ubsec.c revision 115747
1/* $FreeBSD: head/sys/dev/ubsec/ubsec.c 115747 2003-06-02 23:32:03Z sam $ */
2/*	$OpenBSD: ubsec.c,v 1.115 2002/09/24 18:33:26 jason Exp $	*/
3
4/*
5 * Copyright (c) 2000 Jason L. Wright (jason@thought.net)
6 * Copyright (c) 2000 Theo de Raadt (deraadt@openbsd.org)
7 * Copyright (c) 2001 Patrik Lindergren (patrik@ipunplugged.com)
8 *
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by Jason L. Wright
22 * 4. The name of the author may not be used to endorse or promote products
23 *    derived from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
26 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
27 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28 * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
29 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
30 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
31 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
33 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
34 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Effort sponsored in part by the Defense Advanced Research Projects
38 * Agency (DARPA) and Air Force Research Laboratory, Air Force
39 * Materiel Command, USAF, under agreement number F30602-01-2-0537.
40 *
41 */
42
43/*
44 * uBsec 5[56]01, 58xx hardware crypto accelerator
45 */
46
47#include "opt_ubsec.h"
48
49#include <sys/param.h>
50#include <sys/systm.h>
51#include <sys/proc.h>
52#include <sys/errno.h>
53#include <sys/malloc.h>
54#include <sys/kernel.h>
55#include <sys/mbuf.h>
56#include <sys/lock.h>
57#include <sys/mutex.h>
58#include <sys/sysctl.h>
59#include <sys/endian.h>
60
61#include <vm/vm.h>
62#include <vm/pmap.h>
63
64#include <machine/clock.h>
65#include <machine/bus.h>
66#include <machine/resource.h>
67#include <sys/bus.h>
68#include <sys/rman.h>
69
70#include <crypto/sha1.h>
71#include <opencrypto/cryptodev.h>
72#include <opencrypto/cryptosoft.h>
73#include <sys/md5.h>
74#include <sys/random.h>
75
76#include <pci/pcivar.h>
77#include <pci/pcireg.h>
78
79/* grr, #defines for gratuitous incompatibility in queue.h */
80#define	SIMPLEQ_HEAD		STAILQ_HEAD
81#define	SIMPLEQ_ENTRY		STAILQ_ENTRY
82#define	SIMPLEQ_INIT		STAILQ_INIT
83#define	SIMPLEQ_INSERT_TAIL	STAILQ_INSERT_TAIL
84#define	SIMPLEQ_EMPTY		STAILQ_EMPTY
85#define	SIMPLEQ_FIRST		STAILQ_FIRST
86#define	SIMPLEQ_REMOVE_HEAD	STAILQ_REMOVE_HEAD_UNTIL
87#define	SIMPLEQ_FOREACH		STAILQ_FOREACH
88/* ditto for endian.h */
89#define	letoh16(x)		le16toh(x)
90#define	letoh32(x)		le32toh(x)
91
92#ifdef UBSEC_RNDTEST
93#include <dev/rndtest/rndtest.h>
94#endif
95#include <dev/ubsec/ubsecreg.h>
96#include <dev/ubsec/ubsecvar.h>
97
98/*
99 * Prototypes and count for the pci_device structure
100 */
101static	int ubsec_probe(device_t);
102static	int ubsec_attach(device_t);
103static	int ubsec_detach(device_t);
104static	int ubsec_suspend(device_t);
105static	int ubsec_resume(device_t);
106static	void ubsec_shutdown(device_t);
107
108static device_method_t ubsec_methods[] = {
109	/* Device interface */
110	DEVMETHOD(device_probe,		ubsec_probe),
111	DEVMETHOD(device_attach,	ubsec_attach),
112	DEVMETHOD(device_detach,	ubsec_detach),
113	DEVMETHOD(device_suspend,	ubsec_suspend),
114	DEVMETHOD(device_resume,	ubsec_resume),
115	DEVMETHOD(device_shutdown,	ubsec_shutdown),
116
117	/* bus interface */
118	DEVMETHOD(bus_print_child,	bus_generic_print_child),
119	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
120
121	{ 0, 0 }
122};
123static driver_t ubsec_driver = {
124	"ubsec",
125	ubsec_methods,
126	sizeof (struct ubsec_softc)
127};
128static devclass_t ubsec_devclass;
129
130DRIVER_MODULE(ubsec, pci, ubsec_driver, ubsec_devclass, 0, 0);
131MODULE_DEPEND(ubsec, crypto, 1, 1, 1);
132#ifdef UBSEC_RNDTEST
133MODULE_DEPEND(ubsec, rndtest, 1, 1, 1);
134#endif
135
136static	void ubsec_intr(void *);
137static	int ubsec_newsession(void *, u_int32_t *, struct cryptoini *);
138static	int ubsec_freesession(void *, u_int64_t);
139static	int ubsec_process(void *, struct cryptop *, int);
140static	void ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
141static	void ubsec_feed(struct ubsec_softc *);
142static	void ubsec_mcopy(struct mbuf *, struct mbuf *, int, int);
143static	void ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *);
144static	int ubsec_feed2(struct ubsec_softc *);
145static	void ubsec_rng(void *);
146static	int ubsec_dma_malloc(struct ubsec_softc *, bus_size_t,
147			     struct ubsec_dma_alloc *, int);
148#define	ubsec_dma_sync(_dma, _flags) \
149	bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
150static	void ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
151static	int ubsec_dmamap_aligned(struct ubsec_operand *op);
152
153static	void ubsec_reset_board(struct ubsec_softc *sc);
154static	void ubsec_init_board(struct ubsec_softc *sc);
155static	void ubsec_init_pciregs(device_t dev);
156static	void ubsec_totalreset(struct ubsec_softc *sc);
157
158static	int ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q);
159
160static	int ubsec_kprocess(void*, struct cryptkop *, int);
161static	int ubsec_kprocess_modexp_hw(struct ubsec_softc *, struct cryptkop *, int);
162static	int ubsec_kprocess_modexp_sw(struct ubsec_softc *, struct cryptkop *, int);
163static	int ubsec_kprocess_rsapriv(struct ubsec_softc *, struct cryptkop *, int);
164static	void ubsec_kfree(struct ubsec_softc *, struct ubsec_q2 *);
165static	int ubsec_ksigbits(struct crparam *);
166static	void ubsec_kshift_r(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
167static	void ubsec_kshift_l(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
168
169SYSCTL_NODE(_hw, OID_AUTO, ubsec, CTLFLAG_RD, 0, "Broadcom driver parameters");
170
171#ifdef UBSEC_DEBUG
172static	void ubsec_dump_pb(volatile struct ubsec_pktbuf *);
173static	void ubsec_dump_mcr(struct ubsec_mcr *);
174static	void ubsec_dump_ctx2(struct ubsec_ctx_keyop *);
175
176static	int ubsec_debug = 0;
177SYSCTL_INT(_hw_ubsec, OID_AUTO, debug, CTLFLAG_RW, &ubsec_debug,
178	    0, "control debugging msgs");
179#endif
180
181#define	READ_REG(sc,r) \
182	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
183
184#define WRITE_REG(sc,reg,val) \
185	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
186
187#define	SWAP32(x) (x) = htole32(ntohl((x)))
188#define	HTOLE32(x) (x) = htole32(x)
189
190struct ubsec_stats ubsecstats;
191SYSCTL_STRUCT(_hw_ubsec, OID_AUTO, stats, CTLFLAG_RD, &ubsecstats,
192	    ubsec_stats, "driver statistics");
193
194static int
195ubsec_probe(device_t dev)
196{
197	if (pci_get_vendor(dev) == PCI_VENDOR_SUN &&
198	    (pci_get_device(dev) == PCI_PRODUCT_SUN_5821 ||
199	     pci_get_device(dev) == PCI_PRODUCT_SUN_SCA1K))
200		return (0);
201	if (pci_get_vendor(dev) == PCI_VENDOR_BLUESTEEL &&
202	    (pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5501 ||
203	     pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5601))
204		return (0);
205	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
206	    (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5801 ||
207	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5802 ||
208	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5805 ||
209	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5820 ||
210	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5821 ||
211	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5822 ||
212	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5823
213	     ))
214		return (0);
215	return (ENXIO);
216}
217
218static const char*
219ubsec_partname(struct ubsec_softc *sc)
220{
221	/* XXX sprintf numbers when not decoded */
222	switch (pci_get_vendor(sc->sc_dev)) {
223	case PCI_VENDOR_BROADCOM:
224		switch (pci_get_device(sc->sc_dev)) {
225		case PCI_PRODUCT_BROADCOM_5801:	return "Broadcom 5801";
226		case PCI_PRODUCT_BROADCOM_5802:	return "Broadcom 5802";
227		case PCI_PRODUCT_BROADCOM_5805:	return "Broadcom 5805";
228		case PCI_PRODUCT_BROADCOM_5820:	return "Broadcom 5820";
229		case PCI_PRODUCT_BROADCOM_5821:	return "Broadcom 5821";
230		case PCI_PRODUCT_BROADCOM_5822:	return "Broadcom 5822";
231		case PCI_PRODUCT_BROADCOM_5823:	return "Broadcom 5823";
232		}
233		return "Broadcom unknown-part";
234	case PCI_VENDOR_BLUESTEEL:
235		switch (pci_get_device(sc->sc_dev)) {
236		case PCI_PRODUCT_BLUESTEEL_5601: return "Bluesteel 5601";
237		}
238		return "Bluesteel unknown-part";
239	case PCI_VENDOR_SUN:
240		switch (pci_get_device(sc->sc_dev)) {
241		case PCI_PRODUCT_SUN_5821: return "Sun Crypto 5821";
242		case PCI_PRODUCT_SUN_SCA1K: return "Sun Crypto 1K";
243		}
244		return "Sun unknown-part";
245	}
246	return "Unknown-vendor unknown-part";
247}
248
249static void
250default_harvest(struct rndtest_state *rsp, void *buf, u_int count)
251{
252	random_harvest(buf, count, count*NBBY, 0, RANDOM_PURE);
253}
254
255static int
256ubsec_attach(device_t dev)
257{
258	struct ubsec_softc *sc = device_get_softc(dev);
259	struct ubsec_dma *dmap;
260	u_int32_t cmd, i;
261	int rid;
262
263	bzero(sc, sizeof (*sc));
264	sc->sc_dev = dev;
265
266	SIMPLEQ_INIT(&sc->sc_queue);
267	SIMPLEQ_INIT(&sc->sc_qchip);
268	SIMPLEQ_INIT(&sc->sc_queue2);
269	SIMPLEQ_INIT(&sc->sc_qchip2);
270	SIMPLEQ_INIT(&sc->sc_q2free);
271
272	/* XXX handle power management */
273
274	sc->sc_statmask = BS_STAT_MCR1_DONE | BS_STAT_DMAERR;
275
276	if (pci_get_vendor(dev) == PCI_VENDOR_BLUESTEEL &&
277	    pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5601)
278		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG;
279
280	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
281	    (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5802 ||
282	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5805))
283		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG;
284
285	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
286	    pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5820)
287		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG |
288		    UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY;
289
290	if ((pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
291	     (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5821 ||
292	      pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5822 ||
293	      pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5823)) ||
294	    (pci_get_vendor(dev) == PCI_VENDOR_SUN &&
295	     (pci_get_device(dev) == PCI_PRODUCT_SUN_SCA1K ||
296	      pci_get_device(dev) == PCI_PRODUCT_SUN_5821))) {
297		/* NB: the 5821/5822 defines some additional status bits */
298		sc->sc_statmask |= BS_STAT_MCR1_ALLEMPTY |
299		    BS_STAT_MCR2_ALLEMPTY;
300		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG |
301		    UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY;
302	}
303
304	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
305	cmd |= PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN;
306	pci_write_config(dev, PCIR_COMMAND, cmd, 4);
307	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
308
309	if (!(cmd & PCIM_CMD_MEMEN)) {
310		device_printf(dev, "failed to enable memory mapping\n");
311		goto bad;
312	}
313
314	if (!(cmd & PCIM_CMD_BUSMASTEREN)) {
315		device_printf(dev, "failed to enable bus mastering\n");
316		goto bad;
317	}
318
319	/*
320	 * Setup memory-mapping of PCI registers.
