uart_dev_ns8250.c revision 330897
1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2003 Marcel Moolenaar
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include "opt_platform.h"
30#include "opt_uart.h"
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: stable/11/sys/dev/uart/uart_dev_ns8250.c 330897 2018-03-14 03:19:51Z eadler $");
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/bus.h>
38#include <sys/conf.h>
39#include <sys/kernel.h>
40#include <sys/sysctl.h>
41#include <machine/bus.h>
42
43#ifdef FDT
44#include <dev/fdt/fdt_common.h>
45#include <dev/ofw/ofw_bus.h>
46#include <dev/ofw/ofw_bus_subr.h>
47#endif
48
49#include <dev/uart/uart.h>
50#include <dev/uart/uart_cpu.h>
51#ifdef FDT
52#include <dev/uart/uart_cpu_fdt.h>
53#endif
54#include <dev/uart/uart_bus.h>
55#include <dev/uart/uart_dev_ns8250.h>
56#include <dev/uart/uart_ppstypes.h>
57
58#include <dev/ic/ns16550.h>
59
60#include "uart_if.h"
61
62#define	DEFAULT_RCLK	1843200
63
64/*
65 * Set the default baudrate tolerance to 3.0%.
66 *
67 * Some embedded boards have odd reference clocks (eg 25MHz)
68 * and we need to handle higher variances in the target baud rate.
69 */
70#ifndef	UART_DEV_TOLERANCE_PCT
71#define	UART_DEV_TOLERANCE_PCT	30
72#endif	/* UART_DEV_TOLERANCE_PCT */
73
74static int broken_txfifo = 0;
75SYSCTL_INT(_hw, OID_AUTO, broken_txfifo, CTLFLAG_RWTUN,
76	&broken_txfifo, 0, "UART FIFO has QEMU emulation bug");
77
78/*
79 * Clear pending interrupts. THRE is cleared by reading IIR. Data
80 * that may have been received gets lost here.
81 */
82static void
83ns8250_clrint(struct uart_bas *bas)
84{
85	uint8_t iir, lsr;
86
87	iir = uart_getreg(bas, REG_IIR);
88	while ((iir & IIR_NOPEND) == 0) {
89		iir &= IIR_IMASK;
90		if (iir == IIR_RLS) {
91			lsr = uart_getreg(bas, REG_LSR);
92			if (lsr & (LSR_BI|LSR_FE|LSR_PE))
93				(void)uart_getreg(bas, REG_DATA);
94		} else if (iir == IIR_RXRDY || iir == IIR_RXTOUT)
95			(void)uart_getreg(bas, REG_DATA);
96		else if (iir == IIR_MLSC)
97			(void)uart_getreg(bas, REG_MSR);
98		uart_barrier(bas);
99		iir = uart_getreg(bas, REG_IIR);
100	}
101}
102
103static int
104ns8250_delay(struct uart_bas *bas)
105{
106	int divisor;
107	u_char lcr;
108
109	lcr = uart_getreg(bas, REG_LCR);
110	uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
111	uart_barrier(bas);
112	divisor = uart_getreg(bas, REG_DLL) | (uart_getreg(bas, REG_DLH) << 8);
113	uart_barrier(bas);
114	uart_setreg(bas, REG_LCR, lcr);
115	uart_barrier(bas);
116
117	/* 1/10th the time to transmit 1 character (estimate). */
118	if (divisor <= 134)
119		return (16000000 * divisor / bas->rclk);
120	return (16000 * divisor / (bas->rclk / 1000));
121}
122
123static int
124ns8250_divisor(int rclk, int baudrate)
125{
126	int actual_baud, divisor;
127	int error;
128
129	if (baudrate == 0)
130		return (0);
131
132	divisor = (rclk / (baudrate << 3) + 1) >> 1;
133	if (divisor == 0 || divisor >= 65536)
134		return (0);
135	actual_baud = rclk / (divisor << 4);
136
137	/* 10 times error in percent: */
138	error = ((actual_baud - baudrate) * 2000 / baudrate + 1) >> 1;
139
140	/* enforce maximum error tolerance: */
141	if (error < -UART_DEV_TOLERANCE_PCT || error > UART_DEV_TOLERANCE_PCT)
142		return (0);
143
144	return (divisor);
145}
146
147static int
148ns8250_drain(struct uart_bas *bas, int what)
149{
150	int delay, limit;
151
152	delay = ns8250_delay(bas);
153
154	if (what & UART_DRAIN_TRANSMITTER) {
155		/*
156		 * Pick an arbitrary high limit to avoid getting stuck in
157		 * an infinite loop when the hardware is broken. Make the
158		 * limit high enough to handle large FIFOs.
