ubsec.c revision 119137
1/* $FreeBSD: head/sys/dev/ubsec/ubsec.c 119137 2003-08-19 17:51:11Z sam $ */
2/*	$OpenBSD: ubsec.c,v 1.115 2002/09/24 18:33:26 jason Exp $	*/
3
4/*
5 * Copyright (c) 2000 Jason L. Wright (jason@thought.net)
6 * Copyright (c) 2000 Theo de Raadt (deraadt@openbsd.org)
7 * Copyright (c) 2001 Patrik Lindergren (patrik@ipunplugged.com)
8 *
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by Jason L. Wright
22 * 4. The name of the author may not be used to endorse or promote products
23 *    derived from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
26 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
27 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28 * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
29 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
30 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
31 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
33 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
34 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Effort sponsored in part by the Defense Advanced Research Projects
38 * Agency (DARPA) and Air Force Research Laboratory, Air Force
39 * Materiel Command, USAF, under agreement number F30602-01-2-0537.
40 *
41 */
42
43/*
44 * uBsec 5[56]01, 58xx hardware crypto accelerator
45 */
46
47#include "opt_ubsec.h"
48
49#include <sys/param.h>
50#include <sys/systm.h>
51#include <sys/proc.h>
52#include <sys/errno.h>
53#include <sys/malloc.h>
54#include <sys/kernel.h>
55#include <sys/mbuf.h>
56#include <sys/lock.h>
57#include <sys/mutex.h>
58#include <sys/sysctl.h>
59#include <sys/endian.h>
60
61#include <vm/vm.h>
62#include <vm/pmap.h>
63
64#include <machine/clock.h>
65#include <machine/bus.h>
66#include <machine/resource.h>
67#include <sys/bus.h>
68#include <sys/rman.h>
69
70#include <crypto/sha1.h>
71#include <opencrypto/cryptodev.h>
72#include <opencrypto/cryptosoft.h>
73#include <sys/md5.h>
74#include <sys/random.h>
75
76#include <pci/pcivar.h>
77#include <pci/pcireg.h>
78
79/* grr, #defines for gratuitous incompatibility in queue.h */
80#define	SIMPLEQ_HEAD		STAILQ_HEAD
81#define	SIMPLEQ_ENTRY		STAILQ_ENTRY
82#define	SIMPLEQ_INIT		STAILQ_INIT
83#define	SIMPLEQ_INSERT_TAIL	STAILQ_INSERT_TAIL
84#define	SIMPLEQ_EMPTY		STAILQ_EMPTY
85#define	SIMPLEQ_FIRST		STAILQ_FIRST
86#define	SIMPLEQ_REMOVE_HEAD	STAILQ_REMOVE_HEAD_UNTIL
87#define	SIMPLEQ_FOREACH		STAILQ_FOREACH
88/* ditto for endian.h */
89#define	letoh16(x)		le16toh(x)
90#define	letoh32(x)		le32toh(x)
91
92#ifdef UBSEC_RNDTEST
93#include <dev/rndtest/rndtest.h>
94#endif
95#include <dev/ubsec/ubsecreg.h>
96#include <dev/ubsec/ubsecvar.h>
97
98/*
99 * Prototypes and count for the pci_device structure
100 */
101static	int ubsec_probe(device_t);
102static	int ubsec_attach(device_t);
103static	int ubsec_detach(device_t);
104static	int ubsec_suspend(device_t);
105static	int ubsec_resume(device_t);
106static	void ubsec_shutdown(device_t);
107
108static device_method_t ubsec_methods[] = {
109	/* Device interface */
110	DEVMETHOD(device_probe,		ubsec_probe),
111	DEVMETHOD(device_attach,	ubsec_attach),
112	DEVMETHOD(device_detach,	ubsec_detach),
113	DEVMETHOD(device_suspend,	ubsec_suspend),
114	DEVMETHOD(device_resume,	ubsec_resume),
115	DEVMETHOD(device_shutdown,	ubsec_shutdown),
116
117	/* bus interface */
118	DEVMETHOD(bus_print_child,	bus_generic_print_child),
119	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
120
121	{ 0, 0 }
122};
123static driver_t ubsec_driver = {
124	"ubsec",
125	ubsec_methods,
126	sizeof (struct ubsec_softc)
127};
128static devclass_t ubsec_devclass;
129
130DRIVER_MODULE(ubsec, pci, ubsec_driver, ubsec_devclass, 0, 0);
131MODULE_DEPEND(ubsec, crypto, 1, 1, 1);
132#ifdef UBSEC_RNDTEST
133MODULE_DEPEND(ubsec, rndtest, 1, 1, 1);
134#endif
135
136static	void ubsec_intr(void *);
137static	int ubsec_newsession(void *, u_int32_t *, struct cryptoini *);
138static	int ubsec_freesession(void *, u_int64_t);
139static	int ubsec_process(void *, struct cryptop *, int);
140static	void ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
141static	void ubsec_feed(struct ubsec_softc *);
142static	void ubsec_mcopy(struct mbuf *, struct mbuf *, int, int);
143static	void ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *);
144static	int ubsec_feed2(struct ubsec_softc *);
145static	void ubsec_rng(void *);
146static	int ubsec_dma_malloc(struct ubsec_softc *, bus_size_t,
147			     struct ubsec_dma_alloc *, int);
148#define	ubsec_dma_sync(_dma, _flags) \
149	bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
150static	void ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
151static	int ubsec_dmamap_aligned(struct ubsec_operand *op);
152
153static	void ubsec_reset_board(struct ubsec_softc *sc);
154static	void ubsec_init_board(struct ubsec_softc *sc);
155static	void ubsec_init_pciregs(device_t dev);
156static	void ubsec_totalreset(struct ubsec_softc *sc);
157
158static	int ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q);
159
160static	int ubsec_kprocess(void*, struct cryptkop *, int);
161static	int ubsec_kprocess_modexp_hw(struct ubsec_softc *, struct cryptkop *, int);
162static	int ubsec_kprocess_modexp_sw(struct ubsec_softc *, struct cryptkop *, int);
163static	int ubsec_kprocess_rsapriv(struct ubsec_softc *, struct cryptkop *, int);
164static	void ubsec_kfree(struct ubsec_softc *, struct ubsec_q2 *);
165static	int ubsec_ksigbits(struct crparam *);
166static	void ubsec_kshift_r(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
167static	void ubsec_kshift_l(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
168
169SYSCTL_NODE(_hw, OID_AUTO, ubsec, CTLFLAG_RD, 0, "Broadcom driver parameters");
170
171#ifdef UBSEC_DEBUG
172static	void ubsec_dump_pb(volatile struct ubsec_pktbuf *);
173static	void ubsec_dump_mcr(struct ubsec_mcr *);
174static	void ubsec_dump_ctx2(struct ubsec_ctx_keyop *);
175
176static	int ubsec_debug = 0;
177SYSCTL_INT(_hw_ubsec, OID_AUTO, debug, CTLFLAG_RW, &ubsec_debug,
178	    0, "control debugging msgs");
179#endif
180
181#define	READ_REG(sc,r) \
182	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
183
184#define WRITE_REG(sc,reg,val) \
185	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
186
187#define	SWAP32(x) (x) = htole32(ntohl((x)))
188#define	HTOLE32(x) (x) = htole32(x)
189
190struct ubsec_stats ubsecstats;
191SYSCTL_STRUCT(_hw_ubsec, OID_AUTO, stats, CTLFLAG_RD, &ubsecstats,
192	    ubsec_stats, "driver statistics");
193
194static int
195ubsec_probe(device_t dev)
196{
197	if (pci_get_vendor(dev) == PCI_VENDOR_SUN &&
198	    (pci_get_device(dev) == PCI_PRODUCT_SUN_5821 ||
199	     pci_get_device(dev) == PCI_PRODUCT_SUN_SCA1K))
200		return (0);
201	if (pci_get_vendor(dev) == PCI_VENDOR_BLUESTEEL &&
202	    (pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5501 ||
203	     pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5601))
204		return (0);
205	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
206	    (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5801 ||
207	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5802 ||
208	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5805 ||
209	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5820 ||
210	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5821 ||
211	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5822 ||
212	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5823
213	     ))
214		return (0);
215	return (ENXIO);
216}
217
218static const char*
219ubsec_partname(struct ubsec_softc *sc)
220{
221	/* XXX sprintf numbers when not decoded */
222	switch (pci_get_vendor(sc->sc_dev)) {
223	case PCI_VENDOR_BROADCOM:
224		switch (pci_get_device(sc->sc_dev)) {
225		case PCI_PRODUCT_BROADCOM_5801:	return "Broadcom 5801";
226		case PCI_PRODUCT_BROADCOM_5802:	return "Broadcom 5802";
227		case PCI_PRODUCT_BROADCOM_5805:	return "Broadcom 5805";
228		case PCI_PRODUCT_BROADCOM_5820:	return "Broadcom 5820";
229		case PCI_PRODUCT_BROADCOM_5821:	return "Broadcom 5821";
230		case PCI_PRODUCT_BROADCOM_5822:	return "Broadcom 5822";
231		case PCI_PRODUCT_BROADCOM_5823:	return "Broadcom 5823";
232		}
233		return "Broadcom unknown-part";
234	case PCI_VENDOR_BLUESTEEL:
235		switch (pci_get_device(sc->sc_dev)) {
236		case PCI_PRODUCT_BLUESTEEL_5601: return "Bluesteel 5601";
237		}
238		return "Bluesteel unknown-part";
239	case PCI_VENDOR_SUN:
240		switch (pci_get_device(sc->sc_dev)) {
241		case PCI_PRODUCT_SUN_5821: return "Sun Crypto 5821";
242		case PCI_PRODUCT_SUN_SCA1K: return "Sun Crypto 1K";
243		}
244		return "Sun unknown-part";
245	}
246	return "Unknown-vendor unknown-part";
247}
248
249static void
250default_harvest(struct rndtest_state *rsp, void *buf, u_int count)
251{
252	random_harvest(buf, count, count*NBBY, 0, RANDOM_PURE);
253}
254
255static int
256ubsec_attach(device_t dev)
257{
258	struct ubsec_softc *sc = device_get_softc(dev);
259	struct ubsec_dma *dmap;
260	u_int32_t cmd, i;
261	int rid;
262
263	bzero(sc, sizeof (*sc));
264	sc->sc_dev = dev;
265
266	SIMPLEQ_INIT(&sc->sc_queue);
267	SIMPLEQ_INIT(&sc->sc_qchip);
268	SIMPLEQ_INIT(&sc->sc_queue2);
269	SIMPLEQ_INIT(&sc->sc_qchip2);
270	SIMPLEQ_INIT(&sc->sc_q2free);
271
272	/* XXX handle power management */
273
274	sc->sc_statmask = BS_STAT_MCR1_DONE | BS_STAT_DMAERR;
275
276	if (pci_get_vendor(dev) == PCI_VENDOR_BLUESTEEL &&
277	    pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5601)
278		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG;
279
280	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
281	    (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5802 ||
282	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5805))
283		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG;
284
285	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
286	    pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5820)
287		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG |
288		    UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY;
289
290	if ((pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
291	     (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5821 ||
292	      pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5822 ||
293	      pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5823)) ||
294	    (pci_get_vendor(dev) == PCI_VENDOR_SUN &&
295	     (pci_get_device(dev) == PCI_PRODUCT_SUN_SCA1K ||
296	      pci_get_device(dev) == PCI_PRODUCT_SUN_5821))) {
297		/* NB: the 5821/5822 defines some additional status bits */
298		sc->sc_statmask |= BS_STAT_MCR1_ALLEMPTY |
299		    BS_STAT_MCR2_ALLEMPTY;
300		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG |
301		    UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY;
302	}
303
304	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
305	cmd |= PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN;
306	pci_write_config(dev, PCIR_COMMAND, cmd, 4);
307	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
308
309	if (!(cmd & PCIM_CMD_MEMEN)) {
310		device_printf(dev, "failed to enable memory mapping\n");
311		goto bad;
312	}
313
314	if (!(cmd & PCIM_CMD_BUSMASTEREN)) {
315		device_printf(dev, "failed to enable bus mastering\n");
316		goto bad;
317	}
318
319	/*
320	 * Setup memory-mapping of PCI registers.
321	 */
322	rid = BS_BAR;
323	sc->sc_sr = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
324				       0, ~0, 1, RF_ACTIVE);
325	if (sc->sc_sr == NULL) {
326		device_printf(dev, "cannot map register space\n");
327		goto bad;
328	}
329	sc->sc_st = rman_get_bustag(sc->sc_sr);
330	sc->sc_sh = rman_get_bushandle(sc->sc_sr);
331
332	/*
333	 * Arrange interrupt line.
