ubsec.c revision 167755
1/*	$OpenBSD: ubsec.c,v 1.115 2002/09/24 18:33:26 jason Exp $	*/
2
3/*-
4 * Copyright (c) 2000 Jason L. Wright (jason@thought.net)
5 * Copyright (c) 2000 Theo de Raadt (deraadt@openbsd.org)
6 * Copyright (c) 2001 Patrik Lindergren (patrik@ipunplugged.com)
7 *
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by Jason L. Wright
21 * 4. The name of the author may not be used to endorse or promote products
22 *    derived from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
25 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
26 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
27 * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
28 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
29 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
30 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
32 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
33 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 *
36 * Effort sponsored in part by the Defense Advanced Research Projects
37 * Agency (DARPA) and Air Force Research Laboratory, Air Force
38 * Materiel Command, USAF, under agreement number F30602-01-2-0537.
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/dev/ubsec/ubsec.c 167755 2007-03-21 03:42:51Z sam $");
43
44/*
45 * uBsec 5[56]01, 58xx hardware crypto accelerator
46 */
47
48#include "opt_ubsec.h"
49
50#include <sys/param.h>
51#include <sys/systm.h>
52#include <sys/proc.h>
53#include <sys/errno.h>
54#include <sys/malloc.h>
55#include <sys/kernel.h>
56#include <sys/module.h>
57#include <sys/mbuf.h>
58#include <sys/lock.h>
59#include <sys/mutex.h>
60#include <sys/sysctl.h>
61#include <sys/endian.h>
62
63#include <vm/vm.h>
64#include <vm/pmap.h>
65
66#include <machine/bus.h>
67#include <machine/resource.h>
68#include <sys/bus.h>
69#include <sys/rman.h>
70
71#include <crypto/sha1.h>
72#include <opencrypto/cryptodev.h>
73#include <opencrypto/cryptosoft.h>
74#include <sys/md5.h>
75#include <sys/random.h>
76#include <sys/kobj.h>
77
78#include "cryptodev_if.h"
79
80#include <dev/pci/pcivar.h>
81#include <dev/pci/pcireg.h>
82
83/* grr, #defines for gratuitous incompatibility in queue.h */
84#define	SIMPLEQ_HEAD		STAILQ_HEAD
85#define	SIMPLEQ_ENTRY		STAILQ_ENTRY
86#define	SIMPLEQ_INIT		STAILQ_INIT
87#define	SIMPLEQ_INSERT_TAIL	STAILQ_INSERT_TAIL
88#define	SIMPLEQ_EMPTY		STAILQ_EMPTY
89#define	SIMPLEQ_FIRST		STAILQ_FIRST
90#define	SIMPLEQ_REMOVE_HEAD	STAILQ_REMOVE_HEAD
91#define	SIMPLEQ_FOREACH		STAILQ_FOREACH
92/* ditto for endian.h */
93#define	letoh16(x)		le16toh(x)
94#define	letoh32(x)		le32toh(x)
95
96#ifdef UBSEC_RNDTEST
97#include <dev/rndtest/rndtest.h>
98#endif
99#include <dev/ubsec/ubsecreg.h>
100#include <dev/ubsec/ubsecvar.h>
101
102/*
103 * Prototypes and count for the pci_device structure
104 */
105static	int ubsec_probe(device_t);
106static	int ubsec_attach(device_t);
107static	int ubsec_detach(device_t);
108static	int ubsec_suspend(device_t);
109static	int ubsec_resume(device_t);
110static	void ubsec_shutdown(device_t);
111
112static	int ubsec_newsession(device_t, u_int32_t *, struct cryptoini *);
113static	int ubsec_freesession(device_t, u_int64_t);
114static	int ubsec_process(device_t, struct cryptop *, int);
115static	int ubsec_kprocess(device_t, struct cryptkop *, int);
116
117static device_method_t ubsec_methods[] = {
118	/* Device interface */
119	DEVMETHOD(device_probe,		ubsec_probe),
120	DEVMETHOD(device_attach,	ubsec_attach),
121	DEVMETHOD(device_detach,	ubsec_detach),
122	DEVMETHOD(device_suspend,	ubsec_suspend),
123	DEVMETHOD(device_resume,	ubsec_resume),
124	DEVMETHOD(device_shutdown,	ubsec_shutdown),
125
126	/* bus interface */
127	DEVMETHOD(bus_print_child,	bus_generic_print_child),
128	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
129
130	/* crypto device methods */
131	DEVMETHOD(cryptodev_newsession,	ubsec_newsession),
132	DEVMETHOD(cryptodev_freesession,ubsec_freesession),
133	DEVMETHOD(cryptodev_process,	ubsec_process),
134	DEVMETHOD(cryptodev_kprocess,	ubsec_kprocess),
135
136	{ 0, 0 }
137};
138static driver_t ubsec_driver = {
139	"ubsec",
140	ubsec_methods,
141	sizeof (struct ubsec_softc)
142};
143static devclass_t ubsec_devclass;
144
145DRIVER_MODULE(ubsec, pci, ubsec_driver, ubsec_devclass, 0, 0);
146MODULE_DEPEND(ubsec, crypto, 1, 1, 1);
147#ifdef UBSEC_RNDTEST
148MODULE_DEPEND(ubsec, rndtest, 1, 1, 1);
149#endif
150
151static	void ubsec_intr(void *);
152static	void ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
153static	void ubsec_feed(struct ubsec_softc *);
154static	void ubsec_mcopy(struct mbuf *, struct mbuf *, int, int);
155static	void ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *);
156static	int ubsec_feed2(struct ubsec_softc *);
157static	void ubsec_rng(void *);
158static	int ubsec_dma_malloc(struct ubsec_softc *, bus_size_t,
159			     struct ubsec_dma_alloc *, int);
160#define	ubsec_dma_sync(_dma, _flags) \
161	bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
162static	void ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
163static	int ubsec_dmamap_aligned(struct ubsec_operand *op);
164
165static	void ubsec_reset_board(struct ubsec_softc *sc);
166static	void ubsec_init_board(struct ubsec_softc *sc);
167static	void ubsec_init_pciregs(device_t dev);
168static	void ubsec_totalreset(struct ubsec_softc *sc);
169
170static	int ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q);
171
172static	int ubsec_kprocess_modexp_hw(struct ubsec_softc *, struct cryptkop *, int);
173static	int ubsec_kprocess_modexp_sw(struct ubsec_softc *, struct cryptkop *, int);
174static	int ubsec_kprocess_rsapriv(struct ubsec_softc *, struct cryptkop *, int);
175static	void ubsec_kfree(struct ubsec_softc *, struct ubsec_q2 *);
176static	int ubsec_ksigbits(struct crparam *);
177static	void ubsec_kshift_r(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
178static	void ubsec_kshift_l(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
179
180SYSCTL_NODE(_hw, OID_AUTO, ubsec, CTLFLAG_RD, 0, "Broadcom driver parameters");
181
182#ifdef UBSEC_DEBUG
183static	void ubsec_dump_pb(volatile struct ubsec_pktbuf *);
184static	void ubsec_dump_mcr(struct ubsec_mcr *);
185static	void ubsec_dump_ctx2(struct ubsec_ctx_keyop *);
186
187static	int ubsec_debug = 0;
188SYSCTL_INT(_hw_ubsec, OID_AUTO, debug, CTLFLAG_RW, &ubsec_debug,
189	    0, "control debugging msgs");
190#endif
191
192#define	READ_REG(sc,r) \
193	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
194
195#define WRITE_REG(sc,reg,val) \
196	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
197
198#define	SWAP32(x) (x) = htole32(ntohl((x)))
199#define	HTOLE32(x) (x) = htole32(x)
200
201struct ubsec_stats ubsecstats;
202SYSCTL_STRUCT(_hw_ubsec, OID_AUTO, stats, CTLFLAG_RD, &ubsecstats,
203	    ubsec_stats, "driver statistics");
204
205static int
206ubsec_probe(device_t dev)
207{
208	if (pci_get_vendor(dev) == PCI_VENDOR_SUN &&
209	    (pci_get_device(dev) == PCI_PRODUCT_SUN_5821 ||
210	     pci_get_device(dev) == PCI_PRODUCT_SUN_SCA1K))
211		return (BUS_PROBE_DEFAULT);
212	if (pci_get_vendor(dev) == PCI_VENDOR_BLUESTEEL &&
213	    (pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5501 ||
214	     pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5601))
215		return (BUS_PROBE_DEFAULT);
216	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
217	    (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5801 ||
218	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5802 ||
219	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5805 ||
220	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5820 ||
221	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5821 ||
222	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5822 ||
223	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5823
224	     ))
225		return (BUS_PROBE_DEFAULT);
226	return (ENXIO);
227}
228
229static const char*
230ubsec_partname(struct ubsec_softc *sc)
231{
232	/* XXX sprintf numbers when not decoded */
233	switch (pci_get_vendor(sc->sc_dev)) {
234	case PCI_VENDOR_BROADCOM:
235		switch (pci_get_device(sc->sc_dev)) {
236		case PCI_PRODUCT_BROADCOM_5801:	return "Broadcom 5801";
237		case PCI_PRODUCT_BROADCOM_5802:	return "Broadcom 5802";
238		case PCI_PRODUCT_BROADCOM_5805:	return "Broadcom 5805";
239		case PCI_PRODUCT_BROADCOM_5820:	return "Broadcom 5820";
240		case PCI_PRODUCT_BROADCOM_5821:	return "Broadcom 5821";
241		case PCI_PRODUCT_BROADCOM_5822:	return "Broadcom 5822";
242		case PCI_PRODUCT_BROADCOM_5823:	return "Broadcom 5823";
243		}
244		return "Broadcom unknown-part";
245	case PCI_VENDOR_BLUESTEEL:
246		switch (pci_get_device(sc->sc_dev)) {
247		case PCI_PRODUCT_BLUESTEEL_5601: return "Bluesteel 5601";
248		}
249		return "Bluesteel unknown-part";
250	case PCI_VENDOR_SUN:
251		switch (pci_get_device(sc->sc_dev)) {
252		case PCI_PRODUCT_SUN_5821: return "Sun Crypto 5821";
253		case PCI_PRODUCT_SUN_SCA1K: return "Sun Crypto 1K";
254		}
255		return "Sun unknown-part";
256	}
257	return "Unknown-vendor unknown-part";
258}
259
260static void
261default_harvest(struct rndtest_state *rsp, void *buf, u_int count)
262{
263	random_harvest(buf, count, count*NBBY, 0, RANDOM_PURE);
264}
265
266static int
267ubsec_attach(device_t dev)
268{
269	struct ubsec_softc *sc = device_get_softc(dev);
270	struct ubsec_dma *dmap;
271	u_int32_t cmd, i;
272	int rid;
273
274	bzero(sc, sizeof (*sc));
275	sc->sc_dev = dev;
276
277	SIMPLEQ_INIT(&sc->sc_queue);
278	SIMPLEQ_INIT(&sc->sc_qchip);
279	SIMPLEQ_INIT(&sc->sc_queue2);
280	SIMPLEQ_INIT(&sc->sc_qchip2);
281	SIMPLEQ_INIT(&sc->sc_q2free);
282
283	/* XXX handle power management */
284
285	sc->sc_statmask = BS_STAT_MCR1_DONE | BS_STAT_DMAERR;
286
287	if (pci_get_vendor(dev) == PCI_VENDOR_BLUESTEEL &&
288	    pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5601)
289		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG;
290
291	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
292	    (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5802 ||
293	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5805))
294		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG;
295
296	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
297	    pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5820)
298		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG |
299		    UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY;
300
301	if ((pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
302	     (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5821 ||
303	      pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5822 ||
304	      pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5823)) ||
305	    (pci_get_vendor(dev) == PCI_VENDOR_SUN &&
306	     (pci_get_device(dev) == PCI_PRODUCT_SUN_SCA1K ||
307	      pci_get_device(dev) == PCI_PRODUCT_SUN_5821))) {
308		/* NB: the 5821/5822 defines some additional status bits */
309		sc->sc_statmask |= BS_STAT_MCR1_ALLEMPTY |
310		    BS_STAT_MCR2_ALLEMPTY;
311		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG |
312		    UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY;
313	}
314
315	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
316	cmd |= PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN;
317	pci_write_config(dev, PCIR_COMMAND, cmd, 4);
318	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
319
320	if (!(cmd & PCIM_CMD_MEMEN)) {
321		device_printf(dev, "failed to enable memory mapping\n");
322		goto bad;
323	}
324
325	if (!(cmd & PCIM_CMD_BUSMASTEREN)) {
326		device_printf(dev, "failed to enable bus mastering\n");
327		goto bad;
328	}
329
330	/*
331	 * Setup memory-mapping of PCI registers.
