ubsec.c revision 158651
1/*	$OpenBSD: ubsec.c,v 1.115 2002/09/24 18:33:26 jason Exp $	*/
2
3/*-
4 * Copyright (c) 2000 Jason L. Wright (jason@thought.net)
5 * Copyright (c) 2000 Theo de Raadt (deraadt@openbsd.org)
6 * Copyright (c) 2001 Patrik Lindergren (patrik@ipunplugged.com)
7 *
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by Jason L. Wright
21 * 4. The name of the author may not be used to endorse or promote products
22 *    derived from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
25 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
26 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
27 * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
28 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
29 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
30 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
32 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
33 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 *
36 * Effort sponsored in part by the Defense Advanced Research Projects
37 * Agency (DARPA) and Air Force Research Laboratory, Air Force
38 * Materiel Command, USAF, under agreement number F30602-01-2-0537.
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/dev/ubsec/ubsec.c 158651 2006-05-16 14:37:58Z phk $");
43
44/*
45 * uBsec 5[56]01, 58xx hardware crypto accelerator
46 */
47
48#include "opt_ubsec.h"
49
50#include <sys/param.h>
51#include <sys/systm.h>
52#include <sys/proc.h>
53#include <sys/errno.h>
54#include <sys/malloc.h>
55#include <sys/kernel.h>
56#include <sys/module.h>
57#include <sys/mbuf.h>
58#include <sys/lock.h>
59#include <sys/mutex.h>
60#include <sys/sysctl.h>
61#include <sys/endian.h>
62
63#include <vm/vm.h>
64#include <vm/pmap.h>
65
66#include <machine/bus.h>
67#include <machine/resource.h>
68#include <sys/bus.h>
69#include <sys/rman.h>
70
71#include <crypto/sha1.h>
72#include <opencrypto/cryptodev.h>
73#include <opencrypto/cryptosoft.h>
74#include <sys/md5.h>
75#include <sys/random.h>
76
77#include <dev/pci/pcivar.h>
78#include <dev/pci/pcireg.h>
79
80/* grr, #defines for gratuitous incompatibility in queue.h */
81#define	SIMPLEQ_HEAD		STAILQ_HEAD
82#define	SIMPLEQ_ENTRY		STAILQ_ENTRY
83#define	SIMPLEQ_INIT		STAILQ_INIT
84#define	SIMPLEQ_INSERT_TAIL	STAILQ_INSERT_TAIL
85#define	SIMPLEQ_EMPTY		STAILQ_EMPTY
86#define	SIMPLEQ_FIRST		STAILQ_FIRST
87#define	SIMPLEQ_REMOVE_HEAD	STAILQ_REMOVE_HEAD_UNTIL
88#define	SIMPLEQ_FOREACH		STAILQ_FOREACH
89/* ditto for endian.h */
90#define	letoh16(x)		le16toh(x)
91#define	letoh32(x)		le32toh(x)
92
93#ifdef UBSEC_RNDTEST
94#include <dev/rndtest/rndtest.h>
95#endif
96#include <dev/ubsec/ubsecreg.h>
97#include <dev/ubsec/ubsecvar.h>
98
99/*
100 * Prototypes and count for the pci_device structure
101 */
102static	int ubsec_probe(device_t);
103static	int ubsec_attach(device_t);
104static	int ubsec_detach(device_t);
105static	int ubsec_suspend(device_t);
106static	int ubsec_resume(device_t);
107static	void ubsec_shutdown(device_t);
108
109static device_method_t ubsec_methods[] = {
110	/* Device interface */
111	DEVMETHOD(device_probe,		ubsec_probe),
112	DEVMETHOD(device_attach,	ubsec_attach),
113	DEVMETHOD(device_detach,	ubsec_detach),
114	DEVMETHOD(device_suspend,	ubsec_suspend),
115	DEVMETHOD(device_resume,	ubsec_resume),
116	DEVMETHOD(device_shutdown,	ubsec_shutdown),
117
118	/* bus interface */
119	DEVMETHOD(bus_print_child,	bus_generic_print_child),
120	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
121
122	{ 0, 0 }
123};
124static driver_t ubsec_driver = {
125	"ubsec",
126	ubsec_methods,
127	sizeof (struct ubsec_softc)
128};
129static devclass_t ubsec_devclass;
130
131DRIVER_MODULE(ubsec, pci, ubsec_driver, ubsec_devclass, 0, 0);
132MODULE_DEPEND(ubsec, crypto, 1, 1, 1);
133#ifdef UBSEC_RNDTEST
134MODULE_DEPEND(ubsec, rndtest, 1, 1, 1);
135#endif
136
137static	void ubsec_intr(void *);
138static	int ubsec_newsession(void *, u_int32_t *, struct cryptoini *);
139static	int ubsec_freesession(void *, u_int64_t);
140static	int ubsec_process(void *, struct cryptop *, int);
141static	void ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
142static	void ubsec_feed(struct ubsec_softc *);
143static	void ubsec_mcopy(struct mbuf *, struct mbuf *, int, int);
144static	void ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *);
145static	int ubsec_feed2(struct ubsec_softc *);
146static	void ubsec_rng(void *);
147static	int ubsec_dma_malloc(struct ubsec_softc *, bus_size_t,
148			     struct ubsec_dma_alloc *, int);
149#define	ubsec_dma_sync(_dma, _flags) \
150	bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
151static	void ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
152static	int ubsec_dmamap_aligned(struct ubsec_operand *op);
153
154static	void ubsec_reset_board(struct ubsec_softc *sc);
155static	void ubsec_init_board(struct ubsec_softc *sc);
156static	void ubsec_init_pciregs(device_t dev);
157static	void ubsec_totalreset(struct ubsec_softc *sc);
158
159static	int ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q);
160
161static	int ubsec_kprocess(void*, struct cryptkop *, int);
162static	int ubsec_kprocess_modexp_hw(struct ubsec_softc *, struct cryptkop *, int);
163static	int ubsec_kprocess_modexp_sw(struct ubsec_softc *, struct cryptkop *, int);
164static	int ubsec_kprocess_rsapriv(struct ubsec_softc *, struct cryptkop *, int);
165static	void ubsec_kfree(struct ubsec_softc *, struct ubsec_q2 *);
166static	int ubsec_ksigbits(struct crparam *);
167static	void ubsec_kshift_r(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
168static	void ubsec_kshift_l(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
169
170SYSCTL_NODE(_hw, OID_AUTO, ubsec, CTLFLAG_RD, 0, "Broadcom driver parameters");
171
172#ifdef UBSEC_DEBUG
173static	void ubsec_dump_pb(volatile struct ubsec_pktbuf *);
174static	void ubsec_dump_mcr(struct ubsec_mcr *);
175static	void ubsec_dump_ctx2(struct ubsec_ctx_keyop *);
176
177static	int ubsec_debug = 0;
178SYSCTL_INT(_hw_ubsec, OID_AUTO, debug, CTLFLAG_RW, &ubsec_debug,
179	    0, "control debugging msgs");
180#endif
181
182#define	READ_REG(sc,r) \
183	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
184
185#define WRITE_REG(sc,reg,val) \
186	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
187
188#define	SWAP32(x) (x) = htole32(ntohl((x)))
189#define	HTOLE32(x) (x) = htole32(x)
190
191struct ubsec_stats ubsecstats;
192SYSCTL_STRUCT(_hw_ubsec, OID_AUTO, stats, CTLFLAG_RD, &ubsecstats,
193	    ubsec_stats, "driver statistics");
194
195static int
196ubsec_probe(device_t dev)
197{
198	if (pci_get_vendor(dev) == PCI_VENDOR_SUN &&
199	    (pci_get_device(dev) == PCI_PRODUCT_SUN_5821 ||
200	     pci_get_device(dev) == PCI_PRODUCT_SUN_SCA1K))
201		return (BUS_PROBE_DEFAULT);
202	if (pci_get_vendor(dev) == PCI_VENDOR_BLUESTEEL &&
203	    (pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5501 ||
204	     pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5601))
205		return (BUS_PROBE_DEFAULT);
206	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
207	    (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5801 ||
208	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5802 ||
209	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5805 ||
210	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5820 ||
211	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5821 ||
212	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5822 ||
213	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5823
214	     ))
215		return (BUS_PROBE_DEFAULT);
216	return (ENXIO);
217}
218
219static const char*
220ubsec_partname(struct ubsec_softc *sc)
221{
222	/* XXX sprintf numbers when not decoded */
223	switch (pci_get_vendor(sc->sc_dev)) {
224	case PCI_VENDOR_BROADCOM:
225		switch (pci_get_device(sc->sc_dev)) {
226		case PCI_PRODUCT_BROADCOM_5801:	return "Broadcom 5801";
227		case PCI_PRODUCT_BROADCOM_5802:	return "Broadcom 5802";
228		case PCI_PRODUCT_BROADCOM_5805:	return "Broadcom 5805";
229		case PCI_PRODUCT_BROADCOM_5820:	return "Broadcom 5820";
230		case PCI_PRODUCT_BROADCOM_5821:	return "Broadcom 5821";
231		case PCI_PRODUCT_BROADCOM_5822:	return "Broadcom 5822";
232		case PCI_PRODUCT_BROADCOM_5823:	return "Broadcom 5823";
233		}
234		return "Broadcom unknown-part";
235	case PCI_VENDOR_BLUESTEEL:
236		switch (pci_get_device(sc->sc_dev)) {
237		case PCI_PRODUCT_BLUESTEEL_5601: return "Bluesteel 5601";
238		}
239		return "Bluesteel unknown-part";
240	case PCI_VENDOR_SUN:
241		switch (pci_get_device(sc->sc_dev)) {
242		case PCI_PRODUCT_SUN_5821: return "Sun Crypto 5821";
243		case PCI_PRODUCT_SUN_SCA1K: return "Sun Crypto 1K";
244		}
245		return "Sun unknown-part";
246	}
247	return "Unknown-vendor unknown-part";
248}
249
250static void
251default_harvest(struct rndtest_state *rsp, void *buf, u_int count)
252{
253	random_harvest(buf, count, count*NBBY, 0, RANDOM_PURE);
254}
255
256static int
257ubsec_attach(device_t dev)
258{
259	struct ubsec_softc *sc = device_get_softc(dev);
260	struct ubsec_dma *dmap;
261	u_int32_t cmd, i;
262	int rid;
263
264	bzero(sc, sizeof (*sc));
265	sc->sc_dev = dev;
266
267	SIMPLEQ_INIT(&sc->sc_queue);
268	SIMPLEQ_INIT(&sc->sc_qchip);
269	SIMPLEQ_INIT(&sc->sc_queue2);
270	SIMPLEQ_INIT(&sc->sc_qchip2);
271	SIMPLEQ_INIT(&sc->sc_q2free);
272
273	/* XXX handle power management */
274
275	sc->sc_statmask = BS_STAT_MCR1_DONE | BS_STAT_DMAERR;
276
277	if (pci_get_vendor(dev) == PCI_VENDOR_BLUESTEEL &&
278	    pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5601)
279		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG;
280
281	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
282	    (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5802 ||
283	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5805))
284		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG;
285
286	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
287	    pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5820)
288		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG |
289		    UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY;
290
291	if ((pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
292	     (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5821 ||
293	      pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5822 ||
294	      pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5823)) ||
295	    (pci_get_vendor(dev) == PCI_VENDOR_SUN &&
296	     (pci_get_device(dev) == PCI_PRODUCT_SUN_SCA1K ||
297	      pci_get_device(dev) == PCI_PRODUCT_SUN_5821))) {
298		/* NB: the 5821/5822 defines some additional status bits */
299		sc->sc_statmask |= BS_STAT_MCR1_ALLEMPTY |
300		    BS_STAT_MCR2_ALLEMPTY;
301		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG |
302		    UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY;
303	}
304
305	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
306	cmd |= PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN;
307	pci_write_config(dev, PCIR_COMMAND, cmd, 4);
308	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
309
310	if (!(cmd & PCIM_CMD_MEMEN)) {
311		device_printf(dev, "failed to enable memory mapping\n");
312		goto bad;
313	}
314
315	if (!(cmd & PCIM_CMD_BUSMASTEREN)) {
316		device_printf(dev, "failed to enable bus mastering\n");
317		goto bad;
318	}
319
320	/*
321	 * Setup memory-mapping of PCI registers.
