ubsec.c revision 109094
1/* $FreeBSD: head/sys/dev/ubsec/ubsec.c 109094 2003-01-11 04:55:52Z sam $ */
2/*	$OpenBSD: ubsec.c,v 1.115 2002/09/24 18:33:26 jason Exp $	*/
3
4/*
5 * Copyright (c) 2000 Jason L. Wright (jason@thought.net)
6 * Copyright (c) 2000 Theo de Raadt (deraadt@openbsd.org)
7 * Copyright (c) 2001 Patrik Lindergren (patrik@ipunplugged.com)
8 *
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by Jason L. Wright
22 * 4. The name of the author may not be used to endorse or promote products
23 *    derived from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
26 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
27 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28 * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
29 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
30 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
31 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
33 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
34 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Effort sponsored in part by the Defense Advanced Research Projects
38 * Agency (DARPA) and Air Force Research Laboratory, Air Force
39 * Materiel Command, USAF, under agreement number F30602-01-2-0537.
40 *
41 */
42
43#define UBSEC_DEBUG
44
45/*
46 * uBsec 5[56]01, 58xx hardware crypto accelerator
47 */
48
49#include <sys/param.h>
50#include <sys/systm.h>
51#include <sys/proc.h>
52#include <sys/errno.h>
53#include <sys/malloc.h>
54#include <sys/kernel.h>
55#include <sys/mbuf.h>
56#include <sys/lock.h>
57#include <sys/mutex.h>
58#include <sys/stdint.h>
59#include <sys/sysctl.h>
60#include <sys/endian.h>
61
62#include <vm/vm.h>
63#include <vm/pmap.h>
64
65#include <machine/clock.h>
66#include <machine/bus.h>
67#include <machine/resource.h>
68#include <sys/bus.h>
69#include <sys/rman.h>
70
71#include <crypto/sha1.h>
72#include <opencrypto/cryptodev.h>
73#include <opencrypto/cryptosoft.h>
74#include <sys/md5.h>
75#include <sys/random.h>
76
77#include <pci/pcivar.h>
78#include <pci/pcireg.h>
79
80/* grr, #defines for gratuitous incompatibility in queue.h */
81#define	SIMPLEQ_HEAD		STAILQ_HEAD
82#define	SIMPLEQ_ENTRY		STAILQ_ENTRY
83#define	SIMPLEQ_INIT		STAILQ_INIT
84#define	SIMPLEQ_INSERT_TAIL	STAILQ_INSERT_TAIL
85#define	SIMPLEQ_EMPTY		STAILQ_EMPTY
86#define	SIMPLEQ_FIRST		STAILQ_FIRST
87#define	SIMPLEQ_REMOVE_HEAD	STAILQ_REMOVE_HEAD_UNTIL
88/* ditto for endian.h */
89#define	letoh16(x)		le16toh(x)
90#define	letoh32(x)		le32toh(x)
91
92#include <dev/ubsec/ubsecreg.h>
93#include <dev/ubsec/ubsecvar.h>
94
95/*
96 * Prototypes and count for the pci_device structure
97 */
98static	int ubsec_probe(device_t);
99static	int ubsec_attach(device_t);
100static	int ubsec_detach(device_t);
101static	int ubsec_suspend(device_t);
102static	int ubsec_resume(device_t);
103static	void ubsec_shutdown(device_t);
104
105static device_method_t ubsec_methods[] = {
106	/* Device interface */
107	DEVMETHOD(device_probe,		ubsec_probe),
108	DEVMETHOD(device_attach,	ubsec_attach),
109	DEVMETHOD(device_detach,	ubsec_detach),
110	DEVMETHOD(device_suspend,	ubsec_suspend),
111	DEVMETHOD(device_resume,	ubsec_resume),
112	DEVMETHOD(device_shutdown,	ubsec_shutdown),
113
114	/* bus interface */
115	DEVMETHOD(bus_print_child,	bus_generic_print_child),
116	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
117
118	{ 0, 0 }
119};
120static driver_t ubsec_driver = {
121	"ubsec",
122	ubsec_methods,
123	sizeof (struct ubsec_softc)
124};
125static devclass_t ubsec_devclass;
126
127DRIVER_MODULE(ubsec, pci, ubsec_driver, ubsec_devclass, 0, 0);
128MODULE_DEPEND(ubsec, crypto, 1, 1, 1);
129
130static	void ubsec_intr(void *);
131static	int ubsec_newsession(void *, u_int32_t *, struct cryptoini *);
132static	int ubsec_freesession(void *, u_int64_t);
133static	int ubsec_process(void *, struct cryptop *, int);
134static	void ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
135static	int ubsec_feed(struct ubsec_softc *);
136static	void ubsec_mcopy(struct mbuf *, struct mbuf *, int, int);
137static	void ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *);
138static	int ubsec_feed2(struct ubsec_softc *);
139static	void ubsec_rng(void *);
140static	int ubsec_dma_malloc(struct ubsec_softc *, bus_size_t,
141			     struct ubsec_dma_alloc *, int);
142#define	ubsec_dma_sync(_dma, _flags) \
143	bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
144static	void ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
145static	int ubsec_dmamap_aligned(struct ubsec_operand *op);
146
147static	void ubsec_reset_board(struct ubsec_softc *sc);
148static	void ubsec_init_board(struct ubsec_softc *sc);
149static	void ubsec_init_pciregs(device_t dev);
150static	void ubsec_totalreset(struct ubsec_softc *sc);
151
152static	int ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q);
153
154static	int ubsec_kprocess(void*, struct cryptkop *, int);
155static	int ubsec_kprocess_modexp_hw(struct ubsec_softc *, struct cryptkop *, int);
156static	int ubsec_kprocess_modexp_sw(struct ubsec_softc *, struct cryptkop *, int);
157static	int ubsec_kprocess_rsapriv(struct ubsec_softc *, struct cryptkop *, int);
158static	void ubsec_kfree(struct ubsec_softc *, struct ubsec_q2 *);
159static	int ubsec_ksigbits(struct crparam *);
160static	void ubsec_kshift_r(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
161static	void ubsec_kshift_l(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
162
163#ifdef UBSEC_DEBUG
164static	void ubsec_dump_pb(volatile struct ubsec_pktbuf *);
165static	void ubsec_dump_mcr(struct ubsec_mcr *);
166static	void ubsec_dump_ctx2(struct ubsec_ctx_keyop *);
167
168static	int ubsec_debug = 0;
169SYSCTL_INT(_debug, OID_AUTO, ubsec, CTLFLAG_RW, &ubsec_debug,
170	    0, "UBSEC driver debugging printfs");
171#endif
172
173#define	READ_REG(sc,r) \
174	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
175
176#define WRITE_REG(sc,reg,val) \
177	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
178
179#define	SWAP32(x) (x) = htole32(ntohl((x)))
180#define	HTOLE32(x) (x) = htole32(x)
181
182
183struct ubsec_stats ubsecstats;
184SYSCTL_STRUCT(_kern, OID_AUTO, ubsec_stats, CTLFLAG_RD, &ubsecstats,
185	    ubsec_stats, "Broadcom driver statistics");
186/*
187 * ubsec_maxbatch controls the number of crypto ops to voluntarily
188 * collect into one submission to the hardware.  This batching happens
189 * when ops are dispatched from the crypto subsystem with a hint that
190 * more are to follow immediately.  These ops must also not be marked
191 * with a ``no delay'' flag.
192 */
193static	int ubsec_maxbatch = 1;
194SYSCTL_INT(_kern, OID_AUTO, ubsec_maxbatch, CTLFLAG_RW, &ubsec_maxbatch,
195	    0, "Broadcom driver: max ops to batch w/o interrupt");
196/*
197 * ubsec_maxaggr controls the number of crypto ops to submit to the
198 * hardware as a unit.  This aggregation reduces the number of interrupts
199 * to the host at the expense of increased latency (for all but the last
200 * operation).  For network traffic setting this to one yields the highest
201 * performance but at the expense of more interrupt processing.
202 */
203static	int ubsec_maxaggr = 1;
204SYSCTL_INT(_kern, OID_AUTO, ubsec_maxaggr, CTLFLAG_RW, &ubsec_maxaggr,
205	    0, "Broadcom driver: max ops to aggregate under one interrupt");
206
207static int
208ubsec_probe(device_t dev)
209{
210	if (pci_get_vendor(dev) == PCI_VENDOR_BLUESTEEL &&
211	    (pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5501 ||
212	     pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5601))
213		return (0);
214	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
215	    (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5805 ||
216	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5820 ||
217	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5821 ||
218	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5822))
219		return (0);
220	return (ENXIO);
221}
222
223static const char*
224ubsec_partname(struct ubsec_softc *sc)
225{
226	/* XXX sprintf numbers when not decoded */
227	switch (pci_get_vendor(sc->sc_dev)) {
228	case PCI_VENDOR_BROADCOM:
229		switch (pci_get_device(sc->sc_dev)) {
230		case PCI_PRODUCT_BROADCOM_5805:	return "Broadcom 5805";
231		case PCI_PRODUCT_BROADCOM_5820:	return "Broadcom 5820";
232		case PCI_PRODUCT_BROADCOM_5821:	return "Broadcom 5821";
233		case PCI_PRODUCT_BROADCOM_5822:	return "Broadcom 5822";
234		}
235		return "Broadcom unknown-part";
236	case PCI_VENDOR_BLUESTEEL:
237		switch (pci_get_device(sc->sc_dev)) {
238		case PCI_PRODUCT_BLUESTEEL_5601: return "Bluesteel 5601";
239		}
240		return "Bluesteel unknown-part";
241	}
242	return "Unknown-vendor unknown-part";
243}
244
245static int
246ubsec_attach(device_t dev)
247{
248	struct ubsec_softc *sc = device_get_softc(dev);
249	struct ubsec_dma *dmap;
250	u_int32_t cmd, i;
251	int rid;
252
253	KASSERT(sc != NULL, ("ubsec_attach: null software carrier!"));
254	bzero(sc, sizeof (*sc));
255	sc->sc_dev = dev;
256
257	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), "crypto driver", MTX_DEF);
258
259	SIMPLEQ_INIT(&sc->sc_queue);
260	SIMPLEQ_INIT(&sc->sc_qchip);
261	SIMPLEQ_INIT(&sc->sc_queue2);
262	SIMPLEQ_INIT(&sc->sc_qchip2);
263	SIMPLEQ_INIT(&sc->sc_q2free);
264
265	/* XXX handle power management */
266
267	sc->sc_statmask = BS_STAT_MCR1_DONE | BS_STAT_DMAERR;
268
269	if (pci_get_vendor(dev) == PCI_VENDOR_BLUESTEEL &&
270	    pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5601)
271		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG;
272
273	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
274	    pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5805)
275		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG;
276
277	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
278	    pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5820)
279		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG |
280		    UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY;
281
282	if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
283	    (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5821 ||
284	     pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5822)) {
285		/* NB: the 5821/5822 defines some additional status bits */
286		sc->sc_statmask |= BS_STAT_MCR1_ALLEMPTY |
287		    BS_STAT_MCR2_ALLEMPTY;
288		sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG |
289		    UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY;
290	}
291
292	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
293	cmd |= PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN;
294	pci_write_config(dev, PCIR_COMMAND, cmd, 4);
295	cmd = pci_read_config(dev, PCIR_COMMAND, 4);
296
297	if (!(cmd & PCIM_CMD_MEMEN)) {
298		device_printf(dev, "failed to enable memory mapping\n");
299		goto bad;
300	}
301
302	if (!(cmd & PCIM_CMD_BUSMASTEREN)) {
303		device_printf(dev, "failed to enable bus mastering\n");
304		goto bad;
305	}
306
307	/*
308	 * Setup memory-mapping of PCI registers.
309	 */
310	rid = BS_BAR;
311	sc->sc_sr = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
312				       0, ~0, 1, RF_ACTIVE);
313	if (sc->sc_sr == NULL) {
314		device_printf(dev, "cannot map register space\n");
315		goto bad;
316	}
317	sc->sc_st = rman_get_bustag(sc->sc_sr);
318	sc->sc_sh = rman_get_bushandle(sc->sc_sr);
319
320	/*
321	 * Arrange interrupt line.
