ubsec.c revision 109623
1/* $FreeBSD: head/sys/dev/ubsec/ubsec.c 109623 2003-01-21 08:56:16Z alfred $ */
2/*	$OpenBSD: ubsec.c,v 1.115 2002/09/24 18:33:26 jason Exp $	*/
3
4/*
5 * Copyright (c) 2000 Jason L. Wright (jason@thought.net)
6 * Copyright (c) 2000 Theo de Raadt (deraadt@openbsd.org)
7 * Copyright (c) 2001 Patrik Lindergren (patrik@ipunplugged.com)
8 *
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by Jason L. Wright
22 * 4. The name of the author may not be used to endorse or promote products
23 *    derived from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
26 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
27 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28 * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
29 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
30 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
31 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
33 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
34 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Effort sponsored in part by the Defense Advanced Research Projects
38 * Agency (DARPA) and Air Force Research Laboratory, Air Force
39 * Materiel Command, USAF, under agreement number F30602-01-2-0537.
40 *
41 */
42
43#define UBSEC_DEBUG
44
45/*
46 * uBsec 5[56]01, 58xx hardware crypto accelerator
47 */
48
49#include <sys/param.h>
50#include <sys/systm.h>
51#include <sys/proc.h>
52#include <sys/errno.h>
53#include <sys/malloc.h>
54#include <sys/kernel.h>
55#include <sys/mbuf.h>
56#include <sys/lock.h>
57#include <sys/mutex.h>
58#include <sys/stdint.h>
59#include <sys/sysctl.h>
60#include <sys/endian.h>
61
62#include <vm/vm.h>
63#include <vm/pmap.h>
64
65#include <machine/clock.h>
66#include <machine/bus.h>
67#include <machine/resource.h>
68#include <sys/bus.h>
69#include <sys/rman.h>
70
71#include <crypto/sha1.h>
72#include <opencrypto/cryptodev.h>
73#include <opencrypto/cryptosoft.h>
74#include <sys/md5.h>
75#include <sys/random.h>
76
77#include <pci/pcivar.h>
78#include <pci/pcireg.h>
79
80/* grr, #defines for gratuitous incompatibility in queue.h */
81#define	SIMPLEQ_HEAD		STAILQ_HEAD
82#define	SIMPLEQ_ENTRY		STAILQ_ENTRY
83#define	SIMPLEQ_INIT		STAILQ_INIT
84#define	SIMPLEQ_INSERT_TAIL	STAILQ_INSERT_TAIL
85#define	SIMPLEQ_EMPTY		STAILQ_EMPTY
86#define	SIMPLEQ_FIRST		STAILQ_FIRST
87#define	SIMPLEQ_REMOVE_HEAD	STAILQ_REMOVE_HEAD_UNTIL
88/* ditto for endian.h */
89#define	letoh16(x)		le16toh(x)
90#define	letoh32(x)		le32toh(x)
91
92#include <dev/ubsec/ubsecreg.h>
93#include <dev/ubsec/ubsecvar.h>
94
95/*
96 * Prototypes and count for the pci_device structure
97 */
98static	int ubsec_probe(device_t);
99static	int ubsec_attach(device_t);
100static	int ubsec_detach(device_t);
101static	int ubsec_suspend(device_t);
102static	int ubsec_resume(device_t);
103static	void ubsec_shutdown(device_t);
104
105static device_method_t ubsec_methods[] = {
106	/* Device interface */
107	DEVMETHOD(device_probe,		ubsec_probe),
108	DEVMETHOD(device_attach,	ubsec_attach),
109	DEVMETHOD(device_detach,	ubsec_detach),
110	DEVMETHOD(device_suspend,	ubsec_suspend),
111	DEVMETHOD(device_resume,	ubsec_resume),
112	DEVMETHOD(device_shutdown,	ubsec_shutdown),
113
114	/* bus interface */
115	DEVMETHOD(bus_print_child,	bus_generic_print_child),
116	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
117
118	{ 0, 0 }
119};
120static driver_t ubsec_driver = {
121	"ubsec",
122	ubsec_methods,
123	sizeof (struct ubsec_softc)
124};
125static devclass_t ubsec_devclass;
126
127DRIVER_MODULE(ubsec, pci, ubsec_driver, ubsec_devclass, 0, 0);
128MODULE_DEPEND(ubsec, crypto, 1, 1, 1);
129
130static	void ubsec_intr(void *);
131static	int ubsec_newsession(void *, u_int32_t *, struct cryptoini *);
132static	int ubsec_freesession(void *, u_int64_t);
133static	int ubsec_process(void *, struct cryptop *, int);
134static	void ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
135static	int ubsec_feed(struct ubsec_softc *);
136static	void ubsec_mcopy(struct mbuf *, struct mbuf *, int, int);
137static	void ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *);
138static	int ubsec_feed2(struct ubsec_softc *);
139static	void ubsec_rng(void *);
140static	int ubsec_dma_malloc(struct ubsec_softc *, bus_size_t,
141			     struct ubsec_dma_alloc *, int);
142#define	ubsec_dma_sync(_dma, _flags) \
143	bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
144static	void ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
145static	int ubsec_dmamap_aligned(struct ubsec_operand *op);
146
147static	void ubsec_reset_board(struct ubsec_softc *sc);
148static	void ubsec_init_board(struct ubsec_softc *sc);
149static	void ubsec_init_pciregs(device_t dev);
150static	void ubsec_totalreset(struct ubsec_softc *sc);
151
152static	int ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q);
153
154static	int ubsec_kprocess(void*, struct cryptkop *, int);
155static	int ubsec_kprocess_modexp_hw(struct ubsec_softc *, struct cryptkop *, int);
156static	int ubsec_kprocess_modexp_sw(struct ubsec_softc *, struct cryptkop *, int);
157static	int ubsec_kprocess_rsapriv(struct ubsec_softc *, struct cryptkop *, int);
158static	void ubsec_kfree(struct ubsec_softc *, struct ubsec_q2 *);
159static	int ubsec_ksigbits(struct crparam *);
160static	void ubsec_kshift_r(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
161static	void ubsec_kshift_l(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
162
163SYSCTL_NODE(_hw, OID_AUTO, ubsec, CTLFLAG_RD, 0, "Broadcom driver parameters");
164
165#ifdef UBSEC_DEBUG
166static	void ubsec_dump_pb(volatile struct ubsec_pktbuf *);
167static	void ubsec_dump_mcr(struct ubsec_mcr *);
168static	void ubsec_dump_ctx2(struct ubsec_ctx_keyop *);
169
170static	int ubsec_debug = 0;
171SYSCTL_INT(_hw_ubsec, OID_AUTO, debug, CTLFLAG_RW, &ubsec_debug,
172	    0, "control debugging msgs");
173#endif
174
175#define	READ_REG(sc,r) \
176	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
177
178#define WRITE_REG(sc,reg,val) \
179	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
180
181#define	SWAP32(x) (x) = htole32(ntohl((x)))
182#define	HTOLE32(x) (x) = htole32(x)
183
184struct ubsec_stats ubsecstats;
185SYSCTL_STRUCT(_hw_ubsec, OID_AUTO, stats, CTLFLAG_RD, &ubsecstats,
186	    ubsec_stats, "driver statistics");
187/*
188 * ubsec_maxbatch controls the number of crypto ops to voluntarily
189 * collect into one submission to the hardware.  This batching happens
190 * when ops are dispatched from the crypto subsystem with a hint that
191 * more are to follow immediately.  These ops must also not be marked
192 * with a ``no delay'' flag.
193 */
194static	int ubsec_maxbatch = 1;
195SYSCTL_INT(_hw_ubsec, OID_AUTO, maxbatch, CTLFLAG_RW, &ubsec_maxbatch,
196	    0, "max ops to batch w/o interrupt");
197/*
198 * ubsec_maxaggr controls the number of crypto ops to submit to the
199 * hardware as a unit.  This aggregation reduces the number of interrupts
200 * to the host at the expense of increased latency (for all but the last
201 * operation).  For network traffic setting this to one yields the highest
202 * performance but at the expense of more interrupt processing.
203 */
204static	int ubsec_maxaggr = 1;
205SYSCTL_INT(_hw_ubsec, OID_AUTO, maxaggr, CTLFLAG_RW, &ubsec_maxaggr,
206	    0, "max ops to aggregate under one interrupt");
207
208static int
209ubsec_probe(device_t dev)
210{
211	if (pci_get_vendor(dev) == PCI_VENDOR_BLUESTEEL &&
212	    (pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5501 ||
213	     pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5601))
214		return (0);
215	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
216	    (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5805 ||
217	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5820 ||
218	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5821 ||
219	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5822))
220		return (0);
221	return (ENXIO);
222}
223
224static const char*
225ubsec_partname(struct ubsec_softc *sc)
226{
227	/* XXX sprintf numbers when not decoded */
228	switch (pci_get_vendor(sc->sc_dev)) {
229	case PCI_VENDOR_BROADCOM:
230		switch (pci_get_device(sc->sc_dev)) {
231		case PCI_PRODUCT_BROADCOM_5805:	return "Broadcom 5805";
232		case PCI_PRODUCT_BROADCOM_5820:	return "Broadcom 5820";
233		case PCI_PRODUCT_BROADCOM_5821:	return "Broadcom 5821";
234		case PCI_PRODUCT_BROADCOM_5822:	return "Broadcom 5822";
235		}
236		return "Broadcom unknown-part";
237	case PCI_VENDOR_BLUESTEEL:
238		switch (pci_get_device(sc->sc_dev)) {
239		case PCI_PRODUCT_BLUESTEEL_5601: return "Bluesteel 5601";
240		}
241		return "Bluesteel unknown-part";
242	}
243	return "Unknown-vendor unknown-part";
244}
245
246static int
247ubsec_attach(device_t dev)
248{
249	struct ubsec_softc *sc = device_get_softc(dev);
250	struct ubsec_dma *dmap;
251	u_int32_t cmd, i;
252	int rid;
253
254	KASSERT(sc != NULL, ("ubsec_attach: null software carrier!"));
255	bzero(sc, sizeof (*sc));
256	sc->sc_dev = dev;
257
258	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), "crypto driver", MTX_DEF);
259
260	SIMPLEQ_INIT(&sc->sc_queue);
261	SIMPLEQ_INIT(&sc->sc_qchip);
262	SIMPLEQ_INIT(&sc->sc_queue2);
263	SIMPLEQ_INIT(&sc->sc_qchip2);
264	SIMPLEQ_INIT(&sc->sc_q2free);
265
266	/* XXX handle power management */
267
268	sc->sc_statmask = BS_STAT_MCR1_DONE | BS_STAT_DMAERR;
269
270	if (pci_get_vendor(dev) == PCI_VENDOR_BLUESTEEL &&
271	    pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5601)
272		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG;
273
274	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
275	    pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5805)
276		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG;
277
278	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
279	    pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5820)
280		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG |
281		    UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY;
282
283	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
284	    (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5821 ||
285	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5822)) {
286		/* NB: the 5821/5822 defines some additional status bits */
287		sc->sc_statmask |= BS_STAT_MCR1_ALLEMPTY |
288		    BS_STAT_MCR2_ALLEMPTY;
289		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG |
290		    UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY;
291	}
292
293	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
294	cmd |= PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN;
295	pci_write_config(dev, PCIR_COMMAND, cmd, 4);
296	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
297
298	if (!(cmd & PCIM_CMD_MEMEN)) {
299		device_printf(dev, "failed to enable memory mapping\n");
300		goto bad;
301	}
302
303	if (!(cmd & PCIM_CMD_BUSMASTEREN)) {
304		device_printf(dev, "failed to enable bus mastering\n");
305		goto bad;
306	}
307
308	/*
309	 * Setup memory-mapping of PCI registers.
310	 */
311	rid = BS_BAR;
312	sc->sc_sr = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
313				       0, ~0, 1, RF_ACTIVE);
314	if (sc->sc_sr == NULL) {
315		device_printf(dev, "cannot map register space\n");
316		goto bad;
317	}
318	sc->sc_st = rman_get_bustag(sc->sc_sr);
319	sc->sc_sh = rman_get_bushandle(sc->sc_sr);
320
321	/*
322	 * Arrange interrupt line.
