ubsec.c revision 127135
1/*	$OpenBSD: ubsec.c,v 1.115 2002/09/24 18:33:26 jason Exp $	*/
2
3/*
4 * Copyright (c) 2000 Jason L. Wright (jason@thought.net)
5 * Copyright (c) 2000 Theo de Raadt (deraadt@openbsd.org)
6 * Copyright (c) 2001 Patrik Lindergren (patrik@ipunplugged.com)
7 *
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by Jason L. Wright
21 * 4. The name of the author may not be used to endorse or promote products
22 *    derived from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
25 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
26 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
27 * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
28 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
29 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
30 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
32 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
33 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 *
36 * Effort sponsored in part by the Defense Advanced Research Projects
37 * Agency (DARPA) and Air Force Research Laboratory, Air Force
38 * Materiel Command, USAF, under agreement number F30602-01-2-0537.
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/dev/ubsec/ubsec.c 127135 2004-03-17 17:50:55Z njl $");
43
44/*
45 * uBsec 5[56]01, 58xx hardware crypto accelerator
46 */
47
48#include "opt_ubsec.h"
49
50#include <sys/param.h>
51#include <sys/systm.h>
52#include <sys/proc.h>
53#include <sys/errno.h>
54#include <sys/malloc.h>
55#include <sys/kernel.h>
56#include <sys/mbuf.h>
57#include <sys/lock.h>
58#include <sys/mutex.h>
59#include <sys/sysctl.h>
60#include <sys/endian.h>
61
62#include <vm/vm.h>
63#include <vm/pmap.h>
64
65#include <machine/clock.h>
66#include <machine/bus.h>
67#include <machine/resource.h>
68#include <sys/bus.h>
69#include <sys/rman.h>
70
71#include <crypto/sha1.h>
72#include <opencrypto/cryptodev.h>
73#include <opencrypto/cryptosoft.h>
74#include <sys/md5.h>
75#include <sys/random.h>
76
77#include <dev/pci/pcivar.h>
78#include <dev/pci/pcireg.h>
79
80/* grr, #defines for gratuitous incompatibility in queue.h */
81#define	SIMPLEQ_HEAD		STAILQ_HEAD
82#define	SIMPLEQ_ENTRY		STAILQ_ENTRY
83#define	SIMPLEQ_INIT		STAILQ_INIT
84#define	SIMPLEQ_INSERT_TAIL	STAILQ_INSERT_TAIL
85#define	SIMPLEQ_EMPTY		STAILQ_EMPTY
86#define	SIMPLEQ_FIRST		STAILQ_FIRST
87#define	SIMPLEQ_REMOVE_HEAD	STAILQ_REMOVE_HEAD_UNTIL
88#define	SIMPLEQ_FOREACH		STAILQ_FOREACH
89/* ditto for endian.h */
90#define	letoh16(x)		le16toh(x)
91#define	letoh32(x)		le32toh(x)
92
93#ifdef UBSEC_RNDTEST
94#include <dev/rndtest/rndtest.h>
95#endif
96#include <dev/ubsec/ubsecreg.h>
97#include <dev/ubsec/ubsecvar.h>
98
99/*
100 * Prototypes and count for the pci_device structure
101 */
102static	int ubsec_probe(device_t);
103static	int ubsec_attach(device_t);
104static	int ubsec_detach(device_t);
105static	int ubsec_suspend(device_t);
106static	int ubsec_resume(device_t);
107static	void ubsec_shutdown(device_t);
108
109static device_method_t ubsec_methods[] = {
110	/* Device interface */
111	DEVMETHOD(device_probe,		ubsec_probe),
112	DEVMETHOD(device_attach,	ubsec_attach),
113	DEVMETHOD(device_detach,	ubsec_detach),
114	DEVMETHOD(device_suspend,	ubsec_suspend),
115	DEVMETHOD(device_resume,	ubsec_resume),
116	DEVMETHOD(device_shutdown,	ubsec_shutdown),
117
118	/* bus interface */
119	DEVMETHOD(bus_print_child,	bus_generic_print_child),
120	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
121
122	{ 0, 0 }
123};
124static driver_t ubsec_driver = {
125	"ubsec",
126	ubsec_methods,
127	sizeof (struct ubsec_softc)
128};
129static devclass_t ubsec_devclass;
130
131DRIVER_MODULE(ubsec, pci, ubsec_driver, ubsec_devclass, 0, 0);
132MODULE_DEPEND(ubsec, crypto, 1, 1, 1);
133#ifdef UBSEC_RNDTEST
134MODULE_DEPEND(ubsec, rndtest, 1, 1, 1);
135#endif
136
137static	void ubsec_intr(void *);
138static	int ubsec_newsession(void *, u_int32_t *, struct cryptoini *);
139static	int ubsec_freesession(void *, u_int64_t);
140static	int ubsec_process(void *, struct cryptop *, int);
141static	void ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
142static	void ubsec_feed(struct ubsec_softc *);
143static	void ubsec_mcopy(struct mbuf *, struct mbuf *, int, int);
144static	void ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *);
145static	int ubsec_feed2(struct ubsec_softc *);
146static	void ubsec_rng(void *);
147static	int ubsec_dma_malloc(struct ubsec_softc *, bus_size_t,
148			     struct ubsec_dma_alloc *, int);
149#define	ubsec_dma_sync(_dma, _flags) \
150	bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
151static	void ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
152static	int ubsec_dmamap_aligned(struct ubsec_operand *op);
153
154static	void ubsec_reset_board(struct ubsec_softc *sc);
155static	void ubsec_init_board(struct ubsec_softc *sc);
156static	void ubsec_init_pciregs(device_t dev);
157static	void ubsec_totalreset(struct ubsec_softc *sc);
158
159static	int ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q);
160
161static	int ubsec_kprocess(void*, struct cryptkop *, int);
162static	int ubsec_kprocess_modexp_hw(struct ubsec_softc *, struct cryptkop *, int);
163static	int ubsec_kprocess_modexp_sw(struct ubsec_softc *, struct cryptkop *, int);
164static	int ubsec_kprocess_rsapriv(struct ubsec_softc *, struct cryptkop *, int);
165static	void ubsec_kfree(struct ubsec_softc *, struct ubsec_q2 *);
166static	int ubsec_ksigbits(struct crparam *);
167static	void ubsec_kshift_r(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
168static	void ubsec_kshift_l(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
169
170SYSCTL_NODE(_hw, OID_AUTO, ubsec, CTLFLAG_RD, 0, "Broadcom driver parameters");
171
172#ifdef UBSEC_DEBUG
173static	void ubsec_dump_pb(volatile struct ubsec_pktbuf *);
174static	void ubsec_dump_mcr(struct ubsec_mcr *);
175static	void ubsec_dump_ctx2(struct ubsec_ctx_keyop *);
176
177static	int ubsec_debug = 0;
178SYSCTL_INT(_hw_ubsec, OID_AUTO, debug, CTLFLAG_RW, &ubsec_debug,
179	    0, "control debugging msgs");
180#endif
181
182#define	READ_REG(sc,r) \
183	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
184
185#define WRITE_REG(sc,reg,val) \
186	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
187
188#define	SWAP32(x) (x) = htole32(ntohl((x)))
189#define	HTOLE32(x) (x) = htole32(x)
190
191struct ubsec_stats ubsecstats;
192SYSCTL_STRUCT(_hw_ubsec, OID_AUTO, stats, CTLFLAG_RD, &ubsecstats,
193	    ubsec_stats, "driver statistics");
194
195static int
196ubsec_probe(device_t dev)
197{
198	if (pci_get_vendor(dev) == PCI_VENDOR_SUN &&
199	    (pci_get_device(dev) == PCI_PRODUCT_SUN_5821 ||
200	     pci_get_device(dev) == PCI_PRODUCT_SUN_SCA1K))
201		return (0);
202	if (pci_get_vendor(dev) == PCI_VENDOR_BLUESTEEL &&
203	    (pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5501 ||
204	     pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5601))
205		return (0);
206	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
207	    (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5801 ||
208	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5802 ||
209	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5805 ||
210	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5820 ||
211	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5821 ||
212	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5822 ||
213	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5823
214	     ))
215		return (0);
216	return (ENXIO);
217}
218
219static const char*
220ubsec_partname(struct ubsec_softc *sc)
221{
222	/* XXX sprintf numbers when not decoded */
223	switch (pci_get_vendor(sc->sc_dev)) {
224	case PCI_VENDOR_BROADCOM:
225		switch (pci_get_device(sc->sc_dev)) {
226		case PCI_PRODUCT_BROADCOM_5801:	return "Broadcom 5801";
227		case PCI_PRODUCT_BROADCOM_5802:	return "Broadcom 5802";
228		case PCI_PRODUCT_BROADCOM_5805:	return "Broadcom 5805";
229		case PCI_PRODUCT_BROADCOM_5820:	return "Broadcom 5820";
230		case PCI_PRODUCT_BROADCOM_5821:	return "Broadcom 5821";
231		case PCI_PRODUCT_BROADCOM_5822:	return "Broadcom 5822";
232		case PCI_PRODUCT_BROADCOM_5823:	return "Broadcom 5823";
233		}
234		return "Broadcom unknown-part";
235	case PCI_VENDOR_BLUESTEEL:
236		switch (pci_get_device(sc->sc_dev)) {
237		case PCI_PRODUCT_BLUESTEEL_5601: return "Bluesteel 5601";
238		}
239		return "Bluesteel unknown-part";
240	case PCI_VENDOR_SUN:
241		switch (pci_get_device(sc->sc_dev)) {
242		case PCI_PRODUCT_SUN_5821: return "Sun Crypto 5821";
243		case PCI_PRODUCT_SUN_SCA1K: return "Sun Crypto 1K";
244		}
245		return "Sun unknown-part";
246	}
247	return "Unknown-vendor unknown-part";
248}
249
250static void
251default_harvest(struct rndtest_state *rsp, void *buf, u_int count)
252{
253	random_harvest(buf, count, count*NBBY, 0, RANDOM_PURE);
254}
255
256static int
257ubsec_attach(device_t dev)
258{
259	struct ubsec_softc *sc = device_get_softc(dev);
260	struct ubsec_dma *dmap;
261	u_int32_t cmd, i;
262	int rid;
263
264	bzero(sc, sizeof (*sc));
265	sc->sc_dev = dev;
266
267	SIMPLEQ_INIT(&sc->sc_queue);
268	SIMPLEQ_INIT(&sc->sc_qchip);
269	SIMPLEQ_INIT(&sc->sc_queue2);
270	SIMPLEQ_INIT(&sc->sc_qchip2);
271	SIMPLEQ_INIT(&sc->sc_q2free);
272
273	/* XXX handle power management */
274
275	sc->sc_statmask = BS_STAT_MCR1_DONE | BS_STAT_DMAERR;
276
277	if (pci_get_vendor(dev) == PCI_VENDOR_BLUESTEEL &&
278	    pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5601)
279		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG;
280
281	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
282	    (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5802 ||
283	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5805))
284		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG;
285
286	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
287	    pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5820)
288		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG |
289		    UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY;
290
291	if ((pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
292	     (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5821 ||
293	      pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5822 ||
294	      pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5823)) ||
295	    (pci_get_vendor(dev) == PCI_VENDOR_SUN &&
296	     (pci_get_device(dev) == PCI_PRODUCT_SUN_SCA1K ||
297	      pci_get_device(dev) == PCI_PRODUCT_SUN_5821))) {
298		/* NB: the 5821/5822 defines some additional status bits */
299		sc->sc_statmask |= BS_STAT_MCR1_ALLEMPTY |
300		    BS_STAT_MCR2_ALLEMPTY;
301		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG |
302		    UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY;
303	}
304
305	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
306	cmd |= PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN;
307	pci_write_config(dev, PCIR_COMMAND, cmd, 4);
308	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
309
310	if (!(cmd & PCIM_CMD_MEMEN)) {
311		device_printf(dev, "failed to enable memory mapping\n");
312		goto bad;
313	}
314
315	if (!(cmd & PCIM_CMD_BUSMASTEREN)) {
316		device_printf(dev, "failed to enable bus mastering\n");
317		goto bad;
318	}
319
320	/*
321	 * Setup memory-mapping of PCI registers.
322	 */
323	rid = BS_BAR;
324	sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
325					   RF_ACTIVE);
326	if (sc->sc_sr == NULL) {
327		device_printf(dev, "cannot map register space\n");
328		goto bad;
329	}
330	sc->sc_st = rman_get_bustag(sc->sc_sr);
331	sc->sc_sh = rman_get_bushandle(sc->sc_sr);
332
333	/*
334	 * Arrange interrupt line.