159		 */
160		limit = 10*1024;
161		while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
162			DELAY(delay);
163		if (limit == 0) {
164			/* printf("ns8250: transmitter appears stuck... "); */
165			return (EIO);
166		}
167	}
168
169	if (what & UART_DRAIN_RECEIVER) {
170		/*
171		 * Pick an arbitrary high limit to avoid getting stuck in
172		 * an infinite loop when the hardware is broken. Make the
173		 * limit high enough to handle large FIFOs and integrated
174		 * UARTs. The HP rx2600 for example has 3 UARTs on the
175		 * management board that tend to get a lot of data send
176		 * to it when the UART is first activated.
177		 */
178		limit=10*4096;
179		while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit) {
180			(void)uart_getreg(bas, REG_DATA);
181			uart_barrier(bas);
182			DELAY(delay << 2);
183		}
184		if (limit == 0) {
185			/* printf("ns8250: receiver appears broken... "); */
186			return (EIO);
187		}
188	}
189
190	return (0);
191}
192
193/*
194 * We can only flush UARTs with FIFOs. UARTs without FIFOs should be
195 * drained. WARNING: this function clobbers the FIFO setting!
196 */
197static void
198ns8250_flush(struct uart_bas *bas, int what)
199{
200	uint8_t fcr;
201
202	fcr = FCR_ENABLE;
203	if (what & UART_FLUSH_TRANSMITTER)
204		fcr |= FCR_XMT_RST;
205	if (what & UART_FLUSH_RECEIVER)
206		fcr |= FCR_RCV_RST;
207	uart_setreg(bas, REG_FCR, fcr);
208	uart_barrier(bas);
209}
210
211static int
212ns8250_param(struct uart_bas *bas, int baudrate, int databits, int stopbits,
213    int parity)
214{
215	int divisor;
216	uint8_t lcr;
217
218	lcr = 0;
219	if (databits >= 8)
220		lcr |= LCR_8BITS;
221	else if (databits == 7)
222		lcr |= LCR_7BITS;
223	else if (databits == 6)
224		lcr |= LCR_6BITS;
225	else
226		lcr |= LCR_5BITS;
227	if (stopbits > 1)
228		lcr |= LCR_STOPB;
229	lcr |= parity << 3;
230
231	/* Set baudrate. */
232	if (baudrate > 0) {
233		divisor = ns8250_divisor(bas->rclk, baudrate);
234		if (divisor == 0)
235			return (EINVAL);
236		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
237		uart_barrier(bas);
238		uart_setreg(bas, REG_DLL, divisor & 0xff);
239		uart_setreg(bas, REG_DLH, (divisor >> 8) & 0xff);
240		uart_barrier(bas);
241	}
242
243	/* Set LCR and clear DLAB. */
244	uart_setreg(bas, REG_LCR, lcr);
245	uart_barrier(bas);
246	return (0);
247}
248
249/*
250 * Low-level UART interface.
251 */
252static int ns8250_probe(struct uart_bas *bas);
253static void ns8250_init(struct uart_bas *bas, int, int, int, int);
254static void ns8250_term(struct uart_bas *bas);
255static void ns8250_putc(struct uart_bas *bas, int);
256static int ns8250_rxready(struct uart_bas *bas);
257static int ns8250_getc(struct uart_bas *bas, struct mtx *);
258
259struct uart_ops uart_ns8250_ops = {
260	.probe = ns8250_probe,
261	.init = ns8250_init,
262	.term = ns8250_term,
263	.putc = ns8250_putc,
264	.rxready = ns8250_rxready,
265	.getc = ns8250_getc,
266};
267
268static int
269ns8250_probe(struct uart_bas *bas)
270{
271	u_char val;
272
273	/* Check known 0 bits that don't depend on DLAB. */
274	val = uart_getreg(bas, REG_IIR);
275	if (val & 0x30)
276		return (ENXIO);
277	/*
278	 * Bit 6 of the MCR (= 0x40) appears to be 1 for the Sun1699
279	 * chip, but otherwise doesn't seem to have a function. In
280	 * other words, uart(4) works regardless. Ignore that bit so
281	 * the probe succeeds.
