ubsec.c revision 227309
1/*	$OpenBSD: ubsec.c,v 1.115 2002/09/24 18:33:26 jason Exp $	*/
2
3/*-
4 * Copyright (c) 2000 Jason L. Wright (jason@thought.net)
5 * Copyright (c) 2000 Theo de Raadt (deraadt@openbsd.org)
6 * Copyright (c) 2001 Patrik Lindergren (patrik@ipunplugged.com)
7 *
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by Jason L. Wright
21 * 4. The name of the author may not be used to endorse or promote products
22 *    derived from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
25 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
26 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
27 * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
28 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
29 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
30 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
32 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
33 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 *
36 * Effort sponsored in part by the Defense Advanced Research Projects
37 * Agency (DARPA) and Air Force Research Laboratory, Air Force
38 * Materiel Command, USAF, under agreement number F30602-01-2-0537.
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/dev/ubsec/ubsec.c 227309 2011-11-07 15:43:11Z ed $");
43
44/*
45 * uBsec 5[56]01, 58xx hardware crypto accelerator
46 */
47
48#include "opt_ubsec.h"
49
50#include <sys/param.h>
51#include <sys/systm.h>
52#include <sys/proc.h>
53#include <sys/errno.h>
54#include <sys/malloc.h>
55#include <sys/kernel.h>
56#include <sys/module.h>
57#include <sys/mbuf.h>
58#include <sys/lock.h>
59#include <sys/mutex.h>
60#include <sys/sysctl.h>
61#include <sys/endian.h>
62
63#include <vm/vm.h>
64#include <vm/pmap.h>
65
66#include <machine/bus.h>
67#include <machine/resource.h>
68#include <sys/bus.h>
69#include <sys/rman.h>
70
71#include <crypto/sha1.h>
72#include <opencrypto/cryptodev.h>
73#include <opencrypto/cryptosoft.h>
74#include <sys/md5.h>
75#include <sys/random.h>
76#include <sys/kobj.h>
77
78#include "cryptodev_if.h"
79
80#include <dev/pci/pcivar.h>
81#include <dev/pci/pcireg.h>
82
83/* grr, #defines for gratuitous incompatibility in queue.h */
84#define	SIMPLEQ_HEAD		STAILQ_HEAD
85#define	SIMPLEQ_ENTRY		STAILQ_ENTRY
86#define	SIMPLEQ_INIT		STAILQ_INIT
87#define	SIMPLEQ_INSERT_TAIL	STAILQ_INSERT_TAIL
88#define	SIMPLEQ_EMPTY		STAILQ_EMPTY
89#define	SIMPLEQ_FIRST		STAILQ_FIRST
90#define	SIMPLEQ_REMOVE_HEAD	STAILQ_REMOVE_HEAD
91#define	SIMPLEQ_FOREACH		STAILQ_FOREACH
92/* ditto for endian.h */
93#define	letoh16(x)		le16toh(x)
94#define	letoh32(x)		le32toh(x)
95
96#ifdef UBSEC_RNDTEST
97#include <dev/rndtest/rndtest.h>
98#endif
99#include <dev/ubsec/ubsecreg.h>
100#include <dev/ubsec/ubsecvar.h>
101
102/*
103 * Prototypes and count for the pci_device structure
104 */
105static	int ubsec_probe(device_t);
106static	int ubsec_attach(device_t);
107static	int ubsec_detach(device_t);
108static	int ubsec_suspend(device_t);
109static	int ubsec_resume(device_t);
110static	int ubsec_shutdown(device_t);
111
112static	int ubsec_newsession(device_t, u_int32_t *, struct cryptoini *);
113static	int ubsec_freesession(device_t, u_int64_t);
114static	int ubsec_process(device_t, struct cryptop *, int);
115static	int ubsec_kprocess(device_t, struct cryptkop *, int);
116
117static device_method_t ubsec_methods[] = {
118	/* Device interface */
119	DEVMETHOD(device_probe,		ubsec_probe),
120	DEVMETHOD(device_attach,	ubsec_attach),
121	DEVMETHOD(device_detach,	ubsec_detach),
122	DEVMETHOD(device_suspend,	ubsec_suspend),
123	DEVMETHOD(device_resume,	ubsec_resume),
124	DEVMETHOD(device_shutdown,	ubsec_shutdown),
125
126	/* bus interface */
127	DEVMETHOD(bus_print_child,	bus_generic_print_child),
128	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
129
130	/* crypto device methods */
131	DEVMETHOD(cryptodev_newsession,	ubsec_newsession),
132	DEVMETHOD(cryptodev_freesession,ubsec_freesession),
133	DEVMETHOD(cryptodev_process,	ubsec_process),
134	DEVMETHOD(cryptodev_kprocess,	ubsec_kprocess),
135
136	{ 0, 0 }
137};
138static driver_t ubsec_driver = {
139	"ubsec",
140	ubsec_methods,
141	sizeof (struct ubsec_softc)
142};
143static devclass_t ubsec_devclass;
144
145DRIVER_MODULE(ubsec, pci, ubsec_driver, ubsec_devclass, 0, 0);
146MODULE_DEPEND(ubsec, crypto, 1, 1, 1);
147#ifdef UBSEC_RNDTEST
148MODULE_DEPEND(ubsec, rndtest, 1, 1, 1);
149#endif
150
151static	void ubsec_intr(void *);
152static	void ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
153static	void ubsec_feed(struct ubsec_softc *);
154static	void ubsec_mcopy(struct mbuf *, struct mbuf *, int, int);
155static	void ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *);
156static	int ubsec_feed2(struct ubsec_softc *);
157static	void ubsec_rng(void *);
158static	int ubsec_dma_malloc(struct ubsec_softc *, bus_size_t,
159			     struct ubsec_dma_alloc *, int);
160#define	ubsec_dma_sync(_dma, _flags) \
161	bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
162static	void ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
163static	int ubsec_dmamap_aligned(struct ubsec_operand *op);
164
165static	void ubsec_reset_board(struct ubsec_softc *sc);
166static	void ubsec_init_board(struct ubsec_softc *sc);
167static	void ubsec_init_pciregs(device_t dev);
168static	void ubsec_totalreset(struct ubsec_softc *sc);
169
170static	int ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q);
171
172static	int ubsec_kprocess_modexp_hw(struct ubsec_softc *, struct cryptkop *, int);
173static	int ubsec_kprocess_modexp_sw(struct ubsec_softc *, struct cryptkop *, int);
174static	int ubsec_kprocess_rsapriv(struct ubsec_softc *, struct cryptkop *, int);
175static	void ubsec_kfree(struct ubsec_softc *, struct ubsec_q2 *);
176static	int ubsec_ksigbits(struct crparam *);
177static	void ubsec_kshift_r(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
178static	void ubsec_kshift_l(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
179
180static SYSCTL_NODE(_hw, OID_AUTO, ubsec, CTLFLAG_RD, 0,
181    "Broadcom driver parameters");
182
183#ifdef UBSEC_DEBUG
184static	void ubsec_dump_pb(volatile struct ubsec_pktbuf *);
185static	void ubsec_dump_mcr(struct ubsec_mcr *);
186static	void ubsec_dump_ctx2(struct ubsec_ctx_keyop *);
187
188static	int ubsec_debug = 0;
189SYSCTL_INT(_hw_ubsec, OID_AUTO, debug, CTLFLAG_RW, &ubsec_debug,
190	    0, "control debugging msgs");
191#endif
192
193#define	READ_REG(sc,r) \
194	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
195
196#define WRITE_REG(sc,reg,val) \
197	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
198
199#define	SWAP32(x) (x) = htole32(ntohl((x)))
200#define	HTOLE32(x) (x) = htole32(x)
201
202struct ubsec_stats ubsecstats;
203SYSCTL_STRUCT(_hw_ubsec, OID_AUTO, stats, CTLFLAG_RD, &ubsecstats,
204	    ubsec_stats, "driver statistics");
205
206static int
207ubsec_probe(device_t dev)
208{
209	if (pci_get_vendor(dev) == PCI_VENDOR_SUN &&
210	    (pci_get_device(dev) == PCI_PRODUCT_SUN_5821 ||
211	     pci_get_device(dev) == PCI_PRODUCT_SUN_SCA1K))
212		return (BUS_PROBE_DEFAULT);
213	if (pci_get_vendor(dev) == PCI_VENDOR_BLUESTEEL &&
214	    (pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5501 ||
215	     pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5601))
216		return (BUS_PROBE_DEFAULT);
217	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
218	    (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5801 ||
219	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5802 ||
220	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5805 ||
221	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5820 ||
222	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5821 ||
223	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5822 ||
224	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5823 ||
225	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5825
226	     ))
227		return (BUS_PROBE_DEFAULT);
228	return (ENXIO);
229}
230
231static const char*
232ubsec_partname(struct ubsec_softc *sc)
233{
234	/* XXX sprintf numbers when not decoded */
235	switch (pci_get_vendor(sc->sc_dev)) {
236	case PCI_VENDOR_BROADCOM:
237		switch (pci_get_device(sc->sc_dev)) {
238		case PCI_PRODUCT_BROADCOM_5801:	return "Broadcom 5801";
239		case PCI_PRODUCT_BROADCOM_5802:	return "Broadcom 5802";
240		case PCI_PRODUCT_BROADCOM_5805:	return "Broadcom 5805";
241		case PCI_PRODUCT_BROADCOM_5820:	return "Broadcom 5820";
242		case PCI_PRODUCT_BROADCOM_5821:	return "Broadcom 5821";
243		case PCI_PRODUCT_BROADCOM_5822:	return "Broadcom 5822";
244		case PCI_PRODUCT_BROADCOM_5823:	return "Broadcom 5823";
245		case PCI_PRODUCT_BROADCOM_5825:	return "Broadcom 5825";
246		}
247		return "Broadcom unknown-part";
248	case PCI_VENDOR_BLUESTEEL:
249		switch (pci_get_device(sc->sc_dev)) {
250		case PCI_PRODUCT_BLUESTEEL_5601: return "Bluesteel 5601";
251		}
252		return "Bluesteel unknown-part";
253	case PCI_VENDOR_SUN:
254		switch (pci_get_device(sc->sc_dev)) {
255		case PCI_PRODUCT_SUN_5821: return "Sun Crypto 5821";
256		case PCI_PRODUCT_SUN_SCA1K: return "Sun Crypto 1K";
257		}
258		return "Sun unknown-part";
259	}
260	return "Unknown-vendor unknown-part";
261}
262
263static void
264default_harvest(struct rndtest_state *rsp, void *buf, u_int count)
265{
266	random_harvest(buf, count, count*NBBY, 0, RANDOM_PURE);
267}
268
269static int
270ubsec_attach(device_t dev)
271{
272	struct ubsec_softc *sc = device_get_softc(dev);
273	struct ubsec_dma *dmap;
274	u_int32_t cmd, i;
275	int rid;
276
277	bzero(sc, sizeof (*sc));
278	sc->sc_dev = dev;
279
280	SIMPLEQ_INIT(&sc->sc_queue);
281	SIMPLEQ_INIT(&sc->sc_qchip);
282	SIMPLEQ_INIT(&sc->sc_queue2);
283	SIMPLEQ_INIT(&sc->sc_qchip2);
284	SIMPLEQ_INIT(&sc->sc_q2free);
285
286	/* XXX handle power management */
287
288	sc->sc_statmask = BS_STAT_MCR1_DONE | BS_STAT_DMAERR;
289
290	if (pci_get_vendor(dev) == PCI_VENDOR_BLUESTEEL &&
291	    pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5601)
292		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG;
293
294	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
295	    (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5802 ||
296	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5805))
297		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG;
298
299	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
300	    pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5820)
301		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG |
302		    UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY;
303
304	if ((pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
305	     (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5821 ||
306	      pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5822 ||
307	      pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5823 ||
308	      pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5825)) ||
309	    (pci_get_vendor(dev) == PCI_VENDOR_SUN &&
310	     (pci_get_device(dev) == PCI_PRODUCT_SUN_SCA1K ||
311	      pci_get_device(dev) == PCI_PRODUCT_SUN_5821))) {
312		/* NB: the 5821/5822 defines some additional status bits */
313		sc->sc_statmask |= BS_STAT_MCR1_ALLEMPTY |
314		    BS_STAT_MCR2_ALLEMPTY;
315		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG |
316		    UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY;
317	}
318
319	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
320	cmd |= PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN;
321	pci_write_config(dev, PCIR_COMMAND, cmd, 4);
322	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
323
324	if (!(cmd & PCIM_CMD_MEMEN)) {
325		device_printf(dev, "failed to enable memory mapping\n");
326		goto bad;
327	}
328
329	if (!(cmd & PCIM_CMD_BUSMASTEREN)) {
330		device_printf(dev, "failed to enable bus mastering\n");
331		goto bad;
332	}
333
334	/*
335	 * Setup memory-mapping of PCI registers.