322	 */
323	rid = 0;
324	sc->sc_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
325					0, ~0, 1, RF_SHAREABLE|RF_ACTIVE);
326	if (sc->sc_irq == NULL) {
327		device_printf(dev, "could not map interrupt\n");
328		goto bad1;
329	}
330	/*
331	 * NB: Network code assumes we are blocked with splimp()
332	 *     so make sure the IRQ is mapped appropriately.
333	 */
334	if (bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET,
335			   ubsec_intr, sc, &sc->sc_ih)) {
336		device_printf(dev, "could not establish interrupt\n");
337		goto bad2;
338	}
339
340	sc->sc_cid = crypto_get_driverid(0);
341	if (sc->sc_cid < 0) {
342		device_printf(dev, "could not get crypto driver id\n");
343		goto bad3;
344	}
345
346	/*
347	 * Setup DMA descriptor area.
348	 */
349	if (bus_dma_tag_create(NULL,			/* parent */
350			       1, 0,			/* alignment, bounds */
351			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
352			       BUS_SPACE_MAXADDR,	/* highaddr */
353			       NULL, NULL,		/* filter, filterarg */
354			       0x3ffff,			/* maxsize */
355			       UBS_MAX_SCATTER,		/* nsegments */
356			       0xffff,			/* maxsegsize */
357			       BUS_DMA_ALLOCNOW,	/* flags */
358			       &sc->sc_dmat)) {
359		device_printf(dev, "cannot allocate DMA tag\n");
360		goto bad4;
361	}
362	SIMPLEQ_INIT(&sc->sc_freequeue);
363	dmap = sc->sc_dmaa;
364	for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
365		struct ubsec_q *q;
366
367		q = (struct ubsec_q *)malloc(sizeof(struct ubsec_q),
368		    M_DEVBUF, M_NOWAIT);
369		if (q == NULL) {
370			device_printf(dev, "cannot allocate queue buffers\n");
371			break;
372		}
373
374		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk),
375		    &dmap->d_alloc, 0)) {
376			device_printf(dev, "cannot allocate dma buffers\n");
377			free(q, M_DEVBUF);
378			break;
379		}
380		dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
381
382		q->q_dma = dmap;
383		sc->sc_queuea[i] = q;
384
385		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
386	}
387
388	device_printf(sc->sc_dev, "%s\n", ubsec_partname(sc));
389
390	crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0,
391	    ubsec_newsession, ubsec_freesession, ubsec_process, sc);
392	crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0,
393	     ubsec_newsession, ubsec_freesession, ubsec_process, sc);
394	crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0,
395	     ubsec_newsession, ubsec_freesession, ubsec_process, sc);
396	crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0,
397	     ubsec_newsession, ubsec_freesession, ubsec_process, sc);
398
399	/*
400	 * Reset Broadcom chip
401	 */
402	ubsec_reset_board(sc);
403
404	/*
405	 * Init Broadcom specific PCI settings
406	 */
407	ubsec_init_pciregs(dev);
408
409	/*
410	 * Init Broadcom chip
411	 */
412	ubsec_init_board(sc);
413
414#ifndef UBSEC_NO_RNG
415	if (sc->sc_flags & UBS_FLAGS_RNG) {
416		sc->sc_statmask |= BS_STAT_MCR2_DONE;
417
418		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
419		    &sc->sc_rng.rng_q.q_mcr, 0))
420			goto skip_rng;
421
422		if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass),
423		    &sc->sc_rng.rng_q.q_ctx, 0)) {
424			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
425			goto skip_rng;
426		}
427
428		if (ubsec_dma_malloc(sc, sizeof(u_int32_t) *
429		    UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) {
430			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
431			ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
432			goto skip_rng;
433		}
434
435		if (hz >= 100)
436			sc->sc_rnghz = hz / 100;
437		else
438			sc->sc_rnghz = 1;
439		/* NB: 1 means the callout runs w/o Giant locked */
440		callout_init(&sc->sc_rngto, 1);
441		callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
442skip_rng:
443	;
444	}
445#endif /* UBSEC_NO_RNG */
446
447	if (sc->sc_flags & UBS_FLAGS_KEY) {
448		sc->sc_statmask |= BS_STAT_MCR2_DONE;
449
450		crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0,
451			ubsec_kprocess, sc);
452#if 0
453		crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0,
454			ubsec_kprocess, sc);
455#endif
456	}
457	return (0);
458bad4:
459	crypto_unregister_all(sc->sc_cid);
460bad3:
461	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
462bad2:
463	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
464bad1:
465	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
466bad:
467	mtx_destroy(&sc->sc_mtx);
468	return (ENXIO);
469}
470
471/*
472 * Detach a device that successfully probed.
473 */
474static int
475ubsec_detach(device_t dev)
476{
477	struct ubsec_softc *sc = device_get_softc(dev);
478
479	KASSERT(sc != NULL, ("ubsec_detach: null software carrier"));
480
481	/* XXX wait/abort active ops */
482
483	UBSEC_LOCK(sc);
484
485	callout_stop(&sc->sc_rngto);
486
487	crypto_unregister_all(sc->sc_cid);
488
489	while (!SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
490		struct ubsec_q *q;
491
492		q = SIMPLEQ_FIRST(&sc->sc_freequeue);
493		SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, q, q_next);
494		ubsec_dma_free(sc, &q->q_dma->d_alloc);
495		free(q, M_DEVBUF);
496	}
497#ifndef UBSEC_NO_RNG
498	if (sc->sc_flags & UBS_FLAGS_RNG) {
499		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
500		ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
501		ubsec_dma_free(sc, &sc->sc_rng.rng_buf);
502	}
503#endif /* UBSEC_NO_RNG */
504
505	bus_generic_detach(dev);
506	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
507	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
508
509	bus_dma_tag_destroy(sc->sc_dmat);
510	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
511
512	UBSEC_UNLOCK(sc);
513
514	mtx_destroy(&sc->sc_mtx);
515
516	return (0);
517}
518
519/*
520 * Stop all chip i/o so that the kernel's probe routines don't
521 * get confused by errant DMAs when rebooting.
522 */
523static void
524ubsec_shutdown(device_t dev)
525{
526#ifdef notyet
527	ubsec_stop(device_get_softc(dev));
528#endif
529}
530
531/*
532 * Device suspend routine.
533 */
534static int
535ubsec_suspend(device_t dev)
536{
537	struct ubsec_softc *sc = device_get_softc(dev);
538
539	KASSERT(sc != NULL, ("ubsec_suspend: null software carrier"));
540#ifdef notyet
541	/* XXX stop the device and save PCI settings */
542#endif
543	sc->sc_suspended = 1;
544
545	return (0);
546}
547
548static int
549ubsec_resume(device_t dev)
550{
551	struct ubsec_softc *sc = device_get_softc(dev);
552
553	KASSERT(sc != NULL, ("ubsec_resume: null software carrier"));
554#ifdef notyet
555	/* XXX retore PCI settings and start the device */
556#endif
557	sc->sc_suspended = 0;
558	return (0);
559}
560
561/*
562 * UBSEC Interrupt routine
563 */
564static void
565ubsec_intr(void *arg)
566{
567	struct ubsec_softc *sc = arg;
568	volatile u_int32_t stat;
569	struct ubsec_q *q;
570	struct ubsec_dma *dmap;
571	int npkts = 0, i;
572
573	UBSEC_LOCK(sc);
574
575	stat = READ_REG(sc, BS_STAT);
576	stat &= sc->sc_statmask;
577	if (stat == 0) {
578		UBSEC_UNLOCK(sc);
579		return;
580	}
581
582	WRITE_REG(sc, BS_STAT, stat);		/* IACK */
583
584	/*
585	 * Check to see if we have any packets waiting for us
586	 */
587	if ((stat & BS_STAT_MCR1_DONE)) {
588		while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
589			q = SIMPLEQ_FIRST(&sc->sc_qchip);
590			dmap = q->q_dma;
591
592			if ((dmap->d_dma->d_mcr.mcr_flags & htole16(UBS_MCR_DONE)) == 0)
593				break;
594
595			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q, q_next);
596
597			npkts = q->q_nstacked_mcrs;
598			sc->sc_nqchip -= 1+npkts;
599			/*
600			 * search for further sc_qchip ubsec_q's that share
601			 * the same MCR, and complete them too, they must be
602			 * at the top.
603			 */
604			for (i = 0; i < npkts; i++) {
605				if(q->q_stacked_mcr[i]) {
606					ubsec_callback(sc, q->q_stacked_mcr[i]);
607					ubsecstats.hst_opackets++;
608				} else {
609					break;
610				}
611			}
612			ubsec_callback(sc, q);
613			ubsecstats.hst_opackets++;
614		}
615
616		/*
617		 * Don't send any more packet to chip if there has been
618		 * a DMAERR.
619		 */
620		if (!(stat & BS_STAT_DMAERR))
621			ubsec_feed(sc);
622	}
623
624	/*
625	 * Check to see if we have any key setups/rng's waiting for us
626	 */
627	if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) &&
628	    (stat & BS_STAT_MCR2_DONE)) {
629		struct ubsec_q2 *q2;
630		struct ubsec_mcr *mcr;
631
632		while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) {
633			q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
634
635			ubsec_dma_sync(&q2->q_mcr,
636			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
637
638			mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
639			if ((mcr->mcr_flags & htole16(UBS_MCR_DONE)) == 0) {
640				ubsec_dma_sync(&q2->q_mcr,
641				    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
642				break;
643			}
644			SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, q2, q_next);
645			ubsec_callback2(sc, q2);
646			/*
647			 * Don't send any more packet to chip if there has been
648			 * a DMAERR.
649			 */
650			if (!(stat & BS_STAT_DMAERR))
651				ubsec_feed2(sc);
652		}
653	}
654
655	/*
656	 * Check to see if we got any DMA Error
657	 */
658	if (stat & BS_STAT_DMAERR) {
659#ifdef UBSEC_DEBUG
660		if (ubsec_debug) {
661			volatile u_int32_t a = READ_REG(sc, BS_ERR);
662
663			printf("dmaerr %s@%08x\n",
664			    (a & BS_ERR_READ) ? "read" : "write",
665			    a & BS_ERR_ADDR);
666		}
667#endif /* UBSEC_DEBUG */
668		ubsecstats.hst_dmaerr++;
669		ubsec_totalreset(sc);
670		ubsec_feed(sc);
671	}
672
673	if (sc->sc_needwakeup) {		/* XXX check high watermark */
674		int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
675#ifdef UBSEC_DEBUG
676		if (ubsec_debug)
677			device_printf(sc->sc_dev, "wakeup crypto (%x)\n",
678				sc->sc_needwakeup);
679#endif /* UBSEC_DEBUG */
680		sc->sc_needwakeup &= ~wakeup;
681		crypto_unblock(sc->sc_cid, wakeup);
682	}
683
684	UBSEC_UNLOCK(sc);
685}
686
687/*
688 * ubsec_feed() - aggregate and post requests to chip
689 */
690static int
691ubsec_feed(struct ubsec_softc *sc)
692{
693	struct ubsec_q *q, *q2;
694	int npkts, i;
695	void *v;
696	u_int32_t stat;
697
698	npkts = sc->sc_nqueue;
699	if (npkts > ubsecstats.hst_maxqueue)
700		ubsecstats.hst_maxqueue = npkts;
701	/*
702	 * Decide how many ops to combine in a single MCR.  We cannot
703	 * aggregate more than UBS_MAX_AGGR because this is the number
704	 * of slots defined in the data structure.  Otherwise we clamp
705	 * based on the tunable parameter ubsec_maxaggr.  Note that
706	 * aggregation can happen in two ways: either by batching ops
707	 * from above or because the h/w backs up and throttles us.
708	 * Aggregating ops reduces the number of interrupts to the host
709	 * but also (potentially) increases the latency for processing
710	 * completed ops as we only get an interrupt when all aggregated
711	 * ops have completed.