321	 */
322	rid = BS_BAR;
323	sc->sc_sr = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
324				       0, ~0, 1, RF_ACTIVE);
325	if (sc->sc_sr == NULL) {
326		device_printf(dev, "cannot map register space\n");
327		goto bad;
328	}
329	sc->sc_st = rman_get_bustag(sc->sc_sr);
330	sc->sc_sh = rman_get_bushandle(sc->sc_sr);
331
332	/*
333	 * Arrange interrupt line.
334	 */
335	rid = 0;
336	sc->sc_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
337					0, ~0, 1, RF_SHAREABLE|RF_ACTIVE);
338	if (sc->sc_irq == NULL) {
339		device_printf(dev, "could not map interrupt\n");
340		goto bad1;
341	}
342	/*
343	 * NB: Network code assumes we are blocked with splimp()
344	 *     so make sure the IRQ is mapped appropriately.
345	 */
346	if (bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
347			   ubsec_intr, sc, &sc->sc_ih)) {
348		device_printf(dev, "could not establish interrupt\n");
349		goto bad2;
350	}
351
352	sc->sc_cid = crypto_get_driverid(0);
353	if (sc->sc_cid < 0) {
354		device_printf(dev, "could not get crypto driver id\n");
355		goto bad3;
356	}
357
358	/*
359	 * Setup DMA descriptor area.
360	 */
361	if (bus_dma_tag_create(NULL,			/* parent */
362			       1, 0,			/* alignment, bounds */
363			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
364			       BUS_SPACE_MAXADDR,	/* highaddr */
365			       NULL, NULL,		/* filter, filterarg */
366			       0x3ffff,			/* maxsize */
367			       UBS_MAX_SCATTER,		/* nsegments */
368			       0xffff,			/* maxsegsize */
369			       BUS_DMA_ALLOCNOW,	/* flags */
370			       &sc->sc_dmat)) {
371		device_printf(dev, "cannot allocate DMA tag\n");
372		goto bad4;
373	}
374	SIMPLEQ_INIT(&sc->sc_freequeue);
375	dmap = sc->sc_dmaa;
376	for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
377		struct ubsec_q *q;
378
379		q = (struct ubsec_q *)malloc(sizeof(struct ubsec_q),
380		    M_DEVBUF, M_NOWAIT);
381		if (q == NULL) {
382			device_printf(dev, "cannot allocate queue buffers\n");
383			break;
384		}
385
386		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk),
387		    &dmap->d_alloc, 0)) {
388			device_printf(dev, "cannot allocate dma buffers\n");
389			free(q, M_DEVBUF);
390			break;
391		}
392		dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
393
394		q->q_dma = dmap;
395		sc->sc_queuea[i] = q;
396
397		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
398	}
399	mtx_init(&sc->sc_mcr1lock, device_get_nameunit(dev),
400		"mcr1 operations", MTX_DEF);
401	mtx_init(&sc->sc_freeqlock, device_get_nameunit(dev),
402		"mcr1 free q", MTX_DEF);
403
404	device_printf(sc->sc_dev, "%s\n", ubsec_partname(sc));
405
406	crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0,
407	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
408	crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0,
409	     ubsec_newsession, ubsec_freesession, ubsec_process, sc);
410	crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0,
411	     ubsec_newsession, ubsec_freesession, ubsec_process, sc);
412	crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0,
413	     ubsec_newsession, ubsec_freesession, ubsec_process, sc);
414
415	/*
416	 * Reset Broadcom chip
417	 */
418	ubsec_reset_board(sc);
419
420	/*
421	 * Init Broadcom specific PCI settings
422	 */
423	ubsec_init_pciregs(dev);
424
425	/*
426	 * Init Broadcom chip
427	 */
428	ubsec_init_board(sc);
429
430#ifndef UBSEC_NO_RNG
431	if (sc->sc_flags & UBS_FLAGS_RNG) {
432		sc->sc_statmask |= BS_STAT_MCR2_DONE;
433#ifdef UBSEC_RNDTEST
434		sc->sc_rndtest = rndtest_attach(dev);
435		if (sc->sc_rndtest)
436			sc->sc_harvest = rndtest_harvest;
437		else
438			sc->sc_harvest = default_harvest;
439#else
440		sc->sc_harvest = default_harvest;
441#endif
442
443		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
444		    &sc->sc_rng.rng_q.q_mcr, 0))
445			goto skip_rng;
446
447		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass),
448		    &sc->sc_rng.rng_q.q_ctx, 0)) {
449			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
450			goto skip_rng;
451		}
452
453		if (ubsec_dma_malloc(sc, sizeof(u_int32_t) *
454		    UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) {
455			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
456			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
457			goto skip_rng;
458		}
459
460		if (hz >= 100)
461			sc->sc_rnghz = hz / 100;
462		else
463			sc->sc_rnghz = 1;
464		/* NB: 1 means the callout runs w/o Giant locked */
465		callout_init(&sc->sc_rngto, 1);
466		callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
467skip_rng:
468	;
469	}
470#endif /* UBSEC_NO_RNG */
471	mtx_init(&sc->sc_mcr2lock, device_get_nameunit(dev),
472		"mcr2 operations", MTX_DEF);
473
474	if (sc->sc_flags & UBS_FLAGS_KEY) {
475		sc->sc_statmask |= BS_STAT_MCR2_DONE;
476
477		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0,
478			ubsec_kprocess, sc);
479#if 0
480		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0,
481			ubsec_kprocess, sc);
482#endif
483	}
484	return (0);
485bad4:
486	crypto_unregister_all(sc->sc_cid);
487bad3:
488	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
489bad2:
490	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
491bad1:
492	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
493bad:
494	return (ENXIO);
495}
496
497/*
498 * Detach a device that successfully probed.
499 */
500static int
501ubsec_detach(device_t dev)
502{
503	struct ubsec_softc *sc = device_get_softc(dev);
504
505	/* XXX wait/abort active ops */
506
507	/* disable interrupts */
508	WRITE_REG(sc, BS_CTRL, READ_REG(sc, BS_CTRL) &~
509		(BS_CTRL_MCR2INT | BS_CTRL_MCR1INT | BS_CTRL_DMAERR));
510
511	callout_stop(&sc->sc_rngto);
512
513	crypto_unregister_all(sc->sc_cid);
514
515#ifdef UBSEC_RNDTEST
516	if (sc->sc_rndtest)
517		rndtest_detach(sc->sc_rndtest);
518#endif
519
520	while (!SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
521		struct ubsec_q *q;
522
523		q = SIMPLEQ_FIRST(&sc->sc_freequeue);
524		SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, q, q_next);
525		ubsec_dma_free(sc, &q->q_dma->d_alloc);
526		free(q, M_DEVBUF);
527	}
528	mtx_destroy(&sc->sc_mcr1lock);
529#ifndef UBSEC_NO_RNG
530	if (sc->sc_flags & UBS_FLAGS_RNG) {
531		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
532		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
533		ubsec_dma_free(sc, &sc->sc_rng.rng_buf);
534	}
535#endif /* UBSEC_NO_RNG */
536	mtx_destroy(&sc->sc_mcr2lock);
537
538	bus_generic_detach(dev);
539	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
540	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
541
542	bus_dma_tag_destroy(sc->sc_dmat);
543	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
544
545	return (0);
546}
547
548/*
549 * Stop all chip i/o so that the kernel's probe routines don't
550 * get confused by errant DMAs when rebooting.
551 */
552static void
553ubsec_shutdown(device_t dev)
554{
555#ifdef notyet
556	ubsec_stop(device_get_softc(dev));
557#endif
558}
559
560/*
561 * Device suspend routine.
562 */
563static int
564ubsec_suspend(device_t dev)
565{
566	struct ubsec_softc *sc = device_get_softc(dev);
567
568#ifdef notyet
569	/* XXX stop the device and save PCI settings */
570#endif
571	sc->sc_suspended = 1;
572
573	return (0);
574}
575
576static int
577ubsec_resume(device_t dev)
578{
579	struct ubsec_softc *sc = device_get_softc(dev);
580
581#ifdef notyet
582	/* XXX retore PCI settings and start the device */
583#endif
584	sc->sc_suspended = 0;
585	return (0);
586}
587
588/*
589 * UBSEC Interrupt routine
590 */
591static void
592ubsec_intr(void *arg)
593{
594	struct ubsec_softc *sc = arg;
595	volatile u_int32_t stat;
596	struct ubsec_q *q;
597	struct ubsec_dma *dmap;
598	int npkts = 0, i;
599
600	stat = READ_REG(sc, BS_STAT);
601	stat &= sc->sc_statmask;
602	if (stat == 0)
603		return;
604
605	WRITE_REG(sc, BS_STAT, stat);		/* IACK */
606
607	/*
608	 * Check to see if we have any packets waiting for us
609	 */
610	if ((stat & BS_STAT_MCR1_DONE)) {
611		mtx_lock(&sc->sc_mcr1lock);
612		while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
613			q = SIMPLEQ_FIRST(&sc->sc_qchip);
614			dmap = q->q_dma;
615
616			if ((dmap->d_dma->d_mcr.mcr_flags & htole16(UBS_MCR_DONE)) == 0)
617				break;
618
619			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q, q_next);
620
621			npkts = q->q_nstacked_mcrs;
622			sc->sc_nqchip -= 1+npkts;
623			/*
624			 * search for further sc_qchip ubsec_q's that share
625			 * the same MCR, and complete them too, they must be
626			 * at the top.
627			 */
628			for (i = 0; i < npkts; i++) {
629				if(q->q_stacked_mcr[i]) {
630					ubsec_callback(sc, q->q_stacked_mcr[i]);
631				} else {
632					break;
633				}
634			}
635			ubsec_callback(sc, q);
636		}
637		/*
638		 * Don't send any more packet to chip if there has been
639		 * a DMAERR.
640		 */
641		if (!(stat & BS_STAT_DMAERR))
642			ubsec_feed(sc);
643		mtx_unlock(&sc->sc_mcr1lock);
644	}
645
646	/*
647	 * Check to see if we have any key setups/rng's waiting for us
648	 */
649	if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) &&
650	    (stat & BS_STAT_MCR2_DONE)) {
651		struct ubsec_q2 *q2;
652		struct ubsec_mcr *mcr;
653
654		mtx_lock(&sc->sc_mcr2lock);
655		while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) {
656			q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
657
658			ubsec_dma_sync(&q2->q_mcr,
659			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
660
661			mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
662			if ((mcr->mcr_flags & htole16(UBS_MCR_DONE)) == 0) {
663				ubsec_dma_sync(&q2->q_mcr,
664				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
665				break;
666			}
667			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, q2, q_next);
668			ubsec_callback2(sc, q2);
669			/*
670			 * Don't send any more packet to chip if there has been
671			 * a DMAERR.
672			 */
673			if (!(stat & BS_STAT_DMAERR))
674				ubsec_feed2(sc);
675		}
676		mtx_unlock(&sc->sc_mcr2lock);
677	}
678
679	/*
680	 * Check to see if we got any DMA Error
681	 */
682	if (stat & BS_STAT_DMAERR) {
683#ifdef UBSEC_DEBUG
684		if (ubsec_debug) {
685			volatile u_int32_t a = READ_REG(sc, BS_ERR);
686
687			printf("dmaerr %s@%08x\n",
688			    (a & BS_ERR_READ) ? "read" : "write",
689			    a & BS_ERR_ADDR);
690		}
691#endif /* UBSEC_DEBUG */
692		ubsecstats.hst_dmaerr++;
693		mtx_lock(&sc->sc_mcr1lock);
694		ubsec_totalreset(sc);
695		ubsec_feed(sc);
696		mtx_unlock(&sc->sc_mcr1lock);
697	}
698
699	if (sc->sc_needwakeup) {		/* XXX check high watermark */
700		int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
701#ifdef UBSEC_DEBUG
702		if (ubsec_debug)
703			device_printf(sc->sc_dev, "wakeup crypto (%x)\n",
704				sc->sc_needwakeup);
705#endif /* UBSEC_DEBUG */
706		sc->sc_needwakeup &= ~wakeup;
707		crypto_unblock(sc->sc_cid, wakeup);
708	}
709}
710
711/*
712 * ubsec_feed() - aggregate and post requests to chip
713 */
714static void
715ubsec_feed(struct ubsec_softc *sc)
716{
717	struct ubsec_q *q, *q2;
718	int npkts, i;
719	void *v;
720	u_int32_t stat;
721
722	/*
723	 * Decide how many ops to combine in a single MCR.  We cannot
724	 * aggregate more than UBS_MAX_AGGR because this is the number
725	 * of slots defined in the data structure.  Note that
726	 * aggregation only happens if ops are marked batch'able.