336	 */
337	rid = BS_BAR;
338	sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
339					   RF_ACTIVE);
340	if (sc->sc_sr == NULL) {
341		device_printf(dev, "cannot map register space\n");
342		goto bad;
343	}
344	sc->sc_st = rman_get_bustag(sc->sc_sr);
345	sc->sc_sh = rman_get_bushandle(sc->sc_sr);
346
347	/*
348	 * Arrange interrupt line.
349	 */
350	rid = 0;
351	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
352					    RF_SHAREABLE|RF_ACTIVE);
353	if (sc->sc_irq == NULL) {
354		device_printf(dev, "could not map interrupt\n");
355		goto bad1;
356	}
357	/*
358	 * NB: Network code assumes we are blocked with splimp()
359	 *     so make sure the IRQ is mapped appropriately.
360	 */
361	if (bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
362			   NULL, ubsec_intr, sc, &sc->sc_ih)) {
363		device_printf(dev, "could not establish interrupt\n");
364		goto bad2;
365	}
366
367	sc->sc_cid = crypto_get_driverid(dev, CRYPTOCAP_F_HARDWARE);
368	if (sc->sc_cid < 0) {
369		device_printf(dev, "could not get crypto driver id\n");
370		goto bad3;
371	}
372
373	/*
374	 * Setup DMA descriptor area.
375	 */
376	if (bus_dma_tag_create(NULL,			/* parent */
377			       1, 0,			/* alignment, bounds */
378			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
379			       BUS_SPACE_MAXADDR,	/* highaddr */
380			       NULL, NULL,		/* filter, filterarg */
381			       0x3ffff,			/* maxsize */
382			       UBS_MAX_SCATTER,		/* nsegments */
383			       0xffff,			/* maxsegsize */
384			       BUS_DMA_ALLOCNOW,	/* flags */
385			       NULL, NULL,		/* lockfunc, lockarg */
386			       &sc->sc_dmat)) {
387		device_printf(dev, "cannot allocate DMA tag\n");
388		goto bad4;
389	}
390	SIMPLEQ_INIT(&sc->sc_freequeue);
391	dmap = sc->sc_dmaa;
392	for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
393		struct ubsec_q *q;
394
395		q = (struct ubsec_q *)malloc(sizeof(struct ubsec_q),
396		    M_DEVBUF, M_NOWAIT);
397		if (q == NULL) {
398			device_printf(dev, "cannot allocate queue buffers\n");
399			break;
400		}
401
402		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk),
403		    &dmap->d_alloc, 0)) {
404			device_printf(dev, "cannot allocate dma buffers\n");
405			free(q, M_DEVBUF);
406			break;
407		}
408		dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
409
410		q->q_dma = dmap;
411		sc->sc_queuea[i] = q;
412
413		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
414	}
415	mtx_init(&sc->sc_mcr1lock, device_get_nameunit(dev),
416		"mcr1 operations", MTX_DEF);
417	mtx_init(&sc->sc_freeqlock, device_get_nameunit(dev),
418		"mcr1 free q", MTX_DEF);
419
420	device_printf(sc->sc_dev, "%s\n", ubsec_partname(sc));
421
422	crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
423	crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0);
424	crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0);
425	crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0);
426
427	/*
428	 * Reset Broadcom chip
429	 */
430	ubsec_reset_board(sc);
431
432	/*
433	 * Init Broadcom specific PCI settings
434	 */
435	ubsec_init_pciregs(dev);
436
437	/*
438	 * Init Broadcom chip
439	 */
440	ubsec_init_board(sc);
441
442#ifndef UBSEC_NO_RNG
443	if (sc->sc_flags & UBS_FLAGS_RNG) {
444		sc->sc_statmask |= BS_STAT_MCR2_DONE;
445#ifdef UBSEC_RNDTEST
446		sc->sc_rndtest = rndtest_attach(dev);
447		if (sc->sc_rndtest)
448			sc->sc_harvest = rndtest_harvest;
449		else
450			sc->sc_harvest = default_harvest;
451#else
452		sc->sc_harvest = default_harvest;
453#endif
454
455		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
456		    &sc->sc_rng.rng_q.q_mcr, 0))
457			goto skip_rng;
458
459		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass),
460		    &sc->sc_rng.rng_q.q_ctx, 0)) {
461			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
462			goto skip_rng;
463		}
464
465		if (ubsec_dma_malloc(sc, sizeof(u_int32_t) *
466		    UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) {
467			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
468			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
469			goto skip_rng;
470		}
471
472		if (hz >= 100)
473			sc->sc_rnghz = hz / 100;
474		else
475			sc->sc_rnghz = 1;
476		callout_init(&sc->sc_rngto, CALLOUT_MPSAFE);
477		callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
478skip_rng:
479	;
480	}
481#endif /* UBSEC_NO_RNG */
482	mtx_init(&sc->sc_mcr2lock, device_get_nameunit(dev),
483		"mcr2 operations", MTX_DEF);
484
485	if (sc->sc_flags & UBS_FLAGS_KEY) {
486		sc->sc_statmask |= BS_STAT_MCR2_DONE;
487
488		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0);
489#if 0
490		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0);
491#endif
492	}
493	return (0);
494bad4:
495	crypto_unregister_all(sc->sc_cid);
496bad3:
497	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
498bad2:
499	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
500bad1:
501	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
502bad:
503	return (ENXIO);
504}
505
506/*
507 * Detach a device that successfully probed.
508 */
509static int
510ubsec_detach(device_t dev)
511{
512	struct ubsec_softc *sc = device_get_softc(dev);
513
514	/* XXX wait/abort active ops */
515
516	/* disable interrupts */
517	WRITE_REG(sc, BS_CTRL, READ_REG(sc, BS_CTRL) &~
518		(BS_CTRL_MCR2INT | BS_CTRL_MCR1INT | BS_CTRL_DMAERR));
519
520	callout_stop(&sc->sc_rngto);
521
522	crypto_unregister_all(sc->sc_cid);
523
524#ifdef UBSEC_RNDTEST
525	if (sc->sc_rndtest)
526		rndtest_detach(sc->sc_rndtest);
527#endif
528
529	while (!SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
530		struct ubsec_q *q;
531
532		q = SIMPLEQ_FIRST(&sc->sc_freequeue);
533		SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, q_next);
534		ubsec_dma_free(sc, &q->q_dma->d_alloc);
535		free(q, M_DEVBUF);
536	}
537	mtx_destroy(&sc->sc_mcr1lock);
538	mtx_destroy(&sc->sc_freeqlock);
539#ifndef UBSEC_NO_RNG
540	if (sc->sc_flags & UBS_FLAGS_RNG) {
541		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
542		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
543		ubsec_dma_free(sc, &sc->sc_rng.rng_buf);
544	}
545#endif /* UBSEC_NO_RNG */
546	mtx_destroy(&sc->sc_mcr2lock);
547
548	bus_generic_detach(dev);
549	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
550	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
551
552	bus_dma_tag_destroy(sc->sc_dmat);
553	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
554
555	return (0);
556}
557
558/*
559 * Stop all chip i/o so that the kernel's probe routines don't
560 * get confused by errant DMAs when rebooting.
561 */
562static int
563ubsec_shutdown(device_t dev)
564{
565#ifdef notyet
566	ubsec_stop(device_get_softc(dev));
567#endif
568	return (0);
569}
570
571/*
572 * Device suspend routine.
573 */
574static int
575ubsec_suspend(device_t dev)
576{
577	struct ubsec_softc *sc = device_get_softc(dev);
578
579#ifdef notyet
580	/* XXX stop the device and save PCI settings */
581#endif
582	sc->sc_suspended = 1;
583
584	return (0);
585}
586
587static int
588ubsec_resume(device_t dev)
589{
590	struct ubsec_softc *sc = device_get_softc(dev);
591
592#ifdef notyet
593	/* XXX retore PCI settings and start the device */
594#endif
595	sc->sc_suspended = 0;
596	return (0);
597}
598
599/*
600 * UBSEC Interrupt routine
601 */
602static void
603ubsec_intr(void *arg)
604{
605	struct ubsec_softc *sc = arg;
606	volatile u_int32_t stat;
607	struct ubsec_q *q;
608	struct ubsec_dma *dmap;
609	int npkts = 0, i;
610
611	stat = READ_REG(sc, BS_STAT);
612	stat &= sc->sc_statmask;
613	if (stat == 0)
614		return;
615
616	WRITE_REG(sc, BS_STAT, stat);		/* IACK */
617
618	/*
619	 * Check to see if we have any packets waiting for us
620	 */
621	if ((stat & BS_STAT_MCR1_DONE)) {
622		mtx_lock(&sc->sc_mcr1lock);
623		while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
624			q = SIMPLEQ_FIRST(&sc->sc_qchip);
625			dmap = q->q_dma;
626
627			if ((dmap->d_dma->d_mcr.mcr_flags & htole16(UBS_MCR_DONE)) == 0)
628				break;
629
630			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q_next);
631
632			npkts = q->q_nstacked_mcrs;
633			sc->sc_nqchip -= 1+npkts;
634			/*
635			 * search for further sc_qchip ubsec_q's that share
636			 * the same MCR, and complete them too, they must be
637			 * at the top.
638			 */
639			for (i = 0; i < npkts; i++) {
640				if(q->q_stacked_mcr[i]) {
641					ubsec_callback(sc, q->q_stacked_mcr[i]);
642				} else {
643					break;
644				}
645			}
646			ubsec_callback(sc, q);
647		}
648		/*
649		 * Don't send any more packet to chip if there has been
650		 * a DMAERR.
651		 */
652		if (!(stat & BS_STAT_DMAERR))
653			ubsec_feed(sc);
654		mtx_unlock(&sc->sc_mcr1lock);
655	}
656
657	/*
658	 * Check to see if we have any key setups/rng's waiting for us
659	 */
660	if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) &&
661	    (stat & BS_STAT_MCR2_DONE)) {
662		struct ubsec_q2 *q2;
663		struct ubsec_mcr *mcr;
664
665		mtx_lock(&sc->sc_mcr2lock);
666		while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) {
667			q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
668
669			ubsec_dma_sync(&q2->q_mcr,
670			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
671
672			mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
673			if ((mcr->mcr_flags & htole16(UBS_MCR_DONE)) == 0) {
674				ubsec_dma_sync(&q2->q_mcr,
675				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
676				break;
677			}
678			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, q_next);
679			ubsec_callback2(sc, q2);
680			/*
681			 * Don't send any more packet to chip if there has been
682			 * a DMAERR.
683			 */
684			if (!(stat & BS_STAT_DMAERR))
685				ubsec_feed2(sc);
686		}
687		mtx_unlock(&sc->sc_mcr2lock);
688	}
689
690	/*
691	 * Check to see if we got any DMA Error
692	 */
693	if (stat & BS_STAT_DMAERR) {
694#ifdef UBSEC_DEBUG
695		if (ubsec_debug) {
696			volatile u_int32_t a = READ_REG(sc, BS_ERR);
697
698			printf("dmaerr %s@%08x\n",
699			    (a & BS_ERR_READ) ? "read" : "write",
700			    a & BS_ERR_ADDR);
701		}
702#endif /* UBSEC_DEBUG */
703		ubsecstats.hst_dmaerr++;
704		mtx_lock(&sc->sc_mcr1lock);
705		ubsec_totalreset(sc);
706		ubsec_feed(sc);
707		mtx_unlock(&sc->sc_mcr1lock);
708	}
709
710	if (sc->sc_needwakeup) {		/* XXX check high watermark */
711		int wakeup;
712
713		mtx_lock(&sc->sc_freeqlock);
714		wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
715#ifdef UBSEC_DEBUG
716		if (ubsec_debug)
717			device_printf(sc->sc_dev, "wakeup crypto (%x)\n",
718				sc->sc_needwakeup);
719#endif /* UBSEC_DEBUG */
720		sc->sc_needwakeup &= ~wakeup;
721		mtx_unlock(&sc->sc_freeqlock);
722		crypto_unblock(sc->sc_cid, wakeup);
723	}
724}
725
726/*
727 * ubsec_feed() - aggregate and post requests to chip
728 */
729static void
730ubsec_feed(struct ubsec_softc *sc)
731{
732	struct ubsec_q *q, *q2;
733	int npkts, i;
734	void *v;
735	u_int32_t stat;
736
737	/*
738	 * Decide how many ops to combine in a single MCR.  We cannot
739	 * aggregate more than UBS_MAX_AGGR because this is the number
740	 * of slots defined in the data structure.  Note that
741	 * aggregation only happens if ops are marked batch'able.