332	 */
333	rid = BS_BAR;
334	sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
335					   RF_ACTIVE);
336	if (sc->sc_sr == NULL) {
337		device_printf(dev, "cannot map register space\n");
338		goto bad;
339	}
340	sc->sc_st = rman_get_bustag(sc->sc_sr);
341	sc->sc_sh = rman_get_bushandle(sc->sc_sr);
342
343	/*
344	 * Arrange interrupt line.
345	 */
346	rid = 0;
347	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
348					    RF_SHAREABLE|RF_ACTIVE);
349	if (sc->sc_irq == NULL) {
350		device_printf(dev, "could not map interrupt\n");
351		goto bad1;
352	}
353	/*
354	 * NB: Network code assumes we are blocked with splimp()
355	 *     so make sure the IRQ is mapped appropriately.
356	 */
357	if (bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
358			   NULL, ubsec_intr, sc, &sc->sc_ih)) {
359		device_printf(dev, "could not establish interrupt\n");
360		goto bad2;
361	}
362
363	sc->sc_cid = crypto_get_driverid(dev, CRYPTOCAP_F_HARDWARE);
364	if (sc->sc_cid < 0) {
365		device_printf(dev, "could not get crypto driver id\n");
366		goto bad3;
367	}
368
369	/*
370	 * Setup DMA descriptor area.
371	 */
372	if (bus_dma_tag_create(NULL,			/* parent */
373			       1, 0,			/* alignment, bounds */
374			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
375			       BUS_SPACE_MAXADDR,	/* highaddr */
376			       NULL, NULL,		/* filter, filterarg */
377			       0x3ffff,			/* maxsize */
378			       UBS_MAX_SCATTER,		/* nsegments */
379			       0xffff,			/* maxsegsize */
380			       BUS_DMA_ALLOCNOW,	/* flags */
381			       NULL, NULL,		/* lockfunc, lockarg */
382			       &sc->sc_dmat)) {
383		device_printf(dev, "cannot allocate DMA tag\n");
384		goto bad4;
385	}
386	SIMPLEQ_INIT(&sc->sc_freequeue);
387	dmap = sc->sc_dmaa;
388	for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
389		struct ubsec_q *q;
390
391		q = (struct ubsec_q *)malloc(sizeof(struct ubsec_q),
392		    M_DEVBUF, M_NOWAIT);
393		if (q == NULL) {
394			device_printf(dev, "cannot allocate queue buffers\n");
395			break;
396		}
397
398		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk),
399		    &dmap->d_alloc, 0)) {
400			device_printf(dev, "cannot allocate dma buffers\n");
401			free(q, M_DEVBUF);
402			break;
403		}
404		dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
405
406		q->q_dma = dmap;
407		sc->sc_queuea[i] = q;
408
409		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
410	}
411	mtx_init(&sc->sc_mcr1lock, device_get_nameunit(dev),
412		"mcr1 operations", MTX_DEF);
413	mtx_init(&sc->sc_freeqlock, device_get_nameunit(dev),
414		"mcr1 free q", MTX_DEF);
415
416	device_printf(sc->sc_dev, "%s\n", ubsec_partname(sc));
417
418	crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
419	crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0);
420	crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0);
421	crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0);
422
423	/*
424	 * Reset Broadcom chip
425	 */
426	ubsec_reset_board(sc);
427
428	/*
429	 * Init Broadcom specific PCI settings
430	 */
431	ubsec_init_pciregs(dev);
432
433	/*
434	 * Init Broadcom chip
435	 */
436	ubsec_init_board(sc);
437
438#ifndef UBSEC_NO_RNG
439	if (sc->sc_flags & UBS_FLAGS_RNG) {
440		sc->sc_statmask |= BS_STAT_MCR2_DONE;
441#ifdef UBSEC_RNDTEST
442		sc->sc_rndtest = rndtest_attach(dev);
443		if (sc->sc_rndtest)
444			sc->sc_harvest = rndtest_harvest;
445		else
446			sc->sc_harvest = default_harvest;
447#else
448		sc->sc_harvest = default_harvest;
449#endif
450
451		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
452		    &sc->sc_rng.rng_q.q_mcr, 0))
453			goto skip_rng;
454
455		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass),
456		    &sc->sc_rng.rng_q.q_ctx, 0)) {
457			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
458			goto skip_rng;
459		}
460
461		if (ubsec_dma_malloc(sc, sizeof(u_int32_t) *
462		    UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) {
463			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
464			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
465			goto skip_rng;
466		}
467
468		if (hz >= 100)
469			sc->sc_rnghz = hz / 100;
470		else
471			sc->sc_rnghz = 1;
472		callout_init(&sc->sc_rngto, CALLOUT_MPSAFE);
473		callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
474skip_rng:
475	;
476	}
477#endif /* UBSEC_NO_RNG */
478	mtx_init(&sc->sc_mcr2lock, device_get_nameunit(dev),
479		"mcr2 operations", MTX_DEF);
480
481	if (sc->sc_flags & UBS_FLAGS_KEY) {
482		sc->sc_statmask |= BS_STAT_MCR2_DONE;
483
484		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0);
485#if 0
486		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0);
487#endif
488	}
489	return (0);
490bad4:
491	crypto_unregister_all(sc->sc_cid);
492bad3:
493	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
494bad2:
495	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
496bad1:
497	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
498bad:
499	return (ENXIO);
500}
501
502/*
503 * Detach a device that successfully probed.
504 */
505static int
506ubsec_detach(device_t dev)
507{
508	struct ubsec_softc *sc = device_get_softc(dev);
509
510	/* XXX wait/abort active ops */
511
512	/* disable interrupts */
513	WRITE_REG(sc, BS_CTRL, READ_REG(sc, BS_CTRL) &~
514		(BS_CTRL_MCR2INT | BS_CTRL_MCR1INT | BS_CTRL_DMAERR));
515
516	callout_stop(&sc->sc_rngto);
517
518	crypto_unregister_all(sc->sc_cid);
519
520#ifdef UBSEC_RNDTEST
521	if (sc->sc_rndtest)
522		rndtest_detach(sc->sc_rndtest);
523#endif
524
525	while (!SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
526		struct ubsec_q *q;
527
528		q = SIMPLEQ_FIRST(&sc->sc_freequeue);
529		SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, q_next);
530		ubsec_dma_free(sc, &q->q_dma->d_alloc);
531		free(q, M_DEVBUF);
532	}
533	mtx_destroy(&sc->sc_mcr1lock);
534	mtx_destroy(&sc->sc_freeqlock);
535#ifndef UBSEC_NO_RNG
536	if (sc->sc_flags & UBS_FLAGS_RNG) {
537		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
538		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
539		ubsec_dma_free(sc, &sc->sc_rng.rng_buf);
540	}
541#endif /* UBSEC_NO_RNG */
542	mtx_destroy(&sc->sc_mcr2lock);
543
544	bus_generic_detach(dev);
545	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
546	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
547
548	bus_dma_tag_destroy(sc->sc_dmat);
549	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
550
551	return (0);
552}
553
554/*
555 * Stop all chip i/o so that the kernel's probe routines don't
556 * get confused by errant DMAs when rebooting.
557 */
558static void
559ubsec_shutdown(device_t dev)
560{
561#ifdef notyet
562	ubsec_stop(device_get_softc(dev));
563#endif
564}
565
566/*
567 * Device suspend routine.
568 */
569static int
570ubsec_suspend(device_t dev)
571{
572	struct ubsec_softc *sc = device_get_softc(dev);
573
574#ifdef notyet
575	/* XXX stop the device and save PCI settings */
576#endif
577	sc->sc_suspended = 1;
578
579	return (0);
580}
581
582static int
583ubsec_resume(device_t dev)
584{
585	struct ubsec_softc *sc = device_get_softc(dev);
586
587#ifdef notyet
588	/* XXX retore PCI settings and start the device */
589#endif
590	sc->sc_suspended = 0;
591	return (0);
592}
593
594/*
595 * UBSEC Interrupt routine
596 */
597static void
598ubsec_intr(void *arg)
599{
600	struct ubsec_softc *sc = arg;
601	volatile u_int32_t stat;
602	struct ubsec_q *q;
603	struct ubsec_dma *dmap;
604	int npkts = 0, i;
605
606	stat = READ_REG(sc, BS_STAT);
607	stat &= sc->sc_statmask;
608	if (stat == 0)
609		return;
610
611	WRITE_REG(sc, BS_STAT, stat);		/* IACK */
612
613	/*
614	 * Check to see if we have any packets waiting for us
615	 */
616	if ((stat & BS_STAT_MCR1_DONE)) {
617		mtx_lock(&sc->sc_mcr1lock);
618		while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
619			q = SIMPLEQ_FIRST(&sc->sc_qchip);
620			dmap = q->q_dma;
621
622			if ((dmap->d_dma->d_mcr.mcr_flags & htole16(UBS_MCR_DONE)) == 0)
623				break;
624
625			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q_next);
626
627			npkts = q->q_nstacked_mcrs;
628			sc->sc_nqchip -= 1+npkts;
629			/*
630			 * search for further sc_qchip ubsec_q's that share
631			 * the same MCR, and complete them too, they must be
632			 * at the top.
633			 */
634			for (i = 0; i < npkts; i++) {
635				if(q->q_stacked_mcr[i]) {
636					ubsec_callback(sc, q->q_stacked_mcr[i]);
637				} else {
638					break;
639				}
640			}
641			ubsec_callback(sc, q);
642		}
643		/*
644		 * Don't send any more packet to chip if there has been
645		 * a DMAERR.
646		 */
647		if (!(stat & BS_STAT_DMAERR))
648			ubsec_feed(sc);
649		mtx_unlock(&sc->sc_mcr1lock);
650	}
651
652	/*
653	 * Check to see if we have any key setups/rng's waiting for us
654	 */
655	if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) &&
656	    (stat & BS_STAT_MCR2_DONE)) {
657		struct ubsec_q2 *q2;
658		struct ubsec_mcr *mcr;
659
660		mtx_lock(&sc->sc_mcr2lock);
661		while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) {
662			q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
663
664			ubsec_dma_sync(&q2->q_mcr,
665			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
666
667			mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
668			if ((mcr->mcr_flags & htole16(UBS_MCR_DONE)) == 0) {
669				ubsec_dma_sync(&q2->q_mcr,
670				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
671				break;
672			}
673			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, q_next);
674			ubsec_callback2(sc, q2);
675			/*
676			 * Don't send any more packet to chip if there has been
677			 * a DMAERR.
678			 */
679			if (!(stat & BS_STAT_DMAERR))
680				ubsec_feed2(sc);
681		}
682		mtx_unlock(&sc->sc_mcr2lock);
683	}
684
685	/*
686	 * Check to see if we got any DMA Error
687	 */
688	if (stat & BS_STAT_DMAERR) {
689#ifdef UBSEC_DEBUG
690		if (ubsec_debug) {
691			volatile u_int32_t a = READ_REG(sc, BS_ERR);
692
693			printf("dmaerr %s@%08x\n",
694			    (a & BS_ERR_READ) ? "read" : "write",
695			    a & BS_ERR_ADDR);
696		}
697#endif /* UBSEC_DEBUG */
698		ubsecstats.hst_dmaerr++;
699		mtx_lock(&sc->sc_mcr1lock);
700		ubsec_totalreset(sc);
701		ubsec_feed(sc);
702		mtx_unlock(&sc->sc_mcr1lock);
703	}
704
705	if (sc->sc_needwakeup) {		/* XXX check high watermark */
706		int wakeup;
707
708		mtx_lock(&sc->sc_freeqlock);
709		wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
710#ifdef UBSEC_DEBUG
711		if (ubsec_debug)
712			device_printf(sc->sc_dev, "wakeup crypto (%x)\n",
713				sc->sc_needwakeup);
714#endif /* UBSEC_DEBUG */
715		sc->sc_needwakeup &= ~wakeup;
716		mtx_unlock(&sc->sc_freeqlock);
717		crypto_unblock(sc->sc_cid, wakeup);
718	}
719}
720
721/*
722 * ubsec_feed() - aggregate and post requests to chip
723 */
724static void
725ubsec_feed(struct ubsec_softc *sc)
726{
727	struct ubsec_q *q, *q2;
728	int npkts, i;
729	void *v;
730	u_int32_t stat;
731
732	/*
733	 * Decide how many ops to combine in a single MCR.  We cannot
734	 * aggregate more than UBS_MAX_AGGR because this is the number
735	 * of slots defined in the data structure.  Note that
736	 * aggregation only happens if ops are marked batch'able.
