if_tl.c revision 93818
1/*
2 * Copyright (c) 1997, 1998
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 *
32 * $FreeBSD: head/sys/pci/if_tl.c 93818 2002-04-04 21:03:38Z jhb $
33 */
34
35/*
36 * Texas Instruments ThunderLAN driver for FreeBSD 2.2.6 and 3.x.
37 * Supports many Compaq PCI NICs based on the ThunderLAN ethernet controller,
38 * the National Semiconductor DP83840A physical interface and the
39 * Microchip Technology 24Cxx series serial EEPROM.
40 *
41 * Written using the following four documents:
42 *
43 * Texas Instruments ThunderLAN Programmer's Guide (www.ti.com)
44 * National Semiconductor DP83840A data sheet (www.national.com)
45 * Microchip Technology 24C02C data sheet (www.microchip.com)
46 * Micro Linear ML6692 100BaseTX only PHY data sheet (www.microlinear.com)
47 *
48 * Written by Bill Paul <wpaul@ctr.columbia.edu>
49 * Electrical Engineering Department
50 * Columbia University, New York City
51 */
52
53/*
54 * Some notes about the ThunderLAN:
55 *
56 * The ThunderLAN controller is a single chip containing PCI controller
57 * logic, approximately 3K of on-board SRAM, a LAN controller, and media
58 * independent interface (MII) bus. The MII allows the ThunderLAN chip to
59 * control up to 32 different physical interfaces (PHYs). The ThunderLAN
60 * also has a built-in 10baseT PHY, allowing a single ThunderLAN controller
61 * to act as a complete ethernet interface.
62 *
63 * Other PHYs may be attached to the ThunderLAN; the Compaq 10/100 cards
64 * use a National Semiconductor DP83840A PHY that supports 10 or 100Mb/sec
65 * in full or half duplex. Some of the Compaq Deskpro machines use a
66 * Level 1 LXT970 PHY with the same capabilities. Certain Olicom adapters
67 * use a Micro Linear ML6692 100BaseTX only PHY, which can be used in
68 * concert with the ThunderLAN's internal PHY to provide full 10/100
69 * support. This is cheaper than using a standalone external PHY for both
70 * 10/100 modes and letting the ThunderLAN's internal PHY go to waste.
71 * A serial EEPROM is also attached to the ThunderLAN chip to provide
72 * power-up default register settings and for storing the adapter's
73 * station address. Although not supported by this driver, the ThunderLAN
74 * chip can also be connected to token ring PHYs.
75 *
76 * The ThunderLAN has a set of registers which can be used to issue
77 * commands, acknowledge interrupts, and to manipulate other internal
78 * registers on its DIO bus. The primary registers can be accessed
79 * using either programmed I/O (inb/outb) or via PCI memory mapping,
80 * depending on how the card is configured during the PCI probing
81 * phase. It is even possible to have both PIO and memory mapped
82 * access turned on at the same time.
83 *
84 * Frame reception and transmission with the ThunderLAN chip is done
85 * using frame 'lists.' A list structure looks more or less like this:
86 *
87 * struct tl_frag {
88 *	u_int32_t		fragment_address;
89 *	u_int32_t		fragment_size;
90 * };
91 * struct tl_list {
92 *	u_int32_t		forward_pointer;
93 *	u_int16_t		cstat;
94 *	u_int16_t		frame_size;
95 *	struct tl_frag		fragments[10];
96 * };
97 *
98 * The forward pointer in the list header can be either a 0 or the address
99 * of another list, which allows several lists to be linked together. Each
100 * list contains up to 10 fragment descriptors. This means the chip allows
101 * ethernet frames to be broken up into up to 10 chunks for transfer to
102 * and from the SRAM. Note that the forward pointer and fragment buffer
103 * addresses are physical memory addresses, not virtual. Note also that
104 * a single ethernet frame can not span lists: if the host wants to
105 * transmit a frame and the frame data is split up over more than 10
106 * buffers, the frame has to collapsed before it can be transmitted.
107 *
108 * To receive frames, the driver sets up a number of lists and populates
109 * the fragment descriptors, then it sends an RX GO command to the chip.