282	 */
283	val = uart_getreg(bas, REG_MCR);
284	if (val & 0xa0)
285		return (ENXIO);
286
287	return (0);
288}
289
290static void
291ns8250_init(struct uart_bas *bas, int baudrate, int databits, int stopbits,
292    int parity)
293{
294	u_char	ier;
295
296	if (bas->rclk == 0)
297		bas->rclk = DEFAULT_RCLK;
298	ns8250_param(bas, baudrate, databits, stopbits, parity);
299
300	/* Disable all interrupt sources. */
301	/*
302	 * We use 0xe0 instead of 0xf0 as the mask because the XScale PXA
303	 * UARTs split the receive time-out interrupt bit out separately as
304	 * 0x10.  This gets handled by ier_mask and ier_rxbits below.
305	 */
306	ier = uart_getreg(bas, REG_IER) & 0xe0;
307	uart_setreg(bas, REG_IER, ier);
308	uart_barrier(bas);
309
310	/* Disable the FIFO (if present). */
311	uart_setreg(bas, REG_FCR, 0);
312	uart_barrier(bas);
313
314	/* Set RTS & DTR. */
315	uart_setreg(bas, REG_MCR, MCR_IE | MCR_RTS | MCR_DTR);
316	uart_barrier(bas);
317
318	ns8250_clrint(bas);
319}
320
321static void
322ns8250_term(struct uart_bas *bas)
323{
324
325	/* Clear RTS & DTR. */
326	uart_setreg(bas, REG_MCR, MCR_IE);
327	uart_barrier(bas);
328}
329
330static void
331ns8250_putc(struct uart_bas *bas, int c)
332{
333	int limit;
334
335	limit = 250000;
336	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0 && --limit)
337		DELAY(4);
338	uart_setreg(bas, REG_DATA, c);
339	uart_barrier(bas);
340}
341
342static int
343ns8250_rxready(struct uart_bas *bas)
344{
345
346	return ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) != 0 ? 1 : 0);
347}
348
349static int
350ns8250_getc(struct uart_bas *bas, struct mtx *hwmtx)
351{
352	int c;
353
354	uart_lock(hwmtx);
355
356	while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) == 0) {
357		uart_unlock(hwmtx);
358		DELAY(4);
359		uart_lock(hwmtx);
360	}
361
362	c = uart_getreg(bas, REG_DATA);
363
364	uart_unlock(hwmtx);
365
366	return (c);
367}
368
369static kobj_method_t ns8250_methods[] = {
370	KOBJMETHOD(uart_attach,		ns8250_bus_attach),
371	KOBJMETHOD(uart_detach,		ns8250_bus_detach),
372	KOBJMETHOD(uart_flush,		ns8250_bus_flush),
373	KOBJMETHOD(uart_getsig,		ns8250_bus_getsig),
374	KOBJMETHOD(uart_ioctl,		ns8250_bus_ioctl),
375	KOBJMETHOD(uart_ipend,		ns8250_bus_ipend),
376	KOBJMETHOD(uart_param,		ns8250_bus_param),
377	KOBJMETHOD(uart_probe,		ns8250_bus_probe),
378	KOBJMETHOD(uart_receive,	ns8250_bus_receive),
379	KOBJMETHOD(uart_setsig,		ns8250_bus_setsig),
380	KOBJMETHOD(uart_transmit,	ns8250_bus_transmit),
381	KOBJMETHOD(uart_grab,		ns8250_bus_grab),
382	KOBJMETHOD(uart_ungrab,		ns8250_bus_ungrab),
383	{ 0, 0 }
384};
385
386struct uart_class uart_ns8250_class = {
387	"ns8250",
388	ns8250_methods,
389	sizeof(struct ns8250_softc),
390	.uc_ops = &uart_ns8250_ops,
391	.uc_range = 8,
392	.uc_rclk = DEFAULT_RCLK,
393	.uc_rshift = 0
394};
395
396#ifdef FDT
397static struct ofw_compat_data compat_data[] = {
398	{"ns16550",		(uintptr_t)&uart_ns8250_class},
399	{"ns16550a",		(uintptr_t)&uart_ns8250_class},
400	{NULL,			(uintptr_t)NULL},
401};
402UART_FDT_CLASS_AND_DEVICE(compat_data);
403#endif
404
405/* Use token-pasting to form SER_ and MSR_ named constants. */
406#define	SER(sig)	SER_##sig
407#define	SERD(sig)	SER_D##sig
408#define	MSR(sig)	MSR_##sig
409#define	MSRD(sig)	MSR_D##sig
410
411/*
412 * Detect signal changes using software delta detection.  The previous state of
413 * the signals is in 'var' the new hardware state is in 'msr', and 'sig' is the
414 * short name (DCD, CTS, etc) of the signal bit being processed; 'var' gets the
415 * new state of both the signal and the delta bits.