727	 * Aggregating ops reduces the number of interrupts to the host
728	 * but also (potentially) increases the latency for processing
729	 * completed ops as we only get an interrupt when all aggregated
730	 * ops have completed.
731	 */
732	if (sc->sc_nqueue == 0)
733		return;
734	if (sc->sc_nqueue > 1) {
735		npkts = 0;
736		SIMPLEQ_FOREACH(q, &sc->sc_queue, q_next) {
737			npkts++;
738			if ((q->q_crp->crp_flags & CRYPTO_F_BATCH) == 0)
739				break;
740		}
741	} else
742		npkts = 1;
743	/*
744	 * Check device status before going any further.
745	 */
746	if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
747		if (stat & BS_STAT_DMAERR) {
748			ubsec_totalreset(sc);
749			ubsecstats.hst_dmaerr++;
750		} else
751			ubsecstats.hst_mcr1full++;
752		return;
753	}
754	if (sc->sc_nqueue > ubsecstats.hst_maxqueue)
755		ubsecstats.hst_maxqueue = sc->sc_nqueue;
756	if (npkts > UBS_MAX_AGGR)
757		npkts = UBS_MAX_AGGR;
758	if (npkts < 2)				/* special case 1 op */
759		goto feed1;
760
761	ubsecstats.hst_totbatch += npkts-1;
762#ifdef UBSEC_DEBUG
763	if (ubsec_debug)
764		printf("merging %d records\n", npkts);
765#endif /* UBSEC_DEBUG */
766
767	q = SIMPLEQ_FIRST(&sc->sc_queue);
768	SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q, q_next);
769	--sc->sc_nqueue;
770
771	bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_PREWRITE);
772	if (q->q_dst_map != NULL)
773		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map, BUS_DMASYNC_PREREAD);
774
775	q->q_nstacked_mcrs = npkts - 1;		/* Number of packets stacked */
776
777	for (i = 0; i < q->q_nstacked_mcrs; i++) {
778		q2 = SIMPLEQ_FIRST(&sc->sc_queue);
779		bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
780		    BUS_DMASYNC_PREWRITE);
781		if (q2->q_dst_map != NULL)
782			bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
783			    BUS_DMASYNC_PREREAD);
784		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q2, q_next);
785		--sc->sc_nqueue;
786
787		v = (void*)(((char *)&q2->q_dma->d_dma->d_mcr) + sizeof(struct ubsec_mcr) -
788		    sizeof(struct ubsec_mcr_add));
789		bcopy(v, &q->q_dma->d_dma->d_mcradd[i], sizeof(struct ubsec_mcr_add));
790		q->q_stacked_mcr[i] = q2;
791	}
792	q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
793	SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
794	sc->sc_nqchip += npkts;
795	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
796		ubsecstats.hst_maxqchip = sc->sc_nqchip;
797	ubsec_dma_sync(&q->q_dma->d_alloc,
798	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
799	WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
800	    offsetof(struct ubsec_dmachunk, d_mcr));
801	return;
802feed1:
803	q = SIMPLEQ_FIRST(&sc->sc_queue);
804
805	bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_PREWRITE);
806	if (q->q_dst_map != NULL)
807		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map, BUS_DMASYNC_PREREAD);
808	ubsec_dma_sync(&q->q_dma->d_alloc,
809	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
810
811	WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
812	    offsetof(struct ubsec_dmachunk, d_mcr));
813#ifdef UBSEC_DEBUG
814	if (ubsec_debug)
815		printf("feed1: q->chip %p %08x stat %08x\n",
816		      q, (u_int32_t)vtophys(&q->q_dma->d_dma->d_mcr),
817		      stat);
818#endif /* UBSEC_DEBUG */
819	SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q, q_next);
820	--sc->sc_nqueue;
821	SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
822	sc->sc_nqchip++;
823	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
824		ubsecstats.hst_maxqchip = sc->sc_nqchip;
825	return;
826}
827
828/*
829 * Allocate a new 'session' and return an encoded session id.  'sidp'
830 * contains our registration id, and should contain an encoded session
831 * id on successful allocation.
832 */
833static int
834ubsec_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri)
835{
836	struct cryptoini *c, *encini = NULL, *macini = NULL;
837	struct ubsec_softc *sc = arg;
838	struct ubsec_session *ses = NULL;
839	MD5_CTX md5ctx;
840	SHA1_CTX sha1ctx;
841	int i, sesn;
842
843	if (sidp == NULL || cri == NULL || sc == NULL)
844		return (EINVAL);
845
846	for (c = cri; c != NULL; c = c->cri_next) {
847		if (c->cri_alg == CRYPTO_MD5_HMAC ||
848		    c->cri_alg == CRYPTO_SHA1_HMAC) {
849			if (macini)
850				return (EINVAL);
851			macini = c;
852		} else if (c->cri_alg == CRYPTO_DES_CBC ||
853		    c->cri_alg == CRYPTO_3DES_CBC) {
854			if (encini)
855				return (EINVAL);
856			encini = c;
857		} else
858			return (EINVAL);
859	}
860	if (encini == NULL && macini == NULL)
861		return (EINVAL);
862
863	if (sc->sc_sessions == NULL) {
864		ses = sc->sc_sessions = (struct ubsec_session *)malloc(
865		    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
866		if (ses == NULL)
867			return (ENOMEM);
868		sesn = 0;
869		sc->sc_nsessions = 1;
870	} else {
871		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
872			if (sc->sc_sessions[sesn].ses_used == 0) {
873				ses = &sc->sc_sessions[sesn];
874				break;
875			}
876		}
877
878		if (ses == NULL) {
879			sesn = sc->sc_nsessions;
880			ses = (struct ubsec_session *)malloc((sesn + 1) *
881			    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
882			if (ses == NULL)
883				return (ENOMEM);
884			bcopy(sc->sc_sessions, ses, sesn *
885			    sizeof(struct ubsec_session));
886			bzero(sc->sc_sessions, sesn *
887			    sizeof(struct ubsec_session));
888			free(sc->sc_sessions, M_DEVBUF);
889			sc->sc_sessions = ses;
890			ses = &sc->sc_sessions[sesn];
891			sc->sc_nsessions++;
892		}
893	}
894	bzero(ses, sizeof(struct ubsec_session));
895	ses->ses_used = 1;
896
897	if (encini) {
898		/* get an IV, network byte order */
899		/* XXX may read fewer than requested */
900		read_random(ses->ses_iv, sizeof(ses->ses_iv));
901
902		/* Go ahead and compute key in ubsec's byte order */
903		if (encini->cri_alg == CRYPTO_DES_CBC) {
904			bcopy(encini->cri_key, &ses->ses_deskey[0], 8);
905			bcopy(encini->cri_key, &ses->ses_deskey[2], 8);
906			bcopy(encini->cri_key, &ses->ses_deskey[4], 8);
907		} else
908			bcopy(encini->cri_key, ses->ses_deskey, 24);
909
910		SWAP32(ses->ses_deskey[0]);
911		SWAP32(ses->ses_deskey[1]);
912		SWAP32(ses->ses_deskey[2]);
913		SWAP32(ses->ses_deskey[3]);
914		SWAP32(ses->ses_deskey[4]);
915		SWAP32(ses->ses_deskey[5]);
916	}
917
918	if (macini) {
919		for (i = 0; i < macini->cri_klen / 8; i++)
920			macini->cri_key[i] ^= HMAC_IPAD_VAL;
921
922		if (macini->cri_alg == CRYPTO_MD5_HMAC) {
923			MD5Init(&md5ctx);
924			MD5Update(&md5ctx, macini->cri_key,
925			    macini->cri_klen / 8);
926			MD5Update(&md5ctx, hmac_ipad_buffer,
927			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
928			bcopy(md5ctx.state, ses->ses_hminner,
929			    sizeof(md5ctx.state));
930		} else {
931			SHA1Init(&sha1ctx);
932			SHA1Update(&sha1ctx, macini->cri_key,
933			    macini->cri_klen / 8);
934			SHA1Update(&sha1ctx, hmac_ipad_buffer,
935			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
936			bcopy(sha1ctx.h.b32, ses->ses_hminner,
937			    sizeof(sha1ctx.h.b32));
938		}
939
940		for (i = 0; i < macini->cri_klen / 8; i++)
941			macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
942
943		if (macini->cri_alg == CRYPTO_MD5_HMAC) {
944			MD5Init(&md5ctx);
945			MD5Update(&md5ctx, macini->cri_key,
946			    macini->cri_klen / 8);
947			MD5Update(&md5ctx, hmac_opad_buffer,
948			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
949			bcopy(md5ctx.state, ses->ses_hmouter,
950			    sizeof(md5ctx.state));
951		} else {
952			SHA1Init(&sha1ctx);
953			SHA1Update(&sha1ctx, macini->cri_key,
954			    macini->cri_klen / 8);
955			SHA1Update(&sha1ctx, hmac_opad_buffer,
956			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
957			bcopy(sha1ctx.h.b32, ses->ses_hmouter,
958			    sizeof(sha1ctx.h.b32));
959		}
960
961		for (i = 0; i < macini->cri_klen / 8; i++)
962			macini->cri_key[i] ^= HMAC_OPAD_VAL;
963	}
964
965	*sidp = UBSEC_SID(device_get_unit(sc->sc_dev), sesn);
966	return (0);
967}
968
969/*
970 * Deallocate a session.