742	 * Aggregating ops reduces the number of interrupts to the host
743	 * but also (potentially) increases the latency for processing
744	 * completed ops as we only get an interrupt when all aggregated
745	 * ops have completed.
746	 */
747	if (sc->sc_nqueue == 0)
748		return;
749	if (sc->sc_nqueue > 1) {
750		npkts = 0;
751		SIMPLEQ_FOREACH(q, &sc->sc_queue, q_next) {
752			npkts++;
753			if ((q->q_crp->crp_flags & CRYPTO_F_BATCH) == 0)
754				break;
755		}
756	} else
757		npkts = 1;
758	/*
759	 * Check device status before going any further.
760	 */
761	if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
762		if (stat & BS_STAT_DMAERR) {
763			ubsec_totalreset(sc);
764			ubsecstats.hst_dmaerr++;
765		} else
766			ubsecstats.hst_mcr1full++;
767		return;
768	}
769	if (sc->sc_nqueue > ubsecstats.hst_maxqueue)
770		ubsecstats.hst_maxqueue = sc->sc_nqueue;
771	if (npkts > UBS_MAX_AGGR)
772		npkts = UBS_MAX_AGGR;
773	if (npkts < 2)				/* special case 1 op */
774		goto feed1;
775
776	ubsecstats.hst_totbatch += npkts-1;
777#ifdef UBSEC_DEBUG
778	if (ubsec_debug)
779		printf("merging %d records\n", npkts);
780#endif /* UBSEC_DEBUG */
781
782	q = SIMPLEQ_FIRST(&sc->sc_queue);
783	SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next);
784	--sc->sc_nqueue;
785
786	bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_PREWRITE);
787	if (q->q_dst_map != NULL)
788		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map, BUS_DMASYNC_PREREAD);
789
790	q->q_nstacked_mcrs = npkts - 1;		/* Number of packets stacked */
791
792	for (i = 0; i < q->q_nstacked_mcrs; i++) {
793		q2 = SIMPLEQ_FIRST(&sc->sc_queue);
794		bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
795		    BUS_DMASYNC_PREWRITE);
796		if (q2->q_dst_map != NULL)
797			bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
798			    BUS_DMASYNC_PREREAD);
799		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next);
800		--sc->sc_nqueue;
801
802		v = (void*)(((char *)&q2->q_dma->d_dma->d_mcr) + sizeof(struct ubsec_mcr) -
803		    sizeof(struct ubsec_mcr_add));
804		bcopy(v, &q->q_dma->d_dma->d_mcradd[i], sizeof(struct ubsec_mcr_add));
805		q->q_stacked_mcr[i] = q2;
806	}
807	q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
808	SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
809	sc->sc_nqchip += npkts;
810	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
811		ubsecstats.hst_maxqchip = sc->sc_nqchip;
812	ubsec_dma_sync(&q->q_dma->d_alloc,
813	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
814	WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
815	    offsetof(struct ubsec_dmachunk, d_mcr));
816	return;
817feed1:
818	q = SIMPLEQ_FIRST(&sc->sc_queue);
819
820	bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_PREWRITE);
821	if (q->q_dst_map != NULL)
822		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map, BUS_DMASYNC_PREREAD);
823	ubsec_dma_sync(&q->q_dma->d_alloc,
824	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
825
826	WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
827	    offsetof(struct ubsec_dmachunk, d_mcr));
828#ifdef UBSEC_DEBUG
829	if (ubsec_debug)
830		printf("feed1: q->chip %p %08x stat %08x\n",
831		      q, (u_int32_t)vtophys(&q->q_dma->d_dma->d_mcr),
832		      stat);
833#endif /* UBSEC_DEBUG */
834	SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next);
835	--sc->sc_nqueue;
836	SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
837	sc->sc_nqchip++;
838	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
839		ubsecstats.hst_maxqchip = sc->sc_nqchip;
840	return;
841}
842
843static void
844ubsec_setup_enckey(struct ubsec_session *ses, int algo, caddr_t key)
845{
846
847	/* Go ahead and compute key in ubsec's byte order */
848	if (algo == CRYPTO_DES_CBC) {
849		bcopy(key, &ses->ses_deskey[0], 8);
850		bcopy(key, &ses->ses_deskey[2], 8);
851		bcopy(key, &ses->ses_deskey[4], 8);
852	} else
853		bcopy(key, ses->ses_deskey, 24);
854
855	SWAP32(ses->ses_deskey[0]);
856	SWAP32(ses->ses_deskey[1]);
857	SWAP32(ses->ses_deskey[2]);
858	SWAP32(ses->ses_deskey[3]);
859	SWAP32(ses->ses_deskey[4]);
860	SWAP32(ses->ses_deskey[5]);
861}
862
863static void
864ubsec_setup_mackey(struct ubsec_session *ses, int algo, caddr_t key, int klen)
865{
866	MD5_CTX md5ctx;
867	SHA1_CTX sha1ctx;
868	int i;
869
870	for (i = 0; i < klen; i++)
871		key[i] ^= HMAC_IPAD_VAL;
872
873	if (algo == CRYPTO_MD5_HMAC) {
874		MD5Init(&md5ctx);
875		MD5Update(&md5ctx, key, klen);
876		MD5Update(&md5ctx, hmac_ipad_buffer, MD5_HMAC_BLOCK_LEN - klen);
877		bcopy(md5ctx.state, ses->ses_hminner, sizeof(md5ctx.state));
878	} else {
879		SHA1Init(&sha1ctx);
880		SHA1Update(&sha1ctx, key, klen);
881		SHA1Update(&sha1ctx, hmac_ipad_buffer,
882		    SHA1_HMAC_BLOCK_LEN - klen);
883		bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32));
884	}
885
886	for (i = 0; i < klen; i++)
887		key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
888
889	if (algo == CRYPTO_MD5_HMAC) {
890		MD5Init(&md5ctx);
891		MD5Update(&md5ctx, key, klen);
892		MD5Update(&md5ctx, hmac_opad_buffer, MD5_HMAC_BLOCK_LEN - klen);
893		bcopy(md5ctx.state, ses->ses_hmouter, sizeof(md5ctx.state));
894	} else {
895		SHA1Init(&sha1ctx);
896		SHA1Update(&sha1ctx, key, klen);
897		SHA1Update(&sha1ctx, hmac_opad_buffer,
898		    SHA1_HMAC_BLOCK_LEN - klen);
899		bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32));
900	}
901
902	for (i = 0; i < klen; i++)
903		key[i] ^= HMAC_OPAD_VAL;
904}
905
906/*
907 * Allocate a new 'session' and return an encoded session id.  'sidp'
908 * contains our registration id, and should contain an encoded session
909 * id on successful allocation.
910 */
911static int
912ubsec_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri)
913{
914	struct ubsec_softc *sc = device_get_softc(dev);
915	struct cryptoini *c, *encini = NULL, *macini = NULL;
916	struct ubsec_session *ses = NULL;
917	int sesn;
918
919	if (sidp == NULL || cri == NULL || sc == NULL)
920		return (EINVAL);
921
922	for (c = cri; c != NULL; c = c->cri_next) {
923		if (c->cri_alg == CRYPTO_MD5_HMAC ||
924		    c->cri_alg == CRYPTO_SHA1_HMAC) {
925			if (macini)
926				return (EINVAL);
927			macini = c;
928		} else if (c->cri_alg == CRYPTO_DES_CBC ||
929		    c->cri_alg == CRYPTO_3DES_CBC) {
930			if (encini)
931				return (EINVAL);
932			encini = c;
933		} else
934			return (EINVAL);
935	}
936	if (encini == NULL && macini == NULL)
937		return (EINVAL);
938
939	if (sc->sc_sessions == NULL) {
940		ses = sc->sc_sessions = (struct ubsec_session *)malloc(
941		    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
942		if (ses == NULL)
943			return (ENOMEM);
944		sesn = 0;
945		sc->sc_nsessions = 1;
946	} else {
947		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
948			if (sc->sc_sessions[sesn].ses_used == 0) {
949				ses = &sc->sc_sessions[sesn];
950				break;
951			}
952		}
953
954		if (ses == NULL) {
955			sesn = sc->sc_nsessions;
956			ses = (struct ubsec_session *)malloc((sesn + 1) *
957			    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
958			if (ses == NULL)
959				return (ENOMEM);
960			bcopy(sc->sc_sessions, ses, sesn *
961			    sizeof(struct ubsec_session));
962			bzero(sc->sc_sessions, sesn *
963			    sizeof(struct ubsec_session));
964			free(sc->sc_sessions, M_DEVBUF);
965			sc->sc_sessions = ses;
966			ses = &sc->sc_sessions[sesn];
967			sc->sc_nsessions++;
968		}
969	}
970	bzero(ses, sizeof(struct ubsec_session));
971	ses->ses_used = 1;
972
973	if (encini) {
974		/* get an IV, network byte order */
975		/* XXX may read fewer than requested */
976		read_random(ses->ses_iv, sizeof(ses->ses_iv));
977
978		if (encini->cri_key != NULL) {
979			ubsec_setup_enckey(ses, encini->cri_alg,
980			    encini->cri_key);
981		}
982	}
983
984	if (macini) {
985		ses->ses_mlen = macini->cri_mlen;
986		if (ses->ses_mlen == 0) {
987			if (macini->cri_alg == CRYPTO_MD5_HMAC)
988				ses->ses_mlen = MD5_HASH_LEN;
989			else
990				ses->ses_mlen = SHA1_HASH_LEN;
991		}
992
993		if (macini->cri_key != NULL) {
994			ubsec_setup_mackey(ses, macini->cri_alg,
995			    macini->cri_key, macini->cri_klen / 8);
996		}
997	}
998
999	*sidp = UBSEC_SID(device_get_unit(sc->sc_dev), sesn);
1000	return (0);
1001}
1002
1003/*
1004 * Deallocate a session.