416 */
417#define SIGCHGSW(var, msr, sig)					\
418	if ((msr) & MSR(sig)) {					\
419		if ((var & SER(sig)) == 0)			\
420			var |= SERD(sig) | SER(sig);		\
421	} else {						\
422		if ((var & SER(sig)) != 0)			\
423			var = SERD(sig) | (var & ~SER(sig));	\
424	}
425
426/*
427 * Detect signal changes using the hardware msr delta bits.  This is currently
428 * used only when PPS timing information is being captured using the "narrow
429 * pulse" option.  With a narrow PPS pulse the signal may not still be asserted
430 * by time the interrupt handler is invoked.  The hardware will latch the fact
431 * that it changed in the delta bits.
432 */
433#define SIGCHGHW(var, msr, sig)					\
434	if ((msr) & MSRD(sig)) {				\
435		if (((msr) & MSR(sig)) != 0)			\
436			var |= SERD(sig) | SER(sig);		\
437		else						\
438			var = SERD(sig) | (var & ~SER(sig));	\
439	}
440
441int
442ns8250_bus_attach(struct uart_softc *sc)
443{
444	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
445	struct uart_bas *bas;
446	unsigned int ivar;
447#ifdef FDT
448	phandle_t node;
449	pcell_t cell;
450#endif
451
452#ifdef FDT
453	/* Check whether uart has a broken txfifo. */
454	node = ofw_bus_get_node(sc->sc_dev);
455	if ((OF_getencprop(node, "broken-txfifo", &cell, sizeof(cell))) > 0)
456		broken_txfifo =  cell ? 1 : 0;
457#endif
458
459	bas = &sc->sc_bas;
460
461	ns8250->mcr = uart_getreg(bas, REG_MCR);
462	ns8250->fcr = FCR_ENABLE;
463	if (!resource_int_value("uart", device_get_unit(sc->sc_dev), "flags",
464	    &ivar)) {
465		if (UART_FLAGS_FCR_RX_LOW(ivar))
466			ns8250->fcr |= FCR_RX_LOW;
467		else if (UART_FLAGS_FCR_RX_MEDL(ivar))
468			ns8250->fcr |= FCR_RX_MEDL;
469		else if (UART_FLAGS_FCR_RX_HIGH(ivar))
470			ns8250->fcr |= FCR_RX_HIGH;
471		else
472			ns8250->fcr |= FCR_RX_MEDH;
473	} else
474		ns8250->fcr |= FCR_RX_MEDH;
475
476	/* Get IER mask */
477	ivar = 0xf0;
478	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_mask",
479	    &ivar);
480	ns8250->ier_mask = (uint8_t)(ivar & 0xff);
481
482	/* Get IER RX interrupt bits */
483	ivar = IER_EMSC | IER_ERLS | IER_ERXRDY;
484	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_rxbits",
485	    &ivar);
486	ns8250->ier_rxbits = (uint8_t)(ivar & 0xff);
487
488	uart_setreg(bas, REG_FCR, ns8250->fcr);
489	uart_barrier(bas);
490	ns8250_bus_flush(sc, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
491
492	if (ns8250->mcr & MCR_DTR)
493		sc->sc_hwsig |= SER_DTR;
494	if (ns8250->mcr & MCR_RTS)
495		sc->sc_hwsig |= SER_RTS;
496	ns8250_bus_getsig(sc);
497
498	ns8250_clrint(bas);
499	ns8250->ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
500	ns8250->ier |= ns8250->ier_rxbits;
501	uart_setreg(bas, REG_IER, ns8250->ier);
502	uart_barrier(bas);
503
504	/*
505	 * Timing of the H/W access was changed with r253161 of uart_core.c
506	 * It has been observed that an ITE IT8513E would signal a break
507	 * condition with pretty much every character it received, unless
508	 * it had enough time to settle between ns8250_bus_attach() and
509	 * ns8250_bus_ipend() -- which it accidentally had before r253161.
510	 * It's not understood why the UART chip behaves this way and it
511	 * could very well be that the DELAY make the H/W work in the same
512	 * accidental manner as before. More analysis is warranted, but
513	 * at least now we fixed a known regression.
