE_INDEX)
328		return (ENXIO);
329
330	return (usb2_lookup_id_by_uaa(zyd_devs, sizeof(zyd_devs), uaa));
331}
332
333static int
334zyd_attach(device_t dev)
335{
336	struct usb_attach_arg *uaa = device_get_ivars(dev);
337	struct zyd_softc *sc = device_get_softc(dev);
338	struct ifnet *ifp;
339	struct ieee80211com *ic;
340	uint8_t iface_index, bands;
341	int error;
342
343	if (uaa->info.bcdDevice < 0x4330) {
344		device_printf(dev, "device version mismatch: 0x%X "
345		    "(only >= 43.30 supported)\n",
346		    uaa->info.bcdDevice);
347		return (EINVAL);
348	}
349
350	device_set_usb2_desc(dev);
351	sc->sc_dev = dev;
352	sc->sc_udev = uaa->device;
353	sc->sc_macrev = USB_GET_DRIVER_INFO(uaa);
354
355	mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev),
356	    MTX_NETWORK_LOCK, MTX_DEF);
357	STAILQ_INIT(&sc->sc_rqh);
358
359	iface_index = ZYD_IFACE_INDEX;
360	error = usb2_transfer_setup(uaa->device,
361	    &iface_index, sc->sc_xfer, zyd_config,
362	    ZYD_N_TRANSFER, sc, &sc->sc_mtx);
363	if (error) {
364		device_printf(dev, "could not allocate USB transfers, "
365		    "err=%s\n", usb2_errstr(error));
366		goto detach;
367	}
368
369	ZYD_LOCK(sc);
370	if ((error = zyd_get_macaddr(sc)) != 0) {
371		device_printf(sc->sc_dev, "could not read EEPROM\n");
372		ZYD_UNLOCK(sc);
373		goto detach;
374	}
375	ZYD_UNLOCK(sc);
376
377	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
378	if (ifp == NULL) {
379		device_printf(sc->sc_dev, "can not if_alloc()\n");
380		goto detach;
381	}
382	ifp->if_softc = sc;
383	if_initname(ifp, "zyd", device_get_unit(sc->sc_dev));
384	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
385	ifp->if_init = zyd_init;
386	ifp->if_ioctl = zyd_ioctl;
387	ifp->if_start = zyd_start;
388	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
389	IFQ_SET_READY(&ifp->if_snd);
390
391	ic = ifp->if_l2com;
392	ic->ic_ifp = ifp;
393	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
394	ic->ic_opmode = IEEE80211_M_STA;
395
396	/* set device capabilities */
397	ic->ic_caps =
398		  IEEE80211_C_STA		/* station mode */
399		| IEEE80211_C_MONITOR		/* monitor mode */
400		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
401	        | IEEE80211_C_SHSLOT		/* short slot time supported */
402		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
403	        | IEEE80211_C_WPA		/* 802.11i */
404		;
405
406	bands = 0;
407	setbit(&bands, IEEE80211_MODE_11B);
408	setbit(&bands, IEEE80211_MODE_11G);
409	ieee80211_init_channels(ic, NULL, &bands);
410
411	ieee80211_ifattach(ic, sc->sc_bssid);
412	ic->ic_newassoc = zyd_newassoc;
413	ic->ic_raw_xmit = zyd_raw_xmit;
414	ic->ic_node_alloc = zyd_node_alloc;
415	ic->ic_scan_start = zyd_scan_start;
416	ic->ic_scan_end = zyd_scan_end;
417	ic->ic_set_channel = zyd_set_channel;
418
419	ic->ic_vap_create = zyd_vap_create;
420	ic->ic_vap_delete = zyd_vap_delete;
421	ic->ic_update_mcast = zyd_update_mcast;
422	ic->ic_update_promisc = zyd_update_mcast;
423
424	ieee80211_radiotap_attach(ic,
425	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
426		ZYD_TX_RADIOTAP_PRESENT,
427	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
428		ZYD_RX_RADIOTAP_PRESENT);
429
430	if (bootverbose)
431		ieee80211_announce(ic);
432
433	return (0);
434
435detach:
436	zyd_detach(dev);
437	return (ENXIO);			/* failure */
438}
439
440static int
441zyd_detach(device_t dev)
442{
443	struct zyd_softc *sc = device_get_softc(dev);
444	struct ifnet *ifp = sc->sc_ifp;
445	struct ieee80211com *ic;
446
447	/* stop all USB transfers */
448	usb2_transfer_unsetup(sc->sc_xfer, ZYD_N_TRANSFER);
449
450	/* free TX list, if any */
451	zyd_unsetup_tx_list(sc);
452
453	if (ifp) {
454		ic = ifp->if_l2com;
455		ieee80211_ifdetach(ic);
456		if_free(ifp);
457	}
458	mtx_destroy(&sc->sc_mtx);
459
460	return (0);
461}
462
463static struct ieee80211vap *
464zyd_vap_create(struct ieee80211com *ic,
465	const char name[IFNAMSIZ], int unit, int opmode, int flags,
466	const uint8_t bssid[IEEE80211_ADDR_LEN],
467	const uint8_t mac[IEEE80211_ADDR_LEN])
468{
469	struct zyd_vap *zvp;
470	struct ieee80211vap *vap;
471
472	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
473		return (NULL);
474	zvp = (struct zyd_vap *) malloc(sizeof(struct zyd_vap),
475	    M_80211_VAP, M_NOWAIT | M_ZERO);
476	if (zvp == NULL)
477		return (NULL);
478	vap = &zvp->vap;
479	/* enable s/w bmiss handling for sta mode */
480	ieee80211_vap_setup(ic, vap, name, unit, opmode,
481	    flags | IEEE80211_CLONE_NOBEACONS, bssid, mac);
482
483	/* override state transition machine */
484	zvp->newstate = vap->iv_newstate;
485	vap->iv_newstate = zyd_newstate;
486
487	ieee80211_amrr_init(&zvp->amrr, vap,
488	    IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
489	    IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD,
490	    1000 /* 1 sec */);
491
492	/* complete setup */
493	ieee80211_vap_attach(vap, ieee80211_media_change,
494	    ieee80211_media_status);
495	ic->ic_opmode = opmode;
496	return (vap);
497}
498
499static void
500zyd_vap_delete(struct ieee80211vap *vap)
501{
502	struct zyd_vap *zvp = ZYD_VAP(vap);
503
504	ieee80211_amrr_cleanup(&zvp->amrr);
505	ieee80211_vap_detach(vap);
506	free(zvp, M_80211_VAP);
507}
508
509static void
510zyd_tx_free(struct zyd_tx_data *data, int txerr)
511{
512	struct zyd_softc *sc = data->sc;
513
514	if (data->m != NULL) {
515		if (data->m->m_flags & M_TXCB)
516			ieee80211_process_callback(data->ni, data->m,
517			    txerr ? ETIMEDOUT : 0);
518		m_freem(data->m);
519		data->m = NULL;
520
521		ieee80211_free_node(data->ni);
522		data->ni = NULL;
523	}
524	STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
525	sc->tx_nfree++;
526}
527
528static void
529zyd_setup_tx_list(struct zyd_softc *sc)
530{
531	struct zyd_tx_data *data;
532	int i;
533
534	sc->tx_nfree = 0;
535	STAILQ_INIT(&sc->tx_q);
536	STAILQ_INIT(&sc->tx_free);
537
538	for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
539		data = &sc->tx_data[i];
540
541		data->sc = sc;
542		STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
543		sc->tx_nfree++;
544	}
545}
546
547static void
548zyd_unsetup_tx_list(struct zyd_softc *sc)
549{
550	struct zyd_tx_data *data;
551	int i;
552
553	/* make sure any subsequent use of the queues will fail */
554	sc->tx_nfree = 0;
555	STAILQ_INIT(&sc->tx_q);
556	STAILQ_INIT(&sc->tx_free);
557
558	/* free up all node references and mbufs */
559	for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
560		data = &sc->tx_data[i];
561
562		if (data->m != NULL) {
563			m_freem(data->m);
564			data->m = NULL;
565		}
566		if (data->ni != NULL) {
567			ieee80211_free_node(data->ni);
568			data->ni = NULL;
569		}
570	}
571}
572
573/* ARGUSED */
574static struct ieee80211_node *
575zyd_node_alloc(struct ieee80211vap *vap __unused,
576	const uint8_t mac[IEEE80211_ADDR_LEN] __unused)
577{
578	struct zyd_node *zn;
579
580	zn = malloc(sizeof(struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO);
581	return (zn != NULL) ? (&zn->ni) : (NULL);
582}
583
584static int
585zyd_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
586{
587	struct zyd_vap *zvp = ZYD_VAP(vap);
588	struct ieee80211com *ic = vap->iv_ic;
589	struct zyd_softc *sc = ic->ic_ifp->if_softc;
590	struct ieee80211_node *ni;
591	int error;
592
593	DPRINTF(sc, ZYD_DEBUG_STATE, "%s: %s -> %s\n", __func__,
594	    ieee80211_state_name[vap->iv_state],
595	    ieee80211_state_name[nstate]);
596
597	IEEE80211_UNLOCK(ic);
598	ZYD_LOCK(sc);
599	switch (nstate) {
600	case IEEE80211_S_AUTH:
601		zyd_set_chan(sc, ic->ic_curchan);
602		break;
603	case IEEE80211_S_RUN:
604		ni = vap->iv_bss;
605		if (vap->iv_opmode == IEEE80211_M_MONITOR)
606			break;
607
608		/* turn link LED on */
609		error = zyd_set_led(sc, ZYD_LED1, 1);
610		if (error != 0)
611			break;
612
613		/* make data LED blink upon Tx */
614		zyd_write32_m(sc, sc->sc_fwbase + ZYD_FW_LINK_STATUS, 1);
615
616		IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
617		zyd_set_bssid(sc, sc->sc_bssid);
618		break;
619	default:
620		break;
621	}
622fail:
623	ZYD_UNLOCK(sc);
624	IEEE80211_LOCK(ic);
625	return (zvp->newstate(vap, nstate, arg));
626}
627
628/*
629 * Callback handler for interrupt transfer
630 */
631static void
632zyd_intr_read_callback(struct usb_xfer *xfer)
633{
634	struct zyd_softc *sc = xfer->priv_sc;
635	struct ifnet *ifp = sc->sc_ifp;
636	struct ieee80211com *ic = ifp->if_l2com;
637	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
638	struct ieee80211_node *ni;
639	struct zyd_cmd *cmd = &sc->sc_ibuf;
640	int datalen;
641
642	switch (USB_GET_STATE(xfer)) {
643	case USB_ST_TRANSFERRED:
644		usb2_copy_out(xfer->frbuffers, 0, cmd, sizeof(*cmd));
645
646		switch (le16toh(cmd->code)) {
647		case ZYD_NOTIF_RETRYSTATUS:
648		{
649			struct zyd_notif_retry *retry =
650			    (struct zyd_notif_retry *)cmd->data;
651
652			DPRINTF(sc, ZYD_DEBUG_TX_PROC,
653			    "retry intr: rate=0x%x addr=%s count=%d (0x%x)\n",
654			    le16toh(retry->rate), ether_sprintf(retry->macaddr),
655			    le16toh(retry->count)&0xff, le16toh(retry->count));
656
657			/*
658			 * Find the node to which the packet was sent and
659			 * update its retry statistics.  In BSS mode, this node
660			 * is the AP we're associated to so no lookup is
661			 * actually needed.