322	 */
323	rid = BS_BAR;
324	sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
325					   RF_ACTIVE);
326	if (sc->sc_sr == NULL) {
327		device_printf(dev, "cannot map register space\n");
328		goto bad;
329	}
330	sc->sc_st = rman_get_bustag(sc->sc_sr);
331	sc->sc_sh = rman_get_bushandle(sc->sc_sr);
332
333	/*
334	 * Arrange interrupt line.
335	 */
336	rid = 0;
337	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
338					    RF_SHAREABLE|RF_ACTIVE);
339	if (sc->sc_irq == NULL) {
340		device_printf(dev, "could not map interrupt\n");
341		goto bad1;
342	}
343	/*
344	 * NB: Network code assumes we are blocked with splimp()
345	 *     so make sure the IRQ is mapped appropriately.
346	 */
347	if (bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
348			   ubsec_intr, sc, &sc->sc_ih)) {
349		device_printf(dev, "could not establish interrupt\n");
350		goto bad2;
351	}
352
353	sc->sc_cid = crypto_get_driverid(0);
354	if (sc->sc_cid < 0) {
355		device_printf(dev, "could not get crypto driver id\n");
356		goto bad3;
357	}
358
359	/*
360	 * Setup DMA descriptor area.
361	 */
362	if (bus_dma_tag_create(NULL,			/* parent */
363			       1, 0,			/* alignment, bounds */
364			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
365			       BUS_SPACE_MAXADDR,	/* highaddr */
366			       NULL, NULL,		/* filter, filterarg */
367			       0x3ffff,			/* maxsize */
368			       UBS_MAX_SCATTER,		/* nsegments */
369			       0xffff,			/* maxsegsize */
370			       BUS_DMA_ALLOCNOW,	/* flags */
371			       NULL, NULL,		/* lockfunc, lockarg */
372			       &sc->sc_dmat)) {
373		device_printf(dev, "cannot allocate DMA tag\n");
374		goto bad4;
375	}
376	SIMPLEQ_INIT(&sc->sc_freequeue);
377	dmap = sc->sc_dmaa;
378	for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
379		struct ubsec_q *q;
380
381		q = (struct ubsec_q *)malloc(sizeof(struct ubsec_q),
382		    M_DEVBUF, M_NOWAIT);
383		if (q == NULL) {
384			device_printf(dev, "cannot allocate queue buffers\n");
385			break;
386		}
387
388		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk),
389		    &dmap->d_alloc, 0)) {
390			device_printf(dev, "cannot allocate dma buffers\n");
391			free(q, M_DEVBUF);
392			break;
393		}
394		dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
395
396		q->q_dma = dmap;
397		sc->sc_queuea[i] = q;
398
399		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
400	}
401	mtx_init(&sc->sc_mcr1lock, device_get_nameunit(dev),
402		"mcr1 operations", MTX_DEF);
403	mtx_init(&sc->sc_freeqlock, device_get_nameunit(dev),
404		"mcr1 free q", MTX_DEF);
405
406	device_printf(sc->sc_dev, "%s\n", ubsec_partname(sc));
407
408	crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0,
409	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
410	crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0,
411	     ubsec_newsession, ubsec_freesession, ubsec_process, sc);
412	crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0,
413	     ubsec_newsession, ubsec_freesession, ubsec_process, sc);
414	crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0,
415	     ubsec_newsession, ubsec_freesession, ubsec_process, sc);
416
417	/*
418	 * Reset Broadcom chip
419	 */
420	ubsec_reset_board(sc);
421
422	/*
423	 * Init Broadcom specific PCI settings
424	 */
425	ubsec_init_pciregs(dev);
426
427	/*
428	 * Init Broadcom chip
429	 */
430	ubsec_init_board(sc);
431
432#ifndef UBSEC_NO_RNG
433	if (sc->sc_flags & UBS_FLAGS_RNG) {
434		sc->sc_statmask |= BS_STAT_MCR2_DONE;
435#ifdef UBSEC_RNDTEST
436		sc->sc_rndtest = rndtest_attach(dev);
437		if (sc->sc_rndtest)
438			sc->sc_harvest = rndtest_harvest;
439		else
440			sc->sc_harvest = default_harvest;
441#else
442		sc->sc_harvest = default_harvest;
443#endif
444
445		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
446		    &sc->sc_rng.rng_q.q_mcr, 0))
447			goto skip_rng;
448
449		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass),
450		    &sc->sc_rng.rng_q.q_ctx, 0)) {
451			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
452			goto skip_rng;
453		}
454
455		if (ubsec_dma_malloc(sc, sizeof(u_int32_t) *
456		    UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) {
457			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
458			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
459			goto skip_rng;
460		}
461
462		if (hz >= 100)
463			sc->sc_rnghz = hz / 100;
464		else
465			sc->sc_rnghz = 1;
466		callout_init(&sc->sc_rngto, CALLOUT_MPSAFE);
467		callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
468skip_rng:
469	;
470	}
471#endif /* UBSEC_NO_RNG */
472	mtx_init(&sc->sc_mcr2lock, device_get_nameunit(dev),
473		"mcr2 operations", MTX_DEF);
474
475	if (sc->sc_flags & UBS_FLAGS_KEY) {
476		sc->sc_statmask |= BS_STAT_MCR2_DONE;
477
478		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0,
479			ubsec_kprocess, sc);
480#if 0
481		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0,
482			ubsec_kprocess, sc);
483#endif
484	}
485	return (0);
486bad4:
487	crypto_unregister_all(sc->sc_cid);
488bad3:
489	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
490bad2:
491	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
492bad1:
493	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
494bad:
495	return (ENXIO);
496}
497
498/*
499 * Detach a device that successfully probed.
500 */
501static int
502ubsec_detach(device_t dev)
503{
504	struct ubsec_softc *sc = device_get_softc(dev);
505
506	/* XXX wait/abort active ops */
507
508	/* disable interrupts */
509	WRITE_REG(sc, BS_CTRL, READ_REG(sc, BS_CTRL) &~
510		(BS_CTRL_MCR2INT | BS_CTRL_MCR1INT | BS_CTRL_DMAERR));
511
512	callout_stop(&sc->sc_rngto);
513
514	crypto_unregister_all(sc->sc_cid);
515
516#ifdef UBSEC_RNDTEST
517	if (sc->sc_rndtest)
518		rndtest_detach(sc->sc_rndtest);
519#endif
520
521	while (!SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
522		struct ubsec_q *q;
523
524		q = SIMPLEQ_FIRST(&sc->sc_freequeue);
525		SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, q, q_next);
526		ubsec_dma_free(sc, &q->q_dma->d_alloc);
527		free(q, M_DEVBUF);
528	}
529	mtx_destroy(&sc->sc_mcr1lock);
530#ifndef UBSEC_NO_RNG
531	if (sc->sc_flags & UBS_FLAGS_RNG) {
532		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
533		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
534		ubsec_dma_free(sc, &sc->sc_rng.rng_buf);
535	}
536#endif /* UBSEC_NO_RNG */
537	mtx_destroy(&sc->sc_mcr2lock);
538
539	bus_generic_detach(dev);
540	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
541	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
542
543	bus_dma_tag_destroy(sc->sc_dmat);
544	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
545
546	return (0);
547}
548
549/*
550 * Stop all chip i/o so that the kernel's probe routines don't
551 * get confused by errant DMAs when rebooting.
552 */
553static void
554ubsec_shutdown(device_t dev)
555{
556#ifdef notyet
557	ubsec_stop(device_get_softc(dev));
558#endif
559}
560
561/*
562 * Device suspend routine.
563 */
564static int
565ubsec_suspend(device_t dev)
566{
567	struct ubsec_softc *sc = device_get_softc(dev);
568
569#ifdef notyet
570	/* XXX stop the device and save PCI settings */
571#endif
572	sc->sc_suspended = 1;
573
574	return (0);
575}
576
577static int
578ubsec_resume(device_t dev)
579{
580	struct ubsec_softc *sc = device_get_softc(dev);
581
582#ifdef notyet
583	/* XXX retore PCI settings and start the device */
584#endif
585	sc->sc_suspended = 0;
586	return (0);
587}
588
589/*
590 * UBSEC Interrupt routine
591 */
592static void
593ubsec_intr(void *arg)
594{
595	struct ubsec_softc *sc = arg;
596	volatile u_int32_t stat;
597	struct ubsec_q *q;
598	struct ubsec_dma *dmap;
599	int npkts = 0, i;
600
601	stat = READ_REG(sc, BS_STAT);
602	stat &= sc->sc_statmask;
603	if (stat == 0)
604		return;
605
606	WRITE_REG(sc, BS_STAT, stat);		/* IACK */
607
608	/*
609	 * Check to see if we have any packets waiting for us
610	 */
611	if ((stat & BS_STAT_MCR1_DONE)) {
612		mtx_lock(&sc->sc_mcr1lock);
613		while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
614			q = SIMPLEQ_FIRST(&sc->sc_qchip);
615			dmap = q->q_dma;
616
617			if ((dmap->d_dma->d_mcr.mcr_flags & htole16(UBS_MCR_DONE)) == 0)
618				break;
619
620			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q, q_next);
621
622			npkts = q->q_nstacked_mcrs;
623			sc->sc_nqchip -= 1+npkts;
624			/*
625			 * search for further sc_qchip ubsec_q's that share
626			 * the same MCR, and complete them too, they must be
627			 * at the top.
628			 */
629			for (i = 0; i < npkts; i++) {
630				if(q->q_stacked_mcr[i]) {
631					ubsec_callback(sc, q->q_stacked_mcr[i]);
632				} else {
633					break;
634				}
635			}
636			ubsec_callback(sc, q);
637		}
638		/*
639		 * Don't send any more packet to chip if there has been
640		 * a DMAERR.
641		 */
642		if (!(stat & BS_STAT_DMAERR))
643			ubsec_feed(sc);
644		mtx_unlock(&sc->sc_mcr1lock);
645	}
646
647	/*
648	 * Check to see if we have any key setups/rng's waiting for us
649	 */
650	if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) &&
651	    (stat & BS_STAT_MCR2_DONE)) {
652		struct ubsec_q2 *q2;
653		struct ubsec_mcr *mcr;
654
655		mtx_lock(&sc->sc_mcr2lock);
656		while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) {
657			q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
658
659			ubsec_dma_sync(&q2->q_mcr,
660			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
661
662			mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
663			if ((mcr->mcr_flags & htole16(UBS_MCR_DONE)) == 0) {
664				ubsec_dma_sync(&q2->q_mcr,
665				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
666				break;
667			}
668			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, q2, q_next);
669			ubsec_callback2(sc, q2);
670			/*
671			 * Don't send any more packet to chip if there has been
672			 * a DMAERR.
673			 */
674			if (!(stat & BS_STAT_DMAERR))
675				ubsec_feed2(sc);
676		}
677		mtx_unlock(&sc->sc_mcr2lock);
678	}
679
680	/*
681	 * Check to see if we got any DMA Error
682	 */
683	if (stat & BS_STAT_DMAERR) {
684#ifdef UBSEC_DEBUG
685		if (ubsec_debug) {
686			volatile u_int32_t a = READ_REG(sc, BS_ERR);
687
688			printf("dmaerr %s@%08x\n",
689			    (a & BS_ERR_READ) ? "read" : "write",
690			    a & BS_ERR_ADDR);
691		}
692#endif /* UBSEC_DEBUG */
693		ubsecstats.hst_dmaerr++;
694		mtx_lock(&sc->sc_mcr1lock);
695		ubsec_totalreset(sc);
696		ubsec_feed(sc);
697		mtx_unlock(&sc->sc_mcr1lock);
698	}
699
700	if (sc->sc_needwakeup) {		/* XXX check high watermark */
701		int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
702#ifdef UBSEC_DEBUG
703		if (ubsec_debug)
704			device_printf(sc->sc_dev, "wakeup crypto (%x)\n",
705				sc->sc_needwakeup);
706#endif /* UBSEC_DEBUG */
707		sc->sc_needwakeup &= ~wakeup;
708		crypto_unblock(sc->sc_cid, wakeup);
709	}
710}
711
712/*
713 * ubsec_feed() - aggregate and post requests to chip
714 */
715static void
716ubsec_feed(struct ubsec_softc *sc)
717{
718	struct ubsec_q *q, *q2;
719	int npkts, i;
720	void *v;
721	u_int32_t stat;
722
723	/*
724	 * Decide how many ops to combine in a single MCR.  We cannot
725	 * aggregate more than UBS_MAX_AGGR because this is the number
726	 * of slots defined in the data structure.  Note that
727	 * aggregation only happens if ops are marked batch'able.