514	 */
515	DELAY(200);
516	return (0);
517}
518
519int
520ns8250_bus_detach(struct uart_softc *sc)
521{
522	struct ns8250_softc *ns8250;
523	struct uart_bas *bas;
524	u_char ier;
525
526	ns8250 = (struct ns8250_softc *)sc;
527	bas = &sc->sc_bas;
528	ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
529	uart_setreg(bas, REG_IER, ier);
530	uart_barrier(bas);
531	ns8250_clrint(bas);
532	return (0);
533}
534
535int
536ns8250_bus_flush(struct uart_softc *sc, int what)
537{
538	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
539	struct uart_bas *bas;
540	int error;
541
542	bas = &sc->sc_bas;
543	uart_lock(sc->sc_hwmtx);
544	if (sc->sc_rxfifosz > 1) {
545		ns8250_flush(bas, what);
546		uart_setreg(bas, REG_FCR, ns8250->fcr);
547		uart_barrier(bas);
548		error = 0;
549	} else
550		error = ns8250_drain(bas, what);
551	uart_unlock(sc->sc_hwmtx);
552	return (error);
553}
554
555int
556ns8250_bus_getsig(struct uart_softc *sc)
557{
558	uint32_t old, sig;
559	uint8_t msr;
560
561	/*
562	 * The delta bits are reputed to be broken on some hardware, so use
563	 * software delta detection by default.  Use the hardware delta bits
564	 * when capturing PPS pulses which are too narrow for software detection
565	 * to see the edges.  Hardware delta for RI doesn't work like the
566	 * others, so always use software for it.  Other threads may be changing
567	 * other (non-MSR) bits in sc_hwsig, so loop until it can successfully
568	 * update without other changes happening.  Note that the SIGCHGxx()
569	 * macros carefully preserve the delta bits when we have to loop several
570	 * times and a signal transitions between iterations.
571	 */
572	do {
573		old = sc->sc_hwsig;
574		sig = old;
575		uart_lock(sc->sc_hwmtx);
576		msr = uart_getreg(&sc->sc_bas, REG_MSR);
577		uart_unlock(sc->sc_hwmtx);
578		if (sc->sc_pps_mode & UART_PPS_NARROW_PULSE) {
579			SIGCHGHW(sig, msr, DSR);
580			SIGCHGHW(sig, msr, CTS);
581			SIGCHGHW(sig, msr, DCD);
582		} else {
583			SIGCHGSW(sig, msr, DSR);
584			SIGCHGSW(sig, msr, CTS);
585			SIGCHGSW(sig, msr, DCD);
586		}
587		SIGCHGSW(sig, msr, RI);
588	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, sig & ~SER_MASK_DELTA));
589	return (sig);
590}
591
592int
593ns8250_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
594{
595	struct uart_bas *bas;
596	int baudrate, divisor, error;
597	uint8_t efr, lcr;
598
599	bas = &sc->sc_bas;
600	error = 0;
601	uart_lock(sc->sc_hwmtx);
602	switch (request) {
603	case UART_IOCTL_BREAK:
604		lcr = uart_getreg(bas, REG_LCR);
605		if (data)
606			lcr |= LCR_SBREAK;
607		else
608			lcr &= ~LCR_SBREAK;
609		uart_setreg(bas, REG_LCR, lcr);
610		uart_barrier(bas);
611		break;
612	case UART_IOCTL_IFLOW:
613		lcr = uart_getreg(bas, REG_LCR);
614		uart_barrier(bas);
615		uart_setreg(bas, REG_LCR, 0xbf);
616		uart_barrier(bas);
617		efr = uart_getreg(bas, REG_EFR);
618		if (data)
619			efr |= EFR_RTS;
620		else
621			efr &= ~EFR_RTS;
622		uart_setreg(bas, REG_EFR, efr);
623		uart_barrier(bas);
624		uart_setreg(bas, REG_LCR, lcr);
625		uart_barrier(bas);
626		break;
627	case UART_IOCTL_OFLOW:
628		lcr = uart_getreg(bas, REG_LCR);
629		uart_barrier(bas);
630		uart_setreg(bas, REG_LCR, 0xbf);
631		uart_barrier(bas);
632		efr = uart_getreg(bas, REG_EFR);
633		if (data)
634			efr |= EFR_CTS;
635		else
636			efr &= ~EFR_CTS;
637		uart_setreg(bas, REG_EFR, efr);
638		uart_barrier(bas);
639		uart_setreg(bas, REG_LCR, lcr);
640		uart_barrier(bas);
641		break;
642	case UART_IOCTL_BAUD:
643		lcr = uart_getreg(bas, REG_LCR);