323	 */
324	rid = 0;
325	sc->sc_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
326					0, ~0, 1, RF_SHAREABLE|RF_ACTIVE);
327	if (sc->sc_irq == NULL) {
328		device_printf(dev, "could not map interrupt\n");
329		goto bad1;
330	}
331	/*
332	 * NB: Network code assumes we are blocked with splimp()
333	 *     so make sure the IRQ is mapped appropriately.
334	 */
335	if (bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET,
336			   ubsec_intr, sc, &sc->sc_ih)) {
337		device_printf(dev, "could not establish interrupt\n");
338		goto bad2;
339	}
340
341	sc->sc_cid = crypto_get_driverid(0);
342	if (sc->sc_cid < 0) {
343		device_printf(dev, "could not get crypto driver id\n");
344		goto bad3;
345	}
346
347	/*
348	 * Setup DMA descriptor area.
349	 */
350	if (bus_dma_tag_create(NULL,			/* parent */
351			       1, 0,			/* alignment, bounds */
352			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
353			       BUS_SPACE_MAXADDR,	/* highaddr */
354			       NULL, NULL,		/* filter, filterarg */
355			       0x3ffff,			/* maxsize */
356			       UBS_MAX_SCATTER,		/* nsegments */
357			       0xffff,			/* maxsegsize */
358			       BUS_DMA_ALLOCNOW,	/* flags */
359			       &sc->sc_dmat)) {
360		device_printf(dev, "cannot allocate DMA tag\n");
361		goto bad4;
362	}
363	SIMPLEQ_INIT(&sc->sc_freequeue);
364	dmap = sc->sc_dmaa;
365	for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
366		struct ubsec_q *q;
367
368		q = (struct ubsec_q *)malloc(sizeof(struct ubsec_q),
369		    M_DEVBUF, M_NOWAIT);
370		if (q == NULL) {
371			device_printf(dev, "cannot allocate queue buffers\n");
372			break;
373		}
374
375		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk),
376		    &dmap->d_alloc, 0)) {
377			device_printf(dev, "cannot allocate dma buffers\n");
378			free(q, M_DEVBUF);
379			break;
380		}
381		dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
382
383		q->q_dma = dmap;
384		sc->sc_queuea[i] = q;
385
386		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
387	}
388
389	device_printf(sc->sc_dev, "%s\n", ubsec_partname(sc));
390
391	crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0,
392	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
393	crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0,
394	     ubsec_newsession, ubsec_freesession, ubsec_process, sc);
395	crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0,
396	     ubsec_newsession, ubsec_freesession, ubsec_process, sc);
397	crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0,
398	     ubsec_newsession, ubsec_freesession, ubsec_process, sc);
399
400	/*
401	 * Reset Broadcom chip
402	 */
403	ubsec_reset_board(sc);
404
405	/*
406	 * Init Broadcom specific PCI settings
407	 */
408	ubsec_init_pciregs(dev);
409
410	/*
411	 * Init Broadcom chip
412	 */
413	ubsec_init_board(sc);
414
415#ifndef UBSEC_NO_RNG
416	if (sc->sc_flags & UBS_FLAGS_RNG) {
417		sc->sc_statmask |= BS_STAT_MCR2_DONE;
418
419		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
420		    &sc->sc_rng.rng_q.q_mcr, 0))
421			goto skip_rng;
422
423		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass),
424		    &sc->sc_rng.rng_q.q_ctx, 0)) {
425			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
426			goto skip_rng;
427		}
428
429		if (ubsec_dma_malloc(sc, sizeof(u_int32_t) *
430		    UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) {
431			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
432			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
433			goto skip_rng;
434		}
435
436		if (hz >= 100)
437			sc->sc_rnghz = hz / 100;
438		else
439			sc->sc_rnghz = 1;
440		/* NB: 1 means the callout runs w/o Giant locked */
441		callout_init(&sc->sc_rngto, 1);
442		callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
443skip_rng:
444	;
445	}
446#endif /* UBSEC_NO_RNG */
447
448	if (sc->sc_flags & UBS_FLAGS_KEY) {
449		sc->sc_statmask |= BS_STAT_MCR2_DONE;
450
451		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0,
452			ubsec_kprocess, sc);
453#if 0
454		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0,
455			ubsec_kprocess, sc);
456#endif
457	}
458	return (0);
459bad4:
460	crypto_unregister_all(sc->sc_cid);
461bad3:
462	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
463bad2:
464	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
465bad1:
466	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
467bad:
468	mtx_destroy(&sc->sc_mtx);
469	return (ENXIO);
470}
471
472/*
473 * Detach a device that successfully probed.
474 */
475static int
476ubsec_detach(device_t dev)
477{
478	struct ubsec_softc *sc = device_get_softc(dev);
479
480	KASSERT(sc != NULL, ("ubsec_detach: null software carrier"));
481
482	/* XXX wait/abort active ops */
483
484	UBSEC_LOCK(sc);
485
486	callout_stop(&sc->sc_rngto);
487
488	crypto_unregister_all(sc->sc_cid);
489
490	while (!SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
491		struct ubsec_q *q;
492
493		q = SIMPLEQ_FIRST(&sc->sc_freequeue);
494		SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, q, q_next);
495		ubsec_dma_free(sc, &q->q_dma->d_alloc);
496		free(q, M_DEVBUF);
497	}
498#ifndef UBSEC_NO_RNG
499	if (sc->sc_flags & UBS_FLAGS_RNG) {
500		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
501		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
502		ubsec_dma_free(sc, &sc->sc_rng.rng_buf);
503	}
504#endif /* UBSEC_NO_RNG */
505
506	bus_generic_detach(dev);
507	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
508	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
509
510	bus_dma_tag_destroy(sc->sc_dmat);
511	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
512
513	UBSEC_UNLOCK(sc);
514
515	mtx_destroy(&sc->sc_mtx);
516
517	return (0);
518}
519
520/*
521 * Stop all chip i/o so that the kernel's probe routines don't
522 * get confused by errant DMAs when rebooting.
523 */
524static void
525ubsec_shutdown(device_t dev)
526{
527#ifdef notyet
528	ubsec_stop(device_get_softc(dev));
529#endif
530}
531
532/*
533 * Device suspend routine.
534 */
535static int
536ubsec_suspend(device_t dev)
537{
538	struct ubsec_softc *sc = device_get_softc(dev);
539
540	KASSERT(sc != NULL, ("ubsec_suspend: null software carrier"));
541#ifdef notyet
542	/* XXX stop the device and save PCI settings */
543#endif
544	sc->sc_suspended = 1;
545
546	return (0);
547}
548
549static int
550ubsec_resume(device_t dev)
551{
552	struct ubsec_softc *sc = device_get_softc(dev);
553
554	KASSERT(sc != NULL, ("ubsec_resume: null software carrier"));
555#ifdef notyet
556	/* XXX retore PCI settings and start the device */
557#endif
558	sc->sc_suspended = 0;
559	return (0);
560}
561
562/*
563 * UBSEC Interrupt routine
564 */
565static void
566ubsec_intr(void *arg)
567{
568	struct ubsec_softc *sc = arg;
569	volatile u_int32_t stat;
570	struct ubsec_q *q;
571	struct ubsec_dma *dmap;
572	int npkts = 0, i;
573
574	UBSEC_LOCK(sc);
575
576	stat = READ_REG(sc, BS_STAT);
577	stat &= sc->sc_statmask;
578	if (stat == 0) {
579		UBSEC_UNLOCK(sc);
580		return;
581	}
582
583	WRITE_REG(sc, BS_STAT, stat);		/* IACK */
584
585	/*
586	 * Check to see if we have any packets waiting for us
587	 */
588	if ((stat & BS_STAT_MCR1_DONE)) {
589		while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
590			q = SIMPLEQ_FIRST(&sc->sc_qchip);
591			dmap = q->q_dma;
592
593			if ((dmap->d_dma->d_mcr.mcr_flags & htole16(UBS_MCR_DONE)) == 0)
594				break;
595
596			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q, q_next);
597
598			npkts = q->q_nstacked_mcrs;
599			sc->sc_nqchip -= 1+npkts;
600			/*
601			 * search for further sc_qchip ubsec_q's that share
602			 * the same MCR, and complete them too, they must be
603			 * at the top.
604			 */
605			for (i = 0; i < npkts; i++) {
606				if(q->q_stacked_mcr[i]) {
607					ubsec_callback(sc, q->q_stacked_mcr[i]);
608					ubsecstats.hst_opackets++;
609				} else {
610					break;
611				}
612			}
613			ubsec_callback(sc, q);
614			ubsecstats.hst_opackets++;
615		}
616
617		/*
618		 * Don't send any more packet to chip if there has been
619		 * a DMAERR.
620		 */
621		if (!(stat & BS_STAT_DMAERR))
622			ubsec_feed(sc);
623	}
624
625	/*
626	 * Check to see if we have any key setups/rng's waiting for us
627	 */
628	if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) &&
629	    (stat & BS_STAT_MCR2_DONE)) {
630		struct ubsec_q2 *q2;
631		struct ubsec_mcr *mcr;
632
633		while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) {
634			q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
635
636			ubsec_dma_sync(&q2->q_mcr,
637			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
638
639			mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
640			if ((mcr->mcr_flags & htole16(UBS_MCR_DONE)) == 0) {
641				ubsec_dma_sync(&q2->q_mcr,
642				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
643				break;
644			}
645			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, q2, q_next);
646			ubsec_callback2(sc, q2);
647			/*
648			 * Don't send any more packet to chip if there has been
649			 * a DMAERR.
650			 */
651			if (!(stat & BS_STAT_DMAERR))
652				ubsec_feed2(sc);
653		}
654	}
655
656	/*
657	 * Check to see if we got any DMA Error
658	 */
659	if (stat & BS_STAT_DMAERR) {
660#ifdef UBSEC_DEBUG
661		if (ubsec_debug) {
662			volatile u_int32_t a = READ_REG(sc, BS_ERR);
663
664			printf("dmaerr %s@%08x\n",
665			    (a & BS_ERR_READ) ? "read" : "write",
666			    a & BS_ERR_ADDR);
667		}
668#endif /* UBSEC_DEBUG */
669		ubsecstats.hst_dmaerr++;
670		ubsec_totalreset(sc);
671		ubsec_feed(sc);
672	}
673
674	if (sc->sc_needwakeup) {		/* XXX check high watermark */
675		int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
676#ifdef UBSEC_DEBUG
677		if (ubsec_debug)
678			device_printf(sc->sc_dev, "wakeup crypto (%x)\n",
679				sc->sc_needwakeup);
680#endif /* UBSEC_DEBUG */
681		sc->sc_needwakeup &= ~wakeup;
682		crypto_unblock(sc->sc_cid, wakeup);
683	}
684
685	UBSEC_UNLOCK(sc);
686}
687
688/*
689 * ubsec_feed() - aggregate and post requests to chip
690 */
691static int
692ubsec_feed(struct ubsec_softc *sc)
693{
694	struct ubsec_q *q, *q2;
695	int npkts, i;
696	void *v;
697	u_int32_t stat;
698
699	npkts = sc->sc_nqueue;
700	if (npkts > ubsecstats.hst_maxqueue)
701		ubsecstats.hst_maxqueue = npkts;
702	/*
703	 * Decide how many ops to combine in a single MCR.  We cannot
704	 * aggregate more than UBS_MAX_AGGR because this is the number
705	 * of slots defined in the data structure.  Otherwise we clamp
706	 * based on the tunable parameter ubsec_maxaggr.  Note that
707	 * aggregation can happen in two ways: either by batching ops
708	 * from above or because the h/w backs up and throttles us.
709	 * Aggregating ops reduces the number of interrupts to the host
710	 * but also (potentially) increases the latency for processing
711	 * completed ops as we only get an interrupt when all aggregated
712	 * ops have completed.