728	 * Aggregating ops reduces the number of interrupts to the host
729	 * but also (potentially) increases the latency for processing
730	 * completed ops as we only get an interrupt when all aggregated
731	 * ops have completed.
732	 */
733	if (sc->sc_nqueue == 0)
734		return;
735	if (sc->sc_nqueue > 1) {
736		npkts = 0;
737		SIMPLEQ_FOREACH(q, &sc->sc_queue, q_next) {
738			npkts++;
739			if ((q->q_crp->crp_flags & CRYPTO_F_BATCH) == 0)
740				break;
741		}
742	} else
743		npkts = 1;
744	/*
745	 * Check device status before going any further.
746	 */
747	if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
748		if (stat & BS_STAT_DMAERR) {
749			ubsec_totalreset(sc);
750			ubsecstats.hst_dmaerr++;
751		} else
752			ubsecstats.hst_mcr1full++;
753		return;
754	}
755	if (sc->sc_nqueue > ubsecstats.hst_maxqueue)
756		ubsecstats.hst_maxqueue = sc->sc_nqueue;
757	if (npkts > UBS_MAX_AGGR)
758		npkts = UBS_MAX_AGGR;
759	if (npkts < 2)				/* special case 1 op */
760		goto feed1;
761
762	ubsecstats.hst_totbatch += npkts-1;
763#ifdef UBSEC_DEBUG
764	if (ubsec_debug)
765		printf("merging %d records\n", npkts);
766#endif /* UBSEC_DEBUG */
767
768	q = SIMPLEQ_FIRST(&sc->sc_queue);
769	SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q, q_next);
770	--sc->sc_nqueue;
771
772	bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_PREWRITE);
773	if (q->q_dst_map != NULL)
774		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map, BUS_DMASYNC_PREREAD);
775
776	q->q_nstacked_mcrs = npkts - 1;		/* Number of packets stacked */
777
778	for (i = 0; i < q->q_nstacked_mcrs; i++) {
779		q2 = SIMPLEQ_FIRST(&sc->sc_queue);
780		bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
781		    BUS_DMASYNC_PREWRITE);
782		if (q2->q_dst_map != NULL)
783			bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
784			    BUS_DMASYNC_PREREAD);
785		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q2, q_next);
786		--sc->sc_nqueue;
787
788		v = (void*)(((char *)&q2->q_dma->d_dma->d_mcr) + sizeof(struct ubsec_mcr) -
789		    sizeof(struct ubsec_mcr_add));
790		bcopy(v, &q->q_dma->d_dma->d_mcradd[i], sizeof(struct ubsec_mcr_add));
791		q->q_stacked_mcr[i] = q2;
792	}
793	q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
794	SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
795	sc->sc_nqchip += npkts;
796	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
797		ubsecstats.hst_maxqchip = sc->sc_nqchip;
798	ubsec_dma_sync(&q->q_dma->d_alloc,
799	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
800	WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
801	    offsetof(struct ubsec_dmachunk, d_mcr));
802	return;
803feed1:
804	q = SIMPLEQ_FIRST(&sc->sc_queue);
805
806	bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_PREWRITE);
807	if (q->q_dst_map != NULL)
808		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map, BUS_DMASYNC_PREREAD);
809	ubsec_dma_sync(&q->q_dma->d_alloc,
810	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
811
812	WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
813	    offsetof(struct ubsec_dmachunk, d_mcr));
814#ifdef UBSEC_DEBUG
815	if (ubsec_debug)
816		printf("feed1: q->chip %p %08x stat %08x\n",
817		      q, (u_int32_t)vtophys(&q->q_dma->d_dma->d_mcr),
818		      stat);
819#endif /* UBSEC_DEBUG */
820	SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q, q_next);
821	--sc->sc_nqueue;
822	SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
823	sc->sc_nqchip++;
824	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
825		ubsecstats.hst_maxqchip = sc->sc_nqchip;
826	return;
827}
828
829/*
830 * Allocate a new 'session' and return an encoded session id.  'sidp'
831 * contains our registration id, and should contain an encoded session
832 * id on successful allocation.
833 */
834static int
835ubsec_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri)
836{
837	struct cryptoini *c, *encini = NULL, *macini = NULL;
838	struct ubsec_softc *sc = arg;
839	struct ubsec_session *ses = NULL;
840	MD5_CTX md5ctx;
841	SHA1_CTX sha1ctx;
842	int i, sesn;
843
844	if (sidp == NULL || cri == NULL || sc == NULL)
845		return (EINVAL);
846
847	for (c = cri; c != NULL; c = c->cri_next) {
848		if (c->cri_alg == CRYPTO_MD5_HMAC ||
849		    c->cri_alg == CRYPTO_SHA1_HMAC) {
850			if (macini)
851				return (EINVAL);
852			macini = c;
853		} else if (c->cri_alg == CRYPTO_DES_CBC ||
854		    c->cri_alg == CRYPTO_3DES_CBC) {
855			if (encini)
856				return (EINVAL);
857			encini = c;
858		} else
859			return (EINVAL);
860	}
861	if (encini == NULL && macini == NULL)
862		return (EINVAL);
863
864	if (sc->sc_sessions == NULL) {
865		ses = sc->sc_sessions = (struct ubsec_session *)malloc(
866		    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
867		if (ses == NULL)
868			return (ENOMEM);
869		sesn = 0;
870		sc->sc_nsessions = 1;
871	} else {
872		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
873			if (sc->sc_sessions[sesn].ses_used == 0) {
874				ses = &sc->sc_sessions[sesn];
875				break;
876			}
877		}
878
879		if (ses == NULL) {
880			sesn = sc->sc_nsessions;
881			ses = (struct ubsec_session *)malloc((sesn + 1) *
882			    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
883			if (ses == NULL)
884				return (ENOMEM);
885			bcopy(sc->sc_sessions, ses, sesn *
886			    sizeof(struct ubsec_session));
887			bzero(sc->sc_sessions, sesn *
888			    sizeof(struct ubsec_session));
889			free(sc->sc_sessions, M_DEVBUF);
890			sc->sc_sessions = ses;
891			ses = &sc->sc_sessions[sesn];
892			sc->sc_nsessions++;
893		}
894	}
895	bzero(ses, sizeof(struct ubsec_session));
896	ses->ses_used = 1;
897
898	if (encini) {
899		/* get an IV, network byte order */
900		/* XXX may read fewer than requested */
901		read_random(ses->ses_iv, sizeof(ses->ses_iv));
902
903		/* Go ahead and compute key in ubsec's byte order */
904		if (encini->cri_alg == CRYPTO_DES_CBC) {
905			bcopy(encini->cri_key, &ses->ses_deskey[0], 8);
906			bcopy(encini->cri_key, &ses->ses_deskey[2], 8);
907			bcopy(encini->cri_key, &ses->ses_deskey[4], 8);
908		} else
909			bcopy(encini->cri_key, ses->ses_deskey, 24);
910
911		SWAP32(ses->ses_deskey[0]);
912		SWAP32(ses->ses_deskey[1]);
913		SWAP32(ses->ses_deskey[2]);
914		SWAP32(ses->ses_deskey[3]);
915		SWAP32(ses->ses_deskey[4]);
916		SWAP32(ses->ses_deskey[5]);
917	}
918
919	if (macini) {
920		for (i = 0; i < macini->cri_klen / 8; i++)
921			macini->cri_key[i] ^= HMAC_IPAD_VAL;
922
923		if (macini->cri_alg == CRYPTO_MD5_HMAC) {
924			MD5Init(&md5ctx);
925			MD5Update(&md5ctx, macini->cri_key,
926			    macini->cri_klen / 8);
927			MD5Update(&md5ctx, hmac_ipad_buffer,
928			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
929			bcopy(md5ctx.state, ses->ses_hminner,
930			    sizeof(md5ctx.state));
931		} else {
932			SHA1Init(&sha1ctx);
933			SHA1Update(&sha1ctx, macini->cri_key,
934			    macini->cri_klen / 8);
935			SHA1Update(&sha1ctx, hmac_ipad_buffer,
936			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
937			bcopy(sha1ctx.h.b32, ses->ses_hminner,
938			    sizeof(sha1ctx.h.b32));
939		}
940
941		for (i = 0; i < macini->cri_klen / 8; i++)
942			macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
943
944		if (macini->cri_alg == CRYPTO_MD5_HMAC) {
945			MD5Init(&md5ctx);
946			MD5Update(&md5ctx, macini->cri_key,
947			    macini->cri_klen / 8);
948			MD5Update(&md5ctx, hmac_opad_buffer,
949			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
950			bcopy(md5ctx.state, ses->ses_hmouter,
951			    sizeof(md5ctx.state));
952		} else {
953			SHA1Init(&sha1ctx);
954			SHA1Update(&sha1ctx, macini->cri_key,
955			    macini->cri_klen / 8);
956			SHA1Update(&sha1ctx, hmac_opad_buffer,
957			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
958			bcopy(sha1ctx.h.b32, ses->ses_hmouter,
959			    sizeof(sha1ctx.h.b32));
960		}
961
962		for (i = 0; i < macini->cri_klen / 8; i++)
963			macini->cri_key[i] ^= HMAC_OPAD_VAL;
964	}
965
966	*sidp = UBSEC_SID(device_get_unit(sc->sc_dev), sesn);
967	return (0);
968}
969
970/*
971 * Deallocate a session.