110 * When a frame is received, the chip will DMA it into the memory regions
111 * specified by the fragment descriptors and then trigger an RX 'end of
112 * frame interrupt' when done. The driver may choose to use only one
113 * fragment per list; this may result is slighltly less efficient use
114 * of memory in exchange for improving performance.
115 *
116 * To transmit frames, the driver again sets up lists and fragment
117 * descriptors, only this time the buffers contain frame data that
118 * is to be DMA'ed into the chip instead of out of it. Once the chip
119 * has transfered the data into its on-board SRAM, it will trigger a
120 * TX 'end of frame' interrupt. It will also generate an 'end of channel'
121 * interrupt when it reaches the end of the list.
122 */
123
124/*
125 * Some notes about this driver:
126 *
127 * The ThunderLAN chip provides a couple of different ways to organize
128 * reception, transmission and interrupt handling. The simplest approach
129 * is to use one list each for transmission and reception. In this mode,
130 * the ThunderLAN will generate two interrupts for every received frame
131 * (one RX EOF and one RX EOC) and two for each transmitted frame (one
132 * TX EOF and one TX EOC). This may make the driver simpler but it hurts
133 * performance to have to handle so many interrupts.
134 *
135 * Initially I wanted to create a circular list of receive buffers so
136 * that the ThunderLAN chip would think there was an infinitely long
137 * receive channel and never deliver an RXEOC interrupt. However this
138 * doesn't work correctly under heavy load: while the manual says the
139 * chip will trigger an RXEOF interrupt each time a frame is copied into
140 * memory, you can't count on the chip waiting around for you to acknowledge
141 * the interrupt before it starts trying to DMA the next frame. The result
142 * is that the chip might traverse the entire circular list and then wrap
143 * around before you have a chance to do anything about it. Consequently,
144 * the receive list is terminated (with a 0 in the forward pointer in the
145 * last element). Each time an RXEOF interrupt arrives, the used list
146 * is shifted to the end of the list. This gives the appearance of an
147 * infinitely large RX chain so long as the driver doesn't fall behind
148 * the chip and allow all of the lists to be filled up.
149 *
150 * If all the lists are filled, the adapter will deliver an RX 'end of
151 * channel' interrupt when it hits the 0 forward pointer at the end of
152 * the chain. The RXEOC handler then cleans out the RX chain and resets
153 * the list head pointer in the ch_parm register and restarts the receiver.
154 *
155 * For frame transmission, it is possible to program the ThunderLAN's
156 * transmit interrupt threshold so that the chip can acknowledge multiple
157 * lists with only a single TX EOF interrupt. This allows the driver to
158 * queue several frames in one shot, and only have to handle a total
159 * two interrupts (one TX EOF and one TX EOC) no matter how many frames
160 * are transmitted. Frame transmission is done directly out of the
161 * mbufs passed to the tl_start() routine via the interface send queue.
162 * The driver simply sets up the fragment descriptors in the transmit
163 * lists to point to the mbuf data regions and sends a TX GO command.
164 *
165 * Note that since the RX and TX lists themselves are always used
166 * only by the driver, the are malloc()ed once at driver initialization
167 * time and never free()ed.
168 *
169 * Also, in order to remain as platform independent as possible, this
170 * driver uses memory mapped register access to manipulate the card
171 * as opposed to programmed I/O. This avoids the use of the inb/outb
172 * (and related) instructions which are specific to the i386 platform.
173 *
174 * Using these techniques, this driver achieves very high performance
175 * by minimizing the amount of interrupts generated during large
176 * transfers and by completely avoiding buffer copies. Frame transfer
177 * to and from the ThunderLAN chip is performed entirely by the chip
178 * itself thereby reducing the load on the host CPU.