712	 */
713	if (npkts > UBS_MAX_AGGR)
714		npkts = UBS_MAX_AGGR;
715	if (npkts > ubsec_maxaggr)
716		npkts = ubsec_maxaggr;
717	if (npkts > ubsecstats.hst_maxbatch)
718		ubsecstats.hst_maxbatch = npkts;
719	if (npkts < 2)
720		goto feed1;
721	ubsecstats.hst_totbatch += npkts-1;
722
723	if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
724		if (stat & BS_STAT_DMAERR) {
725			ubsec_totalreset(sc);
726			ubsecstats.hst_dmaerr++;
727		} else
728			ubsecstats.hst_mcr1full++;
729		return (0);
730	}
731
732#ifdef UBSEC_DEBUG
733	if (ubsec_debug)
734		printf("merging %d records\n", npkts);
735#endif /* UBSEC_DEBUG */
736
737	q = SIMPLEQ_FIRST(&sc->sc_queue);
738	SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q, q_next);
739	--sc->sc_nqueue;
740
741	bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_PREWRITE);
742	if (q->q_dst_map != NULL)
743		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map, BUS_DMASYNC_PREREAD);
744
745	q->q_nstacked_mcrs = npkts - 1;		/* Number of packets stacked */
746
747	for (i = 0; i < q->q_nstacked_mcrs; i++) {
748		q2 = SIMPLEQ_FIRST(&sc->sc_queue);
749		bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
750		    BUS_DMASYNC_PREWRITE);
751		if (q2->q_dst_map != NULL)
752			bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
753			    BUS_DMASYNC_PREREAD);
754		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q2, q_next);
755		--sc->sc_nqueue;
756
757		v = (void*)(((char *)&q2->q_dma->d_dma->d_mcr) + sizeof(struct ubsec_mcr) -
758		    sizeof(struct ubsec_mcr_add));
759		bcopy(v, &q->q_dma->d_dma->d_mcradd[i], sizeof(struct ubsec_mcr_add));
760		q->q_stacked_mcr[i] = q2;
761	}
762	q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
763	SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
764	sc->sc_nqchip += npkts;
765	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
766		ubsecstats.hst_maxqchip = sc->sc_nqchip;
767	ubsec_dma_sync(&q->q_dma->d_alloc,
768	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
769	WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
770	    offsetof(struct ubsec_dmachunk, d_mcr));
771	return (0);
772
773feed1:
774	while (!SIMPLEQ_EMPTY(&sc->sc_queue)) {
775		if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
776			if (stat & BS_STAT_DMAERR) {
777				ubsec_totalreset(sc);
778				ubsecstats.hst_dmaerr++;
779			} else
780				ubsecstats.hst_mcr1full++;
781			break;
782		}
783
784		q = SIMPLEQ_FIRST(&sc->sc_queue);
785
786		bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
787		    BUS_DMASYNC_PREWRITE);
788		if (q->q_dst_map != NULL)
789			bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
790			    BUS_DMASYNC_PREREAD);
791		ubsec_dma_sync(&q->q_dma->d_alloc,
792		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
793
794		WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
795		    offsetof(struct ubsec_dmachunk, d_mcr));
796#ifdef UBSEC_DEBUG
797		if (ubsec_debug)
798			printf("feed: q->chip %p %08x stat %08x\n",
799			      q, (u_int32_t)vtophys(&q->q_dma->d_dma->d_mcr),
800			      stat);
801#endif /* UBSEC_DEBUG */
802		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q, q_next);
803		--sc->sc_nqueue;
804		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
805		sc->sc_nqchip++;
806	}
807	if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
808		ubsecstats.hst_maxqchip = sc->sc_nqchip;
809	return (0);
810}
811
812/*
813 * Allocate a new 'session' and return an encoded session id.  'sidp'
814 * contains our registration id, and should contain an encoded session
815 * id on successful allocation.
816 */
817static int
818ubsec_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri)
819{
820	struct cryptoini *c, *encini = NULL, *macini = NULL;
821	struct ubsec_softc *sc = arg;
822	struct ubsec_session *ses = NULL;
823	MD5_CTX md5ctx;
824	SHA1_CTX sha1ctx;
825	int i, sesn;
826
827	KASSERT(sc != NULL, ("ubsec_newsession: null softc"));
828	if (sidp == NULL || cri == NULL || sc == NULL)
829		return (EINVAL);
830
831	for (c = cri; c != NULL; c = c->cri_next) {
832		if (c->cri_alg == CRYPTO_MD5_HMAC ||
833		    c->cri_alg == CRYPTO_SHA1_HMAC) {
834			if (macini)
835				return (EINVAL);
836			macini = c;
837		} else if (c->cri_alg == CRYPTO_DES_CBC ||
838		    c->cri_alg == CRYPTO_3DES_CBC) {
839			if (encini)
840				return (EINVAL);
841			encini = c;
842		} else
843			return (EINVAL);
844	}
845	if (encini == NULL && macini == NULL)
846		return (EINVAL);
847
848	if (sc->sc_sessions == NULL) {
849		ses = sc->sc_sessions = (struct ubsec_session *)malloc(
850		    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
851		if (ses == NULL)
852			return (ENOMEM);
853		sesn = 0;
854		sc->sc_nsessions = 1;
855	} else {
856		for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
857			if (sc->sc_sessions[sesn].ses_used == 0) {
858				ses = &sc->sc_sessions[sesn];
859				break;
860			}
861		}
862
863		if (ses == NULL) {
864			sesn = sc->sc_nsessions;
865			ses = (struct ubsec_session *)malloc((sesn + 1) *
866			    sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
867			if (ses == NULL)
868				return (ENOMEM);
869			bcopy(sc->sc_sessions, ses, sesn *
870			    sizeof(struct ubsec_session));
871			bzero(sc->sc_sessions, sesn *
872			    sizeof(struct ubsec_session));
873			free(sc->sc_sessions, M_DEVBUF);
874			sc->sc_sessions = ses;
875			ses = &sc->sc_sessions[sesn];
876			sc->sc_nsessions++;
877		}
878	}
879
880	bzero(ses, sizeof(struct ubsec_session));
881	ses->ses_used = 1;
882	if (encini) {
883		/* get an IV, network byte order */
884		/* XXX may read fewer than requested */
885		read_random(ses->ses_iv, sizeof(ses->ses_iv));
886
887		/* Go ahead and compute key in ubsec's byte order */
888		if (encini->cri_alg == CRYPTO_DES_CBC) {
889			bcopy(encini->cri_key, &ses->ses_deskey[0], 8);
890			bcopy(encini->cri_key, &ses->ses_deskey[2], 8);
891			bcopy(encini->cri_key, &ses->ses_deskey[4], 8);
892		} else
893			bcopy(encini->cri_key, ses->ses_deskey, 24);
894
895		SWAP32(ses->ses_deskey[0]);
896		SWAP32(ses->ses_deskey[1]);
897		SWAP32(ses->ses_deskey[2]);
898		SWAP32(ses->ses_deskey[3]);
899		SWAP32(ses->ses_deskey[4]);
900		SWAP32(ses->ses_deskey[5]);
901	}
902
903	if (macini) {
904		for (i = 0; i < macini->cri_klen / 8; i++)
905			macini->cri_key[i] ^= HMAC_IPAD_VAL;
906
907		if (macini->cri_alg == CRYPTO_MD5_HMAC) {
908			MD5Init(&md5ctx);
909			MD5Update(&md5ctx, macini->cri_key,
910			    macini->cri_klen / 8);
911			MD5Update(&md5ctx, hmac_ipad_buffer,
912			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
913			bcopy(md5ctx.state, ses->ses_hminner,
914			    sizeof(md5ctx.state));
915		} else {
916			SHA1Init(&sha1ctx);
917			SHA1Update(&sha1ctx, macini->cri_key,
918			    macini->cri_klen / 8);
919			SHA1Update(&sha1ctx, hmac_ipad_buffer,
920			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
921			bcopy(sha1ctx.h.b32, ses->ses_hminner,
922			    sizeof(sha1ctx.h.b32));
923		}
924
925		for (i = 0; i < macini->cri_klen / 8; i++)
926			macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
927
928		if (macini->cri_alg == CRYPTO_MD5_HMAC) {
929			MD5Init(&md5ctx);
930			MD5Update(&md5ctx, macini->cri_key,
931			    macini->cri_klen / 8);
932			MD5Update(&md5ctx, hmac_opad_buffer,
933			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
934			bcopy(md5ctx.state, ses->ses_hmouter,
935			    sizeof(md5ctx.state));
936		} else {
937			SHA1Init(&sha1ctx);
938			SHA1Update(&sha1ctx, macini->cri_key,
939			    macini->cri_klen / 8);
940			SHA1Update(&sha1ctx, hmac_opad_buffer,
941			    HMAC_BLOCK_LEN - (macini->cri_klen / 8));
942			bcopy(sha1ctx.h.b32, ses->ses_hmouter,
943			    sizeof(sha1ctx.h.b32));
944		}
945
946		for (i = 0; i < macini->cri_klen / 8; i++)
947			macini->cri_key[i] ^= HMAC_OPAD_VAL;
948	}
949
950	*sidp = UBSEC_SID(device_get_unit(sc->sc_dev), sesn);
951	return (0);
952}
953
954/*
955 * Deallocate a session.