1005 */
1006static int
1007ubsec_freesession(device_t dev, u_int64_t tid)
1008{
1009	struct ubsec_softc *sc = device_get_softc(dev);
1010	int session, ret;
1011	u_int32_t sid = CRYPTO_SESID2LID(tid);
1012
1013	if (sc == NULL)
1014		return (EINVAL);
1015
1016	session = UBSEC_SESSION(sid);
1017	if (session < sc->sc_nsessions) {
1018		bzero(&sc->sc_sessions[session],
1019			sizeof(sc->sc_sessions[session]));
1020		ret = 0;
1021	} else
1022		ret = EINVAL;
1023
1024	return (ret);
1025}
1026
1027static void
1028ubsec_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
1029{
1030	struct ubsec_operand *op = arg;
1031
1032	KASSERT(nsegs <= UBS_MAX_SCATTER,
1033		("Too many DMA segments returned when mapping operand"));
1034#ifdef UBSEC_DEBUG
1035	if (ubsec_debug)
1036		printf("ubsec_op_cb: mapsize %u nsegs %d error %d\n",
1037			(u_int) mapsize, nsegs, error);
1038#endif
1039	if (error != 0)
1040		return;
1041	op->mapsize = mapsize;
1042	op->nsegs = nsegs;
1043	bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
1044}
1045
1046static int
1047ubsec_process(device_t dev, struct cryptop *crp, int hint)
1048{
1049	struct ubsec_softc *sc = device_get_softc(dev);
1050	struct ubsec_q *q = NULL;
1051	int err = 0, i, j, nicealign;
1052	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
1053	int encoffset = 0, macoffset = 0, cpskip, cpoffset;
1054	int sskip, dskip, stheend, dtheend;
1055	int16_t coffset;
1056	struct ubsec_session *ses;
1057	struct ubsec_pktctx ctx;
1058	struct ubsec_dma *dmap = NULL;
1059
1060	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
1061		ubsecstats.hst_invalid++;
1062		return (EINVAL);
1063	}
1064	if (UBSEC_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
1065		ubsecstats.hst_badsession++;
1066		return (EINVAL);
1067	}
1068
1069	mtx_lock(&sc->sc_freeqlock);
1070	if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
1071		ubsecstats.hst_queuefull++;
1072		sc->sc_needwakeup |= CRYPTO_SYMQ;
1073		mtx_unlock(&sc->sc_freeqlock);
1074		return (ERESTART);
1075	}
1076	q = SIMPLEQ_FIRST(&sc->sc_freequeue);
1077	SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, q_next);
1078	mtx_unlock(&sc->sc_freeqlock);
1079
1080	dmap = q->q_dma; /* Save dma pointer */
1081	bzero(q, sizeof(struct ubsec_q));
1082	bzero(&ctx, sizeof(ctx));
1083
1084	q->q_sesn = UBSEC_SESSION(crp->crp_sid);
1085	q->q_dma = dmap;
1086	ses = &sc->sc_sessions[q->q_sesn];
1087
1088	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1089		q->q_src_m = (struct mbuf *)crp->crp_buf;
1090		q->q_dst_m = (struct mbuf *)crp->crp_buf;
1091	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1092		q->q_src_io = (struct uio *)crp->crp_buf;
1093		q->q_dst_io = (struct uio *)crp->crp_buf;
1094	} else {
1095		ubsecstats.hst_badflags++;
1096		err = EINVAL;
1097		goto errout;	/* XXX we don't handle contiguous blocks! */
1098	}
1099
1100	bzero(&dmap->d_dma->d_mcr, sizeof(struct ubsec_mcr));
1101
1102	dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
1103	dmap->d_dma->d_mcr.mcr_flags = 0;
1104	q->q_crp = crp;
1105
1106	crd1 = crp->crp_desc;
1107	if (crd1 == NULL) {
1108		ubsecstats.hst_nodesc++;
1109		err = EINVAL;
1110		goto errout;
1111	}
1112	crd2 = crd1->crd_next;
1113
1114	if (crd2 == NULL) {
1115		if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
1116		    crd1->crd_alg == CRYPTO_SHA1_HMAC) {
1117			maccrd = crd1;
1118			enccrd = NULL;
1119		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
1120		    crd1->crd_alg == CRYPTO_3DES_CBC) {
1121			maccrd = NULL;
1122			enccrd = crd1;
1123		} else {
1124			ubsecstats.hst_badalg++;
1125			err = EINVAL;
1126			goto errout;
1127		}
1128	} else {
1129		if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
1130		    crd1->crd_alg == CRYPTO_SHA1_HMAC) &&
1131		    (crd2->crd_alg == CRYPTO_DES_CBC ||
1132			crd2->crd_alg == CRYPTO_3DES_CBC) &&
1133		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
1134			maccrd = crd1;
1135			enccrd = crd2;
1136		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
1137		    crd1->crd_alg == CRYPTO_3DES_CBC) &&
1138		    (crd2->crd_alg == CRYPTO_MD5_HMAC ||
1139			crd2->crd_alg == CRYPTO_SHA1_HMAC) &&
1140		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
1141			enccrd = crd1;
1142			maccrd = crd2;
1143		} else {
1144			/*
1145			 * We cannot order the ubsec as requested
1146			 */
1147			ubsecstats.hst_badalg++;
1148			err = EINVAL;
1149			goto errout;
1150		}
1151	}
1152
1153	if (enccrd) {
1154		if (enccrd->crd_flags & CRD_F_KEY_EXPLICIT) {
1155			ubsec_setup_enckey(ses, enccrd->crd_alg,
1156			    enccrd->crd_key);
1157		}
1158
1159		encoffset = enccrd->crd_skip;
1160		ctx.pc_flags |= htole16(UBS_PKTCTX_ENC_3DES);
1161
1162		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1163			q->q_flags |= UBSEC_QFLAGS_COPYOUTIV;
1164
1165			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1166				bcopy(enccrd->crd_iv, ctx.pc_iv, 8);
1167			else {
1168				ctx.pc_iv[0] = ses->ses_iv[0];
1169				ctx.pc_iv[1] = ses->ses_iv[1];
1170			}
1171
1172			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1173				crypto_copyback(crp->crp_flags, crp->crp_buf,
1174				    enccrd->crd_inject, 8, (caddr_t)ctx.pc_iv);
1175			}
1176		} else {
1177			ctx.pc_flags |= htole16(UBS_PKTCTX_INBOUND);
1178
1179			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1180				bcopy(enccrd->crd_iv, ctx.pc_iv, 8);
1181			else {
1182				crypto_copydata(crp->crp_flags, crp->crp_buf,
1183				    enccrd->crd_inject, 8, (caddr_t)ctx.pc_iv);
1184			}
1185		}
1186
1187		ctx.pc_deskey[0] = ses->ses_deskey[0];
1188		ctx.pc_deskey[1] = ses->ses_deskey[1];
1189		ctx.pc_deskey[2] = ses->ses_deskey[2];
1190		ctx.pc_deskey[3] = ses->ses_deskey[3];
1191		ctx.pc_deskey[4] = ses->ses_deskey[4];
1192		ctx.pc_deskey[5] = ses->ses_deskey[5];
1193		SWAP32(ctx.pc_iv[0]);
1194		SWAP32(ctx.pc_iv[1]);
1195	}
1196
1197	if (maccrd) {
1198		if (maccrd->crd_flags & CRD_F_KEY_EXPLICIT) {
1199			ubsec_setup_mackey(ses, maccrd->crd_alg,
1200			    maccrd->crd_key, maccrd->crd_klen / 8);
1201		}
1202
1203		macoffset = maccrd->crd_skip;
1204
1205		if (maccrd->crd_alg == CRYPTO_MD5_HMAC)
1206			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_MD5);
1207		else
1208			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
1209
1210		for (i = 0; i < 5; i++) {
1211			ctx.pc_hminner[i] = ses->ses_hminner[i];
1212			ctx.pc_hmouter[i] = ses->ses_hmouter[i];
1213
1214			HTOLE32(ctx.pc_hminner[i]);
1215			HTOLE32(ctx.pc_hmouter[i]);
1216		}
1217	}
1218
1219	if (enccrd && maccrd) {
1220		/*
1221		 * ubsec cannot handle packets where the end of encryption
1222		 * and authentication are not the same, or where the
1223		 * encrypted part begins before the authenticated part.
1224		 */
1225		if ((encoffset + enccrd->crd_len) !=
1226		    (macoffset + maccrd->crd_len)) {
1227			ubsecstats.hst_lenmismatch++;
1228			err = EINVAL;
1229			goto errout;
1230		}
1231		if (enccrd->crd_skip < maccrd->crd_skip) {
1232			ubsecstats.hst_skipmismatch++;
1233			err = EINVAL;
1234			goto errout;
1235		}
1236		sskip = maccrd->crd_skip;
1237		cpskip = dskip = enccrd->crd_skip;
1238		stheend = maccrd->crd_len;
1239		dtheend = enccrd->crd_len;
1240		coffset = enccrd->crd_skip - maccrd->crd_skip;
1241		cpoffset = cpskip + dtheend;
1242#ifdef UBSEC_DEBUG
1243		if (ubsec_debug) {
1244			printf("mac: skip %d, len %d, inject %d\n",
1245			    maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject);
1246			printf("enc: skip %d, len %d, inject %d\n",
1247			    enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject);
1248			printf("src: skip %d, len %d\n", sskip, stheend);
1249			printf("dst: skip %d, len %d\n", dskip, dtheend);
1250			printf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
1251			    coffset, stheend, cpskip, cpoffset);
1252		}
1253#endif
1254	} else {
1255		cpskip = dskip = sskip = macoffset + encoffset;
1256		dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
1257		cpoffset = cpskip + dtheend;
1258		coffset = 0;
1259	}
1260	ctx.pc_offset = htole16(coffset >> 2);
1261
1262	if (bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &q->q_src_map)) {
1263		ubsecstats.hst_nomap++;
1264		err = ENOMEM;
1265		goto errout;
1266	}
1267	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1268		if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
1269		    q->q_src_m, ubsec_op_cb, &q->q_src, BUS_DMA_NOWAIT) != 0) {
1270			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1271			q->q_src_map = NULL;
1272			ubsecstats.hst_noload++;
1273			err = ENOMEM;
1274			goto errout;
1275		}
1276	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1277		if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
1278		    q->q_src_io, ubsec_op_cb, &q->q_src, BUS_DMA_NOWAIT) != 0) {
1279			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1280			q->q_src_map = NULL;
1281			ubsecstats.hst_noload++;
1282			err = ENOMEM;
1283			goto errout;
1284		}
1285	}
1286	nicealign = ubsec_dmamap_aligned(&q->q_src);
1287
1288	dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
1289
1290#ifdef UBSEC_DEBUG
1291	if (ubsec_debug)
1292		printf("src skip: %d nicealign: %u\n", sskip, nicealign);
1293#endif
1294	for (i = j = 0; i < q->q_src_nsegs; i++) {
1295		struct ubsec_pktbuf *pb;
1296		bus_size_t packl = q->q_src_segs[i].ds_len;
1297		bus_addr_t packp = q->q_src_segs[i].ds_addr;
1298
1299		if (sskip >= packl) {
1300			sskip -= packl;
1301			continue;
1302		}
1303
1304		packl -= sskip;
1305		packp += sskip;
1306		sskip = 0;
1307
1308		if (packl > 0xfffc) {
1309			err = EIO;
1310			goto errout;
1311		}
1312
1313		if (j == 0)
1314			pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
1315		else
1316			pb = &dmap->d_dma->d_sbuf[j - 1];
1317
1318		pb->pb_addr = htole32(packp);
1319
1320		if (stheend) {
1321			if (packl > stheend) {
1322				pb->pb_len = htole32(stheend);
1323				stheend = 0;
1324			} else {
1325				pb->pb_len = htole32(packl);
1326				stheend -= packl;
1327			}
1328		} else
1329			pb->pb_len = htole32(packl);
1330
1331		if ((i + 1) == q->q_src_nsegs)
1332			pb->pb_next = 0;
1333		else
1334			pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1335			    offsetof(struct ubsec_dmachunk, d_sbuf[j]));
1336		j++;
1337	}
1338
1339	if (enccrd == NULL && maccrd != NULL) {
1340		dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
1341		dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
1342		dmap->d_dma->d_mcr.mcr_opktbuf.pb_next = htole32(dmap->d_alloc.dma_paddr +
1343		    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1344#ifdef UBSEC_DEBUG
1345		if (ubsec_debug)
1346			printf("opkt: %x %x %x\n",
1347			    dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
1348			    dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
1349			    dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
1350#endif
1351	} else {
1352		if (crp->crp_flags & CRYPTO_F_IOV) {
1353			if (!nicealign) {
1354				ubsecstats.hst_iovmisaligned++;
1355				err = EINVAL;
1356				goto errout;
1357			}
1358			if (bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1359			     &q->q_dst_map)) {
1360				ubsecstats.hst_nomap++;
1361				err = ENOMEM;
1362				goto errout;
1363			}
1364			if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
1365			    q->q_dst_io, ubsec_op_cb, &q->q_dst, BUS_DMA_NOWAIT) != 0) {
1366				bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1367				q->q_dst_map = NULL;
1368				ubsecstats.hst_noload++;
1369				err = ENOMEM;
1370				goto errout;
1371			}
1372		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1373			if (nicealign) {
1374				q->q_dst = q->q_src;
1375			} else {
1376				int totlen, len;
1377				struct mbuf *m, *top, **mp;
1378
1379				ubsecstats.hst_unaligned++;
1380				totlen = q->q_src_mapsize;
1381				if (totlen >= MINCLSIZE) {
1382					m = m_getcl(M_DONTWAIT, MT_DATA,
1383					    q->q_src_m->m_flags & M_PKTHDR);
1384					len = MCLBYTES;
1385				} else if (q->q_src_m->m_flags & M_PKTHDR) {
1386					m = m_gethdr(M_DONTWAIT, MT_DATA);
1387					len = MHLEN;
1388				} else {
1389					m = m_get(M_DONTWAIT, MT_DATA);
1390					len = MLEN;
1391				}
1392				if (m && q->q_src_m->m_flags & M_PKTHDR &&
1393				    !m_dup_pkthdr(m, q->q_src_m, M_DONTWAIT)) {
1394					m_free(m);
1395					m = NULL;
1396				}
1397				if (m == NULL) {
1398					ubsecstats.hst_nombuf++;
1399					err = sc->sc_nqueue ? ERESTART : ENOMEM;
1400					goto errout;
1401				}
1402				m->m_len = len = min(totlen, len);
1403				totlen -= len;
1404				top = m;
1405				mp = &top;
1406
1407				while (totlen > 0) {
1408					if (totlen >= MINCLSIZE) {
1409						m = m_getcl(M_DONTWAIT,
1410						    MT_DATA, 0);
1411						len = MCLBYTES;
1412					} else {
1413						m = m_get(M_DONTWAIT, MT_DATA);
1414						len = MLEN;
1415					}
1416					if (m == NULL) {
1417						m_freem(top);
1418						ubsecstats.hst_nombuf++;
1419						err = sc->sc_nqueue ? ERESTART : ENOMEM;
1420						goto errout;
1421					}