737	 * Aggregating ops reduces the number of interrupts to the host
738	 * but also (potentially) increases the latency for processing
739	 * completed ops as we only get an interrupt when all aggregated
740	 * ops have completed.
741	 */
742	if (sc->sc_nqueue == 0)
743		return;
744	if (sc->sc_nqueue > 1) {
745		npkts = 0;
746		SIMPLEQ_FOREACH(q, &sc->sc_queue, q_next) {
747			npkts++;
748			if ((q->q_crp->crp_flags & CRYPTO_F_BATCH) == 0)
749				break;
750		}
751	} else
752		npkts = 1;
753	/*
754	 * Check device status before going any further.
755	 */
756	if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
757		if (stat & BS_STAT_DMAERR) {
758			ubsec_totalreset(sc);
759			ubsecstats.hst_dmaerr++;
760		} else
761			ubsecstats.hst_mcr1full++;
762		return;
763	}
764	if (sc->sc_nqueue > ubsecstats.hst_maxqueue)
765		ubsecstats.hst_maxqueue = sc->sc_nqueue;
766	if (npkts > UBS_MAX_AGGR)
767		npkts = UBS_MAX_AGGR;
768	if (npkts < 2)				/* special case 1 op */
769		goto feed1;
770
771	ubsecstats.hst_totbatch += npkts-1;
772#ifdef UBSEC_DEBUG
773	if (ubsec_debug)
774		printf("merging %d records\n", npkts);
775#endif /* UBSEC_DEBUG */
776
777	q = SIMPLEQ_FIRST(&sc->sc_queue);
778	SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next);
779	--sc->sc_nqueue;
780
781	bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_PREWRITE);
782	if (q->q_dst_map != NULL)
783		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map, BUS_DMASYNC_PREREAD);
784
785	q->q_nstacked_mcrs = npkts - 1;		/* Number of packets stacked */
786
787	for (i = 0; i < q->q_nstacked_mcrs; i++) {
788		q2 = SIMPLEQ_FIRST(&sc->sc_queue);
789		bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
790		    BUS_DMASYNC_PREWRITE);
791		if (q2->q_dst_map != NULL)
792			bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
793			    BUS_DMASYNC_PREREAD);
794		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next);
795		--sc->sc_nqueue;
796
797		v = (void*)(((char *)&q2->q_dma->d_dma->d_mcr) + sizeof(struct ubsec_mcr) -
798		    sizeof(struct ubsec_mcr_add));
799		bcopy(v, &q->q_dma->d_dma->d_mcradd[i], sizeof(struct ubsec_mcr_add));
800		q->q_stacked_mcr[i] = q2;
801	}
802	q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
803	SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
804	sc->sc_nqchip += npkts;
805	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
806		ubsecstats.hst_maxqchip = sc->sc_nqchip;
807	ubsec_dma_sync(&q->q_dma->d_alloc,
808	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
809	WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
810	    offsetof(struct ubsec_dmachunk, d_mcr));
811	return;
812feed1:
813	q = SIMPLEQ_FIRST(&sc->sc_queue);
814
815	bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_PREWRITE);
816	if (q->q_dst_map != NULL)
817		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map, BUS_DMASYNC_PREREAD);
818	ubsec_dma_sync(&q->q_dma->d_alloc,
819	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
820
821	WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
822	    offsetof(struct ubsec_dmachunk, d_mcr));
823#ifdef UBSEC_DEBUG
824	if (ubsec_debug)
825		printf("feed1: q->chip %p %08x stat %08x\n",
826		      q, (u_int32_t)vtophys(&q->q_dma->d_dma->d_mcr),
827		      stat);
828#endif /* UBSEC_DEBUG */
829	SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next);
830	--sc->sc_nqueue;
831	SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
832	sc->sc_nqchip++;
833	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
834		ubsecstats.hst_maxqchip = sc->sc_nqchip;
835	return;
836}
837
838static void
839ubsec_setup_enckey(struct ubsec_session *ses, int algo, caddr_t key)
840{
841
842	/* Go ahead and compute key in ubsec's byte order */
843	if (algo == CRYPTO_DES_CBC) {
844		bcopy(key, &ses->ses_deskey[0], 8);
845		bcopy(key, &ses->ses_deskey[2], 8);
846		bcopy(key, &ses->ses_deskey[4], 8);
847	} else
848		bcopy(key, ses->ses_deskey, 24);
849
850	SWAP32(ses->ses_deskey[0]);
851	SWAP32(ses->ses_deskey[1]);
852	SWAP32(ses->ses_deskey[2]);
853	SWAP32(ses->ses_deskey[3]);
854	SWAP32(ses->ses_deskey[4]);
855	SWAP32(ses->ses_deskey[5]);
856}
857
858static void
859ubsec_setup_mackey(struct ubsec_session *ses, int algo, caddr_t key, int klen)
860{
861	MD5_CTX md5ctx;
862	SHA1_CTX sha1ctx;
863	int i;
864
865	for (i = 0; i < klen; i++)
866		key[i] ^= HMAC_IPAD_VAL;
867
868	if (algo == CRYPTO_MD5_HMAC) {
869		MD5Init(&md5ctx);
870		MD5Update(&md5ctx, key, klen);
871		MD5Update(&md5ctx, hmac_ipad_buffer, MD5_HMAC_BLOCK_LEN - klen);
872		bcopy(md5ctx.state, ses->ses_hminner, sizeof(md5ctx.state));
873	} else {
874		SHA1Init(&sha1ctx);
875		SHA1Update(&sha1ctx, key, klen);
876		SHA1Update(&sha1ctx, hmac_ipad_buffer,
877		    SHA1_HMAC_BLOCK_LEN - klen);
878		bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32));
879	}
880
881	for (i = 0; i < klen; i++)
882		key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
883
884	if (algo == CRYPTO_MD5_HMAC) {
885		MD5Init(&md5ctx);
886		MD5Update(&md5ctx, key, klen);
887		MD5Update(&md5ctx, hmac_opad_buffer, MD5_HMAC_BLOCK_LEN - klen);
888		bcopy(md5ctx.state, ses->ses_hmouter, sizeof(md5ctx.state));
889	} else {
890		SHA1Init(&sha1ctx);
891		SHA1Update(&sha1ctx, key, klen);
892		SHA1Update(&sha1ctx, hmac_opad_buffer,
893		    SHA1_HMAC_BLOCK_LEN - klen);
894		bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32));
895	}
896
897	for (i = 0; i < klen; i++)
898		key[i] ^= HMAC_OPAD_VAL;
899}
900
901/*
902 * Allocate a new 'session' and return an encoded session id.  'sidp'
903 * contains our registration id, and should contain an encoded session
904 * id on successful allocation.
905 */
906static int
907ubsec_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri)
908{
909	struct ubsec_softc *sc = device_get_softc(dev);
910	struct cryptoini *c, *encini = NULL, *macini = NULL;
911	struct ubsec_session *ses = NULL;
912	int sesn;
913
914	if (sidp == NULL || cri == NULL || sc == NULL)
915		return (EINVAL);
916
917	for (c = cri; c != NULL; c = c->cri_next) {
918		if (c->cri_alg == CRYPTO_MD5_HMAC ||
919		    c->cri_alg == CRYPTO_SHA1_HMAC) {
920			if (macini)
921				return (EINVAL);
922			macini = c;
923		} else if (c->cri_alg == CRYPTO_DES_CBC ||
924		    c->cri_alg == CRYPTO_3DES_CBC) {
925			if (encini)
926				return (EINVAL);
927			encini = c;
928		} else
929			return (EINVAL);
930	}
931	if (encini == NULL && macini == NULL)
932		return (EINVAL);
933
934	if (sc->sc_sessions == NULL) {
935		ses = sc->sc_sessions = (struct ubsec_session *)malloc(
936		    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
937		if (ses == NULL)
938			return (ENOMEM);
939		sesn = 0;
940		sc->sc_nsessions = 1;
941	} else {
942		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
943			if (sc->sc_sessions[sesn].ses_used == 0) {
944				ses = &sc->sc_sessions[sesn];
945				break;
946			}
947		}
948
949		if (ses == NULL) {
950			sesn = sc->sc_nsessions;
951			ses = (struct ubsec_session *)malloc((sesn + 1) *
952			    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
953			if (ses == NULL)
954				return (ENOMEM);
955			bcopy(sc->sc_sessions, ses, sesn *
956			    sizeof(struct ubsec_session));
957			bzero(sc->sc_sessions, sesn *
958			    sizeof(struct ubsec_session));
959			free(sc->sc_sessions, M_DEVBUF);
960			sc->sc_sessions = ses;
961			ses = &sc->sc_sessions[sesn];
962			sc->sc_nsessions++;
963		}
964	}
965	bzero(ses, sizeof(struct ubsec_session));
966	ses->ses_used = 1;
967
968	if (encini) {
969		/* get an IV, network byte order */
970		/* XXX may read fewer than requested */
971		read_random(ses->ses_iv, sizeof(ses->ses_iv));
972
973		if (encini->cri_key != NULL) {
974			ubsec_setup_enckey(ses, encini->cri_alg,
975			    encini->cri_key);
976		}
977	}
978
979	if (macini) {
980		ses->ses_mlen = macini->cri_mlen;
981		if (ses->ses_mlen == 0) {
982			if (macini->cri_alg == CRYPTO_MD5_HMAC)
983				ses->ses_mlen = MD5_HASH_LEN;
984			else
985				ses->ses_mlen = SHA1_HASH_LEN;
986		}
987
988		if (macini->cri_key != NULL) {
989			ubsec_setup_mackey(ses, macini->cri_alg,
990			    macini->cri_key, macini->cri_klen / 8);
991		}
992	}
993
994	*sidp = UBSEC_SID(device_get_unit(sc->sc_dev), sesn);
995	return (0);
996}
997
998/*
999 * Deallocate a session.
