atp.c revision 262417
1/*-
2 * Copyright (c) 2014 Rohit Grover
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27/*
28 * Some tables, structures, definitions and constant values for the
29 * touchpad protocol has been copied from Linux's
30 * "drivers/input/mouse/bcm5974.c" which has the following copyright
31 * holders under GPLv2. All device specific code in this driver has
32 * been written from scratch. The decoding algorithm is based on
33 * output from FreeBSD's usbdump.
34 *
35 * Copyright (C) 2008      Henrik Rydberg (rydberg@euromail.se)
36 * Copyright (C) 2008      Scott Shawcroft (scott.shawcroft@gmail.com)
37 * Copyright (C) 2001-2004 Greg Kroah-Hartman (greg@kroah.com)
38 * Copyright (C) 2005      Johannes Berg (johannes@sipsolutions.net)
39 * Copyright (C) 2005      Stelian Pop (stelian@popies.net)
40 * Copyright (C) 2005      Frank Arnold (frank@scirocco-5v-turbo.de)
41 * Copyright (C) 2005      Peter Osterlund (petero2@telia.com)
42 * Copyright (C) 2005      Michael Hanselmann (linux-kernel@hansmi.ch)
43 * Copyright (C) 2006      Nicolas Boichat (nicolas@boichat.ch)
44 */
45
46/*
47 * Author's note: 'atp' supports two distinct families of Apple trackpad
48 * products: the older Fountain/Geyser and the latest Wellspring trackpads.
49 * The first version made its appearance with FreeBSD 8 and worked only with
50 * the Fountain/Geyser hardware. A fork of this driver for Wellspring was
51 * contributed by Huang Wen Hui. This driver unifies the Wellspring effort
52 * and also improves upon the original work.
53 *
54 * I'm grateful to Stephan Scheunig, Angela Naegele, and Nokia IT-support
55 * for helping me with access to hardware. Thanks also go to Nokia for
56 * giving me an opportunity to do this work.
57 */
58
59#include <sys/cdefs.h>
60__FBSDID("$FreeBSD: head/sys/dev/usb/input/atp.c 262417 2014-02-23 23:36:32Z hselasky $");
61
62#include <sys/stdint.h>
63#include <sys/stddef.h>
64#include <sys/param.h>
65#include <sys/types.h>
66#include <sys/systm.h>
67#include <sys/kernel.h>
68#include <sys/bus.h>
69#include <sys/module.h>
70#include <sys/lock.h>
71#include <sys/mutex.h>
72#include <sys/sysctl.h>
73#include <sys/malloc.h>
74#include <sys/conf.h>
75#include <sys/fcntl.h>
76#include <sys/file.h>
77#include <sys/selinfo.h>
78#include <sys/poll.h>
79
80#include <dev/usb/usb.h>
81#include <dev/usb/usbdi.h>
82#include <dev/usb/usbdi_util.h>
83#include <dev/usb/usbhid.h>
84
85#include "usbdevs.h"
86
87#define USB_DEBUG_VAR atp_debug
88#include <dev/usb/usb_debug.h>
89
90#include <sys/mouse.h>
91
92#define ATP_DRIVER_NAME "atp"
93
94/*
95 * Driver specific options: the following options may be set by
96 * `options' statements in the kernel configuration file.
97 */
98
99/* The divisor used to translate sensor reported positions to mickeys. */
100#ifndef ATP_SCALE_FACTOR
101#define ATP_SCALE_FACTOR                  16
102#endif
103
104/* Threshold for small movement noise (in mickeys) */
105#ifndef ATP_SMALL_MOVEMENT_THRESHOLD
106#define ATP_SMALL_MOVEMENT_THRESHOLD      30
107#endif
108
109/* Threshold of instantaneous deltas beyond which movement is considered fast.*/
110#ifndef ATP_FAST_MOVEMENT_TRESHOLD
111#define ATP_FAST_MOVEMENT_TRESHOLD        150
112#endif
113
114/*
115 * This is the age in microseconds beyond which a touch is considered
116 * to be a slide; and therefore a tap event isn't registered.
117 */
118#ifndef ATP_TOUCH_TIMEOUT
119#define ATP_TOUCH_TIMEOUT                 125000
120#endif
121
122#ifndef ATP_IDLENESS_THRESHOLD
123#define	ATP_IDLENESS_THRESHOLD 10
124#endif
125
126#ifndef FG_SENSOR_NOISE_THRESHOLD
127#define FG_SENSOR_NOISE_THRESHOLD 2
128#endif
129
130/*
131 * A double-tap followed by a single-finger slide is treated as a
132 * special gesture. The driver responds to this gesture by assuming a
133 * virtual button-press for the lifetime of the slide. The following
134 * threshold is the maximum time gap (in microseconds) between the two
135 * tap events preceding the slide for such a gesture.
136 */
137#ifndef ATP_DOUBLE_TAP_N_DRAG_THRESHOLD
138#define ATP_DOUBLE_TAP_N_DRAG_THRESHOLD   200000
139#endif
140
141/*
142 * The wait duration in ticks after losing a touch contact before
143 * zombied strokes are reaped and turned into button events.
144 */
145#define ATP_ZOMBIE_STROKE_REAP_INTERVAL   (hz / 20)	/* 50 ms */
146
147/* The multiplier used to translate sensor reported positions to mickeys. */
148#define FG_SCALE_FACTOR                   380
149
150/*
151 * The movement threshold for a stroke; this is the maximum difference
152 * in position which will be resolved as a continuation of a stroke
153 * component.
154 */
155#define FG_MAX_DELTA_MICKEYS             ((3 * (FG_SCALE_FACTOR)) >> 1)
156
157/* Distance-squared threshold for matching a finger with a known stroke */
158#ifndef WSP_MAX_ALLOWED_MATCH_DISTANCE_SQ
159#define WSP_MAX_ALLOWED_MATCH_DISTANCE_SQ 1000000
160#endif
161
162/* Ignore pressure spans with cumulative press. below this value. */
163#define FG_PSPAN_MIN_CUM_PRESSURE         10
164
165/* Maximum allowed width for pressure-spans.*/
166#define FG_PSPAN_MAX_WIDTH                4
167
168/* end of driver specific options */
169
170/* Tunables */
171static SYSCTL_NODE(_hw_usb, OID_AUTO, atp, CTLFLAG_RW, 0, "USB ATP");
172
173#ifdef USB_DEBUG
174enum atp_log_level {
175	ATP_LLEVEL_DISABLED = 0,
176	ATP_LLEVEL_ERROR,
177	ATP_LLEVEL_DEBUG,       /* for troubleshooting */
178	ATP_LLEVEL_INFO,        /* for diagnostics */
179};
180static int atp_debug = ATP_LLEVEL_ERROR; /* the default is to only log errors */
181SYSCTL_INT(_hw_usb_atp, OID_AUTO, debug, CTLFLAG_RW,
182    &atp_debug, ATP_LLEVEL_ERROR, "ATP debug level");
183#endif /* USB_DEBUG */
184
185static u_int atp_touch_timeout = ATP_TOUCH_TIMEOUT;
186SYSCTL_UINT(_hw_usb_atp, OID_AUTO, touch_timeout, CTLFLAG_RW,
187    &atp_touch_timeout, 125000, "age threshold in microseconds for a touch");
188
189static u_int atp_double_tap_threshold = ATP_DOUBLE_TAP_N_DRAG_THRESHOLD;
190SYSCTL_UINT(_hw_usb_atp, OID_AUTO, double_tap_threshold, CTLFLAG_RW,
191    &atp_double_tap_threshold, ATP_DOUBLE_TAP_N_DRAG_THRESHOLD,
192    "maximum time in microseconds to allow association between a double-tap and "
193    "drag gesture");
194
195static u_int atp_mickeys_scale_factor = ATP_SCALE_FACTOR;
196static int atp_sysctl_scale_factor_handler(SYSCTL_HANDLER_ARGS);
197SYSCTL_PROC(_hw_usb_atp, OID_AUTO, scale_factor, CTLTYPE_UINT | CTLFLAG_RW,
198    &atp_mickeys_scale_factor, sizeof(atp_mickeys_scale_factor),
199    atp_sysctl_scale_factor_handler, "IU", "movement scale factor");
200
201static u_int atp_small_movement_threshold = ATP_SMALL_MOVEMENT_THRESHOLD;
202SYSCTL_UINT(_hw_usb_atp, OID_AUTO, small_movement, CTLFLAG_RW,
203    &atp_small_movement_threshold, ATP_SMALL_MOVEMENT_THRESHOLD,
204    "the small movement black-hole for filtering noise");
205
206static u_int atp_tap_minimum = 1;
207SYSCTL_UINT(_hw_usb_atp, OID_AUTO, tap_minimum, CTLFLAG_RW,
208    &atp_tap_minimum, 1, "Minimum number of taps before detection");
209
210/*
211 * Strokes which accumulate at least this amount of absolute movement
212 * from the aggregate of their components are considered as
213 * slides. Unit: mickeys.
214 */
215static u_int atp_slide_min_movement = 2 * ATP_SMALL_MOVEMENT_THRESHOLD;
216SYSCTL_UINT(_hw_usb_atp, OID_AUTO, slide_min_movement, CTLFLAG_RW,
217    &atp_slide_min_movement, 2 * ATP_SMALL_MOVEMENT_THRESHOLD,
218    "strokes with at least this amt. of movement are considered slides");
219
220/*
221 * The minimum age of a stroke for it to be considered mature; this
222 * helps filter movements (noise) from immature strokes. Units: interrupts.
223 */
224static u_int atp_stroke_maturity_threshold = 4;
225SYSCTL_UINT(_hw_usb_atp, OID_AUTO, stroke_maturity_threshold, CTLFLAG_RW,
226    &atp_stroke_maturity_threshold, 4,
227    "the minimum age of a stroke for it to be considered mature");
228
229typedef enum atp_trackpad_family {
230	TRACKPAD_FAMILY_FOUNTAIN_GEYSER,
231	TRACKPAD_FAMILY_WELLSPRING,
232	TRACKPAD_FAMILY_MAX /* keep this at the tail end of the enumeration */
233} trackpad_family_t;
234
235enum fountain_geyser_product {
236	FOUNTAIN,
237	GEYSER1,
238	GEYSER1_17inch,
239	GEYSER2,
240	GEYSER3,
241	GEYSER4,
242	FOUNTAIN_GEYSER_PRODUCT_MAX /* keep this at the end */
243};
244
245enum wellspring_product {
246	WELLSPRING1,
247	WELLSPRING2,
248	WELLSPRING3,
249	WELLSPRING4,
250	WELLSPRING4A,
251	WELLSPRING5,
252	WELLSPRING6A,
253	WELLSPRING6,
254	WELLSPRING5A,
255	WELLSPRING7,
256	WELLSPRING7A,
257	WELLSPRING8,
258	WELLSPRING_PRODUCT_MAX /* keep this at the end of the enumeration */
259};
260
261/* trackpad header types */
262enum fountain_geyser_trackpad_type {
263	FG_TRACKPAD_TYPE_GEYSER1,
264	FG_TRACKPAD_TYPE_GEYSER2,
265	FG_TRACKPAD_TYPE_GEYSER3,
266	FG_TRACKPAD_TYPE_GEYSER4,
267};
268enum wellspring_trackpad_type {
269	WSP_TRACKPAD_TYPE1,      /* plain trackpad */
270	WSP_TRACKPAD_TYPE2,      /* button integrated in trackpad */
271	WSP_TRACKPAD_TYPE3       /* additional header fields since June 2013 */
272};
273
274/*
275 * Trackpad family and product and family are encoded together in the
276 * driver_info value associated with a trackpad product.
277 */
278#define N_PROD_BITS 8  /* Number of bits used to encode product */
279#define ENCODE_DRIVER_INFO(FAMILY, PROD)      \
280    (((FAMILY) << N_PROD_BITS) | (PROD))
281#define DECODE_FAMILY_FROM_DRIVER_INFO(INFO)  ((INFO) >> N_PROD_BITS)
282#define DECODE_PRODUCT_FROM_DRIVER_INFO(INFO) \
283    ((INFO) & ((1 << N_PROD_BITS) - 1))
284
285#define FG_DRIVER_INFO(PRODUCT)               \
286    ENCODE_DRIVER_INFO(TRACKPAD_FAMILY_FOUNTAIN_GEYSER, PRODUCT)
287#define WELLSPRING_DRIVER_INFO(PRODUCT)       \
288    ENCODE_DRIVER_INFO(TRACKPAD_FAMILY_WELLSPRING, PRODUCT)
289
290/*
291 * The following structure captures the state of a pressure span along
292 * an axis. Each contact with the touchpad results in separate
293 * pressure spans along the two axes.