956 */
957static int
958ubsec_freesession(void *arg, u_int64_t tid)
959{
960	struct ubsec_softc *sc = arg;
961	int session;
962	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
963
964	KASSERT(sc != NULL, ("ubsec_freesession: null softc"));
965	if (sc == NULL)
966		return (EINVAL);
967
968	session = UBSEC_SESSION(sid);
969	if (session >= sc->sc_nsessions)
970		return (EINVAL);
971
972	bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
973	return (0);
974}
975
976static void
977ubsec_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
978{
979	struct ubsec_operand *op = arg;
980
981	KASSERT(nsegs <= UBS_MAX_SCATTER,
982		("Too many DMA segments returned when mapping operand"));
983#ifdef UBSEC_DEBUG
984	if (ubsec_debug)
985		printf("ubsec_op_cb: mapsize %u nsegs %d\n",
986			(u_int) mapsize, nsegs);
987#endif
988	op->mapsize = mapsize;
989	op->nsegs = nsegs;
990	bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
991}
992
993static int
994ubsec_process(void *arg, struct cryptop *crp, int hint)
995{
996	struct ubsec_q *q = NULL;
997	int err = 0, i, j, nicealign;
998	struct ubsec_softc *sc = arg;
999	struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
1000	int encoffset = 0, macoffset = 0, cpskip, cpoffset;
1001	int sskip, dskip, stheend, dtheend;
1002	int16_t coffset;
1003	struct ubsec_session *ses;
1004	struct ubsec_pktctx ctx;
1005	struct ubsec_dma *dmap = NULL;
1006
1007	if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
1008		ubsecstats.hst_invalid++;
1009		return (EINVAL);
1010	}
1011	if (UBSEC_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
1012		ubsecstats.hst_badsession++;
1013		return (EINVAL);
1014	}
1015
1016	UBSEC_LOCK(sc);
1017
1018	if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
1019		ubsecstats.hst_queuefull++;
1020		sc->sc_needwakeup |= CRYPTO_SYMQ;
1021		UBSEC_UNLOCK(sc);
1022		return (ERESTART);
1023	}
1024	q = SIMPLEQ_FIRST(&sc->sc_freequeue);
1025	SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, q, q_next);
1026	UBSEC_UNLOCK(sc);
1027
1028	dmap = q->q_dma; /* Save dma pointer */
1029	bzero(q, sizeof(struct ubsec_q));
1030	bzero(&ctx, sizeof(ctx));
1031
1032	q->q_sesn = UBSEC_SESSION(crp->crp_sid);
1033	q->q_dma = dmap;
1034	ses = &sc->sc_sessions[q->q_sesn];
1035
1036	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1037		q->q_src_m = (struct mbuf *)crp->crp_buf;
1038		q->q_dst_m = (struct mbuf *)crp->crp_buf;
1039	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1040		q->q_src_io = (struct uio *)crp->crp_buf;
1041		q->q_dst_io = (struct uio *)crp->crp_buf;
1042	} else {
1043		ubsecstats.hst_badflags++;
1044		err = EINVAL;
1045		goto errout;	/* XXX we don't handle contiguous blocks! */
1046	}
1047
1048	bzero(&dmap->d_dma->d_mcr, sizeof(struct ubsec_mcr));
1049
1050	dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
1051	dmap->d_dma->d_mcr.mcr_flags = 0;
1052	q->q_crp = crp;
1053
1054	crd1 = crp->crp_desc;
1055	if (crd1 == NULL) {
1056		ubsecstats.hst_nodesc++;
1057		err = EINVAL;
1058		goto errout;
1059	}
1060	crd2 = crd1->crd_next;
1061
1062	if (crd2 == NULL) {
1063		if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
1064		    crd1->crd_alg == CRYPTO_SHA1_HMAC) {
1065			maccrd = crd1;
1066			enccrd = NULL;
1067		} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
1068		    crd1->crd_alg == CRYPTO_3DES_CBC) {
1069			maccrd = NULL;
1070			enccrd = crd1;
1071		} else {
1072			ubsecstats.hst_badalg++;
1073			err = EINVAL;
1074			goto errout;
1075		}
1076	} else {
1077		if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
1078		    crd1->crd_alg == CRYPTO_SHA1_HMAC) &&
1079		    (crd2->crd_alg == CRYPTO_DES_CBC ||
1080			crd2->crd_alg == CRYPTO_3DES_CBC) &&
1081		    ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
1082			maccrd = crd1;
1083			enccrd = crd2;
1084		} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
1085		    crd1->crd_alg == CRYPTO_3DES_CBC) &&
1086		    (crd2->crd_alg == CRYPTO_MD5_HMAC ||
1087			crd2->crd_alg == CRYPTO_SHA1_HMAC) &&
1088		    (crd1->crd_flags & CRD_F_ENCRYPT)) {
1089			enccrd = crd1;
1090			maccrd = crd2;
1091		} else {
1092			/*
1093			 * We cannot order the ubsec as requested
1094			 */
1095			ubsecstats.hst_badalg++;
1096			err = EINVAL;
1097			goto errout;
1098		}
1099	}
1100
1101	if (enccrd) {
1102		encoffset = enccrd->crd_skip;
1103		ctx.pc_flags |= htole16(UBS_PKTCTX_ENC_3DES);
1104
1105		if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1106			q->q_flags |= UBSEC_QFLAGS_COPYOUTIV;
1107
1108			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1109				bcopy(enccrd->crd_iv, ctx.pc_iv, 8);
1110			else {
1111				ctx.pc_iv[0] = ses->ses_iv[0];
1112				ctx.pc_iv[1] = ses->ses_iv[1];
1113			}
1114
1115			if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1116				if (crp->crp_flags & CRYPTO_F_IMBUF)
1117					m_copyback(q->q_src_m,
1118					    enccrd->crd_inject,
1119					    8, (caddr_t)ctx.pc_iv);
1120				else if (crp->crp_flags & CRYPTO_F_IOV)
1121					cuio_copyback(q->q_src_io,
1122					    enccrd->crd_inject,
1123					    8, (caddr_t)ctx.pc_iv);
1124			}
1125		} else {
1126			ctx.pc_flags |= htole16(UBS_PKTCTX_INBOUND);
1127
1128			if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1129				bcopy(enccrd->crd_iv, ctx.pc_iv, 8);
1130			else if (crp->crp_flags & CRYPTO_F_IMBUF)
1131				m_copydata(q->q_src_m, enccrd->crd_inject,
1132				    8, (caddr_t)ctx.pc_iv);
1133			else if (crp->crp_flags & CRYPTO_F_IOV)
1134				cuio_copydata(q->q_src_io,
1135				    enccrd->crd_inject, 8,
1136				    (caddr_t)ctx.pc_iv);
1137		}
1138
1139		ctx.pc_deskey[0] = ses->ses_deskey[0];
1140		ctx.pc_deskey[1] = ses->ses_deskey[1];
1141		ctx.pc_deskey[2] = ses->ses_deskey[2];
1142		ctx.pc_deskey[3] = ses->ses_deskey[3];
1143		ctx.pc_deskey[4] = ses->ses_deskey[4];
1144		ctx.pc_deskey[5] = ses->ses_deskey[5];
1145		SWAP32(ctx.pc_iv[0]);
1146		SWAP32(ctx.pc_iv[1]);
1147	}
1148
1149	if (maccrd) {
1150		macoffset = maccrd->crd_skip;
1151
1152		if (maccrd->crd_alg == CRYPTO_MD5_HMAC)
1153			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_MD5);
1154		else
1155			ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
1156
1157		for (i = 0; i < 5; i++) {
1158			ctx.pc_hminner[i] = ses->ses_hminner[i];
1159			ctx.pc_hmouter[i] = ses->ses_hmouter[i];
1160
1161			HTOLE32(ctx.pc_hminner[i]);
1162			HTOLE32(ctx.pc_hmouter[i]);
1163		}
1164	}
1165
1166	if (enccrd && maccrd) {
1167		/*
1168		 * ubsec cannot handle packets where the end of encryption
1169		 * and authentication are not the same, or where the
1170		 * encrypted part begins before the authenticated part.
1171		 */
1172		if ((encoffset + enccrd->crd_len) !=
1173		    (macoffset + maccrd->crd_len)) {
1174			ubsecstats.hst_lenmismatch++;
1175			err = EINVAL;
1176			goto errout;
1177		}
1178		if (enccrd->crd_skip < maccrd->crd_skip) {
1179			ubsecstats.hst_skipmismatch++;
1180			err = EINVAL;
1181			goto errout;
1182		}
1183		sskip = maccrd->crd_skip;
1184		cpskip = dskip = enccrd->crd_skip;
1185		stheend = maccrd->crd_len;
1186		dtheend = enccrd->crd_len;
1187		coffset = enccrd->crd_skip - maccrd->crd_skip;
1188		cpoffset = cpskip + dtheend;
1189#ifdef UBSEC_DEBUG
1190		if (ubsec_debug) {
1191			printf("mac: skip %d, len %d, inject %d\n",
1192			    maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject);
1193			printf("enc: skip %d, len %d, inject %d\n",
1194			    enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject);
1195			printf("src: skip %d, len %d\n", sskip, stheend);
1196			printf("dst: skip %d, len %d\n", dskip, dtheend);
1197			printf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
1198			    coffset, stheend, cpskip, cpoffset);
1199		}
1200#endif
1201	} else {
1202		cpskip = dskip = sskip = macoffset + encoffset;
1203		dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
1204		cpoffset = cpskip + dtheend;
1205		coffset = 0;
1206	}
1207	ctx.pc_offset = htole16(coffset >> 2);
1208
1209	if (bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &q->q_src_map)) {
1210		ubsecstats.hst_nomap++;
1211		err = ENOMEM;
1212		goto errout;
1213	}
1214	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1215		if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
1216		    q->q_src_m, ubsec_op_cb, &q->q_src, BUS_DMA_NOWAIT) != 0) {
1217			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1218			q->q_src_map = NULL;
1219			ubsecstats.hst_noload++;
1220			err = ENOMEM;
1221			goto errout;
1222		}
1223	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1224		if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
1225		    q->q_src_io, ubsec_op_cb, &q->q_src, BUS_DMA_NOWAIT) != 0) {
1226			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1227			q->q_src_map = NULL;
1228			ubsecstats.hst_noload++;
1229			err = ENOMEM;
1230			goto errout;
1231		}
1232	}
1233	nicealign = ubsec_dmamap_aligned(&q->q_src);
1234
1235	dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
1236
1237#ifdef UBSEC_DEBUG
1238	if (ubsec_debug)
1239		printf("src skip: %d nicealign: %u\n", sskip, nicealign);
1240#endif
1241	for (i = j = 0; i < q->q_src_nsegs; i++) {
1242		struct ubsec_pktbuf *pb;
1243		bus_size_t packl = q->q_src_segs[i].ds_len;
1244		bus_addr_t packp = q->q_src_segs[i].ds_addr;
1245
1246		if (sskip >= packl) {
1247			sskip -= packl;
1248			continue;
1249		}
1250
1251		packl -= sskip;
1252		packp += sskip;
1253		sskip = 0;
1254
1255		if (packl > 0xfffc) {
1256			err = EIO;
1257			goto errout;
1258		}
1259
1260		if (j == 0)
1261			pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
1262		else
1263			pb = &dmap->d_dma->d_sbuf[j - 1];
1264
1265		pb->pb_addr = htole32(packp);
1266
1267		if (stheend) {
1268			if (packl > stheend) {
1269				pb->pb_len = htole32(stheend);
1270				stheend = 0;
1271			} else {
1272				pb->pb_len = htole32(packl);
1273				stheend -= packl;
1274			}
1275		} else
1276			pb->pb_len = htole32(packl);
1277
1278		if ((i + 1) == q->q_src_nsegs)
1279			pb->pb_next = 0;
1280		else
1281			pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1282			    offsetof(struct ubsec_dmachunk, d_sbuf[j]));
1283		j++;
1284	}
1285
1286	if (enccrd == NULL && maccrd != NULL) {
1287		dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
1288		dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
1289		dmap->d_dma->d_mcr.mcr_opktbuf.pb_next = htole32(dmap->d_alloc.dma_paddr +
1290		    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1291#ifdef UBSEC_DEBUG
1292		if (ubsec_debug)
1293			printf("opkt: %x %x %x\n",
1294			    dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
1295			    dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
1296			    dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
1297#endif
1298	} else {
1299		if (crp->crp_flags & CRYPTO_F_IOV) {
1300			if (!nicealign) {
1301				ubsecstats.hst_iovmisaligned++;
1302				err = EINVAL;
1303				goto errout;
1304			}
1305			if (bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1306			     &q->q_dst_map)) {
1307				ubsecstats.hst_nomap++;
1308				err = ENOMEM;
1309				goto errout;
1310			}
1311			if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
1312			    q->q_dst_io, ubsec_op_cb, &q->q_dst, BUS_DMA_NOWAIT) != 0) {
1313				bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1314				q->q_dst_map = NULL;
1315				ubsecstats.hst_noload++;
1316				err = ENOMEM;
1317				goto errout;
1318			}
1319		} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1320			if (nicealign) {
1321				q->q_dst = q->q_src;
1322			} else {
1323				int totlen, len;
1324				struct mbuf *m, *top, **mp;
1325
1326				ubsecstats.hst_unaligned++;
1327				totlen = q->q_src_mapsize;
1328				if (q->q_src_m->m_flags & M_PKTHDR) {
1329					len = MHLEN;
1330					MGETHDR(m, M_DONTWAIT, MT_DATA);
1331					if (m && !m_dup_pkthdr(m, q->q_src_m, M_DONTWAIT)) {
1332						m_free(m);
1333						m = NULL;
1334					}
1335				} else {
1336					len = MLEN;
1337					MGET(m, M_DONTWAIT, MT_DATA);
1338				}
1339				if (m == NULL) {
1340					ubsecstats.hst_nombuf++;
1341					err = sc->sc_nqueue ? ERESTART : ENOMEM;
1342					goto errout;
1343				}
1344				if (totlen >= MINCLSIZE) {
1345					MCLGET(m, M_DONTWAIT);
1346					if ((m->m_flags & M_EXT) == 0) {
1347						m_free(m);
1348						ubsecstats.hst_nomcl++;
1349						err = sc->sc_nqueue ? ERESTART : ENOMEM;
1350						goto errout;
1351					}
1352					len = MCLBYTES;
1353				}
1354				m->m_len = len;
1355				top = NULL;
1356				mp = &top;
1357
1358				while (totlen > 0) {
1359					if (top) {
1360						MGET(m, M_DONTWAIT, MT_DATA);
1361						if (m == NULL) {
1362							m_freem(top);
1363							ubsecstats.hst_nombuf++;
1364							err = sc->sc_nqueue ? ERESTART : ENOMEM;
1365							goto errout;
1366						}
1367						len = MLEN;
1368					}
1369					if (top && totlen >= MINCLSIZE) {
1370						MCLGET(m, M_DONTWAIT);
1371						if ((m->m_flags & M_EXT) == 0) {
1372							*mp = m;
1373							m_freem(top);
1374							ubsecstats.hst_nomcl++;
1375							err = sc->sc_nqueue ? ERESTART : ENOMEM;
1376							goto errout;
1377						}
1378						len = MCLBYTES;
1379					}
1380					m->m_len = len = min(totlen, len);