972 */
973static int
974ubsec_freesession(void *arg, u_int64_t tid)
975{
976	struct ubsec_softc *sc = arg;
977	int session, ret;
978	u_int32_t sid = CRYPTO_SESID2LID(tid);
979
980	if (sc == NULL)
981		return (EINVAL);
982
983	session = UBSEC_SESSION(sid);
984	if (session < sc->sc_nsessions) {
985		bzero(&sc->sc_sessions[session],
986			sizeof(sc->sc_sessions[session]));
987		ret = 0;
988	} else
989		ret = EINVAL;
990
991	return (ret);
992}
993
994static void
995ubsec_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
996{
997	struct ubsec_operand *op = arg;
998
999	KASSERT(nsegs <= UBS_MAX_SCATTER,
1000		("Too many DMA segments returned when mapping operand"));
1001#ifdef UBSEC_DEBUG
1002	if (ubsec_debug)
1003		printf("ubsec_op_cb: mapsize %u nsegs %d\n",
1004			(u_int) mapsize, nsegs);
1005#endif
1006	op->mapsize = mapsize;
1007	op->nsegs = nsegs;
1008	bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
1009}
1010
1011static int
1012ubsec_process(void *arg, struct cryptop *crp, int hint)
1013{
1014	struct ubsec_q *q = NULL;
1015	int err = 0, i, j, nicealign;
1016	struct ubsec_softc *sc = arg;
1017	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
1018	int encoffset = 0, macoffset = 0, cpskip, cpoffset;
1019	int sskip, dskip, stheend, dtheend;
1020	int16_t coffset;
1021	struct ubsec_session *ses;
1022	struct ubsec_pktctx ctx;
1023	struct ubsec_dma *dmap = NULL;
1024
1025	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
1026		ubsecstats.hst_invalid++;
1027		return (EINVAL);
1028	}
1029	if (UBSEC_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
1030		ubsecstats.hst_badsession++;
1031		return (EINVAL);
1032	}
1033
1034	mtx_lock(&sc->sc_freeqlock);
1035	if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
1036		ubsecstats.hst_queuefull++;
1037		sc->sc_needwakeup |= CRYPTO_SYMQ;
1038		mtx_unlock(&sc->sc_freeqlock);
1039		return (ERESTART);
1040	}
1041	q = SIMPLEQ_FIRST(&sc->sc_freequeue);
1042	SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, q, q_next);
1043	mtx_unlock(&sc->sc_freeqlock);
1044
1045	dmap = q->q_dma; /* Save dma pointer */
1046	bzero(q, sizeof(struct ubsec_q));
1047	bzero(&ctx, sizeof(ctx));
1048
1049	q->q_sesn = UBSEC_SESSION(crp->crp_sid);
1050	q->q_dma = dmap;
1051	ses = &sc->sc_sessions[q->q_sesn];
1052
1053	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1054		q->q_src_m = (struct mbuf *)crp->crp_buf;
1055		q->q_dst_m = (struct mbuf *)crp->crp_buf;
1056	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1057		q->q_src_io = (struct uio *)crp->crp_buf;
1058		q->q_dst_io = (struct uio *)crp->crp_buf;
1059	} else {
1060		ubsecstats.hst_badflags++;
1061		err = EINVAL;
1062		goto errout;	/* XXX we don't handle contiguous blocks! */
1063	}
1064
1065	bzero(&dmap->d_dma->d_mcr, sizeof(struct ubsec_mcr));
1066
1067	dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
1068	dmap->d_dma->d_mcr.mcr_flags = 0;
1069	q->q_crp = crp;
1070
1071	crd1 = crp->crp_desc;
1072	if (crd1 == NULL) {
1073		ubsecstats.hst_nodesc++;
1074		err = EINVAL;
1075		goto errout;
1076	}
1077	crd2 = crd1->crd_next;
1078
1079	if ((crd1->crd_flags & CRD_F_KEY_EXPLICIT) ||
1080	    (crd2 != NULL && (crd2->crd_flags & CRD_F_KEY_EXPLICIT))) {
1081		ubsecstats.hst_badflags++;
1082		err = EINVAL;
1083		goto errout;
1084	}
1085
1086	if (crd2 == NULL) {
1087		if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
1088		    crd1->crd_alg == CRYPTO_SHA1_HMAC) {
1089			maccrd = crd1;
1090			enccrd = NULL;
1091		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
1092		    crd1->crd_alg == CRYPTO_3DES_CBC) {
1093			maccrd = NULL;
1094			enccrd = crd1;
1095		} else {
1096			ubsecstats.hst_badalg++;
1097			err = EINVAL;
1098			goto errout;
1099		}
1100	} else {
1101		if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
1102		    crd1->crd_alg == CRYPTO_SHA1_HMAC) &&
1103		    (crd2->crd_alg == CRYPTO_DES_CBC ||
1104			crd2->crd_alg == CRYPTO_3DES_CBC) &&
1105		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
1106			maccrd = crd1;
1107			enccrd = crd2;
1108		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
1109		    crd1->crd_alg == CRYPTO_3DES_CBC) &&
1110		    (crd2->crd_alg == CRYPTO_MD5_HMAC ||
1111			crd2->crd_alg == CRYPTO_SHA1_HMAC) &&
1112		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
1113			enccrd = crd1;
1114			maccrd = crd2;
1115		} else {
1116			/*
1117			 * We cannot order the ubsec as requested
1118			 */
1119			ubsecstats.hst_badalg++;
1120			err = EINVAL;
1121			goto errout;
1122		}
1123	}
1124
1125	if (enccrd) {
1126		encoffset = enccrd->crd_skip;
1127		ctx.pc_flags |= htole16(UBS_PKTCTX_ENC_3DES);
1128
1129		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1130			q->q_flags |= UBSEC_QFLAGS_COPYOUTIV;
1131
1132			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1133				bcopy(enccrd->crd_iv, ctx.pc_iv, 8);
1134			else {
1135				ctx.pc_iv[0] = ses->ses_iv[0];
1136				ctx.pc_iv[1] = ses->ses_iv[1];
1137			}
1138
1139			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1140				if (crp->crp_flags & CRYPTO_F_IMBUF)
1141					m_copyback(q->q_src_m,
1142					    enccrd->crd_inject,
1143					    8, (caddr_t)ctx.pc_iv);
1144				else if (crp->crp_flags & CRYPTO_F_IOV)
1145					cuio_copyback(q->q_src_io,
1146					    enccrd->crd_inject,
1147					    8, (caddr_t)ctx.pc_iv);
1148			}
1149		} else {
1150			ctx.pc_flags |= htole16(UBS_PKTCTX_INBOUND);
1151
1152			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1153				bcopy(enccrd->crd_iv, ctx.pc_iv, 8);
1154			else if (crp->crp_flags & CRYPTO_F_IMBUF)
1155				m_copydata(q->q_src_m, enccrd->crd_inject,
1156				    8, (caddr_t)ctx.pc_iv);
1157			else if (crp->crp_flags & CRYPTO_F_IOV)
1158				cuio_copydata(q->q_src_io,
1159				    enccrd->crd_inject, 8,
1160				    (caddr_t)ctx.pc_iv);
1161		}
1162
1163		ctx.pc_deskey[0] = ses->ses_deskey[0];
1164		ctx.pc_deskey[1] = ses->ses_deskey[1];
1165		ctx.pc_deskey[2] = ses->ses_deskey[2];
1166		ctx.pc_deskey[3] = ses->ses_deskey[3];
1167		ctx.pc_deskey[4] = ses->ses_deskey[4];
1168		ctx.pc_deskey[5] = ses->ses_deskey[5];
1169		SWAP32(ctx.pc_iv[0]);
1170		SWAP32(ctx.pc_iv[1]);
1171	}
1172
1173	if (maccrd) {
1174		macoffset = maccrd->crd_skip;
1175
1176		if (maccrd->crd_alg == CRYPTO_MD5_HMAC)
1177			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_MD5);
1178		else
1179			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
1180
1181		for (i = 0; i < 5; i++) {
1182			ctx.pc_hminner[i] = ses->ses_hminner[i];
1183			ctx.pc_hmouter[i] = ses->ses_hmouter[i];
1184
1185			HTOLE32(ctx.pc_hminner[i]);
1186			HTOLE32(ctx.pc_hmouter[i]);
1187		}
1188	}
1189
1190	if (enccrd && maccrd) {
1191		/*
1192		 * ubsec cannot handle packets where the end of encryption
1193		 * and authentication are not the same, or where the
1194		 * encrypted part begins before the authenticated part.
1195		 */
1196		if ((encoffset + enccrd->crd_len) !=
1197		    (macoffset + maccrd->crd_len)) {
1198			ubsecstats.hst_lenmismatch++;
1199			err = EINVAL;
1200			goto errout;
1201		}
1202		if (enccrd->crd_skip < maccrd->crd_skip) {
1203			ubsecstats.hst_skipmismatch++;
1204			err = EINVAL;
1205			goto errout;
1206		}
1207		sskip = maccrd->crd_skip;
1208		cpskip = dskip = enccrd->crd_skip;
1209		stheend = maccrd->crd_len;
1210		dtheend = enccrd->crd_len;
1211		coffset = enccrd->crd_skip - maccrd->crd_skip;
1212		cpoffset = cpskip + dtheend;
1213#ifdef UBSEC_DEBUG
1214		if (ubsec_debug) {
1215			printf("mac: skip %d, len %d, inject %d\n",
1216			    maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject);
1217			printf("enc: skip %d, len %d, inject %d\n",
1218			    enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject);
1219			printf("src: skip %d, len %d\n", sskip, stheend);
1220			printf("dst: skip %d, len %d\n", dskip, dtheend);
1221			printf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
1222			    coffset, stheend, cpskip, cpoffset);
1223		}
1224#endif
1225	} else {
1226		cpskip = dskip = sskip = macoffset + encoffset;
1227		dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
1228		cpoffset = cpskip + dtheend;
1229		coffset = 0;
1230	}
1231	ctx.pc_offset = htole16(coffset >> 2);
1232
1233	if (bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &q->q_src_map)) {
1234		ubsecstats.hst_nomap++;
1235		err = ENOMEM;
1236		goto errout;
1237	}
1238	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1239		if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
1240		    q->q_src_m, ubsec_op_cb, &q->q_src, BUS_DMA_NOWAIT) != 0) {
1241			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1242			q->q_src_map = NULL;
1243			ubsecstats.hst_noload++;
1244			err = ENOMEM;
1245			goto errout;
1246		}
1247	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1248		if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
1249		    q->q_src_io, ubsec_op_cb, &q->q_src, BUS_DMA_NOWAIT) != 0) {
1250			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1251			q->q_src_map = NULL;
1252			ubsecstats.hst_noload++;
1253			err = ENOMEM;
1254			goto errout;
1255		}
1256	}
1257	nicealign = ubsec_dmamap_aligned(&q->q_src);
1258
1259	dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
1260
1261#ifdef UBSEC_DEBUG
1262	if (ubsec_debug)
1263		printf("src skip: %d nicealign: %u\n", sskip, nicealign);
1264#endif
1265	for (i = j = 0; i < q->q_src_nsegs; i++) {
1266		struct ubsec_pktbuf *pb;
1267		bus_size_t packl = q->q_src_segs[i].ds_len;
1268		bus_addr_t packp = q->q_src_segs[i].ds_addr;
1269
1270		if (sskip >= packl) {
1271			sskip -= packl;
1272			continue;
1273		}
1274
1275		packl -= sskip;
1276		packp += sskip;
1277		sskip = 0;
1278
1279		if (packl > 0xfffc) {
1280			err = EIO;
1281			goto errout;
1282		}
1283
1284		if (j == 0)
1285			pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
1286		else
1287			pb = &dmap->d_dma->d_sbuf[j - 1];
1288
1289		pb->pb_addr = htole32(packp);
1290
1291		if (stheend) {
1292			if (packl > stheend) {
1293				pb->pb_len = htole32(stheend);
1294				stheend = 0;
1295			} else {
1296				pb->pb_len = htole32(packl);
1297				stheend -= packl;
1298			}
1299		} else
1300			pb->pb_len = htole32(packl);
1301
1302		if ((i + 1) == q->q_src_nsegs)
1303			pb->pb_next = 0;
1304		else
1305			pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1306			    offsetof(struct ubsec_dmachunk, d_sbuf[j]));
1307		j++;
1308	}
1309
1310	if (enccrd == NULL && maccrd != NULL) {
1311		dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
1312		dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
1313		dmap->d_dma->d_mcr.mcr_opktbuf.pb_next = htole32(dmap->d_alloc.dma_paddr +
1314		    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1315#ifdef UBSEC_DEBUG
1316		if (ubsec_debug)
1317			printf("opkt: %x %x %x\n",
1318			    dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
1319			    dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
1320			    dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
1321#endif
1322	} else {
1323		if (crp->crp_flags & CRYPTO_F_IOV) {
1324			if (!nicealign) {
1325				ubsecstats.hst_iovmisaligned++;
1326				err = EINVAL;
1327				goto errout;
1328			}
1329			if (bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1330			     &q->q_dst_map)) {
1331				ubsecstats.hst_nomap++;
1332				err = ENOMEM;
1333				goto errout;
1334			}
1335			if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
1336			    q->q_dst_io, ubsec_op_cb, &q->q_dst, BUS_DMA_NOWAIT) != 0) {
1337				bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1338				q->q_dst_map = NULL;
1339				ubsecstats.hst_noload++;
1340				err = ENOMEM;
1341				goto errout;
1342			}
1343		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1344			if (nicealign) {
1345				q->q_dst = q->q_src;
1346			} else {
1347				int totlen, len;
1348				struct mbuf *m, *top, **mp;
1349
1350				ubsecstats.hst_unaligned++;
1351				totlen = q->q_src_mapsize;
1352				if (q->q_src_m->m_flags & M_PKTHDR) {
1353					len = MHLEN;
1354					MGETHDR(m, M_DONTWAIT, MT_DATA);
1355					if (m && !m_dup_pkthdr(m, q->q_src_m, M_DONTWAIT)) {
1356						m_free(m);
1357						m = NULL;
1358					}
1359				} else {
1360					len = MLEN;
1361					MGET(m, M_DONTWAIT, MT_DATA);
1362				}
1363				if (m == NULL) {
1364					ubsecstats.hst_nombuf++;
1365					err = sc->sc_nqueue ? ERESTART : ENOMEM;
1366					goto errout;
1367				}
1368				if (totlen >= MINCLSIZE) {
1369					MCLGET(m, M_DONTWAIT);
1370					if ((m->m_flags & M_EXT) == 0) {
1371						m_free(m);
1372						ubsecstats.hst_nomcl++;
1373						err = sc->sc_nqueue ? ERESTART : ENOMEM;
1374						goto errout;
1375					}
1376					len = MCLBYTES;
1377				}
1378				m->m_len = len;
1379				top = NULL;
1380				mp = &top;
1381
1382				while (totlen > 0) {
1383					if (top) {
1384						MGET(m, M_DONTWAIT, MT_DATA);
1385						if (m == NULL) {
1386							m_freem(top);
1387							ubsecstats.hst_nombuf++;
1388							err = sc->sc_nqueue ? ERESTART : ENOMEM;
1389							goto errout;
1390						}
1391						len = MLEN;
1392					}
1393					if (top && totlen >= MINCLSIZE) {
1394						MCLGET(m, M_DONTWAIT);
1395						if ((m->m_flags & M_EXT) == 0) {
1396							*mp = m;
1397							m_freem(top);
1398							ubsecstats.hst_nomcl++;
1399							err = sc->sc_nqueue ? ERESTART : ENOMEM;
1400							goto errout;
1401						}
1402						len = MCLBYTES;
1403					}