971 */
972static int
973ubsec_freesession(void *arg, u_int64_t tid)
974{
975	struct ubsec_softc *sc = arg;
976	int session, ret;
977	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
978
979	if (sc == NULL)
980		return (EINVAL);
981
982	session = UBSEC_SESSION(sid);
983	if (session < sc->sc_nsessions) {
984		bzero(&sc->sc_sessions[session],
985			sizeof(sc->sc_sessions[session]));
986		ret = 0;
987	} else
988		ret = EINVAL;
989
990	return (ret);
991}
992
993static void
994ubsec_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
995{
996	struct ubsec_operand *op = arg;
997
998	KASSERT(nsegs <= UBS_MAX_SCATTER,
999		("Too many DMA segments returned when mapping operand"));
1000#ifdef UBSEC_DEBUG
1001	if (ubsec_debug)
1002		printf("ubsec_op_cb: mapsize %u nsegs %d\n",
1003			(u_int) mapsize, nsegs);
1004#endif
1005	op->mapsize = mapsize;
1006	op->nsegs = nsegs;
1007	bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
1008}
1009
1010static int
1011ubsec_process(void *arg, struct cryptop *crp, int hint)
1012{
1013	struct ubsec_q *q = NULL;
1014	int err = 0, i, j, nicealign;
1015	struct ubsec_softc *sc = arg;
1016	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
1017	int encoffset = 0, macoffset = 0, cpskip, cpoffset;
1018	int sskip, dskip, stheend, dtheend;
1019	int16_t coffset;
1020	struct ubsec_session *ses;
1021	struct ubsec_pktctx ctx;
1022	struct ubsec_dma *dmap = NULL;
1023
1024	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
1025		ubsecstats.hst_invalid++;
1026		return (EINVAL);
1027	}
1028	if (UBSEC_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
1029		ubsecstats.hst_badsession++;
1030		return (EINVAL);
1031	}
1032
1033	mtx_lock(&sc->sc_freeqlock);
1034	if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
1035		ubsecstats.hst_queuefull++;
1036		sc->sc_needwakeup |= CRYPTO_SYMQ;
1037		mtx_unlock(&sc->sc_freeqlock);
1038		return (ERESTART);
1039	}
1040	q = SIMPLEQ_FIRST(&sc->sc_freequeue);
1041	SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, q, q_next);
1042	mtx_unlock(&sc->sc_freeqlock);
1043
1044	dmap = q->q_dma; /* Save dma pointer */
1045	bzero(q, sizeof(struct ubsec_q));
1046	bzero(&ctx, sizeof(ctx));
1047
1048	q->q_sesn = UBSEC_SESSION(crp->crp_sid);
1049	q->q_dma = dmap;
1050	ses = &sc->sc_sessions[q->q_sesn];
1051
1052	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1053		q->q_src_m = (struct mbuf *)crp->crp_buf;
1054		q->q_dst_m = (struct mbuf *)crp->crp_buf;
1055	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1056		q->q_src_io = (struct uio *)crp->crp_buf;
1057		q->q_dst_io = (struct uio *)crp->crp_buf;
1058	} else {
1059		ubsecstats.hst_badflags++;
1060		err = EINVAL;
1061		goto errout;	/* XXX we don't handle contiguous blocks! */
1062	}
1063
1064	bzero(&dmap->d_dma->d_mcr, sizeof(struct ubsec_mcr));
1065
1066	dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
1067	dmap->d_dma->d_mcr.mcr_flags = 0;
1068	q->q_crp = crp;
1069
1070	crd1 = crp->crp_desc;
1071	if (crd1 == NULL) {
1072		ubsecstats.hst_nodesc++;
1073		err = EINVAL;
1074		goto errout;
1075	}
1076	crd2 = crd1->crd_next;
1077
1078	if (crd2 == NULL) {
1079		if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
1080		    crd1->crd_alg == CRYPTO_SHA1_HMAC) {
1081			maccrd = crd1;
1082			enccrd = NULL;
1083		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
1084		    crd1->crd_alg == CRYPTO_3DES_CBC) {
1085			maccrd = NULL;
1086			enccrd = crd1;
1087		} else {
1088			ubsecstats.hst_badalg++;
1089			err = EINVAL;
1090			goto errout;
1091		}
1092	} else {
1093		if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
1094		    crd1->crd_alg == CRYPTO_SHA1_HMAC) &&
1095		    (crd2->crd_alg == CRYPTO_DES_CBC ||
1096			crd2->crd_alg == CRYPTO_3DES_CBC) &&
1097		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
1098			maccrd = crd1;
1099			enccrd = crd2;
1100		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
1101		    crd1->crd_alg == CRYPTO_3DES_CBC) &&
1102		    (crd2->crd_alg == CRYPTO_MD5_HMAC ||
1103			crd2->crd_alg == CRYPTO_SHA1_HMAC) &&
1104		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
1105			enccrd = crd1;
1106			maccrd = crd2;
1107		} else {
1108			/*
1109			 * We cannot order the ubsec as requested
1110			 */
1111			ubsecstats.hst_badalg++;
1112			err = EINVAL;
1113			goto errout;
1114		}
1115	}
1116
1117	if (enccrd) {
1118		encoffset = enccrd->crd_skip;
1119		ctx.pc_flags |= htole16(UBS_PKTCTX_ENC_3DES);
1120
1121		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1122			q->q_flags |= UBSEC_QFLAGS_COPYOUTIV;
1123
1124			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1125				bcopy(enccrd->crd_iv, ctx.pc_iv, 8);
1126			else {
1127				ctx.pc_iv[0] = ses->ses_iv[0];
1128				ctx.pc_iv[1] = ses->ses_iv[1];
1129			}
1130
1131			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1132				if (crp->crp_flags & CRYPTO_F_IMBUF)
1133					m_copyback(q->q_src_m,
1134					    enccrd->crd_inject,
1135					    8, (caddr_t)ctx.pc_iv);
1136				else if (crp->crp_flags & CRYPTO_F_IOV)
1137					cuio_copyback(q->q_src_io,
1138					    enccrd->crd_inject,
1139					    8, (caddr_t)ctx.pc_iv);
1140			}
1141		} else {
1142			ctx.pc_flags |= htole16(UBS_PKTCTX_INBOUND);
1143
1144			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1145				bcopy(enccrd->crd_iv, ctx.pc_iv, 8);
1146			else if (crp->crp_flags & CRYPTO_F_IMBUF)
1147				m_copydata(q->q_src_m, enccrd->crd_inject,
1148				    8, (caddr_t)ctx.pc_iv);
1149			else if (crp->crp_flags & CRYPTO_F_IOV)
1150				cuio_copydata(q->q_src_io,
1151				    enccrd->crd_inject, 8,
1152				    (caddr_t)ctx.pc_iv);
1153		}
1154
1155		ctx.pc_deskey[0] = ses->ses_deskey[0];
1156		ctx.pc_deskey[1] = ses->ses_deskey[1];
1157		ctx.pc_deskey[2] = ses->ses_deskey[2];
1158		ctx.pc_deskey[3] = ses->ses_deskey[3];
1159		ctx.pc_deskey[4] = ses->ses_deskey[4];
1160		ctx.pc_deskey[5] = ses->ses_deskey[5];
1161		SWAP32(ctx.pc_iv[0]);
1162		SWAP32(ctx.pc_iv[1]);
1163	}
1164
1165	if (maccrd) {
1166		macoffset = maccrd->crd_skip;
1167
1168		if (maccrd->crd_alg == CRYPTO_MD5_HMAC)
1169			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_MD5);
1170		else
1171			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
1172
1173		for (i = 0; i < 5; i++) {
1174			ctx.pc_hminner[i] = ses->ses_hminner[i];
1175			ctx.pc_hmouter[i] = ses->ses_hmouter[i];
1176
1177			HTOLE32(ctx.pc_hminner[i]);
1178			HTOLE32(ctx.pc_hmouter[i]);
1179		}
1180	}
1181
1182	if (enccrd && maccrd) {
1183		/*
1184		 * ubsec cannot handle packets where the end of encryption
1185		 * and authentication are not the same, or where the
1186		 * encrypted part begins before the authenticated part.
1187		 */
1188		if ((encoffset + enccrd->crd_len) !=
1189		    (macoffset + maccrd->crd_len)) {
1190			ubsecstats.hst_lenmismatch++;
1191			err = EINVAL;
1192			goto errout;
1193		}
1194		if (enccrd->crd_skip < maccrd->crd_skip) {
1195			ubsecstats.hst_skipmismatch++;
1196			err = EINVAL;
1197			goto errout;
1198		}
1199		sskip = maccrd->crd_skip;
1200		cpskip = dskip = enccrd->crd_skip;
1201		stheend = maccrd->crd_len;
1202		dtheend = enccrd->crd_len;
1203		coffset = enccrd->crd_skip - maccrd->crd_skip;
1204		cpoffset = cpskip + dtheend;
1205#ifdef UBSEC_DEBUG
1206		if (ubsec_debug) {
1207			printf("mac: skip %d, len %d, inject %d\n",
1208			    maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject);
1209			printf("enc: skip %d, len %d, inject %d\n",
1210			    enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject);
1211			printf("src: skip %d, len %d\n", sskip, stheend);
1212			printf("dst: skip %d, len %d\n", dskip, dtheend);
1213			printf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
1214			    coffset, stheend, cpskip, cpoffset);
1215		}
1216#endif
1217	} else {
1218		cpskip = dskip = sskip = macoffset + encoffset;
1219		dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
1220		cpoffset = cpskip + dtheend;
1221		coffset = 0;
1222	}
1223	ctx.pc_offset = htole16(coffset >> 2);
1224
1225	if (bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &q->q_src_map)) {
1226		ubsecstats.hst_nomap++;
1227		err = ENOMEM;
1228		goto errout;
1229	}
1230	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1231		if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
1232		    q->q_src_m, ubsec_op_cb, &q->q_src, BUS_DMA_NOWAIT) != 0) {
1233			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1234			q->q_src_map = NULL;
1235			ubsecstats.hst_noload++;
1236			err = ENOMEM;
1237			goto errout;
1238		}
1239	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1240		if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
1241		    q->q_src_io, ubsec_op_cb, &q->q_src, BUS_DMA_NOWAIT) != 0) {
1242			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1243			q->q_src_map = NULL;
1244			ubsecstats.hst_noload++;
1245			err = ENOMEM;
1246			goto errout;
1247		}
1248	}
1249	nicealign = ubsec_dmamap_aligned(&q->q_src);
1250
1251	dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
1252
1253#ifdef UBSEC_DEBUG
1254	if (ubsec_debug)
1255		printf("src skip: %d nicealign: %u\n", sskip, nicealign);
1256#endif
1257	for (i = j = 0; i < q->q_src_nsegs; i++) {
1258		struct ubsec_pktbuf *pb;
1259		bus_size_t packl = q->q_src_segs[i].ds_len;
1260		bus_addr_t packp = q->q_src_segs[i].ds_addr;
1261
1262		if (sskip >= packl) {
1263			sskip -= packl;
1264			continue;
1265		}
1266
1267		packl -= sskip;
1268		packp += sskip;
1269		sskip = 0;
1270
1271		if (packl > 0xfffc) {
1272			err = EIO;
1273			goto errout;
1274		}
1275
1276		if (j == 0)
1277			pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
1278		else
1279			pb = &dmap->d_dma->d_sbuf[j - 1];
1280
1281		pb->pb_addr = htole32(packp);
1282
1283		if (stheend) {
1284			if (packl > stheend) {
1285				pb->pb_len = htole32(stheend);
1286				stheend = 0;
1287			} else {
1288				pb->pb_len = htole32(packl);
1289				stheend -= packl;
1290			}
1291		} else
1292			pb->pb_len = htole32(packl);
1293
1294		if ((i + 1) == q->q_src_nsegs)
1295			pb->pb_next = 0;
1296		else
1297			pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1298			    offsetof(struct ubsec_dmachunk, d_sbuf[j]));
1299		j++;
1300	}
1301
1302	if (enccrd == NULL && maccrd != NULL) {
1303		dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
1304		dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
1305		dmap->d_dma->d_mcr.mcr_opktbuf.pb_next = htole32(dmap->d_alloc.dma_paddr +
1306		    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1307#ifdef UBSEC_DEBUG
1308		if (ubsec_debug)
1309			printf("opkt: %x %x %x\n",
1310			    dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
1311			    dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
1312			    dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
1313#endif
1314	} else {
1315		if (crp->crp_flags & CRYPTO_F_IOV) {
1316			if (!nicealign) {
1317				ubsecstats.hst_iovmisaligned++;
1318				err = EINVAL;
1319				goto errout;
1320			}
1321			if (bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1322			     &q->q_dst_map)) {
1323				ubsecstats.hst_nomap++;
1324				err = ENOMEM;
1325				goto errout;
1326			}
1327			if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
1328			    q->q_dst_io, ubsec_op_cb, &q->q_dst, BUS_DMA_NOWAIT) != 0) {
1329				bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1330				q->q_dst_map = NULL;
1331				ubsecstats.hst_noload++;
1332				err = ENOMEM;
1333				goto errout;
1334			}
1335		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1336			if (nicealign) {
1337				q->q_dst = q->q_src;
1338			} else {
1339				int totlen, len;
1340				struct mbuf *m, *top, **mp;
1341
1342				ubsecstats.hst_unaligned++;
1343				totlen = q->q_src_mapsize;
1344				if (q->q_src_m->m_flags & M_PKTHDR) {
1345					len = MHLEN;
1346					MGETHDR(m, M_DONTWAIT, MT_DATA);
1347					if (m && !m_dup_pkthdr(m, q->q_src_m, M_DONTWAIT)) {
1348						m_free(m);
1349						m = NULL;
1350					}
1351				} else {
1352					len = MLEN;
1353					MGET(m, M_DONTWAIT, MT_DATA);
1354				}
1355				if (m == NULL) {
1356					ubsecstats.hst_nombuf++;
1357					err = sc->sc_nqueue ? ERESTART : ENOMEM;
1358					goto errout;
1359				}
1360				if (totlen >= MINCLSIZE) {
1361					MCLGET(m, M_DONTWAIT);
1362					if ((m->m_flags & M_EXT) == 0) {
1363						m_free(m);
1364						ubsecstats.hst_nomcl++;
1365						err = sc->sc_nqueue ? ERESTART : ENOMEM;
1366						goto errout;
1367					}
1368					len = MCLBYTES;
1369				}
1370				m->m_len = len;
1371				top = NULL;
1372				mp = &top;
1373
1374				while (totlen > 0) {
1375					if (top) {
1376						MGET(m, M_DONTWAIT, MT_DATA);
1377						if (m == NULL) {
1378							m_freem(top);
1379							ubsecstats.hst_nombuf++;
1380							err = sc->sc_nqueue ? ERESTART : ENOMEM;
1381							goto errout;
1382						}
1383						len = MLEN;
1384					}
1385					if (top && totlen >= MINCLSIZE) {
1386						MCLGET(m, M_DONTWAIT);
1387						if ((m->m_flags & M_EXT) == 0) {
1388							*mp = m;
1389							m_freem(top);
1390							ubsecstats.hst_nomcl++;
1391							err = sc->sc_nqueue ? ERESTART : ENOMEM;
1392							goto errout;
1393						}
1394						len = MCLBYTES;
1395					}
1396					m->m_len = len = min(totlen, len);
1397					totlen -= len;
1398					*mp = m;
1399					mp = &m->m_next;