179 */
180
181#include <sys/param.h>
182#include <sys/systm.h>
183#include <sys/sockio.h>
184#include <sys/mbuf.h>
185#include <sys/malloc.h>
186#include <sys/kernel.h>
187#include <sys/socket.h>
188
189#include <net/if.h>
190#include <net/if_arp.h>
191#include <net/ethernet.h>
192#include <net/if_dl.h>
193#include <net/if_media.h>
194
195#include <net/bpf.h>
196
197#include <vm/vm.h>              /* for vtophys */
198#include <vm/pmap.h>            /* for vtophys */
199#include <machine/bus_memio.h>
200#include <machine/bus_pio.h>
201#include <machine/bus.h>
202#include <machine/resource.h>
203#include <sys/bus.h>
204#include <sys/rman.h>
205
206#include <dev/mii/mii.h>
207#include <dev/mii/miivar.h>
208
209#include <pci/pcireg.h>
210#include <pci/pcivar.h>
211
212/*
213 * Default to using PIO register access mode to pacify certain
214 * laptop docking stations with built-in ThunderLAN chips that
215 * don't seem to handle memory mapped mode properly.
216 */
217#define TL_USEIOSPACE
218
219#include <pci/if_tlreg.h>
220
221MODULE_DEPEND(tl, miibus, 1, 1, 1);
222
223/* "controller miibus0" required.  See GENERIC if you get errors here. */
224#include "miibus_if.h"
225
226#if !defined(lint)
227static const char rcsid[] =
228  "$FreeBSD: head/sys/pci/if_tl.c 93818 2002-04-04 21:03:38Z jhb $";
229#endif
230
231/*
232 * Various supported device vendors/types and their names.
233 */
234
235static struct tl_type tl_devs[] = {
236	{ TI_VENDORID,	TI_DEVICEID_THUNDERLAN,
237		"Texas Instruments ThunderLAN" },
238	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10,
239		"Compaq Netelligent 10" },
240	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100,
241		"Compaq Netelligent 10/100" },
242	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_PROLIANT,
243		"Compaq Netelligent 10/100 Proliant" },
244	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_DUAL,
245		"Compaq Netelligent 10/100 Dual Port" },
246	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_INTEGRATED,
247		"Compaq NetFlex-3/P Integrated" },
248	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P,
249		"Compaq NetFlex-3/P" },
250	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_BNC,
251		"Compaq NetFlex 3/P w/ BNC" },
252	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_EMBEDDED,
253		"Compaq Netelligent 10/100 TX Embedded UTP" },
254	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_T2_UTP_COAX,
255		"Compaq Netelligent 10 T/2 PCI UTP/Coax" },
256	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_TX_UTP,
257		"Compaq Netelligent 10/100 TX UTP" },
258	{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2183,
259		"Olicom OC-2183/2185" },
260	{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2325,
261		"Olicom OC-2325" },
262	{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2326,
263		"Olicom OC-2326 10/100 TX UTP" },
264	{ 0, 0, NULL }
265};
266
267static int tl_probe		(device_t);
268static int tl_attach		(device_t);
269static int tl_detach		(device_t);
270static int tl_intvec_rxeoc	(void *, u_int32_t);
271static int tl_intvec_txeoc	(void *, u_int32_t);
272static int tl_intvec_txeof	(void *, u_int32_t);
273static int tl_intvec_rxeof	(void *, u_int32_t);
274static int tl_intvec_adchk	(void *, u_int32_t);
275static int tl_intvec_netsts	(void *, u_int32_t);
276
277static int tl_newbuf		(struct tl_softc *, struct tl_chain_onefrag *);
278static void tl_stats_update	(void *);
279static int tl_encap		(struct tl_softc *, struct tl_chain *,
280						struct mbuf *);
281
282static void tl_intr		(void *);
283static void tl_start		(struct ifnet *);
284static int tl_ioctl		(struct ifnet *, u_long, caddr_t);
285static void tl_init		(void *);
286static void tl_stop		(struct tl_softc *);
287static void tl_watchdog		(struct ifnet *);
288static void tl_shutdown		(device_t);
289static int tl_ifmedia_upd	(struct ifnet *);