1422					m->m_len = len = min(totlen, len);
1423					totlen -= len;
1424					*mp = m;
1425					mp = &m->m_next;
1426				}
1427				q->q_dst_m = top;
1428				ubsec_mcopy(q->q_src_m, q->q_dst_m,
1429				    cpskip, cpoffset);
1430				if (bus_dmamap_create(sc->sc_dmat,
1431				    BUS_DMA_NOWAIT, &q->q_dst_map) != 0) {
1432					ubsecstats.hst_nomap++;
1433					err = ENOMEM;
1434					goto errout;
1435				}
1436				if (bus_dmamap_load_mbuf(sc->sc_dmat,
1437				    q->q_dst_map, q->q_dst_m,
1438				    ubsec_op_cb, &q->q_dst,
1439				    BUS_DMA_NOWAIT) != 0) {
1440					bus_dmamap_destroy(sc->sc_dmat,
1441					q->q_dst_map);
1442					q->q_dst_map = NULL;
1443					ubsecstats.hst_noload++;
1444					err = ENOMEM;
1445					goto errout;
1446				}
1447			}
1448		} else {
1449			ubsecstats.hst_badflags++;
1450			err = EINVAL;
1451			goto errout;
1452		}
1453
1454#ifdef UBSEC_DEBUG
1455		if (ubsec_debug)
1456			printf("dst skip: %d\n", dskip);
1457#endif
1458		for (i = j = 0; i < q->q_dst_nsegs; i++) {
1459			struct ubsec_pktbuf *pb;
1460			bus_size_t packl = q->q_dst_segs[i].ds_len;
1461			bus_addr_t packp = q->q_dst_segs[i].ds_addr;
1462
1463			if (dskip >= packl) {
1464				dskip -= packl;
1465				continue;
1466			}
1467
1468			packl -= dskip;
1469			packp += dskip;
1470			dskip = 0;
1471
1472			if (packl > 0xfffc) {
1473				err = EIO;
1474				goto errout;
1475			}
1476
1477			if (j == 0)
1478				pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
1479			else
1480				pb = &dmap->d_dma->d_dbuf[j - 1];
1481
1482			pb->pb_addr = htole32(packp);
1483
1484			if (dtheend) {
1485				if (packl > dtheend) {
1486					pb->pb_len = htole32(dtheend);
1487					dtheend = 0;
1488				} else {
1489					pb->pb_len = htole32(packl);
1490					dtheend -= packl;
1491				}
1492			} else
1493				pb->pb_len = htole32(packl);
1494
1495			if ((i + 1) == q->q_dst_nsegs) {
1496				if (maccrd)
1497					pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1498					    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1499				else
1500					pb->pb_next = 0;
1501			} else
1502				pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1503				    offsetof(struct ubsec_dmachunk, d_dbuf[j]));
1504			j++;
1505		}
1506	}
1507
1508	dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
1509	    offsetof(struct ubsec_dmachunk, d_ctx));
1510
1511	if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
1512		struct ubsec_pktctx_long *ctxl;
1513
1514		ctxl = (struct ubsec_pktctx_long *)(dmap->d_alloc.dma_vaddr +
1515		    offsetof(struct ubsec_dmachunk, d_ctx));
1516
1517		/* transform small context into long context */
1518		ctxl->pc_len = htole16(sizeof(struct ubsec_pktctx_long));
1519		ctxl->pc_type = htole16(UBS_PKTCTX_TYPE_IPSEC);
1520		ctxl->pc_flags = ctx.pc_flags;
1521		ctxl->pc_offset = ctx.pc_offset;
1522		for (i = 0; i < 6; i++)
1523			ctxl->pc_deskey[i] = ctx.pc_deskey[i];
1524		for (i = 0; i < 5; i++)
1525			ctxl->pc_hminner[i] = ctx.pc_hminner[i];
1526		for (i = 0; i < 5; i++)
1527			ctxl->pc_hmouter[i] = ctx.pc_hmouter[i];
1528		ctxl->pc_iv[0] = ctx.pc_iv[0];
1529		ctxl->pc_iv[1] = ctx.pc_iv[1];
1530	} else
1531		bcopy(&ctx, dmap->d_alloc.dma_vaddr +
1532		    offsetof(struct ubsec_dmachunk, d_ctx),
1533		    sizeof(struct ubsec_pktctx));
1534
1535	mtx_lock(&sc->sc_mcr1lock);
1536	SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
1537	sc->sc_nqueue++;
1538	ubsecstats.hst_ipackets++;
1539	ubsecstats.hst_ibytes += dmap->d_alloc.dma_size;
1540	if ((hint & CRYPTO_HINT_MORE) == 0 || sc->sc_nqueue >= UBS_MAX_AGGR)
1541		ubsec_feed(sc);
1542	mtx_unlock(&sc->sc_mcr1lock);
1543	return (0);
1544
1545errout:
1546	if (q != NULL) {
1547		if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
1548			m_freem(q->q_dst_m);
1549
1550		if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1551			bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1552			bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1553		}
1554		if (q->q_src_map != NULL) {
1555			bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1556			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1557		}
1558	}
1559	if (q != NULL || err == ERESTART) {
1560		mtx_lock(&sc->sc_freeqlock);
1561		if (q != NULL)
1562			SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1563		if (err == ERESTART)
1564			sc->sc_needwakeup |= CRYPTO_SYMQ;
1565		mtx_unlock(&sc->sc_freeqlock);
1566	}
1567	if (err != ERESTART) {
1568		crp->crp_etype = err;
1569		crypto_done(crp);
1570	}
1571	return (err);
1572}
1573
1574static void
1575ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q)
1576{
1577	struct cryptop *crp = (struct cryptop *)q->q_crp;
1578	struct cryptodesc *crd;
1579	struct ubsec_dma *dmap = q->q_dma;
1580
1581	ubsecstats.hst_opackets++;
1582	ubsecstats.hst_obytes += dmap->d_alloc.dma_size;
1583
1584	ubsec_dma_sync(&dmap->d_alloc,
1585	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1586	if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1587		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
1588		    BUS_DMASYNC_POSTREAD);
1589		bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1590		bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1591	}
1592	bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_POSTWRITE);
1593	bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1594	bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1595
1596	if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) {
1597		m_freem(q->q_src_m);
1598		crp->crp_buf = (caddr_t)q->q_dst_m;
1599	}
1600
1601	/* copy out IV for future use */
1602	if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) {
1603		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1604			if (crd->crd_alg != CRYPTO_DES_CBC &&
1605			    crd->crd_alg != CRYPTO_3DES_CBC)
1606				continue;
1607			crypto_copydata(crp->crp_flags, crp->crp_buf,
1608			    crd->crd_skip + crd->crd_len - 8, 8,
1609			    (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1610			break;
1611		}
1612	}
1613
1614	for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1615		if (crd->crd_alg != CRYPTO_MD5_HMAC &&
1616		    crd->crd_alg != CRYPTO_SHA1_HMAC)
1617			continue;
1618		crypto_copyback(crp->crp_flags, crp->crp_buf, crd->crd_inject,
1619		    sc->sc_sessions[q->q_sesn].ses_mlen,
1620		    (caddr_t)dmap->d_dma->d_macbuf);
1621		break;
1622	}
1623	mtx_lock(&sc->sc_freeqlock);
1624	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1625	mtx_unlock(&sc->sc_freeqlock);
1626	crypto_done(crp);
1627}
1628
1629static void
1630ubsec_mcopy(struct mbuf *srcm, struct mbuf *dstm, int hoffset, int toffset)
1631{
1632	int i, j, dlen, slen;
1633	caddr_t dptr, sptr;
1634
1635	j = 0;
1636	sptr = srcm->m_data;
1637	slen = srcm->m_len;
1638	dptr = dstm->m_data;
1639	dlen = dstm->m_len;
1640
1641	while (1) {
1642		for (i = 0; i < min(slen, dlen); i++) {
1643			if (j < hoffset || j >= toffset)
1644				*dptr++ = *sptr++;
1645			slen--;
1646			dlen--;
1647			j++;
1648		}
1649		if (slen == 0) {
1650			srcm = srcm->m_next;
1651			if (srcm == NULL)
1652				return;
1653			sptr = srcm->m_data;
1654			slen = srcm->m_len;
1655		}
1656		if (dlen == 0) {
1657			dstm = dstm->m_next;
1658			if (dstm == NULL)
1659				return;
1660			dptr = dstm->m_data;
1661			dlen = dstm->m_len;
1662		}
1663	}
1664}
1665
1666/*
1667 * feed the key generator, must be called at splimp() or higher.
1668 */
1669static int
1670ubsec_feed2(struct ubsec_softc *sc)
1671{
1672	struct ubsec_q2 *q;
1673
1674	while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) {
1675		if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL)
1676			break;
1677		q = SIMPLEQ_FIRST(&sc->sc_queue2);
1678
1679		ubsec_dma_sync(&q->q_mcr,
1680		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1681		ubsec_dma_sync(&q->q_ctx, BUS_DMASYNC_PREWRITE);
1682
1683		WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr);
1684		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, q_next);
1685		--sc->sc_nqueue2;
1686		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next);
1687	}
1688	return (0);
1689}
1690
1691/*
1692 * Callback for handling random numbers
1693 */
1694static void
1695ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q)
1696{
1697	struct cryptkop *krp;
1698	struct ubsec_ctx_keyop *ctx;
1699
1700	ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr;
1701	ubsec_dma_sync(&q->q_ctx, BUS_DMASYNC_POSTWRITE);
1702
1703	switch (q->q_type) {
1704#ifndef UBSEC_NO_RNG
1705	case UBS_CTXOP_RNGBYPASS: {
1706		struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q;
1707
1708		ubsec_dma_sync(&rng->rng_buf, BUS_DMASYNC_POSTREAD);
1709		(*sc->sc_harvest)(sc->sc_rndtest,
1710			rng->rng_buf.dma_vaddr,
1711			UBSEC_RNG_BUFSIZ*sizeof (u_int32_t));
1712		rng->rng_used = 0;
1713		callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
1714		break;
1715	}
1716#endif
1717	case UBS_CTXOP_MODEXP: {
1718		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
1719		u_int rlen, clen;
1720
1721		krp = me->me_krp;
1722		rlen = (me->me_modbits + 7) / 8;
1723		clen = (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8;
1724
1725		ubsec_dma_sync(&me->me_M, BUS_DMASYNC_POSTWRITE);
1726		ubsec_dma_sync(&me->me_E, BUS_DMASYNC_POSTWRITE);
1727		ubsec_dma_sync(&me->me_C, BUS_DMASYNC_POSTREAD);
1728		ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_POSTWRITE);
1729
1730		if (clen < rlen)
1731			krp->krp_status = E2BIG;
1732		else {
1733			if (sc->sc_flags & UBS_FLAGS_HWNORM) {
1734				bzero(krp->krp_param[krp->krp_iparams].crp_p,
1735				    (krp->krp_param[krp->krp_iparams].crp_nbits
1736					+ 7) / 8);
1737				bcopy(me->me_C.dma_vaddr,
1738				    krp->krp_param[krp->krp_iparams].crp_p,
1739				    (me->me_modbits + 7) / 8);
1740			} else
1741				ubsec_kshift_l(me->me_shiftbits,
1742				    me->me_C.dma_vaddr, me->me_normbits,
1743				    krp->krp_param[krp->krp_iparams].crp_p,
1744				    krp->krp_param[krp->krp_iparams].crp_nbits);
1745		}
1746
1747		crypto_kdone(krp);
1748
1749		/* bzero all potentially sensitive data */
1750		bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
1751		bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
1752		bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
1753		bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
1754
1755		/* Can't free here, so put us on the free list. */
1756		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &me->me_q, q_next);
1757		break;
1758	}
1759	case UBS_CTXOP_RSAPRIV: {
1760		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
1761		u_int len;
1762
1763		krp = rp->rpr_krp;
1764		ubsec_dma_sync(&rp->rpr_msgin, BUS_DMASYNC_POSTWRITE);
1765		ubsec_dma_sync(&rp->rpr_msgout, BUS_DMASYNC_POSTREAD);
1766
1767		len = (krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_nbits + 7) / 8;
1768		bcopy(rp->rpr_msgout.dma_vaddr,
1769		    krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_p, len);
1770
1771		crypto_kdone(krp);
1772
1773		bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size);
1774		bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size);
1775		bzero(rp->rpr_q.q_ctx.dma_vaddr, rp->rpr_q.q_ctx.dma_size);
1776
1777		/* Can't free here, so put us on the free list. */
1778		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &rp->rpr_q, q_next);
1779		break;
1780	}
1781	default:
1782		device_printf(sc->sc_dev, "unknown ctx op: %x\n",
1783		    letoh16(ctx->ctx_op));
1784		break;
1785	}
1786}
1787
1788#ifndef UBSEC_NO_RNG
1789static void
1790ubsec_rng(void *vsc)
1791{
1792	struct ubsec_softc *sc = vsc;
1793	struct ubsec_q2_rng *rng = &sc->sc_rng;
1794	struct ubsec_mcr *mcr;
1795	struct ubsec_ctx_rngbypass *ctx;
1796
1797	mtx_lock(&sc->sc_mcr2lock);
1798	if (rng->rng_used) {
1799		mtx_unlock(&sc->sc_mcr2lock);
1800		return;
1801	}
1802	sc->sc_nqueue2++;
1803	if (sc->sc_nqueue2 >= UBS_MAX_NQUEUE)
1804		goto out;
1805
1806	mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr;
1807	ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr;
1808
1809	mcr->mcr_pkts = htole16(1);
1810	mcr->mcr_flags = 0;
1811	mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr);
1812	mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0;
1813	mcr->mcr_ipktbuf.pb_len = 0;
1814	mcr->mcr_reserved = mcr->mcr_pktlen = 0;
1815	mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr);
1816	mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) &
1817	    UBS_PKTBUF_LEN);
1818	mcr->mcr_opktbuf.pb_next = 0;
1819
1820	ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass));
1821	ctx->rbp_op = htole16(UBS_CTXOP_RNGBYPASS);
1822	rng->rng_q.q_type = UBS_CTXOP_RNGBYPASS;
1823
1824	ubsec_dma_sync(&rng->rng_buf, BUS_DMASYNC_PREREAD);
1825
1826	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next);
1827	rng->rng_used = 1;
1828	ubsec_feed2(sc);
1829	ubsecstats.hst_rng++;
1830	mtx_unlock(&sc->sc_mcr2lock);
1831
1832	return;
1833
1834out:
1835	/*
1836	 * Something weird happened, generate our own call back.