1000 */
1001static int
1002ubsec_freesession(device_t dev, u_int64_t tid)
1003{
1004	struct ubsec_softc *sc = device_get_softc(dev);
1005	int session, ret;
1006	u_int32_t sid = CRYPTO_SESID2LID(tid);
1007
1008	if (sc == NULL)
1009		return (EINVAL);
1010
1011	session = UBSEC_SESSION(sid);
1012	if (session < sc->sc_nsessions) {
1013		bzero(&sc->sc_sessions[session],
1014			sizeof(sc->sc_sessions[session]));
1015		ret = 0;
1016	} else
1017		ret = EINVAL;
1018
1019	return (ret);
1020}
1021
1022static void
1023ubsec_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
1024{
1025	struct ubsec_operand *op = arg;
1026
1027	KASSERT(nsegs <= UBS_MAX_SCATTER,
1028		("Too many DMA segments returned when mapping operand"));
1029#ifdef UBSEC_DEBUG
1030	if (ubsec_debug)
1031		printf("ubsec_op_cb: mapsize %u nsegs %d error %d\n",
1032			(u_int) mapsize, nsegs, error);
1033#endif
1034	if (error != 0)
1035		return;
1036	op->mapsize = mapsize;
1037	op->nsegs = nsegs;
1038	bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
1039}
1040
1041static int
1042ubsec_process(device_t dev, struct cryptop *crp, int hint)
1043{
1044	struct ubsec_softc *sc = device_get_softc(dev);
1045	struct ubsec_q *q = NULL;
1046	int err = 0, i, j, nicealign;
1047	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
1048	int encoffset = 0, macoffset = 0, cpskip, cpoffset;
1049	int sskip, dskip, stheend, dtheend;
1050	int16_t coffset;
1051	struct ubsec_session *ses;
1052	struct ubsec_pktctx ctx;
1053	struct ubsec_dma *dmap = NULL;
1054
1055	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
1056		ubsecstats.hst_invalid++;
1057		return (EINVAL);
1058	}
1059	if (UBSEC_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
1060		ubsecstats.hst_badsession++;
1061		return (EINVAL);
1062	}
1063
1064	mtx_lock(&sc->sc_freeqlock);
1065	if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
1066		ubsecstats.hst_queuefull++;
1067		sc->sc_needwakeup |= CRYPTO_SYMQ;
1068		mtx_unlock(&sc->sc_freeqlock);
1069		return (ERESTART);
1070	}
1071	q = SIMPLEQ_FIRST(&sc->sc_freequeue);
1072	SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, q_next);
1073	mtx_unlock(&sc->sc_freeqlock);
1074
1075	dmap = q->q_dma; /* Save dma pointer */
1076	bzero(q, sizeof(struct ubsec_q));
1077	bzero(&ctx, sizeof(ctx));
1078
1079	q->q_sesn = UBSEC_SESSION(crp->crp_sid);
1080	q->q_dma = dmap;
1081	ses = &sc->sc_sessions[q->q_sesn];
1082
1083	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1084		q->q_src_m = (struct mbuf *)crp->crp_buf;
1085		q->q_dst_m = (struct mbuf *)crp->crp_buf;
1086	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1087		q->q_src_io = (struct uio *)crp->crp_buf;
1088		q->q_dst_io = (struct uio *)crp->crp_buf;
1089	} else {
1090		ubsecstats.hst_badflags++;
1091		err = EINVAL;
1092		goto errout;	/* XXX we don't handle contiguous blocks! */
1093	}
1094
1095	bzero(&dmap->d_dma->d_mcr, sizeof(struct ubsec_mcr));
1096
1097	dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
1098	dmap->d_dma->d_mcr.mcr_flags = 0;
1099	q->q_crp = crp;
1100
1101	crd1 = crp->crp_desc;
1102	if (crd1 == NULL) {
1103		ubsecstats.hst_nodesc++;
1104		err = EINVAL;
1105		goto errout;
1106	}
1107	crd2 = crd1->crd_next;
1108
1109	if (crd2 == NULL) {
1110		if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
1111		    crd1->crd_alg == CRYPTO_SHA1_HMAC) {
1112			maccrd = crd1;
1113			enccrd = NULL;
1114		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
1115		    crd1->crd_alg == CRYPTO_3DES_CBC) {
1116			maccrd = NULL;
1117			enccrd = crd1;
1118		} else {
1119			ubsecstats.hst_badalg++;
1120			err = EINVAL;
1121			goto errout;
1122		}
1123	} else {
1124		if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
1125		    crd1->crd_alg == CRYPTO_SHA1_HMAC) &&
1126		    (crd2->crd_alg == CRYPTO_DES_CBC ||
1127			crd2->crd_alg == CRYPTO_3DES_CBC) &&
1128		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
1129			maccrd = crd1;
1130			enccrd = crd2;
1131		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
1132		    crd1->crd_alg == CRYPTO_3DES_CBC) &&
1133		    (crd2->crd_alg == CRYPTO_MD5_HMAC ||
1134			crd2->crd_alg == CRYPTO_SHA1_HMAC) &&
1135		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
1136			enccrd = crd1;
1137			maccrd = crd2;
1138		} else {
1139			/*
1140			 * We cannot order the ubsec as requested
1141			 */
1142			ubsecstats.hst_badalg++;
1143			err = EINVAL;
1144			goto errout;
1145		}
1146	}
1147
1148	if (enccrd) {
1149		if (enccrd->crd_flags & CRD_F_KEY_EXPLICIT) {
1150			ubsec_setup_enckey(ses, enccrd->crd_alg,
1151			    enccrd->crd_key);
1152		}
1153
1154		encoffset = enccrd->crd_skip;
1155		ctx.pc_flags |= htole16(UBS_PKTCTX_ENC_3DES);
1156
1157		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1158			q->q_flags |= UBSEC_QFLAGS_COPYOUTIV;
1159
1160			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1161				bcopy(enccrd->crd_iv, ctx.pc_iv, 8);
1162			else {
1163				ctx.pc_iv[0] = ses->ses_iv[0];
1164				ctx.pc_iv[1] = ses->ses_iv[1];
1165			}
1166
1167			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1168				crypto_copyback(crp->crp_flags, crp->crp_buf,
1169				    enccrd->crd_inject, 8, (caddr_t)ctx.pc_iv);
1170			}
1171		} else {
1172			ctx.pc_flags |= htole16(UBS_PKTCTX_INBOUND);
1173
1174			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1175				bcopy(enccrd->crd_iv, ctx.pc_iv, 8);
1176			else {
1177				crypto_copydata(crp->crp_flags, crp->crp_buf,
1178				    enccrd->crd_inject, 8, (caddr_t)ctx.pc_iv);
1179			}
1180		}
1181
1182		ctx.pc_deskey[0] = ses->ses_deskey[0];
1183		ctx.pc_deskey[1] = ses->ses_deskey[1];
1184		ctx.pc_deskey[2] = ses->ses_deskey[2];
1185		ctx.pc_deskey[3] = ses->ses_deskey[3];
1186		ctx.pc_deskey[4] = ses->ses_deskey[4];
1187		ctx.pc_deskey[5] = ses->ses_deskey[5];
1188		SWAP32(ctx.pc_iv[0]);
1189		SWAP32(ctx.pc_iv[1]);
1190	}
1191
1192	if (maccrd) {
1193		if (maccrd->crd_flags & CRD_F_KEY_EXPLICIT) {
1194			ubsec_setup_mackey(ses, maccrd->crd_alg,
1195			    maccrd->crd_key, maccrd->crd_klen / 8);
1196		}
1197
1198		macoffset = maccrd->crd_skip;
1199
1200		if (maccrd->crd_alg == CRYPTO_MD5_HMAC)
1201			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_MD5);
1202		else
1203			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
1204
1205		for (i = 0; i < 5; i++) {
1206			ctx.pc_hminner[i] = ses->ses_hminner[i];
1207			ctx.pc_hmouter[i] = ses->ses_hmouter[i];
1208
1209			HTOLE32(ctx.pc_hminner[i]);
1210			HTOLE32(ctx.pc_hmouter[i]);
1211		}
1212	}
1213
1214	if (enccrd && maccrd) {
1215		/*
1216		 * ubsec cannot handle packets where the end of encryption
1217		 * and authentication are not the same, or where the
1218		 * encrypted part begins before the authenticated part.
1219		 */
1220		if ((encoffset + enccrd->crd_len) !=
1221		    (macoffset + maccrd->crd_len)) {
1222			ubsecstats.hst_lenmismatch++;
1223			err = EINVAL;
1224			goto errout;
1225		}
1226		if (enccrd->crd_skip < maccrd->crd_skip) {
1227			ubsecstats.hst_skipmismatch++;
1228			err = EINVAL;
1229			goto errout;
1230		}
1231		sskip = maccrd->crd_skip;
1232		cpskip = dskip = enccrd->crd_skip;
1233		stheend = maccrd->crd_len;
1234		dtheend = enccrd->crd_len;
1235		coffset = enccrd->crd_skip - maccrd->crd_skip;
1236		cpoffset = cpskip + dtheend;
1237#ifdef UBSEC_DEBUG
1238		if (ubsec_debug) {
1239			printf("mac: skip %d, len %d, inject %d\n",
1240			    maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject);
1241			printf("enc: skip %d, len %d, inject %d\n",
1242			    enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject);
1243			printf("src: skip %d, len %d\n", sskip, stheend);
1244			printf("dst: skip %d, len %d\n", dskip, dtheend);
1245			printf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
1246			    coffset, stheend, cpskip, cpoffset);
1247		}
1248#endif
1249	} else {
1250		cpskip = dskip = sskip = macoffset + encoffset;
1251		dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
1252		cpoffset = cpskip + dtheend;
1253		coffset = 0;
1254	}
1255	ctx.pc_offset = htole16(coffset >> 2);
1256
1257	if (bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &q->q_src_map)) {
1258		ubsecstats.hst_nomap++;
1259		err = ENOMEM;
1260		goto errout;
1261	}
1262	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1263		if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
1264		    q->q_src_m, ubsec_op_cb, &q->q_src, BUS_DMA_NOWAIT) != 0) {
1265			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1266			q->q_src_map = NULL;
1267			ubsecstats.hst_noload++;
1268			err = ENOMEM;
1269			goto errout;
1270		}
1271	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1272		if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
1273		    q->q_src_io, ubsec_op_cb, &q->q_src, BUS_DMA_NOWAIT) != 0) {
1274			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1275			q->q_src_map = NULL;
1276			ubsecstats.hst_noload++;
1277			err = ENOMEM;
1278			goto errout;
1279		}
1280	}
1281	nicealign = ubsec_dmamap_aligned(&q->q_src);
1282
1283	dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
1284
1285#ifdef UBSEC_DEBUG
1286	if (ubsec_debug)
1287		printf("src skip: %d nicealign: %u\n", sskip, nicealign);
1288#endif
1289	for (i = j = 0; i < q->q_src_nsegs; i++) {
1290		struct ubsec_pktbuf *pb;
1291		bus_size_t packl = q->q_src_segs[i].ds_len;
1292		bus_addr_t packp = q->q_src_segs[i].ds_addr;
1293
1294		if (sskip >= packl) {
1295			sskip -= packl;
1296			continue;
1297		}
1298
1299		packl -= sskip;
1300		packp += sskip;
1301		sskip = 0;
1302
1303		if (packl > 0xfffc) {
1304			err = EIO;
1305			goto errout;
1306		}
1307
1308		if (j == 0)
1309			pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
1310		else
1311			pb = &dmap->d_dma->d_sbuf[j - 1];
1312
1313		pb->pb_addr = htole32(packp);
1314
1315		if (stheend) {
1316			if (packl > stheend) {
1317				pb->pb_len = htole32(stheend);
1318				stheend = 0;
1319			} else {
1320				pb->pb_len = htole32(packl);
1321				stheend -= packl;
1322			}
1323		} else
1324			pb->pb_len = htole32(packl);
1325
1326		if ((i + 1) == q->q_src_nsegs)
1327			pb->pb_next = 0;
1328		else
1329			pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1330			    offsetof(struct ubsec_dmachunk, d_sbuf[j]));
1331		j++;
1332	}
1333
1334	if (enccrd == NULL && maccrd != NULL) {
1335		dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
1336		dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
1337		dmap->d_dma->d_mcr.mcr_opktbuf.pb_next = htole32(dmap->d_alloc.dma_paddr +
1338		    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1339#ifdef UBSEC_DEBUG
1340		if (ubsec_debug)
1341			printf("opkt: %x %x %x\n",
1342			    dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
1343			    dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
1344			    dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
1345#endif
1346	} else {
1347		if (crp->crp_flags & CRYPTO_F_IOV) {
1348			if (!nicealign) {
1349				ubsecstats.hst_iovmisaligned++;
1350				err = EINVAL;
1351				goto errout;
1352			}
1353			if (bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1354			     &q->q_dst_map)) {
1355				ubsecstats.hst_nomap++;
1356				err = ENOMEM;
1357				goto errout;
1358			}
1359			if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
1360			    q->q_dst_io, ubsec_op_cb, &q->q_dst, BUS_DMA_NOWAIT) != 0) {
1361				bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1362				q->q_dst_map = NULL;
1363				ubsecstats.hst_noload++;
1364				err = ENOMEM;
1365				goto errout;
1366			}
1367		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1368			if (nicealign) {
1369				q->q_dst = q->q_src;
1370			} else {
1371				int totlen, len;
1372				struct mbuf *m, *top, **mp;
1373
1374				ubsecstats.hst_unaligned++;
1375				totlen = q->q_src_mapsize;
1376				if (totlen >= MINCLSIZE) {
1377					m = m_getcl(M_DONTWAIT, MT_DATA,
1378					    q->q_src_m->m_flags & M_PKTHDR);
1379					len = MCLBYTES;
1380				} else if (q->q_src_m->m_flags & M_PKTHDR) {
1381					m = m_gethdr(M_DONTWAIT, MT_DATA);
1382					len = MHLEN;
1383				} else {
1384					m = m_get(M_DONTWAIT, MT_DATA);
1385					len = MLEN;
1386				}
1387				if (m && q->q_src_m->m_flags & M_PKTHDR &&
1388				    !m_dup_pkthdr(m, q->q_src_m, M_DONTWAIT)) {
1389					m_free(m);
1390					m = NULL;
1391				}
1392				if (m == NULL) {
1393					ubsecstats.hst_nombuf++;
1394					err = sc->sc_nqueue ? ERESTART : ENOMEM;
1395					goto errout;
1396				}
1397				m->m_len = len = min(totlen, len);
1398				totlen -= len;
1399				top = m;
1400				mp = &top;
1401
1402				while (totlen > 0) {
1403					if (totlen >= MINCLSIZE) {
1404						m = m_getcl(M_DONTWAIT,
1405						    MT_DATA, 0);
1406						len = MCLBYTES;
1407					} else {
1408						m = m_get(M_DONTWAIT, MT_DATA);
1409						len = MLEN;
1410					}
1411					if (m == NULL) {
1412						m_freem(top);
1413						ubsecstats.hst_nombuf++;
1414						err = sc->sc_nqueue ? ERESTART : ENOMEM;
1415						goto errout;
1416					}