1400				}
1401				q->q_dst_m = top;
1402				ubsec_mcopy(q->q_src_m, q->q_dst_m,
1403				    cpskip, cpoffset);
1404				if (bus_dmamap_create(sc->sc_dmat,
1405				    BUS_DMA_NOWAIT, &q->q_dst_map) != 0) {
1406					ubsecstats.hst_nomap++;
1407					err = ENOMEM;
1408					goto errout;
1409				}
1410				if (bus_dmamap_load_mbuf(sc->sc_dmat,
1411				    q->q_dst_map, q->q_dst_m,
1412				    ubsec_op_cb, &q->q_dst,
1413				    BUS_DMA_NOWAIT) != 0) {
1414					bus_dmamap_destroy(sc->sc_dmat,
1415					q->q_dst_map);
1416					q->q_dst_map = NULL;
1417					ubsecstats.hst_noload++;
1418					err = ENOMEM;
1419					goto errout;
1420				}
1421			}
1422		} else {
1423			ubsecstats.hst_badflags++;
1424			err = EINVAL;
1425			goto errout;
1426		}
1427
1428#ifdef UBSEC_DEBUG
1429		if (ubsec_debug)
1430			printf("dst skip: %d\n", dskip);
1431#endif
1432		for (i = j = 0; i < q->q_dst_nsegs; i++) {
1433			struct ubsec_pktbuf *pb;
1434			bus_size_t packl = q->q_dst_segs[i].ds_len;
1435			bus_addr_t packp = q->q_dst_segs[i].ds_addr;
1436
1437			if (dskip >= packl) {
1438				dskip -= packl;
1439				continue;
1440			}
1441
1442			packl -= dskip;
1443			packp += dskip;
1444			dskip = 0;
1445
1446			if (packl > 0xfffc) {
1447				err = EIO;
1448				goto errout;
1449			}
1450
1451			if (j == 0)
1452				pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
1453			else
1454				pb = &dmap->d_dma->d_dbuf[j - 1];
1455
1456			pb->pb_addr = htole32(packp);
1457
1458			if (dtheend) {
1459				if (packl > dtheend) {
1460					pb->pb_len = htole32(dtheend);
1461					dtheend = 0;
1462				} else {
1463					pb->pb_len = htole32(packl);
1464					dtheend -= packl;
1465				}
1466			} else
1467				pb->pb_len = htole32(packl);
1468
1469			if ((i + 1) == q->q_dst_nsegs) {
1470				if (maccrd)
1471					pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1472					    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1473				else
1474					pb->pb_next = 0;
1475			} else
1476				pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1477				    offsetof(struct ubsec_dmachunk, d_dbuf[j]));
1478			j++;
1479		}
1480	}
1481
1482	dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
1483	    offsetof(struct ubsec_dmachunk, d_ctx));
1484
1485	if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
1486		struct ubsec_pktctx_long *ctxl;
1487
1488		ctxl = (struct ubsec_pktctx_long *)(dmap->d_alloc.dma_vaddr +
1489		    offsetof(struct ubsec_dmachunk, d_ctx));
1490
1491		/* transform small context into long context */
1492		ctxl->pc_len = htole16(sizeof(struct ubsec_pktctx_long));
1493		ctxl->pc_type = htole16(UBS_PKTCTX_TYPE_IPSEC);
1494		ctxl->pc_flags = ctx.pc_flags;
1495		ctxl->pc_offset = ctx.pc_offset;
1496		for (i = 0; i < 6; i++)
1497			ctxl->pc_deskey[i] = ctx.pc_deskey[i];
1498		for (i = 0; i < 5; i++)
1499			ctxl->pc_hminner[i] = ctx.pc_hminner[i];
1500		for (i = 0; i < 5; i++)
1501			ctxl->pc_hmouter[i] = ctx.pc_hmouter[i];
1502		ctxl->pc_iv[0] = ctx.pc_iv[0];
1503		ctxl->pc_iv[1] = ctx.pc_iv[1];
1504	} else
1505		bcopy(&ctx, dmap->d_alloc.dma_vaddr +
1506		    offsetof(struct ubsec_dmachunk, d_ctx),
1507		    sizeof(struct ubsec_pktctx));
1508
1509	mtx_lock(&sc->sc_mcr1lock);
1510	SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
1511	sc->sc_nqueue++;
1512	ubsecstats.hst_ipackets++;
1513	ubsecstats.hst_ibytes += dmap->d_alloc.dma_size;
1514	if ((hint & CRYPTO_HINT_MORE) == 0 || sc->sc_nqueue >= UBS_MAX_AGGR)
1515		ubsec_feed(sc);
1516	mtx_unlock(&sc->sc_mcr1lock);
1517	return (0);
1518
1519errout:
1520	if (q != NULL) {
1521		if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
1522			m_freem(q->q_dst_m);
1523
1524		if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1525			bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1526			bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1527		}
1528		if (q->q_src_map != NULL) {
1529			bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1530			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1531		}
1532
1533		mtx_lock(&sc->sc_freeqlock);
1534		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1535		mtx_unlock(&sc->sc_freeqlock);
1536	}
1537	if (err != ERESTART) {
1538		crp->crp_etype = err;
1539		crypto_done(crp);
1540	} else {
1541		sc->sc_needwakeup |= CRYPTO_SYMQ;
1542	}
1543	return (err);
1544}
1545
1546static void
1547ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q)
1548{
1549	struct cryptop *crp = (struct cryptop *)q->q_crp;
1550	struct cryptodesc *crd;
1551	struct ubsec_dma *dmap = q->q_dma;
1552
1553	ubsecstats.hst_opackets++;
1554	ubsecstats.hst_obytes += dmap->d_alloc.dma_size;
1555
1556	ubsec_dma_sync(&dmap->d_alloc,
1557	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1558	if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1559		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
1560		    BUS_DMASYNC_POSTREAD);
1561		bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1562		bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1563	}
1564	bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_POSTWRITE);
1565	bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1566	bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1567
1568	if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) {
1569		m_freem(q->q_src_m);
1570		crp->crp_buf = (caddr_t)q->q_dst_m;
1571	}
1572	ubsecstats.hst_obytes += ((struct mbuf *)crp->crp_buf)->m_len;
1573
1574	/* copy out IV for future use */
1575	if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) {
1576		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1577			if (crd->crd_alg != CRYPTO_DES_CBC &&
1578			    crd->crd_alg != CRYPTO_3DES_CBC)
1579				continue;
1580			if (crp->crp_flags & CRYPTO_F_IMBUF)
1581				m_copydata((struct mbuf *)crp->crp_buf,
1582				    crd->crd_skip + crd->crd_len - 8, 8,
1583				    (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1584			else if (crp->crp_flags & CRYPTO_F_IOV) {
1585				cuio_copydata((struct uio *)crp->crp_buf,
1586				    crd->crd_skip + crd->crd_len - 8, 8,
1587				    (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1588			}
1589			break;
1590		}
1591	}
1592
1593	for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1594		if (crd->crd_alg != CRYPTO_MD5_HMAC &&
1595		    crd->crd_alg != CRYPTO_SHA1_HMAC)
1596			continue;
1597		if (crp->crp_flags & CRYPTO_F_IMBUF)
1598			m_copyback((struct mbuf *)crp->crp_buf,
1599			    crd->crd_inject, 12,
1600			    (caddr_t)dmap->d_dma->d_macbuf);
1601		else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac)
1602			bcopy((caddr_t)dmap->d_dma->d_macbuf,
1603			    crp->crp_mac, 12);
1604		break;
1605	}
1606	mtx_lock(&sc->sc_freeqlock);
1607	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1608	mtx_unlock(&sc->sc_freeqlock);
1609	crypto_done(crp);
1610}
1611
1612static void
1613ubsec_mcopy(struct mbuf *srcm, struct mbuf *dstm, int hoffset, int toffset)
1614{
1615	int i, j, dlen, slen;
1616	caddr_t dptr, sptr;
1617
1618	j = 0;
1619	sptr = srcm->m_data;
1620	slen = srcm->m_len;
1621	dptr = dstm->m_data;
1622	dlen = dstm->m_len;
1623
1624	while (1) {
1625		for (i = 0; i < min(slen, dlen); i++) {
1626			if (j < hoffset || j >= toffset)
1627				*dptr++ = *sptr++;
1628			slen--;
1629			dlen--;
1630			j++;
1631		}
1632		if (slen == 0) {
1633			srcm = srcm->m_next;
1634			if (srcm == NULL)
1635				return;
1636			sptr = srcm->m_data;
1637			slen = srcm->m_len;
1638		}
1639		if (dlen == 0) {
1640			dstm = dstm->m_next;
1641			if (dstm == NULL)
1642				return;
1643			dptr = dstm->m_data;
1644			dlen = dstm->m_len;
1645		}
1646	}
1647}
1648
1649/*
1650 * feed the key generator, must be called at splimp() or higher.
1651 */
1652static int
1653ubsec_feed2(struct ubsec_softc *sc)
1654{
1655	struct ubsec_q2 *q;
1656
1657	while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) {
1658		if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL)
1659			break;
1660		q = SIMPLEQ_FIRST(&sc->sc_queue2);
1661
1662		ubsec_dma_sync(&q->q_mcr,
1663		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1664		ubsec_dma_sync(&q->q_ctx, BUS_DMASYNC_PREWRITE);
1665
1666		WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr);
1667		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, q, q_next);
1668		--sc->sc_nqueue2;
1669		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next);
1670	}
1671	return (0);
1672}
1673
1674/*
1675 * Callback for handling random numbers
1676 */
1677static void
1678ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q)
1679{
1680	struct cryptkop *krp;
1681	struct ubsec_ctx_keyop *ctx;
1682
1683	ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr;
1684	ubsec_dma_sync(&q->q_ctx, BUS_DMASYNC_POSTWRITE);
1685
1686	switch (q->q_type) {
1687#ifndef UBSEC_NO_RNG
1688	case UBS_CTXOP_RNGBYPASS: {
1689		struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q;
1690
1691		ubsec_dma_sync(&rng->rng_buf, BUS_DMASYNC_POSTREAD);
1692		(*sc->sc_harvest)(sc->sc_rndtest,
1693			rng->rng_buf.dma_vaddr,
1694			UBSEC_RNG_BUFSIZ*sizeof (u_int32_t));
1695		rng->rng_used = 0;
1696		callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
1697		break;
1698	}
1699#endif
1700	case UBS_CTXOP_MODEXP: {
1701		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
1702		u_int rlen, clen;
1703
1704		krp = me->me_krp;
1705		rlen = (me->me_modbits + 7) / 8;
1706		clen = (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8;
1707
1708		ubsec_dma_sync(&me->me_M, BUS_DMASYNC_POSTWRITE);
1709		ubsec_dma_sync(&me->me_E, BUS_DMASYNC_POSTWRITE);
1710		ubsec_dma_sync(&me->me_C, BUS_DMASYNC_POSTREAD);
1711		ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_POSTWRITE);
1712
1713		if (clen < rlen)
1714			krp->krp_status = E2BIG;
1715		else {
1716			if (sc->sc_flags & UBS_FLAGS_HWNORM) {
1717				bzero(krp->krp_param[krp->krp_iparams].crp_p,
1718				    (krp->krp_param[krp->krp_iparams].crp_nbits
1719					+ 7) / 8);
1720				bcopy(me->me_C.dma_vaddr,
1721				    krp->krp_param[krp->krp_iparams].crp_p,
1722				    (me->me_modbits + 7) / 8);
1723			} else
1724				ubsec_kshift_l(me->me_shiftbits,
1725				    me->me_C.dma_vaddr, me->me_normbits,
1726				    krp->krp_param[krp->krp_iparams].crp_p,
1727				    krp->krp_param[krp->krp_iparams].crp_nbits);
1728		}
1729
1730		crypto_kdone(krp);
1731
1732		/* bzero all potentially sensitive data */
1733		bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
1734		bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
1735		bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
1736		bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
1737
1738		/* Can't free here, so put us on the free list. */
1739		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &me->me_q, q_next);
1740		break;
1741	}
1742	case UBS_CTXOP_RSAPRIV: {
1743		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
1744		u_int len;
1745
1746		krp = rp->rpr_krp;
1747		ubsec_dma_sync(&rp->rpr_msgin, BUS_DMASYNC_POSTWRITE);
1748		ubsec_dma_sync(&rp->rpr_msgout, BUS_DMASYNC_POSTREAD);
1749
1750		len = (krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_nbits + 7) / 8;
1751		bcopy(rp->rpr_msgout.dma_vaddr,
1752		    krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_p, len);
1753
1754		crypto_kdone(krp);
1755
1756		bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size);
1757		bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size);
1758		bzero(rp->rpr_q.q_ctx.dma_vaddr, rp->rpr_q.q_ctx.dma_size);
1759
1760		/* Can't free here, so put us on the free list. */
1761		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &rp->rpr_q, q_next);
1762		break;
1763	}
1764	default:
1765		device_printf(sc->sc_dev, "unknown ctx op: %x\n",
1766		    letoh16(ctx->ctx_op));
1767		break;
1768	}
1769}
1770
1771#ifndef UBSEC_NO_RNG
1772static void
1773ubsec_rng(void *vsc)
1774{
1775	struct ubsec_softc *sc = vsc;
1776	struct ubsec_q2_rng *rng = &sc->sc_rng;
1777	struct ubsec_mcr *mcr;
1778	struct ubsec_ctx_rngbypass *ctx;
1779
1780	mtx_lock(&sc->sc_mcr2lock);
1781	if (rng->rng_used) {
1782		mtx_unlock(&sc->sc_mcr2lock);
1783		return;
1784	}
1785	sc->sc_nqueue2++;
1786	if (sc->sc_nqueue2 >= UBS_MAX_NQUEUE)
1787		goto out;
1788
1789	mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr;
1790	ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr;
1791
1792	mcr->mcr_pkts = htole16(1);
1793	mcr->mcr_flags = 0;
1794	mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr);
1795	mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0;
1796	mcr->mcr_ipktbuf.pb_len = 0;
1797	mcr->mcr_reserved = mcr->mcr_pktlen = 0;
1798	mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr);
1799	mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) &
1800	    UBS_PKTBUF_LEN);
1801	mcr->mcr_opktbuf.pb_next = 0;
1802
1803	ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass));
1804	ctx->rbp_op = htole16(UBS_CTXOP_RNGBYPASS);
1805	rng->rng_q.q_type = UBS_CTXOP_RNGBYPASS;
1806
1807	ubsec_dma_sync(&rng->rng_buf, BUS_DMASYNC_PREREAD);
1808
1809	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next);
1810	rng->rng_used = 1;
1811	ubsec_feed2(sc);
1812	ubsecstats.hst_rng++;
1813	mtx_unlock(&sc->sc_mcr2lock);
1814
1815	return;
1816
1817out:
1818	/*
1819	 * Something weird happened, generate our own call back.