1404					m->m_len = len = min(totlen, len);
1405					totlen -= len;
1406					*mp = m;
1407					mp = &m->m_next;
1408				}
1409				q->q_dst_m = top;
1410				ubsec_mcopy(q->q_src_m, q->q_dst_m,
1411				    cpskip, cpoffset);
1412				if (bus_dmamap_create(sc->sc_dmat,
1413				    BUS_DMA_NOWAIT, &q->q_dst_map) != 0) {
1414					ubsecstats.hst_nomap++;
1415					err = ENOMEM;
1416					goto errout;
1417				}
1418				if (bus_dmamap_load_mbuf(sc->sc_dmat,
1419				    q->q_dst_map, q->q_dst_m,
1420				    ubsec_op_cb, &q->q_dst,
1421				    BUS_DMA_NOWAIT) != 0) {
1422					bus_dmamap_destroy(sc->sc_dmat,
1423					q->q_dst_map);
1424					q->q_dst_map = NULL;
1425					ubsecstats.hst_noload++;
1426					err = ENOMEM;
1427					goto errout;
1428				}
1429			}
1430		} else {
1431			ubsecstats.hst_badflags++;
1432			err = EINVAL;
1433			goto errout;
1434		}
1435
1436#ifdef UBSEC_DEBUG
1437		if (ubsec_debug)
1438			printf("dst skip: %d\n", dskip);
1439#endif
1440		for (i = j = 0; i < q->q_dst_nsegs; i++) {
1441			struct ubsec_pktbuf *pb;
1442			bus_size_t packl = q->q_dst_segs[i].ds_len;
1443			bus_addr_t packp = q->q_dst_segs[i].ds_addr;
1444
1445			if (dskip >= packl) {
1446				dskip -= packl;
1447				continue;
1448			}
1449
1450			packl -= dskip;
1451			packp += dskip;
1452			dskip = 0;
1453
1454			if (packl > 0xfffc) {
1455				err = EIO;
1456				goto errout;
1457			}
1458
1459			if (j == 0)
1460				pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
1461			else
1462				pb = &dmap->d_dma->d_dbuf[j - 1];
1463
1464			pb->pb_addr = htole32(packp);
1465
1466			if (dtheend) {
1467				if (packl > dtheend) {
1468					pb->pb_len = htole32(dtheend);
1469					dtheend = 0;
1470				} else {
1471					pb->pb_len = htole32(packl);
1472					dtheend -= packl;
1473				}
1474			} else
1475				pb->pb_len = htole32(packl);
1476
1477			if ((i + 1) == q->q_dst_nsegs) {
1478				if (maccrd)
1479					pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1480					    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1481				else
1482					pb->pb_next = 0;
1483			} else
1484				pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1485				    offsetof(struct ubsec_dmachunk, d_dbuf[j]));
1486			j++;
1487		}
1488	}
1489
1490	dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
1491	    offsetof(struct ubsec_dmachunk, d_ctx));
1492
1493	if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
1494		struct ubsec_pktctx_long *ctxl;
1495
1496		ctxl = (struct ubsec_pktctx_long *)(dmap->d_alloc.dma_vaddr +
1497		    offsetof(struct ubsec_dmachunk, d_ctx));
1498
1499		/* transform small context into long context */
1500		ctxl->pc_len = htole16(sizeof(struct ubsec_pktctx_long));
1501		ctxl->pc_type = htole16(UBS_PKTCTX_TYPE_IPSEC);
1502		ctxl->pc_flags = ctx.pc_flags;
1503		ctxl->pc_offset = ctx.pc_offset;
1504		for (i = 0; i < 6; i++)
1505			ctxl->pc_deskey[i] = ctx.pc_deskey[i];
1506		for (i = 0; i < 5; i++)
1507			ctxl->pc_hminner[i] = ctx.pc_hminner[i];
1508		for (i = 0; i < 5; i++)
1509			ctxl->pc_hmouter[i] = ctx.pc_hmouter[i];
1510		ctxl->pc_iv[0] = ctx.pc_iv[0];
1511		ctxl->pc_iv[1] = ctx.pc_iv[1];
1512	} else
1513		bcopy(&ctx, dmap->d_alloc.dma_vaddr +
1514		    offsetof(struct ubsec_dmachunk, d_ctx),
1515		    sizeof(struct ubsec_pktctx));
1516
1517	mtx_lock(&sc->sc_mcr1lock);
1518	SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
1519	sc->sc_nqueue++;
1520	ubsecstats.hst_ipackets++;
1521	ubsecstats.hst_ibytes += dmap->d_alloc.dma_size;
1522	if ((hint & CRYPTO_HINT_MORE) == 0 || sc->sc_nqueue >= UBS_MAX_AGGR)
1523		ubsec_feed(sc);
1524	mtx_unlock(&sc->sc_mcr1lock);
1525	return (0);
1526
1527errout:
1528	if (q != NULL) {
1529		if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
1530			m_freem(q->q_dst_m);
1531
1532		if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1533			bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1534			bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1535		}
1536		if (q->q_src_map != NULL) {
1537			bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1538			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1539		}
1540
1541		mtx_lock(&sc->sc_freeqlock);
1542		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1543		mtx_unlock(&sc->sc_freeqlock);
1544	}
1545	if (err != ERESTART) {
1546		crp->crp_etype = err;
1547		crypto_done(crp);
1548	} else {
1549		sc->sc_needwakeup |= CRYPTO_SYMQ;
1550	}
1551	return (err);
1552}
1553
1554static void
1555ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q)
1556{
1557	struct cryptop *crp = (struct cryptop *)q->q_crp;
1558	struct cryptodesc *crd;
1559	struct ubsec_dma *dmap = q->q_dma;
1560
1561	ubsecstats.hst_opackets++;
1562	ubsecstats.hst_obytes += dmap->d_alloc.dma_size;
1563
1564	ubsec_dma_sync(&dmap->d_alloc,
1565	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1566	if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1567		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
1568		    BUS_DMASYNC_POSTREAD);
1569		bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1570		bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1571	}
1572	bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_POSTWRITE);
1573	bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1574	bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1575
1576	if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) {
1577		m_freem(q->q_src_m);
1578		crp->crp_buf = (caddr_t)q->q_dst_m;
1579	}
1580	ubsecstats.hst_obytes += ((struct mbuf *)crp->crp_buf)->m_len;
1581
1582	/* copy out IV for future use */
1583	if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) {
1584		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1585			if (crd->crd_alg != CRYPTO_DES_CBC &&
1586			    crd->crd_alg != CRYPTO_3DES_CBC)
1587				continue;
1588			if (crp->crp_flags & CRYPTO_F_IMBUF)
1589				m_copydata((struct mbuf *)crp->crp_buf,
1590				    crd->crd_skip + crd->crd_len - 8, 8,
1591				    (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1592			else if (crp->crp_flags & CRYPTO_F_IOV) {
1593				cuio_copydata((struct uio *)crp->crp_buf,
1594				    crd->crd_skip + crd->crd_len - 8, 8,
1595				    (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1596			}
1597			break;
1598		}
1599	}
1600
1601	for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1602		if (crd->crd_alg != CRYPTO_MD5_HMAC &&
1603		    crd->crd_alg != CRYPTO_SHA1_HMAC)
1604			continue;
1605		if (crp->crp_flags & CRYPTO_F_IMBUF)
1606			m_copyback((struct mbuf *)crp->crp_buf,
1607			    crd->crd_inject, 12,
1608			    (caddr_t)dmap->d_dma->d_macbuf);
1609		else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac)
1610			bcopy((caddr_t)dmap->d_dma->d_macbuf,
1611			    crp->crp_mac, 12);
1612		break;
1613	}
1614	mtx_lock(&sc->sc_freeqlock);
1615	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1616	mtx_unlock(&sc->sc_freeqlock);
1617	crypto_done(crp);
1618}
1619
1620static void
1621ubsec_mcopy(struct mbuf *srcm, struct mbuf *dstm, int hoffset, int toffset)
1622{
1623	int i, j, dlen, slen;
1624	caddr_t dptr, sptr;
1625
1626	j = 0;
1627	sptr = srcm->m_data;
1628	slen = srcm->m_len;
1629	dptr = dstm->m_data;
1630	dlen = dstm->m_len;
1631
1632	while (1) {
1633		for (i = 0; i < min(slen, dlen); i++) {
1634			if (j < hoffset || j >= toffset)
1635				*dptr++ = *sptr++;
1636			slen--;
1637			dlen--;
1638			j++;
1639		}
1640		if (slen == 0) {
1641			srcm = srcm->m_next;
1642			if (srcm == NULL)
1643				return;
1644			sptr = srcm->m_data;
1645			slen = srcm->m_len;
1646		}
1647		if (dlen == 0) {
1648			dstm = dstm->m_next;
1649			if (dstm == NULL)
1650				return;
1651			dptr = dstm->m_data;
1652			dlen = dstm->m_len;
1653		}
1654	}
1655}
1656
1657/*
1658 * feed the key generator, must be called at splimp() or higher.
1659 */
1660static int
1661ubsec_feed2(struct ubsec_softc *sc)
1662{
1663	struct ubsec_q2 *q;
1664
1665	while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) {
1666		if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL)
1667			break;
1668		q = SIMPLEQ_FIRST(&sc->sc_queue2);
1669
1670		ubsec_dma_sync(&q->q_mcr,
1671		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1672		ubsec_dma_sync(&q->q_ctx, BUS_DMASYNC_PREWRITE);
1673
1674		WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr);
1675		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, q, q_next);
1676		--sc->sc_nqueue2;
1677		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next);
1678	}
1679	return (0);
1680}
1681
1682/*
1683 * Callback for handling random numbers
1684 */
1685static void
1686ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q)
1687{
1688	struct cryptkop *krp;
1689	struct ubsec_ctx_keyop *ctx;
1690
1691	ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr;
1692	ubsec_dma_sync(&q->q_ctx, BUS_DMASYNC_POSTWRITE);
1693
1694	switch (q->q_type) {
1695#ifndef UBSEC_NO_RNG
1696	case UBS_CTXOP_RNGBYPASS: {
1697		struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q;
1698
1699		ubsec_dma_sync(&rng->rng_buf, BUS_DMASYNC_POSTREAD);
1700		(*sc->sc_harvest)(sc->sc_rndtest,
1701			rng->rng_buf.dma_vaddr,
1702			UBSEC_RNG_BUFSIZ*sizeof (u_int32_t));
1703		rng->rng_used = 0;
1704		callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
1705		break;
1706	}
1707#endif
1708	case UBS_CTXOP_MODEXP: {
1709		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
1710		u_int rlen, clen;
1711
1712		krp = me->me_krp;
1713		rlen = (me->me_modbits + 7) / 8;
1714		clen = (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8;
1715
1716		ubsec_dma_sync(&me->me_M, BUS_DMASYNC_POSTWRITE);
1717		ubsec_dma_sync(&me->me_E, BUS_DMASYNC_POSTWRITE);
1718		ubsec_dma_sync(&me->me_C, BUS_DMASYNC_POSTREAD);
1719		ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_POSTWRITE);
1720
1721		if (clen < rlen)
1722			krp->krp_status = E2BIG;
1723		else {
1724			if (sc->sc_flags & UBS_FLAGS_HWNORM) {
1725				bzero(krp->krp_param[krp->krp_iparams].crp_p,
1726				    (krp->krp_param[krp->krp_iparams].crp_nbits
1727					+ 7) / 8);
1728				bcopy(me->me_C.dma_vaddr,
1729				    krp->krp_param[krp->krp_iparams].crp_p,
1730				    (me->me_modbits + 7) / 8);
1731			} else
1732				ubsec_kshift_l(me->me_shiftbits,
1733				    me->me_C.dma_vaddr, me->me_normbits,
1734				    krp->krp_param[krp->krp_iparams].crp_p,
1735				    krp->krp_param[krp->krp_iparams].crp_nbits);
1736		}
1737
1738		crypto_kdone(krp);
1739
1740		/* bzero all potentially sensitive data */
1741		bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
1742		bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
1743		bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
1744		bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
1745
1746		/* Can't free here, so put us on the free list. */
1747		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &me->me_q, q_next);
1748		break;
1749	}
1750	case UBS_CTXOP_RSAPRIV: {
1751		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
1752		u_int len;
1753
1754		krp = rp->rpr_krp;
1755		ubsec_dma_sync(&rp->rpr_msgin, BUS_DMASYNC_POSTWRITE);
1756		ubsec_dma_sync(&rp->rpr_msgout, BUS_DMASYNC_POSTREAD);
1757
1758		len = (krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_nbits + 7) / 8;
1759		bcopy(rp->rpr_msgout.dma_vaddr,
1760		    krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_p, len);
1761
1762		crypto_kdone(krp);
1763
1764		bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size);
1765		bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size);
1766		bzero(rp->rpr_q.q_ctx.dma_vaddr, rp->rpr_q.q_ctx.dma_size);
1767
1768		/* Can't free here, so put us on the free list. */
1769		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &rp->rpr_q, q_next);
1770		break;
1771	}
1772	default:
1773		device_printf(sc->sc_dev, "unknown ctx op: %x\n",
1774		    letoh16(ctx->ctx_op));
1775		break;
1776	}
1777}
1778
1779#ifndef UBSEC_NO_RNG
1780static void
1781ubsec_rng(void *vsc)
1782{
1783	struct ubsec_softc *sc = vsc;
1784	struct ubsec_q2_rng *rng = &sc->sc_rng;
1785	struct ubsec_mcr *mcr;
1786	struct ubsec_ctx_rngbypass *ctx;
1787
1788	mtx_lock(&sc->sc_mcr2lock);
1789	if (rng->rng_used) {
1790		mtx_unlock(&sc->sc_mcr2lock);
1791		return;
1792	}
1793	sc->sc_nqueue2++;
1794	if (sc->sc_nqueue2 >= UBS_MAX_NQUEUE)
1795		goto out;
1796
1797	mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr;
1798	ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr;
1799
1800	mcr->mcr_pkts = htole16(1);
1801	mcr->mcr_flags = 0;
1802	mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr);
1803	mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0;
1804	mcr->mcr_ipktbuf.pb_len = 0;
1805	mcr->mcr_reserved = mcr->mcr_pktlen = 0;
1806	mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr);
1807	mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) &
1808	    UBS_PKTBUF_LEN);
1809	mcr->mcr_opktbuf.pb_next = 0;
1810
1811	ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass));
1812	ctx->rbp_op = htole16(UBS_CTXOP_RNGBYPASS);
1813	rng->rng_q.q_type = UBS_CTXOP_RNGBYPASS;
1814
1815	ubsec_dma_sync(&rng->rng_buf, BUS_DMASYNC_PREREAD);
1816
1817	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next);
1818	rng->rng_used = 1;
1819	ubsec_feed2(sc);
1820	ubsecstats.hst_rng++;
1821	mtx_unlock(&sc->sc_mcr2lock);
1822
1823	return;
1824
1825out:
1826	/*
1827	 * Something weird happened, generate our own call back.