1417					m->m_len = len = min(totlen, len);
1418					totlen -= len;
1419					*mp = m;
1420					mp = &m->m_next;
1421				}
1422				q->q_dst_m = top;
1423				ubsec_mcopy(q->q_src_m, q->q_dst_m,
1424				    cpskip, cpoffset);
1425				if (bus_dmamap_create(sc->sc_dmat,
1426				    BUS_DMA_NOWAIT, &q->q_dst_map) != 0) {
1427					ubsecstats.hst_nomap++;
1428					err = ENOMEM;
1429					goto errout;
1430				}
1431				if (bus_dmamap_load_mbuf(sc->sc_dmat,
1432				    q->q_dst_map, q->q_dst_m,
1433				    ubsec_op_cb, &q->q_dst,
1434				    BUS_DMA_NOWAIT) != 0) {
1435					bus_dmamap_destroy(sc->sc_dmat,
1436					q->q_dst_map);
1437					q->q_dst_map = NULL;
1438					ubsecstats.hst_noload++;
1439					err = ENOMEM;
1440					goto errout;
1441				}
1442			}
1443		} else {
1444			ubsecstats.hst_badflags++;
1445			err = EINVAL;
1446			goto errout;
1447		}
1448
1449#ifdef UBSEC_DEBUG
1450		if (ubsec_debug)
1451			printf("dst skip: %d\n", dskip);
1452#endif
1453		for (i = j = 0; i < q->q_dst_nsegs; i++) {
1454			struct ubsec_pktbuf *pb;
1455			bus_size_t packl = q->q_dst_segs[i].ds_len;
1456			bus_addr_t packp = q->q_dst_segs[i].ds_addr;
1457
1458			if (dskip >= packl) {
1459				dskip -= packl;
1460				continue;
1461			}
1462
1463			packl -= dskip;
1464			packp += dskip;
1465			dskip = 0;
1466
1467			if (packl > 0xfffc) {
1468				err = EIO;
1469				goto errout;
1470			}
1471
1472			if (j == 0)
1473				pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
1474			else
1475				pb = &dmap->d_dma->d_dbuf[j - 1];
1476
1477			pb->pb_addr = htole32(packp);
1478
1479			if (dtheend) {
1480				if (packl > dtheend) {
1481					pb->pb_len = htole32(dtheend);
1482					dtheend = 0;
1483				} else {
1484					pb->pb_len = htole32(packl);
1485					dtheend -= packl;
1486				}
1487			} else
1488				pb->pb_len = htole32(packl);
1489
1490			if ((i + 1) == q->q_dst_nsegs) {
1491				if (maccrd)
1492					pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1493					    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1494				else
1495					pb->pb_next = 0;
1496			} else
1497				pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1498				    offsetof(struct ubsec_dmachunk, d_dbuf[j]));
1499			j++;
1500		}
1501	}
1502
1503	dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
1504	    offsetof(struct ubsec_dmachunk, d_ctx));
1505
1506	if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
1507		struct ubsec_pktctx_long *ctxl;
1508
1509		ctxl = (struct ubsec_pktctx_long *)(dmap->d_alloc.dma_vaddr +
1510		    offsetof(struct ubsec_dmachunk, d_ctx));
1511
1512		/* transform small context into long context */
1513		ctxl->pc_len = htole16(sizeof(struct ubsec_pktctx_long));
1514		ctxl->pc_type = htole16(UBS_PKTCTX_TYPE_IPSEC);
1515		ctxl->pc_flags = ctx.pc_flags;
1516		ctxl->pc_offset = ctx.pc_offset;
1517		for (i = 0; i < 6; i++)
1518			ctxl->pc_deskey[i] = ctx.pc_deskey[i];
1519		for (i = 0; i < 5; i++)
1520			ctxl->pc_hminner[i] = ctx.pc_hminner[i];
1521		for (i = 0; i < 5; i++)
1522			ctxl->pc_hmouter[i] = ctx.pc_hmouter[i];
1523		ctxl->pc_iv[0] = ctx.pc_iv[0];
1524		ctxl->pc_iv[1] = ctx.pc_iv[1];
1525	} else
1526		bcopy(&ctx, dmap->d_alloc.dma_vaddr +
1527		    offsetof(struct ubsec_dmachunk, d_ctx),
1528		    sizeof(struct ubsec_pktctx));
1529
1530	mtx_lock(&sc->sc_mcr1lock);
1531	SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
1532	sc->sc_nqueue++;
1533	ubsecstats.hst_ipackets++;
1534	ubsecstats.hst_ibytes += dmap->d_alloc.dma_size;
1535	if ((hint & CRYPTO_HINT_MORE) == 0 || sc->sc_nqueue >= UBS_MAX_AGGR)
1536		ubsec_feed(sc);
1537	mtx_unlock(&sc->sc_mcr1lock);
1538	return (0);
1539
1540errout:
1541	if (q != NULL) {
1542		if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
1543			m_freem(q->q_dst_m);
1544
1545		if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1546			bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1547			bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1548		}
1549		if (q->q_src_map != NULL) {
1550			bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1551			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1552		}
1553	}
1554	if (q != NULL || err == ERESTART) {
1555		mtx_lock(&sc->sc_freeqlock);
1556		if (q != NULL)
1557			SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1558		if (err == ERESTART)
1559			sc->sc_needwakeup |= CRYPTO_SYMQ;
1560		mtx_unlock(&sc->sc_freeqlock);
1561	}
1562	if (err != ERESTART) {
1563		crp->crp_etype = err;
1564		crypto_done(crp);
1565	}
1566	return (err);
1567}
1568
1569static void
1570ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q)
1571{
1572	struct cryptop *crp = (struct cryptop *)q->q_crp;
1573	struct cryptodesc *crd;
1574	struct ubsec_dma *dmap = q->q_dma;
1575
1576	ubsecstats.hst_opackets++;
1577	ubsecstats.hst_obytes += dmap->d_alloc.dma_size;
1578
1579	ubsec_dma_sync(&dmap->d_alloc,
1580	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1581	if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1582		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
1583		    BUS_DMASYNC_POSTREAD);
1584		bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1585		bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1586	}
1587	bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_POSTWRITE);
1588	bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1589	bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1590
1591	if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) {
1592		m_freem(q->q_src_m);
1593		crp->crp_buf = (caddr_t)q->q_dst_m;
1594	}
1595
1596	/* copy out IV for future use */
1597	if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) {
1598		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1599			if (crd->crd_alg != CRYPTO_DES_CBC &&
1600			    crd->crd_alg != CRYPTO_3DES_CBC)
1601				continue;
1602			crypto_copydata(crp->crp_flags, crp->crp_buf,
1603			    crd->crd_skip + crd->crd_len - 8, 8,
1604			    (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1605			break;
1606		}
1607	}
1608
1609	for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1610		if (crd->crd_alg != CRYPTO_MD5_HMAC &&
1611		    crd->crd_alg != CRYPTO_SHA1_HMAC)
1612			continue;
1613		crypto_copyback(crp->crp_flags, crp->crp_buf, crd->crd_inject,
1614		    sc->sc_sessions[q->q_sesn].ses_mlen,
1615		    (caddr_t)dmap->d_dma->d_macbuf);
1616		break;
1617	}
1618	mtx_lock(&sc->sc_freeqlock);
1619	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1620	mtx_unlock(&sc->sc_freeqlock);
1621	crypto_done(crp);
1622}
1623
1624static void
1625ubsec_mcopy(struct mbuf *srcm, struct mbuf *dstm, int hoffset, int toffset)
1626{
1627	int i, j, dlen, slen;
1628	caddr_t dptr, sptr;
1629
1630	j = 0;
1631	sptr = srcm->m_data;
1632	slen = srcm->m_len;
1633	dptr = dstm->m_data;
1634	dlen = dstm->m_len;
1635
1636	while (1) {
1637		for (i = 0; i < min(slen, dlen); i++) {
1638			if (j < hoffset || j >= toffset)
1639				*dptr++ = *sptr++;
1640			slen--;
1641			dlen--;
1642			j++;
1643		}
1644		if (slen == 0) {
1645			srcm = srcm->m_next;
1646			if (srcm == NULL)
1647				return;
1648			sptr = srcm->m_data;
1649			slen = srcm->m_len;
1650		}
1651		if (dlen == 0) {
1652			dstm = dstm->m_next;
1653			if (dstm == NULL)
1654				return;
1655			dptr = dstm->m_data;
1656			dlen = dstm->m_len;
1657		}
1658	}
1659}
1660
1661/*
1662 * feed the key generator, must be called at splimp() or higher.
1663 */
1664static int
1665ubsec_feed2(struct ubsec_softc *sc)
1666{
1667	struct ubsec_q2 *q;
1668
1669	while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) {
1670		if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL)
1671			break;
1672		q = SIMPLEQ_FIRST(&sc->sc_queue2);
1673
1674		ubsec_dma_sync(&q->q_mcr,
1675		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1676		ubsec_dma_sync(&q->q_ctx, BUS_DMASYNC_PREWRITE);
1677
1678		WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr);
1679		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, q_next);
1680		--sc->sc_nqueue2;
1681		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next);
1682	}
1683	return (0);
1684}
1685
1686/*
1687 * Callback for handling random numbers
1688 */
1689static void
1690ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q)
1691{
1692	struct cryptkop *krp;
1693	struct ubsec_ctx_keyop *ctx;
1694
1695	ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr;
1696	ubsec_dma_sync(&q->q_ctx, BUS_DMASYNC_POSTWRITE);
1697
1698	switch (q->q_type) {
1699#ifndef UBSEC_NO_RNG
1700	case UBS_CTXOP_RNGBYPASS: {
1701		struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q;
1702
1703		ubsec_dma_sync(&rng->rng_buf, BUS_DMASYNC_POSTREAD);
1704		(*sc->sc_harvest)(sc->sc_rndtest,
1705			rng->rng_buf.dma_vaddr,
1706			UBSEC_RNG_BUFSIZ*sizeof (u_int32_t));
1707		rng->rng_used = 0;
1708		callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
1709		break;
1710	}
1711#endif
1712	case UBS_CTXOP_MODEXP: {
1713		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
1714		u_int rlen, clen;
1715
1716		krp = me->me_krp;
1717		rlen = (me->me_modbits + 7) / 8;
1718		clen = (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8;
1719
1720		ubsec_dma_sync(&me->me_M, BUS_DMASYNC_POSTWRITE);
1721		ubsec_dma_sync(&me->me_E, BUS_DMASYNC_POSTWRITE);
1722		ubsec_dma_sync(&me->me_C, BUS_DMASYNC_POSTREAD);
1723		ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_POSTWRITE);
1724
1725		if (clen < rlen)
1726			krp->krp_status = E2BIG;
1727		else {
1728			if (sc->sc_flags & UBS_FLAGS_HWNORM) {
1729				bzero(krp->krp_param[krp->krp_iparams].crp_p,
1730				    (krp->krp_param[krp->krp_iparams].crp_nbits
1731					+ 7) / 8);
1732				bcopy(me->me_C.dma_vaddr,
1733				    krp->krp_param[krp->krp_iparams].crp_p,
1734				    (me->me_modbits + 7) / 8);
1735			} else
1736				ubsec_kshift_l(me->me_shiftbits,
1737				    me->me_C.dma_vaddr, me->me_normbits,
1738				    krp->krp_param[krp->krp_iparams].crp_p,
1739				    krp->krp_param[krp->krp_iparams].crp_nbits);
1740		}
1741
1742		crypto_kdone(krp);
1743
1744		/* bzero all potentially sensitive data */
1745		bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
1746		bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
1747		bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
1748		bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
1749
1750		/* Can't free here, so put us on the free list. */
1751		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &me->me_q, q_next);
1752		break;
1753	}
1754	case UBS_CTXOP_RSAPRIV: {
1755		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
1756		u_int len;
1757
1758		krp = rp->rpr_krp;
1759		ubsec_dma_sync(&rp->rpr_msgin, BUS_DMASYNC_POSTWRITE);
1760		ubsec_dma_sync(&rp->rpr_msgout, BUS_DMASYNC_POSTREAD);
1761
1762		len = (krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_nbits + 7) / 8;
1763		bcopy(rp->rpr_msgout.dma_vaddr,
1764		    krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_p, len);
1765
1766		crypto_kdone(krp);
1767
1768		bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size);
1769		bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size);
1770		bzero(rp->rpr_q.q_ctx.dma_vaddr, rp->rpr_q.q_ctx.dma_size);
1771
1772		/* Can't free here, so put us on the free list. */
1773		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &rp->rpr_q, q_next);
1774		break;
1775	}
1776	default:
1777		device_printf(sc->sc_dev, "unknown ctx op: %x\n",
1778		    letoh16(ctx->ctx_op));
1779		break;
1780	}
1781}
1782
1783#ifndef UBSEC_NO_RNG
1784static void
1785ubsec_rng(void *vsc)
1786{
1787	struct ubsec_softc *sc = vsc;
1788	struct ubsec_q2_rng *rng = &sc->sc_rng;
1789	struct ubsec_mcr *mcr;
1790	struct ubsec_ctx_rngbypass *ctx;
1791
1792	mtx_lock(&sc->sc_mcr2lock);
1793	if (rng->rng_used) {
1794		mtx_unlock(&sc->sc_mcr2lock);
1795		return;
1796	}
1797	sc->sc_nqueue2++;
1798	if (sc->sc_nqueue2 >= UBS_MAX_NQUEUE)
1799		goto out;
1800
1801	mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr;
1802	ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr;
1803
1804	mcr->mcr_pkts = htole16(1);
1805	mcr->mcr_flags = 0;
1806	mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr);
1807	mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0;
1808	mcr->mcr_ipktbuf.pb_len = 0;
1809	mcr->mcr_reserved = mcr->mcr_pktlen = 0;
1810	mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr);
1811	mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) &
1812	    UBS_PKTBUF_LEN);
1813	mcr->mcr_opktbuf.pb_next = 0;
1814
1815	ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass));
1816	ctx->rbp_op = htole16(UBS_CTXOP_RNGBYPASS);
1817	rng->rng_q.q_type = UBS_CTXOP_RNGBYPASS;
1818
1819	ubsec_dma_sync(&rng->rng_buf, BUS_DMASYNC_PREREAD);
1820
1821	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next);
1822	rng->rng_used = 1;
1823	ubsec_feed2(sc);
1824	ubsecstats.hst_rng++;
1825	mtx_unlock(&sc->sc_mcr2lock);
1826
1827	return;
1828
1829out:
1830	/*
1831	 * Something weird happened, generate our own call back.