335	 */
336	rid = 0;
337	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
338					    RF_SHAREABLE|RF_ACTIVE);
339	if (sc->sc_irq == NULL) {
340		device_printf(dev, "could not map interrupt\n");
341		goto bad1;
342	}
343	/*
344	 * NB: Network code assumes we are blocked with splimp()
345	 *     so make sure the IRQ is mapped appropriately.
346	 */
347	if (bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
348			   ubsec_intr, sc, &sc->sc_ih)) {
349		device_printf(dev, "could not establish interrupt\n");
350		goto bad2;
351	}
352
353	sc->sc_cid = crypto_get_driverid(0);
354	if (sc->sc_cid < 0) {
355		device_printf(dev, "could not get crypto driver id\n");
356		goto bad3;
357	}
358
359	/*
360	 * Setup DMA descriptor area.
361	 */
362	if (bus_dma_tag_create(NULL,			/* parent */
363			       1, 0,			/* alignment, bounds */
364			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
365			       BUS_SPACE_MAXADDR,	/* highaddr */
366			       NULL, NULL,		/* filter, filterarg */
367			       0x3ffff,			/* maxsize */
368			       UBS_MAX_SCATTER,		/* nsegments */
369			       0xffff,			/* maxsegsize */
370			       BUS_DMA_ALLOCNOW,	/* flags */
371			       NULL, NULL,		/* lockfunc, lockarg */
372			       &sc->sc_dmat)) {
373		device_printf(dev, "cannot allocate DMA tag\n");
374		goto bad4;
375	}
376	SIMPLEQ_INIT(&sc->sc_freequeue);
377	dmap = sc->sc_dmaa;
378	for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
379		struct ubsec_q *q;
380
381		q = (struct ubsec_q *)malloc(sizeof(struct ubsec_q),
382		    M_DEVBUF, M_NOWAIT);
383		if (q == NULL) {
384			device_printf(dev, "cannot allocate queue buffers\n");
385			break;
386		}
387
388		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk),
389		    &dmap->d_alloc, 0)) {
390			device_printf(dev, "cannot allocate dma buffers\n");
391			free(q, M_DEVBUF);
392			break;
393		}
394		dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
395
396		q->q_dma = dmap;
397		sc->sc_queuea[i] = q;
398
399		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
400	}
401	mtx_init(&sc->sc_mcr1lock, device_get_nameunit(dev),
402		"mcr1 operations", MTX_DEF);
403	mtx_init(&sc->sc_freeqlock, device_get_nameunit(dev),
404		"mcr1 free q", MTX_DEF);
405
406	device_printf(sc->sc_dev, "%s\n", ubsec_partname(sc));
407
408	crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0,
409	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
410	crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0,
411	     ubsec_newsession, ubsec_freesession, ubsec_process, sc);
412	crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0,
413	     ubsec_newsession, ubsec_freesession, ubsec_process, sc);
414	crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0,
415	     ubsec_newsession, ubsec_freesession, ubsec_process, sc);
416
417	/*
418	 * Reset Broadcom chip
419	 */
420	ubsec_reset_board(sc);
421
422	/*
423	 * Init Broadcom specific PCI settings
424	 */
425	ubsec_init_pciregs(dev);
426
427	/*
428	 * Init Broadcom chip
429	 */
430	ubsec_init_board(sc);
431
432#ifndef UBSEC_NO_RNG
433	if (sc->sc_flags & UBS_FLAGS_RNG) {
434		sc->sc_statmask |= BS_STAT_MCR2_DONE;
435#ifdef UBSEC_RNDTEST
436		sc->sc_rndtest = rndtest_attach(dev);
437		if (sc->sc_rndtest)
438			sc->sc_harvest = rndtest_harvest;
439		else
440			sc->sc_harvest = default_harvest;
441#else
442		sc->sc_harvest = default_harvest;
443#endif
444
445		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
446		    &sc->sc_rng.rng_q.q_mcr, 0))
447			goto skip_rng;
448
449		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass),
450		    &sc->sc_rng.rng_q.q_ctx, 0)) {
451			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
452			goto skip_rng;
453		}
454
455		if (ubsec_dma_malloc(sc, sizeof(u_int32_t) *
456		    UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) {
457			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
458			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
459			goto skip_rng;
460		}
461
462		if (hz >= 100)
463			sc->sc_rnghz = hz / 100;
464		else
465			sc->sc_rnghz = 1;
466		callout_init(&sc->sc_rngto, CALLOUT_MPSAFE);
467		callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
468skip_rng:
469	;
470	}
471#endif /* UBSEC_NO_RNG */
472	mtx_init(&sc->sc_mcr2lock, device_get_nameunit(dev),
473		"mcr2 operations", MTX_DEF);
474
475	if (sc->sc_flags & UBS_FLAGS_KEY) {
476		sc->sc_statmask |= BS_STAT_MCR2_DONE;
477
478		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0,
479			ubsec_kprocess, sc);
480#if 0
481		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0,
482			ubsec_kprocess, sc);
483#endif
484	}
485	return (0);
486bad4:
487	crypto_unregister_all(sc->sc_cid);
488bad3:
489	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
490bad2:
491	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
492bad1:
493	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
494bad:
495	return (ENXIO);
496}
497
498/*
499 * Detach a device that successfully probed.
500 */
501static int
502ubsec_detach(device_t dev)
503{
504	struct ubsec_softc *sc = device_get_softc(dev);
505
506	/* XXX wait/abort active ops */
507
508	/* disable interrupts */
509	WRITE_REG(sc, BS_CTRL, READ_REG(sc, BS_CTRL) &~
510		(BS_CTRL_MCR2INT | BS_CTRL_MCR1INT | BS_CTRL_DMAERR));
511
512	callout_stop(&sc->sc_rngto);
513
514	crypto_unregister_all(sc->sc_cid);
515
516#ifdef UBSEC_RNDTEST
517	if (sc->sc_rndtest)
518		rndtest_detach(sc->sc_rndtest);
519#endif
520
521	while (!SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
522		struct ubsec_q *q;
523
524		q = SIMPLEQ_FIRST(&sc->sc_freequeue);
525		SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, q, q_next);
526		ubsec_dma_free(sc, &q->q_dma->d_alloc);
527		free(q, M_DEVBUF);
528	}
529	mtx_destroy(&sc->sc_mcr1lock);
530#ifndef UBSEC_NO_RNG
531	if (sc->sc_flags & UBS_FLAGS_RNG) {
532		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
533		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
534		ubsec_dma_free(sc, &sc->sc_rng.rng_buf);
535	}
536#endif /* UBSEC_NO_RNG */
537	mtx_destroy(&sc->sc_mcr2lock);
538
539	bus_generic_detach(dev);
540	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
541	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
542
543	bus_dma_tag_destroy(sc->sc_dmat);
544	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
545
546	return (0);
547}
548
549/*
550 * Stop all chip i/o so that the kernel's probe routines don't
551 * get confused by errant DMAs when rebooting.
552 */
553static void
554ubsec_shutdown(device_t dev)
555{
556#ifdef notyet
557	ubsec_stop(device_get_softc(dev));
558#endif
559}
560
561/*
562 * Device suspend routine.
563 */
564static int
565ubsec_suspend(device_t dev)
566{
567	struct ubsec_softc *sc = device_get_softc(dev);
568
569#ifdef notyet
570	/* XXX stop the device and save PCI settings */
571#endif
572	sc->sc_suspended = 1;
573
574	return (0);
575}
576
577static int
578ubsec_resume(device_t dev)
579{
580	struct ubsec_softc *sc = device_get_softc(dev);
581
582#ifdef notyet
583	/* XXX retore PCI settings and start the device */
584#endif
585	sc->sc_suspended = 0;
586	return (0);
587}
588
589/*
590 * UBSEC Interrupt routine
591 */
592static void
593ubsec_intr(void *arg)
594{
595	struct ubsec_softc *sc = arg;
596	volatile u_int32_t stat;
597	struct ubsec_q *q;
598	struct ubsec_dma *dmap;
599	int npkts = 0, i;
600
601	stat = READ_REG(sc, BS_STAT);
602	stat &= sc->sc_statmask;
603	if (stat == 0)
604		return;
605
606	WRITE_REG(sc, BS_STAT, stat);		/* IACK */
607
608	/*
609	 * Check to see if we have any packets waiting for us
610	 */
611	if ((stat & BS_STAT_MCR1_DONE)) {
612		mtx_lock(&sc->sc_mcr1lock);
613		while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
614			q = SIMPLEQ_FIRST(&sc->sc_qchip);
615			dmap = q->q_dma;
616
617			if ((dmap->d_dma->d_mcr.mcr_flags & htole16(UBS_MCR_DONE)) == 0)
618				break;
619
620			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q, q_next);
621
622			npkts = q->q_nstacked_mcrs;
623			sc->sc_nqchip -= 1+npkts;
624			/*
625			 * search for further sc_qchip ubsec_q's that share
626			 * the same MCR, and complete them too, they must be
627			 * at the top.
628			 */
629			for (i = 0; i < npkts; i++) {
630				if(q->q_stacked_mcr[i]) {
631					ubsec_callback(sc, q->q_stacked_mcr[i]);
632				} else {
633					break;
634				}
635			}
636			ubsec_callback(sc, q);
637		}
638		/*
639		 * Don't send any more packet to chip if there has been
640		 * a DMAERR.
641		 */
642		if (!(stat & BS_STAT_DMAERR))
643			ubsec_feed(sc);
644		mtx_unlock(&sc->sc_mcr1lock);
645	}
646
647	/*
648	 * Check to see if we have any key setups/rng's waiting for us
649	 */
650	if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) &&
651	    (stat & BS_STAT_MCR2_DONE)) {
652		struct ubsec_q2 *q2;
653		struct ubsec_mcr *mcr;
654
655		mtx_lock(&sc->sc_mcr2lock);
656		while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) {
657			q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
658
659			ubsec_dma_sync(&q2->q_mcr,
660			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
661
662			mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
663			if ((mcr->mcr_flags & htole16(UBS_MCR_DONE)) == 0) {
664				ubsec_dma_sync(&q2->q_mcr,
665				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
666				break;
667			}
668			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, q2, q_next);
669			ubsec_callback2(sc, q2);
670			/*
671			 * Don't send any more packet to chip if there has been
672			 * a DMAERR.
673			 */
674			if (!(stat & BS_STAT_DMAERR))
675				ubsec_feed2(sc);
676		}
677		mtx_unlock(&sc->sc_mcr2lock);
678	}
679
680	/*
681	 * Check to see if we got any DMA Error
682	 */
683	if (stat & BS_STAT_DMAERR) {
684#ifdef UBSEC_DEBUG
685		if (ubsec_debug) {
686			volatile u_int32_t a = READ_REG(sc, BS_ERR);
687
688			printf("dmaerr %s@%08x\n",
689			    (a & BS_ERR_READ) ? "read" : "write",
690			    a & BS_ERR_ADDR);
691		}
692#endif /* UBSEC_DEBUG */
693		ubsecstats.hst_dmaerr++;
694		mtx_lock(&sc->sc_mcr1lock);
695		ubsec_totalreset(sc);
696		ubsec_feed(sc);
697		mtx_unlock(&sc->sc_mcr1lock);
698	}
699
700	if (sc->sc_needwakeup) {		/* XXX check high watermark */
701		int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
702#ifdef UBSEC_DEBUG
703		if (ubsec_debug)
704			device_printf(sc->sc_dev, "wakeup crypto (%x)\n",
705				sc->sc_needwakeup);
706#endif /* UBSEC_DEBUG */
707		sc->sc_needwakeup &= ~wakeup;
708		crypto_unblock(sc->sc_cid, wakeup);
709	}
710}
711
712/*
713 * ubsec_feed() - aggregate and post requests to chip
714 */
715static void
716ubsec_feed(struct ubsec_softc *sc)
717{
718	struct ubsec_q *q, *q2;
719	int npkts, i;
720	void *v;
721	u_int32_t stat;
722
723	/*
724	 * Decide how many ops to combine in a single MCR.  We cannot
725	 * aggregate more than UBS_MAX_AGGR because this is the number
726	 * of slots defined in the data structure.  Note that
727	 * aggregation only happens if ops are marked batch'able.