1381					totlen -= len;
1382					*mp = m;
1383					mp = &m->m_next;
1384				}
1385				q->q_dst_m = top;
1386				ubsec_mcopy(q->q_src_m, q->q_dst_m,
1387				    cpskip, cpoffset);
1388				if (bus_dmamap_create(sc->sc_dmat,
1389				    BUS_DMA_NOWAIT, &q->q_dst_map) != 0) {
1390					ubsecstats.hst_nomap++;
1391					err = ENOMEM;
1392					goto errout;
1393				}
1394				if (bus_dmamap_load_mbuf(sc->sc_dmat,
1395				    q->q_dst_map, q->q_dst_m,
1396				    ubsec_op_cb, &q->q_dst,
1397				    BUS_DMA_NOWAIT) != 0) {
1398					bus_dmamap_destroy(sc->sc_dmat,
1399					q->q_dst_map);
1400					q->q_dst_map = NULL;
1401					ubsecstats.hst_noload++;
1402					err = ENOMEM;
1403					goto errout;
1404				}
1405			}
1406		} else {
1407			ubsecstats.hst_badflags++;
1408			err = EINVAL;
1409			goto errout;
1410		}
1411
1412#ifdef UBSEC_DEBUG
1413		if (ubsec_debug)
1414			printf("dst skip: %d\n", dskip);
1415#endif
1416		for (i = j = 0; i < q->q_dst_nsegs; i++) {
1417			struct ubsec_pktbuf *pb;
1418			bus_size_t packl = q->q_dst_segs[i].ds_len;
1419			bus_addr_t packp = q->q_dst_segs[i].ds_addr;
1420
1421			if (dskip >= packl) {
1422				dskip -= packl;
1423				continue;
1424			}
1425
1426			packl -= dskip;
1427			packp += dskip;
1428			dskip = 0;
1429
1430			if (packl > 0xfffc) {
1431				err = EIO;
1432				goto errout;
1433			}
1434
1435			if (j == 0)
1436				pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
1437			else
1438				pb = &dmap->d_dma->d_dbuf[j - 1];
1439
1440			pb->pb_addr = htole32(packp);
1441
1442			if (dtheend) {
1443				if (packl > dtheend) {
1444					pb->pb_len = htole32(dtheend);
1445					dtheend = 0;
1446				} else {
1447					pb->pb_len = htole32(packl);
1448					dtheend -= packl;
1449				}
1450			} else
1451				pb->pb_len = htole32(packl);
1452
1453			if ((i + 1) == q->q_dst_nsegs) {
1454				if (maccrd)
1455					pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1456					    offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1457				else
1458					pb->pb_next = 0;
1459			} else
1460				pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1461				    offsetof(struct ubsec_dmachunk, d_dbuf[j]));
1462			j++;
1463		}
1464	}
1465
1466	dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
1467	    offsetof(struct ubsec_dmachunk, d_ctx));
1468
1469	if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
1470		struct ubsec_pktctx_long *ctxl;
1471
1472		ctxl = (struct ubsec_pktctx_long *)(dmap->d_alloc.dma_vaddr +
1473		    offsetof(struct ubsec_dmachunk, d_ctx));
1474
1475		/* transform small context into long context */
1476		ctxl->pc_len = htole16(sizeof(struct ubsec_pktctx_long));
1477		ctxl->pc_type = htole16(UBS_PKTCTX_TYPE_IPSEC);
1478		ctxl->pc_flags = ctx.pc_flags;
1479		ctxl->pc_offset = ctx.pc_offset;
1480		for (i = 0; i < 6; i++)
1481			ctxl->pc_deskey[i] = ctx.pc_deskey[i];
1482		for (i = 0; i < 5; i++)
1483			ctxl->pc_hminner[i] = ctx.pc_hminner[i];
1484		for (i = 0; i < 5; i++)
1485			ctxl->pc_hmouter[i] = ctx.pc_hmouter[i];
1486		ctxl->pc_iv[0] = ctx.pc_iv[0];
1487		ctxl->pc_iv[1] = ctx.pc_iv[1];
1488	} else
1489		bcopy(&ctx, dmap->d_alloc.dma_vaddr +
1490		    offsetof(struct ubsec_dmachunk, d_ctx),
1491		    sizeof(struct ubsec_pktctx));
1492
1493	UBSEC_LOCK(sc);
1494	SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
1495	sc->sc_nqueue++;
1496	ubsecstats.hst_ipackets++;
1497	ubsecstats.hst_ibytes += dmap->d_alloc.dma_size;
1498	if ((hint & CRYPTO_HINT_MORE) == 0 || sc->sc_nqueue >= ubsec_maxbatch)
1499		ubsec_feed(sc);
1500	UBSEC_UNLOCK(sc);
1501	return (0);
1502
1503errout:
1504	if (q != NULL) {
1505		if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
1506			m_freem(q->q_dst_m);
1507
1508		if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1509			bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1510			bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1511		}
1512		if (q->q_src_map != NULL) {
1513			bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1514			bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1515		}
1516
1517		UBSEC_LOCK(sc);
1518		SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1519		UBSEC_UNLOCK(sc);
1520	}
1521	if (err != ERESTART) {
1522		crp->crp_etype = err;
1523		crypto_done(crp);
1524	} else {
1525		sc->sc_needwakeup |= CRYPTO_SYMQ;
1526	}
1527	return (err);
1528}
1529
1530static void
1531ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q)
1532{
1533	struct cryptop *crp = (struct cryptop *)q->q_crp;
1534	struct cryptodesc *crd;
1535	struct ubsec_dma *dmap = q->q_dma;
1536
1537	ubsec_dma_sync(&dmap->d_alloc,
1538	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1539	if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1540		bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
1541		    BUS_DMASYNC_POSTREAD);
1542		bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1543		bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1544	}
1545	bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_POSTWRITE);
1546	bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1547	bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1548
1549	if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) {
1550		m_freem(q->q_src_m);
1551		crp->crp_buf = (caddr_t)q->q_dst_m;
1552	}
1553	ubsecstats.hst_obytes += ((struct mbuf *)crp->crp_buf)->m_len;
1554
1555	/* copy out IV for future use */
1556	if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) {
1557		for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1558			if (crd->crd_alg != CRYPTO_DES_CBC &&
1559			    crd->crd_alg != CRYPTO_3DES_CBC)
1560				continue;
1561			if (crp->crp_flags & CRYPTO_F_IMBUF)
1562				m_copydata((struct mbuf *)crp->crp_buf,
1563				    crd->crd_skip + crd->crd_len - 8, 8,
1564				    (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1565			else if (crp->crp_flags & CRYPTO_F_IOV) {
1566				cuio_copydata((struct uio *)crp->crp_buf,
1567				    crd->crd_skip + crd->crd_len - 8, 8,
1568				    (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1569			}
1570			break;
1571		}
1572	}
1573
1574	for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1575		if (crd->crd_alg != CRYPTO_MD5_HMAC &&
1576		    crd->crd_alg != CRYPTO_SHA1_HMAC)
1577			continue;
1578		if (crp->crp_flags & CRYPTO_F_IMBUF)
1579			m_copyback((struct mbuf *)crp->crp_buf,
1580			    crd->crd_inject, 12,
1581			    (caddr_t)dmap->d_dma->d_macbuf);
1582		else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac)
1583			bcopy((caddr_t)dmap->d_dma->d_macbuf,
1584			    crp->crp_mac, 12);
1585		break;
1586	}
1587	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1588	crypto_done(crp);
1589}
1590
1591static void
1592ubsec_mcopy(struct mbuf *srcm, struct mbuf *dstm, int hoffset, int toffset)
1593{
1594	int i, j, dlen, slen;
1595	caddr_t dptr, sptr;
1596
1597	j = 0;
1598	sptr = srcm->m_data;
1599	slen = srcm->m_len;
1600	dptr = dstm->m_data;
1601	dlen = dstm->m_len;
1602
1603	while (1) {
1604		for (i = 0; i < min(slen, dlen); i++) {
1605			if (j < hoffset || j >= toffset)
1606				*dptr++ = *sptr++;
1607			slen--;
1608			dlen--;
1609			j++;
1610		}
1611		if (slen == 0) {
1612			srcm = srcm->m_next;
1613			if (srcm == NULL)
1614				return;
1615			sptr = srcm->m_data;
1616			slen = srcm->m_len;
1617		}
1618		if (dlen == 0) {
1619			dstm = dstm->m_next;
1620			if (dstm == NULL)
1621				return;
1622			dptr = dstm->m_data;
1623			dlen = dstm->m_len;
1624		}
1625	}
1626}
1627
1628/*
1629 * feed the key generator, must be called at splimp() or higher.
1630 */
1631static int
1632ubsec_feed2(struct ubsec_softc *sc)
1633{
1634	struct ubsec_q2 *q;
1635
1636	while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) {
1637		if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL)
1638			break;
1639		q = SIMPLEQ_FIRST(&sc->sc_queue2);
1640
1641		ubsec_dma_sync(&q->q_mcr,
1642		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1643		ubsec_dma_sync(&q->q_ctx, BUS_DMASYNC_PREWRITE);
1644
1645		WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr);
1646		SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, q, q_next);
1647		--sc->sc_nqueue2;
1648		SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next);
1649	}
1650	return (0);
1651}
1652
1653/*
1654 * Callback for handling random numbers
1655 */
1656static void
1657ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q)
1658{
1659	struct cryptkop *krp;
1660	struct ubsec_ctx_keyop *ctx;
1661
1662	ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr;
1663	ubsec_dma_sync(&q->q_ctx, BUS_DMASYNC_POSTWRITE);
1664
1665	switch (q->q_type) {
1666#ifndef UBSEC_NO_RNG
1667	case UBS_CTXOP_RNGBYPASS: {
1668		struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q;
1669
1670		ubsec_dma_sync(&rng->rng_buf, BUS_DMASYNC_POSTREAD);
1671		random_harvest(rng->rng_buf.dma_vaddr,
1672			UBSEC_RNG_BUFSIZ*sizeof (u_int32_t),
1673			UBSEC_RNG_BUFSIZ*sizeof (u_int32_t)*NBBY, 0,
1674			RANDOM_PURE);
1675		rng->rng_used = 0;
1676		callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
1677		break;
1678	}
1679#endif
1680	case UBS_CTXOP_MODEXP: {
1681		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
1682		u_int rlen, clen;
1683
1684		krp = me->me_krp;
1685		rlen = (me->me_modbits + 7) / 8;
1686		clen = (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8;
1687
1688		ubsec_dma_sync(&me->me_M, BUS_DMASYNC_POSTWRITE);
1689		ubsec_dma_sync(&me->me_E, BUS_DMASYNC_POSTWRITE);
1690		ubsec_dma_sync(&me->me_C, BUS_DMASYNC_POSTREAD);
1691		ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_POSTWRITE);
1692
1693		if (clen < rlen)
1694			krp->krp_status = E2BIG;
1695		else {
1696			if (sc->sc_flags & UBS_FLAGS_HWNORM) {
1697				bzero(krp->krp_param[krp->krp_iparams].crp_p,
1698				    (krp->krp_param[krp->krp_iparams].crp_nbits
1699					+ 7) / 8);
1700				bcopy(me->me_C.dma_vaddr,
1701				    krp->krp_param[krp->krp_iparams].crp_p,
1702				    (me->me_modbits + 7) / 8);
1703			} else
1704				ubsec_kshift_l(me->me_shiftbits,
1705				    me->me_C.dma_vaddr, me->me_normbits,
1706				    krp->krp_param[krp->krp_iparams].crp_p,
1707				    krp->krp_param[krp->krp_iparams].crp_nbits);
1708		}
1709
1710		crypto_kdone(krp);
1711
1712		/* bzero all potentially sensitive data */
1713		bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
1714		bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
1715		bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
1716		bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
1717
1718		/* Can't free here, so put us on the free list. */
1719		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &me->me_q, q_next);
1720		break;
1721	}
1722	case UBS_CTXOP_RSAPRIV: {
1723		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
1724		u_int len;
1725
1726		krp = rp->rpr_krp;
1727		ubsec_dma_sync(&rp->rpr_msgin, BUS_DMASYNC_POSTWRITE);
1728		ubsec_dma_sync(&rp->rpr_msgout, BUS_DMASYNC_POSTREAD);
1729
1730		len = (krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_nbits + 7) / 8;
1731		bcopy(rp->rpr_msgout.dma_vaddr,
1732		    krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_p, len);
1733
1734		crypto_kdone(krp);
1735
1736		bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size);
1737		bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size);
1738		bzero(rp->rpr_q.q_ctx.dma_vaddr, rp->rpr_q.q_ctx.dma_size);
1739
1740		/* Can't free here, so put us on the free list. */
1741		SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &rp->rpr_q, q_next);
1742		break;
1743	}
1744	default:
1745		device_printf(sc->sc_dev, "unknown ctx op: %x\n",
1746		    letoh16(ctx->ctx_op));
1747		break;
1748	}
1749}
1750
1751#ifndef UBSEC_NO_RNG
1752static void
1753ubsec_rng(void *vsc)
1754{
1755	struct ubsec_softc *sc = vsc;
1756	struct ubsec_q2_rng *rng = &sc->sc_rng;
1757	struct ubsec_mcr *mcr;
1758	struct ubsec_ctx_rngbypass *ctx;
1759
1760	UBSEC_LOCK(sc);
1761	if (rng->rng_used) {
1762		UBSEC_UNLOCK(sc);
1763		return;
1764	}
1765	sc->sc_nqueue2++;
1766	if (sc->sc_nqueue2 >= UBS_MAX_NQUEUE)
1767		goto out;
1768
1769	mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr;
1770	ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr;
1771
1772	mcr->mcr_pkts = htole16(1);
1773	mcr->mcr_flags = 0;
1774	mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr);
1775	mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0;
1776	mcr->mcr_ipktbuf.pb_len = 0;
1777	mcr->mcr_reserved = mcr->mcr_pktlen = 0;
1778	mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr);
1779	mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) &
1780	    UBS_PKTBUF_LEN);
1781	mcr->mcr_opktbuf.pb_next = 0;
1782
1783	ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass));
1784	ctx->rbp_op = htole16(UBS_CTXOP_RNGBYPASS);
1785	rng->rng_q.q_type = UBS_CTXOP_RNGBYPASS;
1786
1787	ubsec_dma_sync(&rng->rng_buf, BUS_DMASYNC_PREREAD);
1788
1789	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next);
1790	rng->rng_used = 1;
1791	ubsec_feed2(sc);
1792	ubsecstats.hst_rng++;
1793	UBSEC_UNLOCK(sc);
1794
1795	return;
1796
1797out:
1798	/*
1799	 * Something weird happened, generate our own call back.