1820	 */
1821	sc->sc_nqueue2--;
1822	mtx_unlock(&sc->sc_mcr2lock);
1823	callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
1824}
1825#endif /* UBSEC_NO_RNG */
1826
1827static void
1828ubsec_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1829{
1830	bus_addr_t *paddr = (bus_addr_t*) arg;
1831	*paddr = segs->ds_addr;
1832}
1833
1834static int
1835ubsec_dma_malloc(
1836	struct ubsec_softc *sc,
1837	bus_size_t size,
1838	struct ubsec_dma_alloc *dma,
1839	int mapflags
1840)
1841{
1842	int r;
1843
1844	/* XXX could specify sc_dmat as parent but that just adds overhead */
1845	r = bus_dma_tag_create(NULL,			/* parent */
1846			       1, 0,			/* alignment, bounds */
1847			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1848			       BUS_SPACE_MAXADDR,	/* highaddr */
1849			       NULL, NULL,		/* filter, filterarg */
1850			       size,			/* maxsize */
1851			       1,			/* nsegments */
1852			       size,			/* maxsegsize */
1853			       BUS_DMA_ALLOCNOW,	/* flags */
1854			       &dma->dma_tag);
1855	if (r != 0) {
1856		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1857			"bus_dma_tag_create failed; error %u\n", r);
1858		goto fail_0;
1859	}
1860
1861	r = bus_dmamap_create(dma->dma_tag, BUS_DMA_NOWAIT, &dma->dma_map);
1862	if (r != 0) {
1863		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1864			"bus_dmamap_create failed; error %u\n", r);
1865		goto fail_1;
1866	}
1867
1868	r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
1869			     BUS_DMA_NOWAIT, &dma->dma_map);
1870	if (r != 0) {
1871		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1872			"bus_dmammem_alloc failed; size %zu, error %u\n",
1873			size, r);
1874		goto fail_2;
1875	}
1876
1877	r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
1878		            size,
1879			    ubsec_dmamap_cb,
1880			    &dma->dma_paddr,
1881			    mapflags | BUS_DMA_NOWAIT);
1882	if (r != 0) {
1883		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1884			"bus_dmamap_load failed; error %u\n", r);
1885		goto fail_3;
1886	}
1887
1888	dma->dma_size = size;
1889	return (0);
1890
1891fail_3:
1892	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1893fail_2:
1894	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1895fail_1:
1896	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1897	bus_dma_tag_destroy(dma->dma_tag);
1898fail_0:
1899	dma->dma_map = NULL;
1900	dma->dma_tag = NULL;
1901	return (r);
1902}
1903
1904static void
1905ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
1906{
1907	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1908	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1909	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1910	bus_dma_tag_destroy(dma->dma_tag);
1911}
1912
1913/*
1914 * Resets the board.  Values in the regesters are left as is
1915 * from the reset (i.e. initial values are assigned elsewhere).
1916 */
1917static void
1918ubsec_reset_board(struct ubsec_softc *sc)
1919{
1920    volatile u_int32_t ctrl;
1921
1922    ctrl = READ_REG(sc, BS_CTRL);
1923    ctrl |= BS_CTRL_RESET;
1924    WRITE_REG(sc, BS_CTRL, ctrl);
1925
1926    /*
1927     * Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
1928     */
1929    DELAY(10);
1930}
1931
1932/*
1933 * Init Broadcom registers
1934 */
1935static void
1936ubsec_init_board(struct ubsec_softc *sc)
1937{
1938	u_int32_t ctrl;
1939
1940	ctrl = READ_REG(sc, BS_CTRL);
1941	ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
1942	ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT;
1943
1944	if (sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG))
1945		ctrl |= BS_CTRL_MCR2INT;
1946	else
1947		ctrl &= ~BS_CTRL_MCR2INT;
1948
1949	if (sc->sc_flags & UBS_FLAGS_HWNORM)
1950		ctrl &= ~BS_CTRL_SWNORM;
1951
1952	WRITE_REG(sc, BS_CTRL, ctrl);
1953}
1954
1955/*
1956 * Init Broadcom PCI registers
1957 */
1958static void
1959ubsec_init_pciregs(device_t dev)
1960{
1961#if 0
1962	u_int32_t misc;
1963
1964	misc = pci_conf_read(pc, pa->pa_tag, BS_RTY_TOUT);
1965	misc = (misc & ~(UBS_PCI_RTY_MASK << UBS_PCI_RTY_SHIFT))
1966	    | ((UBS_DEF_RTY & 0xff) << UBS_PCI_RTY_SHIFT);
1967	misc = (misc & ~(UBS_PCI_TOUT_MASK << UBS_PCI_TOUT_SHIFT))
1968	    | ((UBS_DEF_TOUT & 0xff) << UBS_PCI_TOUT_SHIFT);
1969	pci_conf_write(pc, pa->pa_tag, BS_RTY_TOUT, misc);
1970#endif
1971
1972	/*
1973	 * This will set the cache line size to 1, this will
1974	 * force the BCM58xx chip just to do burst read/writes.
1975	 * Cache line read/writes are to slow
1976	 */
1977	pci_write_config(dev, PCIR_CACHELNSZ, UBS_DEF_CACHELINE, 1);
1978}
1979
1980/*
1981 * Clean up after a chip crash.
1982 * It is assumed that the caller in splimp()
1983 */
1984static void
1985ubsec_cleanchip(struct ubsec_softc *sc)
1986{
1987	struct ubsec_q *q;
1988
1989	while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
1990		q = SIMPLEQ_FIRST(&sc->sc_qchip);
1991		SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q, q_next);
1992		ubsec_free_q(sc, q);
1993	}
1994	sc->sc_nqchip = 0;
1995}
1996
1997/*
1998 * free a ubsec_q
1999 * It is assumed that the caller is within splimp().
2000 */
2001static int
2002ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
2003{
2004	struct ubsec_q *q2;
2005	struct cryptop *crp;
2006	int npkts;
2007	int i;
2008
2009	npkts = q->q_nstacked_mcrs;
2010
2011	for (i = 0; i < npkts; i++) {
2012		if(q->q_stacked_mcr[i]) {
2013			q2 = q->q_stacked_mcr[i];
2014
2015			if ((q2->q_dst_m != NULL) && (q2->q_src_m != q2->q_dst_m))
2016				m_freem(q2->q_dst_m);
2017
2018			crp = (struct cryptop *)q2->q_crp;
2019
2020			SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
2021
2022			crp->crp_etype = EFAULT;
2023			crypto_done(crp);
2024		} else {
2025			break;
2026		}
2027	}
2028
2029	/*
2030	 * Free header MCR
2031	 */
2032	if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
2033		m_freem(q->q_dst_m);
2034
2035	crp = (struct cryptop *)q->q_crp;
2036
2037	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
2038
2039	crp->crp_etype = EFAULT;
2040	crypto_done(crp);
2041	return(0);
2042}
2043
2044/*
2045 * Routine to reset the chip and clean up.