728	 * Aggregating ops reduces the number of interrupts to the host
729	 * but also (potentially) increases the latency for processing
730	 * completed ops as we only get an interrupt when all aggregated
731	 * ops have completed.
732	 */
733	if (sc->sc_nqueue == 0)
734		return;
735	if (sc->sc_nqueue > 1) {
736		npkts = 0;
737		SIMPLEQ_FOREACH(q, &sc->sc_queue, q_next) {
738			npkts++;
739			if ((q->q_crp->crp_flags & CRYPTO_F_BATCH) == 0)
740				break;
741		}
742	} else
743		npkts = 1;
744	/*
745	 * Check device status before going any further.
746	 */
747	if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
748		if (stat & BS_STAT_DMAERR) {
749			ubsec_totalreset(sc);
750			ubsecstats.hst_dmaerr++;
751		} else
752			ubsecstats.hst_mcr1full++;
753		return;
754	}
755	if (sc->sc_nqueue > ubsecstats.hst_maxqueue)
756		ubsecstats.hst_maxqueue = sc->sc_nqueue;
757	if (npkts > UBS_MAX_AGGR)
758		npkts = UBS_MAX_AGGR;
759	if (npkts < 2)				/* special case 1 op */
760		goto feed1;
761
762	ubsecstats.hst_totbatch += npkts-1;
763#ifdef UBSEC_DEBUG
764	if (ubsec_debug)
765		printf("merging %d records\n", npkts);
766#endif /* UBSEC_DEBUG */
767
768	q = SIMPLEQ_FIRST(&sc->sc_queue);
769	SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q, q_next);
770	--sc->sc_nqueue;
771
772	bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_PREWRITE);
773	if (q->q_dst_map != NULL)
774		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map, BUS_DMASYNC_PREREAD);
775
776	q->q_nstacked_mcrs = npkts - 1;		/* Number of packets stacked */
777
778	for (i = 0; i < q->q_nstacked_mcrs; i++) {
779		q2 = SIMPLEQ_FIRST(&sc->sc_queue);
780		bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
781		    BUS_DMASYNC_PREWRITE);
782		if (q2->q_dst_map != NULL)
783			bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
784			    BUS_DMASYNC_PREREAD);
785		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q2, q_next);
786		--sc->sc_nqueue;
787
788		v = (void*)(((char *)&q2->q_dma->d_dma->d_mcr) + sizeof(struct ubsec_mcr) -
789		    sizeof(struct ubsec_mcr_add));
790		bcopy(v, &q->q_dma->d_dma->d_mcradd[i], sizeof(struct ubsec_mcr_add));
791		q->q_stacked_mcr[i] = q2;
792	}
793	q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
794	SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
795	sc->sc_nqchip += npkts;
796	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
797		ubsecstats.hst_maxqchip = sc->sc_nqchip;
798	ubsec_dma_sync(&q->q_dma->d_alloc,
799	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
800	WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
801	    offsetof(struct ubsec_dmachunk, d_mcr));
802	return;
803feed1:
804	q = SIMPLEQ_FIRST(&sc->sc_queue);
805
806	bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_PREWRITE);
807	if (q->q_dst_map != NULL)
808		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map, BUS_DMASYNC_PREREAD);
809	ubsec_dma_sync(&q->q_dma->d_alloc,
810	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
811
812	WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
813	    offsetof(struct ubsec_dmachunk, d_mcr));
814#ifdef UBSEC_DEBUG
815	if (ubsec_debug)
816		printf("feed1: q->chip %p %08x stat %08x\n",
817		      q, (u_int32_t)vtophys(&q->q_dma->d_dma->d_mcr),
818		      stat);
819#endif /* UBSEC_DEBUG */
820	SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q, q_next);
821	--sc->sc_nqueue;
822	SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
823	sc->sc_nqchip++;
824	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
825		ubsecstats.hst_maxqchip = sc->sc_nqchip;
826	return;
827}
828
829/*
830 * Allocate a new 'session' and return an encoded session id.  'sidp'
831 * contains our registration id, and should contain an encoded session
832 * id on successful allocation.
833 */
834static int
835ubsec_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri)
836{
837	struct cryptoini *c, *encini = NULL, *macini = NULL;
838	struct ubsec_softc *sc = arg;
839	struct ubsec_session *ses = NULL;
840	MD5_CTX md5ctx;
841	SHA1_CTX sha1ctx;
842	int i, sesn;
843
844	if (sidp == NULL || cri == NULL || sc == NULL)
845		return (EINVAL);
846
847	for (c = cri; c != NULL; c = c->cri_next) {
848		if (c->cri_alg == CRYPTO_MD5_HMAC ||
849		    c->cri_alg == CRYPTO_SHA1_HMAC) {
850			if (macini)
851				return (EINVAL);
852			macini = c;
853		} else if (c->cri_alg == CRYPTO_DES_CBC ||
854		    c->cri_alg == CRYPTO_3DES_CBC) {
855			if (encini)
856				return (EINVAL);
857			encini = c;
858		} else
859			return (EINVAL);
860	}
861	if (encini == NULL && macini == NULL)
862		return (EINVAL);
863
864	if (sc->sc_sessions == NULL) {
865		ses = sc->sc_sessions = (struct ubsec_session *)malloc(
866		    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
867		if (ses == NULL)
868			return (ENOMEM);
869		sesn = 0;
870		sc->sc_nsessions = 1;
871	} else {
872		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
873			if (sc->sc_sessions[sesn].ses_used == 0) {
874				ses = &sc->sc_sessions[sesn];
875				break;
876			}
877		}
878
879		if (ses == NULL) {
880			sesn = sc->sc_nsessions;
881			ses = (struct ubsec_session *)malloc((sesn + 1) *
882			    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
883			if (ses == NULL)
884				return (ENOMEM);
885			bcopy(sc->sc_sessions, ses, sesn *
886			    sizeof(struct ubsec_session));
887			bzero(sc->sc_sessions, sesn *
888			    sizeof(struct ubsec_session));
889			free(sc->sc_sessions, M_DEVBUF);
890			sc->sc_sessions = ses;
891			ses = &sc->sc_sessions[sesn];
892			sc->sc_nsessions++;
893		}
894	}
895	bzero(ses, sizeof(struct ubsec_session));
896	ses->ses_used = 1;
897
898	if (encini) {
899		/* get an IV, network byte order */
900		/* XXX may read fewer than requested */
901		read_random(ses->ses_iv, sizeof(ses->ses_iv));
902
903		/* Go ahead and compute key in ubsec's byte order */
904		if (encini->cri_alg == CRYPTO_DES_CBC) {
905			bcopy(encini->cri_key, &ses->ses_deskey[0], 8);
906			bcopy(encini->cri_key, &ses->ses_deskey[2], 8);
907			bcopy(encini->cri_key, &ses->ses_deskey[4], 8);
908		} else
909			bcopy(encini->cri_key, ses->ses_deskey, 24);
910
911		SWAP32(ses->ses_deskey[0]);
912		SWAP32(ses->ses_deskey[1]);
913		SWAP32(ses->ses_deskey[2]);
914		SWAP32(ses->ses_deskey[3]);
915		SWAP32(ses->ses_deskey[4]);
916		SWAP32(ses->ses_deskey[5]);
917	}
918
919	if (macini) {
920		for (i = 0; i < macini->cri_klen / 8; i++)
921			macini->cri_key[i] ^= HMAC_IPAD_VAL;
922
923		if (macini->cri_alg == CRYPTO_MD5_HMAC) {
924			MD5Init(&md5ctx);
925			MD5Update(&md5ctx, macini->cri_key,
926			    macini->cri_klen / 8);
927			MD5Update(&md5ctx, hmac_ipad_buffer,
928			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
929			bcopy(md5ctx.state, ses->ses_hminner,
930			    sizeof(md5ctx.state));
931		} else {
932			SHA1Init(&sha1ctx);
933			SHA1Update(&sha1ctx, macini->cri_key,
934			    macini->cri_klen / 8);
935			SHA1Update(&sha1ctx, hmac_ipad_buffer,
936			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
937			bcopy(sha1ctx.h.b32, ses->ses_hminner,
938			    sizeof(sha1ctx.h.b32));
939		}
940
941		for (i = 0; i < macini->cri_klen / 8; i++)
942			macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
943
944		if (macini->cri_alg == CRYPTO_MD5_HMAC) {
945			MD5Init(&md5ctx);
946			MD5Update(&md5ctx, macini->cri_key,
947			    macini->cri_klen / 8);
948			MD5Update(&md5ctx, hmac_opad_buffer,
949			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
950			bcopy(md5ctx.state, ses->ses_hmouter,
951			    sizeof(md5ctx.state));
952		} else {
953			SHA1Init(&sha1ctx);
954			SHA1Update(&sha1ctx, macini->cri_key,
955			    macini->cri_klen / 8);
956			SHA1Update(&sha1ctx, hmac_opad_buffer,
957			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
958			bcopy(sha1ctx.h.b32, ses->ses_hmouter,
959			    sizeof(sha1ctx.h.b32));
960		}
961
962		for (i = 0; i < macini->cri_klen / 8; i++)
963			macini->cri_key[i] ^= HMAC_OPAD_VAL;
964	}
965
966	*sidp = UBSEC_SID(device_get_unit(sc->sc_dev), sesn);
967	return (0);
968}
969
970/*
971 * Deallocate a session.