334	 */
335	rid = 0;
336	sc->sc_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
337					0, ~0, 1, RF_SHAREABLE|RF_ACTIVE);
338	if (sc->sc_irq == NULL) {
339		device_printf(dev, "could not map interrupt\n");
340		goto bad1;
341	}
342	/*
343	 * NB: Network code assumes we are blocked with splimp()
344	 *     so make sure the IRQ is mapped appropriately.
345	 */
346	if (bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
347			   ubsec_intr, sc, &sc->sc_ih)) {
348		device_printf(dev, "could not establish interrupt\n");
349		goto bad2;
350	}
351
352	sc->sc_cid = crypto_get_driverid(0);
353	if (sc->sc_cid < 0) {
354		device_printf(dev, "could not get crypto driver id\n");
355		goto bad3;
356	}
357
358	/*
359	 * Setup DMA descriptor area.
360	 */
361	if (bus_dma_tag_create(NULL,			/* parent */
362			       1, 0,			/* alignment, bounds */
363			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
364			       BUS_SPACE_MAXADDR,	/* highaddr */
365			       NULL, NULL,		/* filter, filterarg */
366			       0x3ffff,			/* maxsize */
367			       UBS_MAX_SCATTER,		/* nsegments */
368			       0xffff,			/* maxsegsize */
369			       BUS_DMA_ALLOCNOW,	/* flags */
370			       NULL, NULL,		/* lockfunc, lockarg */
371			       &sc->sc_dmat)) {
372		device_printf(dev, "cannot allocate DMA tag\n");
373		goto bad4;
374	}
375	SIMPLEQ_INIT(&sc->sc_freequeue);
376	dmap = sc->sc_dmaa;
377	for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
378		struct ubsec_q *q;
379
380		q = (struct ubsec_q *)malloc(sizeof(struct ubsec_q),
381		    M_DEVBUF, M_NOWAIT);
382		if (q == NULL) {
383			device_printf(dev, "cannot allocate queue buffers\n");
384			break;
385		}
386
387		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk),
388		    &dmap->d_alloc, 0)) {
389			device_printf(dev, "cannot allocate dma buffers\n");
390			free(q, M_DEVBUF);
391			break;
392		}
393		dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
394
395		q->q_dma = dmap;
396		sc->sc_queuea[i] = q;
397
398		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
399	}
400	mtx_init(&sc->sc_mcr1lock, device_get_nameunit(dev),
401		"mcr1 operations", MTX_DEF);
402	mtx_init(&sc->sc_freeqlock, device_get_nameunit(dev),
403		"mcr1 free q", MTX_DEF);
404
405	device_printf(sc->sc_dev, "%s\n", ubsec_partname(sc));
406
407	crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0,
408	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
409	crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0,
410	     ubsec_newsession, ubsec_freesession, ubsec_process, sc);
411	crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0,
412	     ubsec_newsession, ubsec_freesession, ubsec_process, sc);
413	crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0,
414	     ubsec_newsession, ubsec_freesession, ubsec_process, sc);
415
416	/*
417	 * Reset Broadcom chip
418	 */
419	ubsec_reset_board(sc);
420
421	/*
422	 * Init Broadcom specific PCI settings
423	 */
424	ubsec_init_pciregs(dev);
425
426	/*
427	 * Init Broadcom chip
428	 */
429	ubsec_init_board(sc);
430
431#ifndef UBSEC_NO_RNG
432	if (sc->sc_flags & UBS_FLAGS_RNG) {
433		sc->sc_statmask |= BS_STAT_MCR2_DONE;
434#ifdef UBSEC_RNDTEST
435		sc->sc_rndtest = rndtest_attach(dev);
436		if (sc->sc_rndtest)
437			sc->sc_harvest = rndtest_harvest;
438		else
439			sc->sc_harvest = default_harvest;
440#else
441		sc->sc_harvest = default_harvest;
442#endif
443
444		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
445		    &sc->sc_rng.rng_q.q_mcr, 0))
446			goto skip_rng;
447
448		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass),
449		    &sc->sc_rng.rng_q.q_ctx, 0)) {
450			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
451			goto skip_rng;
452		}
453
454		if (ubsec_dma_malloc(sc, sizeof(u_int32_t) *
455		    UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) {
456			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
457			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
458			goto skip_rng;
459		}
460
461		if (hz >= 100)
462			sc->sc_rnghz = hz / 100;
463		else
464			sc->sc_rnghz = 1;
465		callout_init(&sc->sc_rngto, CALLOUT_MPSAFE);
466		callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
467skip_rng:
468	;
469	}
470#endif /* UBSEC_NO_RNG */
471	mtx_init(&sc->sc_mcr2lock, device_get_nameunit(dev),
472		"mcr2 operations", MTX_DEF);
473
474	if (sc->sc_flags & UBS_FLAGS_KEY) {
475		sc->sc_statmask |= BS_STAT_MCR2_DONE;
476
477		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0,
478			ubsec_kprocess, sc);
479#if 0
480		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0,
481			ubsec_kprocess, sc);
482#endif
483	}
484	return (0);
485bad4:
486	crypto_unregister_all(sc->sc_cid);
487bad3:
488	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
489bad2:
490	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
491bad1:
492	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
493bad:
494	return (ENXIO);
495}
496
497/*
498 * Detach a device that successfully probed.
499 */
500static int
501ubsec_detach(device_t dev)
502{
503	struct ubsec_softc *sc = device_get_softc(dev);
504
505	/* XXX wait/abort active ops */
506
507	/* disable interrupts */
508	WRITE_REG(sc, BS_CTRL, READ_REG(sc, BS_CTRL) &~
509		(BS_CTRL_MCR2INT | BS_CTRL_MCR1INT | BS_CTRL_DMAERR));
510
511	callout_stop(&sc->sc_rngto);
512
513	crypto_unregister_all(sc->sc_cid);
514
515#ifdef UBSEC_RNDTEST
516	if (sc->sc_rndtest)
517		rndtest_detach(sc->sc_rndtest);
518#endif
519
520	while (!SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
521		struct ubsec_q *q;
522
523		q = SIMPLEQ_FIRST(&sc->sc_freequeue);
524		SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, q, q_next);
525		ubsec_dma_free(sc, &q->q_dma->d_alloc);
526		free(q, M_DEVBUF);
527	}
528	mtx_destroy(&sc->sc_mcr1lock);
529#ifndef UBSEC_NO_RNG
530	if (sc->sc_flags & UBS_FLAGS_RNG) {
531		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
532		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
533		ubsec_dma_free(sc, &sc->sc_rng.rng_buf);
534	}
535#endif /* UBSEC_NO_RNG */
536	mtx_destroy(&sc->sc_mcr2lock);
537
538	bus_generic_detach(dev);
539	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
540	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
541
542	bus_dma_tag_destroy(sc->sc_dmat);
543	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
544
545	return (0);
546}
547
548/*
549 * Stop all chip i/o so that the kernel's probe routines don't
550 * get confused by errant DMAs when rebooting.
551 */
552static void
553ubsec_shutdown(device_t dev)
554{
555#ifdef notyet
556	ubsec_stop(device_get_softc(dev));
557#endif
558}
559
560/*
561 * Device suspend routine.
562 */
563static int
564ubsec_suspend(device_t dev)
565{
566	struct ubsec_softc *sc = device_get_softc(dev);
567
568#ifdef notyet
569	/* XXX stop the device and save PCI settings */
570#endif
571	sc->sc_suspended = 1;
572
573	return (0);
574}
575
576static int
577ubsec_resume(device_t dev)
578{
579	struct ubsec_softc *sc = device_get_softc(dev);
580
581#ifdef notyet
582	/* XXX retore PCI settings and start the device */
583#endif
584	sc->sc_suspended = 0;
585	return (0);
586}
587
588/*
589 * UBSEC Interrupt routine
590 */
591static void
592ubsec_intr(void *arg)
593{
594	struct ubsec_softc *sc = arg;
595	volatile u_int32_t stat;
596	struct ubsec_q *q;
597	struct ubsec_dma *dmap;
598	int npkts = 0, i;
599
600	stat = READ_REG(sc, BS_STAT);
601	stat &= sc->sc_statmask;
602	if (stat == 0)
603		return;
604
605	WRITE_REG(sc, BS_STAT, stat);		/* IACK */
606
607	/*
608	 * Check to see if we have any packets waiting for us
609	 */
610	if ((stat & BS_STAT_MCR1_DONE)) {
611		mtx_lock(&sc->sc_mcr1lock);
612		while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
613			q = SIMPLEQ_FIRST(&sc->sc_qchip);
614			dmap = q->q_dma;
615
616			if ((dmap->d_dma->d_mcr.mcr_flags & htole16(UBS_MCR_DONE)) == 0)
617				break;
618
619			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q, q_next);
620
621			npkts = q->q_nstacked_mcrs;
622			sc->sc_nqchip -= 1+npkts;
623			/*
624			 * search for further sc_qchip ubsec_q's that share
625			 * the same MCR, and complete them too, they must be
626			 * at the top.
627			 */
628			for (i = 0; i < npkts; i++) {
629				if(q->q_stacked_mcr[i]) {
630					ubsec_callback(sc, q->q_stacked_mcr[i]);
631				} else {
632					break;
633				}
634			}
635			ubsec_callback(sc, q);
636		}
637		/*
638		 * Don't send any more packet to chip if there has been
639		 * a DMAERR.
640		 */
641		if (!(stat & BS_STAT_DMAERR))
642			ubsec_feed(sc);
643		mtx_unlock(&sc->sc_mcr1lock);
644	}
645
646	/*
647	 * Check to see if we have any key setups/rng's waiting for us
648	 */
649	if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) &&
650	    (stat & BS_STAT_MCR2_DONE)) {
651		struct ubsec_q2 *q2;
652		struct ubsec_mcr *mcr;
653
654		mtx_lock(&sc->sc_mcr2lock);
655		while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) {
656			q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
657
658			ubsec_dma_sync(&q2->q_mcr,
659			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
660
661			mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
662			if ((mcr->mcr_flags & htole16(UBS_MCR_DONE)) == 0) {
663				ubsec_dma_sync(&q2->q_mcr,
664				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
665				break;
666			}
667			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, q2, q_next);
668			ubsec_callback2(sc, q2);
669			/*
670			 * Don't send any more packet to chip if there has been
671			 * a DMAERR.
672			 */
673			if (!(stat & BS_STAT_DMAERR))
674				ubsec_feed2(sc);
675		}
676		mtx_unlock(&sc->sc_mcr2lock);
677	}
678
679	/*
680	 * Check to see if we got any DMA Error
681	 */
682	if (stat & BS_STAT_DMAERR) {
683#ifdef UBSEC_DEBUG
684		if (ubsec_debug) {
685			volatile u_int32_t a = READ_REG(sc, BS_ERR);
686
687			printf("dmaerr %s@%08x\n",
688			    (a & BS_ERR_READ) ? "read" : "write",
689			    a & BS_ERR_ADDR);
690		}
691#endif /* UBSEC_DEBUG */
692		ubsecstats.hst_dmaerr++;
693		mtx_lock(&sc->sc_mcr1lock);
694		ubsec_totalreset(sc);
695		ubsec_feed(sc);
696		mtx_unlock(&sc->sc_mcr1lock);
697	}
698
699	if (sc->sc_needwakeup) {		/* XXX check high watermark */
700		int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
701#ifdef UBSEC_DEBUG
702		if (ubsec_debug)
703			device_printf(sc->sc_dev, "wakeup crypto (%x)\n",
704				sc->sc_needwakeup);
705#endif /* UBSEC_DEBUG */
706		sc->sc_needwakeup &= ~wakeup;
707		crypto_unblock(sc->sc_cid, wakeup);
708	}
709}
710
711/*
712 * ubsec_feed() - aggregate and post requests to chip
713 */
714static void
715ubsec_feed(struct ubsec_softc *sc)
716{
717	struct ubsec_q *q, *q2;
718	int npkts, i;
719	void *v;
720	u_int32_t stat;
721
722	/*
723	 * Decide how many ops to combine in a single MCR.  We cannot
724	 * aggregate more than UBS_MAX_AGGR because this is the number
725	 * of slots defined in the data structure.  Note that
726	 * aggregation only happens if ops are marked batch'able.