1828	 */
1829	sc->sc_nqueue2--;
1830	mtx_unlock(&sc->sc_mcr2lock);
1831	callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
1832}
1833#endif /* UBSEC_NO_RNG */
1834
1835static void
1836ubsec_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1837{
1838	bus_addr_t *paddr = (bus_addr_t*) arg;
1839	*paddr = segs->ds_addr;
1840}
1841
1842static int
1843ubsec_dma_malloc(
1844	struct ubsec_softc *sc,
1845	bus_size_t size,
1846	struct ubsec_dma_alloc *dma,
1847	int mapflags
1848)
1849{
1850	int r;
1851
1852	/* XXX could specify sc_dmat as parent but that just adds overhead */
1853	r = bus_dma_tag_create(NULL,			/* parent */
1854			       1, 0,			/* alignment, bounds */
1855			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1856			       BUS_SPACE_MAXADDR,	/* highaddr */
1857			       NULL, NULL,		/* filter, filterarg */
1858			       size,			/* maxsize */
1859			       1,			/* nsegments */
1860			       size,			/* maxsegsize */
1861			       BUS_DMA_ALLOCNOW,	/* flags */
1862			       NULL, NULL,		/* lockfunc, lockarg */
1863			       &dma->dma_tag);
1864	if (r != 0) {
1865		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1866			"bus_dma_tag_create failed; error %u\n", r);
1867		goto fail_0;
1868	}
1869
1870	r = bus_dmamap_create(dma->dma_tag, BUS_DMA_NOWAIT, &dma->dma_map);
1871	if (r != 0) {
1872		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1873			"bus_dmamap_create failed; error %u\n", r);
1874		goto fail_1;
1875	}
1876
1877	r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
1878			     BUS_DMA_NOWAIT, &dma->dma_map);
1879	if (r != 0) {
1880		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1881			"bus_dmammem_alloc failed; size %zu, error %u\n",
1882			size, r);
1883		goto fail_2;
1884	}
1885
1886	r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
1887		            size,
1888			    ubsec_dmamap_cb,
1889			    &dma->dma_paddr,
1890			    mapflags | BUS_DMA_NOWAIT);
1891	if (r != 0) {
1892		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1893			"bus_dmamap_load failed; error %u\n", r);
1894		goto fail_3;
1895	}
1896
1897	dma->dma_size = size;
1898	return (0);
1899
1900fail_3:
1901	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1902fail_2:
1903	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1904fail_1:
1905	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1906	bus_dma_tag_destroy(dma->dma_tag);
1907fail_0:
1908	dma->dma_map = NULL;
1909	dma->dma_tag = NULL;
1910	return (r);
1911}
1912
1913static void
1914ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
1915{
1916	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1917	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1918	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1919	bus_dma_tag_destroy(dma->dma_tag);
1920}
1921
1922/*
1923 * Resets the board.  Values in the regesters are left as is
1924 * from the reset (i.e. initial values are assigned elsewhere).
1925 */
1926static void
1927ubsec_reset_board(struct ubsec_softc *sc)
1928{
1929    volatile u_int32_t ctrl;
1930
1931    ctrl = READ_REG(sc, BS_CTRL);
1932    ctrl |= BS_CTRL_RESET;
1933    WRITE_REG(sc, BS_CTRL, ctrl);
1934
1935    /*
1936     * Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
1937     */
1938    DELAY(10);
1939}
1940
1941/*
1942 * Init Broadcom registers
1943 */
1944static void
1945ubsec_init_board(struct ubsec_softc *sc)
1946{
1947	u_int32_t ctrl;
1948
1949	ctrl = READ_REG(sc, BS_CTRL);
1950	ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
1951	ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT;
1952
1953	if (sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG))
1954		ctrl |= BS_CTRL_MCR2INT;
1955	else
1956		ctrl &= ~BS_CTRL_MCR2INT;
1957
1958	if (sc->sc_flags & UBS_FLAGS_HWNORM)
1959		ctrl &= ~BS_CTRL_SWNORM;
1960
1961	WRITE_REG(sc, BS_CTRL, ctrl);
1962}
1963
1964/*
1965 * Init Broadcom PCI registers
1966 */
1967static void
1968ubsec_init_pciregs(device_t dev)
1969{
1970#if 0
1971	u_int32_t misc;
1972
1973	misc = pci_conf_read(pc, pa->pa_tag, BS_RTY_TOUT);
1974	misc = (misc & ~(UBS_PCI_RTY_MASK << UBS_PCI_RTY_SHIFT))
1975	    | ((UBS_DEF_RTY & 0xff) << UBS_PCI_RTY_SHIFT);
1976	misc = (misc & ~(UBS_PCI_TOUT_MASK << UBS_PCI_TOUT_SHIFT))
1977	    | ((UBS_DEF_TOUT & 0xff) << UBS_PCI_TOUT_SHIFT);
1978	pci_conf_write(pc, pa->pa_tag, BS_RTY_TOUT, misc);
1979#endif
1980
1981	/*
1982	 * This will set the cache line size to 1, this will
1983	 * force the BCM58xx chip just to do burst read/writes.
1984	 * Cache line read/writes are to slow
1985	 */
1986	pci_write_config(dev, PCIR_CACHELNSZ, UBS_DEF_CACHELINE, 1);
1987}
1988
1989/*
1990 * Clean up after a chip crash.
1991 * It is assumed that the caller in splimp()
1992 */
1993static void
1994ubsec_cleanchip(struct ubsec_softc *sc)
1995{
1996	struct ubsec_q *q;
1997
1998	while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
1999		q = SIMPLEQ_FIRST(&sc->sc_qchip);
2000		SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q, q_next);
2001		ubsec_free_q(sc, q);
2002	}
2003	sc->sc_nqchip = 0;
2004}
2005
2006/*
2007 * free a ubsec_q
2008 * It is assumed that the caller is within splimp().
2009 */
2010static int
2011ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
2012{
2013	struct ubsec_q *q2;
2014	struct cryptop *crp;
2015	int npkts;
2016	int i;
2017
2018	npkts = q->q_nstacked_mcrs;
2019
2020	for (i = 0; i < npkts; i++) {
2021		if(q->q_stacked_mcr[i]) {
2022			q2 = q->q_stacked_mcr[i];
2023
2024			if ((q2->q_dst_m != NULL) && (q2->q_src_m != q2->q_dst_m))
2025				m_freem(q2->q_dst_m);
2026
2027			crp = (struct cryptop *)q2->q_crp;
2028
2029			SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
2030
2031			crp->crp_etype = EFAULT;
2032			crypto_done(crp);
2033		} else {
2034			break;
2035		}
2036	}
2037
2038	/*
2039	 * Free header MCR
2040	 */
2041	if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
2042		m_freem(q->q_dst_m);
2043
2044	crp = (struct cryptop *)q->q_crp;
2045
2046	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
2047
2048	crp->crp_etype = EFAULT;
2049	crypto_done(crp);
2050	return(0);
2051}
2052
2053/*
2054 * Routine to reset the chip and clean up.