662			 */
663			ni = ieee80211_find_txnode(vap, retry->macaddr);
664			if (ni != NULL) {
665				ieee80211_amrr_tx_complete(&ZYD_NODE(ni)->amn,
666				    IEEE80211_AMRR_FAILURE, 1);
667				ieee80211_free_node(ni);
668			}
669			if (le16toh(retry->count) & 0x100)
670				ifp->if_oerrors++;	/* too many retries */
671			break;
672		}
673		case ZYD_NOTIF_IORD:
674		{
675			struct zyd_rq *rqp;
676
677			if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT)
678				break;	/* HMAC interrupt */
679
680			datalen = xfer->actlen - sizeof(cmd->code);
681			datalen -= 2;	/* XXX: padding? */
682
683			STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) {
684				int i, cnt;
685
686				if (rqp->olen != datalen)
687					continue;
688				cnt = rqp->olen / sizeof(struct zyd_pair);
689				for (i = 0; i < cnt; i++) {
690					if (*(((const uint16_t *)rqp->idata) + i) !=
691					    (((struct zyd_pair *)cmd->data) + i)->reg)
692						break;
693				}
694				if (i != cnt)
695					continue;
696				/* copy answer into caller-supplied buffer */
697				bcopy(cmd->data, rqp->odata, rqp->olen);
698				DPRINTF(sc, ZYD_DEBUG_CMD,
699				    "command %p complete, data = %*D \n",
700				    rqp, rqp->olen, rqp->odata, ":");
701				wakeup(rqp);	/* wakeup caller */
702				break;
703			}
704			if (rqp == NULL) {
705				device_printf(sc->sc_dev,
706				    "unexpected IORD notification %*D\n",
707				    datalen, cmd->data, ":");
708			}
709			break;
710		}
711		default:
712			device_printf(sc->sc_dev, "unknown notification %x\n",
713			    le16toh(cmd->code));
714		}
715
716		/* FALLTHROUGH */
717	case USB_ST_SETUP:
718tr_setup:
719		xfer->frlengths[0] = xfer->max_data_length;
720		usb2_start_hardware(xfer);
721		break;
722
723	default:			/* Error */
724		DPRINTF(sc, ZYD_DEBUG_CMD, "error = %s\n",
725		    usb2_errstr(xfer->error));
726
727		if (xfer->error != USB_ERR_CANCELLED) {
728			/* try to clear stall first */
729			xfer->flags.stall_pipe = 1;
730			goto tr_setup;
731		}
732		break;
733	}
734}
735
736static void
737zyd_intr_write_callback(struct usb_xfer *xfer)
738{
739	struct zyd_softc *sc = xfer->priv_sc;
740	struct zyd_rq *rqp;
741
742	switch (USB_GET_STATE(xfer)) {
743	case USB_ST_TRANSFERRED:
744		DPRINTF(sc, ZYD_DEBUG_CMD, "command %p transferred\n",
745		    xfer->priv_fifo);
746		STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) {
747			/* Ensure the cached rq pointer is still valid */
748			if (rqp == xfer->priv_fifo &&
749			    (rqp->flags & ZYD_CMD_FLAG_READ) == 0)
750				wakeup(rqp);	/* wakeup caller */
751		}
752
753		/* FALLTHROUGH */
754	case USB_ST_SETUP:
755tr_setup:
756		STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) {
757			if (rqp->flags & ZYD_CMD_FLAG_SENT)
758				continue;
759
760			usb2_copy_in(xfer->frbuffers, 0, rqp->cmd, rqp->ilen);
761
762			xfer->frlengths[0] = rqp->ilen;
763			xfer->priv_fifo = rqp;
764			rqp->flags |= ZYD_CMD_FLAG_SENT;
765			usb2_start_hardware(xfer);
766			break;
767		}
768		break;
769
770	default:			/* Error */
771		DPRINTF(sc, ZYD_DEBUG_ANY, "error = %s\n",
772		    usb2_errstr(xfer->error));
773
774		if (xfer->error != USB_ERR_CANCELLED) {
775			/* try to clear stall first */
776			xfer->flags.stall_pipe = 1;
777			goto tr_setup;
778		}
779		break;
780	}
781}
782
783static int
784zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen,
785    void *odata, int olen, int flags)
786{
787	struct zyd_cmd cmd;
788	struct zyd_rq rq;
789	int error;
790
791	if (ilen > sizeof(cmd.data))
792		return (EINVAL);
793
794	cmd.code = htole16(code);
795	bcopy(idata, cmd.data, ilen);
796	DPRINTF(sc, ZYD_DEBUG_CMD, "sending cmd %p = %*D\n",
797	    &rq, ilen, idata, ":");
798
799	rq.cmd = &cmd;
800	rq.idata = idata;
801	rq.odata = odata;
802	rq.ilen = sizeof(uint16_t) + ilen;
803	rq.olen = olen;
804	rq.flags = flags;
805	STAILQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq);
806	usb2_transfer_start(sc->sc_xfer[ZYD_INTR_RD]);
807	usb2_transfer_start(sc->sc_xfer[ZYD_INTR_WR]);
808
809	/* wait at most one second for command reply */
810	error = mtx_sleep(&rq, &sc->sc_mtx, 0 , "zydcmd", hz);
811	if (error)
812		device_printf(sc->sc_dev, "command timeout\n");
813	STAILQ_REMOVE(&sc->sc_rqh, &rq, zyd_rq, rq);
814	DPRINTF(sc, ZYD_DEBUG_CMD, "finsihed cmd %p, error = %d \n",
815	    &rq, error);
816
817	return (error);
818}
819
820static int
821zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val)
822{
823	struct zyd_pair tmp;
824	int error;
825
826	reg = htole16(reg);
827	error = zyd_cmd(sc, ZYD_CMD_IORD, &reg, sizeof(reg), &tmp, sizeof(tmp),
828	    ZYD_CMD_FLAG_READ);
829	if (error == 0)
830		*val = le16toh(tmp.val);
831	return (error);
832}
833
834static int
835zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val)
836{
837	struct zyd_pair tmp[2];
838	uint16_t regs[2];
839	int error;
840
841	regs[0] = htole16(ZYD_REG32_HI(reg));
842	regs[1] = htole16(ZYD_REG32_LO(reg));
843	error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp),
844	    ZYD_CMD_FLAG_READ);
845	if (error == 0)
846		*val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val);
847	return (error);
848}
849
850static int
851zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
852{
853	struct zyd_pair pair;
854
855	pair.reg = htole16(reg);
856	pair.val = htole16(val);
857
858	return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0);
859}
860
861static int
862zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
863{
864	struct zyd_pair pair[2];
865
866	pair[0].reg = htole16(ZYD_REG32_HI(reg));
867	pair[0].val = htole16(val >> 16);
868	pair[1].reg = htole16(ZYD_REG32_LO(reg));
869	pair[1].val = htole16(val & 0xffff);
870
871	return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0);
872}
873
874static int
875zyd_rfwrite(struct zyd_softc *sc, uint32_t val)
876{
877	struct zyd_rf *rf = &sc->sc_rf;
878	struct zyd_rfwrite_cmd req;
879	uint16_t cr203;
880	int error, i;
881
882	zyd_read16_m(sc, ZYD_CR203, &cr203);
883	cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
884
885	req.code  = htole16(2);
886	req.width = htole16(rf->width);
887	for (i = 0; i < rf->width; i++) {
888		req.bit[i] = htole16(cr203);
889		if (val & (1 << (rf->width - 1 - i)))
890			req.bit[i] |= htole16(ZYD_RF_DATA);
891	}
892	error = zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0);
893fail:
894	return (error);
895}
896
897static int
898zyd_rfwrite_cr(struct zyd_softc *sc, uint32_t val)
899{
900	int error;
901
902	zyd_write16_m(sc, ZYD_CR244, (val >> 16) & 0xff);
903	zyd_write16_m(sc, ZYD_CR243, (val >>  8) & 0xff);
904	zyd_write16_m(sc, ZYD_CR242, (val >>  0) & 0xff);
905fail:
906	return (error);
907}
908
909static int
910zyd_lock_phy(struct zyd_softc *sc)
911{
912	int error;
913	uint32_t tmp;
914
915	zyd_read32_m(sc, ZYD_MAC_MISC, &tmp);
916	tmp &= ~ZYD_UNLOCK_PHY_REGS;
917	zyd_write32_m(sc, ZYD_MAC_MISC, tmp);
918fail:
919	return (error);
920}
921
922static int
923zyd_unlock_phy(struct zyd_softc *sc)
924{
925	int error;
926	uint32_t tmp;
927
928	zyd_read32_m(sc, ZYD_MAC_MISC, &tmp);
929	tmp |= ZYD_UNLOCK_PHY_REGS;
930	zyd_write32_m(sc, ZYD_MAC_MISC, tmp);
931fail:
932	return (error);
933}
934
935/*
936 * RFMD RF methods.
937 */
938static int
939zyd_rfmd_init(struct zyd_rf *rf)
940{
941#define N(a)	(sizeof(a) / sizeof((a)[0]))
942	struct zyd_softc *sc = rf->rf_sc;
943	static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
944	static const uint32_t rfini[] = ZYD_RFMD_RF;
945	int i, error;
946
947	/* init RF-dependent PHY registers */
948	for (i = 0; i < N(phyini); i++) {
949		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
950	}
951
952	/* init RFMD radio */
953	for (i = 0; i < N(rfini); i++) {
954		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
955			return (error);
956	}
957fail:
958	return (error);
959#undef N
960}
961
962static int
963zyd_rfmd_switch_radio(struct zyd_rf *rf, int on)
964{
965	int error;
966	struct zyd_softc *sc = rf->rf_sc;
967
968	zyd_write16_m(sc, ZYD_CR10, on ? 0x89 : 0x15);
969	zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x81);
970fail:
971	return (error);
972}
973
974static int
975zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan)
976{
977	int error;
978	struct zyd_softc *sc = rf->rf_sc;
979	static const struct {
980		uint32_t	r1, r2;
981	} rfprog[] = ZYD_RFMD_CHANTABLE;
982
983	error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
984	if (error != 0)
985		goto fail;
986	error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
987	if (error != 0)
988		goto fail;
989
990fail:
991	return (error);
992}
993
994/*
995 * AL2230 RF methods.