1837	 */
1838	sc->sc_nqueue2--;
1839	mtx_unlock(&sc->sc_mcr2lock);
1840	callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
1841}
1842#endif /* UBSEC_NO_RNG */
1843
1844static void
1845ubsec_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1846{
1847	bus_addr_t *paddr = (bus_addr_t*) arg;
1848	*paddr = segs->ds_addr;
1849}
1850
1851static int
1852ubsec_dma_malloc(
1853	struct ubsec_softc *sc,
1854	bus_size_t size,
1855	struct ubsec_dma_alloc *dma,
1856	int mapflags
1857)
1858{
1859	int r;
1860
1861	/* XXX could specify sc_dmat as parent but that just adds overhead */
1862	r = bus_dma_tag_create(NULL,			/* parent */
1863			       1, 0,			/* alignment, bounds */
1864			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1865			       BUS_SPACE_MAXADDR,	/* highaddr */
1866			       NULL, NULL,		/* filter, filterarg */
1867			       size,			/* maxsize */
1868			       1,			/* nsegments */
1869			       size,			/* maxsegsize */
1870			       BUS_DMA_ALLOCNOW,	/* flags */
1871			       NULL, NULL,		/* lockfunc, lockarg */
1872			       &dma->dma_tag);
1873	if (r != 0) {
1874		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1875			"bus_dma_tag_create failed; error %u\n", r);
1876		goto fail_0;
1877	}
1878
1879	r = bus_dmamap_create(dma->dma_tag, BUS_DMA_NOWAIT, &dma->dma_map);
1880	if (r != 0) {
1881		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1882			"bus_dmamap_create failed; error %u\n", r);
1883		goto fail_1;
1884	}
1885
1886	r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
1887			     BUS_DMA_NOWAIT, &dma->dma_map);
1888	if (r != 0) {
1889		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1890			"bus_dmammem_alloc failed; size %ju, error %u\n",
1891			(intmax_t)size, r);
1892		goto fail_2;
1893	}
1894
1895	r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
1896		            size,
1897			    ubsec_dmamap_cb,
1898			    &dma->dma_paddr,
1899			    mapflags | BUS_DMA_NOWAIT);
1900	if (r != 0) {
1901		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1902			"bus_dmamap_load failed; error %u\n", r);
1903		goto fail_3;
1904	}
1905
1906	dma->dma_size = size;
1907	return (0);
1908
1909fail_3:
1910	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1911fail_2:
1912	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1913fail_1:
1914	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1915	bus_dma_tag_destroy(dma->dma_tag);
1916fail_0:
1917	dma->dma_map = NULL;
1918	dma->dma_tag = NULL;
1919	return (r);
1920}
1921
1922static void
1923ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
1924{
1925	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1926	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1927	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1928	bus_dma_tag_destroy(dma->dma_tag);
1929}
1930
1931/*
1932 * Resets the board.  Values in the regesters are left as is
1933 * from the reset (i.e. initial values are assigned elsewhere).
1934 */
1935static void
1936ubsec_reset_board(struct ubsec_softc *sc)
1937{
1938    volatile u_int32_t ctrl;
1939
1940    ctrl = READ_REG(sc, BS_CTRL);
1941    ctrl |= BS_CTRL_RESET;
1942    WRITE_REG(sc, BS_CTRL, ctrl);
1943
1944    /*
1945     * Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
1946     */
1947    DELAY(10);
1948}
1949
1950/*
1951 * Init Broadcom registers
1952 */
1953static void
1954ubsec_init_board(struct ubsec_softc *sc)
1955{
1956	u_int32_t ctrl;
1957
1958	ctrl = READ_REG(sc, BS_CTRL);
1959	ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
1960	ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT;
1961
1962	if (sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG))
1963		ctrl |= BS_CTRL_MCR2INT;
1964	else
1965		ctrl &= ~BS_CTRL_MCR2INT;
1966
1967	if (sc->sc_flags & UBS_FLAGS_HWNORM)
1968		ctrl &= ~BS_CTRL_SWNORM;
1969
1970	WRITE_REG(sc, BS_CTRL, ctrl);
1971}
1972
1973/*
1974 * Init Broadcom PCI registers
1975 */
1976static void
1977ubsec_init_pciregs(device_t dev)
1978{
1979#if 0
1980	u_int32_t misc;
1981
1982	misc = pci_conf_read(pc, pa->pa_tag, BS_RTY_TOUT);
1983	misc = (misc & ~(UBS_PCI_RTY_MASK << UBS_PCI_RTY_SHIFT))
1984	    | ((UBS_DEF_RTY & 0xff) << UBS_PCI_RTY_SHIFT);
1985	misc = (misc & ~(UBS_PCI_TOUT_MASK << UBS_PCI_TOUT_SHIFT))
1986	    | ((UBS_DEF_TOUT & 0xff) << UBS_PCI_TOUT_SHIFT);
1987	pci_conf_write(pc, pa->pa_tag, BS_RTY_TOUT, misc);
1988#endif
1989
1990	/*
1991	 * This will set the cache line size to 1, this will
1992	 * force the BCM58xx chip just to do burst read/writes.
1993	 * Cache line read/writes are to slow
1994	 */
1995	pci_write_config(dev, PCIR_CACHELNSZ, UBS_DEF_CACHELINE, 1);
1996}
1997
1998/*
1999 * Clean up after a chip crash.
2000 * It is assumed that the caller in splimp()
2001 */
2002static void
2003ubsec_cleanchip(struct ubsec_softc *sc)
2004{
2005	struct ubsec_q *q;
2006
2007	while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
2008		q = SIMPLEQ_FIRST(&sc->sc_qchip);
2009		SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q_next);
2010		ubsec_free_q(sc, q);
2011	}
2012	sc->sc_nqchip = 0;
2013}
2014
2015/*
2016 * free a ubsec_q
2017 * It is assumed that the caller is within splimp().
2018 */
2019static int
2020ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
2021{
2022	struct ubsec_q *q2;
2023	struct cryptop *crp;
2024	int npkts;
2025	int i;
2026
2027	npkts = q->q_nstacked_mcrs;
2028
2029	for (i = 0; i < npkts; i++) {
2030		if(q->q_stacked_mcr[i]) {
2031			q2 = q->q_stacked_mcr[i];
2032
2033			if ((q2->q_dst_m != NULL) && (q2->q_src_m != q2->q_dst_m))
2034				m_freem(q2->q_dst_m);
2035
2036			crp = (struct cryptop *)q2->q_crp;
2037
2038			SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
2039
2040			crp->crp_etype = EFAULT;
2041			crypto_done(crp);
2042		} else {
2043			break;
2044		}
2045	}
2046
2047	/*
2048	 * Free header MCR
2049	 */
2050	if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
2051		m_freem(q->q_dst_m);
2052
2053	crp = (struct cryptop *)q->q_crp;
2054
2055	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
2056
2057	crp->crp_etype = EFAULT;
2058	crypto_done(crp);
2059	return(0);
2060}
2061
2062/*
2063 * Routine to reset the chip and clean up.