972 */
973static int
974ubsec_freesession(void *arg, u_int64_t tid)
975{
976	struct ubsec_softc *sc = arg;
977	int session, ret;
978	u_int32_t sid = CRYPTO_SESID2LID(tid);
979
980	if (sc == NULL)
981		return (EINVAL);
982
983	session = UBSEC_SESSION(sid);
984	if (session < sc->sc_nsessions) {
985		bzero(&sc->sc_sessions[session],
986			sizeof(sc->sc_sessions[session]));
987		ret = 0;
988	} else
989		ret = EINVAL;
990
991	return (ret);
992}
993
994static void
995ubsec_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
996{
997	struct ubsec_operand *op = arg;
998
999	KASSERT(nsegs <= UBS_MAX_SCATTER,
1000		("Too many DMA segments returned when mapping operand"));
1001#ifdef UBSEC_DEBUG
1002	if (ubsec_debug)
1003		printf("ubsec_op_cb: mapsize %u nsegs %d\n",
1004			(u_int) mapsize, nsegs);
1005#endif
1006	op->mapsize = mapsize;
1007	op->nsegs = nsegs;
1008	bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
1009}
1010
1011static int
1012ubsec_process(void *arg, struct cryptop *crp, int hint)
1013{
1014	struct ubsec_q *q = NULL;
1015	int err = 0, i, j, nicealign;
1016	struct ubsec_softc *sc = arg;
1017	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
1018	int encoffset = 0, macoffset = 0, cpskip, cpoffset;
1019	int sskip, dskip, stheend, dtheend;
1020	int16_t coffset;
1021	struct ubsec_session *ses;
1022	struct ubsec_pktctx ctx;
1023	struct ubsec_dma *dmap = NULL;
1024
1025	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
1026		ubsecstats.hst_invalid++;
1027		return (EINVAL);
1028	}
1029	if (UBSEC_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
1030		ubsecstats.hst_badsession++;
1031		return (EINVAL);
1032	}
1033
1034	mtx_lock(&sc->sc_freeqlock);
1035	if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
1036		ubsecstats.hst_queuefull++;
1037		sc->sc_needwakeup |= CRYPTO_SYMQ;
1038		mtx_unlock(&sc->sc_freeqlock);
1039		return (ERESTART);
1040	}
1041	q = SIMPLEQ_FIRST(&sc->sc_freequeue);
1042	SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, q, q_next);
1043	mtx_unlock(&sc->sc_freeqlock);
1044
1045	dmap = q->q_dma; /* Save dma pointer */
1046	bzero(q, sizeof(struct ubsec_q));
1047	bzero(&ctx, sizeof(ctx));
1048
1049	q->q_sesn = UBSEC_SESSION(crp->crp_sid);
1050	q->q_dma = dmap;
1051	ses = &sc->sc_sessions[q->q_sesn];
1052
1053	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1054		q->q_src_m = (struct mbuf *)crp->crp_buf;
1055		q->q_dst_m = (struct mbuf *)crp->crp_buf;
1056	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1057		q->q_src_io = (struct uio *)crp->crp_buf;
1058		q->q_dst_io = (struct uio *)crp->crp_buf;
1059	} else {
1060		ubsecstats.hst_badflags++;
1061		err = EINVAL;
1062		goto errout;	/* XXX we don't handle contiguous blocks! */
1063	}
1064
1065	bzero(&dmap->d_dma->d_mcr, sizeof(struct ubsec_mcr));
1066
1067	dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
1068	dmap->d_dma->d_mcr.mcr_flags = 0;
1069	q->q_crp = crp;
1070
1071	crd1 = crp->crp_desc;
1072	if (crd1 == NULL) {
1073		ubsecstats.hst_nodesc++;
1074		err = EINVAL;
1075		goto errout;
1076	}
1077	crd2 = crd1->crd_next;
1078
1079	if (crd2 == NULL) {
1080		if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
1081		    crd1->crd_alg == CRYPTO_SHA1_HMAC) {
1082			maccrd = crd1;
1083			enccrd = NULL;
1084		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
1085		    crd1->crd_alg == CRYPTO_3DES_CBC) {
1086			maccrd = NULL;
1087			enccrd = crd1;
1088		} else {
1089			ubsecstats.hst_badalg++;
1090			err = EINVAL;
1091			goto errout;
1092		}
1093	} else {
1094		if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
1095		    crd1->crd_alg == CRYPTO_SHA1_HMAC) &&
1096		    (crd2->crd_alg == CRYPTO_DES_CBC ||
1097			crd2->crd_alg == CRYPTO_3DES_CBC) &&
1098		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
1099			maccrd = crd1;
1100			enccrd = crd2;
1101		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
1102		    crd1->crd_alg == CRYPTO_3DES_CBC) &&
1103		    (crd2->crd_alg == CRYPTO_MD5_HMAC ||
1104			crd2->crd_alg == CRYPTO_SHA1_HMAC) &&
1105		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
1106			enccrd = crd1;
1107			maccrd = crd2;
1108		} else {
1109			/*
1110			 * We cannot order the ubsec as requested
1111			 */
1112			ubsecstats.hst_badalg++;
1113			err = EINVAL;
1114			goto errout;
1115		}
1116	}
1117
1118	if (enccrd) {
1119		encoffset = enccrd->crd_skip;
1120		ctx.pc_flags |= htole16(UBS_PKTCTX_ENC_3DES);
1121
1122		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1123			q->q_flags |= UBSEC_QFLAGS_COPYOUTIV;
1124
1125			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1126				bcopy(enccrd->crd_iv, ctx.pc_iv, 8);
1127			else {
1128				ctx.pc_iv[0] = ses->ses_iv[0];
1129				ctx.pc_iv[1] = ses->ses_iv[1];
1130			}
1131
1132			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1133				if (crp->crp_flags & CRYPTO_F_IMBUF)
1134					m_copyback(q->q_src_m,
1135					    enccrd->crd_inject,
1136					    8, (caddr_t)ctx.pc_iv);
1137				else if (crp->crp_flags & CRYPTO_F_IOV)
1138					cuio_copyback(q->q_src_io,
1139					    enccrd->crd_inject,
1140					    8, (caddr_t)ctx.pc_iv);
1141			}
1142		} else {
1143			ctx.pc_flags |= htole16(UBS_PKTCTX_INBOUND);
1144
1145			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1146				bcopy(enccrd->crd_iv, ctx.pc_iv, 8);
1147			else if (crp->crp_flags & CRYPTO_F_IMBUF)
1148				m_copydata(q->q_src_m, enccrd->crd_inject,
1149				    8, (caddr_t)ctx.pc_iv);
1150			else if (crp->crp_flags & CRYPTO_F_IOV)
1151				cuio_copydata(q->q_src_io,
1152				    enccrd->crd_inject, 8,
1153				    (caddr_t)ctx.pc_iv);
1154		}
1155
1156		ctx.pc_deskey[0] = ses->ses_deskey[0];
1157		ctx.pc_deskey[1] = ses->ses_deskey[1];
1158		ctx.pc_deskey[2] = ses->ses_deskey[2];
1159		ctx.pc_deskey[3] = ses->ses_deskey[3];
1160		ctx.pc_deskey[4] = ses->ses_deskey[4];
1161		ctx.pc_deskey[5] = ses->ses_deskey[5];
1162		SWAP32(ctx.pc_iv[0]);
1163		SWAP32(ctx.pc_iv[1]);
1164	}
1165
1166	if (maccrd) {
1167		macoffset = maccrd->crd_skip;
1168
1169		if (maccrd->crd_alg == CRYPTO_MD5_HMAC)
1170			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_MD5);
1171		else
1172			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
1173
1174		for (i = 0; i < 5; i++) {
1175			ctx.pc_hminner[i] = ses->ses_hminner[i];
1176			ctx.pc_hmouter[i] = ses->ses_hmouter[i];
1177
1178			HTOLE32(ctx.pc_hminner[i]);
1179			HTOLE32(ctx.pc_hmouter[i]);
1180		}
1181	}
1182
1183	if (enccrd && maccrd) {
1184		/*
1185		 * ubsec cannot handle packets where the end of encryption
1186		 * and authentication are not the same, or where the
1187		 * encrypted part begins before the authenticated part.
1188		 */
1189		if ((encoffset + enccrd->crd_len) !=
1190		    (macoffset + maccrd->crd_len)) {
1191			ubsecstats.hst_lenmismatch++;
1192			err = EINVAL;
1193			goto errout;
1194		}
1195		if (enccrd->crd_skip < maccrd->crd_skip) {
1196			ubsecstats.hst_skipmismatch++;
1197			err = EINVAL;
1198			goto errout;
1199		}
1200		sskip = maccrd->crd_skip;
1201		cpskip = dskip = enccrd->crd_skip;
1202		stheend = maccrd->crd_len;
1203		dtheend = enccrd->crd_len;
1204		coffset = enccrd->crd_skip - maccrd->crd_skip;
1205		cpoffset = cpskip + dtheend;
1206#ifdef UBSEC_DEBUG
1207		if (ubsec_debug) {
1208			printf("mac: skip %d, len %d, inject %d\n",
1209			    maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject);
1210			printf("enc: skip %d, len %d, inject %d\n",
1211			    enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject);
1212			printf("src: skip %d, len %d\n", sskip, stheend);
1213			printf("dst: skip %d, len %d\n", dskip, dtheend);
1214			printf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
1215			    coffset, stheend, cpskip, cpoffset);
1216		}
1217#endif
1218	} else {
1219		cpskip = dskip = sskip = macoffset + encoffset;
1220		dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
1221		cpoffset = cpskip + dtheend;
1222		coffset = 0;
1223	}
1224	ctx.pc_offset = htole16(coffset >> 2);
1225
1226	if (bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &q->q_src_map)) {
1227		ubsecstats.hst_nomap++;
1228		err = ENOMEM;
1229		goto errout;
1230	}
1231	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1232		if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
1233		    q->q_src_m, ubsec_op_cb, &q->q_src, BUS_DMA_NOWAIT) != 0) {
1234			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1235			q->q_src_map = NULL;
1236			ubsecstats.hst_noload++;
1237			err = ENOMEM;
1238			goto errout;
1239		}
1240	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1241		if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
1242		    q->q_src_io, ubsec_op_cb, &q->q_src, BUS_DMA_NOWAIT) != 0) {
1243			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1244			q->q_src_map = NULL;
1245			ubsecstats.hst_noload++;
1246			err = ENOMEM;
1247			goto errout;
1248		}
1249	}
1250	nicealign = ubsec_dmamap_aligned(&q->q_src);
1251
1252	dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
1253
1254#ifdef UBSEC_DEBUG
1255	if (ubsec_debug)
1256		printf("src skip: %d nicealign: %u\n", sskip, nicealign);
1257#endif
1258	for (i = j = 0; i < q->q_src_nsegs; i++) {
1259		struct ubsec_pktbuf *pb;
1260		bus_size_t packl = q->q_src_segs[i].ds_len;
1261		bus_addr_t packp = q->q_src_segs[i].ds_addr;
1262
1263		if (sskip >= packl) {
1264			sskip -= packl;
1265			continue;
1266		}
1267
1268		packl -= sskip;
1269		packp += sskip;
1270		sskip = 0;
1271
1272		if (packl > 0xfffc) {
1273			err = EIO;
1274			goto errout;
1275		}
1276
1277		if (j == 0)
1278			pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
1279		else
1280			pb = &dmap->d_dma->d_sbuf[j - 1];
1281
1282		pb->pb_addr = htole32(packp);
1283
1284		if (stheend) {
1285			if (packl > stheend) {
1286				pb->pb_len = htole32(stheend);
1287				stheend = 0;
1288			} else {
1289				pb->pb_len = htole32(packl);
1290				stheend -= packl;
1291			}
1292		} else
1293			pb->pb_len = htole32(packl);
1294
1295		if ((i + 1) == q->q_src_nsegs)
1296			pb->pb_next = 0;
1297		else
1298			pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1299			    offsetof(struct ubsec_dmachunk, d_sbuf[j]));
1300		j++;
1301	}
1302
1303	if (enccrd == NULL && maccrd != NULL) {
1304		dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
1305		dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
1306		dmap->d_dma->d_mcr.mcr_opktbuf.pb_next = htole32(dmap->d_alloc.dma_paddr +
1307		    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1308#ifdef UBSEC_DEBUG
1309		if (ubsec_debug)
1310			printf("opkt: %x %x %x\n",
1311			    dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
1312			    dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
1313			    dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
1314#endif
1315	} else {
1316		if (crp->crp_flags & CRYPTO_F_IOV) {
1317			if (!nicealign) {
1318				ubsecstats.hst_iovmisaligned++;
1319				err = EINVAL;
1320				goto errout;
1321			}
1322			if (bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1323			     &q->q_dst_map)) {
1324				ubsecstats.hst_nomap++;
1325				err = ENOMEM;
1326				goto errout;
1327			}
1328			if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
1329			    q->q_dst_io, ubsec_op_cb, &q->q_dst, BUS_DMA_NOWAIT) != 0) {
1330				bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1331				q->q_dst_map = NULL;
1332				ubsecstats.hst_noload++;
1333				err = ENOMEM;
1334				goto errout;
1335			}
1336		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1337			if (nicealign) {
1338				q->q_dst = q->q_src;
1339			} else {
1340				int totlen, len;
1341				struct mbuf *m, *top, **mp;
1342
1343				ubsecstats.hst_unaligned++;
1344				totlen = q->q_src_mapsize;
1345				if (q->q_src_m->m_flags & M_PKTHDR) {
1346					len = MHLEN;
1347					MGETHDR(m, M_DONTWAIT, MT_DATA);
1348					if (m && !m_dup_pkthdr(m, q->q_src_m, M_DONTWAIT)) {
1349						m_free(m);
1350						m = NULL;
1351					}
1352				} else {
1353					len = MLEN;
1354					MGET(m, M_DONTWAIT, MT_DATA);
1355				}
1356				if (m == NULL) {
1357					ubsecstats.hst_nombuf++;
1358					err = sc->sc_nqueue ? ERESTART : ENOMEM;
1359					goto errout;
1360				}
1361				if (totlen >= MINCLSIZE) {
1362					MCLGET(m, M_DONTWAIT);
1363					if ((m->m_flags & M_EXT) == 0) {
1364						m_free(m);
1365						ubsecstats.hst_nomcl++;
1366						err = sc->sc_nqueue ? ERESTART : ENOMEM;
1367						goto errout;
1368					}
1369					len = MCLBYTES;
1370				}
1371				m->m_len = len;
1372				top = NULL;
1373				mp = &top;
1374
1375				while (totlen > 0) {
1376					if (top) {
1377						MGET(m, M_DONTWAIT, MT_DATA);
1378						if (m == NULL) {
1379							m_freem(top);
1380							ubsecstats.hst_nombuf++;
1381							err = sc->sc_nqueue ? ERESTART : ENOMEM;
1382							goto errout;
1383						}
1384						len = MLEN;
1385					}
1386					if (top && totlen >= MINCLSIZE) {
1387						MCLGET(m, M_DONTWAIT);
1388						if ((m->m_flags & M_EXT) == 0) {
1389							*mp = m;
1390							m_freem(top);
1391							ubsecstats.hst_nomcl++;
1392							err = sc->sc_nqueue ? ERESTART : ENOMEM;
1393							goto errout;
1394						}
1395						len = MCLBYTES;
1396					}
1397					m->m_len = len = min(totlen, len);
1398					totlen -= len;
1399					*mp = m;
1400					mp = &m->m_next;