996 */
997static int
998zyd_al2230_init(struct zyd_rf *rf)
999{
1000#define N(a)	(sizeof(a) / sizeof((a)[0]))
1001	struct zyd_softc *sc = rf->rf_sc;
1002	static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
1003	static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
1004	static const struct zyd_phy_pair phypll[] = {
1005		{ ZYD_CR251, 0x2f }, { ZYD_CR251, 0x3f },
1006		{ ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 }
1007	};
1008	static const uint32_t rfini1[] = ZYD_AL2230_RF_PART1;
1009	static const uint32_t rfini2[] = ZYD_AL2230_RF_PART2;
1010	static const uint32_t rfini3[] = ZYD_AL2230_RF_PART3;
1011	int i, error;
1012
1013	/* init RF-dependent PHY registers */
1014	for (i = 0; i < N(phyini); i++)
1015		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1016
1017	if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) {
1018		for (i = 0; i < N(phy2230s); i++)
1019			zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val);
1020	}
1021
1022	/* init AL2230 radio */
1023	for (i = 0; i < N(rfini1); i++) {
1024		error = zyd_rfwrite(sc, rfini1[i]);
1025		if (error != 0)
1026			goto fail;
1027	}
1028
1029	if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0)
1030		error = zyd_rfwrite(sc, 0x000824);
1031	else
1032		error = zyd_rfwrite(sc, 0x0005a4);
1033	if (error != 0)
1034		goto fail;
1035
1036	for (i = 0; i < N(rfini2); i++) {
1037		error = zyd_rfwrite(sc, rfini2[i]);
1038		if (error != 0)
1039			goto fail;
1040	}
1041
1042	for (i = 0; i < N(phypll); i++)
1043		zyd_write16_m(sc, phypll[i].reg, phypll[i].val);
1044
1045	for (i = 0; i < N(rfini3); i++) {
1046		error = zyd_rfwrite(sc, rfini3[i]);
1047		if (error != 0)
1048			goto fail;
1049	}
1050fail:
1051	return (error);
1052#undef N
1053}
1054
1055static int
1056zyd_al2230_fini(struct zyd_rf *rf)
1057{
1058#define N(a)	(sizeof(a) / sizeof((a)[0]))
1059	int error, i;
1060	struct zyd_softc *sc = rf->rf_sc;
1061	static const struct zyd_phy_pair phy[] = ZYD_AL2230_PHY_FINI_PART1;
1062
1063	for (i = 0; i < N(phy); i++)
1064		zyd_write16_m(sc, phy[i].reg, phy[i].val);
1065
1066	if (sc->sc_newphy != 0)
1067		zyd_write16_m(sc, ZYD_CR9, 0xe1);
1068
1069	zyd_write16_m(sc, ZYD_CR203, 0x6);
1070fail:
1071	return (error);
1072#undef N
1073}
1074
1075static int
1076zyd_al2230_init_b(struct zyd_rf *rf)
1077{
1078#define N(a)	(sizeof(a) / sizeof((a)[0]))
1079	struct zyd_softc *sc = rf->rf_sc;
1080	static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1;
1081	static const struct zyd_phy_pair phy2[] = ZYD_AL2230_PHY_PART2;
1082	static const struct zyd_phy_pair phy3[] = ZYD_AL2230_PHY_PART3;
1083	static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
1084	static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
1085	static const uint32_t rfini_part1[] = ZYD_AL2230_RF_B_PART1;
1086	static const uint32_t rfini_part2[] = ZYD_AL2230_RF_B_PART2;
1087	static const uint32_t rfini_part3[] = ZYD_AL2230_RF_B_PART3;
1088	static const uint32_t zyd_al2230_chtable[][3] = ZYD_AL2230_CHANTABLE;
1089	int i, error;
1090
1091	for (i = 0; i < N(phy1); i++)
1092		zyd_write16_m(sc, phy1[i].reg, phy1[i].val);
1093
1094	/* init RF-dependent PHY registers */
1095	for (i = 0; i < N(phyini); i++)
1096		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1097
1098	if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) {
1099		for (i = 0; i < N(phy2230s); i++)
1100			zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val);
1101	}
1102
1103	for (i = 0; i < 3; i++) {
1104		error = zyd_rfwrite_cr(sc, zyd_al2230_chtable[0][i]);
1105		if (error != 0)
1106			return (error);
1107	}
1108
1109	for (i = 0; i < N(rfini_part1); i++) {
1110		error = zyd_rfwrite_cr(sc, rfini_part1[i]);
1111		if (error != 0)
1112			return (error);
1113	}
1114
1115	if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0)
1116		error = zyd_rfwrite(sc, 0x241000);
1117	else
1118		error = zyd_rfwrite(sc, 0x25a000);
1119	if (error != 0)
1120		goto fail;
1121
1122	for (i = 0; i < N(rfini_part2); i++) {
1123		error = zyd_rfwrite_cr(sc, rfini_part2[i]);
1124		if (error != 0)
1125			return (error);
1126	}
1127
1128	for (i = 0; i < N(phy2); i++)
1129		zyd_write16_m(sc, phy2[i].reg, phy2[i].val);
1130
1131	for (i = 0; i < N(rfini_part3); i++) {
1132		error = zyd_rfwrite_cr(sc, rfini_part3[i]);
1133		if (error != 0)
1134			return (error);
1135	}
1136
1137	for (i = 0; i < N(phy3); i++)
1138		zyd_write16_m(sc, phy3[i].reg, phy3[i].val);
1139
1140	error = zyd_al2230_fini(rf);
1141fail:
1142	return (error);
1143#undef N
1144}
1145
1146static int
1147zyd_al2230_switch_radio(struct zyd_rf *rf, int on)
1148{
1149	struct zyd_softc *sc = rf->rf_sc;
1150	int error, on251 = (sc->sc_macrev == ZYD_ZD1211) ? 0x3f : 0x7f;
1151
1152	zyd_write16_m(sc, ZYD_CR11,  on ? 0x00 : 0x04);
1153	zyd_write16_m(sc, ZYD_CR251, on ? on251 : 0x2f);
1154fail:
1155	return (error);
1156}
1157
1158static int
1159zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan)
1160{
1161#define N(a)	(sizeof(a) / sizeof((a)[0]))
1162	int error, i;
1163	struct zyd_softc *sc = rf->rf_sc;
1164	static const struct zyd_phy_pair phy1[] = {
1165		{ ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 },
1166	};
1167	static const struct {
1168		uint32_t	r1, r2, r3;
1169	} rfprog[] = ZYD_AL2230_CHANTABLE;
1170
1171	error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
1172	if (error != 0)
1173		goto fail;
1174	error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
1175	if (error != 0)
1176		goto fail;
1177	error = zyd_rfwrite(sc, rfprog[chan - 1].r3);
1178	if (error != 0)
1179		goto fail;
1180
1181	for (i = 0; i < N(phy1); i++)
1182		zyd_write16_m(sc, phy1[i].reg, phy1[i].val);
1183fail:
1184	return (error);
1185#undef N
1186}
1187
1188static int
1189zyd_al2230_set_channel_b(struct zyd_rf *rf, uint8_t chan)
1190{
1191#define N(a)	(sizeof(a) / sizeof((a)[0]))
1192	int error, i;
1193	struct zyd_softc *sc = rf->rf_sc;
1194	static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1;
1195	static const struct {
1196		uint32_t	r1, r2, r3;
1197	} rfprog[] = ZYD_AL2230_CHANTABLE_B;
1198
1199	for (i = 0; i < N(phy1); i++)
1200		zyd_write16_m(sc, phy1[i].reg, phy1[i].val);
1201
1202	error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r1);
1203	if (error != 0)
1204		goto fail;
1205	error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r2);
1206	if (error != 0)
1207		goto fail;
1208	error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r3);
1209	if (error != 0)
1210		goto fail;
1211	error = zyd_al2230_fini(rf);
1212fail:
1213	return (error);
1214#undef N
1215}
1216
1217#define	ZYD_AL2230_PHY_BANDEDGE6					\
1218{									\
1219	{ ZYD_CR128, 0x14 }, { ZYD_CR129, 0x12 }, { ZYD_CR130, 0x10 },	\
1220	{ ZYD_CR47,  0x1e }						\
1221}
1222
1223static int
1224zyd_al2230_bandedge6(struct zyd_rf *rf, struct ieee80211_channel *c)
1225{
1226#define N(a)	(sizeof(a) / sizeof((a)[0]))
1227	int error = 0, i;
1228	struct zyd_softc *sc = rf->rf_sc;
1229	struct ifnet *ifp = sc->sc_ifp;
1230	struct ieee80211com *ic = ifp->if_l2com;
1231	struct zyd_phy_pair r[] = ZYD_AL2230_PHY_BANDEDGE6;
1232	int chan = ieee80211_chan2ieee(ic, c);
1233
1234	if (chan == 1 || chan == 11)
1235		r[0].val = 0x12;
1236
1237	for (i = 0; i < N(r); i++)
1238		zyd_write16_m(sc, r[i].reg, r[i].val);
1239fail:
1240	return (error);
1241#undef N
1242}
1243
1244/*
1245 * AL7230B RF methods.
1246 */
1247static int
1248zyd_al7230B_init(struct zyd_rf *rf)
1249{
1250#define N(a)	(sizeof(a) / sizeof((a)[0]))
1251	struct zyd_softc *sc = rf->rf_sc;
1252	static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
1253	static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
1254	static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
1255	static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
1256	static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
1257	int i, error;
1258
1259	/* for AL7230B, PHY and RF need to be initialized in "phases" */
1260
1261	/* init RF-dependent PHY registers, part one */
1262	for (i = 0; i < N(phyini_1); i++)
1263		zyd_write16_m(sc, phyini_1[i].reg, phyini_1[i].val);
1264
1265	/* init AL7230B radio, part one */
1266	for (i = 0; i < N(rfini_1); i++) {
1267		if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0)
1268			return (error);
1269	}
1270	/* init RF-dependent PHY registers, part two */
1271	for (i = 0; i < N(phyini_2); i++)
1272		zyd_write16_m(sc, phyini_2[i].reg, phyini_2[i].val);
1273
1274	/* init AL7230B radio, part two */
1275	for (i = 0; i < N(rfini_2); i++) {
1276		if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0)
1277			return (error);
1278	}
1279	/* init RF-dependent PHY registers, part three */
1280	for (i = 0; i < N(phyini_3); i++)
1281		zyd_write16_m(sc, phyini_3[i].reg, phyini_3[i].val);
1282fail:
1283	return (error);
1284#undef N
1285}
1286
1287static int
1288zyd_al7230B_switch_radio(struct zyd_rf *rf, int on)
1289{
1290	int error;
1291	struct zyd_softc *sc = rf->rf_sc;
1292
1293	zyd_write16_m(sc, ZYD_CR11,  on ? 0x00 : 0x04);
1294	zyd_write16_m(sc, ZYD_CR251, on ? 0x3f : 0x2f);
1295fail:
1296	return (error);
1297}
1298
1299static int
1300zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan)
1301{
1302#define N(a)	(sizeof(a) / sizeof((a)[0]))
1303	struct zyd_softc *sc = rf->rf_sc;
1304	static const struct {
1305		uint32_t	r1, r2;
1306	} rfprog[] = ZYD_AL7230B_CHANTABLE;
1307	static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
1308	int i, error;
1309
1310	zyd_write16_m(sc, ZYD_CR240, 0x57);
1311	zyd_write16_m(sc, ZYD_CR251, 0x2f);
1312
1313	for (i = 0; i < N(rfsc); i++) {
1314		if ((error = zyd_rfwrite(sc, rfsc[i])) != 0)
1315			return (error);
1316	}
1317
1318	zyd_write16_m(sc, ZYD_CR128, 0x14);
1319	zyd_write16_m(sc, ZYD_CR129, 0x12);
1320	zyd_write16_m(sc, ZYD_CR130, 0x10);
1321	zyd_write16_m(sc, ZYD_CR38,  0x38);
1322	zyd_write16_m(sc, ZYD_CR136, 0xdf);
1323
1324	error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
1325	if (error != 0)
1326		goto fail;
1327	error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
1328	if (error != 0)
1329		goto fail;
1330	error = zyd_rfwrite(sc, 0x3c9000);
1331	if (error != 0)
1332		goto fail;
1333
1334	zyd_write16_m(sc, ZYD_CR251, 0x3f);
1335	zyd_write16_m(sc, ZYD_CR203, 0x06);
1336	zyd_write16_m(sc, ZYD_CR240, 0x08);
1337fail:
1338	return (error);
1339#undef N
1340}
1341
1342/*
1343 * AL2210 RF methods.