2055 * It is assumed that the caller is in splimp()
2056 */
2057static void
2058ubsec_totalreset(struct ubsec_softc *sc)
2059{
2060	ubsec_reset_board(sc);
2061	ubsec_init_board(sc);
2062	ubsec_cleanchip(sc);
2063}
2064
2065static int
2066ubsec_dmamap_aligned(struct ubsec_operand *op)
2067{
2068	int i;
2069
2070	for (i = 0; i < op->nsegs; i++) {
2071		if (op->segs[i].ds_addr & 3)
2072			return (0);
2073		if ((i != (op->nsegs - 1)) &&
2074		    (op->segs[i].ds_len & 3))
2075			return (0);
2076	}
2077	return (1);
2078}
2079
2080static void
2081ubsec_kfree(struct ubsec_softc *sc, struct ubsec_q2 *q)
2082{
2083	switch (q->q_type) {
2084	case UBS_CTXOP_MODEXP: {
2085		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
2086
2087		ubsec_dma_free(sc, &me->me_q.q_mcr);
2088		ubsec_dma_free(sc, &me->me_q.q_ctx);
2089		ubsec_dma_free(sc, &me->me_M);
2090		ubsec_dma_free(sc, &me->me_E);
2091		ubsec_dma_free(sc, &me->me_C);
2092		ubsec_dma_free(sc, &me->me_epb);
2093		free(me, M_DEVBUF);
2094		break;
2095	}
2096	case UBS_CTXOP_RSAPRIV: {
2097		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
2098
2099		ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2100		ubsec_dma_free(sc, &rp->rpr_q.q_ctx);
2101		ubsec_dma_free(sc, &rp->rpr_msgin);
2102		ubsec_dma_free(sc, &rp->rpr_msgout);
2103		free(rp, M_DEVBUF);
2104		break;
2105	}
2106	default:
2107		device_printf(sc->sc_dev, "invalid kfree 0x%x\n", q->q_type);
2108		break;
2109	}
2110}
2111
2112static int
2113ubsec_kprocess(void *arg, struct cryptkop *krp, int hint)
2114{
2115	struct ubsec_softc *sc = arg;
2116	int r;
2117
2118	if (krp == NULL || krp->krp_callback == NULL)
2119		return (EINVAL);
2120
2121	while (!SIMPLEQ_EMPTY(&sc->sc_q2free)) {
2122		struct ubsec_q2 *q;
2123
2124		q = SIMPLEQ_FIRST(&sc->sc_q2free);
2125		SIMPLEQ_REMOVE_HEAD(&sc->sc_q2free, q, q_next);
2126		ubsec_kfree(sc, q);
2127	}
2128
2129	switch (krp->krp_op) {
2130	case CRK_MOD_EXP:
2131		if (sc->sc_flags & UBS_FLAGS_HWNORM)
2132			r = ubsec_kprocess_modexp_hw(sc, krp, hint);
2133		else
2134			r = ubsec_kprocess_modexp_sw(sc, krp, hint);
2135		break;
2136	case CRK_MOD_EXP_CRT:
2137		return (ubsec_kprocess_rsapriv(sc, krp, hint));
2138	default:
2139		device_printf(sc->sc_dev, "kprocess: invalid op 0x%x\n",
2140		    krp->krp_op);
2141		krp->krp_status = EOPNOTSUPP;
2142		crypto_kdone(krp);
2143		return (0);
2144	}
2145	return (0);			/* silence compiler */
2146}
2147
2148/*
2149 * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (sw normalization)
2150 */
2151static int
2152ubsec_kprocess_modexp_sw(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
2153{
2154	struct ubsec_q2_modexp *me;
2155	struct ubsec_mcr *mcr;
2156	struct ubsec_ctx_modexp *ctx;
2157	struct ubsec_pktbuf *epb;
2158	int err = 0;
2159	u_int nbits, normbits, mbits, shiftbits, ebits;
2160
2161	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2162	if (me == NULL) {
2163		err = ENOMEM;
2164		goto errout;
2165	}
2166	bzero(me, sizeof *me);
2167	me->me_krp = krp;
2168	me->me_q.q_type = UBS_CTXOP_MODEXP;
2169
2170	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2171	if (nbits <= 512)
2172		normbits = 512;
2173	else if (nbits <= 768)
2174		normbits = 768;
2175	else if (nbits <= 1024)
2176		normbits = 1024;
2177	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2178		normbits = 1536;
2179	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2180		normbits = 2048;
2181	else {
2182		err = E2BIG;
2183		goto errout;
2184	}
2185
2186	shiftbits = normbits - nbits;
2187
2188	me->me_modbits = nbits;
2189	me->me_shiftbits = shiftbits;
2190	me->me_normbits = normbits;
2191
2192	/* Sanity check: result bits must be >= true modulus bits. */
2193	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2194		err = ERANGE;
2195		goto errout;
2196	}
2197
2198	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2199	    &me->me_q.q_mcr, 0)) {
2200		err = ENOMEM;
2201		goto errout;
2202	}
2203	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2204
2205	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2206	    &me->me_q.q_ctx, 0)) {
2207		err = ENOMEM;
2208		goto errout;
2209	}
2210
2211	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2212	if (mbits > nbits) {
2213		err = E2BIG;
2214		goto errout;
2215	}
2216	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2217		err = ENOMEM;
2218		goto errout;
2219	}
2220	ubsec_kshift_r(shiftbits,
2221	    krp->krp_param[UBS_MODEXP_PAR_M].crp_p, mbits,
2222	    me->me_M.dma_vaddr, normbits);
2223
2224	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2225		err = ENOMEM;
2226		goto errout;
2227	}
2228	bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2229
2230	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2231	if (ebits > nbits) {
2232		err = E2BIG;
2233		goto errout;
2234	}
2235	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2236		err = ENOMEM;
2237		goto errout;
2238	}
2239	ubsec_kshift_r(shiftbits,
2240	    krp->krp_param[UBS_MODEXP_PAR_E].crp_p, ebits,
2241	    me->me_E.dma_vaddr, normbits);
2242
2243	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2244	    &me->me_epb, 0)) {
2245		err = ENOMEM;
2246		goto errout;
2247	}
2248	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2249	epb->pb_addr = htole32(me->me_E.dma_paddr);
2250	epb->pb_next = 0;
2251	epb->pb_len = htole32(normbits / 8);
2252
2253#ifdef UBSEC_DEBUG
2254	if (ubsec_debug) {
2255		printf("Epb ");
2256		ubsec_dump_pb(epb);
2257	}
2258#endif
2259
2260	mcr->mcr_pkts = htole16(1);
2261	mcr->mcr_flags = 0;
2262	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2263	mcr->mcr_reserved = 0;
2264	mcr->mcr_pktlen = 0;
2265
2266	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2267	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2268	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2269
2270	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2271	mcr->mcr_opktbuf.pb_next = 0;
2272	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2273
2274#ifdef DIAGNOSTIC
2275	/* Misaligned output buffer will hang the chip. */
2276	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2277		panic("%s: modexp invalid addr 0x%x\n",
2278		    device_get_nameunit(sc->sc_dev),
2279		    letoh32(mcr->mcr_opktbuf.pb_addr));
2280	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2281		panic("%s: modexp invalid len 0x%x\n",
2282		    device_get_nameunit(sc->sc_dev),
2283		    letoh32(mcr->mcr_opktbuf.pb_len));
2284#endif
2285
2286	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2287	bzero(ctx, sizeof(*ctx));
2288	ubsec_kshift_r(shiftbits,
2289	    krp->krp_param[UBS_MODEXP_PAR_N].crp_p, nbits,
2290	    ctx->me_N, normbits);
2291	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2292	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2293	ctx->me_E_len = htole16(nbits);
2294	ctx->me_N_len = htole16(nbits);
2295
2296#ifdef UBSEC_DEBUG
2297	if (ubsec_debug) {
2298		ubsec_dump_mcr(mcr);
2299		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2300	}
2301#endif
2302
2303	/*
2304	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2305	 * everything else.
2306	 */
2307	ubsec_dma_sync(&me->me_M, BUS_DMASYNC_PREWRITE);
2308	ubsec_dma_sync(&me->me_E, BUS_DMASYNC_PREWRITE);
2309	ubsec_dma_sync(&me->me_C, BUS_DMASYNC_PREREAD);
2310	ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_PREWRITE);
2311
2312	/* Enqueue and we're done... */
2313	mtx_lock(&sc->sc_mcr2lock);
2314	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2315	ubsec_feed2(sc);
2316	ubsecstats.hst_modexp++;
2317	mtx_unlock(&sc->sc_mcr2lock);
2318
2319	return (0);
2320
2321errout:
2322	if (me != NULL) {
2323		if (me->me_q.q_mcr.dma_map != NULL)
2324			ubsec_dma_free(sc, &me->me_q.q_mcr);
2325		if (me->me_q.q_ctx.dma_map != NULL) {
2326			bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
2327			ubsec_dma_free(sc, &me->me_q.q_ctx);
2328		}
2329		if (me->me_M.dma_map != NULL) {
2330			bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
2331			ubsec_dma_free(sc, &me->me_M);
2332		}
2333		if (me->me_E.dma_map != NULL) {
2334			bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
2335			ubsec_dma_free(sc, &me->me_E);
2336		}
2337		if (me->me_C.dma_map != NULL) {
2338			bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2339			ubsec_dma_free(sc, &me->me_C);
2340		}
2341		if (me->me_epb.dma_map != NULL)
2342			ubsec_dma_free(sc, &me->me_epb);
2343		free(me, M_DEVBUF);
2344	}
2345	krp->krp_status = err;
2346	crypto_kdone(krp);
2347	return (0);
2348}
2349
2350/*
2351 * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (hw normalization)
2352 */
2353static int
2354ubsec_kprocess_modexp_hw(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
2355{
2356	struct ubsec_q2_modexp *me;
2357	struct ubsec_mcr *mcr;
2358	struct ubsec_ctx_modexp *ctx;
2359	struct ubsec_pktbuf *epb;
2360	int err = 0;
2361	u_int nbits, normbits, mbits, shiftbits, ebits;
2362
2363	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2364	if (me == NULL) {
2365		err = ENOMEM;
2366		goto errout;
2367	}
2368	bzero(me, sizeof *me);
2369	me->me_krp = krp;
2370	me->me_q.q_type = UBS_CTXOP_MODEXP;
2371
2372	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2373	if (nbits <= 512)
2374		normbits = 512;
2375	else if (nbits <= 768)
2376		normbits = 768;
2377	else if (nbits <= 1024)
2378		normbits = 1024;
2379	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2380		normbits = 1536;
2381	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2382		normbits = 2048;
2383	else {
2384		err = E2BIG;
2385		goto errout;
2386	}
2387
2388	shiftbits = normbits - nbits;
2389
2390	/* XXX ??? */
2391	me->me_modbits = nbits;
2392	me->me_shiftbits = shiftbits;
2393	me->me_normbits = normbits;
2394
2395	/* Sanity check: result bits must be >= true modulus bits. */
2396	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2397		err = ERANGE;
2398		goto errout;
2399	}
2400
2401	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2402	    &me->me_q.q_mcr, 0)) {
2403		err = ENOMEM;
2404		goto errout;
2405	}
2406	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2407
2408	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2409	    &me->me_q.q_ctx, 0)) {
2410		err = ENOMEM;
2411		goto errout;
2412	}
2413
2414	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2415	if (mbits > nbits) {
2416		err = E2BIG;
2417		goto errout;
2418	}
2419	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2420		err = ENOMEM;
2421		goto errout;
2422	}
2423	bzero(me->me_M.dma_vaddr, normbits / 8);
2424	bcopy(krp->krp_param[UBS_MODEXP_PAR_M].crp_p,
2425	    me->me_M.dma_vaddr, (mbits + 7) / 8);
2426
2427	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2428		err = ENOMEM;
2429		goto errout;
2430	}
2431	bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2432
2433	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2434	if (ebits > nbits) {
2435		err = E2BIG;
2436		goto errout;
2437	}
2438	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2439		err = ENOMEM;
2440		goto errout;
2441	}
2442	bzero(me->me_E.dma_vaddr, normbits / 8);
2443	bcopy(krp->krp_param[UBS_MODEXP_PAR_E].crp_p,
2444	    me->me_E.dma_vaddr, (ebits + 7) / 8);
2445
2446	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2447	    &me->me_epb, 0)) {
2448		err = ENOMEM;
2449		goto errout;
2450	}
2451	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2452	epb->pb_addr = htole32(me->me_E.dma_paddr);
2453	epb->pb_next = 0;
2454	epb->pb_len = htole32((ebits + 7) / 8);
2455
2456#ifdef UBSEC_DEBUG
2457	if (ubsec_debug) {
2458		printf("Epb ");
2459		ubsec_dump_pb(epb);
2460	}
2461#endif
2462
2463	mcr->mcr_pkts = htole16(1);
2464	mcr->mcr_flags = 0;
2465	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2466	mcr->mcr_reserved = 0;
2467	mcr->mcr_pktlen = 0;
2468
2469	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2470	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2471	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2472
2473	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2474	mcr->mcr_opktbuf.pb_next = 0;
2475	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2476
2477#ifdef DIAGNOSTIC
2478	/* Misaligned output buffer will hang the chip. */
2479	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2480		panic("%s: modexp invalid addr 0x%x\n",
2481		    device_get_nameunit(sc->sc_dev),
2482		    letoh32(mcr->mcr_opktbuf.pb_addr));
2483	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2484		panic("%s: modexp invalid len 0x%x\n",
2485		    device_get_nameunit(sc->sc_dev),
2486		    letoh32(mcr->mcr_opktbuf.pb_len));
2487#endif
2488
2489	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2490	bzero(ctx, sizeof(*ctx));
2491	bcopy(krp->krp_param[UBS_MODEXP_PAR_N].crp_p, ctx->me_N,
2492	    (nbits + 7) / 8);
2493	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2494	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2495	ctx->me_E_len = htole16(ebits);
2496	ctx->me_N_len = htole16(nbits);
2497
2498#ifdef UBSEC_DEBUG
2499	if (ubsec_debug) {
2500		ubsec_dump_mcr(mcr);
2501		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2502	}
2503#endif
2504
2505	/*
2506	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2507	 * everything else.