294 */
295typedef struct fg_pspan {
296	u_int width;       /* in units of sensors */
297	u_int cum;         /* cumulative compression (from all sensors) */
298	u_int cog;         /* center of gravity */
299	u_int loc;         /* location (scaled using the mickeys factor) */
300	boolean_t matched; /* to track pspans as they match against strokes. */
301} fg_pspan;
302
303#define FG_MAX_PSPANS_PER_AXIS 3
304#define FG_MAX_STROKES         (2 * FG_MAX_PSPANS_PER_AXIS)
305
306#define WELLSPRING_INTERFACE_INDEX 1
307
308/* trackpad finger data offsets, le16-aligned */
309#define WSP_TYPE1_FINGER_DATA_OFFSET  (13 * 2)
310#define WSP_TYPE2_FINGER_DATA_OFFSET  (15 * 2)
311#define WSP_TYPE3_FINGER_DATA_OFFSET  (19 * 2)
312
313/* trackpad button data offsets */
314#define WSP_TYPE2_BUTTON_DATA_OFFSET   15
315#define WSP_TYPE3_BUTTON_DATA_OFFSET   23
316
317/* list of device capability bits */
318#define HAS_INTEGRATED_BUTTON   1
319
320/* trackpad finger structure - little endian */
321struct wsp_finger_sensor_data {
322	int16_t origin;       /* zero when switching track finger */
323	int16_t abs_x;        /* absolute x coordinate */
324	int16_t abs_y;        /* absolute y coordinate */
325	int16_t rel_x;        /* relative x coordinate */
326	int16_t rel_y;        /* relative y coordinate */
327	int16_t tool_major;   /* tool area, major axis */
328	int16_t tool_minor;   /* tool area, minor axis */
329	int16_t orientation;  /* 16384 when point, else 15 bit angle */
330	int16_t touch_major;  /* touch area, major axis */
331	int16_t touch_minor;  /* touch area, minor axis */
332	int16_t unused[3];    /* zeros */
333	int16_t multi;        /* one finger: varies, more fingers: constant */
334} __packed;
335
336typedef struct wsp_finger {
337	/* to track fingers as they match against strokes. */
338	boolean_t matched;
339
340	/* location (scaled using the mickeys factor) */
341	int x;
342	int y;
343} wsp_finger_t;
344
345#define WSP_MAX_FINGERS               16
346#define WSP_SIZEOF_FINGER_SENSOR_DATA sizeof(struct wsp_finger_sensor_data)
347#define WSP_SIZEOF_ALL_FINGER_DATA    (WSP_MAX_FINGERS * \
348				       WSP_SIZEOF_FINGER_SENSOR_DATA)
349#define WSP_MAX_FINGER_ORIENTATION    16384
350
351#define ATP_SENSOR_DATA_BUF_MAX       1024
352#if (ATP_SENSOR_DATA_BUF_MAX < ((WSP_MAX_FINGERS * 14 * 2) + \
353				WSP_TYPE3_FINGER_DATA_OFFSET))
354/* note: 14 * 2 in the above is based on sizeof(struct wsp_finger_sensor_data)*/
355#error "ATP_SENSOR_DATA_BUF_MAX is too small"
356#endif
357
358#define ATP_MAX_STROKES               MAX(WSP_MAX_FINGERS, FG_MAX_STROKES)
359
360#define FG_MAX_XSENSORS 26
361#define FG_MAX_YSENSORS 16
362
363/* device-specific configuration */
364struct fg_dev_params {
365	u_int                              data_len;   /* for sensor data */
366	u_int                              n_xsensors;
367	u_int                              n_ysensors;
368	enum fountain_geyser_trackpad_type prot;
369};
370struct wsp_dev_params {
371	uint8_t  caps;               /* device capability bitmask */
372	uint8_t  tp_type;            /* type of trackpad interface */
373	uint8_t  finger_data_offset; /* offset to trackpad finger data */
374};
375
376static const struct fg_dev_params fg_dev_params[FOUNTAIN_GEYSER_PRODUCT_MAX] = {
377	[FOUNTAIN] = {
378		.data_len   = 81,
379		.n_xsensors = 16,
380		.n_ysensors = 16,
381		.prot       = FG_TRACKPAD_TYPE_GEYSER1
382	},
383	[GEYSER1] = {
384		.data_len   = 81,
385		.n_xsensors = 16,
386		.n_ysensors = 16,
387		.prot       = FG_TRACKPAD_TYPE_GEYSER1
388	},
389	[GEYSER1_17inch] = {
390		.data_len   = 81,
391		.n_xsensors = 26,
392		.n_ysensors = 16,
393		.prot       = FG_TRACKPAD_TYPE_GEYSER1
394	},
395	[GEYSER2] = {
396		.data_len   = 64,
397		.n_xsensors = 15,
398		.n_ysensors = 9,
399		.prot       = FG_TRACKPAD_TYPE_GEYSER2
400	},
401	[GEYSER3] = {
402		.data_len   = 64,
403		.n_xsensors = 20,
404		.n_ysensors = 10,
405		.prot       = FG_TRACKPAD_TYPE_GEYSER3
406	},
407	[GEYSER4] = {
408		.data_len   = 64,
409		.n_xsensors = 20,
410		.n_ysensors = 10,
411		.prot       = FG_TRACKPAD_TYPE_GEYSER4
412	}
413};
414
415static const STRUCT_USB_HOST_ID fg_devs[] = {
416	/* PowerBooks Feb 2005, iBooks G4 */
417	{ USB_VPI(USB_VENDOR_APPLE, 0x020e, FG_DRIVER_INFO(FOUNTAIN)) },
418	{ USB_VPI(USB_VENDOR_APPLE, 0x020f, FG_DRIVER_INFO(FOUNTAIN)) },
419	{ USB_VPI(USB_VENDOR_APPLE, 0x0210, FG_DRIVER_INFO(FOUNTAIN)) },
420	{ USB_VPI(USB_VENDOR_APPLE, 0x030a, FG_DRIVER_INFO(FOUNTAIN)) },
421	{ USB_VPI(USB_VENDOR_APPLE, 0x030b, FG_DRIVER_INFO(GEYSER1)) },
422
423	/* PowerBooks Oct 2005 */
424	{ USB_VPI(USB_VENDOR_APPLE, 0x0214, FG_DRIVER_INFO(GEYSER2)) },
425	{ USB_VPI(USB_VENDOR_APPLE, 0x0215, FG_DRIVER_INFO(GEYSER2)) },
426	{ USB_VPI(USB_VENDOR_APPLE, 0x0216, FG_DRIVER_INFO(GEYSER2)) },
427
428	/* Core Duo MacBook & MacBook Pro */
429	{ USB_VPI(USB_VENDOR_APPLE, 0x0217, FG_DRIVER_INFO(GEYSER3)) },
430	{ USB_VPI(USB_VENDOR_APPLE, 0x0218, FG_DRIVER_INFO(GEYSER3)) },
431	{ USB_VPI(USB_VENDOR_APPLE, 0x0219, FG_DRIVER_INFO(GEYSER3)) },
432
433	/* Core2 Duo MacBook & MacBook Pro */
434	{ USB_VPI(USB_VENDOR_APPLE, 0x021a, FG_DRIVER_INFO(GEYSER4)) },
435	{ USB_VPI(USB_VENDOR_APPLE, 0x021b, FG_DRIVER_INFO(GEYSER4)) },
436	{ USB_VPI(USB_VENDOR_APPLE, 0x021c, FG_DRIVER_INFO(GEYSER4)) },
437
438	/* Core2 Duo MacBook3,1 */
439	{ USB_VPI(USB_VENDOR_APPLE, 0x0229, FG_DRIVER_INFO(GEYSER4)) },
440	{ USB_VPI(USB_VENDOR_APPLE, 0x022a, FG_DRIVER_INFO(GEYSER4)) },
441	{ USB_VPI(USB_VENDOR_APPLE, 0x022b, FG_DRIVER_INFO(GEYSER4)) },
442
443	/* 17 inch PowerBook */
444	{ USB_VPI(USB_VENDOR_APPLE, 0x020d, FG_DRIVER_INFO(GEYSER1_17inch)) },
445};
446
447static const struct wsp_dev_params wsp_dev_params[WELLSPRING_PRODUCT_MAX] = {
448	[WELLSPRING1] = {
449		.caps       = 0,
450		.tp_type    = WSP_TRACKPAD_TYPE1,
451		.finger_data_offset  = WSP_TYPE1_FINGER_DATA_OFFSET,
452	},
453	[WELLSPRING2] = {
454		.caps       = 0,
455		.tp_type    = WSP_TRACKPAD_TYPE1,
456		.finger_data_offset  = WSP_TYPE1_FINGER_DATA_OFFSET,
457	},
458	[WELLSPRING3] = {
459		.caps       = HAS_INTEGRATED_BUTTON,
460		.tp_type    = WSP_TRACKPAD_TYPE2,
461		.finger_data_offset  = WSP_TYPE2_FINGER_DATA_OFFSET,
462	},
463	[WELLSPRING4] = {
464		.caps       = HAS_INTEGRATED_BUTTON,
465		.tp_type    = WSP_TRACKPAD_TYPE2,
466		.finger_data_offset  = WSP_TYPE2_FINGER_DATA_OFFSET,
467	},
468	[WELLSPRING4A] = {
469		.caps       = HAS_INTEGRATED_BUTTON,
470		.tp_type    = WSP_TRACKPAD_TYPE2,
471		.finger_data_offset  = WSP_TYPE2_FINGER_DATA_OFFSET,
472	},
473	[WELLSPRING5] = {
474		.caps       = HAS_INTEGRATED_BUTTON,
475		.tp_type    = WSP_TRACKPAD_TYPE2,
476		.finger_data_offset  = WSP_TYPE2_FINGER_DATA_OFFSET,
477	},
478	[WELLSPRING6] = {
479		.caps       = HAS_INTEGRATED_BUTTON,
480		.tp_type    = WSP_TRACKPAD_TYPE2,
481		.finger_data_offset  = WSP_TYPE2_FINGER_DATA_OFFSET,
482	},
483	[WELLSPRING5A] = {
484		.caps       = HAS_INTEGRATED_BUTTON,
485		.tp_type    = WSP_TRACKPAD_TYPE2,
486		.finger_data_offset  = WSP_TYPE2_FINGER_DATA_OFFSET,
487	},
488	[WELLSPRING6A] = {
489		.caps       = HAS_INTEGRATED_BUTTON,
490		.tp_type    = WSP_TRACKPAD_TYPE2,
491		.finger_data_offset  = WSP_TYPE2_FINGER_DATA_OFFSET,
492	},
493	[WELLSPRING7] = {
494		.caps       = HAS_INTEGRATED_BUTTON,
495		.tp_type    = WSP_TRACKPAD_TYPE2,
496		.finger_data_offset  = WSP_TYPE2_FINGER_DATA_OFFSET,
497	},
498	[WELLSPRING7A] = {
499		.caps       = HAS_INTEGRATED_BUTTON,
500		.tp_type    = WSP_TRACKPAD_TYPE2,
501		.finger_data_offset  = WSP_TYPE2_FINGER_DATA_OFFSET,
502	},
503	[WELLSPRING8] = {
504		.caps       = HAS_INTEGRATED_BUTTON,
505		.tp_type    = WSP_TRACKPAD_TYPE3,
506		.finger_data_offset  = WSP_TYPE3_FINGER_DATA_OFFSET,
507	},
508};
509
510#define ATP_DEV(v,p,i) { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, i) }
511
512static const STRUCT_USB_HOST_ID wsp_devs[] = {
513	/* MacbookAir1.1 */
514	ATP_DEV(APPLE, WELLSPRING_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING1)),
515	ATP_DEV(APPLE, WELLSPRING_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING1)),
516	ATP_DEV(APPLE, WELLSPRING_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING1)),
517
518	/* MacbookProPenryn, aka wellspring2 */
519	ATP_DEV(APPLE, WELLSPRING2_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING2)),
520	ATP_DEV(APPLE, WELLSPRING2_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING2)),
521	ATP_DEV(APPLE, WELLSPRING2_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING2)),
522
523	/* Macbook5,1 (unibody), aka wellspring3 */
524	ATP_DEV(APPLE, WELLSPRING3_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING3)),
525	ATP_DEV(APPLE, WELLSPRING3_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING3)),
526	ATP_DEV(APPLE, WELLSPRING3_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING3)),
527
528	/* MacbookAir3,2 (unibody), aka wellspring4 */
529	ATP_DEV(APPLE, WELLSPRING4_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING4)),
530	ATP_DEV(APPLE, WELLSPRING4_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING4)),
531	ATP_DEV(APPLE, WELLSPRING4_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING4)),
532
533	/* MacbookAir3,1 (unibody), aka wellspring4 */
534	ATP_DEV(APPLE, WELLSPRING4A_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING4A)),
535	ATP_DEV(APPLE, WELLSPRING4A_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING4A)),
536	ATP_DEV(APPLE, WELLSPRING4A_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING4A)),
537
538	/* Macbook8 (unibody, March 2011) */
539	ATP_DEV(APPLE, WELLSPRING5_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING5)),
540	ATP_DEV(APPLE, WELLSPRING5_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING5)),
541	ATP_DEV(APPLE, WELLSPRING5_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING5)),
542
543	/* MacbookAir4,1 (unibody, July 2011) */
544	ATP_DEV(APPLE, WELLSPRING6A_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING6A)),
545	ATP_DEV(APPLE, WELLSPRING6A_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING6A)),
546	ATP_DEV(APPLE, WELLSPRING6A_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING6A)),
547
548	/* MacbookAir4,2 (unibody, July 2011) */
549	ATP_DEV(APPLE, WELLSPRING6_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING6)),
550	ATP_DEV(APPLE, WELLSPRING6_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING6)),
551	ATP_DEV(APPLE, WELLSPRING6_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING6)),
552
553	/* Macbook8,2 (unibody) */
554	ATP_DEV(APPLE, WELLSPRING5A_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING5A)),
555	ATP_DEV(APPLE, WELLSPRING5A_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING5A)),
556	ATP_DEV(APPLE, WELLSPRING5A_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING5A)),
557
558	/* MacbookPro10,1 (unibody, June 2012) */
559	/* MacbookPro11,? (unibody, June 2013) */
560	ATP_DEV(APPLE, WELLSPRING7_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING7)),
561	ATP_DEV(APPLE, WELLSPRING7_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING7)),
562	ATP_DEV(APPLE, WELLSPRING7_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING7)),
563
564	/* MacbookPro10,2 (unibody, October 2012) */
565	ATP_DEV(APPLE, WELLSPRING7A_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING7A)),
566	ATP_DEV(APPLE, WELLSPRING7A_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING7A)),
567	ATP_DEV(APPLE, WELLSPRING7A_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING7A)),
568
569	/* MacbookAir6,2 (unibody, June 2013) */
570	ATP_DEV(APPLE, WELLSPRING8_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING8)),
571	ATP_DEV(APPLE, WELLSPRING8_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING8)),
572	ATP_DEV(APPLE, WELLSPRING8_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING8)),
573};
574
575typedef enum atp_stroke_type {
576	ATP_STROKE_TOUCH,
577	ATP_STROKE_SLIDE,
578} atp_stroke_type;
579
580typedef enum atp_axis {
581	X = 0,
582	Y = 1,
583	NUM_AXES
584} atp_axis;
585
586#define ATP_FIFO_BUF_SIZE        8 /* bytes */
587#define ATP_FIFO_QUEUE_MAXLEN   50 /* units */
588
589enum {
590	ATP_INTR_DT,
591	ATP_RESET,
592	ATP_N_TRANSFER,
593};
594
595typedef struct fg_stroke_component {
596	/* Fields encapsulating the pressure-span. */
597	u_int loc;              /* location (scaled) */
598	u_int cum_pressure;     /* cumulative compression */
599	u_int max_cum_pressure; /* max cumulative compression */
600	boolean_t matched; /*to track components as they match against pspans.*/
601
602	int   delta_mickeys;    /* change in location (un-smoothened movement)*/
603} fg_stroke_component_t;
604
605/*
606 * The following structure captures a finger contact with the
607 * touchpad. A stroke comprises two p-span components and some state.