713	 */
714	if (npkts > UBS_MAX_AGGR)
715		npkts = UBS_MAX_AGGR;
716	if (npkts > ubsec_maxaggr)
717		npkts = ubsec_maxaggr;
718	if (npkts > ubsecstats.hst_maxbatch)
719		ubsecstats.hst_maxbatch = npkts;
720	if (npkts < 2)
721		goto feed1;
722	ubsecstats.hst_totbatch += npkts-1;
723
724	if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
725		if (stat & BS_STAT_DMAERR) {
726			ubsec_totalreset(sc);
727			ubsecstats.hst_dmaerr++;
728		} else
729			ubsecstats.hst_mcr1full++;
730		return (0);
731	}
732
733#ifdef UBSEC_DEBUG
734	if (ubsec_debug)
735		printf("merging %d records\n", npkts);
736#endif /* UBSEC_DEBUG */
737
738	q = SIMPLEQ_FIRST(&sc->sc_queue);
739	SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q, q_next);
740	--sc->sc_nqueue;
741
742	bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_PREWRITE);
743	if (q->q_dst_map != NULL)
744		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map, BUS_DMASYNC_PREREAD);
745
746	q->q_nstacked_mcrs = npkts - 1;		/* Number of packets stacked */
747
748	for (i = 0; i < q->q_nstacked_mcrs; i++) {
749		q2 = SIMPLEQ_FIRST(&sc->sc_queue);
750		bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
751		    BUS_DMASYNC_PREWRITE);
752		if (q2->q_dst_map != NULL)
753			bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
754			    BUS_DMASYNC_PREREAD);
755		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q2, q_next);
756		--sc->sc_nqueue;
757
758		v = (void*)(((char *)&q2->q_dma->d_dma->d_mcr) + sizeof(struct ubsec_mcr) -
759		    sizeof(struct ubsec_mcr_add));
760		bcopy(v, &q->q_dma->d_dma->d_mcradd[i], sizeof(struct ubsec_mcr_add));
761		q->q_stacked_mcr[i] = q2;
762	}
763	q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
764	SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
765	sc->sc_nqchip += npkts;
766	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
767		ubsecstats.hst_maxqchip = sc->sc_nqchip;
768	ubsec_dma_sync(&q->q_dma->d_alloc,
769	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
770	WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
771	    offsetof(struct ubsec_dmachunk, d_mcr));
772	return (0);
773
774feed1:
775	while (!SIMPLEQ_EMPTY(&sc->sc_queue)) {
776		if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
777			if (stat & BS_STAT_DMAERR) {
778				ubsec_totalreset(sc);
779				ubsecstats.hst_dmaerr++;
780			} else
781				ubsecstats.hst_mcr1full++;
782			break;
783		}
784
785		q = SIMPLEQ_FIRST(&sc->sc_queue);
786
787		bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
788		    BUS_DMASYNC_PREWRITE);
789		if (q->q_dst_map != NULL)
790			bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
791			    BUS_DMASYNC_PREREAD);
792		ubsec_dma_sync(&q->q_dma->d_alloc,
793		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
794
795		WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
796		    offsetof(struct ubsec_dmachunk, d_mcr));
797#ifdef UBSEC_DEBUG
798		if (ubsec_debug)
799			printf("feed: q->chip %p %08x stat %08x\n",
800			      q, (u_int32_t)vtophys(&q->q_dma->d_dma->d_mcr),
801			      stat);
802#endif /* UBSEC_DEBUG */
803		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q, q_next);
804		--sc->sc_nqueue;
805		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
806		sc->sc_nqchip++;
807	}
808	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
809		ubsecstats.hst_maxqchip = sc->sc_nqchip;
810	return (0);
811}
812
813/*
814 * Allocate a new 'session' and return an encoded session id.  'sidp'
815 * contains our registration id, and should contain an encoded session
816 * id on successful allocation.
817 */
818static int
819ubsec_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri)
820{
821	struct cryptoini *c, *encini = NULL, *macini = NULL;
822	struct ubsec_softc *sc = arg;
823	struct ubsec_session *ses = NULL;
824	MD5_CTX md5ctx;
825	SHA1_CTX sha1ctx;
826	int i, sesn;
827
828	KASSERT(sc != NULL, ("ubsec_newsession: null softc"));
829	if (sidp == NULL || cri == NULL || sc == NULL)
830		return (EINVAL);
831
832	for (c = cri; c != NULL; c = c->cri_next) {
833		if (c->cri_alg == CRYPTO_MD5_HMAC ||
834		    c->cri_alg == CRYPTO_SHA1_HMAC) {
835			if (macini)
836				return (EINVAL);
837			macini = c;
838		} else if (c->cri_alg == CRYPTO_DES_CBC ||
839		    c->cri_alg == CRYPTO_3DES_CBC) {
840			if (encini)
841				return (EINVAL);
842			encini = c;
843		} else
844			return (EINVAL);
845	}
846	if (encini == NULL && macini == NULL)
847		return (EINVAL);
848
849	if (sc->sc_sessions == NULL) {
850		ses = sc->sc_sessions = (struct ubsec_session *)malloc(
851		    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
852		if (ses == NULL)
853			return (ENOMEM);
854		sesn = 0;
855		sc->sc_nsessions = 1;
856	} else {
857		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
858			if (sc->sc_sessions[sesn].ses_used == 0) {
859				ses = &sc->sc_sessions[sesn];
860				break;
861			}
862		}
863
864		if (ses == NULL) {
865			sesn = sc->sc_nsessions;
866			ses = (struct ubsec_session *)malloc((sesn + 1) *
867			    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
868			if (ses == NULL)
869				return (ENOMEM);
870			bcopy(sc->sc_sessions, ses, sesn *
871			    sizeof(struct ubsec_session));
872			bzero(sc->sc_sessions, sesn *
873			    sizeof(struct ubsec_session));
874			free(sc->sc_sessions, M_DEVBUF);
875			sc->sc_sessions = ses;
876			ses = &sc->sc_sessions[sesn];
877			sc->sc_nsessions++;
878		}
879	}
880
881	bzero(ses, sizeof(struct ubsec_session));
882	ses->ses_used = 1;
883	if (encini) {
884		/* get an IV, network byte order */
885		/* XXX may read fewer than requested */
886		read_random(ses->ses_iv, sizeof(ses->ses_iv));
887
888		/* Go ahead and compute key in ubsec's byte order */
889		if (encini->cri_alg == CRYPTO_DES_CBC) {
890			bcopy(encini->cri_key, &ses->ses_deskey[0], 8);
891			bcopy(encini->cri_key, &ses->ses_deskey[2], 8);
892			bcopy(encini->cri_key, &ses->ses_deskey[4], 8);
893		} else
894			bcopy(encini->cri_key, ses->ses_deskey, 24);
895
896		SWAP32(ses->ses_deskey[0]);
897		SWAP32(ses->ses_deskey[1]);
898		SWAP32(ses->ses_deskey[2]);
899		SWAP32(ses->ses_deskey[3]);
900		SWAP32(ses->ses_deskey[4]);
901		SWAP32(ses->ses_deskey[5]);
902	}
903
904	if (macini) {
905		for (i = 0; i < macini->cri_klen / 8; i++)
906			macini->cri_key[i] ^= HMAC_IPAD_VAL;
907
908		if (macini->cri_alg == CRYPTO_MD5_HMAC) {
909			MD5Init(&md5ctx);
910			MD5Update(&md5ctx, macini->cri_key,
911			    macini->cri_klen / 8);
912			MD5Update(&md5ctx, hmac_ipad_buffer,
913			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
914			bcopy(md5ctx.state, ses->ses_hminner,
915			    sizeof(md5ctx.state));
916		} else {
917			SHA1Init(&sha1ctx);
918			SHA1Update(&sha1ctx, macini->cri_key,
919			    macini->cri_klen / 8);
920			SHA1Update(&sha1ctx, hmac_ipad_buffer,
921			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
922			bcopy(sha1ctx.h.b32, ses->ses_hminner,
923			    sizeof(sha1ctx.h.b32));
924		}
925
926		for (i = 0; i < macini->cri_klen / 8; i++)
927			macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
928
929		if (macini->cri_alg == CRYPTO_MD5_HMAC) {
930			MD5Init(&md5ctx);
931			MD5Update(&md5ctx, macini->cri_key,
932			    macini->cri_klen / 8);
933			MD5Update(&md5ctx, hmac_opad_buffer,
934			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
935			bcopy(md5ctx.state, ses->ses_hmouter,
936			    sizeof(md5ctx.state));
937		} else {
938			SHA1Init(&sha1ctx);
939			SHA1Update(&sha1ctx, macini->cri_key,
940			    macini->cri_klen / 8);
941			SHA1Update(&sha1ctx, hmac_opad_buffer,
942			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
943			bcopy(sha1ctx.h.b32, ses->ses_hmouter,
944			    sizeof(sha1ctx.h.b32));
945		}
946
947		for (i = 0; i < macini->cri_klen / 8; i++)
948			macini->cri_key[i] ^= HMAC_OPAD_VAL;
949	}
950
951	*sidp = UBSEC_SID(device_get_unit(sc->sc_dev), sesn);
952	return (0);
953}
954
955/*
956 * Deallocate a session.