1832	 */
1833	sc->sc_nqueue2--;
1834	mtx_unlock(&sc->sc_mcr2lock);
1835	callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
1836}
1837#endif /* UBSEC_NO_RNG */
1838
1839static void
1840ubsec_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1841{
1842	bus_addr_t *paddr = (bus_addr_t*) arg;
1843	*paddr = segs->ds_addr;
1844}
1845
1846static int
1847ubsec_dma_malloc(
1848	struct ubsec_softc *sc,
1849	bus_size_t size,
1850	struct ubsec_dma_alloc *dma,
1851	int mapflags
1852)
1853{
1854	int r;
1855
1856	/* XXX could specify sc_dmat as parent but that just adds overhead */
1857	r = bus_dma_tag_create(NULL,			/* parent */
1858			       1, 0,			/* alignment, bounds */
1859			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1860			       BUS_SPACE_MAXADDR,	/* highaddr */
1861			       NULL, NULL,		/* filter, filterarg */
1862			       size,			/* maxsize */
1863			       1,			/* nsegments */
1864			       size,			/* maxsegsize */
1865			       BUS_DMA_ALLOCNOW,	/* flags */
1866			       NULL, NULL,		/* lockfunc, lockarg */
1867			       &dma->dma_tag);
1868	if (r != 0) {
1869		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1870			"bus_dma_tag_create failed; error %u\n", r);
1871		goto fail_0;
1872	}
1873
1874	r = bus_dmamap_create(dma->dma_tag, BUS_DMA_NOWAIT, &dma->dma_map);
1875	if (r != 0) {
1876		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1877			"bus_dmamap_create failed; error %u\n", r);
1878		goto fail_1;
1879	}
1880
1881	r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
1882			     BUS_DMA_NOWAIT, &dma->dma_map);
1883	if (r != 0) {
1884		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1885			"bus_dmammem_alloc failed; size %zu, error %u\n",
1886			size, r);
1887		goto fail_2;
1888	}
1889
1890	r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
1891		            size,
1892			    ubsec_dmamap_cb,
1893			    &dma->dma_paddr,
1894			    mapflags | BUS_DMA_NOWAIT);
1895	if (r != 0) {
1896		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1897			"bus_dmamap_load failed; error %u\n", r);
1898		goto fail_3;
1899	}
1900
1901	dma->dma_size = size;
1902	return (0);
1903
1904fail_3:
1905	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1906fail_2:
1907	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1908fail_1:
1909	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1910	bus_dma_tag_destroy(dma->dma_tag);
1911fail_0:
1912	dma->dma_map = NULL;
1913	dma->dma_tag = NULL;
1914	return (r);
1915}
1916
1917static void
1918ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
1919{
1920	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1921	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1922	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1923	bus_dma_tag_destroy(dma->dma_tag);
1924}
1925
1926/*
1927 * Resets the board.  Values in the regesters are left as is
1928 * from the reset (i.e. initial values are assigned elsewhere).
1929 */
1930static void
1931ubsec_reset_board(struct ubsec_softc *sc)
1932{
1933    volatile u_int32_t ctrl;
1934
1935    ctrl = READ_REG(sc, BS_CTRL);
1936    ctrl |= BS_CTRL_RESET;
1937    WRITE_REG(sc, BS_CTRL, ctrl);
1938
1939    /*
1940     * Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
1941     */
1942    DELAY(10);
1943}
1944
1945/*
1946 * Init Broadcom registers
1947 */
1948static void
1949ubsec_init_board(struct ubsec_softc *sc)
1950{
1951	u_int32_t ctrl;
1952
1953	ctrl = READ_REG(sc, BS_CTRL);
1954	ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
1955	ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT;
1956
1957	if (sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG))
1958		ctrl |= BS_CTRL_MCR2INT;
1959	else
1960		ctrl &= ~BS_CTRL_MCR2INT;
1961
1962	if (sc->sc_flags & UBS_FLAGS_HWNORM)
1963		ctrl &= ~BS_CTRL_SWNORM;
1964
1965	WRITE_REG(sc, BS_CTRL, ctrl);
1966}
1967
1968/*
1969 * Init Broadcom PCI registers
1970 */
1971static void
1972ubsec_init_pciregs(device_t dev)
1973{
1974#if 0
1975	u_int32_t misc;
1976
1977	misc = pci_conf_read(pc, pa->pa_tag, BS_RTY_TOUT);
1978	misc = (misc & ~(UBS_PCI_RTY_MASK << UBS_PCI_RTY_SHIFT))
1979	    | ((UBS_DEF_RTY & 0xff) << UBS_PCI_RTY_SHIFT);
1980	misc = (misc & ~(UBS_PCI_TOUT_MASK << UBS_PCI_TOUT_SHIFT))
1981	    | ((UBS_DEF_TOUT & 0xff) << UBS_PCI_TOUT_SHIFT);
1982	pci_conf_write(pc, pa->pa_tag, BS_RTY_TOUT, misc);
1983#endif
1984
1985	/*
1986	 * This will set the cache line size to 1, this will
1987	 * force the BCM58xx chip just to do burst read/writes.
1988	 * Cache line read/writes are to slow
1989	 */
1990	pci_write_config(dev, PCIR_CACHELNSZ, UBS_DEF_CACHELINE, 1);
1991}
1992
1993/*
1994 * Clean up after a chip crash.
1995 * It is assumed that the caller in splimp()
1996 */
1997static void
1998ubsec_cleanchip(struct ubsec_softc *sc)
1999{
2000	struct ubsec_q *q;
2001
2002	while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
2003		q = SIMPLEQ_FIRST(&sc->sc_qchip);
2004		SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q_next);
2005		ubsec_free_q(sc, q);
2006	}
2007	sc->sc_nqchip = 0;
2008}
2009
2010/*
2011 * free a ubsec_q
2012 * It is assumed that the caller is within splimp().
2013 */
2014static int
2015ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
2016{
2017	struct ubsec_q *q2;
2018	struct cryptop *crp;
2019	int npkts;
2020	int i;
2021
2022	npkts = q->q_nstacked_mcrs;
2023
2024	for (i = 0; i < npkts; i++) {
2025		if(q->q_stacked_mcr[i]) {
2026			q2 = q->q_stacked_mcr[i];
2027
2028			if ((q2->q_dst_m != NULL) && (q2->q_src_m != q2->q_dst_m))
2029				m_freem(q2->q_dst_m);
2030
2031			crp = (struct cryptop *)q2->q_crp;
2032
2033			SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
2034
2035			crp->crp_etype = EFAULT;
2036			crypto_done(crp);
2037		} else {
2038			break;
2039		}
2040	}
2041
2042	/*
2043	 * Free header MCR
2044	 */
2045	if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
2046		m_freem(q->q_dst_m);
2047
2048	crp = (struct cryptop *)q->q_crp;
2049
2050	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
2051
2052	crp->crp_etype = EFAULT;
2053	crypto_done(crp);
2054	return(0);
2055}
2056
2057/*
2058 * Routine to reset the chip and clean up.