1800	 */
1801	sc->sc_nqueue2--;
1802	UBSEC_UNLOCK(sc);
1803	callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
1804}
1805#endif /* UBSEC_NO_RNG */
1806
1807static void
1808ubsec_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1809{
1810	bus_addr_t *paddr = (bus_addr_t*) arg;
1811	*paddr = segs->ds_addr;
1812}
1813
1814static int
1815ubsec_dma_malloc(
1816	struct ubsec_softc *sc,
1817	bus_size_t size,
1818	struct ubsec_dma_alloc *dma,
1819	int mapflags
1820)
1821{
1822	int r;
1823
1824	/* XXX could specify sc_dmat as parent but that just adds overhead */
1825	r = bus_dma_tag_create(NULL,			/* parent */
1826			       1, 0,			/* alignment, bounds */
1827			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1828			       BUS_SPACE_MAXADDR,	/* highaddr */
1829			       NULL, NULL,		/* filter, filterarg */
1830			       size,			/* maxsize */
1831			       1,			/* nsegments */
1832			       size,			/* maxsegsize */
1833			       BUS_DMA_ALLOCNOW,	/* flags */
1834			       &dma->dma_tag);
1835	if (r != 0) {
1836		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1837			"bus_dma_tag_create failed; error %u\n", r);
1838		goto fail_0;
1839	}
1840
1841	r = bus_dmamap_create(dma->dma_tag, BUS_DMA_NOWAIT, &dma->dma_map);
1842	if (r != 0) {
1843		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1844			"bus_dmamap_create failed; error %u\n", r);
1845		goto fail_1;
1846	}
1847
1848	r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
1849			     BUS_DMA_NOWAIT, &dma->dma_map);
1850	if (r != 0) {
1851		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1852			"bus_dmammem_alloc failed; size %zu, error %u\n",
1853			size, r);
1854		goto fail_2;
1855	}
1856
1857	r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
1858		            size,
1859			    ubsec_dmamap_cb,
1860			    &dma->dma_paddr,
1861			    mapflags | BUS_DMA_NOWAIT);
1862	if (r != 0) {
1863		device_printf(sc->sc_dev, "ubsec_dma_malloc: "
1864			"bus_dmamap_load failed; error %u\n", r);
1865		goto fail_3;
1866	}
1867
1868	dma->dma_size = size;
1869	return (0);
1870
1871fail_3:
1872	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1873fail_2:
1874	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1875fail_1:
1876	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1877	bus_dma_tag_destroy(dma->dma_tag);
1878fail_0:
1879	dma->dma_map = NULL;
1880	dma->dma_tag = NULL;
1881	return (r);
1882}
1883
1884static void
1885ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
1886{
1887	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1888	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1889	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1890	bus_dma_tag_destroy(dma->dma_tag);
1891}
1892
1893/*
1894 * Resets the board.  Values in the regesters are left as is
1895 * from the reset (i.e. initial values are assigned elsewhere).
1896 */
1897static void
1898ubsec_reset_board(struct ubsec_softc *sc)
1899{
1900    volatile u_int32_t ctrl;
1901
1902    ctrl = READ_REG(sc, BS_CTRL);
1903    ctrl |= BS_CTRL_RESET;
1904    WRITE_REG(sc, BS_CTRL, ctrl);
1905
1906    /*
1907     * Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
1908     */
1909    DELAY(10);
1910}
1911
1912/*
1913 * Init Broadcom registers
1914 */
1915static void
1916ubsec_init_board(struct ubsec_softc *sc)
1917{
1918	u_int32_t ctrl;
1919
1920	ctrl = READ_REG(sc, BS_CTRL);
1921	ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
1922	ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT;
1923
1924	if (sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG))
1925		ctrl |= BS_CTRL_MCR2INT;
1926	else
1927		ctrl &= ~BS_CTRL_MCR2INT;
1928
1929	if (sc->sc_flags & UBS_FLAGS_HWNORM)
1930		ctrl &= ~BS_CTRL_SWNORM;
1931
1932	WRITE_REG(sc, BS_CTRL, ctrl);
1933}
1934
1935/*
1936 * Init Broadcom PCI registers
1937 */
1938static void
1939ubsec_init_pciregs(device_t dev)
1940{
1941#if 0
1942	u_int32_t misc;
1943
1944	misc = pci_conf_read(pc, pa->pa_tag, BS_RTY_TOUT);
1945	misc = (misc & ~(UBS_PCI_RTY_MASK << UBS_PCI_RTY_SHIFT))
1946	    | ((UBS_DEF_RTY & 0xff) << UBS_PCI_RTY_SHIFT);
1947	misc = (misc & ~(UBS_PCI_TOUT_MASK << UBS_PCI_TOUT_SHIFT))
1948	    | ((UBS_DEF_TOUT & 0xff) << UBS_PCI_TOUT_SHIFT);
1949	pci_conf_write(pc, pa->pa_tag, BS_RTY_TOUT, misc);
1950#endif
1951
1952	/*
1953	 * This will set the cache line size to 1, this will
1954	 * force the BCM58xx chip just to do burst read/writes.
1955	 * Cache line read/writes are to slow
1956	 */
1957	pci_write_config(dev, PCIR_CACHELNSZ, UBS_DEF_CACHELINE, 1);
1958}
1959
1960/*
1961 * Clean up after a chip crash.
1962 * It is assumed that the caller in splimp()
1963 */
1964static void
1965ubsec_cleanchip(struct ubsec_softc *sc)
1966{
1967	struct ubsec_q *q;
1968
1969	while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
1970		q = SIMPLEQ_FIRST(&sc->sc_qchip);
1971		SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q, q_next);
1972		ubsec_free_q(sc, q);
1973	}
1974	sc->sc_nqchip = 0;
1975}
1976
1977/*
1978 * free a ubsec_q
1979 * It is assumed that the caller is within splimp().
1980 */
1981static int
1982ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
1983{
1984	struct ubsec_q *q2;
1985	struct cryptop *crp;
1986	int npkts;
1987	int i;
1988
1989	npkts = q->q_nstacked_mcrs;
1990
1991	for (i = 0; i < npkts; i++) {
1992		if(q->q_stacked_mcr[i]) {
1993			q2 = q->q_stacked_mcr[i];
1994
1995			if ((q2->q_dst_m != NULL) && (q2->q_src_m != q2->q_dst_m))
1996				m_freem(q2->q_dst_m);
1997
1998			crp = (struct cryptop *)q2->q_crp;
1999
2000			SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
2001
2002			crp->crp_etype = EFAULT;
2003			crypto_done(crp);
2004		} else {
2005			break;
2006		}
2007	}
2008
2009	/*
2010	 * Free header MCR
2011	 */
2012	if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
2013		m_freem(q->q_dst_m);
2014
2015	crp = (struct cryptop *)q->q_crp;
2016
2017	SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
2018
2019	crp->crp_etype = EFAULT;
2020	crypto_done(crp);
2021	return(0);
2022}
2023
2024/*
2025 * Routine to reset the chip and clean up.