957 */
958static int
959ubsec_freesession(void *arg, u_int64_t tid)
960{
961	struct ubsec_softc *sc = arg;
962	int session;
963	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
964
965	KASSERT(sc != NULL, ("ubsec_freesession: null softc"));
966	if (sc == NULL)
967		return (EINVAL);
968
969	session = UBSEC_SESSION(sid);
970	if (session >= sc->sc_nsessions)
971		return (EINVAL);
972
973	bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
974	return (0);
975}
976
977static void
978ubsec_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
979{
980	struct ubsec_operand *op = arg;
981
982	KASSERT(nsegs <= UBS_MAX_SCATTER,
983		("Too many DMA segments returned when mapping operand"));
984#ifdef UBSEC_DEBUG
985	if (ubsec_debug)
986		printf("ubsec_op_cb: mapsize %u nsegs %d\n",
987			(u_int) mapsize, nsegs);
988#endif
989	op->mapsize = mapsize;
990	op->nsegs = nsegs;
991	bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
992}
993
994static int
995ubsec_process(void *arg, struct cryptop *crp, int hint)
996{
997	struct ubsec_q *q = NULL;
998	int err = 0, i, j, nicealign;
999	struct ubsec_softc *sc = arg;
1000	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
1001	int encoffset = 0, macoffset = 0, cpskip, cpoffset;
1002	int sskip, dskip, stheend, dtheend;
1003	int16_t coffset;
1004	struct ubsec_session *ses;
1005	struct ubsec_pktctx ctx;
1006	struct ubsec_dma *dmap = NULL;
1007
1008	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
1009		ubsecstats.hst_invalid++;
1010		return (EINVAL);
1011	}
1012	if (UBSEC_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
1013		ubsecstats.hst_badsession++;
1014		return (EINVAL);
1015	}
1016
1017	UBSEC_LOCK(sc);
1018
1019	if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
1020		ubsecstats.hst_queuefull++;
1021		sc->sc_needwakeup |= CRYPTO_SYMQ;
1022		UBSEC_UNLOCK(sc);
1023		return (ERESTART);
1024	}
1025	q = SIMPLEQ_FIRST(&sc->sc_freequeue);
1026	SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, q, q_next);
1027	UBSEC_UNLOCK(sc);
1028
1029	dmap = q->q_dma; /* Save dma pointer */
1030	bzero(q, sizeof(struct ubsec_q));
1031	bzero(&ctx, sizeof(ctx));
1032
1033	q->q_sesn = UBSEC_SESSION(crp->crp_sid);
1034	q->q_dma = dmap;
1035	ses = &sc->sc_sessions[q->q_sesn];
1036
1037	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1038		q->q_src_m = (struct mbuf *)crp->crp_buf;
1039		q->q_dst_m = (struct mbuf *)crp->crp_buf;
1040	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1041		q->q_src_io = (struct uio *)crp->crp_buf;
1042		q->q_dst_io = (struct uio *)crp->crp_buf;
1043	} else {
1044		ubsecstats.hst_badflags++;
1045		err = EINVAL;
1046		goto errout;	/* XXX we don't handle contiguous blocks! */
1047	}
1048
1049	bzero(&dmap->d_dma->d_mcr, sizeof(struct ubsec_mcr));
1050
1051	dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
1052	dmap->d_dma->d_mcr.mcr_flags = 0;
1053	q->q_crp = crp;
1054
1055	crd1 = crp->crp_desc;
1056	if (crd1 == NULL) {
1057		ubsecstats.hst_nodesc++;
1058		err = EINVAL;
1059		goto errout;
1060	}
1061	crd2 = crd1->crd_next;
1062
1063	if (crd2 == NULL) {
1064		if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
1065		    crd1->crd_alg == CRYPTO_SHA1_HMAC) {
1066			maccrd = crd1;
1067			enccrd = NULL;
1068		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
1069		    crd1->crd_alg == CRYPTO_3DES_CBC) {
1070			maccrd = NULL;
1071			enccrd = crd1;
1072		} else {
1073			ubsecstats.hst_badalg++;
1074			err = EINVAL;
1075			goto errout;
1076		}
1077	} else {
1078		if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
1079		    crd1->crd_alg == CRYPTO_SHA1_HMAC) &&
1080		    (crd2->crd_alg == CRYPTO_DES_CBC ||
1081			crd2->crd_alg == CRYPTO_3DES_CBC) &&
1082		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
1083			maccrd = crd1;
1084			enccrd = crd2;
1085		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
1086		    crd1->crd_alg == CRYPTO_3DES_CBC) &&
1087		    (crd2->crd_alg == CRYPTO_MD5_HMAC ||
1088			crd2->crd_alg == CRYPTO_SHA1_HMAC) &&
1089		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
1090			enccrd = crd1;
1091			maccrd = crd2;
1092		} else {
1093			/*
1094			 * We cannot order the ubsec as requested
1095			 */
1096			ubsecstats.hst_badalg++;
1097			err = EINVAL;
1098			goto errout;
1099		}
1100	}
1101
1102	if (enccrd) {
1103		encoffset = enccrd->crd_skip;
1104		ctx.pc_flags |= htole16(UBS_PKTCTX_ENC_3DES);
1105
1106		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1107			q->q_flags |= UBSEC_QFLAGS_COPYOUTIV;
1108
1109			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1110				bcopy(enccrd->crd_iv, ctx.pc_iv, 8);
1111			else {
1112				ctx.pc_iv[0] = ses->ses_iv[0];
1113				ctx.pc_iv[1] = ses->ses_iv[1];
1114			}
1115
1116			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1117				if (crp->crp_flags & CRYPTO_F_IMBUF)
1118					m_copyback(q->q_src_m,
1119					    enccrd->crd_inject,
1120					    8, (caddr_t)ctx.pc_iv);
1121				else if (crp->crp_flags & CRYPTO_F_IOV)
1122					cuio_copyback(q->q_src_io,
1123					    enccrd->crd_inject,
1124					    8, (caddr_t)ctx.pc_iv);
1125			}
1126		} else {
1127			ctx.pc_flags |= htole16(UBS_PKTCTX_INBOUND);
1128
1129			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1130				bcopy(enccrd->crd_iv, ctx.pc_iv, 8);
1131			else if (crp->crp_flags & CRYPTO_F_IMBUF)
1132				m_copydata(q->q_src_m, enccrd->crd_inject,
1133				    8, (caddr_t)ctx.pc_iv);
1134			else if (crp->crp_flags & CRYPTO_F_IOV)
1135				cuio_copydata(q->q_src_io,
1136				    enccrd->crd_inject, 8,
1137				    (caddr_t)ctx.pc_iv);
1138		}
1139
1140		ctx.pc_deskey[0] = ses->ses_deskey[0];
1141		ctx.pc_deskey[1] = ses->ses_deskey[1];
1142		ctx.pc_deskey[2] = ses->ses_deskey[2];
1143		ctx.pc_deskey[3] = ses->ses_deskey[3];
1144		ctx.pc_deskey[4] = ses->ses_deskey[4];
1145		ctx.pc_deskey[5] = ses->ses_deskey[5];
1146		SWAP32(ctx.pc_iv[0]);
1147		SWAP32(ctx.pc_iv[1]);
1148	}
1149
1150	if (maccrd) {
1151		macoffset = maccrd->crd_skip;
1152
1153		if (maccrd->crd_alg == CRYPTO_MD5_HMAC)
1154			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_MD5);
1155		else
1156			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
1157
1158		for (i = 0; i < 5; i++) {
1159			ctx.pc_hminner[i] = ses->ses_hminner[i];
1160			ctx.pc_hmouter[i] = ses->ses_hmouter[i];
1161
1162			HTOLE32(ctx.pc_hminner[i]);
1163			HTOLE32(ctx.pc_hmouter[i]);
1164		}
1165	}
1166
1167	if (enccrd && maccrd) {
1168		/*
1169		 * ubsec cannot handle packets where the end of encryption
1170		 * and authentication are not the same, or where the
1171		 * encrypted part begins before the authenticated part.
1172		 */
1173		if ((encoffset + enccrd->crd_len) !=
1174		    (macoffset + maccrd->crd_len)) {
1175			ubsecstats.hst_lenmismatch++;
1176			err = EINVAL;
1177			goto errout;
1178		}
1179		if (enccrd->crd_skip < maccrd->crd_skip) {
1180			ubsecstats.hst_skipmismatch++;
1181			err = EINVAL;
1182			goto errout;
1183		}
1184		sskip = maccrd->crd_skip;
1185		cpskip = dskip = enccrd->crd_skip;
1186		stheend = maccrd->crd_len;
1187		dtheend = enccrd->crd_len;
1188		coffset = enccrd->crd_skip - maccrd->crd_skip;
1189		cpoffset = cpskip + dtheend;
1190#ifdef UBSEC_DEBUG
1191		if (ubsec_debug) {
1192			printf("mac: skip %d, len %d, inject %d\n",
1193			    maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject);
1194			printf("enc: skip %d, len %d, inject %d\n",
1195			    enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject);
1196			printf("src: skip %d, len %d\n", sskip, stheend);
1197			printf("dst: skip %d, len %d\n", dskip, dtheend);
1198			printf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
1199			    coffset, stheend, cpskip, cpoffset);
1200		}
1201#endif
1202	} else {
1203		cpskip = dskip = sskip = macoffset + encoffset;
1204		dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
1205		cpoffset = cpskip + dtheend;
1206		coffset = 0;
1207	}
1208	ctx.pc_offset = htole16(coffset >> 2);
1209
1210	if (bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &q->q_src_map)) {
1211		ubsecstats.hst_nomap++;
1212		err = ENOMEM;
1213		goto errout;
1214	}
1215	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1216		if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
1217		    q->q_src_m, ubsec_op_cb, &q->q_src, BUS_DMA_NOWAIT) != 0) {
1218			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1219			q->q_src_map = NULL;
1220			ubsecstats.hst_noload++;
1221			err = ENOMEM;
1222			goto errout;
1223		}
1224	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1225		if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
1226		    q->q_src_io, ubsec_op_cb, &q->q_src, BUS_DMA_NOWAIT) != 0) {
1227			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1228			q->q_src_map = NULL;
1229			ubsecstats.hst_noload++;
1230			err = ENOMEM;
1231			goto errout;
1232		}
1233	}
1234	nicealign = ubsec_dmamap_aligned(&q->q_src);
1235
1236	dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
1237
1238#ifdef UBSEC_DEBUG
1239	if (ubsec_debug)
1240		printf("src skip: %d nicealign: %u\n", sskip, nicealign);
1241#endif
1242	for (i = j = 0; i < q->q_src_nsegs; i++) {
1243		struct ubsec_pktbuf *pb;
1244		bus_size_t packl = q->q_src_segs[i].ds_len;
1245		bus_addr_t packp = q->q_src_segs[i].ds_addr;
1246
1247		if (sskip >= packl) {
1248			sskip -= packl;
1249			continue;
1250		}
1251
1252		packl -= sskip;
1253		packp += sskip;
1254		sskip = 0;
1255
1256		if (packl > 0xfffc) {
1257			err = EIO;
1258			goto errout;
1259		}
1260
1261		if (j == 0)
1262			pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
1263		else
1264			pb = &dmap->d_dma->d_sbuf[j - 1];
1265
1266		pb->pb_addr = htole32(packp);
1267
1268		if (stheend) {
1269			if (packl > stheend) {
1270				pb->pb_len = htole32(stheend);
1271				stheend = 0;
1272			} else {
1273				pb->pb_len = htole32(packl);
1274				stheend -= packl;
1275			}
1276		} else
1277			pb->pb_len = htole32(packl);
1278
1279		if ((i + 1) == q->q_src_nsegs)
1280			pb->pb_next = 0;
1281		else
1282			pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1283			    offsetof(struct ubsec_dmachunk, d_sbuf[j]));
1284		j++;
1285	}
1286
1287	if (enccrd == NULL && maccrd != NULL) {
1288		dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
1289		dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
1290		dmap->d_dma->d_mcr.mcr_opktbuf.pb_next = htole32(dmap->d_alloc.dma_paddr +
1291		    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1292#ifdef UBSEC_DEBUG
1293		if (ubsec_debug)
1294			printf("opkt: %x %x %x\n",
1295			    dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
1296			    dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
1297			    dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
1298#endif
1299	} else {
1300		if (crp->crp_flags & CRYPTO_F_IOV) {
1301			if (!nicealign) {
1302				ubsecstats.hst_iovmisaligned++;
1303				err = EINVAL;
1304				goto errout;
1305			}
1306			if (bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1307			     &q->q_dst_map)) {
1308				ubsecstats.hst_nomap++;
1309				err = ENOMEM;
1310				goto errout;
1311			}
1312			if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
1313			    q->q_dst_io, ubsec_op_cb, &q->q_dst, BUS_DMA_NOWAIT) != 0) {
1314				bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1315				q->q_dst_map = NULL;
1316				ubsecstats.hst_noload++;
1317				err = ENOMEM;
1318				goto errout;
1319			}
1320		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1321			if (nicealign) {
1322				q->q_dst = q->q_src;
1323			} else {
1324				int totlen, len;
1325				struct mbuf *m, *top, **mp;
1326
1327				ubsecstats.hst_unaligned++;
1328				totlen = q->q_src_mapsize;
1329				if (q->q_src_m->m_flags & M_PKTHDR) {
1330					len = MHLEN;
1331					MGETHDR(m, M_NOWAIT, MT_DATA);
1332					if (m && !m_dup_pkthdr(m, q->q_src_m, M_NOWAIT)) {
1333						m_free(m);
1334						m = NULL;
1335					}
1336				} else {
1337					len = MLEN;
1338					MGET(m, M_NOWAIT, MT_DATA);
1339				}
1340				if (m == NULL) {
1341					ubsecstats.hst_nombuf++;
1342					err = sc->sc_nqueue ? ERESTART : ENOMEM;
1343					goto errout;
1344				}
1345				if (totlen >= MINCLSIZE) {
1346					MCLGET(m, M_NOWAIT);
1347					if ((m->m_flags & M_EXT) == 0) {
1348						m_free(m);
1349						ubsecstats.hst_nomcl++;
1350						err = sc->sc_nqueue ? ERESTART : ENOMEM;
1351						goto errout;
1352					}
1353					len = MCLBYTES;
1354				}
1355				m->m_len = len;
1356				top = NULL;
1357				mp = &top;
1358
1359				while (totlen > 0) {
1360					if (top) {
1361						MGET(m, M_NOWAIT, MT_DATA);
1362						if (m == NULL) {
1363							m_freem(top);
1364							ubsecstats.hst_nombuf++;
1365							err = sc->sc_nqueue ? ERESTART : ENOMEM;
1366							goto errout;
1367						}
1368						len = MLEN;
1369					}
1370					if (top && totlen >= MINCLSIZE) {
1371						MCLGET(m, M_NOWAIT);
1372						if ((m->m_flags & M_EXT) == 0) {
1373							*mp = m;
1374							m_freem(top);
1375							ubsecstats.hst_nomcl++;
1376							err = sc->sc_nqueue ? ERESTART : ENOMEM;
1377							goto errout;
1378						}
1379						len = MCLBYTES;
1380					}
1381					m->m_len = len = min(totlen, len);