727	 * Aggregating ops reduces the number of interrupts to the host
728	 * but also (potentially) increases the latency for processing
729	 * completed ops as we only get an interrupt when all aggregated
730	 * ops have completed.
731	 */
732	if (sc->sc_nqueue == 0)
733		return;
734	if (sc->sc_nqueue > 1) {
735		npkts = 0;
736		SIMPLEQ_FOREACH(q, &sc->sc_queue, q_next) {
737			npkts++;
738			if ((q->q_crp->crp_flags & CRYPTO_F_BATCH) == 0)
739				break;
740		}
741	} else
742		npkts = 1;
743	/*
744	 * Check device status before going any further.
745	 */
746	if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
747		if (stat & BS_STAT_DMAERR) {
748			ubsec_totalreset(sc);
749			ubsecstats.hst_dmaerr++;
750		} else
751			ubsecstats.hst_mcr1full++;
752		return;
753	}
754	if (sc->sc_nqueue > ubsecstats.hst_maxqueue)
755		ubsecstats.hst_maxqueue = sc->sc_nqueue;
756	if (npkts > UBS_MAX_AGGR)
757		npkts = UBS_MAX_AGGR;
758	if (npkts < 2)				/* special case 1 op */
759		goto feed1;
760
761	ubsecstats.hst_totbatch += npkts-1;
762#ifdef UBSEC_DEBUG
763	if (ubsec_debug)
764		printf("merging %d records\n", npkts);
765#endif /* UBSEC_DEBUG */
766
767	q = SIMPLEQ_FIRST(&sc->sc_queue);
768	SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q, q_next);
769	--sc->sc_nqueue;
770
771	bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_PREWRITE);
772	if (q->q_dst_map != NULL)
773		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map, BUS_DMASYNC_PREREAD);
774
775	q->q_nstacked_mcrs = npkts - 1;		/* Number of packets stacked */
776
777	for (i = 0; i < q->q_nstacked_mcrs; i++) {
778		q2 = SIMPLEQ_FIRST(&sc->sc_queue);
779		bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
780		    BUS_DMASYNC_PREWRITE);
781		if (q2->q_dst_map != NULL)
782			bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
783			    BUS_DMASYNC_PREREAD);
784		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q2, q_next);
785		--sc->sc_nqueue;
786
787		v = (void*)(((char *)&q2->q_dma->d_dma->d_mcr) + sizeof(struct ubsec_mcr) -
788		    sizeof(struct ubsec_mcr_add));
789		bcopy(v, &q->q_dma->d_dma->d_mcradd[i], sizeof(struct ubsec_mcr_add));
790		q->q_stacked_mcr[i] = q2;
791	}
792	q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
793	SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
794	sc->sc_nqchip += npkts;
795	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
796		ubsecstats.hst_maxqchip = sc->sc_nqchip;
797	ubsec_dma_sync(&q->q_dma->d_alloc,
798	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
799	WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
800	    offsetof(struct ubsec_dmachunk, d_mcr));
801	return;
802feed1:
803	q = SIMPLEQ_FIRST(&sc->sc_queue);
804
805	bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_PREWRITE);
806	if (q->q_dst_map != NULL)
807		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map, BUS_DMASYNC_PREREAD);
808	ubsec_dma_sync(&q->q_dma->d_alloc,
809	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
810
811	WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
812	    offsetof(struct ubsec_dmachunk, d_mcr));
813#ifdef UBSEC_DEBUG
814	if (ubsec_debug)
815		printf("feed1: q->chip %p %08x stat %08x\n",
816		      q, (u_int32_t)vtophys(&q->q_dma->d_dma->d_mcr),
817		      stat);
818#endif /* UBSEC_DEBUG */
819	SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q, q_next);
820	--sc->sc_nqueue;
821	SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
822	sc->sc_nqchip++;
823	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
824		ubsecstats.hst_maxqchip = sc->sc_nqchip;
825	return;
826}
827
828/*
829 * Allocate a new 'session' and return an encoded session id.  'sidp'
830 * contains our registration id, and should contain an encoded session
831 * id on successful allocation.
832 */
833static int
834ubsec_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri)
835{
836	struct cryptoini *c, *encini = NULL, *macini = NULL;
837	struct ubsec_softc *sc = arg;
838	struct ubsec_session *ses = NULL;
839	MD5_CTX md5ctx;
840	SHA1_CTX sha1ctx;
841	int i, sesn;
842
843	if (sidp == NULL || cri == NULL || sc == NULL)
844		return (EINVAL);
845
846	for (c = cri; c != NULL; c = c->cri_next) {
847		if (c->cri_alg == CRYPTO_MD5_HMAC ||
848		    c->cri_alg == CRYPTO_SHA1_HMAC) {
849			if (macini)
850				return (EINVAL);
851			macini = c;
852		} else if (c->cri_alg == CRYPTO_DES_CBC ||
853		    c->cri_alg == CRYPTO_3DES_CBC) {
854			if (encini)
855				return (EINVAL);
856			encini = c;
857		} else
858			return (EINVAL);
859	}
860	if (encini == NULL && macini == NULL)
861		return (EINVAL);
862
863	if (sc->sc_sessions == NULL) {
864		ses = sc->sc_sessions = (struct ubsec_session *)malloc(
865		    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
866		if (ses == NULL)
867			return (ENOMEM);
868		sesn = 0;
869		sc->sc_nsessions = 1;
870	} else {
871		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
872			if (sc->sc_sessions[sesn].ses_used == 0) {
873				ses = &sc->sc_sessions[sesn];
874				break;
875			}
876		}
877
878		if (ses == NULL) {
879			sesn = sc->sc_nsessions;
880			ses = (struct ubsec_session *)malloc((sesn + 1) *
881			    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
882			if (ses == NULL)
883				return (ENOMEM);
884			bcopy(sc->sc_sessions, ses, sesn *
885			    sizeof(struct ubsec_session));
886			bzero(sc->sc_sessions, sesn *
887			    sizeof(struct ubsec_session));
888			free(sc->sc_sessions, M_DEVBUF);
889			sc->sc_sessions = ses;
890			ses = &sc->sc_sessions[sesn];
891			sc->sc_nsessions++;
892		}
893	}
894	bzero(ses, sizeof(struct ubsec_session));
895	ses->ses_used = 1;
896
897	if (encini) {
898		/* get an IV, network byte order */
899		/* XXX may read fewer than requested */
900		read_random(ses->ses_iv, sizeof(ses->ses_iv));
901
902		/* Go ahead and compute key in ubsec's byte order */
903		if (encini->cri_alg == CRYPTO_DES_CBC) {
904			bcopy(encini->cri_key, &ses->ses_deskey[0], 8);
905			bcopy(encini->cri_key, &ses->ses_deskey[2], 8);
906			bcopy(encini->cri_key, &ses->ses_deskey[4], 8);
907		} else
908			bcopy(encini->cri_key, ses->ses_deskey, 24);
909
910		SWAP32(ses->ses_deskey[0]);
911		SWAP32(ses->ses_deskey[1]);
912		SWAP32(ses->ses_deskey[2]);
913		SWAP32(ses->ses_deskey[3]);
914		SWAP32(ses->ses_deskey[4]);
915		SWAP32(ses->ses_deskey[5]);
916	}
917
918	if (macini) {
919		for (i = 0; i < macini->cri_klen / 8; i++)
920			macini->cri_key[i] ^= HMAC_IPAD_VAL;
921
922		if (macini->cri_alg == CRYPTO_MD5_HMAC) {
923			MD5Init(&md5ctx);
924			MD5Update(&md5ctx, macini->cri_key,
925			    macini->cri_klen / 8);
926			MD5Update(&md5ctx, hmac_ipad_buffer,
927			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
928			bcopy(md5ctx.state, ses->ses_hminner,
929			    sizeof(md5ctx.state));
930		} else {
931			SHA1Init(&sha1ctx);
932			SHA1Update(&sha1ctx, macini->cri_key,
933			    macini->cri_klen / 8);
934			SHA1Update(&sha1ctx, hmac_ipad_buffer,
935			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
936			bcopy(sha1ctx.h.b32, ses->ses_hminner,
937			    sizeof(sha1ctx.h.b32));
938		}
939
940		for (i = 0; i < macini->cri_klen / 8; i++)
941			macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
942
943		if (macini->cri_alg == CRYPTO_MD5_HMAC) {
944			MD5Init(&md5ctx);
945			MD5Update(&md5ctx, macini->cri_key,
946			    macini->cri_klen / 8);
947			MD5Update(&md5ctx, hmac_opad_buffer,
948			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
949			bcopy(md5ctx.state, ses->ses_hmouter,
950			    sizeof(md5ctx.state));
951		} else {
952			SHA1Init(&sha1ctx);
953			SHA1Update(&sha1ctx, macini->cri_key,
954			    macini->cri_klen / 8);
955			SHA1Update(&sha1ctx, hmac_opad_buffer,
956			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
957			bcopy(sha1ctx.h.b32, ses->ses_hmouter,
958			    sizeof(sha1ctx.h.b32));
959		}
960
961		for (i = 0; i < macini->cri_klen / 8; i++)
962			macini->cri_key[i] ^= HMAC_OPAD_VAL;
963	}
964
965	*sidp = UBSEC_SID(device_get_unit(sc->sc_dev), sesn);
966	return (0);
967}
968
969/*
970 * Deallocate a session.