608 */
609typedef struct atp_stroke {
610	TAILQ_ENTRY(atp_stroke) entry;
611
612	atp_stroke_type type;
613	uint32_t        flags; /* the state of this stroke */
614#define ATSF_ZOMBIE 0x1
615	boolean_t       matched;          /* to track match against fingers.*/
616
617	struct timeval  ctime; /* create time; for coincident siblings. */
618
619	/*
620	 * Unit: interrupts; we maintain this value in
621	 * addition to 'ctime' in order to avoid the
622	 * expensive call to microtime() at every
623	 * interrupt.
624	 */
625	uint32_t age;
626
627	/* Location */
628	int x;
629	int y;
630
631	/* Fields containing information about movement. */
632	int   instantaneous_dx; /* curr. change in X location (un-smoothened) */
633	int   instantaneous_dy; /* curr. change in Y location (un-smoothened) */
634	int   pending_dx;       /* cum. of pending short movements */
635	int   pending_dy;       /* cum. of pending short movements */
636	int   movement_dx;      /* interpreted smoothened movement */
637	int   movement_dy;      /* interpreted smoothened movement */
638	int   cum_movement_x;   /* cum. horizontal movement */
639	int   cum_movement_y;   /* cum. vertical movement */
640
641	/*
642	 * The following member is relevant only for fountain-geyser trackpads.
643	 * For these, there is the need to track pressure-spans and cumulative
644	 * pressures for stroke components.
645	 */
646	fg_stroke_component_t components[NUM_AXES];
647} atp_stroke_t;
648
649struct atp_softc; /* forward declaration */
650typedef void (*sensor_data_interpreter_t)(struct atp_softc *sc, u_int len);
651
652struct atp_softc {
653	device_t            sc_dev;
654	struct usb_device  *sc_usb_device;
655	struct mtx          sc_mutex; /* for synchronization */
656	struct usb_fifo_sc  sc_fifo;
657
658#define	MODE_LENGTH 8
659	char                sc_mode_bytes[MODE_LENGTH]; /* device mode */
660
661	trackpad_family_t   sc_family;
662	const void         *sc_params; /* device configuration */
663	sensor_data_interpreter_t sensor_data_interpreter;
664
665	mousehw_t           sc_hw;
666	mousemode_t         sc_mode;
667	mousestatus_t       sc_status;
668
669	u_int               sc_state;
670#define ATP_ENABLED          0x01
671#define ATP_ZOMBIES_EXIST    0x02
672#define ATP_DOUBLE_TAP_DRAG  0x04
673#define ATP_VALID            0x08
674
675	struct usb_xfer    *sc_xfer[ATP_N_TRANSFER];
676
677	u_int               sc_pollrate;
678	int                 sc_fflags;
679
680	atp_stroke_t        sc_strokes_data[ATP_MAX_STROKES];
681	TAILQ_HEAD(,atp_stroke) sc_stroke_free;
682	TAILQ_HEAD(,atp_stroke) sc_stroke_used;
683	u_int               sc_n_strokes;
684
685	struct callout	    sc_callout;
686
687	/*
688	 * button status. Set to non-zero if the mouse-button is physically
689	 * pressed. This state variable is exposed through softc to allow
690	 * reap_sibling_zombies to avoid registering taps while the trackpad
691	 * button is pressed.
692         */
693	uint8_t             sc_ibtn;
694
695	/*
696	 * Time when touch zombies were last reaped; useful for detecting
697	 * double-touch-n-drag.
698	 */
699	struct timeval      sc_touch_reap_time;
700
701	u_int	            sc_idlecount;
702
703	/* Regarding the data transferred from t-pad in USB INTR packets. */
704	u_int   sc_expected_sensor_data_len;
705	uint8_t sc_sensor_data[ATP_SENSOR_DATA_BUF_MAX] __aligned(4);
706
707	int      sc_cur_x[FG_MAX_XSENSORS];      /* current sensor readings */
708	int      sc_cur_y[FG_MAX_YSENSORS];
709	int      sc_base_x[FG_MAX_XSENSORS];     /* base sensor readings */
710	int      sc_base_y[FG_MAX_YSENSORS];
711	int      sc_pressure_x[FG_MAX_XSENSORS]; /* computed pressures */
712	int      sc_pressure_y[FG_MAX_YSENSORS];
713	fg_pspan sc_pspans_x[FG_MAX_PSPANS_PER_AXIS];
714	fg_pspan sc_pspans_y[FG_MAX_PSPANS_PER_AXIS];
715};
716
717/*
718 * The last byte of the fountain-geyser sensor data contains status bits; the
719 * following values define the meanings of these bits.
720 * (only Geyser 3/4)
721 */
722enum geyser34_status_bits {
723	FG_STATUS_BUTTON      = (uint8_t)0x01, /* The button was pressed */
724	FG_STATUS_BASE_UPDATE = (uint8_t)0x04, /* Data from an untouched pad.*/
725};
726
727typedef enum interface_mode {
728	RAW_SENSOR_MODE = (uint8_t)0x01,
729	HID_MODE        = (uint8_t)0x08
730} interface_mode;
731
732
733/*
734 * function prototypes
735 */
736static usb_fifo_cmd_t   atp_start_read;
737static usb_fifo_cmd_t   atp_stop_read;
738static usb_fifo_open_t  atp_open;
739static usb_fifo_close_t atp_close;
740static usb_fifo_ioctl_t atp_ioctl;
741
742static struct usb_fifo_methods atp_fifo_methods = {
743	.f_open       = &atp_open,
744	.f_close      = &atp_close,
745	.f_ioctl      = &atp_ioctl,
746	.f_start_read = &atp_start_read,
747	.f_stop_read  = &atp_stop_read,
748	.basename[0]  = ATP_DRIVER_NAME,
749};
750
751/* device initialization and shutdown */
752static usb_error_t   atp_set_device_mode(struct atp_softc *, interface_mode);
753static void	     atp_reset_callback(struct usb_xfer *, usb_error_t);
754static int	     atp_enable(struct atp_softc *);
755static void	     atp_disable(struct atp_softc *);
756
757/* sensor interpretation */
758static void	     fg_interpret_sensor_data(struct atp_softc *, u_int);
759static void	     fg_extract_sensor_data(const int8_t *, u_int, atp_axis,
760    int *, enum fountain_geyser_trackpad_type);
761static void	     fg_get_pressures(int *, const int *, const int *, int);
762static void	     fg_detect_pspans(int *, u_int, u_int, fg_pspan *, u_int *);
763static void	     wsp_interpret_sensor_data(struct atp_softc *, u_int);
764
765/* movement detection */
766static boolean_t     fg_match_stroke_component(fg_stroke_component_t *,
767    const fg_pspan *, atp_stroke_type);
768static void	     fg_match_strokes_against_pspans(struct atp_softc *,
769    atp_axis, fg_pspan *, u_int, u_int);
770static boolean_t     wsp_match_strokes_against_fingers(struct atp_softc *,
771    wsp_finger_t *, u_int);
772static boolean_t     fg_update_strokes(struct atp_softc *, fg_pspan *, u_int,
773    fg_pspan *, u_int);
774static boolean_t     wsp_update_strokes(struct atp_softc *,
775    wsp_finger_t [WSP_MAX_FINGERS], u_int);
776static void fg_add_stroke(struct atp_softc *, const fg_pspan *, const fg_pspan *);
777static void	     fg_add_new_strokes(struct atp_softc *, fg_pspan *,
778    u_int, fg_pspan *, u_int);
779static void wsp_add_stroke(struct atp_softc *, const wsp_finger_t *);
780static void	     atp_advance_stroke_state(struct atp_softc *,
781    atp_stroke_t *, boolean_t *);
782static boolean_t atp_stroke_has_small_movement(const atp_stroke_t *);
783static void	     atp_update_pending_mickeys(atp_stroke_t *);
784static boolean_t     atp_compute_stroke_movement(atp_stroke_t *);
785static void	     atp_terminate_stroke(struct atp_softc *, atp_stroke_t *);
786
787/* tap detection */
788static boolean_t atp_is_horizontal_scroll(const atp_stroke_t *);
789static boolean_t atp_is_vertical_scroll(const atp_stroke_t *);
790static void	     atp_reap_sibling_zombies(void *);
791static void	     atp_convert_to_slide(struct atp_softc *, atp_stroke_t *);
792
793/* updating fifo */
794static void	     atp_reset_buf(struct atp_softc *);
795static void	     atp_add_to_queue(struct atp_softc *, int, int, int, uint32_t);
796
797static const sensor_data_interpreter_t atp_sensor_data_interpreters[TRACKPAD_FAMILY_MAX] = {
798	[TRACKPAD_FAMILY_FOUNTAIN_GEYSER] = fg_interpret_sensor_data,
799	[TRACKPAD_FAMILY_WELLSPRING]      = wsp_interpret_sensor_data,
800};
801
802/* Device methods. */
803static device_probe_t  atp_probe;
804static device_attach_t atp_attach;
805static device_detach_t atp_detach;
806static usb_callback_t  atp_intr;
807
808static const struct usb_config atp_xfer_config[ATP_N_TRANSFER] = {
809	[ATP_INTR_DT] = {
810		.type      = UE_INTERRUPT,
811		.endpoint  = UE_ADDR_ANY,
812		.direction = UE_DIR_IN,
813		.flags = {
814			.pipe_bof = 1, /* block pipe on failure */
815			.short_xfer_ok = 1,
816		},
817		.bufsize   = ATP_SENSOR_DATA_BUF_MAX,
818		.callback  = &atp_intr,
819	},
820	[ATP_RESET] = {
821		.type      = UE_CONTROL,
822		.endpoint  = 0, /* Control pipe */
823		.direction = UE_DIR_ANY,
824		.bufsize   = sizeof(struct usb_device_request) + MODE_LENGTH,
825		.callback  = &atp_reset_callback,
826		.interval  = 0,  /* no pre-delay */
827	},
828};
829
830static atp_stroke_t *
831atp_alloc_stroke(struct atp_softc *sc)
832{
833	atp_stroke_t *pstroke;
834
835	pstroke = TAILQ_FIRST(&sc->sc_stroke_free);
836	if (pstroke == NULL)
837		goto done;
838
839	TAILQ_REMOVE(&sc->sc_stroke_free, pstroke, entry);
840	memset(pstroke, 0, sizeof(*pstroke));
841	TAILQ_INSERT_TAIL(&sc->sc_stroke_used, pstroke, entry);
842
843	sc->sc_n_strokes++;
844done:
845	return (pstroke);
846}
847
848static void
849atp_free_stroke(struct atp_softc *sc, atp_stroke_t *pstroke)
850{
851	if (pstroke == NULL)
852		return;
853
854	sc->sc_n_strokes--;
855
856	TAILQ_REMOVE(&sc->sc_stroke_used, pstroke, entry);
857	TAILQ_INSERT_TAIL(&sc->sc_stroke_free, pstroke, entry);
858}
859
860static void
861atp_init_stroke_pool(struct atp_softc *sc)
862{
863	u_int x;
864
865	TAILQ_INIT(&sc->sc_stroke_free);
866	TAILQ_INIT(&sc->sc_stroke_used);
867
868	sc->sc_n_strokes = 0;
869
870	memset(&sc->sc_strokes_data, 0, sizeof(sc->sc_strokes_data));
871
872	for (x = 0; x != ATP_MAX_STROKES; x++) {
873		TAILQ_INSERT_TAIL(&sc->sc_stroke_free, &sc->sc_strokes_data[x],
874		    entry);
875	}
876}
877
878static usb_error_t
879atp_set_device_mode(struct atp_softc *sc, interface_mode newMode)
880{
881	uint8_t mode_value;
882	usb_error_t err;
883
884	if ((newMode != RAW_SENSOR_MODE) && (newMode != HID_MODE))
885		return (USB_ERR_INVAL);
886
887	if ((newMode == RAW_SENSOR_MODE) &&
888	    (sc->sc_family == TRACKPAD_FAMILY_FOUNTAIN_GEYSER))
889		mode_value = (uint8_t)0x04;
890	else
891		mode_value = newMode;
892
893	err = usbd_req_get_report(sc->sc_usb_device, NULL /* mutex */,
894	    sc->sc_mode_bytes, sizeof(sc->sc_mode_bytes), 0 /* interface idx */,
895	    0x03 /* type */, 0x00 /* id */);
896	if (err != USB_ERR_NORMAL_COMPLETION) {
897		DPRINTF("Failed to read device mode (%d)\n", err);
898		return (err);
899	}
900
901	if (sc->sc_mode_bytes[0] == mode_value)
902		return (err);
903
904	/*
905	 * XXX Need to wait at least 250ms for hardware to get
906	 * ready. The device mode handling appears to be handled
907	 * asynchronously and we should not issue these commands too
908	 * quickly.