1382					totlen -= len;
1383					*mp = m;
1384					mp = &m->m_next;
1385				}
1386				q->q_dst_m = top;
1387				ubsec_mcopy(q->q_src_m, q->q_dst_m,
1388				    cpskip, cpoffset);
1389				if (bus_dmamap_create(sc->sc_dmat,
1390				    BUS_DMA_NOWAIT, &q->q_dst_map) != 0) {
1391					ubsecstats.hst_nomap++;
1392					err = ENOMEM;
1393					goto errout;
1394				}
1395				if (bus_dmamap_load_mbuf(sc->sc_dmat,
1396				    q->q_dst_map, q->q_dst_m,
1397				    ubsec_op_cb, &q->q_dst,
1398				    BUS_DMA_NOWAIT) != 0) {
1399					bus_dmamap_destroy(sc->sc_dmat,
1400					q->q_dst_map);
1401					q->q_dst_map = NULL;
1402					ubsecstats.hst_noload++;
1403					err = ENOMEM;
1404					goto errout;
1405				}
1406			}
1407		} else {
1408			ubsecstats.hst_badflags++;
1409			err = EINVAL;
1410			goto errout;
1411		}
1412
1413#ifdef UBSEC_DEBUG
1414		if (ubsec_debug)
1415			printf("dst skip: %d\n", dskip);
1416#endif
1417		for (i = j = 0; i < q->q_dst_nsegs; i++) {
1418			struct ubsec_pktbuf *pb;
1419			bus_size_t packl = q->q_dst_segs[i].ds_len;
1420			bus_addr_t packp = q->q_dst_segs[i].ds_addr;
1421
1422			if (dskip >= packl) {
1423				dskip -= packl;
1424				continue;
1425			}
1426
1427			packl -= dskip;
1428			packp += dskip;
1429			dskip = 0;
1430
1431			if (packl > 0xfffc) {
1432				err = EIO;
1433				goto errout;
1434			}
1435
1436			if (j == 0)
1437				pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
1438			else
1439				pb = &dmap->d_dma->d_dbuf[j - 1];
1440
1441			pb->pb_addr = htole32(packp);
1442
1443			if (dtheend) {
1444				if (packl > dtheend) {
1445					pb->pb_len = htole32(dtheend);
1446					dtheend = 0;
1447				} else {
1448					pb->pb_len = htole32(packl);
1449					dtheend -= packl;
1450				}
1451			} else
1452				pb->pb_len = htole32(packl);
1453
1454			if ((i + 1) == q->q_dst_nsegs) {
1455				if (maccrd)
1456					pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1457					    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1458				else
1459					pb->pb_next = 0;
1460			} else
1461				pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1462				    offsetof(struct ubsec_dmachunk, d_dbuf[j]));
1463			j++;
1464		}
1465	}
1466
1467	dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
1468	    offsetof(struct ubsec_dmachunk, d_ctx));
1469
1470	if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
1471		struct ubsec_pktctx_long *ctxl;
1472
1473		ctxl = (struct ubsec_pktctx_long *)(dmap->d_alloc.dma_vaddr +
1474		    offsetof(struct ubsec_dmachunk, d_ctx));
1475
1476		/* transform small context into long context */
1477		ctxl->pc_len = htole16(sizeof(struct ubsec_pktctx_long));
1478		ctxl->pc_type = htole16(UBS_PKTCTX_TYPE_IPSEC);
1479		ctxl->pc_flags = ctx.pc_flags;
1480		ctxl->pc_offset = ctx.pc_offset;
1481		for (i = 0; i < 6; i++)
1482			ctxl->pc_deskey[i] = ctx.pc_deskey[i];
1483		for (i = 0; i < 5; i++)
1484			ctxl->pc_hminner[i] = ctx.pc_hminner[i];
1485		for (i = 0; i < 5; i++)
1486			ctxl->pc_hmouter[i] = ctx.pc_hmouter[i];
1487		ctxl->pc_iv[0] = ctx.pc_iv[0];
1488		ctxl->pc_iv[1] = ctx.pc_iv[1];
1489	} else
1490		bcopy(&ctx, dmap->d_alloc.dma_vaddr +
1491		    offsetof(struct ubsec_dmachunk, d_ctx),
1492		    sizeof(struct ubsec_pktctx));
1493
1494	UBSEC_LOCK(sc);
1495	SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
1496	sc->sc_nqueue++;
1497	ubsecstats.hst_ipackets++;
1498	ubsecstats.hst_ibytes += dmap->d_alloc.dma_size;
1499	if ((hint & CRYPTO_HINT_MORE) == 0 || sc->sc_nqueue >= ubsec_maxbatch)
1500		ubsec_feed(sc);
1501	UBSEC_UNLOCK(sc);
1502	return (0);
1503
1504errout:
1505	if (q != NULL) {
1506		if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
1507			m_freem(q->q_dst_m);
1508
1509		if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1510			bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1511			bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1512		}
1513		if (q->q_src_map != NULL) {
1514			bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1515			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1516		}
1517
1518		UBSEC_LOCK(sc);
1519		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1520		UBSEC_UNLOCK(sc);
1521	}
1522	if (err != ERESTART) {
1523		crp->crp_etype = err;
1524		crypto_done(crp);
1525	} else {
1526		sc->sc_needwakeup |= CRYPTO_SYMQ;
1527	}
1528	return (err);
1529}
1530
1531static void
1532ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q)
1533{
1534	struct cryptop *crp = (struct cryptop *)q->q_crp;
1535	struct cryptodesc *crd;
1536	struct ubsec_dma *dmap = q->q_dma;
1537
1538	ubsec_dma_sync(&dmap->d_alloc,
1539	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1540	if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1541		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
1542		    BUS_DMASYNC_POSTREAD);
1543		bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1544		bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1545	}
1546	bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_POSTWRITE);
1547	bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1548	bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1549
1550	if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) {
1551		m_freem(q->q_src_m);
1552		crp->crp_buf = (caddr_t)q->q_dst_m;
1553	}
1554	ubsecstats.hst_obytes += ((struct mbuf *)crp->crp_buf)->m_len;
1555
1556	/* copy out IV for future use */
1557	if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) {
1558		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1559			if (crd->crd_alg != CRYPTO_DES_CBC &&
1560			    crd->crd_alg != CRYPTO_3DES_CBC)
1561				continue;
1562			if (crp->crp_flags & CRYPTO_F_IMBUF)
1563				m_copydata((struct mbuf *)crp->crp_buf,
1564				    crd->crd_skip + crd->crd_len - 8, 8,
1565				    (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1566			else if (crp->crp_flags & CRYPTO_F_IOV) {
1567				cuio_copydata((struct uio *)crp->crp_buf,
1568				    crd->crd_skip + crd->crd_len - 8, 8,
1569				    (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1570			}
1571			break;
1572		}
1573	}
1574
1575	for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1576		if (crd->crd_alg != CRYPTO_MD5_HMAC &&
1577		    crd->crd_alg != CRYPTO_SHA1_HMAC)
1578			continue;
1579		if (crp->crp_flags & CRYPTO_F_IMBUF)
1580			m_copyback((struct mbuf *)crp->crp_buf,
1581			    crd->crd_inject, 12,
1582			    (caddr_t)dmap->d_dma->d_macbuf);
1583		else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac)
1584			bcopy((caddr_t)dmap->d_dma->d_macbuf,
1585			    crp->crp_mac, 12);
1586		break;
1587	}
1588	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1589	crypto_done(crp);
1590}
1591
1592static void
1593ubsec_mcopy(struct mbuf *srcm, struct mbuf *dstm, int hoffset, int toffset)
1594{
1595	int i, j, dlen, slen;
1596	caddr_t dptr, sptr;
1597
1598	j = 0;
1599	sptr = srcm->m_data;
1600	slen = srcm->m_len;
1601	dptr = dstm->m_data;
1602	dlen = dstm->m_len;
1603
1604	while (1) {
1605		for (i = 0; i < min(slen, dlen); i++) {
1606			if (j < hoffset || j >= toffset)
1607				*dptr++ = *sptr++;
1608			slen--;
1609			dlen--;
1610			j++;
1611		}
1612		if (slen == 0) {
1613			srcm = srcm->m_next;
1614			if (srcm == NULL)
1615				return;
1616			sptr = srcm->m_data;
1617			slen = srcm->m_len;
1618		}
1619		if (dlen == 0) {
1620			dstm = dstm->m_next;
1621			if (dstm == NULL)
1622				return;
1623			dptr = dstm->m_data;
1624			dlen = dstm->m_len;
1625		}
1626	}
1627}
1628
1629/*
1630 * feed the key generator, must be called at splimp() or higher.
1631 */
1632static int
1633ubsec_feed2(struct ubsec_softc *sc)
1634{
1635	struct ubsec_q2 *q;
1636
1637	while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) {
1638		if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL)
1639			break;
1640		q = SIMPLEQ_FIRST(&sc->sc_queue2);
1641
1642		ubsec_dma_sync(&q->q_mcr,
1643		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1644		ubsec_dma_sync(&q->q_ctx, BUS_DMASYNC_PREWRITE);
1645
1646		WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr);
1647		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, q, q_next);
1648		--sc->sc_nqueue2;
1649		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next);
1650	}
1651	return (0);
1652}
1653
1654/*
1655 * Callback for handling random numbers
1656 */
1657static void
1658ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q)
1659{
1660	struct cryptkop *krp;
1661	struct ubsec_ctx_keyop *ctx;
1662
1663	ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr;
1664	ubsec_dma_sync(&q->q_ctx, BUS_DMASYNC_POSTWRITE);
1665
1666	switch (q->q_type) {
1667#ifndef UBSEC_NO_RNG
1668	case UBS_CTXOP_RNGBYPASS: {
1669		struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q;
1670
1671		ubsec_dma_sync(&rng->rng_buf, BUS_DMASYNC_POSTREAD);
1672		random_harvest(rng->rng_buf.dma_vaddr,
1673			UBSEC_RNG_BUFSIZ*sizeof (u_int32_t),
1674			UBSEC_RNG_BUFSIZ*sizeof (u_int32_t)*NBBY, 0,
1675			RANDOM_PURE);
1676		rng->rng_used = 0;
1677		callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
1678		break;
1679	}
1680#endif
1681	case UBS_CTXOP_MODEXP: {
1682		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
1683		u_int rlen, clen;
1684
1685		krp = me->me_krp;
1686		rlen = (me->me_modbits + 7) / 8;
1687		clen = (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8;
1688
1689		ubsec_dma_sync(&me->me_M, BUS_DMASYNC_POSTWRITE);
1690		ubsec_dma_sync(&me->me_E, BUS_DMASYNC_POSTWRITE);
1691		ubsec_dma_sync(&me->me_C, BUS_DMASYNC_POSTREAD);
1692		ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_POSTWRITE);
1693
1694		if (clen < rlen)
1695			krp->krp_status = E2BIG;
1696		else {
1697			if (sc->sc_flags & UBS_FLAGS_HWNORM) {
1698				bzero(krp->krp_param[krp->krp_iparams].crp_p,
1699				    (krp->krp_param[krp->krp_iparams].crp_nbits
1700					+ 7) / 8);
1701				bcopy(me->me_C.dma_vaddr,
1702				    krp->krp_param[krp->krp_iparams].crp_p,
1703				    (me->me_modbits + 7) / 8);
1704			} else
1705				ubsec_kshift_l(me->me_shiftbits,
1706				    me->me_C.dma_vaddr, me->me_normbits,
1707				    krp->krp_param[krp->krp_iparams].crp_p,
1708				    krp->krp_param[krp->krp_iparams].crp_nbits);
1709		}
1710
1711		crypto_kdone(krp);
1712
1713		/* bzero all potentially sensitive data */
1714		bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
1715		bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
1716		bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
1717		bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
1718
1719		/* Can't free here, so put us on the free list. */
1720		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &me->me_q, q_next);
1721		break;
1722	}
1723	case UBS_CTXOP_RSAPRIV: {
1724		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
1725		u_int len;
1726
1727		krp = rp->rpr_krp;
1728		ubsec_dma_sync(&rp->rpr_msgin, BUS_DMASYNC_POSTWRITE);
1729		ubsec_dma_sync(&rp->rpr_msgout, BUS_DMASYNC_POSTREAD);
1730
1731		len = (krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_nbits + 7) / 8;
1732		bcopy(rp->rpr_msgout.dma_vaddr,
1733		    krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_p, len);
1734
1735		crypto_kdone(krp);
1736
1737		bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size);
1738		bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size);
1739		bzero(rp->rpr_q.q_ctx.dma_vaddr, rp->rpr_q.q_ctx.dma_size);
1740
1741		/* Can't free here, so put us on the free list. */
1742		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &rp->rpr_q, q_next);
1743		break;
1744	}
1745	default:
1746		device_printf(sc->sc_dev, "unknown ctx op: %x\n",
1747		    letoh16(ctx->ctx_op));
1748		break;
1749	}
1750}
1751
1752#ifndef UBSEC_NO_RNG
1753static void
1754ubsec_rng(void *vsc)
1755{
1756	struct ubsec_softc *sc = vsc;
1757	struct ubsec_q2_rng *rng = &sc->sc_rng;
1758	struct ubsec_mcr *mcr;
1759	struct ubsec_ctx_rngbypass *ctx;
1760
1761	UBSEC_LOCK(sc);
1762	if (rng->rng_used) {
1763		UBSEC_UNLOCK(sc);
1764		return;
1765	}
1766	sc->sc_nqueue2++;
1767	if (sc->sc_nqueue2 >= UBS_MAX_NQUEUE)
1768		goto out;
1769
1770	mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr;
1771	ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr;
1772
1773	mcr->mcr_pkts = htole16(1);
1774	mcr->mcr_flags = 0;
1775	mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr);
1776	mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0;
1777	mcr->mcr_ipktbuf.pb_len = 0;
1778	mcr->mcr_reserved = mcr->mcr_pktlen = 0;
1779	mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr);
1780	mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) &
1781	    UBS_PKTBUF_LEN);
1782	mcr->mcr_opktbuf.pb_next = 0;
1783
1784	ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass));
1785	ctx->rbp_op = htole16(UBS_CTXOP_RNGBYPASS);
1786	rng->rng_q.q_type = UBS_CTXOP_RNGBYPASS;
1787
1788	ubsec_dma_sync(&rng->rng_buf, BUS_DMASYNC_PREREAD);
1789
1790	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next);
1791	rng->rng_used = 1;
1792	ubsec_feed2(sc);
1793	ubsecstats.hst_rng++;
1794	UBSEC_UNLOCK(sc);
1795
1796	return;
1797
1798out:
1799	/*
1800	 * Something weird happened, generate our own call back.