2059 * It is assumed that the caller is in splimp()
2060 */
2061static void
2062ubsec_totalreset(struct ubsec_softc *sc)
2063{
2064	ubsec_reset_board(sc);
2065	ubsec_init_board(sc);
2066	ubsec_cleanchip(sc);
2067}
2068
2069static int
2070ubsec_dmamap_aligned(struct ubsec_operand *op)
2071{
2072	int i;
2073
2074	for (i = 0; i < op->nsegs; i++) {
2075		if (op->segs[i].ds_addr & 3)
2076			return (0);
2077		if ((i != (op->nsegs - 1)) &&
2078		    (op->segs[i].ds_len & 3))
2079			return (0);
2080	}
2081	return (1);
2082}
2083
2084static void
2085ubsec_kfree(struct ubsec_softc *sc, struct ubsec_q2 *q)
2086{
2087	switch (q->q_type) {
2088	case UBS_CTXOP_MODEXP: {
2089		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
2090
2091		ubsec_dma_free(sc, &me->me_q.q_mcr);
2092		ubsec_dma_free(sc, &me->me_q.q_ctx);
2093		ubsec_dma_free(sc, &me->me_M);
2094		ubsec_dma_free(sc, &me->me_E);
2095		ubsec_dma_free(sc, &me->me_C);
2096		ubsec_dma_free(sc, &me->me_epb);
2097		free(me, M_DEVBUF);
2098		break;
2099	}
2100	case UBS_CTXOP_RSAPRIV: {
2101		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
2102
2103		ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2104		ubsec_dma_free(sc, &rp->rpr_q.q_ctx);
2105		ubsec_dma_free(sc, &rp->rpr_msgin);
2106		ubsec_dma_free(sc, &rp->rpr_msgout);
2107		free(rp, M_DEVBUF);
2108		break;
2109	}
2110	default:
2111		device_printf(sc->sc_dev, "invalid kfree 0x%x\n", q->q_type);
2112		break;
2113	}
2114}
2115
2116static int
2117ubsec_kprocess(device_t dev, struct cryptkop *krp, int hint)
2118{
2119	struct ubsec_softc *sc = device_get_softc(dev);
2120	int r;
2121
2122	if (krp == NULL || krp->krp_callback == NULL)
2123		return (EINVAL);
2124
2125	while (!SIMPLEQ_EMPTY(&sc->sc_q2free)) {
2126		struct ubsec_q2 *q;
2127
2128		q = SIMPLEQ_FIRST(&sc->sc_q2free);
2129		SIMPLEQ_REMOVE_HEAD(&sc->sc_q2free, q_next);
2130		ubsec_kfree(sc, q);
2131	}
2132
2133	switch (krp->krp_op) {
2134	case CRK_MOD_EXP:
2135		if (sc->sc_flags & UBS_FLAGS_HWNORM)
2136			r = ubsec_kprocess_modexp_hw(sc, krp, hint);
2137		else
2138			r = ubsec_kprocess_modexp_sw(sc, krp, hint);
2139		break;
2140	case CRK_MOD_EXP_CRT:
2141		return (ubsec_kprocess_rsapriv(sc, krp, hint));
2142	default:
2143		device_printf(sc->sc_dev, "kprocess: invalid op 0x%x\n",
2144		    krp->krp_op);
2145		krp->krp_status = EOPNOTSUPP;
2146		crypto_kdone(krp);
2147		return (0);
2148	}
2149	return (0);			/* silence compiler */
2150}
2151
2152/*
2153 * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (sw normalization)
2154 */
2155static int
2156ubsec_kprocess_modexp_sw(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
2157{
2158	struct ubsec_q2_modexp *me;
2159	struct ubsec_mcr *mcr;
2160	struct ubsec_ctx_modexp *ctx;
2161	struct ubsec_pktbuf *epb;
2162	int err = 0;
2163	u_int nbits, normbits, mbits, shiftbits, ebits;
2164
2165	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2166	if (me == NULL) {
2167		err = ENOMEM;
2168		goto errout;
2169	}
2170	bzero(me, sizeof *me);
2171	me->me_krp = krp;
2172	me->me_q.q_type = UBS_CTXOP_MODEXP;
2173
2174	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2175	if (nbits <= 512)
2176		normbits = 512;
2177	else if (nbits <= 768)
2178		normbits = 768;
2179	else if (nbits <= 1024)
2180		normbits = 1024;
2181	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2182		normbits = 1536;
2183	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2184		normbits = 2048;
2185	else {
2186		err = E2BIG;
2187		goto errout;
2188	}
2189
2190	shiftbits = normbits - nbits;
2191
2192	me->me_modbits = nbits;
2193	me->me_shiftbits = shiftbits;
2194	me->me_normbits = normbits;
2195
2196	/* Sanity check: result bits must be >= true modulus bits. */
2197	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2198		err = ERANGE;
2199		goto errout;
2200	}
2201
2202	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2203	    &me->me_q.q_mcr, 0)) {
2204		err = ENOMEM;
2205		goto errout;
2206	}
2207	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2208
2209	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2210	    &me->me_q.q_ctx, 0)) {
2211		err = ENOMEM;
2212		goto errout;
2213	}
2214
2215	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2216	if (mbits > nbits) {
2217		err = E2BIG;
2218		goto errout;
2219	}
2220	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2221		err = ENOMEM;
2222		goto errout;
2223	}
2224	ubsec_kshift_r(shiftbits,
2225	    krp->krp_param[UBS_MODEXP_PAR_M].crp_p, mbits,
2226	    me->me_M.dma_vaddr, normbits);
2227
2228	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2229		err = ENOMEM;
2230		goto errout;
2231	}
2232	bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2233
2234	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2235	if (ebits > nbits) {
2236		err = E2BIG;
2237		goto errout;
2238	}
2239	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2240		err = ENOMEM;
2241		goto errout;
2242	}
2243	ubsec_kshift_r(shiftbits,
2244	    krp->krp_param[UBS_MODEXP_PAR_E].crp_p, ebits,
2245	    me->me_E.dma_vaddr, normbits);
2246
2247	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2248	    &me->me_epb, 0)) {
2249		err = ENOMEM;
2250		goto errout;
2251	}
2252	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2253	epb->pb_addr = htole32(me->me_E.dma_paddr);
2254	epb->pb_next = 0;
2255	epb->pb_len = htole32(normbits / 8);
2256
2257#ifdef UBSEC_DEBUG
2258	if (ubsec_debug) {
2259		printf("Epb ");
2260		ubsec_dump_pb(epb);
2261	}
2262#endif
2263
2264	mcr->mcr_pkts = htole16(1);
2265	mcr->mcr_flags = 0;
2266	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2267	mcr->mcr_reserved = 0;
2268	mcr->mcr_pktlen = 0;
2269
2270	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2271	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2272	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2273
2274	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2275	mcr->mcr_opktbuf.pb_next = 0;
2276	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2277
2278#ifdef DIAGNOSTIC
2279	/* Misaligned output buffer will hang the chip. */
2280	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2281		panic("%s: modexp invalid addr 0x%x\n",
2282		    device_get_nameunit(sc->sc_dev),
2283		    letoh32(mcr->mcr_opktbuf.pb_addr));
2284	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2285		panic("%s: modexp invalid len 0x%x\n",
2286		    device_get_nameunit(sc->sc_dev),
2287		    letoh32(mcr->mcr_opktbuf.pb_len));
2288#endif
2289
2290	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2291	bzero(ctx, sizeof(*ctx));
2292	ubsec_kshift_r(shiftbits,
2293	    krp->krp_param[UBS_MODEXP_PAR_N].crp_p, nbits,
2294	    ctx->me_N, normbits);
2295	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2296	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2297	ctx->me_E_len = htole16(nbits);
2298	ctx->me_N_len = htole16(nbits);
2299
2300#ifdef UBSEC_DEBUG
2301	if (ubsec_debug) {
2302		ubsec_dump_mcr(mcr);
2303		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2304	}
2305#endif
2306
2307	/*
2308	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2309	 * everything else.
2310	 */
2311	ubsec_dma_sync(&me->me_M, BUS_DMASYNC_PREWRITE);
2312	ubsec_dma_sync(&me->me_E, BUS_DMASYNC_PREWRITE);
2313	ubsec_dma_sync(&me->me_C, BUS_DMASYNC_PREREAD);
2314	ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_PREWRITE);
2315
2316	/* Enqueue and we're done... */
2317	mtx_lock(&sc->sc_mcr2lock);
2318	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2319	ubsec_feed2(sc);
2320	ubsecstats.hst_modexp++;
2321	mtx_unlock(&sc->sc_mcr2lock);
2322
2323	return (0);
2324
2325errout:
2326	if (me != NULL) {
2327		if (me->me_q.q_mcr.dma_map != NULL)
2328			ubsec_dma_free(sc, &me->me_q.q_mcr);
2329		if (me->me_q.q_ctx.dma_map != NULL) {
2330			bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
2331			ubsec_dma_free(sc, &me->me_q.q_ctx);
2332		}
2333		if (me->me_M.dma_map != NULL) {
2334			bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
2335			ubsec_dma_free(sc, &me->me_M);
2336		}
2337		if (me->me_E.dma_map != NULL) {
2338			bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
2339			ubsec_dma_free(sc, &me->me_E);
2340		}
2341		if (me->me_C.dma_map != NULL) {
2342			bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2343			ubsec_dma_free(sc, &me->me_C);
2344		}
2345		if (me->me_epb.dma_map != NULL)
2346			ubsec_dma_free(sc, &me->me_epb);
2347		free(me, M_DEVBUF);
2348	}
2349	krp->krp_status = err;
2350	crypto_kdone(krp);
2351	return (0);
2352}
2353
2354/*
2355 * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (hw normalization)
2356 */
2357static int
2358ubsec_kprocess_modexp_hw(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
2359{
2360	struct ubsec_q2_modexp *me;
2361	struct ubsec_mcr *mcr;
2362	struct ubsec_ctx_modexp *ctx;
2363	struct ubsec_pktbuf *epb;
2364	int err = 0;
2365	u_int nbits, normbits, mbits, shiftbits, ebits;
2366
2367	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2368	if (me == NULL) {
2369		err = ENOMEM;
2370		goto errout;
2371	}
2372	bzero(me, sizeof *me);
2373	me->me_krp = krp;
2374	me->me_q.q_type = UBS_CTXOP_MODEXP;
2375
2376	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2377	if (nbits <= 512)
2378		normbits = 512;
2379	else if (nbits <= 768)
2380		normbits = 768;
2381	else if (nbits <= 1024)
2382		normbits = 1024;
2383	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2384		normbits = 1536;
2385	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2386		normbits = 2048;
2387	else {
2388		err = E2BIG;
2389		goto errout;
2390	}
2391
2392	shiftbits = normbits - nbits;
2393
2394	/* XXX ??? */
2395	me->me_modbits = nbits;
2396	me->me_shiftbits = shiftbits;
2397	me->me_normbits = normbits;
2398
2399	/* Sanity check: result bits must be >= true modulus bits. */
2400	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2401		err = ERANGE;
2402		goto errout;
2403	}
2404
2405	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2406	    &me->me_q.q_mcr, 0)) {
2407		err = ENOMEM;
2408		goto errout;
2409	}
2410	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2411
2412	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2413	    &me->me_q.q_ctx, 0)) {
2414		err = ENOMEM;
2415		goto errout;
2416	}
2417
2418	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2419	if (mbits > nbits) {
2420		err = E2BIG;
2421		goto errout;
2422	}
2423	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2424		err = ENOMEM;
2425		goto errout;
2426	}
2427	bzero(me->me_M.dma_vaddr, normbits / 8);
2428	bcopy(krp->krp_param[UBS_MODEXP_PAR_M].crp_p,
2429	    me->me_M.dma_vaddr, (mbits + 7) / 8);
2430
2431	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2432		err = ENOMEM;
2433		goto errout;
2434	}
2435	bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2436
2437	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2438	if (ebits > nbits) {
2439		err = E2BIG;
2440		goto errout;
2441	}
2442	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2443		err = ENOMEM;
2444		goto errout;
2445	}
2446	bzero(me->me_E.dma_vaddr, normbits / 8);
2447	bcopy(krp->krp_param[UBS_MODEXP_PAR_E].crp_p,
2448	    me->me_E.dma_vaddr, (ebits + 7) / 8);
2449
2450	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2451	    &me->me_epb, 0)) {
2452		err = ENOMEM;
2453		goto errout;
2454	}
2455	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2456	epb->pb_addr = htole32(me->me_E.dma_paddr);
2457	epb->pb_next = 0;
2458	epb->pb_len = htole32((ebits + 7) / 8);
2459
2460#ifdef UBSEC_DEBUG
2461	if (ubsec_debug) {
2462		printf("Epb ");
2463		ubsec_dump_pb(epb);
2464	}
2465#endif
2466
2467	mcr->mcr_pkts = htole16(1);
2468	mcr->mcr_flags = 0;
2469	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2470	mcr->mcr_reserved = 0;
2471	mcr->mcr_pktlen = 0;
2472
2473	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2474	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2475	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2476
2477	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2478	mcr->mcr_opktbuf.pb_next = 0;
2479	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2480
2481#ifdef DIAGNOSTIC
2482	/* Misaligned output buffer will hang the chip. */
2483	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2484		panic("%s: modexp invalid addr 0x%x\n",
2485		    device_get_nameunit(sc->sc_dev),
2486		    letoh32(mcr->mcr_opktbuf.pb_addr));
2487	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2488		panic("%s: modexp invalid len 0x%x\n",
2489		    device_get_nameunit(sc->sc_dev),
2490		    letoh32(mcr->mcr_opktbuf.pb_len));
2491#endif
2492
2493	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2494	bzero(ctx, sizeof(*ctx));
2495	bcopy(krp->krp_param[UBS_MODEXP_PAR_N].crp_p, ctx->me_N,
2496	    (nbits + 7) / 8);
2497	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2498	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2499	ctx->me_E_len = htole16(ebits);
2500	ctx->me_N_len = htole16(nbits);
2501
2502#ifdef UBSEC_DEBUG
2503	if (ubsec_debug) {
2504		ubsec_dump_mcr(mcr);
2505		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2506	}
2507#endif
2508
2509	/*
2510	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2511	 * everything else.