1401				}
1402				q->q_dst_m = top;
1403				ubsec_mcopy(q->q_src_m, q->q_dst_m,
1404				    cpskip, cpoffset);
1405				if (bus_dmamap_create(sc->sc_dmat,
1406				    BUS_DMA_NOWAIT, &q->q_dst_map) != 0) {
1407					ubsecstats.hst_nomap++;
1408					err = ENOMEM;
1409					goto errout;
1410				}
1411				if (bus_dmamap_load_mbuf(sc->sc_dmat,
1412				    q->q_dst_map, q->q_dst_m,
1413				    ubsec_op_cb, &q->q_dst,
1414				    BUS_DMA_NOWAIT) != 0) {
1415					bus_dmamap_destroy(sc->sc_dmat,
1416					q->q_dst_map);
1417					q->q_dst_map = NULL;
1418					ubsecstats.hst_noload++;
1419					err = ENOMEM;
1420					goto errout;
1421				}
1422			}
1423		} else {
1424			ubsecstats.hst_badflags++;
1425			err = EINVAL;
1426			goto errout;
1427		}
1428
1429#ifdef UBSEC_DEBUG
1430		if (ubsec_debug)
1431			printf("dst skip: %d\n", dskip);
1432#endif
1433		for (i = j = 0; i < q->q_dst_nsegs; i++) {
1434			struct ubsec_pktbuf *pb;
1435			bus_size_t packl = q->q_dst_segs[i].ds_len;
1436			bus_addr_t packp = q->q_dst_segs[i].ds_addr;
1437
1438			if (dskip >= packl) {
1439				dskip -= packl;
1440				continue;
1441			}
1442
1443			packl -= dskip;
1444			packp += dskip;
1445			dskip = 0;
1446
1447			if (packl > 0xfffc) {
1448				err = EIO;
1449				goto errout;
1450			}
1451
1452			if (j == 0)
1453				pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
1454			else
1455				pb = &dmap->d_dma->d_dbuf[j - 1];
1456
1457			pb->pb_addr = htole32(packp);
1458
1459			if (dtheend) {
1460				if (packl > dtheend) {
1461					pb->pb_len = htole32(dtheend);
1462					dtheend = 0;
1463				} else {
1464					pb->pb_len = htole32(packl);
1465					dtheend -= packl;
1466				}
1467			} else
1468				pb->pb_len = htole32(packl);
1469
1470			if ((i + 1) == q->q_dst_nsegs) {
1471				if (maccrd)
1472					pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1473					    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1474				else
1475					pb->pb_next = 0;
1476			} else
1477				pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1478				    offsetof(struct ubsec_dmachunk, d_dbuf[j]));
1479			j++;
1480		}
1481	}
1482
1483	dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
1484	    offsetof(struct ubsec_dmachunk, d_ctx));
1485
1486	if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
1487		struct ubsec_pktctx_long *ctxl;
1488
1489		ctxl = (struct ubsec_pktctx_long *)(dmap->d_alloc.dma_vaddr +
1490		    offsetof(struct ubsec_dmachunk, d_ctx));
1491
1492		/* transform small context into long context */
1493		ctxl->pc_len = htole16(sizeof(struct ubsec_pktctx_long));
1494		ctxl->pc_type = htole16(UBS_PKTCTX_TYPE_IPSEC);
1495		ctxl->pc_flags = ctx.pc_flags;
1496		ctxl->pc_offset = ctx.pc_offset;
1497		for (i = 0; i < 6; i++)
1498			ctxl->pc_deskey[i] = ctx.pc_deskey[i];
1499		for (i = 0; i < 5; i++)
1500			ctxl->pc_hminner[i] = ctx.pc_hminner[i];
1501		for (i = 0; i < 5; i++)
1502			ctxl->pc_hmouter[i] = ctx.pc_hmouter[i];
1503		ctxl->pc_iv[0] = ctx.pc_iv[0];
1504		ctxl->pc_iv[1] = ctx.pc_iv[1];
1505	} else
1506		bcopy(&ctx, dmap->d_alloc.dma_vaddr +
1507		    offsetof(struct ubsec_dmachunk, d_ctx),
1508		    sizeof(struct ubsec_pktctx));
1509
1510	mtx_lock(&sc->sc_mcr1lock);
1511	SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
1512	sc->sc_nqueue++;
1513	ubsecstats.hst_ipackets++;
1514	ubsecstats.hst_ibytes += dmap->d_alloc.dma_size;
1515	if ((hint & CRYPTO_HINT_MORE) == 0 || sc->sc_nqueue >= UBS_MAX_AGGR)
1516		ubsec_feed(sc);
1517	mtx_unlock(&sc->sc_mcr1lock);
1518	return (0);
1519
1520errout:
1521	if (q != NULL) {
1522		if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
1523			m_freem(q->q_dst_m);
1524
1525		if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1526			bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1527			bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1528		}
1529		if (q->q_src_map != NULL) {
1530			bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1531			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1532		}
1533
1534		mtx_lock(&sc->sc_freeqlock);
1535		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1536		mtx_unlock(&sc->sc_freeqlock);
1537	}
1538	if (err != ERESTART) {
1539		crp->crp_etype = err;
1540		crypto_done(crp);
1541	} else {
1542		sc->sc_needwakeup |= CRYPTO_SYMQ;
1543	}
1544	return (err);
1545}
1546
1547static void
1548ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q)
1549{
1550	struct cryptop *crp = (struct cryptop *)q->q_crp;
1551	struct cryptodesc *crd;
1552	struct ubsec_dma *dmap = q->q_dma;
1553
1554	ubsecstats.hst_opackets++;
1555	ubsecstats.hst_obytes += dmap->d_alloc.dma_size;
1556
1557	ubsec_dma_sync(&dmap->d_alloc,
1558	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1559	if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1560		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
1561		    BUS_DMASYNC_POSTREAD);
1562		bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1563		bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1564	}
1565	bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_POSTWRITE);
1566	bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1567	bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1568
1569	if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) {
1570		m_freem(q->q_src_m);
1571		crp->crp_buf = (caddr_t)q->q_dst_m;
1572	}
1573	ubsecstats.hst_obytes += ((struct mbuf *)crp->crp_buf)->m_len;
1574
1575	/* copy out IV for future use */
1576	if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) {
1577		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1578			if (crd->crd_alg != CRYPTO_DES_CBC &&
1579			    crd->crd_alg != CRYPTO_3DES_CBC)
1580				continue;
1581			if (crp->crp_flags & CRYPTO_F_IMBUF)
1582				m_copydata((struct mbuf *)crp->crp_buf,
1583				    crd->crd_skip + crd->crd_len - 8, 8,
1584				    (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1585			else if (crp->crp_flags & CRYPTO_F_IOV) {
1586				cuio_copydata((struct uio *)crp->crp_buf,
1587				    crd->crd_skip + crd->crd_len - 8, 8,
1588				    (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1589			}
1590			break;
1591		}
1592	}
1593
1594	for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1595		if (crd->crd_alg != CRYPTO_MD5_HMAC &&
1596		    crd->crd_alg != CRYPTO_SHA1_HMAC)
1597			continue;
1598		if (crp->crp_flags & CRYPTO_F_IMBUF)
1599			m_copyback((struct mbuf *)crp->crp_buf,
1600			    crd->crd_inject, 12,
1601			    (caddr_t)dmap->d_dma->d_macbuf);
1602		else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac)
1603			bcopy((caddr_t)dmap->d_dma->d_macbuf,
1604			    crp->crp_mac, 12);
1605		break;
1606	}
1607	mtx_lock(&sc->sc_freeqlock);
1608	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1609	mtx_unlock(&sc->sc_freeqlock);
1610	crypto_done(crp);
1611}
1612
1613static void
1614ubsec_mcopy(struct mbuf *srcm, struct mbuf *dstm, int hoffset, int toffset)
1615{
1616	int i, j, dlen, slen;
1617	caddr_t dptr, sptr;
1618
1619	j = 0;
1620	sptr = srcm->m_data;
1621	slen = srcm->m_len;
1622	dptr = dstm->m_data;
1623	dlen = dstm->m_len;
1624
1625	while (1) {
1626		for (i = 0; i < min(slen, dlen); i++) {
1627			if (j < hoffset || j >= toffset)
1628				*dptr++ = *sptr++;
1629			slen--;
1630			dlen--;
1631			j++;
1632		}
1633		if (slen == 0) {
1634			srcm = srcm->m_next;
1635			if (srcm == NULL)
1636				return;
1637			sptr = srcm->m_data;
1638			slen = srcm->m_len;
1639		}
1640		if (dlen == 0) {
1641			dstm = dstm->m_next;
1642			if (dstm == NULL)
1643				return;
1644			dptr = dstm->m_data;
1645			dlen = dstm->m_len;
1646		}
1647	}
1648}
1649
1650/*
1651 * feed the key generator, must be called at splimp() or higher.
1652 */
1653static int
1654ubsec_feed2(struct ubsec_softc *sc)
1655{
1656	struct ubsec_q2 *q;
1657
1658	while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) {
1659		if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL)
1660			break;
1661		q = SIMPLEQ_FIRST(&sc->sc_queue2);
1662
1663		ubsec_dma_sync(&q->q_mcr,
1664		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1665		ubsec_dma_sync(&q->q_ctx, BUS_DMASYNC_PREWRITE);
1666
1667		WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr);
1668		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, q, q_next);
1669		--sc->sc_nqueue2;
1670		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next);
1671	}
1672	return (0);
1673}
1674
1675/*
1676 * Callback for handling random numbers
1677 */
1678static void
1679ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q)
1680{
1681	struct cryptkop *krp;
1682	struct ubsec_ctx_keyop *ctx;
1683
1684	ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr;
1685	ubsec_dma_sync(&q->q_ctx, BUS_DMASYNC_POSTWRITE);
1686
1687	switch (q->q_type) {
1688#ifndef UBSEC_NO_RNG
1689	case UBS_CTXOP_RNGBYPASS: {
1690		struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q;
1691
1692		ubsec_dma_sync(&rng->rng_buf, BUS_DMASYNC_POSTREAD);
1693		(*sc->sc_harvest)(sc->sc_rndtest,
1694			rng->rng_buf.dma_vaddr,
1695			UBSEC_RNG_BUFSIZ*sizeof (u_int32_t));
1696		rng->rng_used = 0;
1697		callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
1698		break;
1699	}
1700#endif
1701	case UBS_CTXOP_MODEXP: {
1702		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
1703		u_int rlen, clen;
1704
1705		krp = me->me_krp;
1706		rlen = (me->me_modbits + 7) / 8;
1707		clen = (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8;
1708
1709		ubsec_dma_sync(&me->me_M, BUS_DMASYNC_POSTWRITE);
1710		ubsec_dma_sync(&me->me_E, BUS_DMASYNC_POSTWRITE);
1711		ubsec_dma_sync(&me->me_C, BUS_DMASYNC_POSTREAD);
1712		ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_POSTWRITE);
1713
1714		if (clen < rlen)
1715			krp->krp_status = E2BIG;
1716		else {
1717			if (sc->sc_flags & UBS_FLAGS_HWNORM) {
1718				bzero(krp->krp_param[krp->krp_iparams].crp_p,
1719				    (krp->krp_param[krp->krp_iparams].crp_nbits
1720					+ 7) / 8);
1721				bcopy(me->me_C.dma_vaddr,
1722				    krp->krp_param[krp->krp_iparams].crp_p,
1723				    (me->me_modbits + 7) / 8);
1724			} else
1725				ubsec_kshift_l(me->me_shiftbits,
1726				    me->me_C.dma_vaddr, me->me_normbits,
1727				    krp->krp_param[krp->krp_iparams].crp_p,
1728				    krp->krp_param[krp->krp_iparams].crp_nbits);
1729		}
1730
1731		crypto_kdone(krp);
1732
1733		/* bzero all potentially sensitive data */
1734		bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
1735		bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
1736		bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
1737		bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
1738
1739		/* Can't free here, so put us on the free list. */
1740		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &me->me_q, q_next);
1741		break;
1742	}
1743	case UBS_CTXOP_RSAPRIV: {
1744		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
1745		u_int len;
1746
1747		krp = rp->rpr_krp;
1748		ubsec_dma_sync(&rp->rpr_msgin, BUS_DMASYNC_POSTWRITE);
1749		ubsec_dma_sync(&rp->rpr_msgout, BUS_DMASYNC_POSTREAD);
1750
1751		len = (krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_nbits + 7) / 8;
1752		bcopy(rp->rpr_msgout.dma_vaddr,
1753		    krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_p, len);
1754
1755		crypto_kdone(krp);
1756
1757		bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size);
1758		bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size);
1759		bzero(rp->rpr_q.q_ctx.dma_vaddr, rp->rpr_q.q_ctx.dma_size);
1760
1761		/* Can't free here, so put us on the free list. */
1762		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &rp->rpr_q, q_next);
1763		break;
1764	}
1765	default:
1766		device_printf(sc->sc_dev, "unknown ctx op: %x\n",
1767		    letoh16(ctx->ctx_op));
1768		break;
1769	}
1770}
1771
1772#ifndef UBSEC_NO_RNG
1773static void
1774ubsec_rng(void *vsc)
1775{
1776	struct ubsec_softc *sc = vsc;
1777	struct ubsec_q2_rng *rng = &sc->sc_rng;
1778	struct ubsec_mcr *mcr;
1779	struct ubsec_ctx_rngbypass *ctx;
1780
1781	mtx_lock(&sc->sc_mcr2lock);
1782	if (rng->rng_used) {
1783		mtx_unlock(&sc->sc_mcr2lock);
1784		return;
1785	}
1786	sc->sc_nqueue2++;
1787	if (sc->sc_nqueue2 >= UBS_MAX_NQUEUE)
1788		goto out;
1789
1790	mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr;
1791	ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr;
1792
1793	mcr->mcr_pkts = htole16(1);
1794	mcr->mcr_flags = 0;
1795	mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr);
1796	mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0;
1797	mcr->mcr_ipktbuf.pb_len = 0;
1798	mcr->mcr_reserved = mcr->mcr_pktlen = 0;
1799	mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr);
1800	mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) &
1801	    UBS_PKTBUF_LEN);
1802	mcr->mcr_opktbuf.pb_next = 0;
1803
1804	ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass));
1805	ctx->rbp_op = htole16(UBS_CTXOP_RNGBYPASS);
1806	rng->rng_q.q_type = UBS_CTXOP_RNGBYPASS;
1807
1808	ubsec_dma_sync(&rng->rng_buf, BUS_DMASYNC_PREREAD);
1809
1810	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next);
1811	rng->rng_used = 1;
1812	ubsec_feed2(sc);
1813	ubsecstats.hst_rng++;
1814	mtx_unlock(&sc->sc_mcr2lock);
1815
1816	return;
1817
1818out:
1819	/*
1820	 * Something weird happened, generate our own call back.