909	 */
910	pause("WHW", hz / 4);
911
912	sc->sc_mode_bytes[0] = mode_value;
913	return (usbd_req_set_report(sc->sc_usb_device, NULL /* mutex */,
914	    sc->sc_mode_bytes, sizeof(sc->sc_mode_bytes), 0 /* interface idx */,
915	    0x03 /* type */, 0x00 /* id */));
916}
917
918static void
919atp_reset_callback(struct usb_xfer *xfer, usb_error_t error)
920{
921	usb_device_request_t   req;
922	struct usb_page_cache *pc;
923	struct atp_softc      *sc = usbd_xfer_softc(xfer);
924
925	uint8_t mode_value;
926	if (sc->sc_family == TRACKPAD_FAMILY_FOUNTAIN_GEYSER)
927		mode_value = 0x04;
928	else
929		mode_value = RAW_SENSOR_MODE;
930
931	switch (USB_GET_STATE(xfer)) {
932	case USB_ST_SETUP:
933		sc->sc_mode_bytes[0] = mode_value;
934		req.bmRequestType = UT_WRITE_CLASS_INTERFACE;
935		req.bRequest = UR_SET_REPORT;
936		USETW2(req.wValue,
937		    (uint8_t)0x03 /* type */, (uint8_t)0x00 /* id */);
938		USETW(req.wIndex, 0);
939		USETW(req.wLength, MODE_LENGTH);
940
941		pc = usbd_xfer_get_frame(xfer, 0);
942		usbd_copy_in(pc, 0, &req, sizeof(req));
943		pc = usbd_xfer_get_frame(xfer, 1);
944		usbd_copy_in(pc, 0, sc->sc_mode_bytes, MODE_LENGTH);
945
946		usbd_xfer_set_frame_len(xfer, 0, sizeof(req));
947		usbd_xfer_set_frame_len(xfer, 1, MODE_LENGTH);
948		usbd_xfer_set_frames(xfer, 2);
949		usbd_transfer_submit(xfer);
950		break;
951
952	case USB_ST_TRANSFERRED:
953	default:
954		break;
955	}
956}
957
958static int
959atp_enable(struct atp_softc *sc)
960{
961	if (sc->sc_state & ATP_ENABLED)
962		return (0);
963
964	/* reset status */
965	memset(&sc->sc_status, 0, sizeof(sc->sc_status));
966
967	atp_init_stroke_pool(sc);
968
969	sc->sc_state |= ATP_ENABLED;
970
971	DPRINTFN(ATP_LLEVEL_INFO, "enabled atp\n");
972	return (0);
973}
974
975static void
976atp_disable(struct atp_softc *sc)
977{
978	sc->sc_state &= ~(ATP_ENABLED | ATP_VALID);
979	DPRINTFN(ATP_LLEVEL_INFO, "disabled atp\n");
980}
981
982static void
983fg_interpret_sensor_data(struct atp_softc *sc, u_int data_len)
984{
985	u_int n_xpspans = 0;
986	u_int n_ypspans = 0;
987	uint8_t status_bits;
988
989	const struct fg_dev_params *params =
990	    (const struct fg_dev_params *)sc->sc_params;
991
992	fg_extract_sensor_data(sc->sc_sensor_data, params->n_xsensors, X,
993	    sc->sc_cur_x, params->prot);
994	fg_extract_sensor_data(sc->sc_sensor_data, params->n_ysensors, Y,
995	    sc->sc_cur_y, params->prot);
996
997	/*
998	 * If this is the initial update (from an untouched
999	 * pad), we should set the base values for the sensor
1000	 * data; deltas with respect to these base values can
1001	 * be used as pressure readings subsequently.
1002	 */
1003	status_bits = sc->sc_sensor_data[params->data_len - 1];
1004	if (((params->prot == FG_TRACKPAD_TYPE_GEYSER3) ||
1005	     (params->prot == FG_TRACKPAD_TYPE_GEYSER4))  &&
1006	    ((sc->sc_state & ATP_VALID) == 0)) {
1007		if (status_bits & FG_STATUS_BASE_UPDATE) {
1008			memcpy(sc->sc_base_x, sc->sc_cur_x,
1009			    params->n_xsensors * sizeof(*sc->sc_base_x));
1010			memcpy(sc->sc_base_y, sc->sc_cur_y,
1011			    params->n_ysensors * sizeof(*sc->sc_base_y));
1012			sc->sc_state |= ATP_VALID;
1013			return;
1014		}
1015	}
1016
1017	/* Get pressure readings and detect p-spans for both axes. */
1018	fg_get_pressures(sc->sc_pressure_x, sc->sc_cur_x, sc->sc_base_x,
1019	    params->n_xsensors);
1020	fg_detect_pspans(sc->sc_pressure_x, params->n_xsensors,
1021	    FG_MAX_PSPANS_PER_AXIS, sc->sc_pspans_x, &n_xpspans);
1022	fg_get_pressures(sc->sc_pressure_y, sc->sc_cur_y, sc->sc_base_y,
1023	    params->n_ysensors);
1024	fg_detect_pspans(sc->sc_pressure_y, params->n_ysensors,
1025	    FG_MAX_PSPANS_PER_AXIS, sc->sc_pspans_y, &n_ypspans);
1026
1027	/* Update strokes with new pspans to detect movements. */
1028	if (fg_update_strokes(sc, sc->sc_pspans_x, n_xpspans, sc->sc_pspans_y, n_ypspans))
1029		sc->sc_status.flags |= MOUSE_POSCHANGED;
1030
1031	sc->sc_ibtn = (status_bits & FG_STATUS_BUTTON) ? MOUSE_BUTTON1DOWN : 0;
1032	sc->sc_status.button = sc->sc_ibtn;
1033
1034	/*
1035	 * The Fountain/Geyser device continues to trigger interrupts
1036	 * at a fast rate even after touchpad activity has
1037	 * stopped. Upon detecting that the device has remained idle
1038	 * beyond a threshold, we reinitialize it to silence the
1039	 * interrupts.
1040	 */
1041	if ((sc->sc_status.flags  == 0) && (sc->sc_n_strokes == 0)) {
1042		sc->sc_idlecount++;
1043		if (sc->sc_idlecount >= ATP_IDLENESS_THRESHOLD) {
1044			/*
1045			 * Use the last frame before we go idle for
1046			 * calibration on pads which do not send
1047			 * calibration frames.
1048			 */
1049			const struct fg_dev_params *params =
1050			    (const struct fg_dev_params *)sc->sc_params;
1051
1052			DPRINTFN(ATP_LLEVEL_INFO, "idle\n");
1053
1054			if (params->prot < FG_TRACKPAD_TYPE_GEYSER3) {
1055				memcpy(sc->sc_base_x, sc->sc_cur_x,
1056				    params->n_xsensors * sizeof(*(sc->sc_base_x)));
1057				memcpy(sc->sc_base_y, sc->sc_cur_y,
1058				    params->n_ysensors * sizeof(*(sc->sc_base_y)));
1059			}
1060
1061			sc->sc_idlecount = 0;
1062			usbd_transfer_start(sc->sc_xfer[ATP_RESET]);
1063		}
1064	} else {
1065		sc->sc_idlecount = 0;
1066	}
1067}
1068
1069/*
1070 * Interpret the data from the X and Y pressure sensors. This function
1071 * is called separately for the X and Y sensor arrays. The data in the
1072 * USB packet is laid out in the following manner:
1073 *
1074 * sensor_data:
1075 *            --,--,Y1,Y2,--,Y3,Y4,--,Y5,...,Y10, ... X1,X2,--,X3,X4
1076 *  indices:   0  1  2  3  4  5  6  7  8 ...  15  ... 20 21 22 23 24
1077 *
1078 * '--' (in the above) indicates that the value is unimportant.
1079 *
1080 * Information about the above layout was obtained from the
1081 * implementation of the AppleTouch driver in Linux.
1082 *
1083 * parameters:
1084 *   sensor_data
1085 *       raw sensor data from the USB packet.
1086 *   num
1087 *       The number of elements in the array 'arr'.
1088 *   axis
1089 *       Axis of data to fetch
1090 *   arr
1091 *       The array to be initialized with the readings.
1092 *   prot
1093 *       The protocol to use to interpret the data
1094 */
1095static void
1096fg_extract_sensor_data(const int8_t *sensor_data, u_int num, atp_axis axis,
1097    int	*arr, enum fountain_geyser_trackpad_type prot)
1098{
1099	u_int i;
1100	u_int di;   /* index into sensor data */
1101
1102	switch (prot) {
1103	case FG_TRACKPAD_TYPE_GEYSER1:
1104		/*
1105		 * For Geyser 1, the sensors are laid out in pairs
1106		 * every 5 bytes.
1107		 */
1108		for (i = 0, di = (axis == Y) ? 1 : 2; i < 8; di += 5, i++) {
1109			arr[i] = sensor_data[di];
1110			arr[i+8] = sensor_data[di+2];
1111			if ((axis == X) && (num > 16))
1112				arr[i+16] = sensor_data[di+40];
1113		}
1114
1115		break;
1116	case FG_TRACKPAD_TYPE_GEYSER2:
1117		for (i = 0, di = (axis == Y) ? 1 : 19; i < num; /* empty */ ) {
1118			arr[i++] = sensor_data[di++];
1119			arr[i++] = sensor_data[di++];
1120			di++;
1121		}
1122		break;
1123	case FG_TRACKPAD_TYPE_GEYSER3:
1124	case FG_TRACKPAD_TYPE_GEYSER4:
1125		for (i = 0, di = (axis == Y) ? 2 : 20; i < num; /* empty */ ) {
1126			arr[i++] = sensor_data[di++];
1127			arr[i++] = sensor_data[di++];
1128			di++;
1129		}
1130		break;
1131	default:
1132		break;
1133	}
1134}
1135
1136static void
1137fg_get_pressures(int *p, const int *cur, const int *base, int n)
1138{
1139	int i;
1140
1141	for (i = 0; i < n; i++) {
1142		p[i] = cur[i] - base[i];
1143		if (p[i] > 127)
1144			p[i] -= 256;
1145		if (p[i] < -127)
1146			p[i] += 256;
1147		if (p[i] < 0)
1148			p[i] = 0;
1149
1150		/*
1151		 * Shave off pressures below the noise-pressure
1152		 * threshold; this will reduce the contribution from
1153		 * lower pressure readings.
1154		 */
1155		if ((u_int)p[i] <= FG_SENSOR_NOISE_THRESHOLD)
1156			p[i] = 0; /* filter away noise */
1157		else
1158			p[i] -= FG_SENSOR_NOISE_THRESHOLD;
1159	}
1160}
1161
1162static void
1163fg_detect_pspans(int *p, u_int num_sensors,
1164    u_int      max_spans, /* max # of pspans permitted */
1165    fg_pspan  *spans,     /* finger spans */
1166    u_int     *nspans_p)  /* num spans detected */
1167{
1168	u_int i;
1169	int   maxp;             /* max pressure seen within a span */
1170	u_int num_spans = 0;
1171
1172	enum fg_pspan_state {
1173		ATP_PSPAN_INACTIVE,
1174		ATP_PSPAN_INCREASING,
1175		ATP_PSPAN_DECREASING,
1176	} state; /* state of the pressure span */
1177
1178	/*
1179	 * The following is a simple state machine to track
1180	 * the phase of the pressure span.
1181	 */
1182	memset(spans, 0, max_spans * sizeof(fg_pspan));
1183	maxp = 0;
1184	state = ATP_PSPAN_INACTIVE;
1185	for (i = 0; i < num_sensors; i++) {
1186		if (num_spans >= max_spans)
1187			break;
1188
1189		if (p[i] == 0) {
1190			if (state == ATP_PSPAN_INACTIVE) {
1191				/*
1192				 * There is no pressure information for this
1193				 * sensor, and we aren't tracking a finger.
1194				 */
1195				continue;
1196			} else {
1197				state = ATP_PSPAN_INACTIVE;
1198				maxp = 0;
1199				num_spans++;
1200			}
1201		} else {
1202			switch (state) {
1203			case ATP_PSPAN_INACTIVE:
1204				state = ATP_PSPAN_INCREASING;
1205				maxp  = p[i];
1206				break;
1207
1208			case ATP_PSPAN_INCREASING:
1209				if (p[i] > maxp)
1210					maxp = p[i];
1211				else if (p[i] <= (maxp >> 1))
1212					state = ATP_PSPAN_DECREASING;
1213				break;
1214
1215			case ATP_PSPAN_DECREASING:
1216				if (p[i] > p[i - 1]) {
1217					/*
1218					 * This is the beginning of
1219					 * another span; change state
1220					 * to give the appearance that
1221					 * we're starting from an
1222					 * inactive span, and then
1223					 * re-process this reading in
1224					 * the next iteration.