2046 * It is assumed that the caller is in splimp()
2047 */
2048static void
2049ubsec_totalreset(struct ubsec_softc *sc)
2050{
2051	ubsec_reset_board(sc);
2052	ubsec_init_board(sc);
2053	ubsec_cleanchip(sc);
2054}
2055
2056static int
2057ubsec_dmamap_aligned(struct ubsec_operand *op)
2058{
2059	int i;
2060
2061	for (i = 0; i < op->nsegs; i++) {
2062		if (op->segs[i].ds_addr & 3)
2063			return (0);
2064		if ((i != (op->nsegs - 1)) &&
2065		    (op->segs[i].ds_len & 3))
2066			return (0);
2067	}
2068	return (1);
2069}
2070
2071static void
2072ubsec_kfree(struct ubsec_softc *sc, struct ubsec_q2 *q)
2073{
2074	switch (q->q_type) {
2075	case UBS_CTXOP_MODEXP: {
2076		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
2077
2078		ubsec_dma_free(sc, &me->me_q.q_mcr);
2079		ubsec_dma_free(sc, &me->me_q.q_ctx);
2080		ubsec_dma_free(sc, &me->me_M);
2081		ubsec_dma_free(sc, &me->me_E);
2082		ubsec_dma_free(sc, &me->me_C);
2083		ubsec_dma_free(sc, &me->me_epb);
2084		free(me, M_DEVBUF);
2085		break;
2086	}
2087	case UBS_CTXOP_RSAPRIV: {
2088		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
2089
2090		ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2091		ubsec_dma_free(sc, &rp->rpr_q.q_ctx);
2092		ubsec_dma_free(sc, &rp->rpr_msgin);
2093		ubsec_dma_free(sc, &rp->rpr_msgout);
2094		free(rp, M_DEVBUF);
2095		break;
2096	}
2097	default:
2098		device_printf(sc->sc_dev, "invalid kfree 0x%x\n", q->q_type);
2099		break;
2100	}
2101}
2102
2103static int
2104ubsec_kprocess(void *arg, struct cryptkop *krp, int hint)
2105{
2106	struct ubsec_softc *sc = arg;
2107	int r;
2108
2109	if (krp == NULL || krp->krp_callback == NULL)
2110		return (EINVAL);
2111
2112	while (!SIMPLEQ_EMPTY(&sc->sc_q2free)) {
2113		struct ubsec_q2 *q;
2114
2115		q = SIMPLEQ_FIRST(&sc->sc_q2free);
2116		SIMPLEQ_REMOVE_HEAD(&sc->sc_q2free, q, q_next);
2117		ubsec_kfree(sc, q);
2118	}
2119
2120	switch (krp->krp_op) {
2121	case CRK_MOD_EXP:
2122		if (sc->sc_flags & UBS_FLAGS_HWNORM)
2123			r = ubsec_kprocess_modexp_hw(sc, krp, hint);
2124		else
2125			r = ubsec_kprocess_modexp_sw(sc, krp, hint);
2126		break;
2127	case CRK_MOD_EXP_CRT:
2128		return (ubsec_kprocess_rsapriv(sc, krp, hint));
2129	default:
2130		device_printf(sc->sc_dev, "kprocess: invalid op 0x%x\n",
2131		    krp->krp_op);
2132		krp->krp_status = EOPNOTSUPP;
2133		crypto_kdone(krp);
2134		return (0);
2135	}
2136	return (0);			/* silence compiler */
2137}
2138
2139/*
2140 * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (sw normalization)
2141 */
2142static int
2143ubsec_kprocess_modexp_sw(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
2144{
2145	struct ubsec_q2_modexp *me;
2146	struct ubsec_mcr *mcr;
2147	struct ubsec_ctx_modexp *ctx;
2148	struct ubsec_pktbuf *epb;
2149	int err = 0;
2150	u_int nbits, normbits, mbits, shiftbits, ebits;
2151
2152	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2153	if (me == NULL) {
2154		err = ENOMEM;
2155		goto errout;
2156	}
2157	bzero(me, sizeof *me);
2158	me->me_krp = krp;
2159	me->me_q.q_type = UBS_CTXOP_MODEXP;
2160
2161	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2162	if (nbits <= 512)
2163		normbits = 512;
2164	else if (nbits <= 768)
2165		normbits = 768;
2166	else if (nbits <= 1024)
2167		normbits = 1024;
2168	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2169		normbits = 1536;
2170	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2171		normbits = 2048;
2172	else {
2173		err = E2BIG;
2174		goto errout;
2175	}
2176
2177	shiftbits = normbits - nbits;
2178
2179	me->me_modbits = nbits;
2180	me->me_shiftbits = shiftbits;
2181	me->me_normbits = normbits;
2182
2183	/* Sanity check: result bits must be >= true modulus bits. */
2184	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2185		err = ERANGE;
2186		goto errout;
2187	}
2188
2189	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2190	    &me->me_q.q_mcr, 0)) {
2191		err = ENOMEM;
2192		goto errout;
2193	}
2194	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2195
2196	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2197	    &me->me_q.q_ctx, 0)) {
2198		err = ENOMEM;
2199		goto errout;
2200	}
2201
2202	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2203	if (mbits > nbits) {
2204		err = E2BIG;
2205		goto errout;
2206	}
2207	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2208		err = ENOMEM;
2209		goto errout;
2210	}
2211	ubsec_kshift_r(shiftbits,
2212	    krp->krp_param[UBS_MODEXP_PAR_M].crp_p, mbits,
2213	    me->me_M.dma_vaddr, normbits);
2214
2215	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2216		err = ENOMEM;
2217		goto errout;
2218	}
2219	bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2220
2221	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2222	if (ebits > nbits) {
2223		err = E2BIG;
2224		goto errout;
2225	}
2226	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2227		err = ENOMEM;
2228		goto errout;
2229	}
2230	ubsec_kshift_r(shiftbits,
2231	    krp->krp_param[UBS_MODEXP_PAR_E].crp_p, ebits,
2232	    me->me_E.dma_vaddr, normbits);
2233
2234	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2235	    &me->me_epb, 0)) {
2236		err = ENOMEM;
2237		goto errout;
2238	}
2239	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2240	epb->pb_addr = htole32(me->me_E.dma_paddr);
2241	epb->pb_next = 0;
2242	epb->pb_len = htole32(normbits / 8);
2243
2244#ifdef UBSEC_DEBUG
2245	if (ubsec_debug) {
2246		printf("Epb ");
2247		ubsec_dump_pb(epb);
2248	}
2249#endif
2250
2251	mcr->mcr_pkts = htole16(1);
2252	mcr->mcr_flags = 0;
2253	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2254	mcr->mcr_reserved = 0;
2255	mcr->mcr_pktlen = 0;
2256
2257	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2258	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2259	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2260
2261	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2262	mcr->mcr_opktbuf.pb_next = 0;
2263	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2264
2265#ifdef DIAGNOSTIC
2266	/* Misaligned output buffer will hang the chip. */
2267	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2268		panic("%s: modexp invalid addr 0x%x\n",
2269		    device_get_nameunit(sc->sc_dev),
2270		    letoh32(mcr->mcr_opktbuf.pb_addr));
2271	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2272		panic("%s: modexp invalid len 0x%x\n",
2273		    device_get_nameunit(sc->sc_dev),
2274		    letoh32(mcr->mcr_opktbuf.pb_len));
2275#endif
2276
2277	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2278	bzero(ctx, sizeof(*ctx));
2279	ubsec_kshift_r(shiftbits,
2280	    krp->krp_param[UBS_MODEXP_PAR_N].crp_p, nbits,
2281	    ctx->me_N, normbits);
2282	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2283	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2284	ctx->me_E_len = htole16(nbits);
2285	ctx->me_N_len = htole16(nbits);
2286
2287#ifdef UBSEC_DEBUG
2288	if (ubsec_debug) {
2289		ubsec_dump_mcr(mcr);
2290		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2291	}
2292#endif
2293
2294	/*
2295	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2296	 * everything else.
2297	 */
2298	ubsec_dma_sync(&me->me_M, BUS_DMASYNC_PREWRITE);
2299	ubsec_dma_sync(&me->me_E, BUS_DMASYNC_PREWRITE);
2300	ubsec_dma_sync(&me->me_C, BUS_DMASYNC_PREREAD);
2301	ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_PREWRITE);
2302
2303	/* Enqueue and we're done... */
2304	mtx_lock(&sc->sc_mcr2lock);
2305	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2306	ubsec_feed2(sc);
2307	ubsecstats.hst_modexp++;
2308	mtx_unlock(&sc->sc_mcr2lock);
2309
2310	return (0);
2311
2312errout:
2313	if (me != NULL) {
2314		if (me->me_q.q_mcr.dma_map != NULL)
2315			ubsec_dma_free(sc, &me->me_q.q_mcr);
2316		if (me->me_q.q_ctx.dma_map != NULL) {
2317			bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
2318			ubsec_dma_free(sc, &me->me_q.q_ctx);
2319		}
2320		if (me->me_M.dma_map != NULL) {
2321			bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
2322			ubsec_dma_free(sc, &me->me_M);
2323		}
2324		if (me->me_E.dma_map != NULL) {
2325			bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
2326			ubsec_dma_free(sc, &me->me_E);
2327		}
2328		if (me->me_C.dma_map != NULL) {
2329			bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2330			ubsec_dma_free(sc, &me->me_C);
2331		}
2332		if (me->me_epb.dma_map != NULL)
2333			ubsec_dma_free(sc, &me->me_epb);
2334		free(me, M_DEVBUF);
2335	}
2336	krp->krp_status = err;
2337	crypto_kdone(krp);
2338	return (0);
2339}
2340
2341/*
2342 * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (hw normalization)
2343 */
2344static int
2345ubsec_kprocess_modexp_hw(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
2346{
2347	struct ubsec_q2_modexp *me;
2348	struct ubsec_mcr *mcr;
2349	struct ubsec_ctx_modexp *ctx;
2350	struct ubsec_pktbuf *epb;
2351	int err = 0;
2352	u_int nbits, normbits, mbits, shiftbits, ebits;
2353
2354	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2355	if (me == NULL) {
2356		err = ENOMEM;
2357		goto errout;
2358	}
2359	bzero(me, sizeof *me);
2360	me->me_krp = krp;
2361	me->me_q.q_type = UBS_CTXOP_MODEXP;
2362
2363	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2364	if (nbits <= 512)
2365		normbits = 512;
2366	else if (nbits <= 768)
2367		normbits = 768;
2368	else if (nbits <= 1024)
2369		normbits = 1024;
2370	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2371		normbits = 1536;
2372	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2373		normbits = 2048;
2374	else {
2375		err = E2BIG;
2376		goto errout;
2377	}
2378
2379	shiftbits = normbits - nbits;
2380
2381	/* XXX ??? */
2382	me->me_modbits = nbits;
2383	me->me_shiftbits = shiftbits;
2384	me->me_normbits = normbits;
2385
2386	/* Sanity check: result bits must be >= true modulus bits. */
2387	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2388		err = ERANGE;
2389		goto errout;
2390	}
2391
2392	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2393	    &me->me_q.q_mcr, 0)) {
2394		err = ENOMEM;
2395		goto errout;
2396	}
2397	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2398
2399	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2400	    &me->me_q.q_ctx, 0)) {
2401		err = ENOMEM;
2402		goto errout;
2403	}
2404
2405	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2406	if (mbits > nbits) {
2407		err = E2BIG;
2408		goto errout;
2409	}
2410	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2411		err = ENOMEM;
2412		goto errout;
2413	}
2414	bzero(me->me_M.dma_vaddr, normbits / 8);
2415	bcopy(krp->krp_param[UBS_MODEXP_PAR_M].crp_p,
2416	    me->me_M.dma_vaddr, (mbits + 7) / 8);
2417
2418	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2419		err = ENOMEM;
2420		goto errout;
2421	}
2422	bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2423
2424	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2425	if (ebits > nbits) {
2426		err = E2BIG;
2427		goto errout;
2428	}
2429	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2430		err = ENOMEM;
2431		goto errout;
2432	}
2433	bzero(me->me_E.dma_vaddr, normbits / 8);
2434	bcopy(krp->krp_param[UBS_MODEXP_PAR_E].crp_p,
2435	    me->me_E.dma_vaddr, (ebits + 7) / 8);
2436
2437	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2438	    &me->me_epb, 0)) {
2439		err = ENOMEM;
2440		goto errout;
2441	}
2442	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2443	epb->pb_addr = htole32(me->me_E.dma_paddr);
2444	epb->pb_next = 0;
2445	epb->pb_len = htole32((ebits + 7) / 8);
2446
2447#ifdef UBSEC_DEBUG
2448	if (ubsec_debug) {
2449		printf("Epb ");
2450		ubsec_dump_pb(epb);
2451	}
2452#endif
2453
2454	mcr->mcr_pkts = htole16(1);
2455	mcr->mcr_flags = 0;
2456	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2457	mcr->mcr_reserved = 0;
2458	mcr->mcr_pktlen = 0;
2459
2460	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2461	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2462	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2463
2464	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2465	mcr->mcr_opktbuf.pb_next = 0;
2466	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2467
2468#ifdef DIAGNOSTIC
2469	/* Misaligned output buffer will hang the chip. */
2470	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2471		panic("%s: modexp invalid addr 0x%x\n",
2472		    device_get_nameunit(sc->sc_dev),
2473		    letoh32(mcr->mcr_opktbuf.pb_addr));
2474	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2475		panic("%s: modexp invalid len 0x%x\n",
2476		    device_get_nameunit(sc->sc_dev),
2477		    letoh32(mcr->mcr_opktbuf.pb_len));
2478#endif
2479
2480	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2481	bzero(ctx, sizeof(*ctx));
2482	bcopy(krp->krp_param[UBS_MODEXP_PAR_N].crp_p, ctx->me_N,
2483	    (nbits + 7) / 8);
2484	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2485	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2486	ctx->me_E_len = htole16(ebits);
2487	ctx->me_N_len = htole16(nbits);
2488
2489#ifdef UBSEC_DEBUG
2490	if (ubsec_debug) {
2491		ubsec_dump_mcr(mcr);
2492		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2493	}
2494#endif
2495
2496	/*
2497	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2498	 * everything else.