1821	 */
1822	sc->sc_nqueue2--;
1823	mtx_unlock(&sc->sc_mcr2lock);
1824	callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
1825}
1826#endif /* UBSEC_NO_RNG */
1827
1828static void
1829ubsec_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1830{
1831	bus_addr_t *paddr = (bus_addr_t*) arg;
1832	*paddr = segs->ds_addr;
1833}
1834
1835static int
1836ubsec_dma_malloc(
1837	struct ubsec_softc *sc,
1838	bus_size_t size,
1839	struct ubsec_dma_alloc *dma,
1840	int mapflags
1841)
1842{
1843	int r;
1844
1845	/* XXX could specify sc_dmat as parent but that just adds overhead */
1846	r = bus_dma_tag_create(NULL,			/* parent */
1847			       1, 0,			/* alignment, bounds */
1848			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1849			       BUS_SPACE_MAXADDR,	/* highaddr */
1850			       NULL, NULL,		/* filter, filterarg */
1851			       size,			/* maxsize */
1852			       1,			/* nsegments */
1853			       size,			/* maxsegsize */
1854			       BUS_DMA_ALLOCNOW,	/* flags */
1855			       NULL, NULL,		/* lockfunc, lockarg */
1856			       &dma->dma_tag);
1857	if (r != 0) {
1858		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1859			"bus_dma_tag_create failed; error %u\n", r);
1860		goto fail_0;
1861	}
1862
1863	r = bus_dmamap_create(dma->dma_tag, BUS_DMA_NOWAIT, &dma->dma_map);
1864	if (r != 0) {
1865		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1866			"bus_dmamap_create failed; error %u\n", r);
1867		goto fail_1;
1868	}
1869
1870	r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
1871			     BUS_DMA_NOWAIT, &dma->dma_map);
1872	if (r != 0) {
1873		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1874			"bus_dmammem_alloc failed; size %zu, error %u\n",
1875			size, r);
1876		goto fail_2;
1877	}
1878
1879	r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
1880		            size,
1881			    ubsec_dmamap_cb,
1882			    &dma->dma_paddr,
1883			    mapflags | BUS_DMA_NOWAIT);
1884	if (r != 0) {
1885		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1886			"bus_dmamap_load failed; error %u\n", r);
1887		goto fail_3;
1888	}
1889
1890	dma->dma_size = size;
1891	return (0);
1892
1893fail_3:
1894	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1895fail_2:
1896	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1897fail_1:
1898	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1899	bus_dma_tag_destroy(dma->dma_tag);
1900fail_0:
1901	dma->dma_map = NULL;
1902	dma->dma_tag = NULL;
1903	return (r);
1904}
1905
1906static void
1907ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
1908{
1909	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1910	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1911	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1912	bus_dma_tag_destroy(dma->dma_tag);
1913}
1914
1915/*
1916 * Resets the board.  Values in the regesters are left as is
1917 * from the reset (i.e. initial values are assigned elsewhere).
1918 */
1919static void
1920ubsec_reset_board(struct ubsec_softc *sc)
1921{
1922    volatile u_int32_t ctrl;
1923
1924    ctrl = READ_REG(sc, BS_CTRL);
1925    ctrl |= BS_CTRL_RESET;
1926    WRITE_REG(sc, BS_CTRL, ctrl);
1927
1928    /*
1929     * Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
1930     */
1931    DELAY(10);
1932}
1933
1934/*
1935 * Init Broadcom registers
1936 */
1937static void
1938ubsec_init_board(struct ubsec_softc *sc)
1939{
1940	u_int32_t ctrl;
1941
1942	ctrl = READ_REG(sc, BS_CTRL);
1943	ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
1944	ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT;
1945
1946	if (sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG))
1947		ctrl |= BS_CTRL_MCR2INT;
1948	else
1949		ctrl &= ~BS_CTRL_MCR2INT;
1950
1951	if (sc->sc_flags & UBS_FLAGS_HWNORM)
1952		ctrl &= ~BS_CTRL_SWNORM;
1953
1954	WRITE_REG(sc, BS_CTRL, ctrl);
1955}
1956
1957/*
1958 * Init Broadcom PCI registers
1959 */
1960static void
1961ubsec_init_pciregs(device_t dev)
1962{
1963#if 0
1964	u_int32_t misc;
1965
1966	misc = pci_conf_read(pc, pa->pa_tag, BS_RTY_TOUT);
1967	misc = (misc & ~(UBS_PCI_RTY_MASK << UBS_PCI_RTY_SHIFT))
1968	    | ((UBS_DEF_RTY & 0xff) << UBS_PCI_RTY_SHIFT);
1969	misc = (misc & ~(UBS_PCI_TOUT_MASK << UBS_PCI_TOUT_SHIFT))
1970	    | ((UBS_DEF_TOUT & 0xff) << UBS_PCI_TOUT_SHIFT);
1971	pci_conf_write(pc, pa->pa_tag, BS_RTY_TOUT, misc);
1972#endif
1973
1974	/*
1975	 * This will set the cache line size to 1, this will
1976	 * force the BCM58xx chip just to do burst read/writes.
1977	 * Cache line read/writes are to slow
1978	 */
1979	pci_write_config(dev, PCIR_CACHELNSZ, UBS_DEF_CACHELINE, 1);
1980}
1981
1982/*
1983 * Clean up after a chip crash.
1984 * It is assumed that the caller in splimp()
1985 */
1986static void
1987ubsec_cleanchip(struct ubsec_softc *sc)
1988{
1989	struct ubsec_q *q;
1990
1991	while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
1992		q = SIMPLEQ_FIRST(&sc->sc_qchip);
1993		SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q, q_next);
1994		ubsec_free_q(sc, q);
1995	}
1996	sc->sc_nqchip = 0;
1997}
1998
1999/*
2000 * free a ubsec_q
2001 * It is assumed that the caller is within splimp().
2002 */
2003static int
2004ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
2005{
2006	struct ubsec_q *q2;
2007	struct cryptop *crp;
2008	int npkts;
2009	int i;
2010
2011	npkts = q->q_nstacked_mcrs;
2012
2013	for (i = 0; i < npkts; i++) {
2014		if(q->q_stacked_mcr[i]) {
2015			q2 = q->q_stacked_mcr[i];
2016
2017			if ((q2->q_dst_m != NULL) && (q2->q_src_m != q2->q_dst_m))
2018				m_freem(q2->q_dst_m);
2019
2020			crp = (struct cryptop *)q2->q_crp;
2021
2022			SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
2023
2024			crp->crp_etype = EFAULT;
2025			crypto_done(crp);
2026		} else {
2027			break;
2028		}
2029	}
2030
2031	/*
2032	 * Free header MCR
2033	 */
2034	if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
2035		m_freem(q->q_dst_m);
2036
2037	crp = (struct cryptop *)q->q_crp;
2038
2039	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
2040
2041	crp->crp_etype = EFAULT;
2042	crypto_done(crp);
2043	return(0);
2044}
2045
2046/*
2047 * Routine to reset the chip and clean up.