1801	 */
1802	sc->sc_nqueue2--;
1803	UBSEC_UNLOCK(sc);
1804	callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
1805}
1806#endif /* UBSEC_NO_RNG */
1807
1808static void
1809ubsec_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1810{
1811	bus_addr_t *paddr = (bus_addr_t*) arg;
1812	*paddr = segs->ds_addr;
1813}
1814
1815static int
1816ubsec_dma_malloc(
1817	struct ubsec_softc *sc,
1818	bus_size_t size,
1819	struct ubsec_dma_alloc *dma,
1820	int mapflags
1821)
1822{
1823	int r;
1824
1825	/* XXX could specify sc_dmat as parent but that just adds overhead */
1826	r = bus_dma_tag_create(NULL,			/* parent */
1827			       1, 0,			/* alignment, bounds */
1828			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1829			       BUS_SPACE_MAXADDR,	/* highaddr */
1830			       NULL, NULL,		/* filter, filterarg */
1831			       size,			/* maxsize */
1832			       1,			/* nsegments */
1833			       size,			/* maxsegsize */
1834			       BUS_DMA_ALLOCNOW,	/* flags */
1835			       &dma->dma_tag);
1836	if (r != 0) {
1837		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1838			"bus_dma_tag_create failed; error %u\n", r);
1839		goto fail_0;
1840	}
1841
1842	r = bus_dmamap_create(dma->dma_tag, BUS_DMA_NOWAIT, &dma->dma_map);
1843	if (r != 0) {
1844		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1845			"bus_dmamap_create failed; error %u\n", r);
1846		goto fail_1;
1847	}
1848
1849	r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
1850			     BUS_DMA_NOWAIT, &dma->dma_map);
1851	if (r != 0) {
1852		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1853			"bus_dmammem_alloc failed; size %zu, error %u\n",
1854			size, r);
1855		goto fail_2;
1856	}
1857
1858	r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
1859		            size,
1860			    ubsec_dmamap_cb,
1861			    &dma->dma_paddr,
1862			    mapflags | BUS_DMA_NOWAIT);
1863	if (r != 0) {
1864		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1865			"bus_dmamap_load failed; error %u\n", r);
1866		goto fail_3;
1867	}
1868
1869	dma->dma_size = size;
1870	return (0);
1871
1872fail_3:
1873	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1874fail_2:
1875	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1876fail_1:
1877	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1878	bus_dma_tag_destroy(dma->dma_tag);
1879fail_0:
1880	dma->dma_map = NULL;
1881	dma->dma_tag = NULL;
1882	return (r);
1883}
1884
1885static void
1886ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
1887{
1888	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1889	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1890	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1891	bus_dma_tag_destroy(dma->dma_tag);
1892}
1893
1894/*
1895 * Resets the board.  Values in the regesters are left as is
1896 * from the reset (i.e. initial values are assigned elsewhere).
1897 */
1898static void
1899ubsec_reset_board(struct ubsec_softc *sc)
1900{
1901    volatile u_int32_t ctrl;
1902
1903    ctrl = READ_REG(sc, BS_CTRL);
1904    ctrl |= BS_CTRL_RESET;
1905    WRITE_REG(sc, BS_CTRL, ctrl);
1906
1907    /*
1908     * Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
1909     */
1910    DELAY(10);
1911}
1912
1913/*
1914 * Init Broadcom registers
1915 */
1916static void
1917ubsec_init_board(struct ubsec_softc *sc)
1918{
1919	u_int32_t ctrl;
1920
1921	ctrl = READ_REG(sc, BS_CTRL);
1922	ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
1923	ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT;
1924
1925	if (sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG))
1926		ctrl |= BS_CTRL_MCR2INT;
1927	else
1928		ctrl &= ~BS_CTRL_MCR2INT;
1929
1930	if (sc->sc_flags & UBS_FLAGS_HWNORM)
1931		ctrl &= ~BS_CTRL_SWNORM;
1932
1933	WRITE_REG(sc, BS_CTRL, ctrl);
1934}
1935
1936/*
1937 * Init Broadcom PCI registers
1938 */
1939static void
1940ubsec_init_pciregs(device_t dev)
1941{
1942#if 0
1943	u_int32_t misc;
1944
1945	misc = pci_conf_read(pc, pa->pa_tag, BS_RTY_TOUT);
1946	misc = (misc & ~(UBS_PCI_RTY_MASK << UBS_PCI_RTY_SHIFT))
1947	    | ((UBS_DEF_RTY & 0xff) << UBS_PCI_RTY_SHIFT);
1948	misc = (misc & ~(UBS_PCI_TOUT_MASK << UBS_PCI_TOUT_SHIFT))
1949	    | ((UBS_DEF_TOUT & 0xff) << UBS_PCI_TOUT_SHIFT);
1950	pci_conf_write(pc, pa->pa_tag, BS_RTY_TOUT, misc);
1951#endif
1952
1953	/*
1954	 * This will set the cache line size to 1, this will
1955	 * force the BCM58xx chip just to do burst read/writes.
1956	 * Cache line read/writes are to slow
1957	 */
1958	pci_write_config(dev, PCIR_CACHELNSZ, UBS_DEF_CACHELINE, 1);
1959}
1960
1961/*
1962 * Clean up after a chip crash.
1963 * It is assumed that the caller in splimp()
1964 */
1965static void
1966ubsec_cleanchip(struct ubsec_softc *sc)
1967{
1968	struct ubsec_q *q;
1969
1970	while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
1971		q = SIMPLEQ_FIRST(&sc->sc_qchip);
1972		SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q, q_next);
1973		ubsec_free_q(sc, q);
1974	}
1975	sc->sc_nqchip = 0;
1976}
1977
1978/*
1979 * free a ubsec_q
1980 * It is assumed that the caller is within splimp().
1981 */
1982static int
1983ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
1984{
1985	struct ubsec_q *q2;
1986	struct cryptop *crp;
1987	int npkts;
1988	int i;
1989
1990	npkts = q->q_nstacked_mcrs;
1991
1992	for (i = 0; i < npkts; i++) {
1993		if(q->q_stacked_mcr[i]) {
1994			q2 = q->q_stacked_mcr[i];
1995
1996			if ((q2->q_dst_m != NULL) && (q2->q_src_m != q2->q_dst_m))
1997				m_freem(q2->q_dst_m);
1998
1999			crp = (struct cryptop *)q2->q_crp;
2000
2001			SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
2002
2003			crp->crp_etype = EFAULT;
2004			crypto_done(crp);
2005		} else {
2006			break;
2007		}
2008	}
2009
2010	/*
2011	 * Free header MCR
2012	 */
2013	if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
2014		m_freem(q->q_dst_m);
2015
2016	crp = (struct cryptop *)q->q_crp;
2017
2018	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
2019
2020	crp->crp_etype = EFAULT;
2021	crypto_done(crp);
2022	return(0);
2023}
2024
2025/*
2026 * Routine to reset the chip and clean up.