971 */
972static int
973ubsec_freesession(void *arg, u_int64_t tid)
974{
975	struct ubsec_softc *sc = arg;
976	int session, ret;
977	u_int32_t sid = CRYPTO_SESID2LID(tid);
978
979	if (sc == NULL)
980		return (EINVAL);
981
982	session = UBSEC_SESSION(sid);
983	if (session < sc->sc_nsessions) {
984		bzero(&sc->sc_sessions[session],
985			sizeof(sc->sc_sessions[session]));
986		ret = 0;
987	} else
988		ret = EINVAL;
989
990	return (ret);
991}
992
993static void
994ubsec_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
995{
996	struct ubsec_operand *op = arg;
997
998	KASSERT(nsegs <= UBS_MAX_SCATTER,
999		("Too many DMA segments returned when mapping operand"));
1000#ifdef UBSEC_DEBUG
1001	if (ubsec_debug)
1002		printf("ubsec_op_cb: mapsize %u nsegs %d\n",
1003			(u_int) mapsize, nsegs);
1004#endif
1005	op->mapsize = mapsize;
1006	op->nsegs = nsegs;
1007	bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
1008}
1009
1010static int
1011ubsec_process(void *arg, struct cryptop *crp, int hint)
1012{
1013	struct ubsec_q *q = NULL;
1014	int err = 0, i, j, nicealign;
1015	struct ubsec_softc *sc = arg;
1016	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
1017	int encoffset = 0, macoffset = 0, cpskip, cpoffset;
1018	int sskip, dskip, stheend, dtheend;
1019	int16_t coffset;
1020	struct ubsec_session *ses;
1021	struct ubsec_pktctx ctx;
1022	struct ubsec_dma *dmap = NULL;
1023
1024	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
1025		ubsecstats.hst_invalid++;
1026		return (EINVAL);
1027	}
1028	if (UBSEC_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
1029		ubsecstats.hst_badsession++;
1030		return (EINVAL);
1031	}
1032
1033	mtx_lock(&sc->sc_freeqlock);
1034	if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
1035		ubsecstats.hst_queuefull++;
1036		sc->sc_needwakeup |= CRYPTO_SYMQ;
1037		mtx_unlock(&sc->sc_freeqlock);
1038		return (ERESTART);
1039	}
1040	q = SIMPLEQ_FIRST(&sc->sc_freequeue);
1041	SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, q, q_next);
1042	mtx_unlock(&sc->sc_freeqlock);
1043
1044	dmap = q->q_dma; /* Save dma pointer */
1045	bzero(q, sizeof(struct ubsec_q));
1046	bzero(&ctx, sizeof(ctx));
1047
1048	q->q_sesn = UBSEC_SESSION(crp->crp_sid);
1049	q->q_dma = dmap;
1050	ses = &sc->sc_sessions[q->q_sesn];
1051
1052	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1053		q->q_src_m = (struct mbuf *)crp->crp_buf;
1054		q->q_dst_m = (struct mbuf *)crp->crp_buf;
1055	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1056		q->q_src_io = (struct uio *)crp->crp_buf;
1057		q->q_dst_io = (struct uio *)crp->crp_buf;
1058	} else {
1059		ubsecstats.hst_badflags++;
1060		err = EINVAL;
1061		goto errout;	/* XXX we don't handle contiguous blocks! */
1062	}
1063
1064	bzero(&dmap->d_dma->d_mcr, sizeof(struct ubsec_mcr));
1065
1066	dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
1067	dmap->d_dma->d_mcr.mcr_flags = 0;
1068	q->q_crp = crp;
1069
1070	crd1 = crp->crp_desc;
1071	if (crd1 == NULL) {
1072		ubsecstats.hst_nodesc++;
1073		err = EINVAL;
1074		goto errout;
1075	}
1076	crd2 = crd1->crd_next;
1077
1078	if (crd2 == NULL) {
1079		if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
1080		    crd1->crd_alg == CRYPTO_SHA1_HMAC) {
1081			maccrd = crd1;
1082			enccrd = NULL;
1083		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
1084		    crd1->crd_alg == CRYPTO_3DES_CBC) {
1085			maccrd = NULL;
1086			enccrd = crd1;
1087		} else {
1088			ubsecstats.hst_badalg++;
1089			err = EINVAL;
1090			goto errout;
1091		}
1092	} else {
1093		if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
1094		    crd1->crd_alg == CRYPTO_SHA1_HMAC) &&
1095		    (crd2->crd_alg == CRYPTO_DES_CBC ||
1096			crd2->crd_alg == CRYPTO_3DES_CBC) &&
1097		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
1098			maccrd = crd1;
1099			enccrd = crd2;
1100		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
1101		    crd1->crd_alg == CRYPTO_3DES_CBC) &&
1102		    (crd2->crd_alg == CRYPTO_MD5_HMAC ||
1103			crd2->crd_alg == CRYPTO_SHA1_HMAC) &&
1104		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
1105			enccrd = crd1;
1106			maccrd = crd2;
1107		} else {
1108			/*
1109			 * We cannot order the ubsec as requested
1110			 */
1111			ubsecstats.hst_badalg++;
1112			err = EINVAL;
1113			goto errout;
1114		}
1115	}
1116
1117	if (enccrd) {
1118		encoffset = enccrd->crd_skip;
1119		ctx.pc_flags |= htole16(UBS_PKTCTX_ENC_3DES);
1120
1121		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1122			q->q_flags |= UBSEC_QFLAGS_COPYOUTIV;
1123
1124			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1125				bcopy(enccrd->crd_iv, ctx.pc_iv, 8);
1126			else {
1127				ctx.pc_iv[0] = ses->ses_iv[0];
1128				ctx.pc_iv[1] = ses->ses_iv[1];
1129			}
1130
1131			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1132				if (crp->crp_flags & CRYPTO_F_IMBUF)
1133					m_copyback(q->q_src_m,
1134					    enccrd->crd_inject,
1135					    8, (caddr_t)ctx.pc_iv);
1136				else if (crp->crp_flags & CRYPTO_F_IOV)
1137					cuio_copyback(q->q_src_io,
1138					    enccrd->crd_inject,
1139					    8, (caddr_t)ctx.pc_iv);
1140			}
1141		} else {
1142			ctx.pc_flags |= htole16(UBS_PKTCTX_INBOUND);
1143
1144			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1145				bcopy(enccrd->crd_iv, ctx.pc_iv, 8);
1146			else if (crp->crp_flags & CRYPTO_F_IMBUF)
1147				m_copydata(q->q_src_m, enccrd->crd_inject,
1148				    8, (caddr_t)ctx.pc_iv);
1149			else if (crp->crp_flags & CRYPTO_F_IOV)
1150				cuio_copydata(q->q_src_io,
1151				    enccrd->crd_inject, 8,
1152				    (caddr_t)ctx.pc_iv);
1153		}
1154
1155		ctx.pc_deskey[0] = ses->ses_deskey[0];
1156		ctx.pc_deskey[1] = ses->ses_deskey[1];
1157		ctx.pc_deskey[2] = ses->ses_deskey[2];
1158		ctx.pc_deskey[3] = ses->ses_deskey[3];
1159		ctx.pc_deskey[4] = ses->ses_deskey[4];
1160		ctx.pc_deskey[5] = ses->ses_deskey[5];
1161		SWAP32(ctx.pc_iv[0]);
1162		SWAP32(ctx.pc_iv[1]);
1163	}
1164
1165	if (maccrd) {
1166		macoffset = maccrd->crd_skip;
1167
1168		if (maccrd->crd_alg == CRYPTO_MD5_HMAC)
1169			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_MD5);
1170		else
1171			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
1172
1173		for (i = 0; i < 5; i++) {
1174			ctx.pc_hminner[i] = ses->ses_hminner[i];
1175			ctx.pc_hmouter[i] = ses->ses_hmouter[i];
1176
1177			HTOLE32(ctx.pc_hminner[i]);
1178			HTOLE32(ctx.pc_hmouter[i]);
1179		}
1180	}
1181
1182	if (enccrd && maccrd) {
1183		/*
1184		 * ubsec cannot handle packets where the end of encryption
1185		 * and authentication are not the same, or where the
1186		 * encrypted part begins before the authenticated part.
1187		 */
1188		if ((encoffset + enccrd->crd_len) !=
1189		    (macoffset + maccrd->crd_len)) {
1190			ubsecstats.hst_lenmismatch++;
1191			err = EINVAL;
1192			goto errout;
1193		}
1194		if (enccrd->crd_skip < maccrd->crd_skip) {
1195			ubsecstats.hst_skipmismatch++;
1196			err = EINVAL;
1197			goto errout;
1198		}
1199		sskip = maccrd->crd_skip;
1200		cpskip = dskip = enccrd->crd_skip;
1201		stheend = maccrd->crd_len;
1202		dtheend = enccrd->crd_len;
1203		coffset = enccrd->crd_skip - maccrd->crd_skip;
1204		cpoffset = cpskip + dtheend;
1205#ifdef UBSEC_DEBUG
1206		if (ubsec_debug) {
1207			printf("mac: skip %d, len %d, inject %d\n",
1208			    maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject);
1209			printf("enc: skip %d, len %d, inject %d\n",
1210			    enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject);
1211			printf("src: skip %d, len %d\n", sskip, stheend);
1212			printf("dst: skip %d, len %d\n", dskip, dtheend);
1213			printf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
1214			    coffset, stheend, cpskip, cpoffset);
1215		}
1216#endif
1217	} else {
1218		cpskip = dskip = sskip = macoffset + encoffset;
1219		dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
1220		cpoffset = cpskip + dtheend;
1221		coffset = 0;
1222	}
1223	ctx.pc_offset = htole16(coffset >> 2);
1224
1225	if (bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &q->q_src_map)) {
1226		ubsecstats.hst_nomap++;
1227		err = ENOMEM;
1228		goto errout;
1229	}
1230	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1231		if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
1232		    q->q_src_m, ubsec_op_cb, &q->q_src, BUS_DMA_NOWAIT) != 0) {
1233			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1234			q->q_src_map = NULL;
1235			ubsecstats.hst_noload++;
1236			err = ENOMEM;
1237			goto errout;
1238		}
1239	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1240		if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
1241		    q->q_src_io, ubsec_op_cb, &q->q_src, BUS_DMA_NOWAIT) != 0) {
1242			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1243			q->q_src_map = NULL;
1244			ubsecstats.hst_noload++;
1245			err = ENOMEM;
1246			goto errout;
1247		}
1248	}
1249	nicealign = ubsec_dmamap_aligned(&q->q_src);
1250
1251	dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
1252
1253#ifdef UBSEC_DEBUG
1254	if (ubsec_debug)
1255		printf("src skip: %d nicealign: %u\n", sskip, nicealign);
1256#endif
1257	for (i = j = 0; i < q->q_src_nsegs; i++) {
1258		struct ubsec_pktbuf *pb;
1259		bus_size_t packl = q->q_src_segs[i].ds_len;
1260		bus_addr_t packp = q->q_src_segs[i].ds_addr;
1261
1262		if (sskip >= packl) {
1263			sskip -= packl;
1264			continue;
1265		}
1266
1267		packl -= sskip;
1268		packp += sskip;
1269		sskip = 0;
1270
1271		if (packl > 0xfffc) {
1272			err = EIO;
1273			goto errout;
1274		}
1275
1276		if (j == 0)
1277			pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
1278		else
1279			pb = &dmap->d_dma->d_sbuf[j - 1];
1280
1281		pb->pb_addr = htole32(packp);
1282
1283		if (stheend) {
1284			if (packl > stheend) {
1285				pb->pb_len = htole32(stheend);
1286				stheend = 0;
1287			} else {
1288				pb->pb_len = htole32(packl);
1289				stheend -= packl;
1290			}
1291		} else
1292			pb->pb_len = htole32(packl);
1293
1294		if ((i + 1) == q->q_src_nsegs)
1295			pb->pb_next = 0;
1296		else
1297			pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1298			    offsetof(struct ubsec_dmachunk, d_sbuf[j]));
1299		j++;
1300	}
1301
1302	if (enccrd == NULL && maccrd != NULL) {
1303		dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
1304		dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
1305		dmap->d_dma->d_mcr.mcr_opktbuf.pb_next = htole32(dmap->d_alloc.dma_paddr +
1306		    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1307#ifdef UBSEC_DEBUG
1308		if (ubsec_debug)
1309			printf("opkt: %x %x %x\n",
1310			    dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
1311			    dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
1312			    dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
1313#endif
1314	} else {
1315		if (crp->crp_flags & CRYPTO_F_IOV) {
1316			if (!nicealign) {
1317				ubsecstats.hst_iovmisaligned++;
1318				err = EINVAL;
1319				goto errout;
1320			}
1321			if (bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1322			     &q->q_dst_map)) {
1323				ubsecstats.hst_nomap++;
1324				err = ENOMEM;
1325				goto errout;
1326			}
1327			if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
1328			    q->q_dst_io, ubsec_op_cb, &q->q_dst, BUS_DMA_NOWAIT) != 0) {
1329				bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1330				q->q_dst_map = NULL;
1331				ubsecstats.hst_noload++;
1332				err = ENOMEM;
1333				goto errout;
1334			}
1335		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1336			if (nicealign) {
1337				q->q_dst = q->q_src;
1338			} else {
1339				int totlen, len;
1340				struct mbuf *m, *top, **mp;
1341
1342				ubsecstats.hst_unaligned++;
1343				totlen = q->q_src_mapsize;
1344				if (q->q_src_m->m_flags & M_PKTHDR) {
1345					len = MHLEN;
1346					MGETHDR(m, M_DONTWAIT, MT_DATA);
1347					if (m && !m_dup_pkthdr(m, q->q_src_m, M_DONTWAIT)) {
1348						m_free(m);
1349						m = NULL;
1350					}
1351				} else {
1352					len = MLEN;
1353					MGET(m, M_DONTWAIT, MT_DATA);
1354				}
1355				if (m == NULL) {
1356					ubsecstats.hst_nombuf++;
1357					err = sc->sc_nqueue ? ERESTART : ENOMEM;
1358					goto errout;
1359				}
1360				if (totlen >= MINCLSIZE) {
1361					MCLGET(m, M_DONTWAIT);
1362					if ((m->m_flags & M_EXT) == 0) {
1363						m_free(m);
1364						ubsecstats.hst_nomcl++;
1365						err = sc->sc_nqueue ? ERESTART : ENOMEM;
1366						goto errout;
1367					}
1368					len = MCLBYTES;
1369				}
1370				m->m_len = len;
1371				top = NULL;
1372				mp = &top;
1373
1374				while (totlen > 0) {
1375					if (top) {
1376						MGET(m, M_DONTWAIT, MT_DATA);
1377						if (m == NULL) {
1378							m_freem(top);
1379							ubsecstats.hst_nombuf++;
1380							err = sc->sc_nqueue ? ERESTART : ENOMEM;
1381							goto errout;
1382						}
1383						len = MLEN;
1384					}
1385					if (top && totlen >= MINCLSIZE) {
1386						MCLGET(m, M_DONTWAIT);
1387						if ((m->m_flags & M_EXT) == 0) {
1388							*mp = m;
1389							m_freem(top);
1390							ubsecstats.hst_nomcl++;
1391							err = sc->sc_nqueue ? ERESTART : ENOMEM;
1392							goto errout;
1393						}
1394						len = MCLBYTES;
1395					}
1396					m->m_len = len = min(totlen, len);
1397					totlen -= len;
1398					*mp = m;
1399					mp = &m->m_next;
1400				}