1225					 */
1226					num_spans++;
1227					state = ATP_PSPAN_INACTIVE;
1228					maxp  = 0;
1229					i--;
1230					continue;
1231				}
1232				break;
1233			}
1234
1235			/* Update the finger span with this reading. */
1236			spans[num_spans].width++;
1237			spans[num_spans].cum += p[i];
1238			spans[num_spans].cog += p[i] * (i + 1);
1239		}
1240	}
1241	if (state != ATP_PSPAN_INACTIVE)
1242		num_spans++;    /* close the last finger span */
1243
1244	/* post-process the spans */
1245	for (i = 0; i < num_spans; i++) {
1246		/* filter away unwanted pressure spans */
1247		if ((spans[i].cum < FG_PSPAN_MIN_CUM_PRESSURE) ||
1248		    (spans[i].width > FG_PSPAN_MAX_WIDTH)) {
1249			if ((i + 1) < num_spans) {
1250				memcpy(&spans[i], &spans[i + 1],
1251				    (num_spans - i - 1) * sizeof(fg_pspan));
1252				i--;
1253			}
1254			num_spans--;
1255			continue;
1256		}
1257
1258		/* compute this span's representative location */
1259		spans[i].loc = spans[i].cog * FG_SCALE_FACTOR /
1260			spans[i].cum;
1261
1262		spans[i].matched = false; /* not yet matched against a stroke */
1263	}
1264
1265	*nspans_p = num_spans;
1266}
1267
1268static void
1269wsp_interpret_sensor_data(struct atp_softc *sc, u_int data_len)
1270{
1271	const struct wsp_dev_params *params = sc->sc_params;
1272	wsp_finger_t fingers[WSP_MAX_FINGERS];
1273	struct wsp_finger_sensor_data *source_fingerp;
1274	u_int n_source_fingers;
1275	u_int n_fingers;
1276	u_int i;
1277
1278	/* validate sensor data length */
1279	if ((data_len < params->finger_data_offset) ||
1280	    ((data_len - params->finger_data_offset) %
1281	     WSP_SIZEOF_FINGER_SENSOR_DATA) != 0)
1282		return;
1283
1284	/* compute number of source fingers */
1285	n_source_fingers = (data_len - params->finger_data_offset) /
1286	    WSP_SIZEOF_FINGER_SENSOR_DATA;
1287
1288	if (n_source_fingers > WSP_MAX_FINGERS)
1289		n_source_fingers = WSP_MAX_FINGERS;
1290
1291	/* iterate over the source data collecting useful fingers */
1292	n_fingers = 0;
1293	source_fingerp = (struct wsp_finger_sensor_data *)(sc->sc_sensor_data +
1294	     params->finger_data_offset);
1295
1296	for (i = 0; i < n_source_fingers; i++, source_fingerp++) {
1297		/* swap endianness, if any */
1298		if (le16toh(0x1234) != 0x1234) {
1299			source_fingerp->origin      = le16toh((uint16_t)source_fingerp->origin);
1300			source_fingerp->abs_x       = le16toh((uint16_t)source_fingerp->abs_x);
1301			source_fingerp->abs_y       = le16toh((uint16_t)source_fingerp->abs_y);
1302			source_fingerp->rel_x       = le16toh((uint16_t)source_fingerp->rel_x);
1303			source_fingerp->rel_y       = le16toh((uint16_t)source_fingerp->rel_y);
1304			source_fingerp->tool_major  = le16toh((uint16_t)source_fingerp->tool_major);
1305			source_fingerp->tool_minor  = le16toh((uint16_t)source_fingerp->tool_minor);
1306			source_fingerp->orientation = le16toh((uint16_t)source_fingerp->orientation);
1307			source_fingerp->touch_major = le16toh((uint16_t)source_fingerp->touch_major);
1308			source_fingerp->touch_minor = le16toh((uint16_t)source_fingerp->touch_minor);
1309			source_fingerp->multi       = le16toh((uint16_t)source_fingerp->multi);
1310		}
1311
1312		/* check for minium threshold */
1313		if (source_fingerp->touch_major == 0)
1314			continue;
1315
1316		fingers[n_fingers].matched = false;
1317		fingers[n_fingers].x       = source_fingerp->abs_x;
1318		fingers[n_fingers].y       = -source_fingerp->abs_y;
1319
1320		n_fingers++;
1321	}
1322
1323	if ((sc->sc_n_strokes == 0) && (n_fingers == 0))
1324		return;
1325
1326	if (wsp_update_strokes(sc, fingers, n_fingers))
1327		sc->sc_status.flags |= MOUSE_POSCHANGED;
1328
1329	switch(params->tp_type) {
1330	case WSP_TRACKPAD_TYPE2:
1331		sc->sc_ibtn = sc->sc_sensor_data[WSP_TYPE2_BUTTON_DATA_OFFSET];
1332		break;
1333	case WSP_TRACKPAD_TYPE3:
1334		sc->sc_ibtn = sc->sc_sensor_data[WSP_TYPE3_BUTTON_DATA_OFFSET];
1335		break;
1336	default:
1337		break;
1338	}
1339	sc->sc_status.button = sc->sc_ibtn ? MOUSE_BUTTON1DOWN : 0;
1340}
1341
1342/*
1343 * Match a pressure-span against a stroke-component. If there is a
1344 * match, update the component's state and return true.
1345 */
1346static boolean_t
1347fg_match_stroke_component(fg_stroke_component_t *component,
1348    const fg_pspan *pspan, atp_stroke_type stroke_type)
1349{
1350	int   delta_mickeys;
1351	u_int min_pressure;
1352
1353	delta_mickeys = pspan->loc - component->loc;
1354
1355	if (abs(delta_mickeys) > (int)FG_MAX_DELTA_MICKEYS)
1356		return (false); /* the finger span is too far out; no match */
1357
1358	component->loc = pspan->loc;
1359
1360	/*
1361	 * A sudden and significant increase in a pspan's cumulative
1362	 * pressure indicates the incidence of a new finger
1363	 * contact. This usually revises the pspan's
1364	 * centre-of-gravity, and hence the location of any/all
1365	 * matching stroke component(s). But such a change should
1366	 * *not* be interpreted as a movement.
1367	 */
1368	if (pspan->cum > ((3 * component->cum_pressure) >> 1))
1369		delta_mickeys = 0;
1370
1371	component->cum_pressure = pspan->cum;
1372	if (pspan->cum > component->max_cum_pressure)
1373		component->max_cum_pressure = pspan->cum;
1374
1375	/*
1376	 * Disregard the component's movement if its cumulative
1377	 * pressure drops below a fraction of the maximum; this
1378	 * fraction is determined based on the stroke's type.
1379	 */
1380	if (stroke_type == ATP_STROKE_TOUCH)
1381		min_pressure = (3 * component->max_cum_pressure) >> 2;
1382	else
1383		min_pressure = component->max_cum_pressure >> 2;
1384	if (component->cum_pressure < min_pressure)
1385		delta_mickeys = 0;
1386
1387	component->delta_mickeys = delta_mickeys;
1388	return (true);
1389}
1390
1391static void
1392fg_match_strokes_against_pspans(struct atp_softc *sc, atp_axis axis,
1393    fg_pspan *pspans, u_int n_pspans, u_int repeat_count)
1394{
1395	atp_stroke_t *strokep;
1396	u_int repeat_index = 0;
1397	u_int i;
1398
1399	/* Determine the index of the multi-span. */
1400	if (repeat_count) {
1401		for (i = 0; i < n_pspans; i++) {
1402			if (pspans[i].cum > pspans[repeat_index].cum)
1403				repeat_index = i;
1404		}
1405	}
1406
1407	TAILQ_FOREACH(strokep, &sc->sc_stroke_used, entry) {
1408		if (strokep->components[axis].matched)
1409			continue; /* skip matched components */
1410
1411		for (i = 0; i < n_pspans; i++) {
1412			if (pspans[i].matched)
1413				continue; /* skip matched pspans */
1414
1415			if (fg_match_stroke_component(
1416			    &strokep->components[axis], &pspans[i],
1417			    strokep->type)) {
1418
1419				/* There is a match. */
1420				strokep->components[axis].matched = true;
1421
1422				/* Take care to repeat at the multi-span. */
1423				if ((repeat_count > 0) && (i == repeat_index))
1424					repeat_count--;
1425				else
1426					pspans[i].matched = true;
1427
1428				break; /* skip to the next strokep */
1429			}
1430		} /* loop over pspans */
1431	} /* loop over strokes */
1432}
1433
1434static boolean_t
1435wsp_match_strokes_against_fingers(struct atp_softc *sc,
1436    wsp_finger_t *fingers, u_int n_fingers)
1437{
1438	boolean_t movement = false;
1439	atp_stroke_t *strokep;
1440	u_int i;
1441
1442	/* reset the matched status for all strokes */
1443	TAILQ_FOREACH(strokep, &sc->sc_stroke_used, entry)
1444		strokep->matched = false;
1445
1446	for (i = 0; i != n_fingers; i++) {
1447		u_int least_distance_sq = WSP_MAX_ALLOWED_MATCH_DISTANCE_SQ;
1448		atp_stroke_t *strokep_best = NULL;
1449
1450		TAILQ_FOREACH(strokep, &sc->sc_stroke_used, entry) {
1451			int instantaneous_dx;
1452			int instantaneous_dy;
1453			u_int d_squared;
1454
1455			if (strokep->matched)
1456				continue;
1457
1458			instantaneous_dx = fingers[i].x - strokep->x;
1459			instantaneous_dy = fingers[i].y - strokep->y;
1460
1461			/* skip strokes which are far away */
1462			d_squared =
1463			    (instantaneous_dx * instantaneous_dx) +
1464			    (instantaneous_dy * instantaneous_dy);
1465
1466			if (d_squared < least_distance_sq) {
1467				least_distance_sq = d_squared;
1468				strokep_best = strokep;
1469			}
1470		}
1471
1472		strokep = strokep_best;
1473
1474		if (strokep != NULL) {
1475			fingers[i].matched = true;
1476
1477			strokep->matched          = true;
1478			strokep->instantaneous_dx = fingers[i].x - strokep->x;
1479			strokep->instantaneous_dy = fingers[i].y - strokep->y;
1480			strokep->x                = fingers[i].x;
1481			strokep->y                = fingers[i].y;
1482
1483			atp_advance_stroke_state(sc, strokep, &movement);
1484		}
1485	}
1486	return (movement);
1487}
1488
1489/*
1490 * Update strokes by matching against current pressure-spans.
1491 * Return true if any movement is detected.
1492 */
1493static boolean_t
1494fg_update_strokes(struct atp_softc *sc, fg_pspan *pspans_x,
1495    u_int n_xpspans, fg_pspan *pspans_y, u_int n_ypspans)
1496{
1497	atp_stroke_t *strokep;
1498	atp_stroke_t *strokep_next;
1499	boolean_t movement = false;
1500	u_int repeat_count = 0;
1501	u_int i;
1502	u_int j;
1503
1504	/* Reset X and Y components of all strokes as unmatched. */
1505	TAILQ_FOREACH(strokep, &sc->sc_stroke_used, entry) {
1506		strokep->components[X].matched = false;
1507		strokep->components[Y].matched = false;
1508	}
1509
1510	/*
1511	 * Usually, the X and Y pspans come in pairs (the common case
1512	 * being a single pair). It is possible, however, that
1513	 * multiple contacts resolve to a single pspan along an
1514	 * axis, as illustrated in the following:
1515	 *
1516	 *   F = finger-contact
1517	 *
1518	 *                pspan  pspan
1519	 *        +-----------------------+
1520	 *        |         .      .      |
1521	 *        |         .      .      |
1522	 *        |         .      .      |
1523	 *        |         .      .      |
1524	 *  pspan |.........F......F      |
1525	 *        |                       |
1526	 *        |                       |
1527	 *        |                       |
1528	 *        +-----------------------+
1529	 *
1530	 *
1531	 * The above case can be detected by a difference in the
1532	 * number of X and Y pspans. When this happens, X and Y pspans
1533	 * aren't easy to pair or match against strokes.
1534	 *
1535	 * When X and Y pspans differ in number, the axis with the
1536	 * smaller number of pspans is regarded as having a repeating
1537	 * pspan (or a multi-pspan)--in the above illustration, the
1538	 * Y-axis has a repeating pspan. Our approach is to try to
1539	 * match the multi-pspan repeatedly against strokes. The
1540	 * difference between the number of X and Y pspans gives us a
1541	 * crude repeat_count for matching multi-pspans--i.e. the
1542	 * multi-pspan along the Y axis (above) has a repeat_count of 1.
1543	 */
1544	repeat_count = abs(n_xpspans - n_ypspans);
1545
1546	fg_match_strokes_against_pspans(sc, X, pspans_x, n_xpspans,
1547	    (((repeat_count != 0) && ((n_xpspans < n_ypspans))) ?
1548		repeat_count : 0));
1549	fg_match_strokes_against_pspans(sc, Y, pspans_y, n_ypspans,
1550	    (((repeat_count != 0) && (n_ypspans < n_xpspans)) ?
1551		repeat_count : 0));
1552
1553	/* Update the state of strokes based on the above pspan matches. */
1554	TAILQ_FOREACH_SAFE(strokep, &sc->sc_stroke_used, entry, strokep_next) {
1555
1556		if (strokep->components[X].matched &&
1557		    strokep->components[Y].matched) {
1558			strokep->matched = true;
1559			strokep->instantaneous_dx =
1560			    strokep->components[X].delta_mickeys;
1561			strokep->instantaneous_dy =
1562			    strokep->components[Y].delta_mickeys;
1563			atp_advance_stroke_state(sc, strokep, &movement);
1564		} else {
1565			/*
1566			 * At least one component of this stroke
1567			 * didn't match against current pspans;
1568			 * terminate it.
1569			 */
1570			atp_terminate_stroke(sc, strokep);
1571		}
1572	}
1573
1574	/* Add new strokes for pairs of unmatched pspans */
1575	for (i = 0; i < n_xpspans; i++) {
1576		if (pspans_x[i].matched == false) break;
1577	}
1578	for (j = 0; j < n_ypspans; j++) {
1579		if (pspans_y[j].matched == false) break;
1580	}
1581	if ((i < n_xpspans) && (j < n_ypspans)) {
1582#ifdef USB_DEBUG
1583		if (atp_debug >= ATP_LLEVEL_INFO) {
1584			printf("unmatched pspans:");
1585			for (; i < n_xpspans; i++) {
1586				if (pspans_x[i].matched)
1587					continue;
1588				printf(" X:[loc:%u,cum:%u]",
1589				    pspans_x[i].loc, pspans_x[i].cum);
1590			}
1591			for (; j < n_ypspans; j++) {
1592				if (pspans_y[j].matched)
1593					continue;
1594				printf(" Y:[loc:%u,cum:%u]",
1595				    pspans_y[j].loc, pspans_y[j].cum);
1596			}
1597			printf("\n");
1598		}
1599#endif /* USB_DEBUG */
1600		if ((n_xpspans == 1) && (n_ypspans == 1))
1601			/* The common case of a single pair of new pspans. */
1602			fg_add_stroke(sc, &pspans_x[0], &pspans_y[0]);
1603		else
1604			fg_add_new_strokes(sc, pspans_x, n_xpspans,
1605			    pspans_y, n_ypspans);
1606	}
1607
1608#ifdef USB_DEBUG
1609	if (atp_debug >= ATP_LLEVEL_INFO) {
1610		TAILQ_FOREACH(strokep, &sc->sc_stroke_used, entry) {
1611			printf(" %s%clc:%u,dm:%d,cum:%d,max:%d,%c"
1612			    ",%clc:%u,dm:%d,cum:%d,max:%d,%c",
1613			    (strokep->flags & ATSF_ZOMBIE) ? "zomb:" : "",
1614			    (strokep->type == ATP_STROKE_TOUCH) ? '[' : '<',
1615			    strokep->components[X].loc,
1616			    strokep->components[X].delta_mickeys,
1617			    strokep->components[X].cum_pressure,
1618			    strokep->components[X].max_cum_pressure,
1619			    (strokep->type == ATP_STROKE_TOUCH) ? ']' : '>',
1620			    (strokep->type == ATP_STROKE_TOUCH) ? '[' : '<',
1621			    strokep->components[Y].loc,
1622			    strokep->components[Y].delta_mickeys,
1623			    strokep->components[Y].cum_pressure,
1624			    strokep->components[Y].max_cum_pressure,
1625			    (strokep->type == ATP_STROKE_TOUCH) ? ']' : '>');
1626		}
1627		if (TAILQ_FIRST(&sc->sc_stroke_used) != NULL)
1628			printf("\n");
1629	}
1630#endif /* USB_DEBUG */
1631	return (movement);
1632}
1633
1634/*
1635 * Update strokes by matching against current pressure-spans.