2027 * It is assumed that the caller is in splimp()
2028 */
2029static void
2030ubsec_totalreset(struct ubsec_softc *sc)
2031{
2032	ubsec_reset_board(sc);
2033	ubsec_init_board(sc);
2034	ubsec_cleanchip(sc);
2035}
2036
2037static int
2038ubsec_dmamap_aligned(struct ubsec_operand *op)
2039{
2040	int i;
2041
2042	for (i = 0; i < op->nsegs; i++) {
2043		if (op->segs[i].ds_addr & 3)
2044			return (0);
2045		if ((i != (op->nsegs - 1)) &&
2046		    (op->segs[i].ds_len & 3))
2047			return (0);
2048	}
2049	return (1);
2050}
2051
2052static void
2053ubsec_kfree(struct ubsec_softc *sc, struct ubsec_q2 *q)
2054{
2055	switch (q->q_type) {
2056	case UBS_CTXOP_MODEXP: {
2057		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
2058
2059		ubsec_dma_free(sc, &me->me_q.q_mcr);
2060		ubsec_dma_free(sc, &me->me_q.q_ctx);
2061		ubsec_dma_free(sc, &me->me_M);
2062		ubsec_dma_free(sc, &me->me_E);
2063		ubsec_dma_free(sc, &me->me_C);
2064		ubsec_dma_free(sc, &me->me_epb);
2065		free(me, M_DEVBUF);
2066		break;
2067	}
2068	case UBS_CTXOP_RSAPRIV: {
2069		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
2070
2071		ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2072		ubsec_dma_free(sc, &rp->rpr_q.q_ctx);
2073		ubsec_dma_free(sc, &rp->rpr_msgin);
2074		ubsec_dma_free(sc, &rp->rpr_msgout);
2075		free(rp, M_DEVBUF);
2076		break;
2077	}
2078	default:
2079		device_printf(sc->sc_dev, "invalid kfree 0x%x\n", q->q_type);
2080		break;
2081	}
2082}
2083
2084static int
2085ubsec_kprocess(void *arg, struct cryptkop *krp, int hint)
2086{
2087	struct ubsec_softc *sc = arg;
2088	int r;
2089
2090	if (krp == NULL || krp->krp_callback == NULL)
2091		return (EINVAL);
2092
2093	while (!SIMPLEQ_EMPTY(&sc->sc_q2free)) {
2094		struct ubsec_q2 *q;
2095
2096		q = SIMPLEQ_FIRST(&sc->sc_q2free);
2097		SIMPLEQ_REMOVE_HEAD(&sc->sc_q2free, q, q_next);
2098		ubsec_kfree(sc, q);
2099	}
2100
2101	switch (krp->krp_op) {
2102	case CRK_MOD_EXP:
2103		if (sc->sc_flags & UBS_FLAGS_HWNORM)
2104			r = ubsec_kprocess_modexp_hw(sc, krp, hint);
2105		else
2106			r = ubsec_kprocess_modexp_sw(sc, krp, hint);
2107		break;
2108	case CRK_MOD_EXP_CRT:
2109		return (ubsec_kprocess_rsapriv(sc, krp, hint));
2110	default:
2111		device_printf(sc->sc_dev, "kprocess: invalid op 0x%x\n",
2112		    krp->krp_op);
2113		krp->krp_status = EOPNOTSUPP;
2114		crypto_kdone(krp);
2115		return (0);
2116	}
2117	return (0);			/* silence compiler */
2118}
2119
2120/*
2121 * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (sw normalization)
2122 */
2123static int
2124ubsec_kprocess_modexp_sw(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
2125{
2126	struct ubsec_q2_modexp *me;
2127	struct ubsec_mcr *mcr;
2128	struct ubsec_ctx_modexp *ctx;
2129	struct ubsec_pktbuf *epb;
2130	int err = 0;
2131	u_int nbits, normbits, mbits, shiftbits, ebits;
2132
2133	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2134	if (me == NULL) {
2135		err = ENOMEM;
2136		goto errout;
2137	}
2138	bzero(me, sizeof *me);
2139	me->me_krp = krp;
2140	me->me_q.q_type = UBS_CTXOP_MODEXP;
2141
2142	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2143	if (nbits <= 512)
2144		normbits = 512;
2145	else if (nbits <= 768)
2146		normbits = 768;
2147	else if (nbits <= 1024)
2148		normbits = 1024;
2149	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2150		normbits = 1536;
2151	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2152		normbits = 2048;
2153	else {
2154		err = E2BIG;
2155		goto errout;
2156	}
2157
2158	shiftbits = normbits - nbits;
2159
2160	me->me_modbits = nbits;
2161	me->me_shiftbits = shiftbits;
2162	me->me_normbits = normbits;
2163
2164	/* Sanity check: result bits must be >= true modulus bits. */
2165	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2166		err = ERANGE;
2167		goto errout;
2168	}
2169
2170	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2171	    &me->me_q.q_mcr, 0)) {
2172		err = ENOMEM;
2173		goto errout;
2174	}
2175	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2176
2177	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2178	    &me->me_q.q_ctx, 0)) {
2179		err = ENOMEM;
2180		goto errout;
2181	}
2182
2183	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2184	if (mbits > nbits) {
2185		err = E2BIG;
2186		goto errout;
2187	}
2188	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2189		err = ENOMEM;
2190		goto errout;
2191	}
2192	ubsec_kshift_r(shiftbits,
2193	    krp->krp_param[UBS_MODEXP_PAR_M].crp_p, mbits,
2194	    me->me_M.dma_vaddr, normbits);
2195
2196	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2197		err = ENOMEM;
2198		goto errout;
2199	}
2200	bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2201
2202	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2203	if (ebits > nbits) {
2204		err = E2BIG;
2205		goto errout;
2206	}
2207	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2208		err = ENOMEM;
2209		goto errout;
2210	}
2211	ubsec_kshift_r(shiftbits,
2212	    krp->krp_param[UBS_MODEXP_PAR_E].crp_p, ebits,
2213	    me->me_E.dma_vaddr, normbits);
2214
2215	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2216	    &me->me_epb, 0)) {
2217		err = ENOMEM;
2218		goto errout;
2219	}
2220	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2221	epb->pb_addr = htole32(me->me_E.dma_paddr);
2222	epb->pb_next = 0;
2223	epb->pb_len = htole32(normbits / 8);
2224
2225#ifdef UBSEC_DEBUG
2226	if (ubsec_debug) {
2227		printf("Epb ");
2228		ubsec_dump_pb(epb);
2229	}
2230#endif
2231
2232	mcr->mcr_pkts = htole16(1);
2233	mcr->mcr_flags = 0;
2234	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2235	mcr->mcr_reserved = 0;
2236	mcr->mcr_pktlen = 0;
2237
2238	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2239	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2240	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2241
2242	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2243	mcr->mcr_opktbuf.pb_next = 0;
2244	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2245
2246#ifdef DIAGNOSTIC
2247	/* Misaligned output buffer will hang the chip. */
2248	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2249		panic("%s: modexp invalid addr 0x%x\n",
2250		    device_get_nameunit(sc->sc_dev),
2251		    letoh32(mcr->mcr_opktbuf.pb_addr));
2252	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2253		panic("%s: modexp invalid len 0x%x\n",
2254		    device_get_nameunit(sc->sc_dev),
2255		    letoh32(mcr->mcr_opktbuf.pb_len));
2256#endif
2257
2258	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2259	bzero(ctx, sizeof(*ctx));
2260	ubsec_kshift_r(shiftbits,
2261	    krp->krp_param[UBS_MODEXP_PAR_N].crp_p, nbits,
2262	    ctx->me_N, normbits);
2263	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2264	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2265	ctx->me_E_len = htole16(nbits);
2266	ctx->me_N_len = htole16(nbits);
2267
2268#ifdef UBSEC_DEBUG
2269	if (ubsec_debug) {
2270		ubsec_dump_mcr(mcr);
2271		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2272	}
2273#endif
2274
2275	/*
2276	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2277	 * everything else.
2278	 */
2279	ubsec_dma_sync(&me->me_M, BUS_DMASYNC_PREWRITE);
2280	ubsec_dma_sync(&me->me_E, BUS_DMASYNC_PREWRITE);
2281	ubsec_dma_sync(&me->me_C, BUS_DMASYNC_PREREAD);
2282	ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_PREWRITE);
2283
2284	/* Enqueue and we're done... */
2285	UBSEC_LOCK(sc);
2286	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2287	ubsec_feed2(sc);
2288	ubsecstats.hst_modexp++;
2289	UBSEC_UNLOCK(sc);
2290
2291	return (0);
2292
2293errout:
2294	if (me != NULL) {
2295		if (me->me_q.q_mcr.dma_map != NULL)
2296			ubsec_dma_free(sc, &me->me_q.q_mcr);
2297		if (me->me_q.q_ctx.dma_map != NULL) {
2298			bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
2299			ubsec_dma_free(sc, &me->me_q.q_ctx);
2300		}
2301		if (me->me_M.dma_map != NULL) {
2302			bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
2303			ubsec_dma_free(sc, &me->me_M);
2304		}
2305		if (me->me_E.dma_map != NULL) {
2306			bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
2307			ubsec_dma_free(sc, &me->me_E);
2308		}
2309		if (me->me_C.dma_map != NULL) {
2310			bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2311			ubsec_dma_free(sc, &me->me_C);
2312		}
2313		if (me->me_epb.dma_map != NULL)
2314			ubsec_dma_free(sc, &me->me_epb);
2315		free(me, M_DEVBUF);
2316	}
2317	krp->krp_status = err;
2318	crypto_kdone(krp);
2319	return (0);
2320}
2321
2322/*
2323 * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (hw normalization)
2324 */
2325static int
2326ubsec_kprocess_modexp_hw(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
2327{
2328	struct ubsec_q2_modexp *me;
2329	struct ubsec_mcr *mcr;
2330	struct ubsec_ctx_modexp *ctx;
2331	struct ubsec_pktbuf *epb;
2332	int err = 0;
2333	u_int nbits, normbits, mbits, shiftbits, ebits;
2334
2335	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2336	if (me == NULL) {
2337		err = ENOMEM;
2338		goto errout;
2339	}
2340	bzero(me, sizeof *me);
2341	me->me_krp = krp;
2342	me->me_q.q_type = UBS_CTXOP_MODEXP;
2343
2344	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2345	if (nbits <= 512)
2346		normbits = 512;
2347	else if (nbits <= 768)
2348		normbits = 768;
2349	else if (nbits <= 1024)
2350		normbits = 1024;
2351	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2352		normbits = 1536;
2353	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2354		normbits = 2048;
2355	else {
2356		err = E2BIG;
2357		goto errout;
2358	}
2359
2360	shiftbits = normbits - nbits;
2361
2362	/* XXX ??? */
2363	me->me_modbits = nbits;
2364	me->me_shiftbits = shiftbits;
2365	me->me_normbits = normbits;
2366
2367	/* Sanity check: result bits must be >= true modulus bits. */
2368	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2369		err = ERANGE;
2370		goto errout;
2371	}
2372
2373	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2374	    &me->me_q.q_mcr, 0)) {
2375		err = ENOMEM;
2376		goto errout;
2377	}
2378	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2379
2380	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2381	    &me->me_q.q_ctx, 0)) {
2382		err = ENOMEM;
2383		goto errout;
2384	}
2385
2386	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2387	if (mbits > nbits) {
2388		err = E2BIG;
2389		goto errout;
2390	}
2391	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2392		err = ENOMEM;
2393		goto errout;
2394	}
2395	bzero(me->me_M.dma_vaddr, normbits / 8);
2396	bcopy(krp->krp_param[UBS_MODEXP_PAR_M].crp_p,
2397	    me->me_M.dma_vaddr, (mbits + 7) / 8);
2398
2399	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2400		err = ENOMEM;
2401		goto errout;
2402	}
2403	bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2404
2405	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2406	if (ebits > nbits) {
2407		err = E2BIG;
2408		goto errout;
2409	}
2410	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2411		err = ENOMEM;
2412		goto errout;
2413	}
2414	bzero(me->me_E.dma_vaddr, normbits / 8);
2415	bcopy(krp->krp_param[UBS_MODEXP_PAR_E].crp_p,
2416	    me->me_E.dma_vaddr, (ebits + 7) / 8);
2417
2418	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2419	    &me->me_epb, 0)) {
2420		err = ENOMEM;
2421		goto errout;
2422	}
2423	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2424	epb->pb_addr = htole32(me->me_E.dma_paddr);
2425	epb->pb_next = 0;
2426	epb->pb_len = htole32((ebits + 7) / 8);
2427
2428#ifdef UBSEC_DEBUG
2429	if (ubsec_debug) {
2430		printf("Epb ");
2431		ubsec_dump_pb(epb);
2432	}
2433#endif
2434
2435	mcr->mcr_pkts = htole16(1);
2436	mcr->mcr_flags = 0;
2437	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2438	mcr->mcr_reserved = 0;
2439	mcr->mcr_pktlen = 0;
2440
2441	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2442	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2443	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2444
2445	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2446	mcr->mcr_opktbuf.pb_next = 0;
2447	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2448
2449#ifdef DIAGNOSTIC
2450	/* Misaligned output buffer will hang the chip. */
2451	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2452		panic("%s: modexp invalid addr 0x%x\n",
2453		    device_get_nameunit(sc->sc_dev),
2454		    letoh32(mcr->mcr_opktbuf.pb_addr));
2455	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2456		panic("%s: modexp invalid len 0x%x\n",
2457		    device_get_nameunit(sc->sc_dev),
2458		    letoh32(mcr->mcr_opktbuf.pb_len));
2459#endif
2460
2461	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2462	bzero(ctx, sizeof(*ctx));
2463	bcopy(krp->krp_param[UBS_MODEXP_PAR_N].crp_p, ctx->me_N,
2464	    (nbits + 7) / 8);
2465	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2466	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2467	ctx->me_E_len = htole16(ebits);
2468	ctx->me_N_len = htole16(nbits);
2469
2470#ifdef UBSEC_DEBUG
2471	if (ubsec_debug) {
2472		ubsec_dump_mcr(mcr);
2473		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2474	}
2475#endif
2476
2477	/*
2478	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2479	 * everything else.