1344 */
1345static int
1346zyd_al2210_init(struct zyd_rf *rf)
1347{
1348#define N(a)	(sizeof(a) / sizeof((a)[0]))
1349	struct zyd_softc *sc = rf->rf_sc;
1350	static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
1351	static const uint32_t rfini[] = ZYD_AL2210_RF;
1352	uint32_t tmp;
1353	int i, error;
1354
1355	zyd_write32_m(sc, ZYD_CR18, 2);
1356
1357	/* init RF-dependent PHY registers */
1358	for (i = 0; i < N(phyini); i++)
1359		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1360
1361	/* init AL2210 radio */
1362	for (i = 0; i < N(rfini); i++) {
1363		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1364			return (error);
1365	}
1366	zyd_write16_m(sc, ZYD_CR47, 0x1e);
1367	zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp);
1368	zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1369	zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1);
1370	zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05);
1371	zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00);
1372	zyd_write16_m(sc, ZYD_CR47, 0x1e);
1373	zyd_write32_m(sc, ZYD_CR18, 3);
1374fail:
1375	return (error);
1376#undef N
1377}
1378
1379static int
1380zyd_al2210_switch_radio(struct zyd_rf *rf, int on)
1381{
1382	/* vendor driver does nothing for this RF chip */
1383
1384	return (0);
1385}
1386
1387static int
1388zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan)
1389{
1390	int error;
1391	struct zyd_softc *sc = rf->rf_sc;
1392	static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
1393	uint32_t tmp;
1394
1395	zyd_write32_m(sc, ZYD_CR18, 2);
1396	zyd_write16_m(sc, ZYD_CR47, 0x1e);
1397	zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp);
1398	zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1399	zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1);
1400	zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05);
1401	zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00);
1402	zyd_write16_m(sc, ZYD_CR47, 0x1e);
1403
1404	/* actually set the channel */
1405	error = zyd_rfwrite(sc, rfprog[chan - 1]);
1406	if (error != 0)
1407		goto fail;
1408
1409	zyd_write32_m(sc, ZYD_CR18, 3);
1410fail:
1411	return (error);
1412}
1413
1414/*
1415 * GCT RF methods.
1416 */
1417static int
1418zyd_gct_init(struct zyd_rf *rf)
1419{
1420#define N(a)	(sizeof(a) / sizeof((a)[0]))
1421	struct zyd_softc *sc = rf->rf_sc;
1422	static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
1423	static const uint32_t rfini[] = ZYD_GCT_RF;
1424	int i, error;
1425
1426	/* init RF-dependent PHY registers */
1427	for (i = 0; i < N(phyini); i++)
1428		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1429
1430	/* init cgt radio */
1431	for (i = 0; i < N(rfini); i++) {
1432		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1433			return (error);
1434	}
1435fail:
1436	return (error);
1437#undef N
1438}
1439
1440static int
1441zyd_gct_switch_radio(struct zyd_rf *rf, int on)
1442{
1443	/* vendor driver does nothing for this RF chip */
1444
1445	return (0);
1446}
1447
1448static int
1449zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan)
1450{
1451	int error;
1452	struct zyd_softc *sc = rf->rf_sc;
1453	static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE;
1454
1455	error = zyd_rfwrite(sc, 0x1c0000);
1456	if (error != 0)
1457		goto fail;
1458	error = zyd_rfwrite(sc, rfprog[chan - 1]);
1459	if (error != 0)
1460		goto fail;
1461	error = zyd_rfwrite(sc, 0x1c0008);
1462fail:
1463	return (error);
1464}
1465
1466/*
1467 * Maxim RF methods.
1468 */
1469static int
1470zyd_maxim_init(struct zyd_rf *rf)
1471{
1472#define N(a)	(sizeof(a) / sizeof((a)[0]))
1473	struct zyd_softc *sc = rf->rf_sc;
1474	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1475	static const uint32_t rfini[] = ZYD_MAXIM_RF;
1476	uint16_t tmp;
1477	int i, error;
1478
1479	/* init RF-dependent PHY registers */
1480	for (i = 0; i < N(phyini); i++)
1481		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1482
1483	zyd_read16_m(sc, ZYD_CR203, &tmp);
1484	zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4));
1485
1486	/* init maxim radio */
1487	for (i = 0; i < N(rfini); i++) {
1488		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1489			return (error);
1490	}
1491	zyd_read16_m(sc, ZYD_CR203, &tmp);
1492	zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4));
1493fail:
1494	return (error);
1495#undef N
1496}
1497
1498static int
1499zyd_maxim_switch_radio(struct zyd_rf *rf, int on)
1500{
1501
1502	/* vendor driver does nothing for this RF chip */
1503	return (0);
1504}
1505
1506static int
1507zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan)
1508{
1509#define N(a)	(sizeof(a) / sizeof((a)[0]))
1510	struct zyd_softc *sc = rf->rf_sc;
1511	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1512	static const uint32_t rfini[] = ZYD_MAXIM_RF;
1513	static const struct {
1514		uint32_t	r1, r2;
1515	} rfprog[] = ZYD_MAXIM_CHANTABLE;
1516	uint16_t tmp;
1517	int i, error;
1518
1519	/*
1520	 * Do the same as we do when initializing it, except for the channel
1521	 * values coming from the two channel tables.
1522	 */
1523
1524	/* init RF-dependent PHY registers */
1525	for (i = 0; i < N(phyini); i++)
1526		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1527
1528	zyd_read16_m(sc, ZYD_CR203, &tmp);
1529	zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4));
1530
1531	/* first two values taken from the chantables */
1532	error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
1533	if (error != 0)
1534		goto fail;
1535	error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
1536	if (error != 0)
1537		goto fail;
1538
1539	/* init maxim radio - skipping the two first values */
1540	for (i = 2; i < N(rfini); i++) {
1541		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1542			return (error);
1543	}
1544	zyd_read16_m(sc, ZYD_CR203, &tmp);
1545	zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4));
1546fail:
1547	return (error);
1548#undef N
1549}
1550
1551/*
1552 * Maxim2 RF methods.
1553 */
1554static int
1555zyd_maxim2_init(struct zyd_rf *rf)
1556{
1557#define N(a)	(sizeof(a) / sizeof((a)[0]))
1558	struct zyd_softc *sc = rf->rf_sc;
1559	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1560	static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1561	uint16_t tmp;
1562	int i, error;
1563
1564	/* init RF-dependent PHY registers */
1565	for (i = 0; i < N(phyini); i++)
1566		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1567
1568	zyd_read16_m(sc, ZYD_CR203, &tmp);
1569	zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4));
1570
1571	/* init maxim2 radio */
1572	for (i = 0; i < N(rfini); i++) {
1573		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1574			return (error);
1575	}
1576	zyd_read16_m(sc, ZYD_CR203, &tmp);
1577	zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4));
1578fail:
1579	return (error);
1580#undef N
1581}
1582
1583static int
1584zyd_maxim2_switch_radio(struct zyd_rf *rf, int on)
1585{
1586
1587	/* vendor driver does nothing for this RF chip */
1588	return (0);
1589}
1590
1591static int
1592zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan)
1593{
1594#define N(a)	(sizeof(a) / sizeof((a)[0]))
1595	struct zyd_softc *sc = rf->rf_sc;
1596	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1597	static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1598	static const struct {
1599		uint32_t	r1, r2;
1600	} rfprog[] = ZYD_MAXIM2_CHANTABLE;
1601	uint16_t tmp;
1602	int i, error;
1603
1604	/*
1605	 * Do the same as we do when initializing it, except for the channel
1606	 * values coming from the two channel tables.
1607	 */
1608
1609	/* init RF-dependent PHY registers */
1610	for (i = 0; i < N(phyini); i++)
1611		zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
1612
1613	zyd_read16_m(sc, ZYD_CR203, &tmp);
1614	zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4));
1615
1616	/* first two values taken from the chantables */
1617	error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
1618	if (error != 0)
1619		goto fail;
1620	error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
1621	if (error != 0)
1622		goto fail;
1623
1624	/* init maxim2 radio - skipping the two first values */
1625	for (i = 2; i < N(rfini); i++) {
1626		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1627			return (error);
1628	}
1629	zyd_read16_m(sc, ZYD_CR203, &tmp);
1630	zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4));
1631fail:
1632	return (error);
1633#undef N
1634}
1635
1636static int
1637zyd_rf_attach(struct zyd_softc *sc, uint8_t type)
1638{
1639	struct zyd_rf *rf = &sc->sc_rf;
1640
1641	rf->rf_sc = sc;
1642
1643	switch (type) {
1644	case ZYD_RF_RFMD:
1645		rf->init         = zyd_rfmd_init;
1646		rf->switch_radio = zyd_rfmd_switch_radio;
1647		rf->set_channel  = zyd_rfmd_set_channel;
1648		rf->width        = 24;	/* 24-bit RF values */
1649		break;
1650	case ZYD_RF_AL2230:
1651	case ZYD_RF_AL2230S:
1652		if (sc->sc_macrev == ZYD_ZD1211B) {
1653			rf->init = zyd_al2230_init_b;
1654			rf->set_channel = zyd_al2230_set_channel_b;
1655		} else {
1656			rf->init = zyd_al2230_init;
1657			rf->set_channel = zyd_al2230_set_channel;
1658		}
1659		rf->switch_radio = zyd_al2230_switch_radio;
1660		rf->bandedge6	 = zyd_al2230_bandedge6;
1661		rf->width        = 24;	/* 24-bit RF values */
1662		break;
1663	case ZYD_RF_AL7230B:
1664		rf->init         = zyd_al7230B_init;
1665		rf->switch_radio = zyd_al7230B_switch_radio;
1666		rf->set_channel  = zyd_al7230B_set_channel;
1667		rf->width        = 24;	/* 24-bit RF values */
1668		break;
1669	case ZYD_RF_AL2210:
1670		rf->init         = zyd_al2210_init;
1671		rf->switch_radio = zyd_al2210_switch_radio;
1672		rf->set_channel  = zyd_al2210_set_channel;
1673		rf->width        = 24;	/* 24-bit RF values */
1674		break;
1675	case ZYD_RF_GCT:
1676		rf->init         = zyd_gct_init;
1677		rf->switch_radio = zyd_gct_switch_radio;
1678		rf->set_channel  = zyd_gct_set_channel;
1679		rf->width        = 21;	/* 21-bit RF values */
1680		break;
1681	case ZYD_RF_MAXIM_NEW:
1682		rf->init         = zyd_maxim_init;
1683		rf->switch_radio = zyd_maxim_switch_radio;
1684		rf->set_channel  = zyd_maxim_set_channel;
1685		rf->width        = 18;	/* 18-bit RF values */
1686		break;
1687	case ZYD_RF_MAXIM_NEW2:
1688		rf->init         = zyd_maxim2_init;
1689		rf->switch_radio = zyd_maxim2_switch_radio;
1690		rf->set_channel  = zyd_maxim2_set_channel;
1691		rf->width        = 18;	/* 18-bit RF values */
1692		break;
1693	default:
1694		device_printf(sc->sc_dev,
1695		    "sorry, radio \"%s\" is not supported yet\n",
1696		    zyd_rf_name(type));
1697		return (EINVAL);
1698	}
1699	return (0);
1700}
1701
1702static const char *
1703zyd_rf_name(uint8_t type)
1704{
1705	static const char * const zyd_rfs[] = {
1706		"unknown", "unknown", "UW2451",   "UCHIP",     "AL2230",
1707		"AL7230B", "THETA",   "AL2210",   "MAXIM_NEW", "GCT",
1708		"AL2230S",  "RALINK",  "INTERSIL", "RFMD",      "MAXIM_NEW2",
1709		"PHILIPS"
1710	};
1711
1712	return zyd_rfs[(type > 15) ? 0 : type];
1713}
1714
1715static int
1716zyd_hw_init(struct zyd_softc *sc)
1717{
1718	int error;
1719	const struct zyd_phy_pair *phyp;
1720	struct zyd_rf *rf = &sc->sc_rf;
1721	uint16_t val;
1722
1723	/* specify that the plug and play is finished */
1724	zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1);
1725	zyd_read16_m(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->sc_fwbase);
1726	DPRINTF(sc, ZYD_DEBUG_FW, "firmware base address=0x%04x\n",
1727	    sc->sc_fwbase);
1728
1729	/* retrieve firmware revision number */
1730	zyd_read16_m(sc, sc->sc_fwbase + ZYD_FW_FIRMWARE_REV, &sc->sc_fwrev);
1731	zyd_write32_m(sc, ZYD_CR_GPI_EN, 0);
1732	zyd_write32_m(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
1733	/* set mandatory rates - XXX assumes 802.11b/g */
1734	zyd_write32_m(sc, ZYD_MAC_MAN_RATE, 0x150f);
1735
1736	/* disable interrupts */
1737	zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0);
1738
1739	if ((error = zyd_read_pod(sc)) != 0) {
1740		device_printf(sc->sc_dev, "could not read EEPROM\n");
1741		goto fail;
1742	}
1743
1744	/* PHY init (resetting) */
1745	error = zyd_lock_phy(sc);
1746	if (error != 0)
1747		goto fail;
1748	phyp = (sc->sc_macrev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
1749	for (; phyp->reg != 0; phyp++)
1750		zyd_write16_m(sc, phyp->reg, phyp->val);
1751	if (sc->sc_macrev == ZYD_ZD1211 && sc->sc_fix_cr157 != 0) {
1752		zyd_read16_m(sc, ZYD_EEPROM_PHY_REG, &val);
1753		zyd_write32_m(sc, ZYD_CR157, val >> 8);
1754	}
1755	error = zyd_unlock_phy(sc);
1756	if (error != 0)
1757		goto fail;
1758
1759	/* HMAC init */
1760	zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000020);
1761	zyd_write32_m(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
1762	zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0x00000000);
1763	zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0x00000000);
1764	zyd_write32_m(sc, ZYD_MAC_GHTBL, 0x00000000);
1765	zyd_write32_m(sc, ZYD_MAC_GHTBH, 0x80000000);
1766	zyd_write32_m(sc, ZYD_MAC_MISC, 0x000000a4);
1767	zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
1768	zyd_write32_m(sc, ZYD_MAC_BCNCFG, 0x00f00401);
1769	zyd_write32_m(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
1770	zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000080);
1771	zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
1772	zyd_write32_m(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
1773	zyd_write32_m(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
1774	zyd_write32_m(sc, ZYD_CR_PS_CTRL, 0x10000000);
1775	zyd_write32_m(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
1776	zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1);
1777	zyd_write32_m(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
1778	zyd_write32_m(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0a47c032);
1779	zyd_write32_m(sc, ZYD_MAC_CAM_MODE, 0x3);
1780
1781	if (sc->sc_macrev == ZYD_ZD1211) {
1782		zyd_write32_m(sc, ZYD_MAC_RETRY, 0x00000002);
1783		zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
1784	} else {
1785		zyd_write32_m(sc, ZYD_MACB_MAX_RETRY, 0x02020202);
1786		zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
1787		zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
1788		zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
1789		zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
1790		zyd_write32_m(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
1791		zyd_write32_m(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
1792		zyd_write32_m(sc, ZYD_MACB_TXOP, 0x01800824);
1793		zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0eff);
1794	}
1795
1796	/* init beacon interval to 100ms */
1797	if ((error = zyd_set_beacon_interval(sc, 100)) != 0)
1798		goto fail;
1799
1800	if ((error = zyd_rf_attach(sc, sc->sc_rfrev)) != 0) {
1801		device_printf(sc->sc_dev, "could not attach RF, rev 0x%x\n",
1802		    sc->sc_rfrev);
1803		goto fail;
1804	}
1805
1806	/* RF chip init */
1807	error = zyd_lock_phy(sc);
1808	if (error != 0)
1809		goto fail;
1810	error = (*rf->init)(rf);
1811	if (error != 0) {
1812		device_printf(sc->sc_dev,
1813		    "radio initialization failed, error %d\n", error);
1814		goto fail;
1815	}
1816	error = zyd_unlock_phy(sc);
1817	if (error != 0)
1818		goto fail;
1819
1820	if ((error = zyd_read_eeprom(sc)) != 0) {
1821		device_printf(sc->sc_dev, "could not read EEPROM\n");
1822		goto fail;
1823	}
1824
1825fail:	return (error);
1826}
1827
1828static int
1829zyd_read_pod(struct zyd_softc *sc)
1830{
1831	int error;
1832	uint32_t tmp;
1833
1834	zyd_read32_m(sc, ZYD_EEPROM_POD, &tmp);
1835	sc->sc_rfrev     = tmp & 0x0f;
1836	sc->sc_ledtype   = (tmp >>  4) & 0x01;
1837	sc->sc_al2230s   = (tmp >>  7) & 0x01;
1838	sc->sc_cckgain   = (tmp >>  8) & 0x01;
1839	sc->sc_fix_cr157 = (tmp >> 13) & 0x01;
1840	sc->sc_parev     = (tmp >> 16) & 0x0f;
1841	sc->sc_bandedge6 = (tmp >> 21) & 0x01;
1842	sc->sc_newphy    = (tmp >> 31) & 0x01;
1843	sc->sc_txled     = ((tmp & (1 << 24)) && (tmp & (1 << 29))) ? 0 : 1;
1844fail:
1845	return (error);
1846}
1847
1848static int
1849zyd_read_eeprom(struct zyd_softc *sc)
1850{
1851	uint16_t val;
1852	int error, i;
1853
1854	/* read Tx power calibration tables */
1855	for (i = 0; i < 7; i++) {
1856		zyd_read16_m(sc, ZYD_EEPROM_PWR_CAL + i, &val);
1857		sc->sc_pwrcal[i * 2] = val >> 8;
1858		sc->sc_pwrcal[i * 2 + 1] = val & 0xff;
1859		zyd_read16_m(sc, ZYD_EEPROM_PWR_INT + i, &val);
1860		sc->sc_pwrint[i * 2] = val >> 8;
1861		sc->sc_pwrint[i * 2 + 1] = val & 0xff;
1862		zyd_read16_m(sc, ZYD_EEPROM_36M_CAL + i, &val);
1863		sc->sc_ofdm36_cal[i * 2] = val >> 8;
1864		sc->sc_ofdm36_cal[i * 2 + 1] = val & 0xff;
1865		zyd_read16_m(sc, ZYD_EEPROM_48M_CAL + i, &val);
1866		sc->sc_ofdm48_cal[i * 2] = val >> 8;
1867		sc->sc_ofdm48_cal[i * 2 + 1] = val & 0xff;
1868		zyd_read16_m(sc, ZYD_EEPROM_54M_CAL + i, &val);
1869		sc->sc_ofdm54_cal[i * 2] = val >> 8;
1870		sc->sc_ofdm54_cal[i * 2 + 1] = val & 0xff;
1871	}
1872fail:
1873	return (error);
1874}
1875
1876static int
1877zyd_get_macaddr(struct zyd_softc *sc)
1878{
1879	struct usb_device_request req;
1880	usb2_error_t error;
1881
1882	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1883	req.bRequest = ZYD_READFWDATAREQ;
1884	USETW(req.wValue, ZYD_EEPROM_MAC_ADDR_P1);
1885	USETW(req.wIndex, 0);
1886	USETW(req.wLength, IEEE80211_ADDR_LEN);
1887
1888	error = zyd_do_request(sc, &req, sc->sc_bssid);
1889	if (error != 0) {
1890		device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
1891		    usb2_errstr(error));
1892	}
1893
1894	return (error);
1895}
1896
1897static int
1898zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr)
1899{
1900	int error;
1901	uint32_t tmp;
1902
1903	tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1904	zyd_write32_m(sc, ZYD_MAC_MACADRL, tmp);
1905	tmp = addr[5] << 8 | addr[4];
1906	zyd_write32_m(sc, ZYD_MAC_MACADRH, tmp);
1907fail:
1908	return (error);
1909}
1910
1911static int
1912zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr)
1913{
1914	int error;
1915	uint32_t tmp;
1916
1917	tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1918	zyd_write32_m(sc, ZYD_MAC_BSSADRL, tmp);
1919	tmp = addr[5] << 8 | addr[4];
1920	zyd_write32_m(sc, ZYD_MAC_BSSADRH, tmp);
1921fail:
1922	return (error);
1923}
1924
1925static int
1926zyd_switch_radio(struct zyd_softc *sc, int on)
1927{
1928	struct zyd_rf *rf = &sc->sc_rf;
1929	int error;
1930
1931	error = zyd_lock_phy(sc);
1932	if (error != 0)
1933		goto fail;
1934	error = (*rf->switch_radio)(rf, on);
1935	if (error != 0)
1936		goto fail;
1937	error = zyd_unlock_phy(sc);
1938fail:
1939	return (error);
1940}
1941
1942static int