644		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
645		uart_barrier(bas);
646		divisor = uart_getreg(bas, REG_DLL) |
647		    (uart_getreg(bas, REG_DLH) << 8);
648		uart_barrier(bas);
649		uart_setreg(bas, REG_LCR, lcr);
650		uart_barrier(bas);
651		baudrate = (divisor > 0) ? bas->rclk / divisor / 16 : 0;
652		if (baudrate > 0)
653			*(int*)data = baudrate;
654		else
655			error = ENXIO;
656		break;
657	default:
658		error = EINVAL;
659		break;
660	}
661	uart_unlock(sc->sc_hwmtx);
662	return (error);
663}
664
665int
666ns8250_bus_ipend(struct uart_softc *sc)
667{
668	struct uart_bas *bas;
669	struct ns8250_softc *ns8250;
670	int ipend;
671	uint8_t iir, lsr;
672
673	ns8250 = (struct ns8250_softc *)sc;
674	bas = &sc->sc_bas;
675	uart_lock(sc->sc_hwmtx);
676	iir = uart_getreg(bas, REG_IIR);
677
678	if (ns8250->busy_detect && (iir & IIR_BUSY) == IIR_BUSY) {
679		(void)uart_getreg(bas, DW_REG_USR);
680		uart_unlock(sc->sc_hwmtx);
681		return (0);
682	}
683	if (iir & IIR_NOPEND) {
684		uart_unlock(sc->sc_hwmtx);
685		return (0);
686	}
687	ipend = 0;
688	if (iir & IIR_RXRDY) {
689		lsr = uart_getreg(bas, REG_LSR);
690		if (lsr & LSR_OE)
691			ipend |= SER_INT_OVERRUN;
692		if (lsr & LSR_BI)
693			ipend |= SER_INT_BREAK;
694		if (lsr & LSR_RXRDY)
695			ipend |= SER_INT_RXREADY;
696	} else {
697		if (iir & IIR_TXRDY) {
698			ipend |= SER_INT_TXIDLE;
699			uart_setreg(bas, REG_IER, ns8250->ier);
700			uart_barrier(bas);
701		} else
702			ipend |= SER_INT_SIGCHG;
703	}
704	if (ipend == 0)
705		ns8250_clrint(bas);
706	uart_unlock(sc->sc_hwmtx);
707	return (ipend);
708}
709
710int
711ns8250_bus_param(struct uart_softc *sc, int baudrate, int databits,
712    int stopbits, int parity)
713{
714	struct ns8250_softc *ns8250;
715	struct uart_bas *bas;
716	int error, limit;
717
718	ns8250 = (struct ns8250_softc*)sc;
719	bas = &sc->sc_bas;
720	uart_lock(sc->sc_hwmtx);
721	/*
722	 * When using DW UART with BUSY detection it is necessary to wait
723	 * until all serial transfers are finished before manipulating the
724	 * line control. LCR will not be affected when UART is busy.
725	 */
726	if (ns8250->busy_detect != 0) {
727		/*
728		 * Pick an arbitrary high limit to avoid getting stuck in
729		 * an infinite loop in case when the hardware is broken.
730		 */
731		limit = 10 * 1024;
732		while (((uart_getreg(bas, DW_REG_USR) & USR_BUSY) != 0) &&
733		    --limit)
734			DELAY(4);
735
736		if (limit <= 0) {
737			/* UART appears to be stuck */
738			uart_unlock(sc->sc_hwmtx);
739			return (EIO);
740		}
741	}
742
743	error = ns8250_param(bas, baudrate, databits, stopbits, parity);
744	uart_unlock(sc->sc_hwmtx);
745	return (error);
746}
747
748int
749ns8250_bus_probe(struct uart_softc *sc)
750{
751	struct ns8250_softc *ns8250;
752	struct uart_bas *bas;
753	int count, delay, error, limit;
754	uint8_t lsr, mcr, ier;
755
756	ns8250 = (struct ns8250_softc *)sc;
757	bas = &sc->sc_bas;
758
759	error = ns8250_probe(bas);
760	if (error)
761		return (error);
762
763	mcr = MCR_IE;
764	if (sc->sc_sysdev == NULL) {
765		/* By using ns8250_init() we also set DTR and RTS. */
766		ns8250_init(bas, 115200, 8, 1, UART_PARITY_NONE);
767	} else
768		mcr |= MCR_DTR | MCR_RTS;
769
770	error = ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
771	if (error)
772		return (error);
773
774	/*
775	 * Set loopback mode. This avoids having garbage on the wire and
776	 * also allows us send and receive data. We set DTR and RTS to
777	 * avoid the possibility that automatic flow-control prevents
778	 * any data from being sent.