2508	 */
2509	ubsec_dma_sync(&me->me_M, BUS_DMASYNC_PREWRITE);
2510	ubsec_dma_sync(&me->me_E, BUS_DMASYNC_PREWRITE);
2511	ubsec_dma_sync(&me->me_C, BUS_DMASYNC_PREREAD);
2512	ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_PREWRITE);
2513
2514	/* Enqueue and we're done... */
2515	mtx_lock(&sc->sc_mcr2lock);
2516	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2517	ubsec_feed2(sc);
2518	mtx_unlock(&sc->sc_mcr2lock);
2519
2520	return (0);
2521
2522errout:
2523	if (me != NULL) {
2524		if (me->me_q.q_mcr.dma_map != NULL)
2525			ubsec_dma_free(sc, &me->me_q.q_mcr);
2526		if (me->me_q.q_ctx.dma_map != NULL) {
2527			bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
2528			ubsec_dma_free(sc, &me->me_q.q_ctx);
2529		}
2530		if (me->me_M.dma_map != NULL) {
2531			bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
2532			ubsec_dma_free(sc, &me->me_M);
2533		}
2534		if (me->me_E.dma_map != NULL) {
2535			bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
2536			ubsec_dma_free(sc, &me->me_E);
2537		}
2538		if (me->me_C.dma_map != NULL) {
2539			bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2540			ubsec_dma_free(sc, &me->me_C);
2541		}
2542		if (me->me_epb.dma_map != NULL)
2543			ubsec_dma_free(sc, &me->me_epb);
2544		free(me, M_DEVBUF);
2545	}
2546	krp->krp_status = err;
2547	crypto_kdone(krp);
2548	return (0);
2549}
2550
2551static int
2552ubsec_kprocess_rsapriv(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
2553{
2554	struct ubsec_q2_rsapriv *rp = NULL;
2555	struct ubsec_mcr *mcr;
2556	struct ubsec_ctx_rsapriv *ctx;
2557	int err = 0;
2558	u_int padlen, msglen;
2559
2560	msglen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_P]);
2561	padlen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_Q]);
2562	if (msglen > padlen)
2563		padlen = msglen;
2564
2565	if (padlen <= 256)
2566		padlen = 256;
2567	else if (padlen <= 384)
2568		padlen = 384;
2569	else if (padlen <= 512)
2570		padlen = 512;
2571	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 768)
2572		padlen = 768;
2573	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 1024)
2574		padlen = 1024;
2575	else {
2576		err = E2BIG;
2577		goto errout;
2578	}
2579
2580	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DP]) > padlen) {
2581		err = E2BIG;
2582		goto errout;
2583	}
2584
2585	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DQ]) > padlen) {
2586		err = E2BIG;
2587		goto errout;
2588	}
2589
2590	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_PINV]) > padlen) {
2591		err = E2BIG;
2592		goto errout;
2593	}
2594
2595	rp = (struct ubsec_q2_rsapriv *)malloc(sizeof *rp, M_DEVBUF, M_NOWAIT);
2596	if (rp == NULL)
2597		return (ENOMEM);
2598	bzero(rp, sizeof *rp);
2599	rp->rpr_krp = krp;
2600	rp->rpr_q.q_type = UBS_CTXOP_RSAPRIV;
2601
2602	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2603	    &rp->rpr_q.q_mcr, 0)) {
2604		err = ENOMEM;
2605		goto errout;
2606	}
2607	mcr = (struct ubsec_mcr *)rp->rpr_q.q_mcr.dma_vaddr;
2608
2609	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rsapriv),
2610	    &rp->rpr_q.q_ctx, 0)) {
2611		err = ENOMEM;
2612		goto errout;
2613	}
2614	ctx = (struct ubsec_ctx_rsapriv *)rp->rpr_q.q_ctx.dma_vaddr;
2615	bzero(ctx, sizeof *ctx);
2616
2617	/* Copy in p */
2618	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_p,
2619	    &ctx->rpr_buf[0 * (padlen / 8)],
2620	    (krp->krp_param[UBS_RSAPRIV_PAR_P].crp_nbits + 7) / 8);
2621
2622	/* Copy in q */
2623	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_p,
2624	    &ctx->rpr_buf[1 * (padlen / 8)],
2625	    (krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_nbits + 7) / 8);
2626
2627	/* Copy in dp */
2628	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_p,
2629	    &ctx->rpr_buf[2 * (padlen / 8)],
2630	    (krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_nbits + 7) / 8);
2631
2632	/* Copy in dq */
2633	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_p,
2634	    &ctx->rpr_buf[3 * (padlen / 8)],
2635	    (krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_nbits + 7) / 8);
2636
2637	/* Copy in pinv */
2638	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_p,
2639	    &ctx->rpr_buf[4 * (padlen / 8)],
2640	    (krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_nbits + 7) / 8);
2641
2642	msglen = padlen * 2;
2643
2644	/* Copy in input message (aligned buffer/length). */
2645	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGIN]) > msglen) {
2646		/* Is this likely? */
2647		err = E2BIG;
2648		goto errout;
2649	}
2650	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgin, 0)) {
2651		err = ENOMEM;
2652		goto errout;
2653	}
2654	bzero(rp->rpr_msgin.dma_vaddr, (msglen + 7) / 8);
2655	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_p,
2656	    rp->rpr_msgin.dma_vaddr,
2657	    (krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_nbits + 7) / 8);
2658
2659	/* Prepare space for output message (aligned buffer/length). */
2660	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT]) < msglen) {
2661		/* Is this likely? */
2662		err = E2BIG;
2663		goto errout;
2664	}
2665	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgout, 0)) {
2666		err = ENOMEM;
2667		goto errout;
2668	}
2669	bzero(rp->rpr_msgout.dma_vaddr, (msglen + 7) / 8);
2670
2671	mcr->mcr_pkts = htole16(1);
2672	mcr->mcr_flags = 0;
2673	mcr->mcr_cmdctxp = htole32(rp->rpr_q.q_ctx.dma_paddr);
2674	mcr->mcr_ipktbuf.pb_addr = htole32(rp->rpr_msgin.dma_paddr);
2675	mcr->mcr_ipktbuf.pb_next = 0;
2676	mcr->mcr_ipktbuf.pb_len = htole32(rp->rpr_msgin.dma_size);
2677	mcr->mcr_reserved = 0;
2678	mcr->mcr_pktlen = htole16(msglen);
2679	mcr->mcr_opktbuf.pb_addr = htole32(rp->rpr_msgout.dma_paddr);
2680	mcr->mcr_opktbuf.pb_next = 0;
2681	mcr->mcr_opktbuf.pb_len = htole32(rp->rpr_msgout.dma_size);
2682
2683#ifdef DIAGNOSTIC
2684	if (rp->rpr_msgin.dma_paddr & 3 || rp->rpr_msgin.dma_size & 3) {
2685		panic("%s: rsapriv: invalid msgin %x(0x%jx)",
2686		    device_get_nameunit(sc->sc_dev),
2687		    rp->rpr_msgin.dma_paddr, (uintmax_t)rp->rpr_msgin.dma_size);
2688	}
2689	if (rp->rpr_msgout.dma_paddr & 3 || rp->rpr_msgout.dma_size & 3) {
2690		panic("%s: rsapriv: invalid msgout %x(0x%jx)",
2691		    device_get_nameunit(sc->sc_dev),
2692		    rp->rpr_msgout.dma_paddr, (uintmax_t)rp->rpr_msgout.dma_size);
2693	}
2694#endif
2695
2696	ctx->rpr_len = (sizeof(u_int16_t) * 4) + (5 * (padlen / 8));
2697	ctx->rpr_op = htole16(UBS_CTXOP_RSAPRIV);
2698	ctx->rpr_q_len = htole16(padlen);
2699	ctx->rpr_p_len = htole16(padlen);
2700
2701	/*
2702	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2703	 * everything else.
2704	 */
2705	ubsec_dma_sync(&rp->rpr_msgin, BUS_DMASYNC_PREWRITE);
2706	ubsec_dma_sync(&rp->rpr_msgout, BUS_DMASYNC_PREREAD);
2707
2708	/* Enqueue and we're done... */
2709	mtx_lock(&sc->sc_mcr2lock);
2710	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rp->rpr_q, q_next);
2711	ubsec_feed2(sc);
2712	ubsecstats.hst_modexpcrt++;
2713	mtx_unlock(&sc->sc_mcr2lock);
2714	return (0);
2715
2716errout:
2717	if (rp != NULL) {
2718		if (rp->rpr_q.q_mcr.dma_map != NULL)
2719			ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2720		if (rp->rpr_msgin.dma_map != NULL) {
2721			bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size);
2722			ubsec_dma_free(sc, &rp->rpr_msgin);
2723		}
2724		if (rp->rpr_msgout.dma_map != NULL) {
2725			bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size);
2726			ubsec_dma_free(sc, &rp->rpr_msgout);
2727		}
2728		free(rp, M_DEVBUF);
2729	}
2730	krp->krp_status = err;
2731	crypto_kdone(krp);
2732	return (0);
2733}
2734
2735#ifdef UBSEC_DEBUG
2736static void
2737ubsec_dump_pb(volatile struct ubsec_pktbuf *pb)
2738{
2739	printf("addr 0x%x (0x%x) next 0x%x\n",
2740	    pb->pb_addr, pb->pb_len, pb->pb_next);
2741}
2742
2743static void
2744ubsec_dump_ctx2(struct ubsec_ctx_keyop *c)
2745{
2746	printf("CTX (0x%x):\n", c->ctx_len);
2747	switch (letoh16(c->ctx_op)) {
2748	case UBS_CTXOP_RNGBYPASS:
2749	case UBS_CTXOP_RNGSHA1:
2750		break;
2751	case UBS_CTXOP_MODEXP:
2752	{
2753		struct ubsec_ctx_modexp *cx = (void *)c;
2754		int i, len;
2755
2756		printf(" Elen %u, Nlen %u\n",
2757		    letoh16(cx->me_E_len), letoh16(cx->me_N_len));
2758		len = (cx->me_N_len + 7)/8;
2759		for (i = 0; i < len; i++)
2760			printf("%s%02x", (i == 0) ? " N: " : ":", cx->me_N[i]);
2761		printf("\n");
2762		break;
2763	}
2764	default:
2765		printf("unknown context: %x\n", c->ctx_op);
2766	}
2767	printf("END CTX\n");
2768}
2769
2770static void
2771ubsec_dump_mcr(struct ubsec_mcr *mcr)
2772{
2773	volatile struct ubsec_mcr_add *ma;
2774	int i;
2775
2776	printf("MCR:\n");
2777	printf(" pkts: %u, flags 0x%x\n",
2778	    letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
2779	ma = (volatile struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
2780	for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
2781		printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
2782		    letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
2783		    letoh16(ma->mcr_reserved));
2784		printf(" %d: ipkt ", i);
2785		ubsec_dump_pb(&ma->mcr_ipktbuf);
2786		printf(" %d: opkt ", i);
2787		ubsec_dump_pb(&ma->mcr_opktbuf);
2788		ma++;
2789	}
2790	printf("END MCR\n");
2791}
2792#endif /* UBSEC_DEBUG */
2793
2794/*
2795 * Return the number of significant bits of a big number.
2796 */
2797static int
2798ubsec_ksigbits(struct crparam *cr)
2799{
2800	u_int plen = (cr->crp_nbits + 7) / 8;
2801	int i, sig = plen * 8;
2802	u_int8_t c, *p = cr->crp_p;
2803
2804	for (i = plen - 1; i >= 0; i--) {
2805		c = p[i];
2806		if (c != 0) {
2807			while ((c & 0x80) == 0) {
2808				sig--;
2809				c <<= 1;
2810			}
2811			break;
2812		}
2813		sig -= 8;
2814	}
2815	return (sig);
2816}
2817
2818static void
2819ubsec_kshift_r(
2820	u_int shiftbits,
2821	u_int8_t *src, u_int srcbits,
2822	u_int8_t *dst, u_int dstbits)
2823{
2824	u_int slen, dlen;
2825	int i, si, di, n;
2826
2827	slen = (srcbits + 7) / 8;
2828	dlen = (dstbits + 7) / 8;
2829
2830	for (i = 0; i < slen; i++)
2831		dst[i] = src[i];
2832	for (i = 0; i < dlen - slen; i++)
2833		dst[slen + i] = 0;
2834
2835	n = shiftbits / 8;
2836	if (n != 0) {
2837		si = dlen - n - 1;
2838		di = dlen - 1;
2839		while (si >= 0)
2840			dst[di--] = dst[si--];
2841		while (di >= 0)
2842			dst[di--] = 0;
2843	}
2844
2845	n = shiftbits % 8;
2846	if (n != 0) {
2847		for (i = dlen - 1; i > 0; i--)
2848			dst[i] = (dst[i] << n) |
2849			    (dst[i - 1] >> (8 - n));
2850		dst[0] = dst[0] << n;
2851	}
2852}
2853
2854static void
2855ubsec_kshift_l(
2856	u_int shiftbits,
2857	u_int8_t *src, u_int srcbits,
2858	u_int8_t *dst, u_int dstbits)
2859{
2860	int slen, dlen, i, n;
2861
2862	slen = (srcbits + 7) / 8;
2863	dlen = (dstbits + 7) / 8;
2864
2865	n = shiftbits / 8;
2866	for (i = 0; i < slen; i++)
2867		dst[i] = src[i + n];
2868	for (i = 0; i < dlen - slen; i++)
2869		dst[slen + i] = 0;
2870
2871	n = shiftbits % 8;
2872	if (n != 0) {
2873		for (i = 0; i < (dlen - 1); i++)
2874			dst[i] = (dst[i] >> n) | (dst[i + 1] << (8 - n));
2875		dst[dlen - 1] = dst[dlen - 1] >> n;
2876	}
2877}
2878