1943zyd_set_led(struct zyd_softc *sc, int which, int on)
1944{
1945	int error;
1946	uint32_t tmp;
1947
1948	zyd_read32_m(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
1949	tmp &= ~which;
1950	if (on)
1951		tmp |= which;
1952	zyd_write32_m(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
1953fail:
1954	return (error);
1955}
1956
1957static void
1958zyd_set_multi(struct zyd_softc *sc)
1959{
1960	int error;
1961	struct ifnet *ifp = sc->sc_ifp;
1962	struct ieee80211com *ic = ifp->if_l2com;
1963	struct ifmultiaddr *ifma;
1964	uint32_t low, high;
1965	uint8_t v;
1966
1967	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1968		return;
1969
1970	low = 0x00000000;
1971	high = 0x80000000;
1972
1973	if (ic->ic_opmode == IEEE80211_M_MONITOR ||
1974	    (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC))) {
1975		low = 0xffffffff;
1976		high = 0xffffffff;
1977	} else {
1978		IF_ADDR_LOCK(ifp);
1979		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1980			if (ifma->ifma_addr->sa_family != AF_LINK)
1981				continue;
1982			v = ((uint8_t *)LLADDR((struct sockaddr_dl *)
1983			    ifma->ifma_addr))[5] >> 2;
1984			if (v < 32)
1985				low |= 1 << v;
1986			else
1987				high |= 1 << (v - 32);
1988		}
1989		IF_ADDR_UNLOCK(ifp);
1990	}
1991
1992	/* reprogram multicast global hash table */
1993	zyd_write32_m(sc, ZYD_MAC_GHTBL, low);
1994	zyd_write32_m(sc, ZYD_MAC_GHTBH, high);
1995fail:
1996	if (error != 0)
1997		device_printf(sc->sc_dev,
1998		    "could not set multicast hash table\n");
1999}
2000
2001static void
2002zyd_update_mcast(struct ifnet *ifp)
2003{
2004	struct zyd_softc *sc = ifp->if_softc;
2005
2006	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2007		return;
2008
2009	ZYD_LOCK(sc);
2010	zyd_set_multi(sc);
2011	ZYD_UNLOCK(sc);
2012}
2013
2014static int
2015zyd_set_rxfilter(struct zyd_softc *sc)
2016{
2017	struct ifnet *ifp = sc->sc_ifp;
2018	struct ieee80211com *ic = ifp->if_l2com;
2019	uint32_t rxfilter;
2020
2021	switch (ic->ic_opmode) {
2022	case IEEE80211_M_STA:
2023		rxfilter = ZYD_FILTER_BSS;
2024		break;
2025	case IEEE80211_M_IBSS:
2026	case IEEE80211_M_HOSTAP:
2027		rxfilter = ZYD_FILTER_HOSTAP;
2028		break;
2029	case IEEE80211_M_MONITOR:
2030		rxfilter = ZYD_FILTER_MONITOR;
2031		break;
2032	default:
2033		/* should not get there */
2034		return (EINVAL);
2035	}
2036	return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
2037}
2038
2039static void
2040zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c)
2041{
2042	int error;
2043	struct ifnet *ifp = sc->sc_ifp;
2044	struct ieee80211com *ic = ifp->if_l2com;
2045	struct zyd_rf *rf = &sc->sc_rf;
2046	uint32_t tmp;
2047	int chan;
2048
2049	chan = ieee80211_chan2ieee(ic, c);
2050	if (chan == 0 || chan == IEEE80211_CHAN_ANY) {
2051		/* XXX should NEVER happen */
2052		device_printf(sc->sc_dev,
2053		    "%s: invalid channel %x\n", __func__, chan);
2054		return;
2055	}
2056
2057	error = zyd_lock_phy(sc);
2058	if (error != 0)
2059		goto fail;
2060
2061	error = (*rf->set_channel)(rf, chan);
2062	if (error != 0)
2063		goto fail;
2064
2065	/* update Tx power */
2066	zyd_write16_m(sc, ZYD_CR31, sc->sc_pwrint[chan - 1]);
2067
2068	if (sc->sc_macrev == ZYD_ZD1211B) {
2069		zyd_write16_m(sc, ZYD_CR67, sc->sc_ofdm36_cal[chan - 1]);
2070		zyd_write16_m(sc, ZYD_CR66, sc->sc_ofdm48_cal[chan - 1]);
2071		zyd_write16_m(sc, ZYD_CR65, sc->sc_ofdm54_cal[chan - 1]);
2072		zyd_write16_m(sc, ZYD_CR68, sc->sc_pwrcal[chan - 1]);
2073		zyd_write16_m(sc, ZYD_CR69, 0x28);
2074		zyd_write16_m(sc, ZYD_CR69, 0x2a);
2075	}
2076	if (sc->sc_cckgain) {
2077		/* set CCK baseband gain from EEPROM */
2078		if (zyd_read32(sc, ZYD_EEPROM_PHY_REG, &tmp) == 0)
2079			zyd_write16_m(sc, ZYD_CR47, tmp & 0xff);
2080	}
2081	if (sc->sc_bandedge6 && rf->bandedge6 != NULL) {
2082		error = (*rf->bandedge6)(rf, c);
2083		if (error != 0)
2084			goto fail;
2085	}
2086	zyd_write32_m(sc, ZYD_CR_CONFIG_PHILIPS, 0);
2087
2088	error = zyd_unlock_phy(sc);
2089	if (error != 0)
2090		goto fail;
2091
2092	sc->sc_rxtap.wr_chan_freq = sc->sc_txtap.wt_chan_freq =
2093	    htole16(c->ic_freq);
2094	sc->sc_rxtap.wr_chan_flags = sc->sc_txtap.wt_chan_flags =
2095	    htole16(c->ic_flags);
2096fail:
2097	return;
2098}
2099
2100static int
2101zyd_set_beacon_interval(struct zyd_softc *sc, int bintval)
2102{
2103	int error;
2104	uint32_t val;
2105
2106	zyd_read32_m(sc, ZYD_CR_ATIM_WND_PERIOD, &val);
2107	sc->sc_atim_wnd = val;
2108	zyd_read32_m(sc, ZYD_CR_PRE_TBTT, &val);
2109	sc->sc_pre_tbtt = val;
2110	sc->sc_bcn_int = bintval;
2111
2112	if (sc->sc_bcn_int <= 5)
2113		sc->sc_bcn_int = 5;
2114	if (sc->sc_pre_tbtt < 4 || sc->sc_pre_tbtt >= sc->sc_bcn_int)
2115		sc->sc_pre_tbtt = sc->sc_bcn_int - 1;
2116	if (sc->sc_atim_wnd >= sc->sc_pre_tbtt)
2117		sc->sc_atim_wnd = sc->sc_pre_tbtt - 1;
2118
2119	zyd_write32_m(sc, ZYD_CR_ATIM_WND_PERIOD, sc->sc_atim_wnd);
2120	zyd_write32_m(sc, ZYD_CR_PRE_TBTT, sc->sc_pre_tbtt);
2121	zyd_write32_m(sc, ZYD_CR_BCN_INTERVAL, sc->sc_bcn_int);
2122fail:
2123	return (error);
2124}
2125
2126static void
2127zyd_rx_data(struct usb_xfer *xfer, int offset, uint16_t len)
2128{
2129	struct zyd_softc *sc = xfer->priv_sc;
2130	struct ifnet *ifp = sc->sc_ifp;
2131	struct ieee80211com *ic = ifp->if_l2com;
2132	struct zyd_plcphdr plcp;
2133	struct zyd_rx_stat stat;
2134	struct mbuf *m;
2135	int rlen, rssi;
2136
2137	if (len < ZYD_MIN_FRAGSZ) {
2138		DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too short (length=%d)\n",
2139		    device_get_nameunit(sc->sc_dev), len);
2140		ifp->if_ierrors++;
2141		return;
2142	}
2143	usb2_copy_out(xfer->frbuffers, offset, &plcp, sizeof(plcp));
2144	usb2_copy_out(xfer->frbuffers, offset + len - sizeof(stat),
2145	    &stat, sizeof(stat));
2146
2147	if (stat.flags & ZYD_RX_ERROR) {
2148		DPRINTF(sc, ZYD_DEBUG_RECV,
2149		    "%s: RX status indicated error (%x)\n",
2150		    device_get_nameunit(sc->sc_dev), stat.flags);
2151		ifp->if_ierrors++;
2152		return;
2153	}
2154
2155	/* compute actual frame length */
2156	rlen = len - sizeof(struct zyd_plcphdr) -
2157	    sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN;
2158
2159	/* allocate a mbuf to store the frame */
2160	if (rlen > MCLBYTES) {
2161		DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too long (length=%d)\n",
2162		    device_get_nameunit(sc->sc_dev), rlen);
2163		ifp->if_ierrors++;
2164		return;
2165	} else if (rlen > MHLEN)
2166		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2167	else
2168		m = m_gethdr(M_DONTWAIT, MT_DATA);
2169	if (m == NULL) {
2170		DPRINTF(sc, ZYD_DEBUG_RECV, "%s: could not allocate rx mbuf\n",
2171		    device_get_nameunit(sc->sc_dev));
2172		ifp->if_ierrors++;
2173		return;
2174	}
2175	m->m_pkthdr.rcvif = ifp;
2176	m->m_pkthdr.len = m->m_len = rlen;
2177	usb2_copy_out(xfer->frbuffers, offset + sizeof(plcp),
2178	    mtod(m, uint8_t *), rlen);
2179
2180	if (ieee80211_radiotap_active(ic)) {
2181		struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
2182
2183		tap->wr_flags = 0;
2184		if (stat.flags & (ZYD_RX_BADCRC16 | ZYD_RX_BADCRC32))
2185			tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
2186		/* XXX toss, no way to express errors */
2187		if (stat.flags & ZYD_RX_DECRYPTERR)
2188			tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
2189		tap->wr_rate = ieee80211_plcp2rate(plcp.signal,
2190		    (stat.flags & ZYD_RX_OFDM) ?
2191			IEEE80211_T_OFDM : IEEE80211_T_CCK);
2192		tap->wr_antsignal = stat.rssi + -95;
2193		tap->wr_antnoise = -95;	/* XXX */
2194	}
2195	rssi = (stat.rssi > 63) ? 127 : 2 * stat.rssi;
2196
2197	sc->sc_rx_data[sc->sc_rx_count].rssi = rssi;
2198	sc->sc_rx_data[sc->sc_rx_count].m = m;
2199	sc->sc_rx_count++;
2200}
2201
2202static void
2203zyd_bulk_read_callback(struct usb_xfer *xfer)
2204{
2205	struct zyd_softc *sc = xfer->priv_sc;
2206	struct ifnet *ifp = sc->sc_ifp;
2207	struct ieee80211com *ic = ifp->if_l2com;
2208	struct ieee80211_node *ni;
2209	struct zyd_rx_desc desc;
2210	struct mbuf *m;
2211	uint32_t offset;
2212	uint8_t rssi;
2213	int8_t nf;
2214	int i;
2215
2216	sc->sc_rx_count = 0;
2217	switch (USB_GET_STATE(xfer)) {
2218	case USB_ST_TRANSFERRED:
2219		usb2_copy_out(xfer->frbuffers, xfer->actlen - sizeof(desc),
2220		    &desc, sizeof(desc));
2221
2222		offset = 0;
2223		if (UGETW(desc.tag) == ZYD_TAG_MULTIFRAME) {
2224			DPRINTF(sc, ZYD_DEBUG_RECV,
2225			    "%s: received multi-frame transfer\n", __func__);
2226
2227			for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) {
2228				uint16_t len16 = UGETW(desc.len[i]);
2229
2230				if (len16 == 0 || len16 > xfer->actlen)
2231					break;
2232
2233				zyd_rx_data(xfer, offset, len16);
2234
2235				/* next frame is aligned on a 32-bit boundary */
2236				len16 = (len16 + 3) & ~3;
2237				offset += len16;
2238				if (len16 > xfer->actlen)
2239					break;
2240				xfer->actlen -= len16;
2241			}
2242		} else {
2243			DPRINTF(sc, ZYD_DEBUG_RECV,
2244			    "%s: received single-frame transfer\n", __func__);
2245
2246			zyd_rx_data(xfer, 0, xfer->actlen);
2247		}
2248		/* FALLTHROUGH */
2249	case USB_ST_SETUP:
2250tr_setup:
2251		xfer->frlengths[0] = xfer->max_data_length;
2252		usb2_start_hardware(xfer);
2253
2254		/*
2255		 * At the end of a USB callback it is always safe to unlock
2256		 * the private mutex of a device! That is why we do the
2257		 * "ieee80211_input" here, and not some lines up!