779	 */
780	uart_setreg(bas, REG_MCR, MCR_LOOPBACK | MCR_IE | MCR_DTR | MCR_RTS);
781	uart_barrier(bas);
782
783	/*
784	 * Enable FIFOs. And check that the UART has them. If not, we're
785	 * done. Since this is the first time we enable the FIFOs, we reset
786	 * them.
787	 */
788	uart_setreg(bas, REG_FCR, FCR_ENABLE);
789	uart_barrier(bas);
790	if (!(uart_getreg(bas, REG_IIR) & IIR_FIFO_MASK)) {
791		/*
792		 * NS16450 or INS8250. We don't bother to differentiate
793		 * between them. They're too old to be interesting.
794		 */
795		uart_setreg(bas, REG_MCR, mcr);
796		uart_barrier(bas);
797		sc->sc_rxfifosz = sc->sc_txfifosz = 1;
798		device_set_desc(sc->sc_dev, "8250 or 16450 or compatible");
799		return (0);
800	}
801
802	uart_setreg(bas, REG_FCR, FCR_ENABLE | FCR_XMT_RST | FCR_RCV_RST);
803	uart_barrier(bas);
804
805	count = 0;
806	delay = ns8250_delay(bas);
807
808	/* We have FIFOs. Drain the transmitter and receiver. */
809	error = ns8250_drain(bas, UART_DRAIN_RECEIVER|UART_DRAIN_TRANSMITTER);
810	if (error) {
811		uart_setreg(bas, REG_MCR, mcr);
812		uart_setreg(bas, REG_FCR, 0);
813		uart_barrier(bas);
814		goto describe;
815	}
816
817	/*
818	 * We should have a sufficiently clean "pipe" to determine the
819	 * size of the FIFOs. We send as much characters as is reasonable
820	 * and wait for the overflow bit in the LSR register to be
821	 * asserted, counting the characters as we send them. Based on
822	 * that count we know the FIFO size.
823	 */
824	do {
825		uart_setreg(bas, REG_DATA, 0);
826		uart_barrier(bas);
827		count++;
828
829		limit = 30;
830		lsr = 0;
831		/*
832		 * LSR bits are cleared upon read, so we must accumulate
833		 * them to be able to test LSR_OE below.
834		 */
835		while (((lsr |= uart_getreg(bas, REG_LSR)) & LSR_TEMT) == 0 &&
836		    --limit)
837			DELAY(delay);
838		if (limit == 0) {
839			ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
840			uart_setreg(bas, REG_IER, ier);
841			uart_setreg(bas, REG_MCR, mcr);
842			uart_setreg(bas, REG_FCR, 0);
843			uart_barrier(bas);
844			count = 0;
845			goto describe;
846		}
847	} while ((lsr & LSR_OE) == 0 && count < 130);
848	count--;
849
850	uart_setreg(bas, REG_MCR, mcr);
851
852	/* Reset FIFOs. */
853	ns8250_flush(bas, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
854
855 describe:
856	if (count >= 14 && count <= 16) {
857		sc->sc_rxfifosz = 16;
858		device_set_desc(sc->sc_dev, "16550 or compatible");
859	} else if (count >= 28 && count <= 32) {
860		sc->sc_rxfifosz = 32;
861		device_set_desc(sc->sc_dev, "16650 or compatible");
862	} else if (count >= 56 && count <= 64) {
863		sc->sc_rxfifosz = 64;
864		device_set_desc(sc->sc_dev, "16750 or compatible");
865	} else if (count >= 112 && count <= 128) {
866		sc->sc_rxfifosz = 128;
867		device_set_desc(sc->sc_dev, "16950 or compatible");
868	} else {
869		sc->sc_rxfifosz = 16;
870		device_set_desc(sc->sc_dev,
871		    "Non-standard ns8250 class UART with FIFOs");
872	}
873
874	/*
875	 * Force the Tx FIFO size to 16 bytes for now. We don't program the
876	 * Tx trigger. Also, we assume that all data has been sent when the
877	 * interrupt happens.
878	 */
879	sc->sc_txfifosz = 16;
880
881#if 0
882	/*
883	 * XXX there are some issues related to hardware flow control and
884	 * it's likely that uart(4) is the cause. This basically needs more
885	 * investigation, but we avoid using for hardware flow control
886	 * until then.