2048 * It is assumed that the caller is in splimp()
2049 */
2050static void
2051ubsec_totalreset(struct ubsec_softc *sc)
2052{
2053	ubsec_reset_board(sc);
2054	ubsec_init_board(sc);
2055	ubsec_cleanchip(sc);
2056}
2057
2058static int
2059ubsec_dmamap_aligned(struct ubsec_operand *op)
2060{
2061	int i;
2062
2063	for (i = 0; i < op->nsegs; i++) {
2064		if (op->segs[i].ds_addr & 3)
2065			return (0);
2066		if ((i != (op->nsegs - 1)) &&
2067		    (op->segs[i].ds_len & 3))
2068			return (0);
2069	}
2070	return (1);
2071}
2072
2073static void
2074ubsec_kfree(struct ubsec_softc *sc, struct ubsec_q2 *q)
2075{
2076	switch (q->q_type) {
2077	case UBS_CTXOP_MODEXP: {
2078		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
2079
2080		ubsec_dma_free(sc, &me->me_q.q_mcr);
2081		ubsec_dma_free(sc, &me->me_q.q_ctx);
2082		ubsec_dma_free(sc, &me->me_M);
2083		ubsec_dma_free(sc, &me->me_E);
2084		ubsec_dma_free(sc, &me->me_C);
2085		ubsec_dma_free(sc, &me->me_epb);
2086		free(me, M_DEVBUF);
2087		break;
2088	}
2089	case UBS_CTXOP_RSAPRIV: {
2090		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
2091
2092		ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2093		ubsec_dma_free(sc, &rp->rpr_q.q_ctx);
2094		ubsec_dma_free(sc, &rp->rpr_msgin);
2095		ubsec_dma_free(sc, &rp->rpr_msgout);
2096		free(rp, M_DEVBUF);
2097		break;
2098	}
2099	default:
2100		device_printf(sc->sc_dev, "invalid kfree 0x%x\n", q->q_type);
2101		break;
2102	}
2103}
2104
2105static int
2106ubsec_kprocess(void *arg, struct cryptkop *krp, int hint)
2107{
2108	struct ubsec_softc *sc = arg;
2109	int r;
2110
2111	if (krp == NULL || krp->krp_callback == NULL)
2112		return (EINVAL);
2113
2114	while (!SIMPLEQ_EMPTY(&sc->sc_q2free)) {
2115		struct ubsec_q2 *q;
2116
2117		q = SIMPLEQ_FIRST(&sc->sc_q2free);
2118		SIMPLEQ_REMOVE_HEAD(&sc->sc_q2free, q, q_next);
2119		ubsec_kfree(sc, q);
2120	}
2121
2122	switch (krp->krp_op) {
2123	case CRK_MOD_EXP:
2124		if (sc->sc_flags & UBS_FLAGS_HWNORM)
2125			r = ubsec_kprocess_modexp_hw(sc, krp, hint);
2126		else
2127			r = ubsec_kprocess_modexp_sw(sc, krp, hint);
2128		break;
2129	case CRK_MOD_EXP_CRT:
2130		return (ubsec_kprocess_rsapriv(sc, krp, hint));
2131	default:
2132		device_printf(sc->sc_dev, "kprocess: invalid op 0x%x\n",
2133		    krp->krp_op);
2134		krp->krp_status = EOPNOTSUPP;
2135		crypto_kdone(krp);
2136		return (0);
2137	}
2138	return (0);			/* silence compiler */
2139}
2140
2141/*
2142 * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (sw normalization)
2143 */
2144static int
2145ubsec_kprocess_modexp_sw(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
2146{
2147	struct ubsec_q2_modexp *me;
2148	struct ubsec_mcr *mcr;
2149	struct ubsec_ctx_modexp *ctx;
2150	struct ubsec_pktbuf *epb;
2151	int err = 0;
2152	u_int nbits, normbits, mbits, shiftbits, ebits;
2153
2154	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2155	if (me == NULL) {
2156		err = ENOMEM;
2157		goto errout;
2158	}
2159	bzero(me, sizeof *me);
2160	me->me_krp = krp;
2161	me->me_q.q_type = UBS_CTXOP_MODEXP;
2162
2163	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2164	if (nbits <= 512)
2165		normbits = 512;
2166	else if (nbits <= 768)
2167		normbits = 768;
2168	else if (nbits <= 1024)
2169		normbits = 1024;
2170	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2171		normbits = 1536;
2172	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2173		normbits = 2048;
2174	else {
2175		err = E2BIG;
2176		goto errout;
2177	}
2178
2179	shiftbits = normbits - nbits;
2180
2181	me->me_modbits = nbits;
2182	me->me_shiftbits = shiftbits;
2183	me->me_normbits = normbits;
2184
2185	/* Sanity check: result bits must be >= true modulus bits. */
2186	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2187		err = ERANGE;
2188		goto errout;
2189	}
2190
2191	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2192	    &me->me_q.q_mcr, 0)) {
2193		err = ENOMEM;
2194		goto errout;
2195	}
2196	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2197
2198	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2199	    &me->me_q.q_ctx, 0)) {
2200		err = ENOMEM;
2201		goto errout;
2202	}
2203
2204	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2205	if (mbits > nbits) {
2206		err = E2BIG;
2207		goto errout;
2208	}
2209	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2210		err = ENOMEM;
2211		goto errout;
2212	}
2213	ubsec_kshift_r(shiftbits,
2214	    krp->krp_param[UBS_MODEXP_PAR_M].crp_p, mbits,
2215	    me->me_M.dma_vaddr, normbits);
2216
2217	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2218		err = ENOMEM;
2219		goto errout;
2220	}
2221	bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2222
2223	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2224	if (ebits > nbits) {
2225		err = E2BIG;
2226		goto errout;
2227	}
2228	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2229		err = ENOMEM;
2230		goto errout;
2231	}
2232	ubsec_kshift_r(shiftbits,
2233	    krp->krp_param[UBS_MODEXP_PAR_E].crp_p, ebits,
2234	    me->me_E.dma_vaddr, normbits);
2235
2236	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2237	    &me->me_epb, 0)) {
2238		err = ENOMEM;
2239		goto errout;
2240	}
2241	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2242	epb->pb_addr = htole32(me->me_E.dma_paddr);
2243	epb->pb_next = 0;
2244	epb->pb_len = htole32(normbits / 8);
2245
2246#ifdef UBSEC_DEBUG
2247	if (ubsec_debug) {
2248		printf("Epb ");
2249		ubsec_dump_pb(epb);
2250	}
2251#endif
2252
2253	mcr->mcr_pkts = htole16(1);
2254	mcr->mcr_flags = 0;
2255	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2256	mcr->mcr_reserved = 0;
2257	mcr->mcr_pktlen = 0;
2258
2259	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2260	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2261	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2262
2263	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2264	mcr->mcr_opktbuf.pb_next = 0;
2265	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2266
2267#ifdef DIAGNOSTIC
2268	/* Misaligned output buffer will hang the chip. */
2269	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2270		panic("%s: modexp invalid addr 0x%x\n",
2271		    device_get_nameunit(sc->sc_dev),
2272		    letoh32(mcr->mcr_opktbuf.pb_addr));
2273	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2274		panic("%s: modexp invalid len 0x%x\n",
2275		    device_get_nameunit(sc->sc_dev),
2276		    letoh32(mcr->mcr_opktbuf.pb_len));
2277#endif
2278
2279	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2280	bzero(ctx, sizeof(*ctx));
2281	ubsec_kshift_r(shiftbits,
2282	    krp->krp_param[UBS_MODEXP_PAR_N].crp_p, nbits,
2283	    ctx->me_N, normbits);
2284	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2285	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2286	ctx->me_E_len = htole16(nbits);
2287	ctx->me_N_len = htole16(nbits);
2288
2289#ifdef UBSEC_DEBUG
2290	if (ubsec_debug) {
2291		ubsec_dump_mcr(mcr);
2292		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2293	}
2294#endif
2295
2296	/*
2297	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2298	 * everything else.
2299	 */
2300	ubsec_dma_sync(&me->me_M, BUS_DMASYNC_PREWRITE);
2301	ubsec_dma_sync(&me->me_E, BUS_DMASYNC_PREWRITE);
2302	ubsec_dma_sync(&me->me_C, BUS_DMASYNC_PREREAD);
2303	ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_PREWRITE);
2304
2305	/* Enqueue and we're done... */
2306	mtx_lock(&sc->sc_mcr2lock);
2307	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2308	ubsec_feed2(sc);
2309	ubsecstats.hst_modexp++;
2310	mtx_unlock(&sc->sc_mcr2lock);
2311
2312	return (0);
2313
2314errout:
2315	if (me != NULL) {
2316		if (me->me_q.q_mcr.dma_map != NULL)
2317			ubsec_dma_free(sc, &me->me_q.q_mcr);
2318		if (me->me_q.q_ctx.dma_map != NULL) {
2319			bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
2320			ubsec_dma_free(sc, &me->me_q.q_ctx);
2321		}
2322		if (me->me_M.dma_map != NULL) {
2323			bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
2324			ubsec_dma_free(sc, &me->me_M);
2325		}
2326		if (me->me_E.dma_map != NULL) {
2327			bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
2328			ubsec_dma_free(sc, &me->me_E);
2329		}
2330		if (me->me_C.dma_map != NULL) {
2331			bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2332			ubsec_dma_free(sc, &me->me_C);
2333		}
2334		if (me->me_epb.dma_map != NULL)
2335			ubsec_dma_free(sc, &me->me_epb);
2336		free(me, M_DEVBUF);
2337	}
2338	krp->krp_status = err;
2339	crypto_kdone(krp);
2340	return (0);
2341}
2342
2343/*
2344 * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (hw normalization)
2345 */
2346static int
2347ubsec_kprocess_modexp_hw(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
2348{
2349	struct ubsec_q2_modexp *me;
2350	struct ubsec_mcr *mcr;
2351	struct ubsec_ctx_modexp *ctx;
2352	struct ubsec_pktbuf *epb;
2353	int err = 0;
2354	u_int nbits, normbits, mbits, shiftbits, ebits;
2355
2356	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2357	if (me == NULL) {
2358		err = ENOMEM;
2359		goto errout;
2360	}
2361	bzero(me, sizeof *me);
2362	me->me_krp = krp;
2363	me->me_q.q_type = UBS_CTXOP_MODEXP;
2364
2365	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2366	if (nbits <= 512)
2367		normbits = 512;
2368	else if (nbits <= 768)
2369		normbits = 768;
2370	else if (nbits <= 1024)
2371		normbits = 1024;
2372	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2373		normbits = 1536;
2374	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2375		normbits = 2048;
2376	else {
2377		err = E2BIG;
2378		goto errout;
2379	}
2380
2381	shiftbits = normbits - nbits;
2382
2383	/* XXX ??? */
2384	me->me_modbits = nbits;
2385	me->me_shiftbits = shiftbits;
2386	me->me_normbits = normbits;
2387
2388	/* Sanity check: result bits must be >= true modulus bits. */
2389	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2390		err = ERANGE;
2391		goto errout;
2392	}
2393
2394	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2395	    &me->me_q.q_mcr, 0)) {
2396		err = ENOMEM;
2397		goto errout;
2398	}
2399	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2400
2401	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2402	    &me->me_q.q_ctx, 0)) {
2403		err = ENOMEM;
2404		goto errout;
2405	}
2406
2407	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2408	if (mbits > nbits) {
2409		err = E2BIG;
2410		goto errout;
2411	}
2412	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2413		err = ENOMEM;
2414		goto errout;
2415	}
2416	bzero(me->me_M.dma_vaddr, normbits / 8);
2417	bcopy(krp->krp_param[UBS_MODEXP_PAR_M].crp_p,
2418	    me->me_M.dma_vaddr, (mbits + 7) / 8);
2419
2420	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2421		err = ENOMEM;
2422		goto errout;
2423	}
2424	bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2425
2426	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2427	if (ebits > nbits) {
2428		err = E2BIG;
2429		goto errout;
2430	}
2431	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2432		err = ENOMEM;
2433		goto errout;
2434	}
2435	bzero(me->me_E.dma_vaddr, normbits / 8);
2436	bcopy(krp->krp_param[UBS_MODEXP_PAR_E].crp_p,
2437	    me->me_E.dma_vaddr, (ebits + 7) / 8);
2438
2439	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2440	    &me->me_epb, 0)) {
2441		err = ENOMEM;
2442		goto errout;
2443	}
2444	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2445	epb->pb_addr = htole32(me->me_E.dma_paddr);
2446	epb->pb_next = 0;
2447	epb->pb_len = htole32((ebits + 7) / 8);
2448
2449#ifdef UBSEC_DEBUG
2450	if (ubsec_debug) {
2451		printf("Epb ");
2452		ubsec_dump_pb(epb);
2453	}
2454#endif
2455
2456	mcr->mcr_pkts = htole16(1);
2457	mcr->mcr_flags = 0;
2458	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2459	mcr->mcr_reserved = 0;
2460	mcr->mcr_pktlen = 0;
2461
2462	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2463	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2464	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2465
2466	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2467	mcr->mcr_opktbuf.pb_next = 0;
2468	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2469
2470#ifdef DIAGNOSTIC
2471	/* Misaligned output buffer will hang the chip. */
2472	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2473		panic("%s: modexp invalid addr 0x%x\n",
2474		    device_get_nameunit(sc->sc_dev),
2475		    letoh32(mcr->mcr_opktbuf.pb_addr));
2476	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2477		panic("%s: modexp invalid len 0x%x\n",
2478		    device_get_nameunit(sc->sc_dev),
2479		    letoh32(mcr->mcr_opktbuf.pb_len));
2480#endif
2481
2482	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2483	bzero(ctx, sizeof(*ctx));
2484	bcopy(krp->krp_param[UBS_MODEXP_PAR_N].crp_p, ctx->me_N,
2485	    (nbits + 7) / 8);
2486	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2487	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2488	ctx->me_E_len = htole16(ebits);
2489	ctx->me_N_len = htole16(nbits);
2490
2491#ifdef UBSEC_DEBUG
2492	if (ubsec_debug) {
2493		ubsec_dump_mcr(mcr);
2494		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2495	}
2496#endif
2497
2498	/*
2499	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2500	 * everything else.