1401				q->q_dst_m = top;
1402				ubsec_mcopy(q->q_src_m, q->q_dst_m,
1403				    cpskip, cpoffset);
1404				if (bus_dmamap_create(sc->sc_dmat,
1405				    BUS_DMA_NOWAIT, &q->q_dst_map) != 0) {
1406					ubsecstats.hst_nomap++;
1407					err = ENOMEM;
1408					goto errout;
1409				}
1410				if (bus_dmamap_load_mbuf(sc->sc_dmat,
1411				    q->q_dst_map, q->q_dst_m,
1412				    ubsec_op_cb, &q->q_dst,
1413				    BUS_DMA_NOWAIT) != 0) {
1414					bus_dmamap_destroy(sc->sc_dmat,
1415					q->q_dst_map);
1416					q->q_dst_map = NULL;
1417					ubsecstats.hst_noload++;
1418					err = ENOMEM;
1419					goto errout;
1420				}
1421			}
1422		} else {
1423			ubsecstats.hst_badflags++;
1424			err = EINVAL;
1425			goto errout;
1426		}
1427
1428#ifdef UBSEC_DEBUG
1429		if (ubsec_debug)
1430			printf("dst skip: %d\n", dskip);
1431#endif
1432		for (i = j = 0; i < q->q_dst_nsegs; i++) {
1433			struct ubsec_pktbuf *pb;
1434			bus_size_t packl = q->q_dst_segs[i].ds_len;
1435			bus_addr_t packp = q->q_dst_segs[i].ds_addr;
1436
1437			if (dskip >= packl) {
1438				dskip -= packl;
1439				continue;
1440			}
1441
1442			packl -= dskip;
1443			packp += dskip;
1444			dskip = 0;
1445
1446			if (packl > 0xfffc) {
1447				err = EIO;
1448				goto errout;
1449			}
1450
1451			if (j == 0)
1452				pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
1453			else
1454				pb = &dmap->d_dma->d_dbuf[j - 1];
1455
1456			pb->pb_addr = htole32(packp);
1457
1458			if (dtheend) {
1459				if (packl > dtheend) {
1460					pb->pb_len = htole32(dtheend);
1461					dtheend = 0;
1462				} else {
1463					pb->pb_len = htole32(packl);
1464					dtheend -= packl;
1465				}
1466			} else
1467				pb->pb_len = htole32(packl);
1468
1469			if ((i + 1) == q->q_dst_nsegs) {
1470				if (maccrd)
1471					pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1472					    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1473				else
1474					pb->pb_next = 0;
1475			} else
1476				pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1477				    offsetof(struct ubsec_dmachunk, d_dbuf[j]));
1478			j++;
1479		}
1480	}
1481
1482	dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
1483	    offsetof(struct ubsec_dmachunk, d_ctx));
1484
1485	if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
1486		struct ubsec_pktctx_long *ctxl;
1487
1488		ctxl = (struct ubsec_pktctx_long *)(dmap->d_alloc.dma_vaddr +
1489		    offsetof(struct ubsec_dmachunk, d_ctx));
1490
1491		/* transform small context into long context */
1492		ctxl->pc_len = htole16(sizeof(struct ubsec_pktctx_long));
1493		ctxl->pc_type = htole16(UBS_PKTCTX_TYPE_IPSEC);
1494		ctxl->pc_flags = ctx.pc_flags;
1495		ctxl->pc_offset = ctx.pc_offset;
1496		for (i = 0; i < 6; i++)
1497			ctxl->pc_deskey[i] = ctx.pc_deskey[i];
1498		for (i = 0; i < 5; i++)
1499			ctxl->pc_hminner[i] = ctx.pc_hminner[i];
1500		for (i = 0; i < 5; i++)
1501			ctxl->pc_hmouter[i] = ctx.pc_hmouter[i];
1502		ctxl->pc_iv[0] = ctx.pc_iv[0];
1503		ctxl->pc_iv[1] = ctx.pc_iv[1];
1504	} else
1505		bcopy(&ctx, dmap->d_alloc.dma_vaddr +
1506		    offsetof(struct ubsec_dmachunk, d_ctx),
1507		    sizeof(struct ubsec_pktctx));
1508
1509	mtx_lock(&sc->sc_mcr1lock);
1510	SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
1511	sc->sc_nqueue++;
1512	ubsecstats.hst_ipackets++;
1513	ubsecstats.hst_ibytes += dmap->d_alloc.dma_size;
1514	if ((hint & CRYPTO_HINT_MORE) == 0 || sc->sc_nqueue >= UBS_MAX_AGGR)
1515		ubsec_feed(sc);
1516	mtx_unlock(&sc->sc_mcr1lock);
1517	return (0);
1518
1519errout:
1520	if (q != NULL) {
1521		if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
1522			m_freem(q->q_dst_m);
1523
1524		if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1525			bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1526			bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1527		}
1528		if (q->q_src_map != NULL) {
1529			bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1530			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1531		}
1532
1533		mtx_lock(&sc->sc_freeqlock);
1534		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1535		mtx_unlock(&sc->sc_freeqlock);
1536	}
1537	if (err != ERESTART) {
1538		crp->crp_etype = err;
1539		crypto_done(crp);
1540	} else {
1541		sc->sc_needwakeup |= CRYPTO_SYMQ;
1542	}
1543	return (err);
1544}
1545
1546static void
1547ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q)
1548{
1549	struct cryptop *crp = (struct cryptop *)q->q_crp;
1550	struct cryptodesc *crd;
1551	struct ubsec_dma *dmap = q->q_dma;
1552
1553	ubsecstats.hst_opackets++;
1554	ubsecstats.hst_obytes += dmap->d_alloc.dma_size;
1555
1556	ubsec_dma_sync(&dmap->d_alloc,
1557	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1558	if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1559		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
1560		    BUS_DMASYNC_POSTREAD);
1561		bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1562		bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1563	}
1564	bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_POSTWRITE);
1565	bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1566	bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1567
1568	if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) {
1569		m_freem(q->q_src_m);
1570		crp->crp_buf = (caddr_t)q->q_dst_m;
1571	}
1572	ubsecstats.hst_obytes += ((struct mbuf *)crp->crp_buf)->m_len;
1573
1574	/* copy out IV for future use */
1575	if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) {
1576		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1577			if (crd->crd_alg != CRYPTO_DES_CBC &&
1578			    crd->crd_alg != CRYPTO_3DES_CBC)
1579				continue;
1580			if (crp->crp_flags & CRYPTO_F_IMBUF)
1581				m_copydata((struct mbuf *)crp->crp_buf,
1582				    crd->crd_skip + crd->crd_len - 8, 8,
1583				    (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1584			else if (crp->crp_flags & CRYPTO_F_IOV) {
1585				cuio_copydata((struct uio *)crp->crp_buf,
1586				    crd->crd_skip + crd->crd_len - 8, 8,
1587				    (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1588			}
1589			break;
1590		}
1591	}
1592
1593	for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1594		if (crd->crd_alg != CRYPTO_MD5_HMAC &&
1595		    crd->crd_alg != CRYPTO_SHA1_HMAC)
1596			continue;
1597		if (crp->crp_flags & CRYPTO_F_IMBUF)
1598			m_copyback((struct mbuf *)crp->crp_buf,
1599			    crd->crd_inject, 12,
1600			    (caddr_t)dmap->d_dma->d_macbuf);
1601		else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac)
1602			bcopy((caddr_t)dmap->d_dma->d_macbuf,
1603			    crp->crp_mac, 12);
1604		break;
1605	}
1606	mtx_lock(&sc->sc_freeqlock);
1607	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1608	mtx_unlock(&sc->sc_freeqlock);
1609	crypto_done(crp);
1610}
1611
1612static void
1613ubsec_mcopy(struct mbuf *srcm, struct mbuf *dstm, int hoffset, int toffset)
1614{
1615	int i, j, dlen, slen;
1616	caddr_t dptr, sptr;
1617
1618	j = 0;
1619	sptr = srcm->m_data;
1620	slen = srcm->m_len;
1621	dptr = dstm->m_data;
1622	dlen = dstm->m_len;
1623
1624	while (1) {
1625		for (i = 0; i < min(slen, dlen); i++) {
1626			if (j < hoffset || j >= toffset)
1627				*dptr++ = *sptr++;
1628			slen--;
1629			dlen--;
1630			j++;
1631		}
1632		if (slen == 0) {
1633			srcm = srcm->m_next;
1634			if (srcm == NULL)
1635				return;
1636			sptr = srcm->m_data;
1637			slen = srcm->m_len;
1638		}
1639		if (dlen == 0) {
1640			dstm = dstm->m_next;
1641			if (dstm == NULL)
1642				return;
1643			dptr = dstm->m_data;
1644			dlen = dstm->m_len;
1645		}
1646	}
1647}
1648
1649/*
1650 * feed the key generator, must be called at splimp() or higher.
1651 */
1652static int
1653ubsec_feed2(struct ubsec_softc *sc)
1654{
1655	struct ubsec_q2 *q;
1656
1657	while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) {
1658		if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL)
1659			break;
1660		q = SIMPLEQ_FIRST(&sc->sc_queue2);
1661
1662		ubsec_dma_sync(&q->q_mcr,
1663		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1664		ubsec_dma_sync(&q->q_ctx, BUS_DMASYNC_PREWRITE);
1665
1666		WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr);
1667		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, q, q_next);
1668		--sc->sc_nqueue2;
1669		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next);
1670	}
1671	return (0);
1672}
1673
1674/*
1675 * Callback for handling random numbers
1676 */
1677static void
1678ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q)
1679{
1680	struct cryptkop *krp;
1681	struct ubsec_ctx_keyop *ctx;
1682
1683	ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr;
1684	ubsec_dma_sync(&q->q_ctx, BUS_DMASYNC_POSTWRITE);
1685
1686	switch (q->q_type) {
1687#ifndef UBSEC_NO_RNG
1688	case UBS_CTXOP_RNGBYPASS: {
1689		struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q;
1690
1691		ubsec_dma_sync(&rng->rng_buf, BUS_DMASYNC_POSTREAD);
1692		(*sc->sc_harvest)(sc->sc_rndtest,
1693			rng->rng_buf.dma_vaddr,
1694			UBSEC_RNG_BUFSIZ*sizeof (u_int32_t));
1695		rng->rng_used = 0;
1696		callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
1697		break;
1698	}
1699#endif
1700	case UBS_CTXOP_MODEXP: {
1701		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
1702		u_int rlen, clen;
1703
1704		krp = me->me_krp;
1705		rlen = (me->me_modbits + 7) / 8;
1706		clen = (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8;
1707
1708		ubsec_dma_sync(&me->me_M, BUS_DMASYNC_POSTWRITE);
1709		ubsec_dma_sync(&me->me_E, BUS_DMASYNC_POSTWRITE);
1710		ubsec_dma_sync(&me->me_C, BUS_DMASYNC_POSTREAD);
1711		ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_POSTWRITE);
1712
1713		if (clen < rlen)
1714			krp->krp_status = E2BIG;
1715		else {
1716			if (sc->sc_flags & UBS_FLAGS_HWNORM) {
1717				bzero(krp->krp_param[krp->krp_iparams].crp_p,
1718				    (krp->krp_param[krp->krp_iparams].crp_nbits
1719					+ 7) / 8);
1720				bcopy(me->me_C.dma_vaddr,
1721				    krp->krp_param[krp->krp_iparams].crp_p,
1722				    (me->me_modbits + 7) / 8);
1723			} else
1724				ubsec_kshift_l(me->me_shiftbits,
1725				    me->me_C.dma_vaddr, me->me_normbits,
1726				    krp->krp_param[krp->krp_iparams].crp_p,
1727				    krp->krp_param[krp->krp_iparams].crp_nbits);
1728		}
1729
1730		crypto_kdone(krp);
1731
1732		/* bzero all potentially sensitive data */
1733		bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
1734		bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
1735		bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
1736		bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
1737
1738		/* Can't free here, so put us on the free list. */
1739		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &me->me_q, q_next);
1740		break;
1741	}
1742	case UBS_CTXOP_RSAPRIV: {
1743		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
1744		u_int len;
1745
1746		krp = rp->rpr_krp;
1747		ubsec_dma_sync(&rp->rpr_msgin, BUS_DMASYNC_POSTWRITE);
1748		ubsec_dma_sync(&rp->rpr_msgout, BUS_DMASYNC_POSTREAD);
1749
1750		len = (krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_nbits + 7) / 8;
1751		bcopy(rp->rpr_msgout.dma_vaddr,
1752		    krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_p, len);
1753
1754		crypto_kdone(krp);
1755
1756		bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size);
1757		bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size);
1758		bzero(rp->rpr_q.q_ctx.dma_vaddr, rp->rpr_q.q_ctx.dma_size);
1759
1760		/* Can't free here, so put us on the free list. */
1761		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &rp->rpr_q, q_next);
1762		break;
1763	}
1764	default:
1765		device_printf(sc->sc_dev, "unknown ctx op: %x\n",
1766		    letoh16(ctx->ctx_op));
1767		break;
1768	}
1769}
1770
1771#ifndef UBSEC_NO_RNG
1772static void
1773ubsec_rng(void *vsc)
1774{
1775	struct ubsec_softc *sc = vsc;
1776	struct ubsec_q2_rng *rng = &sc->sc_rng;
1777	struct ubsec_mcr *mcr;
1778	struct ubsec_ctx_rngbypass *ctx;
1779
1780	mtx_lock(&sc->sc_mcr2lock);
1781	if (rng->rng_used) {
1782		mtx_unlock(&sc->sc_mcr2lock);
1783		return;
1784	}
1785	sc->sc_nqueue2++;
1786	if (sc->sc_nqueue2 >= UBS_MAX_NQUEUE)
1787		goto out;
1788
1789	mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr;
1790	ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr;
1791
1792	mcr->mcr_pkts = htole16(1);
1793	mcr->mcr_flags = 0;
1794	mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr);
1795	mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0;
1796	mcr->mcr_ipktbuf.pb_len = 0;
1797	mcr->mcr_reserved = mcr->mcr_pktlen = 0;
1798	mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr);
1799	mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) &
1800	    UBS_PKTBUF_LEN);
1801	mcr->mcr_opktbuf.pb_next = 0;
1802
1803	ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass));
1804	ctx->rbp_op = htole16(UBS_CTXOP_RNGBYPASS);
1805	rng->rng_q.q_type = UBS_CTXOP_RNGBYPASS;
1806
1807	ubsec_dma_sync(&rng->rng_buf, BUS_DMASYNC_PREREAD);
1808
1809	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next);
1810	rng->rng_used = 1;
1811	ubsec_feed2(sc);
1812	ubsecstats.hst_rng++;
1813	mtx_unlock(&sc->sc_mcr2lock);
1814
1815	return;
1816
1817out:
1818	/*
1819	 * Something weird happened, generate our own call back.