2258		 */
2259		ZYD_UNLOCK(sc);
2260		for (i = 0; i < sc->sc_rx_count; i++) {
2261			rssi = sc->sc_rx_data[i].rssi;
2262			m = sc->sc_rx_data[i].m;
2263			sc->sc_rx_data[i].m = NULL;
2264
2265			nf = -95;	/* XXX */
2266
2267			ni = ieee80211_find_rxnode(ic,
2268			    mtod(m, struct ieee80211_frame_min *));
2269			if (ni != NULL) {
2270				(void)ieee80211_input(ni, m, rssi, nf);
2271				ieee80211_free_node(ni);
2272			} else
2273				(void)ieee80211_input_all(ic, m, rssi, nf);
2274		}
2275		ZYD_LOCK(sc);
2276		break;
2277
2278	default:			/* Error */
2279		DPRINTF(sc, ZYD_DEBUG_ANY, "frame error: %s\n", usb2_errstr(xfer->error));
2280
2281		if (xfer->error != USB_ERR_CANCELLED) {
2282			/* try to clear stall first */
2283			xfer->flags.stall_pipe = 1;
2284			goto tr_setup;
2285		}
2286		break;
2287	}
2288}
2289
2290static uint8_t
2291zyd_plcp_signal(int rate)
2292{
2293	switch (rate) {
2294	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
2295	case 12:
2296		return (0xb);
2297	case 18:
2298		return (0xf);
2299	case 24:
2300		return (0xa);
2301	case 36:
2302		return (0xe);
2303	case 48:
2304		return (0x9);
2305	case 72:
2306		return (0xd);
2307	case 96:
2308		return (0x8);
2309	case 108:
2310		return (0xc);
2311	/* CCK rates (NB: not IEEE std, device-specific) */
2312	case 2:
2313		return (0x0);
2314	case 4:
2315		return (0x1);
2316	case 11:
2317		return (0x2);
2318	case 22:
2319		return (0x3);
2320	}
2321	return (0xff);		/* XXX unsupported/unknown rate */
2322}
2323
2324static int
2325zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2326{
2327	struct ieee80211vap *vap = ni->ni_vap;
2328	struct ieee80211com *ic = ni->ni_ic;
2329	struct zyd_tx_desc *desc;
2330	struct zyd_tx_data *data;
2331	struct ieee80211_frame *wh;
2332	struct ieee80211_key *k;
2333	int rate, totlen;
2334	uint16_t pktlen;
2335
2336	data = STAILQ_FIRST(&sc->tx_free);
2337	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
2338	sc->tx_nfree--;
2339	desc = &data->desc;
2340
2341	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2342
2343	wh = mtod(m0, struct ieee80211_frame *);
2344
2345	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2346		k = ieee80211_crypto_encap(ni, m0);
2347		if (k == NULL) {
2348			m_freem(m0);
2349			return (ENOBUFS);
2350		}
2351	}
2352
2353	data->ni = ni;
2354	data->m = m0;
2355	data->rate = rate;
2356
2357	wh = mtod(m0, struct ieee80211_frame *);
2358
2359	totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2360
2361	/* fill Tx descriptor */
2362	desc->len = htole16(totlen);
2363
2364	desc->flags = ZYD_TX_FLAG_BACKOFF;
2365	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2366		/* multicast frames are not sent at OFDM rates in 802.11b/g */
2367		if (totlen > vap->iv_rtsthreshold) {
2368			desc->flags |= ZYD_TX_FLAG_RTS;
2369		} else if (ZYD_RATE_IS_OFDM(rate) &&
2370		    (ic->ic_flags & IEEE80211_F_USEPROT)) {
2371			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2372				desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2373			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2374				desc->flags |= ZYD_TX_FLAG_RTS;
2375		}
2376	} else
2377		desc->flags |= ZYD_TX_FLAG_MULTICAST;
2378
2379	if ((wh->i_fc[0] &
2380	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2381	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2382		desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2383
2384	desc->phy = zyd_plcp_signal(rate);
2385	if (ZYD_RATE_IS_OFDM(rate)) {
2386		desc->phy |= ZYD_TX_PHY_OFDM;
2387		if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
2388			desc->phy |= ZYD_TX_PHY_5GHZ;
2389	} else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2390		desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2391
2392	/* actual transmit length (XXX why +10?) */
2393	pktlen = ZYD_TX_DESC_SIZE + 10;
2394	if (sc->sc_macrev == ZYD_ZD1211)
2395		pktlen += totlen;
2396	desc->pktlen = htole16(pktlen);
2397
2398	desc->plcp_length = (16 * totlen + rate - 1) / rate;
2399	desc->plcp_service = 0;
2400	if (rate == 22) {
2401		const int remainder = (16 * totlen) % 22;
2402		if (remainder != 0 && remainder < 7)
2403			desc->plcp_service |= ZYD_PLCP_LENGEXT;
2404	}
2405
2406	if (ieee80211_radiotap_active_vap(vap)) {
2407		struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2408
2409		tap->wt_flags = 0;
2410		tap->wt_rate = rate;
2411
2412		ieee80211_radiotap_tx(vap, m0);
2413	}
2414
2415	DPRINTF(sc, ZYD_DEBUG_XMIT,
2416	    "%s: sending mgt frame len=%zu rate=%u\n",
2417	    device_get_nameunit(sc->sc_dev), (size_t)m0->m_pkthdr.len,
2418		rate);
2419
2420	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
2421	usb2_transfer_start(sc->sc_xfer[ZYD_BULK_WR]);
2422
2423	return (0);
2424}
2425
2426static void
2427zyd_bulk_write_callback(struct usb_xfer *xfer)
2428{
2429	struct zyd_softc *sc = xfer->priv_sc;
2430	struct ifnet *ifp = sc->sc_ifp;
2431	struct ieee80211vap *vap;
2432	struct zyd_tx_data *data;
2433	struct mbuf *m;
2434
2435	switch (USB_GET_STATE(xfer)) {
2436	case USB_ST_TRANSFERRED:
2437		DPRINTF(sc, ZYD_DEBUG_ANY, "transfer complete, %u bytes\n",
2438		    xfer->actlen);
2439
2440		/* free resources */
2441		data = xfer->priv_fifo;
2442		zyd_tx_free(data, 0);
2443		xfer->priv_fifo = NULL;
2444
2445		ifp->if_opackets++;
2446		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2447
2448		/* FALLTHROUGH */
2449	case USB_ST_SETUP:
2450tr_setup:
2451		data = STAILQ_FIRST(&sc->tx_q);
2452		if (data) {
2453			STAILQ_REMOVE_HEAD(&sc->tx_q, next);
2454			m = data->m;
2455
2456			if (m->m_pkthdr.len > ZYD_MAX_TXBUFSZ) {
2457				DPRINTF(sc, ZYD_DEBUG_ANY, "data overflow, %u bytes\n",
2458				    m->m_pkthdr.len);
2459				m->m_pkthdr.len = ZYD_MAX_TXBUFSZ;
2460			}
2461			usb2_copy_in(xfer->frbuffers, 0, &data->desc,
2462			    ZYD_TX_DESC_SIZE);
2463			usb2_m_copy_in(xfer->frbuffers, ZYD_TX_DESC_SIZE, m, 0,
2464			    m->m_pkthdr.len);
2465
2466			vap = data->ni->ni_vap;
2467			if (ieee80211_radiotap_active_vap(vap)) {
2468				struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2469
2470				tap->wt_flags = 0;
2471				tap->wt_rate = data->rate;
2472
2473				ieee80211_radiotap_tx(vap, m);
2474			}
2475
2476			xfer->frlengths[0] = ZYD_TX_DESC_SIZE + m->m_pkthdr.len;
2477			xfer->priv_fifo = data;
2478			usb2_start_hardware(xfer);
2479		}
2480		break;
2481
2482	default:			/* Error */
2483		DPRINTF(sc, ZYD_DEBUG_ANY, "transfer error, %s\n",
2484		    usb2_errstr(xfer->error));
2485
2486		ifp->if_oerrors++;
2487		data = xfer->priv_fifo;
2488		xfer->priv_fifo = NULL;
2489		if (data != NULL)
2490			zyd_tx_free(data, xfer->error);
2491
2492		if (xfer->error == USB_ERR_STALLED) {
2493			/* try to clear stall first */
2494			xfer->flags.stall_pipe = 1;
2495			goto tr_setup;
2496		}
2497		if (xfer->error == USB_ERR_TIMEOUT)
2498			device_printf(sc->sc_dev, "device timeout\n");
2499		break;
2500	}
2501}
2502
2503static int
2504zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2505{
2506	struct ieee80211vap *vap = ni->ni_vap;
2507	struct ieee80211com *ic = ni->ni_ic;
2508	struct zyd_tx_desc *desc;
2509	struct zyd_tx_data *data;
2510	struct ieee80211_frame *wh;
2511	const struct ieee80211_txparam *tp;
2512	struct ieee80211_key *k;
2513	int rate, totlen;
2514	uint16_t pktlen;
2515
2516	wh = mtod(m0, struct ieee80211_frame *);
2517	data = STAILQ_FIRST(&sc->tx_free);
2518	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
2519	sc->tx_nfree--;
2520	desc = &data->desc;
2521
2522	desc->flags = ZYD_TX_FLAG_BACKOFF;
2523	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
2524	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2525		rate = tp->mcastrate;
2526		desc->flags |= ZYD_TX_FLAG_MULTICAST;
2527	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
2528		rate = tp->ucastrate;
2529	} else {
2530		(void) ieee80211_amrr_choose(ni, &ZYD_NODE(ni)->amn);
2531		rate = ni->ni_txrate;
2532	}
2533
2534	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2535		k = ieee80211_crypto_encap(ni, m0);
2536		if (k == NULL) {
2537			m_freem(m0);
2538			return (ENOBUFS);
2539		}
2540		/* packet header may have moved, reset our local pointer */
2541		wh = mtod(m0, struct ieee80211_frame *);
2542	}
2543
2544	data->ni = ni;
2545	data->m = m0;
2546
2547	totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2548
2549	/* fill Tx descriptor */
2550	desc->len = htole16(totlen);
2551
2552	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2553		/* multicast frames are not sent at OFDM rates in 802.11b/g */
2554		if (totlen > vap->iv_rtsthreshold) {
2555			desc->flags |= ZYD_TX_FLAG_RTS;
2556		} else if (ZYD_RATE_IS_OFDM(rate) &&
2557		    (ic->ic_flags & IEEE80211_F_USEPROT)) {
2558			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2559				desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2560			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2561				desc->flags |= ZYD_TX_FLAG_RTS;
2562		}
2563	}
2564
2565	if ((wh->i_fc[0] &
2566	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2567	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2568		desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2569
2570	desc->phy = zyd_plcp_signal(rate);
2571	if (ZYD_RATE_IS_OFDM(rate)) {
2572		desc->phy |= ZYD_TX_PHY_OFDM;
2573		if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
2574			desc->phy |= ZYD_TX_PHY_5GHZ;
2575	} else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2576		desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2577
2578	/* actual transmit length (XXX why +10?) */
2579	pktlen = sizeof(struct zyd_tx_desc) + 10;
2580	if (sc->sc_macrev == ZYD_ZD1211)
2581		pktlen += totlen;
2582	desc->pktlen = htole16(pktlen);
2583
2584	desc->plcp_length = (16 * totlen + rate - 1) / rate;
2585	desc->plcp_service = 0;
2586	if (rate == 22) {
2587		const int remainder = (16 * totlen) % 22;
2588		if (remainder != 0 && remainder < 7)
2589			desc->plcp_service |= ZYD_PLCP_LENGEXT;
2590	}
2591
2592	DPRINTF(sc, ZYD_DEBUG_XMIT,
2593	    "%s: sending data frame len=%zu rate=%u\n",
2594	    device_get_nameunit(sc->sc_dev), (size_t)m0->m_pkthdr.len,
2595		rate);
2596
2597	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
2598	usb2_transfer_start(sc->sc_xfer[ZYD_BULK_WR]);
2599
2600	return (0);
2601}
2602
2603static void
2604zyd_start(struct ifnet *ifp)
2605{
2606	struct zyd_softc *sc = ifp->if_softc;
2607	struct ieee80211_node *ni;
2608	struct mbuf *m;
2609
2610	ZYD_LOCK(sc);
2611	for (;;) {
2612		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2613		if (m == NULL)
2614			break;
2615		if (sc->tx_nfree == 0) {
2616			IFQ_DRV_PREPEND(&ifp->if_snd, m);
2617			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2618			break;
2619		}
2620		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
2621		if (zyd_tx_data(sc, m, ni) != 0) {
2622			ieee80211_free_node(ni);
2623			ifp->if_oerrors++;
2624			break;
2625		}
2626	}
2627	ZYD_UNLOCK(sc);
2628}
2629
2630static int
2631zyd_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2632	const struct ieee80211_bpf_params *params)
2633{
2634	struct ieee80211com *ic = ni->ni_ic;
2635	struct ifnet *ifp = ic->ic_ifp;
2636	struct zyd_softc *sc = ifp->if_softc;
2637
2638	ZYD_LOCK(sc);
2639	/* prevent management frames from being sent if we're not ready */
2640	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2641		ZYD_UNLOCK(sc);
2642		m_freem(m);
2643		ieee80211_free_node(ni);
2644		return (ENETDOWN);
2645	}
2646	if (sc->tx_nfree == 0) {
2647		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2648		ZYD_UNLOCK(sc);
2649		m_freem(m);
2650		ieee80211_free_node(ni);
2651		return (ENOBUFS);		/* XXX */
2652	}
2653
2654	/*
2655	 * Legacy path; interpret frame contents to decide
2656	 * precisely how to send the frame.