2512	 */
2513	ubsec_dma_sync(&me->me_M, BUS_DMASYNC_PREWRITE);
2514	ubsec_dma_sync(&me->me_E, BUS_DMASYNC_PREWRITE);
2515	ubsec_dma_sync(&me->me_C, BUS_DMASYNC_PREREAD);
2516	ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_PREWRITE);
2517
2518	/* Enqueue and we're done... */
2519	mtx_lock(&sc->sc_mcr2lock);
2520	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2521	ubsec_feed2(sc);
2522	mtx_unlock(&sc->sc_mcr2lock);
2523
2524	return (0);
2525
2526errout:
2527	if (me != NULL) {
2528		if (me->me_q.q_mcr.dma_map != NULL)
2529			ubsec_dma_free(sc, &me->me_q.q_mcr);
2530		if (me->me_q.q_ctx.dma_map != NULL) {
2531			bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
2532			ubsec_dma_free(sc, &me->me_q.q_ctx);
2533		}
2534		if (me->me_M.dma_map != NULL) {
2535			bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
2536			ubsec_dma_free(sc, &me->me_M);
2537		}
2538		if (me->me_E.dma_map != NULL) {
2539			bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
2540			ubsec_dma_free(sc, &me->me_E);
2541		}
2542		if (me->me_C.dma_map != NULL) {
2543			bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2544			ubsec_dma_free(sc, &me->me_C);
2545		}
2546		if (me->me_epb.dma_map != NULL)
2547			ubsec_dma_free(sc, &me->me_epb);
2548		free(me, M_DEVBUF);
2549	}
2550	krp->krp_status = err;
2551	crypto_kdone(krp);
2552	return (0);
2553}
2554
2555static int
2556ubsec_kprocess_rsapriv(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
2557{
2558	struct ubsec_q2_rsapriv *rp = NULL;
2559	struct ubsec_mcr *mcr;
2560	struct ubsec_ctx_rsapriv *ctx;
2561	int err = 0;
2562	u_int padlen, msglen;
2563
2564	msglen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_P]);
2565	padlen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_Q]);
2566	if (msglen > padlen)
2567		padlen = msglen;
2568
2569	if (padlen <= 256)
2570		padlen = 256;
2571	else if (padlen <= 384)
2572		padlen = 384;
2573	else if (padlen <= 512)
2574		padlen = 512;
2575	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 768)
2576		padlen = 768;
2577	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 1024)
2578		padlen = 1024;
2579	else {
2580		err = E2BIG;
2581		goto errout;
2582	}
2583
2584	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DP]) > padlen) {
2585		err = E2BIG;
2586		goto errout;
2587	}
2588
2589	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DQ]) > padlen) {
2590		err = E2BIG;
2591		goto errout;
2592	}
2593
2594	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_PINV]) > padlen) {
2595		err = E2BIG;
2596		goto errout;
2597	}
2598
2599	rp = (struct ubsec_q2_rsapriv *)malloc(sizeof *rp, M_DEVBUF, M_NOWAIT);
2600	if (rp == NULL)
2601		return (ENOMEM);
2602	bzero(rp, sizeof *rp);
2603	rp->rpr_krp = krp;
2604	rp->rpr_q.q_type = UBS_CTXOP_RSAPRIV;
2605
2606	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2607	    &rp->rpr_q.q_mcr, 0)) {
2608		err = ENOMEM;
2609		goto errout;
2610	}
2611	mcr = (struct ubsec_mcr *)rp->rpr_q.q_mcr.dma_vaddr;
2612
2613	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rsapriv),
2614	    &rp->rpr_q.q_ctx, 0)) {
2615		err = ENOMEM;
2616		goto errout;
2617	}
2618	ctx = (struct ubsec_ctx_rsapriv *)rp->rpr_q.q_ctx.dma_vaddr;
2619	bzero(ctx, sizeof *ctx);
2620
2621	/* Copy in p */
2622	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_p,
2623	    &ctx->rpr_buf[0 * (padlen / 8)],
2624	    (krp->krp_param[UBS_RSAPRIV_PAR_P].crp_nbits + 7) / 8);
2625
2626	/* Copy in q */
2627	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_p,
2628	    &ctx->rpr_buf[1 * (padlen / 8)],
2629	    (krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_nbits + 7) / 8);
2630
2631	/* Copy in dp */
2632	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_p,
2633	    &ctx->rpr_buf[2 * (padlen / 8)],
2634	    (krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_nbits + 7) / 8);
2635
2636	/* Copy in dq */
2637	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_p,
2638	    &ctx->rpr_buf[3 * (padlen / 8)],
2639	    (krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_nbits + 7) / 8);
2640
2641	/* Copy in pinv */
2642	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_p,
2643	    &ctx->rpr_buf[4 * (padlen / 8)],
2644	    (krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_nbits + 7) / 8);
2645
2646	msglen = padlen * 2;
2647
2648	/* Copy in input message (aligned buffer/length). */
2649	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGIN]) > msglen) {
2650		/* Is this likely? */
2651		err = E2BIG;
2652		goto errout;
2653	}
2654	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgin, 0)) {
2655		err = ENOMEM;
2656		goto errout;
2657	}
2658	bzero(rp->rpr_msgin.dma_vaddr, (msglen + 7) / 8);
2659	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_p,
2660	    rp->rpr_msgin.dma_vaddr,
2661	    (krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_nbits + 7) / 8);
2662
2663	/* Prepare space for output message (aligned buffer/length). */
2664	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT]) < msglen) {
2665		/* Is this likely? */
2666		err = E2BIG;
2667		goto errout;
2668	}
2669	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgout, 0)) {
2670		err = ENOMEM;
2671		goto errout;
2672	}
2673	bzero(rp->rpr_msgout.dma_vaddr, (msglen + 7) / 8);
2674
2675	mcr->mcr_pkts = htole16(1);
2676	mcr->mcr_flags = 0;
2677	mcr->mcr_cmdctxp = htole32(rp->rpr_q.q_ctx.dma_paddr);
2678	mcr->mcr_ipktbuf.pb_addr = htole32(rp->rpr_msgin.dma_paddr);
2679	mcr->mcr_ipktbuf.pb_next = 0;
2680	mcr->mcr_ipktbuf.pb_len = htole32(rp->rpr_msgin.dma_size);
2681	mcr->mcr_reserved = 0;
2682	mcr->mcr_pktlen = htole16(msglen);
2683	mcr->mcr_opktbuf.pb_addr = htole32(rp->rpr_msgout.dma_paddr);
2684	mcr->mcr_opktbuf.pb_next = 0;
2685	mcr->mcr_opktbuf.pb_len = htole32(rp->rpr_msgout.dma_size);
2686
2687#ifdef DIAGNOSTIC
2688	if (rp->rpr_msgin.dma_paddr & 3 || rp->rpr_msgin.dma_size & 3) {
2689		panic("%s: rsapriv: invalid msgin %x(0x%jx)",
2690		    device_get_nameunit(sc->sc_dev),
2691		    rp->rpr_msgin.dma_paddr, (uintmax_t)rp->rpr_msgin.dma_size);
2692	}
2693	if (rp->rpr_msgout.dma_paddr & 3 || rp->rpr_msgout.dma_size & 3) {
2694		panic("%s: rsapriv: invalid msgout %x(0x%jx)",
2695		    device_get_nameunit(sc->sc_dev),
2696		    rp->rpr_msgout.dma_paddr, (uintmax_t)rp->rpr_msgout.dma_size);
2697	}
2698#endif
2699
2700	ctx->rpr_len = (sizeof(u_int16_t) * 4) + (5 * (padlen / 8));
2701	ctx->rpr_op = htole16(UBS_CTXOP_RSAPRIV);
2702	ctx->rpr_q_len = htole16(padlen);
2703	ctx->rpr_p_len = htole16(padlen);
2704
2705	/*
2706	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2707	 * everything else.
2708	 */
2709	ubsec_dma_sync(&rp->rpr_msgin, BUS_DMASYNC_PREWRITE);
2710	ubsec_dma_sync(&rp->rpr_msgout, BUS_DMASYNC_PREREAD);
2711
2712	/* Enqueue and we're done... */
2713	mtx_lock(&sc->sc_mcr2lock);
2714	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rp->rpr_q, q_next);
2715	ubsec_feed2(sc);
2716	ubsecstats.hst_modexpcrt++;
2717	mtx_unlock(&sc->sc_mcr2lock);
2718	return (0);
2719
2720errout:
2721	if (rp != NULL) {
2722		if (rp->rpr_q.q_mcr.dma_map != NULL)
2723			ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2724		if (rp->rpr_msgin.dma_map != NULL) {
2725			bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size);
2726			ubsec_dma_free(sc, &rp->rpr_msgin);
2727		}
2728		if (rp->rpr_msgout.dma_map != NULL) {
2729			bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size);
2730			ubsec_dma_free(sc, &rp->rpr_msgout);
2731		}
2732		free(rp, M_DEVBUF);
2733	}
2734	krp->krp_status = err;
2735	crypto_kdone(krp);
2736	return (0);
2737}
2738
2739#ifdef UBSEC_DEBUG
2740static void
2741ubsec_dump_pb(volatile struct ubsec_pktbuf *pb)
2742{
2743	printf("addr 0x%x (0x%x) next 0x%x\n",
2744	    pb->pb_addr, pb->pb_len, pb->pb_next);
2745}
2746
2747static void
2748ubsec_dump_ctx2(struct ubsec_ctx_keyop *c)
2749{
2750	printf("CTX (0x%x):\n", c->ctx_len);
2751	switch (letoh16(c->ctx_op)) {
2752	case UBS_CTXOP_RNGBYPASS:
2753	case UBS_CTXOP_RNGSHA1:
2754		break;
2755	case UBS_CTXOP_MODEXP:
2756	{
2757		struct ubsec_ctx_modexp *cx = (void *)c;
2758		int i, len;
2759
2760		printf(" Elen %u, Nlen %u\n",
2761		    letoh16(cx->me_E_len), letoh16(cx->me_N_len));
2762		len = (cx->me_N_len + 7)/8;
2763		for (i = 0; i < len; i++)
2764			printf("%s%02x", (i == 0) ? " N: " : ":", cx->me_N[i]);
2765		printf("\n");
2766		break;
2767	}
2768	default:
2769		printf("unknown context: %x\n", c->ctx_op);
2770	}
2771	printf("END CTX\n");
2772}
2773
2774static void
2775ubsec_dump_mcr(struct ubsec_mcr *mcr)
2776{
2777	volatile struct ubsec_mcr_add *ma;
2778	int i;
2779
2780	printf("MCR:\n");
2781	printf(" pkts: %u, flags 0x%x\n",
2782	    letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
2783	ma = (volatile struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
2784	for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
2785		printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
2786		    letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
2787		    letoh16(ma->mcr_reserved));
2788		printf(" %d: ipkt ", i);
2789		ubsec_dump_pb(&ma->mcr_ipktbuf);
2790		printf(" %d: opkt ", i);
2791		ubsec_dump_pb(&ma->mcr_opktbuf);
2792		ma++;
2793	}
2794	printf("END MCR\n");
2795}
2796#endif /* UBSEC_DEBUG */
2797
2798/*
2799 * Return the number of significant bits of a big number.
2800 */
2801static int
2802ubsec_ksigbits(struct crparam *cr)
2803{
2804	u_int plen = (cr->crp_nbits + 7) / 8;
2805	int i, sig = plen * 8;
2806	u_int8_t c, *p = cr->crp_p;
2807
2808	for (i = plen - 1; i >= 0; i--) {
2809		c = p[i];
2810		if (c != 0) {
2811			while ((c & 0x80) == 0) {
2812				sig--;
2813				c <<= 1;
2814			}
2815			break;
2816		}
2817		sig -= 8;
2818	}
2819	return (sig);
2820}
2821
2822static void
2823ubsec_kshift_r(
2824	u_int shiftbits,
2825	u_int8_t *src, u_int srcbits,
2826	u_int8_t *dst, u_int dstbits)
2827{
2828	u_int slen, dlen;
2829	int i, si, di, n;
2830
2831	slen = (srcbits + 7) / 8;
2832	dlen = (dstbits + 7) / 8;
2833
2834	for (i = 0; i < slen; i++)
2835		dst[i] = src[i];
2836	for (i = 0; i < dlen - slen; i++)
2837		dst[slen + i] = 0;
2838
2839	n = shiftbits / 8;
2840	if (n != 0) {
2841		si = dlen - n - 1;
2842		di = dlen - 1;
2843		while (si >= 0)
2844			dst[di--] = dst[si--];
2845		while (di >= 0)
2846			dst[di--] = 0;
2847	}
2848
2849	n = shiftbits % 8;
2850	if (n != 0) {
2851		for (i = dlen - 1; i > 0; i--)
2852			dst[i] = (dst[i] << n) |
2853			    (dst[i - 1] >> (8 - n));
2854		dst[0] = dst[0] << n;
2855	}
2856}
2857
2858static void
2859ubsec_kshift_l(
2860	u_int shiftbits,
2861	u_int8_t *src, u_int srcbits,
2862	u_int8_t *dst, u_int dstbits)
2863{
2864	int slen, dlen, i, n;
2865
2866	slen = (srcbits + 7) / 8;
2867	dlen = (dstbits + 7) / 8;
2868
2869	n = shiftbits / 8;
2870	for (i = 0; i < slen; i++)
2871		dst[i] = src[i + n];
2872	for (i = 0; i < dlen - slen; i++)
2873		dst[slen + i] = 0;
2874
2875	n = shiftbits % 8;
2876	if (n != 0) {
2877		for (i = 0; i < (dlen - 1); i++)
2878			dst[i] = (dst[i] >> n) | (dst[i + 1] << (8 - n));
2879		dst[dlen - 1] = dst[dlen - 1] >> n;
2880	}
2881}
2882