2499	 */
2500	ubsec_dma_sync(&me->me_M, BUS_DMASYNC_PREWRITE);
2501	ubsec_dma_sync(&me->me_E, BUS_DMASYNC_PREWRITE);
2502	ubsec_dma_sync(&me->me_C, BUS_DMASYNC_PREREAD);
2503	ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_PREWRITE);
2504
2505	/* Enqueue and we're done... */
2506	mtx_lock(&sc->sc_mcr2lock);
2507	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2508	ubsec_feed2(sc);
2509	mtx_unlock(&sc->sc_mcr2lock);
2510
2511	return (0);
2512
2513errout:
2514	if (me != NULL) {
2515		if (me->me_q.q_mcr.dma_map != NULL)
2516			ubsec_dma_free(sc, &me->me_q.q_mcr);
2517		if (me->me_q.q_ctx.dma_map != NULL) {
2518			bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
2519			ubsec_dma_free(sc, &me->me_q.q_ctx);
2520		}
2521		if (me->me_M.dma_map != NULL) {
2522			bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
2523			ubsec_dma_free(sc, &me->me_M);
2524		}
2525		if (me->me_E.dma_map != NULL) {
2526			bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
2527			ubsec_dma_free(sc, &me->me_E);
2528		}
2529		if (me->me_C.dma_map != NULL) {
2530			bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2531			ubsec_dma_free(sc, &me->me_C);
2532		}
2533		if (me->me_epb.dma_map != NULL)
2534			ubsec_dma_free(sc, &me->me_epb);
2535		free(me, M_DEVBUF);
2536	}
2537	krp->krp_status = err;
2538	crypto_kdone(krp);
2539	return (0);
2540}
2541
2542static int
2543ubsec_kprocess_rsapriv(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
2544{
2545	struct ubsec_q2_rsapriv *rp = NULL;
2546	struct ubsec_mcr *mcr;
2547	struct ubsec_ctx_rsapriv *ctx;
2548	int err = 0;
2549	u_int padlen, msglen;
2550
2551	msglen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_P]);
2552	padlen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_Q]);
2553	if (msglen > padlen)
2554		padlen = msglen;
2555
2556	if (padlen <= 256)
2557		padlen = 256;
2558	else if (padlen <= 384)
2559		padlen = 384;
2560	else if (padlen <= 512)
2561		padlen = 512;
2562	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 768)
2563		padlen = 768;
2564	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 1024)
2565		padlen = 1024;
2566	else {
2567		err = E2BIG;
2568		goto errout;
2569	}
2570
2571	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DP]) > padlen) {
2572		err = E2BIG;
2573		goto errout;
2574	}
2575
2576	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DQ]) > padlen) {
2577		err = E2BIG;
2578		goto errout;
2579	}
2580
2581	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_PINV]) > padlen) {
2582		err = E2BIG;
2583		goto errout;
2584	}
2585
2586	rp = (struct ubsec_q2_rsapriv *)malloc(sizeof *rp, M_DEVBUF, M_NOWAIT);
2587	if (rp == NULL)
2588		return (ENOMEM);
2589	bzero(rp, sizeof *rp);
2590	rp->rpr_krp = krp;
2591	rp->rpr_q.q_type = UBS_CTXOP_RSAPRIV;
2592
2593	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2594	    &rp->rpr_q.q_mcr, 0)) {
2595		err = ENOMEM;
2596		goto errout;
2597	}
2598	mcr = (struct ubsec_mcr *)rp->rpr_q.q_mcr.dma_vaddr;
2599
2600	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rsapriv),
2601	    &rp->rpr_q.q_ctx, 0)) {
2602		err = ENOMEM;
2603		goto errout;
2604	}
2605	ctx = (struct ubsec_ctx_rsapriv *)rp->rpr_q.q_ctx.dma_vaddr;
2606	bzero(ctx, sizeof *ctx);
2607
2608	/* Copy in p */
2609	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_p,
2610	    &ctx->rpr_buf[0 * (padlen / 8)],
2611	    (krp->krp_param[UBS_RSAPRIV_PAR_P].crp_nbits + 7) / 8);
2612
2613	/* Copy in q */
2614	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_p,
2615	    &ctx->rpr_buf[1 * (padlen / 8)],
2616	    (krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_nbits + 7) / 8);
2617
2618	/* Copy in dp */
2619	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_p,
2620	    &ctx->rpr_buf[2 * (padlen / 8)],
2621	    (krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_nbits + 7) / 8);
2622
2623	/* Copy in dq */
2624	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_p,
2625	    &ctx->rpr_buf[3 * (padlen / 8)],
2626	    (krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_nbits + 7) / 8);
2627
2628	/* Copy in pinv */
2629	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_p,
2630	    &ctx->rpr_buf[4 * (padlen / 8)],
2631	    (krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_nbits + 7) / 8);
2632
2633	msglen = padlen * 2;
2634
2635	/* Copy in input message (aligned buffer/length). */
2636	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGIN]) > msglen) {
2637		/* Is this likely? */
2638		err = E2BIG;
2639		goto errout;
2640	}
2641	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgin, 0)) {
2642		err = ENOMEM;
2643		goto errout;
2644	}
2645	bzero(rp->rpr_msgin.dma_vaddr, (msglen + 7) / 8);
2646	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_p,
2647	    rp->rpr_msgin.dma_vaddr,
2648	    (krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_nbits + 7) / 8);
2649
2650	/* Prepare space for output message (aligned buffer/length). */
2651	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT]) < msglen) {
2652		/* Is this likely? */
2653		err = E2BIG;
2654		goto errout;
2655	}
2656	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgout, 0)) {
2657		err = ENOMEM;
2658		goto errout;
2659	}
2660	bzero(rp->rpr_msgout.dma_vaddr, (msglen + 7) / 8);
2661
2662	mcr->mcr_pkts = htole16(1);
2663	mcr->mcr_flags = 0;
2664	mcr->mcr_cmdctxp = htole32(rp->rpr_q.q_ctx.dma_paddr);
2665	mcr->mcr_ipktbuf.pb_addr = htole32(rp->rpr_msgin.dma_paddr);
2666	mcr->mcr_ipktbuf.pb_next = 0;
2667	mcr->mcr_ipktbuf.pb_len = htole32(rp->rpr_msgin.dma_size);
2668	mcr->mcr_reserved = 0;
2669	mcr->mcr_pktlen = htole16(msglen);
2670	mcr->mcr_opktbuf.pb_addr = htole32(rp->rpr_msgout.dma_paddr);
2671	mcr->mcr_opktbuf.pb_next = 0;
2672	mcr->mcr_opktbuf.pb_len = htole32(rp->rpr_msgout.dma_size);
2673
2674#ifdef DIAGNOSTIC
2675	if (rp->rpr_msgin.dma_paddr & 3 || rp->rpr_msgin.dma_size & 3) {
2676		panic("%s: rsapriv: invalid msgin %x(0x%jx)",
2677		    device_get_nameunit(sc->sc_dev),
2678		    rp->rpr_msgin.dma_paddr, (uintmax_t)rp->rpr_msgin.dma_size);
2679	}
2680	if (rp->rpr_msgout.dma_paddr & 3 || rp->rpr_msgout.dma_size & 3) {
2681		panic("%s: rsapriv: invalid msgout %x(0x%jx)",
2682		    device_get_nameunit(sc->sc_dev),
2683		    rp->rpr_msgout.dma_paddr, (uintmax_t)rp->rpr_msgout.dma_size);
2684	}
2685#endif
2686
2687	ctx->rpr_len = (sizeof(u_int16_t) * 4) + (5 * (padlen / 8));
2688	ctx->rpr_op = htole16(UBS_CTXOP_RSAPRIV);
2689	ctx->rpr_q_len = htole16(padlen);
2690	ctx->rpr_p_len = htole16(padlen);
2691
2692	/*
2693	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2694	 * everything else.
2695	 */
2696	ubsec_dma_sync(&rp->rpr_msgin, BUS_DMASYNC_PREWRITE);
2697	ubsec_dma_sync(&rp->rpr_msgout, BUS_DMASYNC_PREREAD);
2698
2699	/* Enqueue and we're done... */
2700	mtx_lock(&sc->sc_mcr2lock);
2701	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rp->rpr_q, q_next);
2702	ubsec_feed2(sc);
2703	ubsecstats.hst_modexpcrt++;
2704	mtx_unlock(&sc->sc_mcr2lock);
2705	return (0);
2706
2707errout:
2708	if (rp != NULL) {
2709		if (rp->rpr_q.q_mcr.dma_map != NULL)
2710			ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2711		if (rp->rpr_msgin.dma_map != NULL) {
2712			bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size);
2713			ubsec_dma_free(sc, &rp->rpr_msgin);
2714		}
2715		if (rp->rpr_msgout.dma_map != NULL) {
2716			bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size);
2717			ubsec_dma_free(sc, &rp->rpr_msgout);
2718		}
2719		free(rp, M_DEVBUF);
2720	}
2721	krp->krp_status = err;
2722	crypto_kdone(krp);
2723	return (0);
2724}
2725
2726#ifdef UBSEC_DEBUG
2727static void
2728ubsec_dump_pb(volatile struct ubsec_pktbuf *pb)
2729{
2730	printf("addr 0x%x (0x%x) next 0x%x\n",
2731	    pb->pb_addr, pb->pb_len, pb->pb_next);
2732}
2733
2734static void
2735ubsec_dump_ctx2(struct ubsec_ctx_keyop *c)
2736{
2737	printf("CTX (0x%x):\n", c->ctx_len);
2738	switch (letoh16(c->ctx_op)) {
2739	case UBS_CTXOP_RNGBYPASS:
2740	case UBS_CTXOP_RNGSHA1:
2741		break;
2742	case UBS_CTXOP_MODEXP:
2743	{
2744		struct ubsec_ctx_modexp *cx = (void *)c;
2745		int i, len;
2746
2747		printf(" Elen %u, Nlen %u\n",
2748		    letoh16(cx->me_E_len), letoh16(cx->me_N_len));
2749		len = (cx->me_N_len + 7)/8;
2750		for (i = 0; i < len; i++)
2751			printf("%s%02x", (i == 0) ? " N: " : ":", cx->me_N[i]);
2752		printf("\n");
2753		break;
2754	}
2755	default:
2756		printf("unknown context: %x\n", c->ctx_op);
2757	}
2758	printf("END CTX\n");
2759}
2760
2761static void
2762ubsec_dump_mcr(struct ubsec_mcr *mcr)
2763{
2764	volatile struct ubsec_mcr_add *ma;
2765	int i;
2766
2767	printf("MCR:\n");
2768	printf(" pkts: %u, flags 0x%x\n",
2769	    letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
2770	ma = (volatile struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
2771	for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
2772		printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
2773		    letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
2774		    letoh16(ma->mcr_reserved));
2775		printf(" %d: ipkt ", i);
2776		ubsec_dump_pb(&ma->mcr_ipktbuf);
2777		printf(" %d: opkt ", i);
2778		ubsec_dump_pb(&ma->mcr_opktbuf);
2779		ma++;
2780	}
2781	printf("END MCR\n");
2782}
2783#endif /* UBSEC_DEBUG */
2784
2785/*
2786 * Return the number of significant bits of a big number.
2787 */
2788static int
2789ubsec_ksigbits(struct crparam *cr)
2790{
2791	u_int plen = (cr->crp_nbits + 7) / 8;
2792	int i, sig = plen * 8;
2793	u_int8_t c, *p = cr->crp_p;
2794
2795	for (i = plen - 1; i >= 0; i--) {
2796		c = p[i];
2797		if (c != 0) {
2798			while ((c & 0x80) == 0) {
2799				sig--;
2800				c <<= 1;
2801			}
2802			break;
2803		}
2804		sig -= 8;
2805	}
2806	return (sig);
2807}
2808
2809static void
2810ubsec_kshift_r(
2811	u_int shiftbits,
2812	u_int8_t *src, u_int srcbits,
2813	u_int8_t *dst, u_int dstbits)
2814{
2815	u_int slen, dlen;
2816	int i, si, di, n;
2817
2818	slen = (srcbits + 7) / 8;
2819	dlen = (dstbits + 7) / 8;
2820
2821	for (i = 0; i < slen; i++)
2822		dst[i] = src[i];
2823	for (i = 0; i < dlen - slen; i++)
2824		dst[slen + i] = 0;
2825
2826	n = shiftbits / 8;
2827	if (n != 0) {
2828		si = dlen - n - 1;
2829		di = dlen - 1;
2830		while (si >= 0)
2831			dst[di--] = dst[si--];
2832		while (di >= 0)
2833			dst[di--] = 0;
2834	}
2835
2836	n = shiftbits % 8;
2837	if (n != 0) {
2838		for (i = dlen - 1; i > 0; i--)
2839			dst[i] = (dst[i] << n) |
2840			    (dst[i - 1] >> (8 - n));
2841		dst[0] = dst[0] << n;
2842	}
2843}
2844
2845static void
2846ubsec_kshift_l(
2847	u_int shiftbits,
2848	u_int8_t *src, u_int srcbits,
2849	u_int8_t *dst, u_int dstbits)
2850{
2851	int slen, dlen, i, n;
2852
2853	slen = (srcbits + 7) / 8;
2854	dlen = (dstbits + 7) / 8;
2855
2856	n = shiftbits / 8;
2857	for (i = 0; i < slen; i++)
2858		dst[i] = src[i + n];
2859	for (i = 0; i < dlen - slen; i++)
2860		dst[slen + i] = 0;
2861
2862	n = shiftbits % 8;
2863	if (n != 0) {
2864		for (i = 0; i < (dlen - 1); i++)
2865			dst[i] = (dst[i] >> n) | (dst[i + 1] << (8 - n));
2866		dst[dlen - 1] = dst[dlen - 1] >> n;
2867	}
2868}
2869