1820	 */
1821	sc->sc_nqueue2--;
1822	mtx_unlock(&sc->sc_mcr2lock);
1823	callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
1824}
1825#endif /* UBSEC_NO_RNG */
1826
1827static void
1828ubsec_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1829{
1830	bus_addr_t *paddr = (bus_addr_t*) arg;
1831	*paddr = segs->ds_addr;
1832}
1833
1834static int
1835ubsec_dma_malloc(
1836	struct ubsec_softc *sc,
1837	bus_size_t size,
1838	struct ubsec_dma_alloc *dma,
1839	int mapflags
1840)
1841{
1842	int r;
1843
1844	/* XXX could specify sc_dmat as parent but that just adds overhead */
1845	r = bus_dma_tag_create(NULL,			/* parent */
1846			       1, 0,			/* alignment, bounds */
1847			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1848			       BUS_SPACE_MAXADDR,	/* highaddr */
1849			       NULL, NULL,		/* filter, filterarg */
1850			       size,			/* maxsize */
1851			       1,			/* nsegments */
1852			       size,			/* maxsegsize */
1853			       BUS_DMA_ALLOCNOW,	/* flags */
1854			       NULL, NULL,		/* lockfunc, lockarg */
1855			       &dma->dma_tag);
1856	if (r != 0) {
1857		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1858			"bus_dma_tag_create failed; error %u\n", r);
1859		goto fail_0;
1860	}
1861
1862	r = bus_dmamap_create(dma->dma_tag, BUS_DMA_NOWAIT, &dma->dma_map);
1863	if (r != 0) {
1864		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1865			"bus_dmamap_create failed; error %u\n", r);
1866		goto fail_1;
1867	}
1868
1869	r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
1870			     BUS_DMA_NOWAIT, &dma->dma_map);
1871	if (r != 0) {
1872		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1873			"bus_dmammem_alloc failed; size %zu, error %u\n",
1874			size, r);
1875		goto fail_2;
1876	}
1877
1878	r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
1879		            size,
1880			    ubsec_dmamap_cb,
1881			    &dma->dma_paddr,
1882			    mapflags | BUS_DMA_NOWAIT);
1883	if (r != 0) {
1884		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1885			"bus_dmamap_load failed; error %u\n", r);
1886		goto fail_3;
1887	}
1888
1889	dma->dma_size = size;
1890	return (0);
1891
1892fail_3:
1893	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1894fail_2:
1895	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1896fail_1:
1897	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1898	bus_dma_tag_destroy(dma->dma_tag);
1899fail_0:
1900	dma->dma_map = NULL;
1901	dma->dma_tag = NULL;
1902	return (r);
1903}
1904
1905static void
1906ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
1907{
1908	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1909	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1910	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1911	bus_dma_tag_destroy(dma->dma_tag);
1912}
1913
1914/*
1915 * Resets the board.  Values in the regesters are left as is
1916 * from the reset (i.e. initial values are assigned elsewhere).
1917 */
1918static void
1919ubsec_reset_board(struct ubsec_softc *sc)
1920{
1921    volatile u_int32_t ctrl;
1922
1923    ctrl = READ_REG(sc, BS_CTRL);
1924    ctrl |= BS_CTRL_RESET;
1925    WRITE_REG(sc, BS_CTRL, ctrl);
1926
1927    /*
1928     * Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
1929     */
1930    DELAY(10);
1931}
1932
1933/*
1934 * Init Broadcom registers
1935 */
1936static void
1937ubsec_init_board(struct ubsec_softc *sc)
1938{
1939	u_int32_t ctrl;
1940
1941	ctrl = READ_REG(sc, BS_CTRL);
1942	ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
1943	ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT;
1944
1945	if (sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG))
1946		ctrl |= BS_CTRL_MCR2INT;
1947	else
1948		ctrl &= ~BS_CTRL_MCR2INT;
1949
1950	if (sc->sc_flags & UBS_FLAGS_HWNORM)
1951		ctrl &= ~BS_CTRL_SWNORM;
1952
1953	WRITE_REG(sc, BS_CTRL, ctrl);
1954}
1955
1956/*
1957 * Init Broadcom PCI registers
1958 */
1959static void
1960ubsec_init_pciregs(device_t dev)
1961{
1962#if 0
1963	u_int32_t misc;
1964
1965	misc = pci_conf_read(pc, pa->pa_tag, BS_RTY_TOUT);
1966	misc = (misc & ~(UBS_PCI_RTY_MASK << UBS_PCI_RTY_SHIFT))
1967	    | ((UBS_DEF_RTY & 0xff) << UBS_PCI_RTY_SHIFT);
1968	misc = (misc & ~(UBS_PCI_TOUT_MASK << UBS_PCI_TOUT_SHIFT))
1969	    | ((UBS_DEF_TOUT & 0xff) << UBS_PCI_TOUT_SHIFT);
1970	pci_conf_write(pc, pa->pa_tag, BS_RTY_TOUT, misc);
1971#endif
1972
1973	/*
1974	 * This will set the cache line size to 1, this will
1975	 * force the BCM58xx chip just to do burst read/writes.
1976	 * Cache line read/writes are to slow
1977	 */
1978	pci_write_config(dev, PCIR_CACHELNSZ, UBS_DEF_CACHELINE, 1);
1979}
1980
1981/*
1982 * Clean up after a chip crash.
1983 * It is assumed that the caller in splimp()
1984 */
1985static void
1986ubsec_cleanchip(struct ubsec_softc *sc)
1987{
1988	struct ubsec_q *q;
1989
1990	while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
1991		q = SIMPLEQ_FIRST(&sc->sc_qchip);
1992		SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q, q_next);
1993		ubsec_free_q(sc, q);
1994	}
1995	sc->sc_nqchip = 0;
1996}
1997
1998/*
1999 * free a ubsec_q
2000 * It is assumed that the caller is within splimp().
2001 */
2002static int
2003ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
2004{
2005	struct ubsec_q *q2;
2006	struct cryptop *crp;
2007	int npkts;
2008	int i;
2009
2010	npkts = q->q_nstacked_mcrs;
2011
2012	for (i = 0; i < npkts; i++) {
2013		if(q->q_stacked_mcr[i]) {
2014			q2 = q->q_stacked_mcr[i];
2015
2016			if ((q2->q_dst_m != NULL) && (q2->q_src_m != q2->q_dst_m))
2017				m_freem(q2->q_dst_m);
2018
2019			crp = (struct cryptop *)q2->q_crp;
2020
2021			SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
2022
2023			crp->crp_etype = EFAULT;
2024			crypto_done(crp);
2025		} else {
2026			break;
2027		}
2028	}
2029
2030	/*
2031	 * Free header MCR
2032	 */
2033	if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
2034		m_freem(q->q_dst_m);
2035
2036	crp = (struct cryptop *)q->q_crp;
2037
2038	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
2039
2040	crp->crp_etype = EFAULT;
2041	crypto_done(crp);
2042	return(0);
2043}
2044
2045/*
2046 * Routine to reset the chip and clean up.