2026 * It is assumed that the caller is in splimp()
2027 */
2028static void
2029ubsec_totalreset(struct ubsec_softc *sc)
2030{
2031	ubsec_reset_board(sc);
2032	ubsec_init_board(sc);
2033	ubsec_cleanchip(sc);
2034}
2035
2036static int
2037ubsec_dmamap_aligned(struct ubsec_operand *op)
2038{
2039	int i;
2040
2041	for (i = 0; i < op->nsegs; i++) {
2042		if (op->segs[i].ds_addr & 3)
2043			return (0);
2044		if ((i != (op->nsegs - 1)) &&
2045		    (op->segs[i].ds_len & 3))
2046			return (0);
2047	}
2048	return (1);
2049}
2050
2051static void
2052ubsec_kfree(struct ubsec_softc *sc, struct ubsec_q2 *q)
2053{
2054	switch (q->q_type) {
2055	case UBS_CTXOP_MODEXP: {
2056		struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
2057
2058		ubsec_dma_free(sc, &me->me_q.q_mcr);
2059		ubsec_dma_free(sc, &me->me_q.q_ctx);
2060		ubsec_dma_free(sc, &me->me_M);
2061		ubsec_dma_free(sc, &me->me_E);
2062		ubsec_dma_free(sc, &me->me_C);
2063		ubsec_dma_free(sc, &me->me_epb);
2064		free(me, M_DEVBUF);
2065		break;
2066	}
2067	case UBS_CTXOP_RSAPRIV: {
2068		struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
2069
2070		ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2071		ubsec_dma_free(sc, &rp->rpr_q.q_ctx);
2072		ubsec_dma_free(sc, &rp->rpr_msgin);
2073		ubsec_dma_free(sc, &rp->rpr_msgout);
2074		free(rp, M_DEVBUF);
2075		break;
2076	}
2077	default:
2078		device_printf(sc->sc_dev, "invalid kfree 0x%x\n", q->q_type);
2079		break;
2080	}
2081}
2082
2083static int
2084ubsec_kprocess(void *arg, struct cryptkop *krp, int hint)
2085{
2086	struct ubsec_softc *sc = arg;
2087	int r;
2088
2089	if (krp == NULL || krp->krp_callback == NULL)
2090		return (EINVAL);
2091
2092	while (!SIMPLEQ_EMPTY(&sc->sc_q2free)) {
2093		struct ubsec_q2 *q;
2094
2095		q = SIMPLEQ_FIRST(&sc->sc_q2free);
2096		SIMPLEQ_REMOVE_HEAD(&sc->sc_q2free, q, q_next);
2097		ubsec_kfree(sc, q);
2098	}
2099
2100	switch (krp->krp_op) {
2101	case CRK_MOD_EXP:
2102		if (sc->sc_flags & UBS_FLAGS_HWNORM)
2103			r = ubsec_kprocess_modexp_hw(sc, krp, hint);
2104		else
2105			r = ubsec_kprocess_modexp_sw(sc, krp, hint);
2106		break;
2107	case CRK_MOD_EXP_CRT:
2108		return (ubsec_kprocess_rsapriv(sc, krp, hint));
2109	default:
2110		device_printf(sc->sc_dev, "kprocess: invalid op 0x%x\n",
2111		    krp->krp_op);
2112		krp->krp_status = EOPNOTSUPP;
2113		crypto_kdone(krp);
2114		return (0);
2115	}
2116	return (0);			/* silence compiler */
2117}
2118
2119/*
2120 * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (sw normalization)
2121 */
2122static int
2123ubsec_kprocess_modexp_sw(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
2124{
2125	struct ubsec_q2_modexp *me;
2126	struct ubsec_mcr *mcr;
2127	struct ubsec_ctx_modexp *ctx;
2128	struct ubsec_pktbuf *epb;
2129	int err = 0;
2130	u_int nbits, normbits, mbits, shiftbits, ebits;
2131
2132	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2133	if (me == NULL) {
2134		err = ENOMEM;
2135		goto errout;
2136	}
2137	bzero(me, sizeof *me);
2138	me->me_krp = krp;
2139	me->me_q.q_type = UBS_CTXOP_MODEXP;
2140
2141	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2142	if (nbits <= 512)
2143		normbits = 512;
2144	else if (nbits <= 768)
2145		normbits = 768;
2146	else if (nbits <= 1024)
2147		normbits = 1024;
2148	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2149		normbits = 1536;
2150	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2151		normbits = 2048;
2152	else {
2153		err = E2BIG;
2154		goto errout;
2155	}
2156
2157	shiftbits = normbits - nbits;
2158
2159	me->me_modbits = nbits;
2160	me->me_shiftbits = shiftbits;
2161	me->me_normbits = normbits;
2162
2163	/* Sanity check: result bits must be >= true modulus bits. */
2164	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2165		err = ERANGE;
2166		goto errout;
2167	}
2168
2169	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2170	    &me->me_q.q_mcr, 0)) {
2171		err = ENOMEM;
2172		goto errout;
2173	}
2174	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2175
2176	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2177	    &me->me_q.q_ctx, 0)) {
2178		err = ENOMEM;
2179		goto errout;
2180	}
2181
2182	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2183	if (mbits > nbits) {
2184		err = E2BIG;
2185		goto errout;
2186	}
2187	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2188		err = ENOMEM;
2189		goto errout;
2190	}
2191	ubsec_kshift_r(shiftbits,
2192	    krp->krp_param[UBS_MODEXP_PAR_M].crp_p, mbits,
2193	    me->me_M.dma_vaddr, normbits);
2194
2195	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2196		err = ENOMEM;
2197		goto errout;
2198	}
2199	bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2200
2201	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2202	if (ebits > nbits) {
2203		err = E2BIG;
2204		goto errout;
2205	}
2206	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2207		err = ENOMEM;
2208		goto errout;
2209	}
2210	ubsec_kshift_r(shiftbits,
2211	    krp->krp_param[UBS_MODEXP_PAR_E].crp_p, ebits,
2212	    me->me_E.dma_vaddr, normbits);
2213
2214	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2215	    &me->me_epb, 0)) {
2216		err = ENOMEM;
2217		goto errout;
2218	}
2219	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2220	epb->pb_addr = htole32(me->me_E.dma_paddr);
2221	epb->pb_next = 0;
2222	epb->pb_len = htole32(normbits / 8);
2223
2224#ifdef UBSEC_DEBUG
2225	if (ubsec_debug) {
2226		printf("Epb ");
2227		ubsec_dump_pb(epb);
2228	}
2229#endif
2230
2231	mcr->mcr_pkts = htole16(1);
2232	mcr->mcr_flags = 0;
2233	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2234	mcr->mcr_reserved = 0;
2235	mcr->mcr_pktlen = 0;
2236
2237	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2238	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2239	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2240
2241	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2242	mcr->mcr_opktbuf.pb_next = 0;
2243	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2244
2245#ifdef DIAGNOSTIC
2246	/* Misaligned output buffer will hang the chip. */
2247	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2248		panic("%s: modexp invalid addr 0x%x\n",
2249		    device_get_nameunit(sc->sc_dev),
2250		    letoh32(mcr->mcr_opktbuf.pb_addr));
2251	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2252		panic("%s: modexp invalid len 0x%x\n",
2253		    device_get_nameunit(sc->sc_dev),
2254		    letoh32(mcr->mcr_opktbuf.pb_len));
2255#endif
2256
2257	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2258	bzero(ctx, sizeof(*ctx));
2259	ubsec_kshift_r(shiftbits,
2260	    krp->krp_param[UBS_MODEXP_PAR_N].crp_p, nbits,
2261	    ctx->me_N, normbits);
2262	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2263	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2264	ctx->me_E_len = htole16(nbits);
2265	ctx->me_N_len = htole16(nbits);
2266
2267#ifdef UBSEC_DEBUG
2268	if (ubsec_debug) {
2269		ubsec_dump_mcr(mcr);
2270		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2271	}
2272#endif
2273
2274	/*
2275	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2276	 * everything else.
2277	 */
2278	ubsec_dma_sync(&me->me_M, BUS_DMASYNC_PREWRITE);
2279	ubsec_dma_sync(&me->me_E, BUS_DMASYNC_PREWRITE);
2280	ubsec_dma_sync(&me->me_C, BUS_DMASYNC_PREREAD);
2281	ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_PREWRITE);
2282
2283	/* Enqueue and we're done... */
2284	UBSEC_LOCK(sc);
2285	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2286	ubsec_feed2(sc);
2287	ubsecstats.hst_modexp++;
2288	UBSEC_UNLOCK(sc);
2289
2290	return (0);
2291
2292errout:
2293	if (me != NULL) {
2294		if (me->me_q.q_mcr.dma_map != NULL)
2295			ubsec_dma_free(sc, &me->me_q.q_mcr);
2296		if (me->me_q.q_ctx.dma_map != NULL) {
2297			bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
2298			ubsec_dma_free(sc, &me->me_q.q_ctx);
2299		}
2300		if (me->me_M.dma_map != NULL) {
2301			bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
2302			ubsec_dma_free(sc, &me->me_M);
2303		}
2304		if (me->me_E.dma_map != NULL) {
2305			bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
2306			ubsec_dma_free(sc, &me->me_E);
2307		}
2308		if (me->me_C.dma_map != NULL) {
2309			bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2310			ubsec_dma_free(sc, &me->me_C);
2311		}
2312		if (me->me_epb.dma_map != NULL)
2313			ubsec_dma_free(sc, &me->me_epb);
2314		free(me, M_DEVBUF);
2315	}
2316	krp->krp_status = err;
2317	crypto_kdone(krp);
2318	return (0);
2319}
2320
2321/*
2322 * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (hw normalization)
2323 */
2324static int
2325ubsec_kprocess_modexp_hw(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
2326{
2327	struct ubsec_q2_modexp *me;
2328	struct ubsec_mcr *mcr;
2329	struct ubsec_ctx_modexp *ctx;
2330	struct ubsec_pktbuf *epb;
2331	int err = 0;
2332	u_int nbits, normbits, mbits, shiftbits, ebits;
2333
2334	me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
2335	if (me == NULL) {
2336		err = ENOMEM;
2337		goto errout;
2338	}
2339	bzero(me, sizeof *me);
2340	me->me_krp = krp;
2341	me->me_q.q_type = UBS_CTXOP_MODEXP;
2342
2343	nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
2344	if (nbits <= 512)
2345		normbits = 512;
2346	else if (nbits <= 768)
2347		normbits = 768;
2348	else if (nbits <= 1024)
2349		normbits = 1024;
2350	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
2351		normbits = 1536;
2352	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
2353		normbits = 2048;
2354	else {
2355		err = E2BIG;
2356		goto errout;
2357	}
2358
2359	shiftbits = normbits - nbits;
2360
2361	/* XXX ??? */
2362	me->me_modbits = nbits;
2363	me->me_shiftbits = shiftbits;
2364	me->me_normbits = normbits;
2365
2366	/* Sanity check: result bits must be >= true modulus bits. */
2367	if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
2368		err = ERANGE;
2369		goto errout;
2370	}
2371
2372	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2373	    &me->me_q.q_mcr, 0)) {
2374		err = ENOMEM;
2375		goto errout;
2376	}
2377	mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
2378
2379	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
2380	    &me->me_q.q_ctx, 0)) {
2381		err = ENOMEM;
2382		goto errout;
2383	}
2384
2385	mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
2386	if (mbits > nbits) {
2387		err = E2BIG;
2388		goto errout;
2389	}
2390	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
2391		err = ENOMEM;
2392		goto errout;
2393	}
2394	bzero(me->me_M.dma_vaddr, normbits / 8);
2395	bcopy(krp->krp_param[UBS_MODEXP_PAR_M].crp_p,
2396	    me->me_M.dma_vaddr, (mbits + 7) / 8);
2397
2398	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
2399		err = ENOMEM;
2400		goto errout;
2401	}
2402	bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2403
2404	ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
2405	if (ebits > nbits) {
2406		err = E2BIG;
2407		goto errout;
2408	}
2409	if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
2410		err = ENOMEM;
2411		goto errout;
2412	}
2413	bzero(me->me_E.dma_vaddr, normbits / 8);
2414	bcopy(krp->krp_param[UBS_MODEXP_PAR_E].crp_p,
2415	    me->me_E.dma_vaddr, (ebits + 7) / 8);
2416
2417	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
2418	    &me->me_epb, 0)) {
2419		err = ENOMEM;
2420		goto errout;
2421	}
2422	epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
2423	epb->pb_addr = htole32(me->me_E.dma_paddr);
2424	epb->pb_next = 0;
2425	epb->pb_len = htole32((ebits + 7) / 8);
2426
2427#ifdef UBSEC_DEBUG
2428	if (ubsec_debug) {
2429		printf("Epb ");
2430		ubsec_dump_pb(epb);
2431	}
2432#endif
2433
2434	mcr->mcr_pkts = htole16(1);
2435	mcr->mcr_flags = 0;
2436	mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
2437	mcr->mcr_reserved = 0;
2438	mcr->mcr_pktlen = 0;
2439
2440	mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
2441	mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
2442	mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
2443
2444	mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
2445	mcr->mcr_opktbuf.pb_next = 0;
2446	mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
2447
2448#ifdef DIAGNOSTIC
2449	/* Misaligned output buffer will hang the chip. */
2450	if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
2451		panic("%s: modexp invalid addr 0x%x\n",
2452		    device_get_nameunit(sc->sc_dev),
2453		    letoh32(mcr->mcr_opktbuf.pb_addr));
2454	if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
2455		panic("%s: modexp invalid len 0x%x\n",
2456		    device_get_nameunit(sc->sc_dev),
2457		    letoh32(mcr->mcr_opktbuf.pb_len));
2458#endif
2459
2460	ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
2461	bzero(ctx, sizeof(*ctx));
2462	bcopy(krp->krp_param[UBS_MODEXP_PAR_N].crp_p, ctx->me_N,
2463	    (nbits + 7) / 8);
2464	ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
2465	ctx->me_op = htole16(UBS_CTXOP_MODEXP);
2466	ctx->me_E_len = htole16(ebits);
2467	ctx->me_N_len = htole16(nbits);
2468
2469#ifdef UBSEC_DEBUG
2470	if (ubsec_debug) {
2471		ubsec_dump_mcr(mcr);
2472		ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
2473	}
2474#endif
2475
2476	/*
2477	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2478	 * everything else.