2657	 * XXX raw path
2658	 */
2659	if (zyd_tx_mgt(sc, m, ni) != 0) {
2660		ZYD_UNLOCK(sc);
2661		ifp->if_oerrors++;
2662		ieee80211_free_node(ni);
2663		return (EIO);
2664	}
2665	ZYD_UNLOCK(sc);
2666	return (0);
2667}
2668
2669static int
2670zyd_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2671{
2672	struct zyd_softc *sc = ifp->if_softc;
2673	struct ieee80211com *ic = ifp->if_l2com;
2674	struct ifreq *ifr = (struct ifreq *) data;
2675	int error = 0, startall = 0;
2676
2677	switch (cmd) {
2678	case SIOCSIFFLAGS:
2679		ZYD_LOCK(sc);
2680		if (ifp->if_flags & IFF_UP) {
2681			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2682				zyd_init_locked(sc);
2683				startall = 1;
2684			} else
2685				zyd_set_multi(sc);
2686		} else {
2687			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2688				zyd_stop(sc);
2689		}
2690		ZYD_UNLOCK(sc);
2691		if (startall)
2692			ieee80211_start_all(ic);
2693		break;
2694	case SIOCGIFMEDIA:
2695		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2696		break;
2697	case SIOCGIFADDR:
2698		error = ether_ioctl(ifp, cmd, data);
2699		break;
2700	default:
2701		error = EINVAL;
2702		break;
2703	}
2704	return (error);
2705}
2706
2707static void
2708zyd_init_locked(struct zyd_softc *sc)
2709{
2710	struct ifnet *ifp = sc->sc_ifp;
2711	struct ieee80211com *ic = ifp->if_l2com;
2712	struct usb_config_descriptor *cd;
2713	int error;
2714	uint32_t val;
2715
2716	ZYD_LOCK_ASSERT(sc, MA_OWNED);
2717
2718	if (!(sc->sc_flags & ZYD_FLAG_INITONCE)) {
2719		error = zyd_loadfirmware(sc);
2720		if (error != 0) {
2721			device_printf(sc->sc_dev,
2722			    "could not load firmware (error=%d)\n", error);
2723			goto fail;
2724		}
2725
2726		/* reset device */
2727		cd = usb2_get_config_descriptor(sc->sc_udev);
2728		error = usb2_req_set_config(sc->sc_udev, &sc->sc_mtx,
2729		    cd->bConfigurationValue);
2730		if (error)
2731			device_printf(sc->sc_dev, "reset failed, continuing\n");
2732
2733		error = zyd_hw_init(sc);
2734		if (error) {
2735			device_printf(sc->sc_dev,
2736			    "hardware initialization failed\n");
2737			goto fail;
2738		}
2739
2740		device_printf(sc->sc_dev,
2741		    "HMAC ZD1211%s, FW %02x.%02x, RF %s S%x, PA%x LED %x "
2742		    "BE%x NP%x Gain%x F%x\n",
2743		    (sc->sc_macrev == ZYD_ZD1211) ? "": "B",
2744		    sc->sc_fwrev >> 8, sc->sc_fwrev & 0xff,
2745		    zyd_rf_name(sc->sc_rfrev), sc->sc_al2230s, sc->sc_parev,
2746		    sc->sc_ledtype, sc->sc_bandedge6, sc->sc_newphy,
2747		    sc->sc_cckgain, sc->sc_fix_cr157);
2748
2749		/* read regulatory domain (currently unused) */
2750		zyd_read32_m(sc, ZYD_EEPROM_SUBID, &val);
2751		sc->sc_regdomain = val >> 16;
2752		DPRINTF(sc, ZYD_DEBUG_INIT, "regulatory domain %x\n",
2753		    sc->sc_regdomain);
2754
2755		/* we'll do software WEP decryption for now */
2756		DPRINTF(sc, ZYD_DEBUG_INIT, "%s: setting encryption type\n",
2757		    __func__);
2758		zyd_write32_m(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
2759
2760		sc->sc_flags |= ZYD_FLAG_INITONCE;
2761	}
2762
2763	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2764		zyd_stop(sc);
2765
2766	DPRINTF(sc, ZYD_DEBUG_INIT, "setting MAC address to %6D\n",
2767	    IF_LLADDR(ifp), ":");
2768	error = zyd_set_macaddr(sc, IF_LLADDR(ifp));
2769	if (error != 0)
2770		return;
2771
2772	/* set basic rates */
2773	if (ic->ic_curmode == IEEE80211_MODE_11B)
2774		zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x0003);
2775	else if (ic->ic_curmode == IEEE80211_MODE_11A)
2776		zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x1500);
2777	else	/* assumes 802.11b/g */
2778		zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0xff0f);
2779
2780	/* promiscuous mode */
2781	zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0);
2782	/* multicast setup */
2783	zyd_set_multi(sc);
2784	/* set RX filter  */
2785	error = zyd_set_rxfilter(sc);
2786	if (error != 0)
2787		goto fail;
2788
2789	/* switch radio transmitter ON */
2790	error = zyd_switch_radio(sc, 1);
2791	if (error != 0)
2792		goto fail;
2793	/* set default BSS channel */
2794	zyd_set_chan(sc, ic->ic_curchan);
2795
2796	/*
2797	 * Allocate Tx and Rx xfer queues.
2798	 */
2799	zyd_setup_tx_list(sc);
2800
2801	/* enable interrupts */
2802	zyd_write32_m(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
2803
2804	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2805	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2806	usb2_transfer_set_stall(sc->sc_xfer[ZYD_BULK_WR]);
2807	usb2_transfer_start(sc->sc_xfer[ZYD_BULK_RD]);
2808	usb2_transfer_start(sc->sc_xfer[ZYD_INTR_RD]);
2809
2810	return;
2811
2812fail:	zyd_stop(sc);
2813	return;
2814}
2815
2816static void
2817zyd_init(void *priv)
2818{
2819	struct zyd_softc *sc = priv;
2820	struct ifnet *ifp = sc->sc_ifp;
2821	struct ieee80211com *ic = ifp->if_l2com;
2822
2823	ZYD_LOCK(sc);
2824	zyd_init_locked(sc);
2825	ZYD_UNLOCK(sc);
2826
2827	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2828		ieee80211_start_all(ic);		/* start all vap's */
2829}
2830
2831static void
2832zyd_stop(struct zyd_softc *sc)
2833{
2834	struct ifnet *ifp = sc->sc_ifp;
2835	int error;
2836
2837	ZYD_LOCK_ASSERT(sc, MA_OWNED);
2838
2839	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2840
2841	/*
2842	 * Drain all the transfers, if not already drained:
2843	 */
2844	ZYD_UNLOCK(sc);
2845	usb2_transfer_drain(sc->sc_xfer[ZYD_BULK_WR]);
2846	usb2_transfer_drain(sc->sc_xfer[ZYD_BULK_RD]);
2847	ZYD_LOCK(sc);
2848
2849	zyd_unsetup_tx_list(sc);
2850
2851	/* Stop now if the device was never set up */
2852	if (!(sc->sc_flags & ZYD_FLAG_INITONCE))
2853		return;
2854
2855	/* switch radio transmitter OFF */
2856	error = zyd_switch_radio(sc, 0);
2857	if (error != 0)
2858		goto fail;
2859	/* disable Rx */
2860	zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0);
2861	/* disable interrupts */
2862	zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0);
2863
2864fail:
2865	return;
2866}
2867
2868static int
2869zyd_loadfirmware(struct zyd_softc *sc)
2870{
2871	struct usb_device_request req;
2872	size_t size;
2873	u_char *fw;
2874	uint8_t stat;
2875	uint16_t addr;
2876
2877	if (sc->sc_flags & ZYD_FLAG_FWLOADED)
2878		return (0);
2879
2880	if (sc->sc_macrev == ZYD_ZD1211) {
2881		fw = (u_char *)zd1211_firmware;
2882		size = sizeof(zd1211_firmware);
2883	} else {
2884		fw = (u_char *)zd1211b_firmware;
2885		size = sizeof(zd1211b_firmware);
2886	}
2887
2888	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2889	req.bRequest = ZYD_DOWNLOADREQ;
2890	USETW(req.wIndex, 0);
2891
2892	addr = ZYD_FIRMWARE_START_ADDR;
2893	while (size > 0) {
2894		/*
2895		 * When the transfer size is 4096 bytes, it is not
2896		 * likely to be able to transfer it.
2897		 * The cause is port or machine or chip?
2898		 */
2899		const int mlen = min(size, 64);
2900
2901		DPRINTF(sc, ZYD_DEBUG_FW,
2902		    "loading firmware block: len=%d, addr=0x%x\n", mlen, addr);
2903
2904		USETW(req.wValue, addr);
2905		USETW(req.wLength, mlen);
2906		if (zyd_do_request(sc, &req, fw) != 0)
2907			return (EIO);
2908
2909		addr += mlen / 2;
2910		fw   += mlen;
2911		size -= mlen;
2912	}
2913
2914	/* check whether the upload succeeded */
2915	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2916	req.bRequest = ZYD_DOWNLOADSTS;
2917	USETW(req.wValue, 0);
2918	USETW(req.wIndex, 0);
2919	USETW(req.wLength, sizeof(stat));
2920	if (zyd_do_request(sc, &req, &stat) != 0)
2921		return (EIO);
2922
2923	sc->sc_flags |= ZYD_FLAG_FWLOADED;
2924
2925	return (stat & 0x80) ? (EIO) : (0);
2926}
2927
2928static void
2929zyd_newassoc(struct ieee80211_node *ni, int isnew)
2930{
2931	struct ieee80211vap *vap = ni->ni_vap;
2932
2933	ieee80211_amrr_node_init(&ZYD_VAP(vap)->amrr, &ZYD_NODE(ni)->amn, ni);
2934}
2935
2936static void
2937zyd_scan_start(struct ieee80211com *ic)
2938{
2939	struct ifnet *ifp = ic->ic_ifp;
2940	struct zyd_softc *sc = ifp->if_softc;
2941
2942	ZYD_LOCK(sc);
2943	/* want broadcast address while scanning */
2944	zyd_set_bssid(sc, ifp->if_broadcastaddr);
2945	ZYD_UNLOCK(sc);
2946}
2947
2948static void
2949zyd_scan_end(struct ieee80211com *ic)
2950{
2951	struct zyd_softc *sc = ic->ic_ifp->if_softc;
2952
2953	ZYD_LOCK(sc);
2954	/* restore previous bssid */
2955	zyd_set_bssid(sc, sc->sc_bssid);
2956	ZYD_UNLOCK(sc);
2957}
2958
2959static void
2960zyd_set_channel(struct ieee80211com *ic)
2961{
2962	struct zyd_softc *sc = ic->ic_ifp->if_softc;
2963
2964	ZYD_LOCK(sc);
2965	zyd_set_chan(sc, ic->ic_curchan);
2966	ZYD_UNLOCK(sc);
2967}
2968
2969static device_method_t zyd_methods[] = {
2970        /* Device interface */
2971        DEVMETHOD(device_probe, zyd_match),
2972        DEVMETHOD(device_attach, zyd_attach),
2973        DEVMETHOD(device_detach, zyd_detach),
2974
2975	{ 0, 0 }
2976};
2977
2978static driver_t zyd_driver = {
2979        "zyd",
2980        zyd_methods,
2981        sizeof(struct zyd_softc)
2982};
2983
2984static devclass_t zyd_devclass;
2985
2986DRIVER_MODULE(zyd, uhub, zyd_driver, zyd_devclass, NULL, 0);
2987MODULE_DEPEND(zyd, usb, 1, 1, 1);
2988MODULE_DEPEND(zyd, wlan, 1, 1, 1);
2989MODULE_DEPEND(zyd, wlan_amrr, 1, 1, 1);
2990