887	 */
888	/* 16650s or higher have automatic flow control. */
889	if (sc->sc_rxfifosz > 16) {
890		sc->sc_hwiflow = 1;
891		sc->sc_hwoflow = 1;
892	}
893#endif
894
895	return (0);
896}
897
898int
899ns8250_bus_receive(struct uart_softc *sc)
900{
901	struct uart_bas *bas;
902	int xc;
903	uint8_t lsr;
904
905	bas = &sc->sc_bas;
906	uart_lock(sc->sc_hwmtx);
907	lsr = uart_getreg(bas, REG_LSR);
908	while (lsr & LSR_RXRDY) {
909		if (uart_rx_full(sc)) {
910			sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
911			break;
912		}
913		xc = uart_getreg(bas, REG_DATA);
914		if (lsr & LSR_FE)
915			xc |= UART_STAT_FRAMERR;
916		if (lsr & LSR_PE)
917			xc |= UART_STAT_PARERR;
918		uart_rx_put(sc, xc);
919		lsr = uart_getreg(bas, REG_LSR);
920	}
921	/* Discard everything left in the Rx FIFO. */
922	while (lsr & LSR_RXRDY) {
923		(void)uart_getreg(bas, REG_DATA);
924		uart_barrier(bas);
925		lsr = uart_getreg(bas, REG_LSR);
926	}
927	uart_unlock(sc->sc_hwmtx);
928 	return (0);
929}
930
931int
932ns8250_bus_setsig(struct uart_softc *sc, int sig)
933{
934	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
935	struct uart_bas *bas;
936	uint32_t new, old;
937
938	bas = &sc->sc_bas;
939	do {
940		old = sc->sc_hwsig;
941		new = old;
942		if (sig & SER_DDTR) {
943			new = (new & ~SER_DTR) | (sig & (SER_DTR | SER_DDTR));
944		}
945		if (sig & SER_DRTS) {
946			new = (new & ~SER_RTS) | (sig & (SER_RTS | SER_DRTS));
947		}
948	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
949	uart_lock(sc->sc_hwmtx);
950	ns8250->mcr &= ~(MCR_DTR|MCR_RTS);
951	if (new & SER_DTR)
952		ns8250->mcr |= MCR_DTR;
953	if (new & SER_RTS)
954		ns8250->mcr |= MCR_RTS;
955	uart_setreg(bas, REG_MCR, ns8250->mcr);
956	uart_barrier(bas);
957	uart_unlock(sc->sc_hwmtx);
958	return (0);
959}
960
961int
962ns8250_bus_transmit(struct uart_softc *sc)
963{
964	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
965	struct uart_bas *bas;
966	int i;
967
968	bas = &sc->sc_bas;
969	uart_lock(sc->sc_hwmtx);
970	if (sc->sc_txdatasz > 1) {
971		if ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0)
972			ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
973	} else {
974		while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0)
975			DELAY(4);
976	}
977	for (i = 0; i < sc->sc_txdatasz; i++) {
978		uart_setreg(bas, REG_DATA, sc->sc_txbuf[i]);
979		uart_barrier(bas);
980	}
981	uart_setreg(bas, REG_IER, ns8250->ier | IER_ETXRDY);
982	uart_barrier(bas);
983	if (broken_txfifo)
984		ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
985	else
986		sc->sc_txbusy = 1;
987	uart_unlock(sc->sc_hwmtx);
988	if (broken_txfifo)
989		uart_sched_softih(sc, SER_INT_TXIDLE);
990	return (0);
991}
992
993void
994ns8250_bus_grab(struct uart_softc *sc)
995{
996	struct uart_bas *bas = &sc->sc_bas;
997	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
998	u_char ier;
999
1000	/*
1001	 * turn off all interrupts to enter polling mode. Leave the
1002	 * saved mask alone. We'll restore whatever it was in ungrab.
1003	 * All pending interrupt signals are reset when IER is set to 0.
1004	 */
1005	uart_lock(sc->sc_hwmtx);
1006	ier = uart_getreg(bas, REG_IER);
1007	uart_setreg(bas, REG_IER, ier & ns8250->ier_mask);
1008	uart_barrier(bas);
1009	uart_unlock(sc->sc_hwmtx);
1010}
1011
1012void
1013ns8250_bus_ungrab(struct uart_softc *sc)
1014{
1015	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1016	struct uart_bas *bas = &sc->sc_bas;
1017
1018	/*
1019	 * Restore previous interrupt mask
1020	 */
1021	uart_lock(sc->sc_hwmtx);
1022	uart_setreg(bas, REG_IER, ns8250->ier);
1023	uart_barrier(bas);
1024	uart_unlock(sc->sc_hwmtx);
1025}
1026