2064 * It is assumed that the caller is in splimp()
2065 */
2066static void
2067ubsec_totalreset(struct ubsec_softc *sc)
2068{
2069	ubsec_reset_board(sc);
2070	ubsec_init_board(sc);
2071	ubsec_cleanchip(sc);
2072}
2073
2074static int
2075ubsec_dmamap_aligned(struct ubsec_operand *op)
2076{
2077	int i;
2078
2079	for (i = 0; i < op->nsegs; i++) {
2080		if (op->segs[i].ds_addr & 3)
2081			return (0);
2082		if ((i != (op->nsegs - 1)) &&
2083		    (op->segs[i].ds_len & 3))
2084			return (0);
2085	}
2086	return (1);
2087}
2088
2089static void
2090ubsec_kfree(struct ubsec_softc *sc, struct ubsec_q2 *q)
2091{
2092	switch (q->q_type) {
2093	case UBS_CTXOP_MODEXP: {
2094		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
2095
2096		ubsec_dma_free(sc, &me->me_q.q_mcr);
2097		ubsec_dma_free(sc, &me->me_q.q_ctx);
2098		ubsec_dma_free(sc, &me->me_M);
2099		ubsec_dma_free(sc, &me->me_E);
2100		ubsec_dma_free(sc, &me->me_C);
2101		ubsec_dma_free(sc, &me->me_epb);
2102		free(me, M_DEVBUF);
2103		break;
2104	}
2105	case UBS_CTXOP_RSAPRIV: {
2106		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
2107
2108		ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2109		ubsec_dma_free(sc, &rp->rpr_q.q_ctx);
2110		ubsec_dma_free(sc, &rp->rpr_msgin);
2111		ubsec_dma_free(sc, &rp->rpr_msgout);
2112		free(rp, M_DEVBUF);
2113		break;
2114	}
2115	default:
2116		device_printf(sc->sc_dev, "invalid kfree 0x%x\n", q->q_type);
2117		break;
2118	}
2119}
2120
2121static int
2122ubsec_kprocess(device_t dev, struct cryptkop *krp, int hint)
2123{
2124	struct ubsec_softc *sc = device_get_softc(dev);
2125	int r;
2126
2127	if (krp == NULL || krp->krp_callback == NULL)
2128		return (EINVAL);
2129
2130	while (!SIMPLEQ_EMPTY(&sc->sc_q2free)) {
2131		struct ubsec_q2 *q;
2132
2133		q = SIMPLEQ_FIRST(&sc->sc_q2free);
2134		SIMPLEQ_REMOVE_HEAD(&sc->sc_q2free, q_next);
2135		ubsec_kfree(sc, q);
2136	}
2137
2138	switch (krp->krp_op) {
2139	case CRK_MOD_EXP:
2140		if (sc->sc_flags & UBS_FLAGS_HWNORM)
2141			r = ubsec_kprocess_modexp_hw(sc, krp, hint);
2142		else
2143			r = ubsec_kprocess_modexp_sw(sc, krp, hint);
2144		break;
2145	case CRK_MOD_EXP_CRT:
2146		return (ubsec_kprocess_rsapriv(sc, krp, hint));
2147	default:
2148		device_printf(sc->sc_dev, "kprocess: invalid op 0x%x\n",
2149		    krp->krp_op);
2150		krp->krp_status = EOPNOTSUPP;
2151		crypto_kdone(krp);
2152		return (0);
2153	}
2154	return (0);			/* silence compiler */
2155}
2156
2157/*
2158 * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (sw normalization)
2159 */
2160static int
2161ubsec_kprocess_modexp_sw(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
2162{
2163	struct ubsec_q2_modexp *me;
2164	struct ubsec_mcr *mcr;
2165	struct ubsec_ctx_modexp *ctx;
2166	struct ubsec_pktbuf *epb;
2167	int err = 0;
2168	u_int nbits, normbits, mbits, shiftbits, ebits;
2169
2170	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2171	if (me == NULL) {
2172		err = ENOMEM;
2173		goto errout;
2174	}
2175	bzero(me, sizeof *me);
2176	me->me_krp = krp;
2177	me->me_q.q_type = UBS_CTXOP_MODEXP;
2178
2179	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2180	if (nbits <= 512)
2181		normbits = 512;
2182	else if (nbits <= 768)
2183		normbits = 768;
2184	else if (nbits <= 1024)
2185		normbits = 1024;
2186	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2187		normbits = 1536;
2188	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2189		normbits = 2048;
2190	else {
2191		err = E2BIG;
2192		goto errout;
2193	}
2194
2195	shiftbits = normbits - nbits;
2196
2197	me->me_modbits = nbits;
2198	me->me_shiftbits = shiftbits;
2199	me->me_normbits = normbits;
2200
2201	/* Sanity check: result bits must be >= true modulus bits. */
2202	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2203		err = ERANGE;
2204		goto errout;
2205	}
2206
2207	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2208	    &me->me_q.q_mcr, 0)) {
2209		err = ENOMEM;
2210		goto errout;
2211	}
2212	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2213
2214	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2215	    &me->me_q.q_ctx, 0)) {
2216		err = ENOMEM;
2217		goto errout;
2218	}
2219
2220	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2221	if (mbits > nbits) {
2222		err = E2BIG;
2223		goto errout;
2224	}
2225	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2226		err = ENOMEM;
2227		goto errout;
2228	}
2229	ubsec_kshift_r(shiftbits,
2230	    krp->krp_param[UBS_MODEXP_PAR_M].crp_p, mbits,
2231	    me->me_M.dma_vaddr, normbits);
2232
2233	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2234		err = ENOMEM;
2235		goto errout;
2236	}
2237	bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2238
2239	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2240	if (ebits > nbits) {
2241		err = E2BIG;
2242		goto errout;
2243	}
2244	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2245		err = ENOMEM;
2246		goto errout;
2247	}
2248	ubsec_kshift_r(shiftbits,
2249	    krp->krp_param[UBS_MODEXP_PAR_E].crp_p, ebits,
2250	    me->me_E.dma_vaddr, normbits);
2251
2252	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2253	    &me->me_epb, 0)) {
2254		err = ENOMEM;
2255		goto errout;
2256	}
2257	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2258	epb->pb_addr = htole32(me->me_E.dma_paddr);
2259	epb->pb_next = 0;
2260	epb->pb_len = htole32(normbits / 8);
2261
2262#ifdef UBSEC_DEBUG
2263	if (ubsec_debug) {
2264		printf("Epb ");
2265		ubsec_dump_pb(epb);
2266	}
2267#endif
2268
2269	mcr->mcr_pkts = htole16(1);
2270	mcr->mcr_flags = 0;
2271	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2272	mcr->mcr_reserved = 0;
2273	mcr->mcr_pktlen = 0;
2274
2275	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2276	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2277	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2278
2279	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2280	mcr->mcr_opktbuf.pb_next = 0;
2281	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2282
2283#ifdef DIAGNOSTIC
2284	/* Misaligned output buffer will hang the chip. */
2285	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2286		panic("%s: modexp invalid addr 0x%x\n",
2287		    device_get_nameunit(sc->sc_dev),
2288		    letoh32(mcr->mcr_opktbuf.pb_addr));
2289	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2290		panic("%s: modexp invalid len 0x%x\n",
2291		    device_get_nameunit(sc->sc_dev),
2292		    letoh32(mcr->mcr_opktbuf.pb_len));
2293#endif
2294
2295	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2296	bzero(ctx, sizeof(*ctx));
2297	ubsec_kshift_r(shiftbits,
2298	    krp->krp_param[UBS_MODEXP_PAR_N].crp_p, nbits,
2299	    ctx->me_N, normbits);
2300	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2301	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2302	ctx->me_E_len = htole16(nbits);
2303	ctx->me_N_len = htole16(nbits);
2304
2305#ifdef UBSEC_DEBUG
2306	if (ubsec_debug) {
2307		ubsec_dump_mcr(mcr);
2308		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2309	}
2310#endif
2311
2312	/*
2313	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2314	 * everything else.
2315	 */
2316	ubsec_dma_sync(&me->me_M, BUS_DMASYNC_PREWRITE);
2317	ubsec_dma_sync(&me->me_E, BUS_DMASYNC_PREWRITE);
2318	ubsec_dma_sync(&me->me_C, BUS_DMASYNC_PREREAD);
2319	ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_PREWRITE);
2320
2321	/* Enqueue and we're done... */
2322	mtx_lock(&sc->sc_mcr2lock);
2323	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2324	ubsec_feed2(sc);
2325	ubsecstats.hst_modexp++;
2326	mtx_unlock(&sc->sc_mcr2lock);
2327
2328	return (0);
2329
2330errout:
2331	if (me != NULL) {
2332		if (me->me_q.q_mcr.dma_map != NULL)
2333			ubsec_dma_free(sc, &me->me_q.q_mcr);
2334		if (me->me_q.q_ctx.dma_map != NULL) {
2335			bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
2336			ubsec_dma_free(sc, &me->me_q.q_ctx);
2337		}
2338		if (me->me_M.dma_map != NULL) {
2339			bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
2340			ubsec_dma_free(sc, &me->me_M);
2341		}
2342		if (me->me_E.dma_map != NULL) {
2343			bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
2344			ubsec_dma_free(sc, &me->me_E);
2345		}
2346		if (me->me_C.dma_map != NULL) {
2347			bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2348			ubsec_dma_free(sc, &me->me_C);
2349		}
2350		if (me->me_epb.dma_map != NULL)
2351			ubsec_dma_free(sc, &me->me_epb);
2352		free(me, M_DEVBUF);
2353	}
2354	krp->krp_status = err;
2355	crypto_kdone(krp);
2356	return (0);
2357}
2358
2359/*
2360 * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (hw normalization)
2361 */
2362static int
2363ubsec_kprocess_modexp_hw(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
2364{
2365	struct ubsec_q2_modexp *me;
2366	struct ubsec_mcr *mcr;
2367	struct ubsec_ctx_modexp *ctx;
2368	struct ubsec_pktbuf *epb;
2369	int err = 0;
2370	u_int nbits, normbits, mbits, shiftbits, ebits;
2371
2372	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2373	if (me == NULL) {
2374		err = ENOMEM;
2375		goto errout;
2376	}
2377	bzero(me, sizeof *me);
2378	me->me_krp = krp;
2379	me->me_q.q_type = UBS_CTXOP_MODEXP;
2380
2381	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2382	if (nbits <= 512)
2383		normbits = 512;
2384	else if (nbits <= 768)
2385		normbits = 768;
2386	else if (nbits <= 1024)
2387		normbits = 1024;
2388	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2389		normbits = 1536;
2390	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2391		normbits = 2048;
2392	else {
2393		err = E2BIG;
2394		goto errout;
2395	}
2396
2397	shiftbits = normbits - nbits;
2398
2399	/* XXX ??? */
2400	me->me_modbits = nbits;
2401	me->me_shiftbits = shiftbits;
2402	me->me_normbits = normbits;
2403
2404	/* Sanity check: result bits must be >= true modulus bits. */
2405	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2406		err = ERANGE;
2407		goto errout;
2408	}
2409
2410	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2411	    &me->me_q.q_mcr, 0)) {
2412		err = ENOMEM;
2413		goto errout;
2414	}
2415	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2416
2417	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2418	    &me->me_q.q_ctx, 0)) {
2419		err = ENOMEM;
2420		goto errout;
2421	}
2422
2423	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2424	if (mbits > nbits) {
2425		err = E2BIG;
2426		goto errout;
2427	}
2428	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2429		err = ENOMEM;
2430		goto errout;
2431	}
2432	bzero(me->me_M.dma_vaddr, normbits / 8);
2433	bcopy(krp->krp_param[UBS_MODEXP_PAR_M].crp_p,
2434	    me->me_M.dma_vaddr, (mbits + 7) / 8);
2435
2436	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2437		err = ENOMEM;
2438		goto errout;
2439	}
2440	bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2441
2442	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2443	if (ebits > nbits) {
2444		err = E2BIG;
2445		goto errout;
2446	}
2447	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2448		err = ENOMEM;
2449		goto errout;
2450	}
2451	bzero(me->me_E.dma_vaddr, normbits / 8);
2452	bcopy(krp->krp_param[UBS_MODEXP_PAR_E].crp_p,
2453	    me->me_E.dma_vaddr, (ebits + 7) / 8);
2454
2455	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2456	    &me->me_epb, 0)) {
2457		err = ENOMEM;
2458		goto errout;
2459	}
2460	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2461	epb->pb_addr = htole32(me->me_E.dma_paddr);
2462	epb->pb_next = 0;
2463	epb->pb_len = htole32((ebits + 7) / 8);
2464
2465#ifdef UBSEC_DEBUG
2466	if (ubsec_debug) {
2467		printf("Epb ");
2468		ubsec_dump_pb(epb);
2469	}
2470#endif
2471
2472	mcr->mcr_pkts = htole16(1);
2473	mcr->mcr_flags = 0;
2474	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2475	mcr->mcr_reserved = 0;
2476	mcr->mcr_pktlen = 0;
2477
2478	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2479	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2480	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2481
2482	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2483	mcr->mcr_opktbuf.pb_next = 0;
2484	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2485
2486#ifdef DIAGNOSTIC
2487	/* Misaligned output buffer will hang the chip. */
2488	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2489		panic("%s: modexp invalid addr 0x%x\n",
2490		    device_get_nameunit(sc->sc_dev),
2491		    letoh32(mcr->mcr_opktbuf.pb_addr));
2492	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2493		panic("%s: modexp invalid len 0x%x\n",
2494		    device_get_nameunit(sc->sc_dev),
2495		    letoh32(mcr->mcr_opktbuf.pb_len));
2496#endif
2497
2498	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2499	bzero(ctx, sizeof(*ctx));
2500	bcopy(krp->krp_param[UBS_MODEXP_PAR_N].crp_p, ctx->me_N,
2501	    (nbits + 7) / 8);
2502	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2503	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2504	ctx->me_E_len = htole16(ebits);
2505	ctx->me_N_len = htole16(nbits);
2506
2507#ifdef UBSEC_DEBUG
2508	if (ubsec_debug) {
2509		ubsec_dump_mcr(mcr);
2510		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2511	}
2512#endif
2513
2514	/*
2515	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2516	 * everything else.