2480	 */
2481	ubsec_dma_sync(&me->me_M, BUS_DMASYNC_PREWRITE);
2482	ubsec_dma_sync(&me->me_E, BUS_DMASYNC_PREWRITE);
2483	ubsec_dma_sync(&me->me_C, BUS_DMASYNC_PREREAD);
2484	ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_PREWRITE);
2485
2486	/* Enqueue and we're done... */
2487	UBSEC_LOCK(sc);
2488	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2489	ubsec_feed2(sc);
2490	UBSEC_UNLOCK(sc);
2491
2492	return (0);
2493
2494errout:
2495	if (me != NULL) {
2496		if (me->me_q.q_mcr.dma_map != NULL)
2497			ubsec_dma_free(sc, &me->me_q.q_mcr);
2498		if (me->me_q.q_ctx.dma_map != NULL) {
2499			bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
2500			ubsec_dma_free(sc, &me->me_q.q_ctx);
2501		}
2502		if (me->me_M.dma_map != NULL) {
2503			bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
2504			ubsec_dma_free(sc, &me->me_M);
2505		}
2506		if (me->me_E.dma_map != NULL) {
2507			bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
2508			ubsec_dma_free(sc, &me->me_E);
2509		}
2510		if (me->me_C.dma_map != NULL) {
2511			bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2512			ubsec_dma_free(sc, &me->me_C);
2513		}
2514		if (me->me_epb.dma_map != NULL)
2515			ubsec_dma_free(sc, &me->me_epb);
2516		free(me, M_DEVBUF);
2517	}
2518	krp->krp_status = err;
2519	crypto_kdone(krp);
2520	return (0);
2521}
2522
2523static int
2524ubsec_kprocess_rsapriv(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
2525{
2526	struct ubsec_q2_rsapriv *rp = NULL;
2527	struct ubsec_mcr *mcr;
2528	struct ubsec_ctx_rsapriv *ctx;
2529	int err = 0;
2530	u_int padlen, msglen;
2531
2532	msglen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_P]);
2533	padlen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_Q]);
2534	if (msglen > padlen)
2535		padlen = msglen;
2536
2537	if (padlen <= 256)
2538		padlen = 256;
2539	else if (padlen <= 384)
2540		padlen = 384;
2541	else if (padlen <= 512)
2542		padlen = 512;
2543	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 768)
2544		padlen = 768;
2545	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 1024)
2546		padlen = 1024;
2547	else {
2548		err = E2BIG;
2549		goto errout;
2550	}
2551
2552	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DP]) > padlen) {
2553		err = E2BIG;
2554		goto errout;
2555	}
2556
2557	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DQ]) > padlen) {
2558		err = E2BIG;
2559		goto errout;
2560	}
2561
2562	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_PINV]) > padlen) {
2563		err = E2BIG;
2564		goto errout;
2565	}
2566
2567	rp = (struct ubsec_q2_rsapriv *)malloc(sizeof *rp, M_DEVBUF, M_NOWAIT);
2568	if (rp == NULL)
2569		return (ENOMEM);
2570	bzero(rp, sizeof *rp);
2571	rp->rpr_krp = krp;
2572	rp->rpr_q.q_type = UBS_CTXOP_RSAPRIV;
2573
2574	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2575	    &rp->rpr_q.q_mcr, 0)) {
2576		err = ENOMEM;
2577		goto errout;
2578	}
2579	mcr = (struct ubsec_mcr *)rp->rpr_q.q_mcr.dma_vaddr;
2580
2581	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rsapriv),
2582	    &rp->rpr_q.q_ctx, 0)) {
2583		err = ENOMEM;
2584		goto errout;
2585	}
2586	ctx = (struct ubsec_ctx_rsapriv *)rp->rpr_q.q_ctx.dma_vaddr;
2587	bzero(ctx, sizeof *ctx);
2588
2589	/* Copy in p */
2590	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_p,
2591	    &ctx->rpr_buf[0 * (padlen / 8)],
2592	    (krp->krp_param[UBS_RSAPRIV_PAR_P].crp_nbits + 7) / 8);
2593
2594	/* Copy in q */
2595	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_p,
2596	    &ctx->rpr_buf[1 * (padlen / 8)],
2597	    (krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_nbits + 7) / 8);
2598
2599	/* Copy in dp */
2600	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_p,
2601	    &ctx->rpr_buf[2 * (padlen / 8)],
2602	    (krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_nbits + 7) / 8);
2603
2604	/* Copy in dq */
2605	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_p,
2606	    &ctx->rpr_buf[3 * (padlen / 8)],
2607	    (krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_nbits + 7) / 8);
2608
2609	/* Copy in pinv */
2610	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_p,
2611	    &ctx->rpr_buf[4 * (padlen / 8)],
2612	    (krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_nbits + 7) / 8);
2613
2614	msglen = padlen * 2;
2615
2616	/* Copy in input message (aligned buffer/length). */
2617	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGIN]) > msglen) {
2618		/* Is this likely? */
2619		err = E2BIG;
2620		goto errout;
2621	}
2622	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgin, 0)) {
2623		err = ENOMEM;
2624		goto errout;
2625	}
2626	bzero(rp->rpr_msgin.dma_vaddr, (msglen + 7) / 8);
2627	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_p,
2628	    rp->rpr_msgin.dma_vaddr,
2629	    (krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_nbits + 7) / 8);
2630
2631	/* Prepare space for output message (aligned buffer/length). */
2632	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT]) < msglen) {
2633		/* Is this likely? */
2634		err = E2BIG;
2635		goto errout;
2636	}
2637	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgout, 0)) {
2638		err = ENOMEM;
2639		goto errout;
2640	}
2641	bzero(rp->rpr_msgout.dma_vaddr, (msglen + 7) / 8);
2642
2643	mcr->mcr_pkts = htole16(1);
2644	mcr->mcr_flags = 0;
2645	mcr->mcr_cmdctxp = htole32(rp->rpr_q.q_ctx.dma_paddr);
2646	mcr->mcr_ipktbuf.pb_addr = htole32(rp->rpr_msgin.dma_paddr);
2647	mcr->mcr_ipktbuf.pb_next = 0;
2648	mcr->mcr_ipktbuf.pb_len = htole32(rp->rpr_msgin.dma_size);
2649	mcr->mcr_reserved = 0;
2650	mcr->mcr_pktlen = htole16(msglen);
2651	mcr->mcr_opktbuf.pb_addr = htole32(rp->rpr_msgout.dma_paddr);
2652	mcr->mcr_opktbuf.pb_next = 0;
2653	mcr->mcr_opktbuf.pb_len = htole32(rp->rpr_msgout.dma_size);
2654
2655#ifdef DIAGNOSTIC
2656	if (rp->rpr_msgin.dma_paddr & 3 || rp->rpr_msgin.dma_size & 3) {
2657		panic("%s: rsapriv: invalid msgin %x(0x%jx)",
2658		    device_get_nameunit(sc->sc_dev),
2659		    rp->rpr_msgin.dma_paddr, (uintmax_t)rp->rpr_msgin.dma_size);
2660	}
2661	if (rp->rpr_msgout.dma_paddr & 3 || rp->rpr_msgout.dma_size & 3) {
2662		panic("%s: rsapriv: invalid msgout %x(0x%jx)",
2663		    device_get_nameunit(sc->sc_dev),
2664		    rp->rpr_msgout.dma_paddr, (uintmax_t)rp->rpr_msgout.dma_size);
2665	}
2666#endif
2667
2668	ctx->rpr_len = (sizeof(u_int16_t) * 4) + (5 * (padlen / 8));
2669	ctx->rpr_op = htole16(UBS_CTXOP_RSAPRIV);
2670	ctx->rpr_q_len = htole16(padlen);
2671	ctx->rpr_p_len = htole16(padlen);
2672
2673	/*
2674	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2675	 * everything else.
2676	 */
2677	ubsec_dma_sync(&rp->rpr_msgin, BUS_DMASYNC_PREWRITE);
2678	ubsec_dma_sync(&rp->rpr_msgout, BUS_DMASYNC_PREREAD);
2679
2680	/* Enqueue and we're done... */
2681	UBSEC_LOCK(sc);
2682	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rp->rpr_q, q_next);
2683	ubsec_feed2(sc);
2684	ubsecstats.hst_modexpcrt++;
2685	UBSEC_UNLOCK(sc);
2686	return (0);
2687
2688errout:
2689	if (rp != NULL) {
2690		if (rp->rpr_q.q_mcr.dma_map != NULL)
2691			ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2692		if (rp->rpr_msgin.dma_map != NULL) {
2693			bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size);
2694			ubsec_dma_free(sc, &rp->rpr_msgin);
2695		}
2696		if (rp->rpr_msgout.dma_map != NULL) {
2697			bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size);
2698			ubsec_dma_free(sc, &rp->rpr_msgout);
2699		}
2700		free(rp, M_DEVBUF);
2701	}
2702	krp->krp_status = err;
2703	crypto_kdone(krp);
2704	return (0);
2705}
2706
2707#ifdef UBSEC_DEBUG
2708static void
2709ubsec_dump_pb(volatile struct ubsec_pktbuf *pb)
2710{
2711	printf("addr 0x%x (0x%x) next 0x%x\n",
2712	    pb->pb_addr, pb->pb_len, pb->pb_next);
2713}
2714
2715static void
2716ubsec_dump_ctx2(struct ubsec_ctx_keyop *c)
2717{
2718	printf("CTX (0x%x):\n", c->ctx_len);
2719	switch (letoh16(c->ctx_op)) {
2720	case UBS_CTXOP_RNGBYPASS:
2721	case UBS_CTXOP_RNGSHA1:
2722		break;
2723	case UBS_CTXOP_MODEXP:
2724	{
2725		struct ubsec_ctx_modexp *cx = (void *)c;
2726		int i, len;
2727
2728		printf(" Elen %u, Nlen %u\n",
2729		    letoh16(cx->me_E_len), letoh16(cx->me_N_len));
2730		len = (cx->me_N_len + 7)/8;
2731		for (i = 0; i < len; i++)
2732			printf("%s%02x", (i == 0) ? " N: " : ":", cx->me_N[i]);
2733		printf("\n");
2734		break;
2735	}
2736	default:
2737		printf("unknown context: %x\n", c->ctx_op);
2738	}
2739	printf("END CTX\n");
2740}
2741
2742static void
2743ubsec_dump_mcr(struct ubsec_mcr *mcr)
2744{
2745	volatile struct ubsec_mcr_add *ma;
2746	int i;
2747
2748	printf("MCR:\n");
2749	printf(" pkts: %u, flags 0x%x\n",
2750	    letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
2751	ma = (volatile struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
2752	for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
2753		printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
2754		    letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
2755		    letoh16(ma->mcr_reserved));
2756		printf(" %d: ipkt ", i);
2757		ubsec_dump_pb(&ma->mcr_ipktbuf);
2758		printf(" %d: opkt ", i);
2759		ubsec_dump_pb(&ma->mcr_opktbuf);
2760		ma++;
2761	}
2762	printf("END MCR\n");
2763}
2764#endif /* UBSEC_DEBUG */
2765
2766/*
2767 * Return the number of significant bits of a big number.
2768 */
2769static int
2770ubsec_ksigbits(struct crparam *cr)
2771{
2772	u_int plen = (cr->crp_nbits + 7) / 8;
2773	int i, sig = plen * 8;
2774	u_int8_t c, *p = cr->crp_p;
2775
2776	for (i = plen - 1; i >= 0; i--) {
2777		c = p[i];
2778		if (c != 0) {
2779			while ((c & 0x80) == 0) {
2780				sig--;
2781				c <<= 1;
2782			}
2783			break;
2784		}
2785		sig -= 8;
2786	}
2787	return (sig);
2788}
2789
2790static void
2791ubsec_kshift_r(
2792	u_int shiftbits,
2793	u_int8_t *src, u_int srcbits,
2794	u_int8_t *dst, u_int dstbits)
2795{
2796	u_int slen, dlen;
2797	int i, si, di, n;
2798
2799	slen = (srcbits + 7) / 8;
2800	dlen = (dstbits + 7) / 8;
2801
2802	for (i = 0; i < slen; i++)
2803		dst[i] = src[i];
2804	for (i = 0; i < dlen - slen; i++)
2805		dst[slen + i] = 0;
2806
2807	n = shiftbits / 8;
2808	if (n != 0) {
2809		si = dlen - n - 1;
2810		di = dlen - 1;
2811		while (si >= 0)
2812			dst[di--] = dst[si--];
2813		while (di >= 0)
2814			dst[di--] = 0;
2815	}
2816
2817	n = shiftbits % 8;
2818	if (n != 0) {
2819		for (i = dlen - 1; i > 0; i--)
2820			dst[i] = (dst[i] << n) |
2821			    (dst[i - 1] >> (8 - n));
2822		dst[0] = dst[0] << n;
2823	}
2824}
2825
2826static void
2827ubsec_kshift_l(
2828	u_int shiftbits,
2829	u_int8_t *src, u_int srcbits,
2830	u_int8_t *dst, u_int dstbits)
2831{
2832	int slen, dlen, i, n;
2833
2834	slen = (srcbits + 7) / 8;
2835	dlen = (dstbits + 7) / 8;
2836
2837	n = shiftbits / 8;
2838	for (i = 0; i < slen; i++)
2839		dst[i] = src[i + n];
2840	for (i = 0; i < dlen - slen; i++)
2841		dst[slen + i] = 0;
2842
2843	n = shiftbits % 8;
2844	if (n != 0) {
2845		for (i = 0; i < (dlen - 1); i++)
2846			dst[i] = (dst[i] >> n) | (dst[i + 1] << (8 - n));
2847		dst[dlen - 1] = dst[dlen - 1] >> n;
2848	}
2849}
2850