2479	 */
2480	ubsec_dma_sync(&me->me_M, BUS_DMASYNC_PREWRITE);
2481	ubsec_dma_sync(&me->me_E, BUS_DMASYNC_PREWRITE);
2482	ubsec_dma_sync(&me->me_C, BUS_DMASYNC_PREREAD);
2483	ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_PREWRITE);
2484
2485	/* Enqueue and we're done... */
2486	UBSEC_LOCK(sc);
2487	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
2488	ubsec_feed2(sc);
2489	UBSEC_UNLOCK(sc);
2490
2491	return (0);
2492
2493errout:
2494	if (me != NULL) {
2495		if (me->me_q.q_mcr.dma_map != NULL)
2496			ubsec_dma_free(sc, &me->me_q.q_mcr);
2497		if (me->me_q.q_ctx.dma_map != NULL) {
2498			bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
2499			ubsec_dma_free(sc, &me->me_q.q_ctx);
2500		}
2501		if (me->me_M.dma_map != NULL) {
2502			bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
2503			ubsec_dma_free(sc, &me->me_M);
2504		}
2505		if (me->me_E.dma_map != NULL) {
2506			bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
2507			ubsec_dma_free(sc, &me->me_E);
2508		}
2509		if (me->me_C.dma_map != NULL) {
2510			bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
2511			ubsec_dma_free(sc, &me->me_C);
2512		}
2513		if (me->me_epb.dma_map != NULL)
2514			ubsec_dma_free(sc, &me->me_epb);
2515		free(me, M_DEVBUF);
2516	}
2517	krp->krp_status = err;
2518	crypto_kdone(krp);
2519	return (0);
2520}
2521
2522static int
2523ubsec_kprocess_rsapriv(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
2524{
2525	struct ubsec_q2_rsapriv *rp = NULL;
2526	struct ubsec_mcr *mcr;
2527	struct ubsec_ctx_rsapriv *ctx;
2528	int err = 0;
2529	u_int padlen, msglen;
2530
2531	msglen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_P]);
2532	padlen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_Q]);
2533	if (msglen > padlen)
2534		padlen = msglen;
2535
2536	if (padlen <= 256)
2537		padlen = 256;
2538	else if (padlen <= 384)
2539		padlen = 384;
2540	else if (padlen <= 512)
2541		padlen = 512;
2542	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 768)
2543		padlen = 768;
2544	else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 1024)
2545		padlen = 1024;
2546	else {
2547		err = E2BIG;
2548		goto errout;
2549	}
2550
2551	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DP]) > padlen) {
2552		err = E2BIG;
2553		goto errout;
2554	}
2555
2556	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DQ]) > padlen) {
2557		err = E2BIG;
2558		goto errout;
2559	}
2560
2561	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_PINV]) > padlen) {
2562		err = E2BIG;
2563		goto errout;
2564	}
2565
2566	rp = (struct ubsec_q2_rsapriv *)malloc(sizeof *rp, M_DEVBUF, M_NOWAIT);
2567	if (rp == NULL)
2568		return (ENOMEM);
2569	bzero(rp, sizeof *rp);
2570	rp->rpr_krp = krp;
2571	rp->rpr_q.q_type = UBS_CTXOP_RSAPRIV;
2572
2573	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
2574	    &rp->rpr_q.q_mcr, 0)) {
2575		err = ENOMEM;
2576		goto errout;
2577	}
2578	mcr = (struct ubsec_mcr *)rp->rpr_q.q_mcr.dma_vaddr;
2579
2580	if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rsapriv),
2581	    &rp->rpr_q.q_ctx, 0)) {
2582		err = ENOMEM;
2583		goto errout;
2584	}
2585	ctx = (struct ubsec_ctx_rsapriv *)rp->rpr_q.q_ctx.dma_vaddr;
2586	bzero(ctx, sizeof *ctx);
2587
2588	/* Copy in p */
2589	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_p,
2590	    &ctx->rpr_buf[0 * (padlen / 8)],
2591	    (krp->krp_param[UBS_RSAPRIV_PAR_P].crp_nbits + 7) / 8);
2592
2593	/* Copy in q */
2594	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_p,
2595	    &ctx->rpr_buf[1 * (padlen / 8)],
2596	    (krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_nbits + 7) / 8);
2597
2598	/* Copy in dp */
2599	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_p,
2600	    &ctx->rpr_buf[2 * (padlen / 8)],
2601	    (krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_nbits + 7) / 8);
2602
2603	/* Copy in dq */
2604	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_p,
2605	    &ctx->rpr_buf[3 * (padlen / 8)],
2606	    (krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_nbits + 7) / 8);
2607
2608	/* Copy in pinv */
2609	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_p,
2610	    &ctx->rpr_buf[4 * (padlen / 8)],
2611	    (krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_nbits + 7) / 8);
2612
2613	msglen = padlen * 2;
2614
2615	/* Copy in input message (aligned buffer/length). */
2616	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGIN]) > msglen) {
2617		/* Is this likely? */
2618		err = E2BIG;
2619		goto errout;
2620	}
2621	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgin, 0)) {
2622		err = ENOMEM;
2623		goto errout;
2624	}
2625	bzero(rp->rpr_msgin.dma_vaddr, (msglen + 7) / 8);
2626	bcopy(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_p,
2627	    rp->rpr_msgin.dma_vaddr,
2628	    (krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_nbits + 7) / 8);
2629
2630	/* Prepare space for output message (aligned buffer/length). */
2631	if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT]) < msglen) {
2632		/* Is this likely? */
2633		err = E2BIG;
2634		goto errout;
2635	}
2636	if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgout, 0)) {
2637		err = ENOMEM;
2638		goto errout;
2639	}
2640	bzero(rp->rpr_msgout.dma_vaddr, (msglen + 7) / 8);
2641
2642	mcr->mcr_pkts = htole16(1);
2643	mcr->mcr_flags = 0;
2644	mcr->mcr_cmdctxp = htole32(rp->rpr_q.q_ctx.dma_paddr);
2645	mcr->mcr_ipktbuf.pb_addr = htole32(rp->rpr_msgin.dma_paddr);
2646	mcr->mcr_ipktbuf.pb_next = 0;
2647	mcr->mcr_ipktbuf.pb_len = htole32(rp->rpr_msgin.dma_size);
2648	mcr->mcr_reserved = 0;
2649	mcr->mcr_pktlen = htole16(msglen);
2650	mcr->mcr_opktbuf.pb_addr = htole32(rp->rpr_msgout.dma_paddr);
2651	mcr->mcr_opktbuf.pb_next = 0;
2652	mcr->mcr_opktbuf.pb_len = htole32(rp->rpr_msgout.dma_size);
2653
2654#ifdef DIAGNOSTIC
2655	if (rp->rpr_msgin.dma_paddr & 3 || rp->rpr_msgin.dma_size & 3) {
2656		panic("%s: rsapriv: invalid msgin %x(0x%jx)",
2657		    device_get_nameunit(sc->sc_dev),
2658		    rp->rpr_msgin.dma_paddr, (uintmax_t)rp->rpr_msgin.dma_size);
2659	}
2660	if (rp->rpr_msgout.dma_paddr & 3 || rp->rpr_msgout.dma_size & 3) {
2661		panic("%s: rsapriv: invalid msgout %x(0x%jx)",
2662		    device_get_nameunit(sc->sc_dev),
2663		    rp->rpr_msgout.dma_paddr, (uintmax_t)rp->rpr_msgout.dma_size);
2664	}
2665#endif
2666
2667	ctx->rpr_len = (sizeof(u_int16_t) * 4) + (5 * (padlen / 8));
2668	ctx->rpr_op = htole16(UBS_CTXOP_RSAPRIV);
2669	ctx->rpr_q_len = htole16(padlen);
2670	ctx->rpr_p_len = htole16(padlen);
2671
2672	/*
2673	 * ubsec_feed2 will sync mcr and ctx, we just need to sync
2674	 * everything else.
2675	 */
2676	ubsec_dma_sync(&rp->rpr_msgin, BUS_DMASYNC_PREWRITE);
2677	ubsec_dma_sync(&rp->rpr_msgout, BUS_DMASYNC_PREREAD);
2678
2679	/* Enqueue and we're done... */
2680	UBSEC_LOCK(sc);
2681	SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rp->rpr_q, q_next);
2682	ubsec_feed2(sc);
2683	ubsecstats.hst_modexpcrt++;
2684	UBSEC_UNLOCK(sc);
2685	return (0);
2686
2687errout:
2688	if (rp != NULL) {
2689		if (rp->rpr_q.q_mcr.dma_map != NULL)
2690			ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
2691		if (rp->rpr_msgin.dma_map != NULL) {
2692			bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size);
2693			ubsec_dma_free(sc, &rp->rpr_msgin);
2694		}
2695		if (rp->rpr_msgout.dma_map != NULL) {
2696			bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size);
2697			ubsec_dma_free(sc, &rp->rpr_msgout);
2698		}
2699		free(rp, M_DEVBUF);
2700	}
2701	krp->krp_status = err;
2702	crypto_kdone(krp);
2703	return (0);
2704}
2705
2706#ifdef UBSEC_DEBUG
2707static void
2708ubsec_dump_pb(volatile struct ubsec_pktbuf *pb)
2709{
2710	printf("addr 0x%x (0x%x) next 0x%x\n",
2711	    pb->pb_addr, pb->pb_len, pb->pb_next);
2712}
2713
2714static void
2715ubsec_dump_ctx2(struct ubsec_ctx_keyop *c)
2716{
2717	printf("CTX (0x%x):\n", c->ctx_len);
2718	switch (letoh16(c->ctx_op)) {
2719	case UBS_CTXOP_RNGBYPASS:
2720	case UBS_CTXOP_RNGSHA1:
2721		break;
2722	case UBS_CTXOP_MODEXP:
2723	{
2724		struct ubsec_ctx_modexp *cx = (void *)c;
2725		int i, len;
2726
2727		printf(" Elen %u, Nlen %u\n",
2728		    letoh16(cx->me_E_len), letoh16(cx->me_N_len));
2729		len = (cx->me_N_len + 7)/8;
2730		for (i = 0; i < len; i++)
2731			printf("%s%02x", (i == 0) ? " N: " : ":", cx->me_N[i]);
2732		printf("\n");
2733		break;
2734	}
2735	default:
2736		printf("unknown context: %x\n", c->ctx_op);
2737	}
2738	printf("END CTX\n");
2739}
2740
2741static void
2742ubsec_dump_mcr(struct ubsec_mcr *mcr)
2743{
2744	volatile struct ubsec_mcr_add *ma;
2745	int i;
2746
2747	printf("MCR:\n");
2748	printf(" pkts: %u, flags 0x%x\n",
2749	    letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
2750	ma = (volatile struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
2751	for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
2752		printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
2753		    letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
2754		    letoh16(ma->mcr_reserved));
2755		printf(" %d: ipkt ", i);
2756		ubsec_dump_pb(&ma->mcr_ipktbuf);
2757		printf(" %d: opkt ", i);
2758		ubsec_dump_pb(&ma->mcr_opktbuf);
2759		ma++;
2760	}
2761	printf("END MCR\n");
2762}
2763#endif /* UBSEC_DEBUG */
2764
2765/*
2766 * Return the number of significant bits of a big number.
2767 */
2768static int
2769ubsec_ksigbits(struct crparam *cr)
2770{
2771	u_int plen = (cr->crp_nbits + 7) / 8;
2772	int i, sig = plen * 8;
2773	u_int8_t c, *p = cr->crp_p;
2774
2775	for (i = plen - 1; i >= 0; i--) {
2776		c = p[i];
2777		if (c != 0) {
2778			while ((c & 0x80) == 0) {
2779				sig--;
2780				c <<= 1;
2781			}
2782			break;
2783		}
2784		sig -= 8;
2785	}
2786	return (sig);
2787}
2788
2789static void
2790ubsec_kshift_r(
2791	u_int shiftbits,
2792	u_int8_t *src, u_int srcbits,
2793	u_int8_t *dst, u_int dstbits)
2794{
2795	u_int slen, dlen;
2796	int i, si, di, n;
2797
2798	slen = (srcbits + 7) / 8;
2799	dlen = (dstbits + 7) / 8;
2800
2801	for (i = 0; i < slen; i++)
2802		dst[i] = src[i];
2803	for (i = 0; i < dlen - slen; i++)
2804		dst[slen + i] = 0;
2805
2806	n = shiftbits / 8;
2807	if (n != 0) {
2808		si = dlen - n - 1;
2809		di = dlen - 1;
2810		while (si >= 0)
2811			dst[di--] = dst[si--];
2812		while (di >= 0)
2813			dst[di--] = 0;
2814	}
2815
2816	n = shiftbits % 8;
2817	if (n != 0) {
2818		for (i = dlen - 1; i > 0; i--)
2819			dst[i] = (dst[i] << n) |
2820			    (dst[i - 1] >> (8 - n));
2821		dst[0] = dst[0] << n;
2822	}
2823}
2824
2825static void
2826ubsec_kshift_l(
2827	u_int shiftbits,
2828	u_int8_t *src, u_int srcbits,
2829	u_int8_t *dst, u_int dstbits)
2830{
2831	int slen, dlen, i, n;
2832
2833	slen = (srcbits + 7) / 8;
2834	dlen = (dstbits + 7) / 8;
2835
2836	n = shiftbits / 8;
2837	for (i = 0; i < slen; i++)
2838		dst[i] = src[i + n];
2839	for (i = 0; i < dlen - slen; i++)
2840		dst[slen + i] = 0;
2841
2842	n = shiftbits % 8;
2843	if (n != 0) {
2844		for (i = 0; i < (dlen - 1); i++)
2845			dst[i] = (dst[i] >> n) | (dst[i + 1] << (8 - n));
2846		dst[dlen - 1] = dst[dlen - 1] >> n;
2847	}
2848}
2849