2517	 */
2518	ubsec_dma_sync(&me->me_M, BUS_DMASYNC_PREWRITE);
2519	ubsec_dma_sync(&me->me_E, BUS_DMASYNC_PREWRITE);
2520	ubsec_dma_sync(&me->me_C, BUS_DMASYNC_PREREAD);
2521	ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_PREWRITE);
2522
2523	/* Enqueue and we're done... */
2524	mtx_lock(&sc->sc_mcr2lock);
2525	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2526	ubsec_feed2(sc);
2527	mtx_unlock(&sc->sc_mcr2lock);
2528
2529	return (0);
2530
2531errout:
2532	if (me != NULL) {
2533		if (me->me_q.q_mcr.dma_map != NULL)
2534			ubsec_dma_free(sc, &me->me_q.q_mcr);
2535		if (me->me_q.q_ctx.dma_map != NULL) {
2536			bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
2537			ubsec_dma_free(sc, &me->me_q.q_ctx);
2538		}
2539		if (me->me_M.dma_map != NULL) {
2540			bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
2541			ubsec_dma_free(sc, &me->me_M);
2542		}
2543		if (me->me_E.dma_map != NULL) {
2544			bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
2545			ubsec_dma_free(sc, &me->me_E);
2546		}
2547		if (me->me_C.dma_map != NULL) {
2548			bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2549			ubsec_dma_free(sc, &me->me_C);
2550		}
2551		if (me->me_epb.dma_map != NULL)
2552			ubsec_dma_free(sc, &me->me_epb);
2553		free(me, M_DEVBUF);
2554	}
2555	krp->krp_status = err;
2556	crypto_kdone(krp);
2557	return (0);
2558}
2559
2560static int
2561ubsec_kprocess_rsapriv(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
2562{
2563	struct ubsec_q2_rsapriv *rp = NULL;
2564	struct ubsec_mcr *mcr;
2565	struct ubsec_ctx_rsapriv *ctx;
2566	int err = 0;
2567	u_int padlen, msglen;
2568
2569	msglen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_P]);
2570	padlen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_Q]);
2571	if (msglen > padlen)
2572		padlen = msglen;
2573
2574	if (padlen <= 256)
2575		padlen = 256;
2576	else if (padlen <= 384)
2577		padlen = 384;
2578	else if (padlen <= 512)
2579		padlen = 512;
2580	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 768)
2581		padlen = 768;
2582	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 1024)
2583		padlen = 1024;
2584	else {
2585		err = E2BIG;
2586		goto errout;
2587	}
2588
2589	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DP]) > padlen) {
2590		err = E2BIG;
2591		goto errout;
2592	}
2593
2594	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DQ]) > padlen) {
2595		err = E2BIG;
2596		goto errout;
2597	}
2598
2599	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_PINV]) > padlen) {
2600		err = E2BIG;
2601		goto errout;
2602	}
2603
2604	rp = (struct ubsec_q2_rsapriv *)malloc(sizeof *rp, M_DEVBUF, M_NOWAIT);
2605	if (rp == NULL)
2606		return (ENOMEM);
2607	bzero(rp, sizeof *rp);
2608	rp->rpr_krp = krp;
2609	rp->rpr_q.q_type = UBS_CTXOP_RSAPRIV;
2610
2611	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2612	    &rp->rpr_q.q_mcr, 0)) {
2613		err = ENOMEM;
2614		goto errout;
2615	}
2616	mcr = (struct ubsec_mcr *)rp->rpr_q.q_mcr.dma_vaddr;
2617
2618	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rsapriv),
2619	    &rp->rpr_q.q_ctx, 0)) {
2620		err = ENOMEM;
2621		goto errout;
2622	}
2623	ctx = (struct ubsec_ctx_rsapriv *)rp->rpr_q.q_ctx.dma_vaddr;
2624	bzero(ctx, sizeof *ctx);
2625
2626	/* Copy in p */
2627	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_p,
2628	    &ctx->rpr_buf[0 * (padlen / 8)],
2629	    (krp->krp_param[UBS_RSAPRIV_PAR_P].crp_nbits + 7) / 8);
2630
2631	/* Copy in q */
2632	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_p,
2633	    &ctx->rpr_buf[1 * (padlen / 8)],
2634	    (krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_nbits + 7) / 8);
2635
2636	/* Copy in dp */
2637	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_p,
2638	    &ctx->rpr_buf[2 * (padlen / 8)],
2639	    (krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_nbits + 7) / 8);
2640
2641	/* Copy in dq */
2642	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_p,
2643	    &ctx->rpr_buf[3 * (padlen / 8)],
2644	    (krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_nbits + 7) / 8);
2645
2646	/* Copy in pinv */
2647	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_p,
2648	    &ctx->rpr_buf[4 * (padlen / 8)],
2649	    (krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_nbits + 7) / 8);
2650
2651	msglen = padlen * 2;
2652
2653	/* Copy in input message (aligned buffer/length). */
2654	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGIN]) > msglen) {
2655		/* Is this likely? */
2656		err = E2BIG;
2657		goto errout;
2658	}
2659	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgin, 0)) {
2660		err = ENOMEM;
2661		goto errout;
2662	}
2663	bzero(rp->rpr_msgin.dma_vaddr, (msglen + 7) / 8);
2664	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_p,
2665	    rp->rpr_msgin.dma_vaddr,
2666	    (krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_nbits + 7) / 8);
2667
2668	/* Prepare space for output message (aligned buffer/length). */
2669	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT]) < msglen) {
2670		/* Is this likely? */
2671		err = E2BIG;
2672		goto errout;
2673	}
2674	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgout, 0)) {
2675		err = ENOMEM;
2676		goto errout;
2677	}
2678	bzero(rp->rpr_msgout.dma_vaddr, (msglen + 7) / 8);
2679
2680	mcr->mcr_pkts = htole16(1);
2681	mcr->mcr_flags = 0;
2682	mcr->mcr_cmdctxp = htole32(rp->rpr_q.q_ctx.dma_paddr);
2683	mcr->mcr_ipktbuf.pb_addr = htole32(rp->rpr_msgin.dma_paddr);
2684	mcr->mcr_ipktbuf.pb_next = 0;
2685	mcr->mcr_ipktbuf.pb_len = htole32(rp->rpr_msgin.dma_size);
2686	mcr->mcr_reserved = 0;
2687	mcr->mcr_pktlen = htole16(msglen);
2688	mcr->mcr_opktbuf.pb_addr = htole32(rp->rpr_msgout.dma_paddr);
2689	mcr->mcr_opktbuf.pb_next = 0;
2690	mcr->mcr_opktbuf.pb_len = htole32(rp->rpr_msgout.dma_size);
2691
2692#ifdef DIAGNOSTIC
2693	if (rp->rpr_msgin.dma_paddr & 3 || rp->rpr_msgin.dma_size & 3) {
2694		panic("%s: rsapriv: invalid msgin %x(0x%jx)",
2695		    device_get_nameunit(sc->sc_dev),
2696		    rp->rpr_msgin.dma_paddr, (uintmax_t)rp->rpr_msgin.dma_size);
2697	}
2698	if (rp->rpr_msgout.dma_paddr & 3 || rp->rpr_msgout.dma_size & 3) {
2699		panic("%s: rsapriv: invalid msgout %x(0x%jx)",
2700		    device_get_nameunit(sc->sc_dev),
2701		    rp->rpr_msgout.dma_paddr, (uintmax_t)rp->rpr_msgout.dma_size);
2702	}
2703#endif
2704
2705	ctx->rpr_len = (sizeof(u_int16_t) * 4) + (5 * (padlen / 8));
2706	ctx->rpr_op = htole16(UBS_CTXOP_RSAPRIV);
2707	ctx->rpr_q_len = htole16(padlen);
2708	ctx->rpr_p_len = htole16(padlen);
2709
2710	/*
2711	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2712	 * everything else.
2713	 */
2714	ubsec_dma_sync(&rp->rpr_msgin, BUS_DMASYNC_PREWRITE);
2715	ubsec_dma_sync(&rp->rpr_msgout, BUS_DMASYNC_PREREAD);
2716
2717	/* Enqueue and we're done... */
2718	mtx_lock(&sc->sc_mcr2lock);
2719	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rp->rpr_q, q_next);
2720	ubsec_feed2(sc);
2721	ubsecstats.hst_modexpcrt++;
2722	mtx_unlock(&sc->sc_mcr2lock);
2723	return (0);
2724
2725errout:
2726	if (rp != NULL) {
2727		if (rp->rpr_q.q_mcr.dma_map != NULL)
2728			ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2729		if (rp->rpr_msgin.dma_map != NULL) {
2730			bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size);
2731			ubsec_dma_free(sc, &rp->rpr_msgin);
2732		}
2733		if (rp->rpr_msgout.dma_map != NULL) {
2734			bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size);
2735			ubsec_dma_free(sc, &rp->rpr_msgout);
2736		}
2737		free(rp, M_DEVBUF);
2738	}
2739	krp->krp_status = err;
2740	crypto_kdone(krp);
2741	return (0);
2742}
2743
2744#ifdef UBSEC_DEBUG
2745static void
2746ubsec_dump_pb(volatile struct ubsec_pktbuf *pb)
2747{
2748	printf("addr 0x%x (0x%x) next 0x%x\n",
2749	    pb->pb_addr, pb->pb_len, pb->pb_next);
2750}
2751
2752static void
2753ubsec_dump_ctx2(struct ubsec_ctx_keyop *c)
2754{
2755	printf("CTX (0x%x):\n", c->ctx_len);
2756	switch (letoh16(c->ctx_op)) {
2757	case UBS_CTXOP_RNGBYPASS:
2758	case UBS_CTXOP_RNGSHA1:
2759		break;
2760	case UBS_CTXOP_MODEXP:
2761	{
2762		struct ubsec_ctx_modexp *cx = (void *)c;
2763		int i, len;
2764
2765		printf(" Elen %u, Nlen %u\n",
2766		    letoh16(cx->me_E_len), letoh16(cx->me_N_len));
2767		len = (cx->me_N_len + 7)/8;
2768		for (i = 0; i < len; i++)
2769			printf("%s%02x", (i == 0) ? " N: " : ":", cx->me_N[i]);
2770		printf("\n");
2771		break;
2772	}
2773	default:
2774		printf("unknown context: %x\n", c->ctx_op);
2775	}
2776	printf("END CTX\n");
2777}
2778
2779static void
2780ubsec_dump_mcr(struct ubsec_mcr *mcr)
2781{
2782	volatile struct ubsec_mcr_add *ma;
2783	int i;
2784
2785	printf("MCR:\n");
2786	printf(" pkts: %u, flags 0x%x\n",
2787	    letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
2788	ma = (volatile struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
2789	for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
2790		printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
2791		    letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
2792		    letoh16(ma->mcr_reserved));
2793		printf(" %d: ipkt ", i);
2794		ubsec_dump_pb(&ma->mcr_ipktbuf);
2795		printf(" %d: opkt ", i);
2796		ubsec_dump_pb(&ma->mcr_opktbuf);
2797		ma++;
2798	}
2799	printf("END MCR\n");
2800}
2801#endif /* UBSEC_DEBUG */
2802
2803/*
2804 * Return the number of significant bits of a big number.
2805 */
2806static int
2807ubsec_ksigbits(struct crparam *cr)
2808{
2809	u_int plen = (cr->crp_nbits + 7) / 8;
2810	int i, sig = plen * 8;
2811	u_int8_t c, *p = cr->crp_p;
2812
2813	for (i = plen - 1; i >= 0; i--) {
2814		c = p[i];
2815		if (c != 0) {
2816			while ((c & 0x80) == 0) {
2817				sig--;
2818				c <<= 1;
2819			}
2820			break;
2821		}
2822		sig -= 8;
2823	}
2824	return (sig);
2825}
2826
2827static void
2828ubsec_kshift_r(
2829	u_int shiftbits,
2830	u_int8_t *src, u_int srcbits,
2831	u_int8_t *dst, u_int dstbits)
2832{
2833	u_int slen, dlen;
2834	int i, si, di, n;
2835
2836	slen = (srcbits + 7) / 8;
2837	dlen = (dstbits + 7) / 8;
2838
2839	for (i = 0; i < slen; i++)
2840		dst[i] = src[i];
2841	for (i = 0; i < dlen - slen; i++)
2842		dst[slen + i] = 0;
2843
2844	n = shiftbits / 8;
2845	if (n != 0) {
2846		si = dlen - n - 1;
2847		di = dlen - 1;
2848		while (si >= 0)
2849			dst[di--] = dst[si--];
2850		while (di >= 0)
2851			dst[di--] = 0;
2852	}
2853
2854	n = shiftbits % 8;
2855	if (n != 0) {
2856		for (i = dlen - 1; i > 0; i--)
2857			dst[i] = (dst[i] << n) |
2858			    (dst[i - 1] >> (8 - n));
2859		dst[0] = dst[0] << n;
2860	}
2861}
2862
2863static void
2864ubsec_kshift_l(
2865	u_int shiftbits,
2866	u_int8_t *src, u_int srcbits,
2867	u_int8_t *dst, u_int dstbits)
2868{
2869	int slen, dlen, i, n;
2870
2871	slen = (srcbits + 7) / 8;
2872	dlen = (dstbits + 7) / 8;
2873
2874	n = shiftbits / 8;
2875	for (i = 0; i < slen; i++)
2876		dst[i] = src[i + n];
2877	for (i = 0; i < dlen - slen; i++)
2878		dst[slen + i] = 0;
2879
2880	n = shiftbits % 8;
2881	if (n != 0) {
2882		for (i = 0; i < (dlen - 1); i++)
2883			dst[i] = (dst[i] >> n) | (dst[i + 1] << (8 - n));
2884		dst[dlen - 1] = dst[dlen - 1] >> n;
2885	}
2886}
2887