1636 * Return true if any movement is detected.
1637 */
1638static boolean_t
1639wsp_update_strokes(struct atp_softc *sc, wsp_finger_t *fingers, u_int n_fingers)
1640{
1641	boolean_t movement = false;
1642	atp_stroke_t *strokep_next;
1643	atp_stroke_t *strokep;
1644	u_int i;
1645
1646	if (sc->sc_n_strokes > 0) {
1647		movement = wsp_match_strokes_against_fingers(
1648		    sc, fingers, n_fingers);
1649
1650		/* handle zombie strokes */
1651		TAILQ_FOREACH_SAFE(strokep, &sc->sc_stroke_used, entry, strokep_next) {
1652			if (strokep->matched)
1653				continue;
1654			atp_terminate_stroke(sc, strokep);
1655		}
1656	}
1657
1658	/* initialize unmatched fingers as strokes */
1659	for (i = 0; i != n_fingers; i++) {
1660		if (fingers[i].matched)
1661			continue;
1662
1663		wsp_add_stroke(sc, fingers + i);
1664	}
1665	return (movement);
1666}
1667
1668/* Initialize a stroke using a pressure-span. */
1669static void
1670fg_add_stroke(struct atp_softc *sc, const fg_pspan *pspan_x,
1671    const fg_pspan *pspan_y)
1672{
1673	atp_stroke_t *strokep;
1674
1675	strokep = atp_alloc_stroke(sc);
1676	if (strokep == NULL)
1677		return;
1678
1679	/*
1680	 * Strokes begin as potential touches. If a stroke survives
1681	 * longer than a threshold, or if it records significant
1682	 * cumulative movement, then it is considered a 'slide'.
1683	 */
1684	strokep->type    = ATP_STROKE_TOUCH;
1685	strokep->matched = false;
1686	microtime(&strokep->ctime);
1687	strokep->age     = 1;		/* number of interrupts */
1688	strokep->x       = pspan_x->loc;
1689	strokep->y       = pspan_y->loc;
1690
1691	strokep->components[X].loc              = pspan_x->loc;
1692	strokep->components[X].cum_pressure     = pspan_x->cum;
1693	strokep->components[X].max_cum_pressure = pspan_x->cum;
1694	strokep->components[X].matched          = true;
1695
1696	strokep->components[Y].loc              = pspan_y->loc;
1697	strokep->components[Y].cum_pressure     = pspan_y->cum;
1698	strokep->components[Y].max_cum_pressure = pspan_y->cum;
1699	strokep->components[Y].matched          = true;
1700
1701	if (sc->sc_n_strokes > 1) {
1702		/* Reset double-tap-n-drag if we have more than one strokes. */
1703		sc->sc_state &= ~ATP_DOUBLE_TAP_DRAG;
1704	}
1705
1706	DPRINTFN(ATP_LLEVEL_INFO, "[%u,%u], time: %u,%ld\n",
1707	    strokep->components[X].loc,
1708	    strokep->components[Y].loc,
1709	    (u_int)strokep->ctime.tv_sec,
1710	    (unsigned long int)strokep->ctime.tv_usec);
1711}
1712
1713static void
1714fg_add_new_strokes(struct atp_softc *sc, fg_pspan *pspans_x,
1715    u_int n_xpspans, fg_pspan *pspans_y, u_int n_ypspans)
1716{
1717	fg_pspan spans[2][FG_MAX_PSPANS_PER_AXIS];
1718	u_int nspans[2];
1719	u_int i;
1720	u_int j;
1721
1722	/* Copy unmatched pspans into the local arrays. */
1723	for (i = 0, nspans[X] = 0; i < n_xpspans; i++) {
1724		if (pspans_x[i].matched == false) {
1725			spans[X][nspans[X]] = pspans_x[i];
1726			nspans[X]++;
1727		}
1728	}
1729	for (j = 0, nspans[Y] = 0; j < n_ypspans; j++) {
1730		if (pspans_y[j].matched == false) {
1731			spans[Y][nspans[Y]] = pspans_y[j];
1732			nspans[Y]++;
1733		}
1734	}
1735
1736	if (nspans[X] == nspans[Y]) {
1737		/* Create new strokes from pairs of unmatched pspans */
1738		for (i = 0, j = 0; (i < nspans[X]) && (j < nspans[Y]); i++, j++)
1739			fg_add_stroke(sc, &spans[X][i], &spans[Y][j]);
1740	} else {
1741		u_int    cum = 0;
1742		atp_axis repeat_axis;      /* axis with multi-pspans */
1743		u_int    repeat_count;     /* repeat count for the multi-pspan*/
1744		u_int    repeat_index = 0; /* index of the multi-span */
1745
1746		repeat_axis  = (nspans[X] > nspans[Y]) ? Y : X;
1747		repeat_count = abs(nspans[X] - nspans[Y]);
1748		for (i = 0; i < nspans[repeat_axis]; i++) {
1749			if (spans[repeat_axis][i].cum > cum) {
1750				repeat_index = i;
1751				cum = spans[repeat_axis][i].cum;
1752			}
1753		}
1754
1755		/* Create new strokes from pairs of unmatched pspans */
1756		i = 0, j = 0;
1757		for (; (i < nspans[X]) && (j < nspans[Y]); i++, j++) {
1758			fg_add_stroke(sc, &spans[X][i], &spans[Y][j]);
1759
1760			/* Take care to repeat at the multi-pspan. */
1761			if (repeat_count > 0) {
1762				if ((repeat_axis == X) &&
1763				    (repeat_index == i)) {
1764					i--; /* counter loop increment */
1765					repeat_count--;
1766				} else if ((repeat_axis == Y) &&
1767				    (repeat_index == j)) {
1768					j--; /* counter loop increment */
1769					repeat_count--;
1770				}
1771			}
1772		}
1773	}
1774}
1775
1776/* Initialize a stroke from an unmatched finger. */
1777static void
1778wsp_add_stroke(struct atp_softc *sc, const wsp_finger_t *fingerp)
1779{
1780	atp_stroke_t *strokep;
1781
1782	strokep = atp_alloc_stroke(sc);
1783	if (strokep == NULL)
1784		return;
1785
1786	/*
1787	 * Strokes begin as potential touches. If a stroke survives
1788	 * longer than a threshold, or if it records significant
1789	 * cumulative movement, then it is considered a 'slide'.
1790	 */
1791	strokep->type    = ATP_STROKE_TOUCH;
1792	strokep->matched = true;
1793	microtime(&strokep->ctime);
1794	strokep->age = 1;	/* number of interrupts */
1795	strokep->x = fingerp->x;
1796	strokep->y = fingerp->y;
1797
1798	/* Reset double-tap-n-drag if we have more than one strokes. */
1799	if (sc->sc_n_strokes > 1)
1800		sc->sc_state &= ~ATP_DOUBLE_TAP_DRAG;
1801
1802	DPRINTFN(ATP_LLEVEL_INFO, "[%d,%d]\n", strokep->x, strokep->y);
1803}
1804
1805static void
1806atp_advance_stroke_state(struct atp_softc *sc, atp_stroke_t *strokep,
1807    boolean_t *movementp)
1808{
1809	/* Revitalize stroke if it had previously been marked as a zombie. */
1810	if (strokep->flags & ATSF_ZOMBIE)
1811		strokep->flags &= ~ATSF_ZOMBIE;
1812
1813	strokep->age++;
1814	if (strokep->age <= atp_stroke_maturity_threshold) {
1815		/* Avoid noise from immature strokes. */
1816		strokep->instantaneous_dx = 0;
1817		strokep->instantaneous_dy = 0;
1818	}
1819
1820	if (atp_compute_stroke_movement(strokep))
1821		*movementp = true;
1822
1823	if (strokep->type != ATP_STROKE_TOUCH)
1824		return;
1825
1826	/* Convert touch strokes to slides upon detecting movement or age. */
1827	if ((abs(strokep->cum_movement_x) > atp_slide_min_movement) ||
1828	    (abs(strokep->cum_movement_y) > atp_slide_min_movement))
1829		atp_convert_to_slide(sc, strokep);
1830	else {
1831		/* Compute the stroke's age. */
1832		struct timeval tdiff;
1833		getmicrotime(&tdiff);
1834		if (timevalcmp(&tdiff, &strokep->ctime, >)) {
1835			timevalsub(&tdiff, &strokep->ctime);
1836
1837			if ((tdiff.tv_sec > (atp_touch_timeout / 1000000)) ||
1838			    ((tdiff.tv_sec == (atp_touch_timeout / 1000000)) &&
1839			     (tdiff.tv_usec >= (atp_touch_timeout % 1000000))))
1840				atp_convert_to_slide(sc, strokep);
1841		}
1842	}
1843}
1844
1845static boolean_t
1846atp_stroke_has_small_movement(const atp_stroke_t *strokep)
1847{
1848	return (((u_int)abs(strokep->instantaneous_dx) <=
1849		 atp_small_movement_threshold) &&
1850		((u_int)abs(strokep->instantaneous_dy) <=
1851		 atp_small_movement_threshold));
1852}
1853
1854/*
1855 * Accumulate instantaneous changes into the stroke's 'pending' bucket; if
1856 * the aggregate exceeds the small_movement_threshold, then retain
1857 * instantaneous changes for later.
1858 */
1859static void
1860atp_update_pending_mickeys(atp_stroke_t *strokep)
1861{
1862	/* accumulate instantaneous movement */
1863	strokep->pending_dx += strokep->instantaneous_dx;
1864	strokep->pending_dy += strokep->instantaneous_dy;
1865
1866#define UPDATE_INSTANTANEOUS_AND_PENDING(I, P)                          \
1867	if (abs((P)) <= atp_small_movement_threshold)                   \
1868		(I) = 0; /* clobber small movement */                   \
1869	else {                                                          \
1870		if ((I) > 0) {                                          \
1871			/*                                              \
1872			 * Round up instantaneous movement to the nearest \
1873			 * ceiling. This helps preserve small mickey    \
1874			 * movements from being lost in following scaling \
1875			 * operation.                                   \
1876			 */                                             \
1877			(I) = (((I) + (atp_mickeys_scale_factor - 1)) / \
1878			       atp_mickeys_scale_factor) *              \
1879			      atp_mickeys_scale_factor;                 \
1880									\
1881			/*                                              \
1882			 * Deduct the rounded mickeys from pending mickeys. \
1883			 * Note: we multiply by 2 to offset the previous \
1884			 * accumulation of instantaneous movement into  \
1885			 * pending.                                     \
1886			 */                                             \
1887			(P) -= ((I) << 1);                              \
1888									\
1889			/* truncate pending to 0 if it becomes negative. */ \
1890			(P) = imax((P), 0);                             \
1891		} else {                                                \
1892			/*                                              \
1893			 * Round down instantaneous movement to the nearest \
1894			 * ceiling. This helps preserve small mickey    \
1895			 * movements from being lost in following scaling \
1896			 * operation.                                   \
1897			 */                                             \
1898			(I) = (((I) - (atp_mickeys_scale_factor - 1)) / \
1899			       atp_mickeys_scale_factor) *              \
1900			      atp_mickeys_scale_factor;                 \
1901									\
1902			/*                                              \
1903			 * Deduct the rounded mickeys from pending mickeys. \
1904			 * Note: we multiply by 2 to offset the previous \
1905			 * accumulation of instantaneous movement into  \
1906			 * pending.                                     \
1907			 */                                             \
1908			(P) -= ((I) << 1);                              \
1909									\
1910			/* truncate pending to 0 if it becomes positive. */ \
1911			(P) = imin((P), 0);                             \
1912		}                                                       \
1913	}
1914
1915	UPDATE_INSTANTANEOUS_AND_PENDING(strokep->instantaneous_dx,
1916	    strokep->pending_dx);
1917	UPDATE_INSTANTANEOUS_AND_PENDING(strokep->instantaneous_dy,
1918	    strokep->pending_dy);
1919}
1920
1921/*
1922 * Compute a smoothened value for the stroke's movement from
1923 * instantaneous changes in the X and Y components.
1924 */
1925static boolean_t
1926atp_compute_stroke_movement(atp_stroke_t *strokep)
1927{
1928	/*
1929	 * Short movements are added first to the 'pending' bucket,
1930	 * and then acted upon only when their aggregate exceeds a
1931	 * threshold. This has the effect of filtering away movement
1932	 * noise.