2047 * It is assumed that the caller is in splimp()
2048 */
2049static void
2050ubsec_totalreset(struct ubsec_softc *sc)
2051{
2052	ubsec_reset_board(sc);
2053	ubsec_init_board(sc);
2054	ubsec_cleanchip(sc);
2055}
2056
2057static int
2058ubsec_dmamap_aligned(struct ubsec_operand *op)
2059{
2060	int i;
2061
2062	for (i = 0; i < op->nsegs; i++) {
2063		if (op->segs[i].ds_addr & 3)
2064			return (0);
2065		if ((i != (op->nsegs - 1)) &&
2066		    (op->segs[i].ds_len & 3))
2067			return (0);
2068	}
2069	return (1);
2070}
2071
2072static void
2073ubsec_kfree(struct ubsec_softc *sc, struct ubsec_q2 *q)
2074{
2075	switch (q->q_type) {
2076	case UBS_CTXOP_MODEXP: {
2077		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
2078
2079		ubsec_dma_free(sc, &me->me_q.q_mcr);
2080		ubsec_dma_free(sc, &me->me_q.q_ctx);
2081		ubsec_dma_free(sc, &me->me_M);
2082		ubsec_dma_free(sc, &me->me_E);
2083		ubsec_dma_free(sc, &me->me_C);
2084		ubsec_dma_free(sc, &me->me_epb);
2085		free(me, M_DEVBUF);
2086		break;
2087	}
2088	case UBS_CTXOP_RSAPRIV: {
2089		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
2090
2091		ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2092		ubsec_dma_free(sc, &rp->rpr_q.q_ctx);
2093		ubsec_dma_free(sc, &rp->rpr_msgin);
2094		ubsec_dma_free(sc, &rp->rpr_msgout);
2095		free(rp, M_DEVBUF);
2096		break;
2097	}
2098	default:
2099		device_printf(sc->sc_dev, "invalid kfree 0x%x\n", q->q_type);
2100		break;
2101	}
2102}
2103
2104static int
2105ubsec_kprocess(void *arg, struct cryptkop *krp, int hint)
2106{
2107	struct ubsec_softc *sc = arg;
2108	int r;
2109
2110	if (krp == NULL || krp->krp_callback == NULL)
2111		return (EINVAL);
2112
2113	while (!SIMPLEQ_EMPTY(&sc->sc_q2free)) {
2114		struct ubsec_q2 *q;
2115
2116		q = SIMPLEQ_FIRST(&sc->sc_q2free);
2117		SIMPLEQ_REMOVE_HEAD(&sc->sc_q2free, q, q_next);
2118		ubsec_kfree(sc, q);
2119	}
2120
2121	switch (krp->krp_op) {
2122	case CRK_MOD_EXP:
2123		if (sc->sc_flags & UBS_FLAGS_HWNORM)
2124			r = ubsec_kprocess_modexp_hw(sc, krp, hint);
2125		else
2126			r = ubsec_kprocess_modexp_sw(sc, krp, hint);
2127		break;
2128	case CRK_MOD_EXP_CRT:
2129		return (ubsec_kprocess_rsapriv(sc, krp, hint));
2130	default:
2131		device_printf(sc->sc_dev, "kprocess: invalid op 0x%x\n",
2132		    krp->krp_op);
2133		krp->krp_status = EOPNOTSUPP;
2134		crypto_kdone(krp);
2135		return (0);
2136	}
2137	return (0);			/* silence compiler */
2138}
2139
2140/*
2141 * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (sw normalization)
2142 */
2143static int
2144ubsec_kprocess_modexp_sw(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
2145{
2146	struct ubsec_q2_modexp *me;
2147	struct ubsec_mcr *mcr;
2148	struct ubsec_ctx_modexp *ctx;
2149	struct ubsec_pktbuf *epb;
2150	int err = 0;
2151	u_int nbits, normbits, mbits, shiftbits, ebits;
2152
2153	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2154	if (me == NULL) {
2155		err = ENOMEM;
2156		goto errout;
2157	}
2158	bzero(me, sizeof *me);
2159	me->me_krp = krp;
2160	me->me_q.q_type = UBS_CTXOP_MODEXP;
2161
2162	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2163	if (nbits <= 512)
2164		normbits = 512;
2165	else if (nbits <= 768)
2166		normbits = 768;
2167	else if (nbits <= 1024)
2168		normbits = 1024;
2169	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2170		normbits = 1536;
2171	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2172		normbits = 2048;
2173	else {
2174		err = E2BIG;
2175		goto errout;
2176	}
2177
2178	shiftbits = normbits - nbits;
2179
2180	me->me_modbits = nbits;
2181	me->me_shiftbits = shiftbits;
2182	me->me_normbits = normbits;
2183
2184	/* Sanity check: result bits must be >= true modulus bits. */
2185	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2186		err = ERANGE;
2187		goto errout;
2188	}
2189
2190	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2191	    &me->me_q.q_mcr, 0)) {
2192		err = ENOMEM;
2193		goto errout;
2194	}
2195	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2196
2197	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2198	    &me->me_q.q_ctx, 0)) {
2199		err = ENOMEM;
2200		goto errout;
2201	}
2202
2203	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2204	if (mbits > nbits) {
2205		err = E2BIG;
2206		goto errout;
2207	}
2208	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2209		err = ENOMEM;
2210		goto errout;
2211	}
2212	ubsec_kshift_r(shiftbits,
2213	    krp->krp_param[UBS_MODEXP_PAR_M].crp_p, mbits,
2214	    me->me_M.dma_vaddr, normbits);
2215
2216	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2217		err = ENOMEM;
2218		goto errout;
2219	}
2220	bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2221
2222	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2223	if (ebits > nbits) {
2224		err = E2BIG;
2225		goto errout;
2226	}
2227	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2228		err = ENOMEM;
2229		goto errout;
2230	}
2231	ubsec_kshift_r(shiftbits,
2232	    krp->krp_param[UBS_MODEXP_PAR_E].crp_p, ebits,
2233	    me->me_E.dma_vaddr, normbits);
2234
2235	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2236	    &me->me_epb, 0)) {
2237		err = ENOMEM;
2238		goto errout;
2239	}
2240	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2241	epb->pb_addr = htole32(me->me_E.dma_paddr);
2242	epb->pb_next = 0;
2243	epb->pb_len = htole32(normbits / 8);
2244
2245#ifdef UBSEC_DEBUG
2246	if (ubsec_debug) {
2247		printf("Epb ");
2248		ubsec_dump_pb(epb);
2249	}
2250#endif
2251
2252	mcr->mcr_pkts = htole16(1);
2253	mcr->mcr_flags = 0;
2254	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2255	mcr->mcr_reserved = 0;
2256	mcr->mcr_pktlen = 0;
2257
2258	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2259	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2260	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2261
2262	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2263	mcr->mcr_opktbuf.pb_next = 0;
2264	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2265
2266#ifdef DIAGNOSTIC
2267	/* Misaligned output buffer will hang the chip. */
2268	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2269		panic("%s: modexp invalid addr 0x%x\n",
2270		    device_get_nameunit(sc->sc_dev),
2271		    letoh32(mcr->mcr_opktbuf.pb_addr));
2272	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2273		panic("%s: modexp invalid len 0x%x\n",
2274		    device_get_nameunit(sc->sc_dev),
2275		    letoh32(mcr->mcr_opktbuf.pb_len));
2276#endif
2277
2278	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2279	bzero(ctx, sizeof(*ctx));
2280	ubsec_kshift_r(shiftbits,
2281	    krp->krp_param[UBS_MODEXP_PAR_N].crp_p, nbits,
2282	    ctx->me_N, normbits);
2283	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2284	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2285	ctx->me_E_len = htole16(nbits);
2286	ctx->me_N_len = htole16(nbits);
2287
2288#ifdef UBSEC_DEBUG
2289	if (ubsec_debug) {
2290		ubsec_dump_mcr(mcr);
2291		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2292	}
2293#endif
2294
2295	/*
2296	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2297	 * everything else.
2298	 */
2299	ubsec_dma_sync(&me->me_M, BUS_DMASYNC_PREWRITE);
2300	ubsec_dma_sync(&me->me_E, BUS_DMASYNC_PREWRITE);
2301	ubsec_dma_sync(&me->me_C, BUS_DMASYNC_PREREAD);
2302	ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_PREWRITE);
2303
2304	/* Enqueue and we're done... */
2305	mtx_lock(&sc->sc_mcr2lock);
2306	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2307	ubsec_feed2(sc);
2308	ubsecstats.hst_modexp++;
2309	mtx_unlock(&sc->sc_mcr2lock);
2310
2311	return (0);
2312
2313errout:
2314	if (me != NULL) {
2315		if (me->me_q.q_mcr.dma_map != NULL)
2316			ubsec_dma_free(sc, &me->me_q.q_mcr);
2317		if (me->me_q.q_ctx.dma_map != NULL) {
2318			bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
2319			ubsec_dma_free(sc, &me->me_q.q_ctx);
2320		}
2321		if (me->me_M.dma_map != NULL) {
2322			bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
2323			ubsec_dma_free(sc, &me->me_M);
2324		}
2325		if (me->me_E.dma_map != NULL) {
2326			bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
2327			ubsec_dma_free(sc, &me->me_E);
2328		}
2329		if (me->me_C.dma_map != NULL) {
2330			bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2331			ubsec_dma_free(sc, &me->me_C);
2332		}
2333		if (me->me_epb.dma_map != NULL)
2334			ubsec_dma_free(sc, &me->me_epb);
2335		free(me, M_DEVBUF);
2336	}
2337	krp->krp_status = err;
2338	crypto_kdone(krp);
2339	return (0);
2340}
2341
2342/*
2343 * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (hw normalization)
2344 */
2345static int
2346ubsec_kprocess_modexp_hw(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
2347{
2348	struct ubsec_q2_modexp *me;
2349	struct ubsec_mcr *mcr;
2350	struct ubsec_ctx_modexp *ctx;
2351	struct ubsec_pktbuf *epb;
2352	int err = 0;
2353	u_int nbits, normbits, mbits, shiftbits, ebits;
2354
2355	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2356	if (me == NULL) {
2357		err = ENOMEM;
2358		goto errout;
2359	}
2360	bzero(me, sizeof *me);
2361	me->me_krp = krp;
2362	me->me_q.q_type = UBS_CTXOP_MODEXP;
2363
2364	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2365	if (nbits <= 512)
2366		normbits = 512;
2367	else if (nbits <= 768)
2368		normbits = 768;
2369	else if (nbits <= 1024)
2370		normbits = 1024;
2371	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2372		normbits = 1536;
2373	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2374		normbits = 2048;
2375	else {
2376		err = E2BIG;
2377		goto errout;
2378	}
2379
2380	shiftbits = normbits - nbits;
2381
2382	/* XXX ??? */
2383	me->me_modbits = nbits;
2384	me->me_shiftbits = shiftbits;
2385	me->me_normbits = normbits;
2386
2387	/* Sanity check: result bits must be >= true modulus bits. */
2388	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2389		err = ERANGE;
2390		goto errout;
2391	}
2392
2393	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2394	    &me->me_q.q_mcr, 0)) {
2395		err = ENOMEM;
2396		goto errout;
2397	}
2398	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2399
2400	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2401	    &me->me_q.q_ctx, 0)) {
2402		err = ENOMEM;
2403		goto errout;
2404	}
2405
2406	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2407	if (mbits > nbits) {
2408		err = E2BIG;
2409		goto errout;
2410	}
2411	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2412		err = ENOMEM;
2413		goto errout;
2414	}
2415	bzero(me->me_M.dma_vaddr, normbits / 8);
2416	bcopy(krp->krp_param[UBS_MODEXP_PAR_M].crp_p,
2417	    me->me_M.dma_vaddr, (mbits + 7) / 8);
2418
2419	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2420		err = ENOMEM;
2421		goto errout;
2422	}
2423	bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2424
2425	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2426	if (ebits > nbits) {
2427		err = E2BIG;
2428		goto errout;
2429	}
2430	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2431		err = ENOMEM;
2432		goto errout;
2433	}
2434	bzero(me->me_E.dma_vaddr, normbits / 8);
2435	bcopy(krp->krp_param[UBS_MODEXP_PAR_E].crp_p,
2436	    me->me_E.dma_vaddr, (ebits + 7) / 8);
2437
2438	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2439	    &me->me_epb, 0)) {
2440		err = ENOMEM;
2441		goto errout;
2442	}
2443	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2444	epb->pb_addr = htole32(me->me_E.dma_paddr);
2445	epb->pb_next = 0;
2446	epb->pb_len = htole32((ebits + 7) / 8);
2447
2448#ifdef UBSEC_DEBUG
2449	if (ubsec_debug) {
2450		printf("Epb ");
2451		ubsec_dump_pb(epb);
2452	}
2453#endif
2454
2455	mcr->mcr_pkts = htole16(1);
2456	mcr->mcr_flags = 0;
2457	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2458	mcr->mcr_reserved = 0;
2459	mcr->mcr_pktlen = 0;
2460
2461	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2462	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2463	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2464
2465	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2466	mcr->mcr_opktbuf.pb_next = 0;
2467	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2468
2469#ifdef DIAGNOSTIC
2470	/* Misaligned output buffer will hang the chip. */
2471	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2472		panic("%s: modexp invalid addr 0x%x\n",
2473		    device_get_nameunit(sc->sc_dev),
2474		    letoh32(mcr->mcr_opktbuf.pb_addr));
2475	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2476		panic("%s: modexp invalid len 0x%x\n",
2477		    device_get_nameunit(sc->sc_dev),
2478		    letoh32(mcr->mcr_opktbuf.pb_len));
2479#endif
2480
2481	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2482	bzero(ctx, sizeof(*ctx));
2483	bcopy(krp->krp_param[UBS_MODEXP_PAR_N].crp_p, ctx->me_N,
2484	    (nbits + 7) / 8);
2485	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2486	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2487	ctx->me_E_len = htole16(ebits);
2488	ctx->me_N_len = htole16(nbits);
2489
2490#ifdef UBSEC_DEBUG
2491	if (ubsec_debug) {
2492		ubsec_dump_mcr(mcr);
2493		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2494	}
2495#endif
2496
2497	/*
2498	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2499	 * everything else.