2501	 */
2502	ubsec_dma_sync(&me->me_M, BUS_DMASYNC_PREWRITE);
2503	ubsec_dma_sync(&me->me_E, BUS_DMASYNC_PREWRITE);
2504	ubsec_dma_sync(&me->me_C, BUS_DMASYNC_PREREAD);
2505	ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_PREWRITE);
2506
2507	/* Enqueue and we're done... */
2508	mtx_lock(&sc->sc_mcr2lock);
2509	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2510	ubsec_feed2(sc);
2511	mtx_unlock(&sc->sc_mcr2lock);
2512
2513	return (0);
2514
2515errout:
2516	if (me != NULL) {
2517		if (me->me_q.q_mcr.dma_map != NULL)
2518			ubsec_dma_free(sc, &me->me_q.q_mcr);
2519		if (me->me_q.q_ctx.dma_map != NULL) {
2520			bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
2521			ubsec_dma_free(sc, &me->me_q.q_ctx);
2522		}
2523		if (me->me_M.dma_map != NULL) {
2524			bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
2525			ubsec_dma_free(sc, &me->me_M);
2526		}
2527		if (me->me_E.dma_map != NULL) {
2528			bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
2529			ubsec_dma_free(sc, &me->me_E);
2530		}
2531		if (me->me_C.dma_map != NULL) {
2532			bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2533			ubsec_dma_free(sc, &me->me_C);
2534		}
2535		if (me->me_epb.dma_map != NULL)
2536			ubsec_dma_free(sc, &me->me_epb);
2537		free(me, M_DEVBUF);
2538	}
2539	krp->krp_status = err;
2540	crypto_kdone(krp);
2541	return (0);
2542}
2543
2544static int
2545ubsec_kprocess_rsapriv(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
2546{
2547	struct ubsec_q2_rsapriv *rp = NULL;
2548	struct ubsec_mcr *mcr;
2549	struct ubsec_ctx_rsapriv *ctx;
2550	int err = 0;
2551	u_int padlen, msglen;
2552
2553	msglen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_P]);
2554	padlen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_Q]);
2555	if (msglen > padlen)
2556		padlen = msglen;
2557
2558	if (padlen <= 256)
2559		padlen = 256;
2560	else if (padlen <= 384)
2561		padlen = 384;
2562	else if (padlen <= 512)
2563		padlen = 512;
2564	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 768)
2565		padlen = 768;
2566	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 1024)
2567		padlen = 1024;
2568	else {
2569		err = E2BIG;
2570		goto errout;
2571	}
2572
2573	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DP]) > padlen) {
2574		err = E2BIG;
2575		goto errout;
2576	}
2577
2578	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DQ]) > padlen) {
2579		err = E2BIG;
2580		goto errout;
2581	}
2582
2583	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_PINV]) > padlen) {
2584		err = E2BIG;
2585		goto errout;
2586	}
2587
2588	rp = (struct ubsec_q2_rsapriv *)malloc(sizeof *rp, M_DEVBUF, M_NOWAIT);
2589	if (rp == NULL)
2590		return (ENOMEM);
2591	bzero(rp, sizeof *rp);
2592	rp->rpr_krp = krp;
2593	rp->rpr_q.q_type = UBS_CTXOP_RSAPRIV;
2594
2595	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2596	    &rp->rpr_q.q_mcr, 0)) {
2597		err = ENOMEM;
2598		goto errout;
2599	}
2600	mcr = (struct ubsec_mcr *)rp->rpr_q.q_mcr.dma_vaddr;
2601
2602	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rsapriv),
2603	    &rp->rpr_q.q_ctx, 0)) {
2604		err = ENOMEM;
2605		goto errout;
2606	}
2607	ctx = (struct ubsec_ctx_rsapriv *)rp->rpr_q.q_ctx.dma_vaddr;
2608	bzero(ctx, sizeof *ctx);
2609
2610	/* Copy in p */
2611	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_p,
2612	    &ctx->rpr_buf[0 * (padlen / 8)],
2613	    (krp->krp_param[UBS_RSAPRIV_PAR_P].crp_nbits + 7) / 8);
2614
2615	/* Copy in q */
2616	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_p,
2617	    &ctx->rpr_buf[1 * (padlen / 8)],
2618	    (krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_nbits + 7) / 8);
2619
2620	/* Copy in dp */
2621	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_p,
2622	    &ctx->rpr_buf[2 * (padlen / 8)],
2623	    (krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_nbits + 7) / 8);
2624
2625	/* Copy in dq */
2626	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_p,
2627	    &ctx->rpr_buf[3 * (padlen / 8)],
2628	    (krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_nbits + 7) / 8);
2629
2630	/* Copy in pinv */
2631	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_p,
2632	    &ctx->rpr_buf[4 * (padlen / 8)],
2633	    (krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_nbits + 7) / 8);
2634
2635	msglen = padlen * 2;
2636
2637	/* Copy in input message (aligned buffer/length). */
2638	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGIN]) > msglen) {
2639		/* Is this likely? */
2640		err = E2BIG;
2641		goto errout;
2642	}
2643	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgin, 0)) {
2644		err = ENOMEM;
2645		goto errout;
2646	}
2647	bzero(rp->rpr_msgin.dma_vaddr, (msglen + 7) / 8);
2648	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_p,
2649	    rp->rpr_msgin.dma_vaddr,
2650	    (krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_nbits + 7) / 8);
2651
2652	/* Prepare space for output message (aligned buffer/length). */
2653	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT]) < msglen) {
2654		/* Is this likely? */
2655		err = E2BIG;
2656		goto errout;
2657	}
2658	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgout, 0)) {
2659		err = ENOMEM;
2660		goto errout;
2661	}
2662	bzero(rp->rpr_msgout.dma_vaddr, (msglen + 7) / 8);
2663
2664	mcr->mcr_pkts = htole16(1);
2665	mcr->mcr_flags = 0;
2666	mcr->mcr_cmdctxp = htole32(rp->rpr_q.q_ctx.dma_paddr);
2667	mcr->mcr_ipktbuf.pb_addr = htole32(rp->rpr_msgin.dma_paddr);
2668	mcr->mcr_ipktbuf.pb_next = 0;
2669	mcr->mcr_ipktbuf.pb_len = htole32(rp->rpr_msgin.dma_size);
2670	mcr->mcr_reserved = 0;
2671	mcr->mcr_pktlen = htole16(msglen);
2672	mcr->mcr_opktbuf.pb_addr = htole32(rp->rpr_msgout.dma_paddr);
2673	mcr->mcr_opktbuf.pb_next = 0;
2674	mcr->mcr_opktbuf.pb_len = htole32(rp->rpr_msgout.dma_size);
2675
2676#ifdef DIAGNOSTIC
2677	if (rp->rpr_msgin.dma_paddr & 3 || rp->rpr_msgin.dma_size & 3) {
2678		panic("%s: rsapriv: invalid msgin %x(0x%jx)",
2679		    device_get_nameunit(sc->sc_dev),
2680		    rp->rpr_msgin.dma_paddr, (uintmax_t)rp->rpr_msgin.dma_size);
2681	}
2682	if (rp->rpr_msgout.dma_paddr & 3 || rp->rpr_msgout.dma_size & 3) {
2683		panic("%s: rsapriv: invalid msgout %x(0x%jx)",
2684		    device_get_nameunit(sc->sc_dev),
2685		    rp->rpr_msgout.dma_paddr, (uintmax_t)rp->rpr_msgout.dma_size);
2686	}
2687#endif
2688
2689	ctx->rpr_len = (sizeof(u_int16_t) * 4) + (5 * (padlen / 8));
2690	ctx->rpr_op = htole16(UBS_CTXOP_RSAPRIV);
2691	ctx->rpr_q_len = htole16(padlen);
2692	ctx->rpr_p_len = htole16(padlen);
2693
2694	/*
2695	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2696	 * everything else.
2697	 */
2698	ubsec_dma_sync(&rp->rpr_msgin, BUS_DMASYNC_PREWRITE);
2699	ubsec_dma_sync(&rp->rpr_msgout, BUS_DMASYNC_PREREAD);
2700
2701	/* Enqueue and we're done... */
2702	mtx_lock(&sc->sc_mcr2lock);
2703	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rp->rpr_q, q_next);
2704	ubsec_feed2(sc);
2705	ubsecstats.hst_modexpcrt++;
2706	mtx_unlock(&sc->sc_mcr2lock);
2707	return (0);
2708
2709errout:
2710	if (rp != NULL) {
2711		if (rp->rpr_q.q_mcr.dma_map != NULL)
2712			ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2713		if (rp->rpr_msgin.dma_map != NULL) {
2714			bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size);
2715			ubsec_dma_free(sc, &rp->rpr_msgin);
2716		}
2717		if (rp->rpr_msgout.dma_map != NULL) {
2718			bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size);
2719			ubsec_dma_free(sc, &rp->rpr_msgout);
2720		}
2721		free(rp, M_DEVBUF);
2722	}
2723	krp->krp_status = err;
2724	crypto_kdone(krp);
2725	return (0);
2726}
2727
2728#ifdef UBSEC_DEBUG
2729static void
2730ubsec_dump_pb(volatile struct ubsec_pktbuf *pb)
2731{
2732	printf("addr 0x%x (0x%x) next 0x%x\n",
2733	    pb->pb_addr, pb->pb_len, pb->pb_next);
2734}
2735
2736static void
2737ubsec_dump_ctx2(struct ubsec_ctx_keyop *c)
2738{
2739	printf("CTX (0x%x):\n", c->ctx_len);
2740	switch (letoh16(c->ctx_op)) {
2741	case UBS_CTXOP_RNGBYPASS:
2742	case UBS_CTXOP_RNGSHA1:
2743		break;
2744	case UBS_CTXOP_MODEXP:
2745	{
2746		struct ubsec_ctx_modexp *cx = (void *)c;
2747		int i, len;
2748
2749		printf(" Elen %u, Nlen %u\n",
2750		    letoh16(cx->me_E_len), letoh16(cx->me_N_len));
2751		len = (cx->me_N_len + 7)/8;
2752		for (i = 0; i < len; i++)
2753			printf("%s%02x", (i == 0) ? " N: " : ":", cx->me_N[i]);
2754		printf("\n");
2755		break;
2756	}
2757	default:
2758		printf("unknown context: %x\n", c->ctx_op);
2759	}
2760	printf("END CTX\n");
2761}
2762
2763static void
2764ubsec_dump_mcr(struct ubsec_mcr *mcr)
2765{
2766	volatile struct ubsec_mcr_add *ma;
2767	int i;
2768
2769	printf("MCR:\n");
2770	printf(" pkts: %u, flags 0x%x\n",
2771	    letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
2772	ma = (volatile struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
2773	for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
2774		printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
2775		    letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
2776		    letoh16(ma->mcr_reserved));
2777		printf(" %d: ipkt ", i);
2778		ubsec_dump_pb(&ma->mcr_ipktbuf);
2779		printf(" %d: opkt ", i);
2780		ubsec_dump_pb(&ma->mcr_opktbuf);
2781		ma++;
2782	}
2783	printf("END MCR\n");
2784}
2785#endif /* UBSEC_DEBUG */
2786
2787/*
2788 * Return the number of significant bits of a big number.
2789 */
2790static int
2791ubsec_ksigbits(struct crparam *cr)
2792{
2793	u_int plen = (cr->crp_nbits + 7) / 8;
2794	int i, sig = plen * 8;
2795	u_int8_t c, *p = cr->crp_p;
2796
2797	for (i = plen - 1; i >= 0; i--) {
2798		c = p[i];
2799		if (c != 0) {
2800			while ((c & 0x80) == 0) {
2801				sig--;
2802				c <<= 1;
2803			}
2804			break;
2805		}
2806		sig -= 8;
2807	}
2808	return (sig);
2809}
2810
2811static void
2812ubsec_kshift_r(
2813	u_int shiftbits,
2814	u_int8_t *src, u_int srcbits,
2815	u_int8_t *dst, u_int dstbits)
2816{
2817	u_int slen, dlen;
2818	int i, si, di, n;
2819
2820	slen = (srcbits + 7) / 8;
2821	dlen = (dstbits + 7) / 8;
2822
2823	for (i = 0; i < slen; i++)
2824		dst[i] = src[i];
2825	for (i = 0; i < dlen - slen; i++)
2826		dst[slen + i] = 0;
2827
2828	n = shiftbits / 8;
2829	if (n != 0) {
2830		si = dlen - n - 1;
2831		di = dlen - 1;
2832		while (si >= 0)
2833			dst[di--] = dst[si--];
2834		while (di >= 0)
2835			dst[di--] = 0;
2836	}
2837
2838	n = shiftbits % 8;
2839	if (n != 0) {
2840		for (i = dlen - 1; i > 0; i--)
2841			dst[i] = (dst[i] << n) |
2842			    (dst[i - 1] >> (8 - n));
2843		dst[0] = dst[0] << n;
2844	}
2845}
2846
2847static void
2848ubsec_kshift_l(
2849	u_int shiftbits,
2850	u_int8_t *src, u_int srcbits,
2851	u_int8_t *dst, u_int dstbits)
2852{
2853	int slen, dlen, i, n;
2854
2855	slen = (srcbits + 7) / 8;
2856	dlen = (dstbits + 7) / 8;
2857
2858	n = shiftbits / 8;
2859	for (i = 0; i < slen; i++)
2860		dst[i] = src[i + n];
2861	for (i = 0; i < dlen - slen; i++)
2862		dst[slen + i] = 0;
2863
2864	n = shiftbits % 8;
2865	if (n != 0) {
2866		for (i = 0; i < (dlen - 1); i++)
2867			dst[i] = (dst[i] >> n) | (dst[i + 1] << (8 - n));
2868		dst[dlen - 1] = dst[dlen - 1] >> n;
2869	}
2870}
2871