1933	 */
1934	if (atp_stroke_has_small_movement(strokep))
1935		atp_update_pending_mickeys(strokep);
1936	else {                /* large movement */
1937		/* clear away any pending mickeys if there are large movements*/
1938		strokep->pending_dx = 0;
1939		strokep->pending_dy = 0;
1940	}
1941
1942	/* scale movement */
1943	strokep->movement_dx = (strokep->instantaneous_dx) /
1944	    (int)atp_mickeys_scale_factor;
1945	strokep->movement_dy = (strokep->instantaneous_dy) /
1946	    (int)atp_mickeys_scale_factor;
1947
1948	if ((abs(strokep->instantaneous_dx) >= ATP_FAST_MOVEMENT_TRESHOLD) ||
1949	    (abs(strokep->instantaneous_dy) >= ATP_FAST_MOVEMENT_TRESHOLD)) {
1950		strokep->movement_dx <<= 1;
1951		strokep->movement_dy <<= 1;
1952	}
1953
1954	strokep->cum_movement_x += strokep->movement_dx;
1955	strokep->cum_movement_y += strokep->movement_dy;
1956
1957	return ((strokep->movement_dx != 0) || (strokep->movement_dy != 0));
1958}
1959
1960/*
1961 * Terminate a stroke. Aside from immature strokes, a slide or touch is
1962 * retained as a zombies so as to reap all their termination siblings
1963 * together; this helps establish the number of fingers involved at the
1964 * end of a multi-touch gesture.
1965 */
1966static void
1967atp_terminate_stroke(struct atp_softc *sc, atp_stroke_t *strokep)
1968{
1969	if (strokep->flags & ATSF_ZOMBIE)
1970		return;
1971
1972	/* Drop immature strokes rightaway. */
1973	if (strokep->age <= atp_stroke_maturity_threshold) {
1974		atp_free_stroke(sc, strokep);
1975		return;
1976	}
1977
1978	strokep->flags |= ATSF_ZOMBIE;
1979	sc->sc_state |= ATP_ZOMBIES_EXIST;
1980
1981	callout_reset(&sc->sc_callout, ATP_ZOMBIE_STROKE_REAP_INTERVAL,
1982	    atp_reap_sibling_zombies, sc);
1983
1984	/*
1985	 * Reset the double-click-n-drag at the termination of any
1986	 * slide stroke.
1987	 */
1988	if (strokep->type == ATP_STROKE_SLIDE)
1989		sc->sc_state &= ~ATP_DOUBLE_TAP_DRAG;
1990}
1991
1992static boolean_t
1993atp_is_horizontal_scroll(const atp_stroke_t *strokep)
1994{
1995	if (abs(strokep->cum_movement_x) < atp_slide_min_movement)
1996		return (false);
1997	if (strokep->cum_movement_y == 0)
1998		return (true);
1999	return (abs(strokep->cum_movement_x / strokep->cum_movement_y) >= 4);
2000}
2001
2002static boolean_t
2003atp_is_vertical_scroll(const atp_stroke_t *strokep)
2004{
2005	if (abs(strokep->cum_movement_y) < atp_slide_min_movement)
2006		return (false);
2007	if (strokep->cum_movement_x == 0)
2008		return (true);
2009	return (abs(strokep->cum_movement_y / strokep->cum_movement_x) >= 4);
2010}
2011
2012static void
2013atp_reap_sibling_zombies(void *arg)
2014{
2015	struct atp_softc *sc = (struct atp_softc *)arg;
2016	u_int8_t n_touches_reaped = 0;
2017	u_int8_t n_slides_reaped = 0;
2018	u_int8_t n_horizontal_scrolls = 0;
2019	u_int8_t n_vertical_scrolls = 0;
2020	int horizontal_scroll = 0;
2021	int vertical_scroll = 0;
2022	atp_stroke_t *strokep;
2023	atp_stroke_t *strokep_next;
2024
2025	DPRINTFN(ATP_LLEVEL_INFO, "\n");
2026
2027	TAILQ_FOREACH_SAFE(strokep, &sc->sc_stroke_used, entry, strokep_next) {
2028		if ((strokep->flags & ATSF_ZOMBIE) == 0)
2029			continue;
2030
2031		if (strokep->type == ATP_STROKE_TOUCH) {
2032			n_touches_reaped++;
2033		} else {
2034			n_slides_reaped++;
2035
2036			if (atp_is_horizontal_scroll(strokep)) {
2037				n_horizontal_scrolls++;
2038				horizontal_scroll += strokep->cum_movement_x;
2039			} else if (atp_is_vertical_scroll(strokep)) {
2040				n_vertical_scrolls++;
2041				vertical_scroll +=  strokep->cum_movement_y;
2042			}
2043		}
2044
2045		atp_free_stroke(sc, strokep);
2046	}
2047
2048	DPRINTFN(ATP_LLEVEL_INFO, "reaped %u zombies\n",
2049	    n_touches_reaped + n_slides_reaped);
2050	sc->sc_state &= ~ATP_ZOMBIES_EXIST;
2051
2052	/* No further processing necessary if physical button is depressed. */
2053	if (sc->sc_ibtn != 0)
2054		return;
2055
2056	if ((n_touches_reaped == 0) && (n_slides_reaped == 0))
2057		return;
2058
2059	/* Add a pair of virtual button events (button-down and button-up) if
2060	 * the physical button isn't pressed. */
2061	if (n_touches_reaped != 0) {
2062		if (n_touches_reaped < atp_tap_minimum)
2063			return;
2064
2065		switch (n_touches_reaped) {
2066		case 1:
2067			atp_add_to_queue(sc, 0, 0, 0, MOUSE_BUTTON1DOWN);
2068			microtime(&sc->sc_touch_reap_time); /* remember this time */
2069			break;
2070		case 2:
2071			atp_add_to_queue(sc, 0, 0, 0, MOUSE_BUTTON3DOWN);
2072			break;
2073		case 3:
2074			atp_add_to_queue(sc, 0, 0, 0, MOUSE_BUTTON2DOWN);
2075			break;
2076		default:
2077			/* we handle taps of only up to 3 fingers */
2078			break;
2079		}
2080		atp_add_to_queue(sc, 0, 0, 0, 0); /* button release */
2081
2082	} else if (n_slides_reaped == 2) {
2083		if (n_horizontal_scrolls == 2) {
2084			if (horizontal_scroll < 0)
2085				atp_add_to_queue(sc, 0, 0, 0, MOUSE_BUTTON4DOWN);
2086			else
2087				atp_add_to_queue(sc, 0, 0, 0, MOUSE_BUTTON5DOWN);
2088			atp_add_to_queue(sc, 0, 0, 0, 0); /* button release */
2089		}
2090	}
2091}
2092
2093/* Switch a given touch stroke to being a slide. */
2094static void
2095atp_convert_to_slide(struct atp_softc *sc, atp_stroke_t *strokep)
2096{
2097	strokep->type = ATP_STROKE_SLIDE;
2098
2099	/* Are we at the beginning of a double-click-n-drag? */
2100	if ((sc->sc_n_strokes == 1) &&
2101	    ((sc->sc_state & ATP_ZOMBIES_EXIST) == 0) &&
2102	    timevalcmp(&strokep->ctime, &sc->sc_touch_reap_time, >)) {
2103		struct timeval delta;
2104		struct timeval window = {
2105			atp_double_tap_threshold / 1000000,
2106			atp_double_tap_threshold % 1000000
2107		};
2108
2109		delta = strokep->ctime;
2110		timevalsub(&delta, &sc->sc_touch_reap_time);
2111		if (timevalcmp(&delta, &window, <=))
2112			sc->sc_state |= ATP_DOUBLE_TAP_DRAG;
2113	}
2114}
2115
2116static void
2117atp_reset_buf(struct atp_softc *sc)
2118{
2119	/* reset read queue */
2120	usb_fifo_reset(sc->sc_fifo.fp[USB_FIFO_RX]);
2121}
2122
2123static void
2124atp_add_to_queue(struct atp_softc *sc, int dx, int dy, int dz,
2125    uint32_t buttons_in)
2126{
2127	uint32_t buttons_out;
2128	uint8_t  buf[8];
2129
2130	dx = imin(dx,  254); dx = imax(dx, -256);
2131	dy = imin(dy,  254); dy = imax(dy, -256);
2132	dz = imin(dz,  126); dz = imax(dz, -128);
2133
2134	buttons_out = MOUSE_MSC_BUTTONS;
2135	if (buttons_in & MOUSE_BUTTON1DOWN)
2136		buttons_out &= ~MOUSE_MSC_BUTTON1UP;
2137	else if (buttons_in & MOUSE_BUTTON2DOWN)
2138		buttons_out &= ~MOUSE_MSC_BUTTON2UP;
2139	else if (buttons_in & MOUSE_BUTTON3DOWN)
2140		buttons_out &= ~MOUSE_MSC_BUTTON3UP;
2141
2142	DPRINTFN(ATP_LLEVEL_INFO, "dx=%d, dy=%d, buttons=%x\n",
2143	    dx, dy, buttons_out);
2144
2145	/* Encode the mouse data in standard format; refer to mouse(4) */
2146	buf[0] = sc->sc_mode.syncmask[1];
2147	buf[0] |= buttons_out;
2148	buf[1] = dx >> 1;
2149	buf[2] = dy >> 1;
2150	buf[3] = dx - (dx >> 1);
2151	buf[4] = dy - (dy >> 1);
2152	/* Encode extra bytes for level 1 */
2153	if (sc->sc_mode.level == 1) {
2154		buf[5] = dz >> 1;
2155		buf[6] = dz - (dz >> 1);
2156		buf[7] = (((~buttons_in) >> 3) & MOUSE_SYS_EXTBUTTONS);
2157	}
2158
2159	usb_fifo_put_data_linear(sc->sc_fifo.fp[USB_FIFO_RX], buf,
2160	    sc->sc_mode.packetsize, 1);
2161}
2162
2163static int
2164atp_probe(device_t self)
2165{
2166	struct usb_attach_arg *uaa = device_get_ivars(self);
2167
2168	if (uaa->usb_mode != USB_MODE_HOST)
2169		return (ENXIO);
2170
2171	if (uaa->info.bInterfaceClass != UICLASS_HID)
2172		return (ENXIO);
2173	/*
2174	 * Note: for some reason, the check
2175	 * (uaa->info.bInterfaceProtocol == UIPROTO_MOUSE) doesn't hold true
2176	 * for wellspring trackpads, so we've removed it from the common path.
2177	 */
2178
2179	if ((usbd_lookup_id_by_uaa(fg_devs, sizeof(fg_devs), uaa)) == 0)
2180		return ((uaa->info.bInterfaceProtocol == UIPROTO_MOUSE) ?
2181			0 : ENXIO);
2182
2183	if ((usbd_lookup_id_by_uaa(wsp_devs, sizeof(wsp_devs), uaa)) == 0)
2184		if (uaa->info.bIfaceIndex == WELLSPRING_INTERFACE_INDEX)
2185			return (0);
2186
2187	return (ENXIO);
2188}
2189
2190static int
2191atp_attach(device_t dev)
2192{
2193	struct atp_softc      *sc  = device_get_softc(dev);
2194	struct usb_attach_arg *uaa = device_get_ivars(dev);
2195	usb_error_t            err;
2196	void *descriptor_ptr = NULL;
2197	uint16_t descriptor_len;
2198	unsigned long di;
2199
2200	DPRINTFN(ATP_LLEVEL_INFO, "sc=%p\n", sc);
2201
2202	sc->sc_dev        = dev;
2203	sc->sc_usb_device = uaa->device;
2204
2205	/* Get HID descriptor */
2206	if (usbd_req_get_hid_desc(uaa->device, NULL, &descriptor_ptr,
2207	    &descriptor_len, M_TEMP, uaa->info.bIfaceIndex) !=
2208	    USB_ERR_NORMAL_COMPLETION)
2209		return (ENXIO);
2210
2211	/* Get HID report descriptor length */
2212	sc->sc_expected_sensor_data_len = hid_report_size(descriptor_ptr,
2213	    descriptor_len, hid_input, NULL);
2214	free(descriptor_ptr, M_TEMP);
2215
2216	if ((sc->sc_expected_sensor_data_len <= 0) ||
2217	    (sc->sc_expected_sensor_data_len > ATP_SENSOR_DATA_BUF_MAX)) {
2218		DPRINTF("atp_attach: datalength invalid or too large: %d\n",
2219			sc->sc_expected_sensor_data_len);
2220		return (ENXIO);
2221	}
2222
2223	/*
2224	 * By default the touchpad behaves like an HID device, sending
2225	 * packets with reportID = 2. Such reports contain only
2226	 * limited information--they encode movement deltas and button
2227	 * events,--but do not include data from the pressure
2228	 * sensors. The device input mode can be switched from HID
2229	 * reports to raw sensor data using vendor-specific USB
2230	 * control commands.