2500	 */
2501	ubsec_dma_sync(&me->me_M, BUS_DMASYNC_PREWRITE);
2502	ubsec_dma_sync(&me->me_E, BUS_DMASYNC_PREWRITE);
2503	ubsec_dma_sync(&me->me_C, BUS_DMASYNC_PREREAD);
2504	ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_PREWRITE);
2505
2506	/* Enqueue and we're done... */
2507	mtx_lock(&sc->sc_mcr2lock);
2508	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2509	ubsec_feed2(sc);
2510	mtx_unlock(&sc->sc_mcr2lock);
2511
2512	return (0);
2513
2514errout:
2515	if (me != NULL) {
2516		if (me->me_q.q_mcr.dma_map != NULL)
2517			ubsec_dma_free(sc, &me->me_q.q_mcr);
2518		if (me->me_q.q_ctx.dma_map != NULL) {
2519			bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
2520			ubsec_dma_free(sc, &me->me_q.q_ctx);
2521		}
2522		if (me->me_M.dma_map != NULL) {
2523			bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
2524			ubsec_dma_free(sc, &me->me_M);
2525		}
2526		if (me->me_E.dma_map != NULL) {
2527			bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
2528			ubsec_dma_free(sc, &me->me_E);
2529		}
2530		if (me->me_C.dma_map != NULL) {
2531			bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2532			ubsec_dma_free(sc, &me->me_C);
2533		}
2534		if (me->me_epb.dma_map != NULL)
2535			ubsec_dma_free(sc, &me->me_epb);
2536		free(me, M_DEVBUF);
2537	}
2538	krp->krp_status = err;
2539	crypto_kdone(krp);
2540	return (0);
2541}
2542
2543static int
2544ubsec_kprocess_rsapriv(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
2545{
2546	struct ubsec_q2_rsapriv *rp = NULL;
2547	struct ubsec_mcr *mcr;
2548	struct ubsec_ctx_rsapriv *ctx;
2549	int err = 0;
2550	u_int padlen, msglen;
2551
2552	msglen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_P]);
2553	padlen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_Q]);
2554	if (msglen > padlen)
2555		padlen = msglen;
2556
2557	if (padlen <= 256)
2558		padlen = 256;
2559	else if (padlen <= 384)
2560		padlen = 384;
2561	else if (padlen <= 512)
2562		padlen = 512;
2563	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 768)
2564		padlen = 768;
2565	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 1024)
2566		padlen = 1024;
2567	else {
2568		err = E2BIG;
2569		goto errout;
2570	}
2571
2572	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DP]) > padlen) {
2573		err = E2BIG;
2574		goto errout;
2575	}
2576
2577	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DQ]) > padlen) {
2578		err = E2BIG;
2579		goto errout;
2580	}
2581
2582	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_PINV]) > padlen) {
2583		err = E2BIG;
2584		goto errout;
2585	}
2586
2587	rp = (struct ubsec_q2_rsapriv *)malloc(sizeof *rp, M_DEVBUF, M_NOWAIT);
2588	if (rp == NULL)
2589		return (ENOMEM);
2590	bzero(rp, sizeof *rp);
2591	rp->rpr_krp = krp;
2592	rp->rpr_q.q_type = UBS_CTXOP_RSAPRIV;
2593
2594	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2595	    &rp->rpr_q.q_mcr, 0)) {
2596		err = ENOMEM;
2597		goto errout;
2598	}
2599	mcr = (struct ubsec_mcr *)rp->rpr_q.q_mcr.dma_vaddr;
2600
2601	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rsapriv),
2602	    &rp->rpr_q.q_ctx, 0)) {
2603		err = ENOMEM;
2604		goto errout;
2605	}
2606	ctx = (struct ubsec_ctx_rsapriv *)rp->rpr_q.q_ctx.dma_vaddr;
2607	bzero(ctx, sizeof *ctx);
2608
2609	/* Copy in p */
2610	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_p,
2611	    &ctx->rpr_buf[0 * (padlen / 8)],
2612	    (krp->krp_param[UBS_RSAPRIV_PAR_P].crp_nbits + 7) / 8);
2613
2614	/* Copy in q */
2615	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_p,
2616	    &ctx->rpr_buf[1 * (padlen / 8)],
2617	    (krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_nbits + 7) / 8);
2618
2619	/* Copy in dp */
2620	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_p,
2621	    &ctx->rpr_buf[2 * (padlen / 8)],
2622	    (krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_nbits + 7) / 8);
2623
2624	/* Copy in dq */
2625	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_p,
2626	    &ctx->rpr_buf[3 * (padlen / 8)],
2627	    (krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_nbits + 7) / 8);
2628
2629	/* Copy in pinv */
2630	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_p,
2631	    &ctx->rpr_buf[4 * (padlen / 8)],
2632	    (krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_nbits + 7) / 8);
2633
2634	msglen = padlen * 2;
2635
2636	/* Copy in input message (aligned buffer/length). */
2637	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGIN]) > msglen) {
2638		/* Is this likely? */
2639		err = E2BIG;
2640		goto errout;
2641	}
2642	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgin, 0)) {
2643		err = ENOMEM;
2644		goto errout;
2645	}
2646	bzero(rp->rpr_msgin.dma_vaddr, (msglen + 7) / 8);
2647	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_p,
2648	    rp->rpr_msgin.dma_vaddr,
2649	    (krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_nbits + 7) / 8);
2650
2651	/* Prepare space for output message (aligned buffer/length). */
2652	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT]) < msglen) {
2653		/* Is this likely? */
2654		err = E2BIG;
2655		goto errout;
2656	}
2657	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgout, 0)) {
2658		err = ENOMEM;
2659		goto errout;
2660	}
2661	bzero(rp->rpr_msgout.dma_vaddr, (msglen + 7) / 8);
2662
2663	mcr->mcr_pkts = htole16(1);
2664	mcr->mcr_flags = 0;
2665	mcr->mcr_cmdctxp = htole32(rp->rpr_q.q_ctx.dma_paddr);
2666	mcr->mcr_ipktbuf.pb_addr = htole32(rp->rpr_msgin.dma_paddr);
2667	mcr->mcr_ipktbuf.pb_next = 0;
2668	mcr->mcr_ipktbuf.pb_len = htole32(rp->rpr_msgin.dma_size);
2669	mcr->mcr_reserved = 0;
2670	mcr->mcr_pktlen = htole16(msglen);
2671	mcr->mcr_opktbuf.pb_addr = htole32(rp->rpr_msgout.dma_paddr);
2672	mcr->mcr_opktbuf.pb_next = 0;
2673	mcr->mcr_opktbuf.pb_len = htole32(rp->rpr_msgout.dma_size);
2674
2675#ifdef DIAGNOSTIC
2676	if (rp->rpr_msgin.dma_paddr & 3 || rp->rpr_msgin.dma_size & 3) {
2677		panic("%s: rsapriv: invalid msgin %x(0x%jx)",
2678		    device_get_nameunit(sc->sc_dev),
2679		    rp->rpr_msgin.dma_paddr, (uintmax_t)rp->rpr_msgin.dma_size);
2680	}
2681	if (rp->rpr_msgout.dma_paddr & 3 || rp->rpr_msgout.dma_size & 3) {
2682		panic("%s: rsapriv: invalid msgout %x(0x%jx)",
2683		    device_get_nameunit(sc->sc_dev),
2684		    rp->rpr_msgout.dma_paddr, (uintmax_t)rp->rpr_msgout.dma_size);
2685	}
2686#endif
2687
2688	ctx->rpr_len = (sizeof(u_int16_t) * 4) + (5 * (padlen / 8));
2689	ctx->rpr_op = htole16(UBS_CTXOP_RSAPRIV);
2690	ctx->rpr_q_len = htole16(padlen);
2691	ctx->rpr_p_len = htole16(padlen);
2692
2693	/*
2694	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2695	 * everything else.
2696	 */
2697	ubsec_dma_sync(&rp->rpr_msgin, BUS_DMASYNC_PREWRITE);
2698	ubsec_dma_sync(&rp->rpr_msgout, BUS_DMASYNC_PREREAD);
2699
2700	/* Enqueue and we're done... */
2701	mtx_lock(&sc->sc_mcr2lock);
2702	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rp->rpr_q, q_next);
2703	ubsec_feed2(sc);
2704	ubsecstats.hst_modexpcrt++;
2705	mtx_unlock(&sc->sc_mcr2lock);
2706	return (0);
2707
2708errout:
2709	if (rp != NULL) {
2710		if (rp->rpr_q.q_mcr.dma_map != NULL)
2711			ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2712		if (rp->rpr_msgin.dma_map != NULL) {
2713			bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size);
2714			ubsec_dma_free(sc, &rp->rpr_msgin);
2715		}
2716		if (rp->rpr_msgout.dma_map != NULL) {
2717			bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size);
2718			ubsec_dma_free(sc, &rp->rpr_msgout);
2719		}
2720		free(rp, M_DEVBUF);
2721	}
2722	krp->krp_status = err;
2723	crypto_kdone(krp);
2724	return (0);
2725}
2726
2727#ifdef UBSEC_DEBUG
2728static void
2729ubsec_dump_pb(volatile struct ubsec_pktbuf *pb)
2730{
2731	printf("addr 0x%x (0x%x) next 0x%x\n",
2732	    pb->pb_addr, pb->pb_len, pb->pb_next);
2733}
2734
2735static void
2736ubsec_dump_ctx2(struct ubsec_ctx_keyop *c)
2737{
2738	printf("CTX (0x%x):\n", c->ctx_len);
2739	switch (letoh16(c->ctx_op)) {
2740	case UBS_CTXOP_RNGBYPASS:
2741	case UBS_CTXOP_RNGSHA1:
2742		break;
2743	case UBS_CTXOP_MODEXP:
2744	{
2745		struct ubsec_ctx_modexp *cx = (void *)c;
2746		int i, len;
2747
2748		printf(" Elen %u, Nlen %u\n",
2749		    letoh16(cx->me_E_len), letoh16(cx->me_N_len));
2750		len = (cx->me_N_len + 7)/8;
2751		for (i = 0; i < len; i++)
2752			printf("%s%02x", (i == 0) ? " N: " : ":", cx->me_N[i]);
2753		printf("\n");
2754		break;
2755	}
2756	default:
2757		printf("unknown context: %x\n", c->ctx_op);
2758	}
2759	printf("END CTX\n");
2760}
2761
2762static void
2763ubsec_dump_mcr(struct ubsec_mcr *mcr)
2764{
2765	volatile struct ubsec_mcr_add *ma;
2766	int i;
2767
2768	printf("MCR:\n");
2769	printf(" pkts: %u, flags 0x%x\n",
2770	    letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
2771	ma = (volatile struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
2772	for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
2773		printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
2774		    letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
2775		    letoh16(ma->mcr_reserved));
2776		printf(" %d: ipkt ", i);
2777		ubsec_dump_pb(&ma->mcr_ipktbuf);
2778		printf(" %d: opkt ", i);
2779		ubsec_dump_pb(&ma->mcr_opktbuf);
2780		ma++;
2781	}
2782	printf("END MCR\n");
2783}
2784#endif /* UBSEC_DEBUG */
2785
2786/*
2787 * Return the number of significant bits of a big number.
2788 */
2789static int
2790ubsec_ksigbits(struct crparam *cr)
2791{
2792	u_int plen = (cr->crp_nbits + 7) / 8;
2793	int i, sig = plen * 8;
2794	u_int8_t c, *p = cr->crp_p;
2795
2796	for (i = plen - 1; i >= 0; i--) {
2797		c = p[i];
2798		if (c != 0) {
2799			while ((c & 0x80) == 0) {
2800				sig--;
2801				c <<= 1;
2802			}
2803			break;
2804		}
2805		sig -= 8;
2806	}
2807	return (sig);
2808}
2809
2810static void
2811ubsec_kshift_r(
2812	u_int shiftbits,
2813	u_int8_t *src, u_int srcbits,
2814	u_int8_t *dst, u_int dstbits)
2815{
2816	u_int slen, dlen;
2817	int i, si, di, n;
2818
2819	slen = (srcbits + 7) / 8;
2820	dlen = (dstbits + 7) / 8;
2821
2822	for (i = 0; i < slen; i++)
2823		dst[i] = src[i];
2824	for (i = 0; i < dlen - slen; i++)
2825		dst[slen + i] = 0;
2826
2827	n = shiftbits / 8;
2828	if (n != 0) {
2829		si = dlen - n - 1;
2830		di = dlen - 1;
2831		while (si >= 0)
2832			dst[di--] = dst[si--];
2833		while (di >= 0)
2834			dst[di--] = 0;
2835	}
2836
2837	n = shiftbits % 8;
2838	if (n != 0) {
2839		for (i = dlen - 1; i > 0; i--)
2840			dst[i] = (dst[i] << n) |
2841			    (dst[i - 1] >> (8 - n));
2842		dst[0] = dst[0] << n;
2843	}
2844}
2845
2846static void
2847ubsec_kshift_l(
2848	u_int shiftbits,
2849	u_int8_t *src, u_int srcbits,
2850	u_int8_t *dst, u_int dstbits)
2851{
2852	int slen, dlen, i, n;
2853
2854	slen = (srcbits + 7) / 8;
2855	dlen = (dstbits + 7) / 8;
2856
2857	n = shiftbits / 8;
2858	for (i = 0; i < slen; i++)
2859		dst[i] = src[i + n];
2860	for (i = 0; i < dlen - slen; i++)
2861		dst[slen + i] = 0;
2862
2863	n = shiftbits % 8;
2864	if (n != 0) {
2865		for (i = 0; i < (dlen - 1); i++)
2866			dst[i] = (dst[i] >> n) | (dst[i + 1] << (8 - n));
2867		dst[dlen - 1] = dst[dlen - 1] >> n;
2868	}
2869}
2870