2231	 */
2232	if ((err = atp_set_device_mode(sc, RAW_SENSOR_MODE)) != 0) {
2233		DPRINTF("failed to set mode to 'RAW_SENSOR' (%d)\n", err);
2234		return (ENXIO);
2235	}
2236
2237	mtx_init(&sc->sc_mutex, "atpmtx", NULL, MTX_DEF | MTX_RECURSE);
2238
2239	di = USB_GET_DRIVER_INFO(uaa);
2240
2241	sc->sc_family = DECODE_FAMILY_FROM_DRIVER_INFO(di);
2242
2243	switch(sc->sc_family) {
2244	case TRACKPAD_FAMILY_FOUNTAIN_GEYSER:
2245		sc->sc_params =
2246		    &fg_dev_params[DECODE_PRODUCT_FROM_DRIVER_INFO(di)];
2247		sc->sensor_data_interpreter = fg_interpret_sensor_data;
2248		break;
2249	case TRACKPAD_FAMILY_WELLSPRING:
2250		sc->sc_params =
2251		    &wsp_dev_params[DECODE_PRODUCT_FROM_DRIVER_INFO(di)];
2252		sc->sensor_data_interpreter = wsp_interpret_sensor_data;
2253		break;
2254	default:
2255		goto detach;
2256	}
2257
2258	err = usbd_transfer_setup(uaa->device,
2259	    &uaa->info.bIfaceIndex, sc->sc_xfer, atp_xfer_config,
2260	    ATP_N_TRANSFER, sc, &sc->sc_mutex);
2261	if (err) {
2262		DPRINTF("error=%s\n", usbd_errstr(err));
2263		goto detach;
2264	}
2265
2266	if (usb_fifo_attach(sc->sc_usb_device, sc, &sc->sc_mutex,
2267	    &atp_fifo_methods, &sc->sc_fifo,
2268	    device_get_unit(dev), -1, uaa->info.bIfaceIndex,
2269	    UID_ROOT, GID_OPERATOR, 0644)) {
2270		goto detach;
2271	}
2272
2273	device_set_usb_desc(dev);
2274
2275	sc->sc_hw.buttons       = 3;
2276	sc->sc_hw.iftype        = MOUSE_IF_USB;
2277	sc->sc_hw.type          = MOUSE_PAD;
2278	sc->sc_hw.model         = MOUSE_MODEL_GENERIC;
2279	sc->sc_hw.hwid          = 0;
2280	sc->sc_mode.protocol    = MOUSE_PROTO_MSC;
2281	sc->sc_mode.rate        = -1;
2282	sc->sc_mode.resolution  = MOUSE_RES_UNKNOWN;
2283	sc->sc_mode.packetsize  = MOUSE_MSC_PACKETSIZE;
2284	sc->sc_mode.syncmask[0] = MOUSE_MSC_SYNCMASK;
2285	sc->sc_mode.syncmask[1] = MOUSE_MSC_SYNC;
2286	sc->sc_mode.accelfactor = 0;
2287	sc->sc_mode.level       = 0;
2288
2289	sc->sc_state            = 0;
2290	sc->sc_ibtn             = 0;
2291
2292	callout_init_mtx(&sc->sc_callout, &sc->sc_mutex, 0);
2293
2294	return (0);
2295
2296detach:
2297	atp_detach(dev);
2298	return (ENOMEM);
2299}
2300
2301static int
2302atp_detach(device_t dev)
2303{
2304	struct atp_softc *sc;
2305
2306	sc = device_get_softc(dev);
2307	atp_set_device_mode(sc, HID_MODE);
2308
2309	mtx_lock(&sc->sc_mutex);
2310	callout_drain(&sc->sc_callout);
2311	if (sc->sc_state & ATP_ENABLED)
2312		atp_disable(sc);
2313	mtx_unlock(&sc->sc_mutex);
2314
2315	usb_fifo_detach(&sc->sc_fifo);
2316
2317	usbd_transfer_unsetup(sc->sc_xfer, ATP_N_TRANSFER);
2318
2319	mtx_destroy(&sc->sc_mutex);
2320
2321	return (0);
2322}
2323
2324static void
2325atp_intr(struct usb_xfer *xfer, usb_error_t error)
2326{
2327	struct atp_softc      *sc = usbd_xfer_softc(xfer);
2328	struct usb_page_cache *pc;
2329	int len;
2330
2331	usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
2332
2333	switch (USB_GET_STATE(xfer)) {
2334	case USB_ST_TRANSFERRED:
2335		pc = usbd_xfer_get_frame(xfer, 0);
2336		usbd_copy_out(pc, 0, sc->sc_sensor_data, len);
2337		if (len < sc->sc_expected_sensor_data_len) {
2338			/* make sure we don't process old data */
2339			memset(sc->sc_sensor_data + len, 0,
2340			    sc->sc_expected_sensor_data_len - len);
2341		}
2342
2343		sc->sc_status.flags &= ~(MOUSE_STDBUTTONSCHANGED |
2344		    MOUSE_POSCHANGED);
2345		sc->sc_status.obutton = sc->sc_status.button;
2346
2347		(sc->sensor_data_interpreter)(sc, len);
2348
2349		if (sc->sc_status.button != 0) {
2350			/* Reset DOUBLE_TAP_N_DRAG if the button is pressed. */
2351			sc->sc_state &= ~ATP_DOUBLE_TAP_DRAG;
2352		} else if (sc->sc_state & ATP_DOUBLE_TAP_DRAG) {
2353			/* Assume a button-press with DOUBLE_TAP_N_DRAG. */
2354			sc->sc_status.button = MOUSE_BUTTON1DOWN;
2355		}
2356
2357		sc->sc_status.flags |=
2358		    sc->sc_status.button ^ sc->sc_status.obutton;
2359		if (sc->sc_status.flags & MOUSE_STDBUTTONSCHANGED) {
2360		    DPRINTFN(ATP_LLEVEL_INFO, "button %s\n",
2361			((sc->sc_status.button & MOUSE_BUTTON1DOWN) ?
2362			"pressed" : "released"));
2363		}
2364
2365		if (sc->sc_status.flags & (MOUSE_POSCHANGED |
2366		    MOUSE_STDBUTTONSCHANGED)) {
2367
2368			atp_stroke_t *strokep;
2369			u_int8_t n_movements = 0;
2370			int dx = 0;
2371			int dy = 0;
2372
2373			TAILQ_FOREACH(strokep, &sc->sc_stroke_used, entry) {
2374				dx += strokep->movement_dx;
2375				dy += strokep->movement_dy;
2376				if (strokep->movement_dx ||
2377				    strokep->movement_dy)
2378					n_movements++;
2379			}
2380
2381			/* average movement if multiple strokes record motion.*/
2382			if (n_movements > 1) {
2383				dx /= (int)n_movements;
2384				dy /= (int)n_movements;
2385			}
2386
2387			sc->sc_status.dx += dx;
2388			sc->sc_status.dy += dy;
2389			atp_add_to_queue(sc, dx, -dy, 0, sc->sc_status.button);
2390		}
2391
2392	case USB_ST_SETUP:
2393	tr_setup:
2394		/* check if we can put more data into the FIFO */
2395		if (usb_fifo_put_bytes_max(sc->sc_fifo.fp[USB_FIFO_RX]) != 0) {
2396			usbd_xfer_set_frame_len(xfer, 0,
2397			    sc->sc_expected_sensor_data_len);
2398			usbd_transfer_submit(xfer);
2399		}
2400		break;
2401
2402	default:                        /* Error */
2403		if (error != USB_ERR_CANCELLED) {
2404			/* try clear stall first */
2405			usbd_xfer_set_stall(xfer);
2406			goto tr_setup;
2407		}
2408		break;
2409	}
2410}
2411
2412static void
2413atp_start_read(struct usb_fifo *fifo)
2414{
2415	struct atp_softc *sc = usb_fifo_softc(fifo);
2416	int rate;
2417
2418	/* Check if we should override the default polling interval */
2419	rate = sc->sc_pollrate;
2420	/* Range check rate */
2421	if (rate > 1000)
2422		rate = 1000;
2423	/* Check for set rate */
2424	if ((rate > 0) && (sc->sc_xfer[ATP_INTR_DT] != NULL)) {
2425		/* Stop current transfer, if any */
2426		usbd_transfer_stop(sc->sc_xfer[ATP_INTR_DT]);
2427		/* Set new interval */
2428		usbd_xfer_set_interval(sc->sc_xfer[ATP_INTR_DT], 1000 / rate);
2429		/* Only set pollrate once */
2430		sc->sc_pollrate = 0;
2431	}
2432
2433	usbd_transfer_start(sc->sc_xfer[ATP_INTR_DT]);
2434}
2435
2436static void
2437atp_stop_read(struct usb_fifo *fifo)
2438{
2439	struct atp_softc *sc = usb_fifo_softc(fifo);
2440	usbd_transfer_stop(sc->sc_xfer[ATP_INTR_DT]);
2441}
2442
2443static int
2444atp_open(struct usb_fifo *fifo, int fflags)
2445{
2446	struct atp_softc *sc = usb_fifo_softc(fifo);
2447
2448	/* check for duplicate open, should not happen */
2449	if (sc->sc_fflags & fflags)
2450		return (EBUSY);
2451
2452	/* check for first open */
2453	if (sc->sc_fflags == 0) {
2454		int rc;
2455		if ((rc = atp_enable(sc)) != 0)
2456			return (rc);
2457	}
2458
2459	if (fflags & FREAD) {
2460		if (usb_fifo_alloc_buffer(fifo,
2461		    ATP_FIFO_BUF_SIZE, ATP_FIFO_QUEUE_MAXLEN)) {
2462			return (ENOMEM);
2463		}
2464	}
2465
2466	sc->sc_fflags |= (fflags & (FREAD | FWRITE));
2467	return (0);
2468}
2469
2470static void
2471atp_close(struct usb_fifo *fifo, int fflags)
2472{
2473	struct atp_softc *sc = usb_fifo_softc(fifo);
2474	if (fflags & FREAD)
2475		usb_fifo_free_buffer(fifo);
2476
2477	sc->sc_fflags &= ~(fflags & (FREAD | FWRITE));
2478	if (sc->sc_fflags == 0) {
2479		atp_disable(sc);
2480	}
2481}
2482
2483static int
2484atp_ioctl(struct usb_fifo *fifo, u_long cmd, void *addr, int fflags)
2485{
2486	struct atp_softc *sc = usb_fifo_softc(fifo);
2487	mousemode_t mode;
2488	int error = 0;
2489
2490	mtx_lock(&sc->sc_mutex);
2491
2492	switch(cmd) {
2493	case MOUSE_GETHWINFO:
2494		*(mousehw_t *)addr = sc->sc_hw;
2495		break;
2496	case MOUSE_GETMODE:
2497		*(mousemode_t *)addr = sc->sc_mode;
2498		break;
2499	case MOUSE_SETMODE:
2500		mode = *(mousemode_t *)addr;
2501
2502		if (mode.level == -1)
2503			/* Don't change the current setting */
2504			;
2505		else if ((mode.level < 0) || (mode.level > 1)) {
2506			error = EINVAL;
2507			break;
2508		}
2509		sc->sc_mode.level = mode.level;
2510		sc->sc_pollrate   = mode.rate;
2511		sc->sc_hw.buttons = 3;
2512
2513		if (sc->sc_mode.level == 0) {
2514			sc->sc_mode.protocol    = MOUSE_PROTO_MSC;
2515			sc->sc_mode.packetsize  = MOUSE_MSC_PACKETSIZE;
2516			sc->sc_mode.syncmask[0] = MOUSE_MSC_SYNCMASK;
2517			sc->sc_mode.syncmask[1] = MOUSE_MSC_SYNC;
2518		} else if (sc->sc_mode.level == 1) {
2519			sc->sc_mode.protocol    = MOUSE_PROTO_SYSMOUSE;
2520			sc->sc_mode.packetsize  = MOUSE_SYS_PACKETSIZE;
2521			sc->sc_mode.syncmask[0] = MOUSE_SYS_SYNCMASK;
2522			sc->sc_mode.syncmask[1] = MOUSE_SYS_SYNC;
2523		}
2524		atp_reset_buf(sc);
2525		break;
2526	case MOUSE_GETLEVEL:
2527		*(int *)addr = sc->sc_mode.level;
2528		break;
2529	case MOUSE_SETLEVEL:
2530		if ((*(int *)addr < 0) || (*(int *)addr > 1)) {
2531			error = EINVAL;
2532			break;
2533		}
2534		sc->sc_mode.level = *(int *)addr;
2535		sc->sc_hw.buttons = 3;
2536
2537		if (sc->sc_mode.level == 0) {
2538			sc->sc_mode.protocol    = MOUSE_PROTO_MSC;
2539			sc->sc_mode.packetsize  = MOUSE_MSC_PACKETSIZE;
2540			sc->sc_mode.syncmask[0] = MOUSE_MSC_SYNCMASK;
2541			sc->sc_mode.syncmask[1] = MOUSE_MSC_SYNC;
2542		} else if (sc->sc_mode.level == 1) {
2543			sc->sc_mode.protocol    = MOUSE_PROTO_SYSMOUSE;
2544			sc->sc_mode.packetsize  = MOUSE_SYS_PACKETSIZE;
2545			sc->sc_mode.syncmask[0] = MOUSE_SYS_SYNCMASK;
2546			sc->sc_mode.syncmask[1] = MOUSE_SYS_SYNC;
2547		}
2548		atp_reset_buf(sc);
2549		break;
2550	case MOUSE_GETSTATUS: {
2551		mousestatus_t *status = (mousestatus_t *)addr;
2552
2553		*status = sc->sc_status;
2554		sc->sc_status.obutton = sc->sc_status.button;
2555		sc->sc_status.button  = 0;
2556		sc->sc_status.dx      = 0;
2557		sc->sc_status.dy      = 0;
2558		sc->sc_status.dz      = 0;
2559
2560		if (status->dx || status->dy || status->dz)
2561			status->flags |= MOUSE_POSCHANGED;
2562		if (status->button != status->obutton)
2563			status->flags |= MOUSE_BUTTONSCHANGED;
2564		break;
2565	}
2566
2567	default:
2568		error = ENOTTY;
2569		break;
2570	}
2571
2572	mtx_unlock(&sc->sc_mutex);
2573	return (error);
2574}
2575
2576static int
2577atp_sysctl_scale_factor_handler(SYSCTL_HANDLER_ARGS)
2578{
2579	int error;
2580	u_int tmp;
2581
2582	tmp = atp_mickeys_scale_factor;
2583	error = sysctl_handle_int(oidp, &tmp, 0, req);
2584	if (error != 0 || req->newptr == NULL)
2585		return (error);
2586
2587	if (tmp == atp_mickeys_scale_factor)
2588		return (0);     /* no change */
2589	if ((tmp == 0) || (tmp > (10 * ATP_SCALE_FACTOR)))
2590		return (EINVAL);
2591
2592	atp_mickeys_scale_factor = tmp;
2593	DPRINTFN(ATP_LLEVEL_INFO, "%s: resetting mickeys_scale_factor to %u\n",
2594	    ATP_DRIVER_NAME, tmp);
2595
2596	return (0);
2597}
2598
2599static devclass_t atp_devclass;
2600
2601static device_method_t atp_methods[] = {
2602	DEVMETHOD(device_probe,  atp_probe),
2603	DEVMETHOD(device_attach, atp_attach),
2604	DEVMETHOD(device_detach, atp_detach),
2605
2606	DEVMETHOD_END
2607};
2608
2609static driver_t atp_driver = {
2610	.name    = ATP_DRIVER_NAME,
2611	.methods = atp_methods,
2612	.size    = sizeof(struct atp_softc)
2613};
2614
2615DRIVER_MODULE(atp, uhub, atp_driver, atp_devclass, NULL, 0);
2616MODULE_DEPEND(atp, usb, 1, 1, 1);
2617MODULE_VERSION(atp, 1);
2618