290static void tl_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
291
292static u_int8_t tl_eeprom_putbyte	(struct tl_softc *, int);
293static u_int8_t	tl_eeprom_getbyte	(struct tl_softc *, int, u_int8_t *);
294static int tl_read_eeprom	(struct tl_softc *, caddr_t, int, int);
295
296static void tl_mii_sync		(struct tl_softc *);
297static void tl_mii_send		(struct tl_softc *, u_int32_t, int);
298static int tl_mii_readreg	(struct tl_softc *, struct tl_mii_frame *);
299static int tl_mii_writereg	(struct tl_softc *, struct tl_mii_frame *);
300static int tl_miibus_readreg	(device_t, int, int);
301static int tl_miibus_writereg	(device_t, int, int, int);
302static void tl_miibus_statchg	(device_t);
303
304static void tl_setmode		(struct tl_softc *, int);
305static int tl_calchash		(caddr_t);
306static void tl_setmulti		(struct tl_softc *);
307static void tl_setfilt		(struct tl_softc *, caddr_t, int);
308static void tl_softreset	(struct tl_softc *, int);
309static void tl_hardreset	(device_t);
310static int tl_list_rx_init	(struct tl_softc *);
311static int tl_list_tx_init	(struct tl_softc *);
312
313static u_int8_t tl_dio_read8	(struct tl_softc *, int);
314static u_int16_t tl_dio_read16	(struct tl_softc *, int);
315static u_int32_t tl_dio_read32	(struct tl_softc *, int);
316static void tl_dio_write8	(struct tl_softc *, int, int);
317static void tl_dio_write16	(struct tl_softc *, int, int);
318static void tl_dio_write32	(struct tl_softc *, int, int);
319static void tl_dio_setbit	(struct tl_softc *, int, int);
320static void tl_dio_clrbit	(struct tl_softc *, int, int);
321static void tl_dio_setbit16	(struct tl_softc *, int, int);
322static void tl_dio_clrbit16	(struct tl_softc *, int, int);
323
324#ifdef TL_USEIOSPACE
325#define TL_RES		SYS_RES_IOPORT
326#define TL_RID		TL_PCI_LOIO
327#else
328#define TL_RES		SYS_RES_MEMORY
329#define TL_RID		TL_PCI_LOMEM
330#endif
331
332static device_method_t tl_methods[] = {
333	/* Device interface */
334	DEVMETHOD(device_probe,		tl_probe),
335	DEVMETHOD(device_attach,	tl_attach),
336	DEVMETHOD(device_detach,	tl_detach),
337	DEVMETHOD(device_shutdown,	tl_shutdown),
338
339	/* bus interface */
340	DEVMETHOD(bus_print_child,	bus_generic_print_child),
341	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
342
343	/* MII interface */
344	DEVMETHOD(miibus_readreg,	tl_miibus_readreg),
345	DEVMETHOD(miibus_writereg,	tl_miibus_writereg),
346	DEVMETHOD(miibus_statchg,	tl_miibus_statchg),
347
348	{ 0, 0 }
349};
350
351static driver_t tl_driver = {
352	"tl",
353	tl_methods,
354	sizeof(struct tl_softc)
355};
356
357static devclass_t tl_devclass;
358
359DRIVER_MODULE(if_tl, pci, tl_driver, tl_devclass, 0, 0);
360DRIVER_MODULE(miibus, tl, miibus_driver, miibus_devclass, 0, 0);
361
362static u_int8_t tl_dio_read8(sc, reg)
363	struct tl_softc		*sc;
364	int			reg;
365{
366	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
367	return(CSR_READ_1(sc, TL_DIO_DATA + (reg & 3)));
368}
369
370static u_int16_t tl_dio_read16(sc, reg)
371	struct tl_softc		*sc;
372	int			reg;
373{
374	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
375	return(CSR_READ_2(sc, TL_DIO_DATA + (reg & 3)));
376}
377
378static u_int32_t tl_dio_read32(sc, reg)
379	struct tl_softc		*sc;
380	int			reg;
381{
382	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
383	return(CSR_READ_4(sc, TL_DIO_DATA + (reg & 3)));
384}
385
386static void tl_dio_write8(sc, reg, val)
387	struct tl_softc		*sc;
388	int			reg;
389	int			val;
390{
391	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
392	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), val);
393	return;
394}
395
396static void tl_dio_write16(sc, reg, val)
397	struct tl_softc		*sc;
398	int			reg;
399	int			val;
400{
401	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
402	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), val);
403	return;
404}
405
406static void tl_dio_write32(sc, reg, val)
407	struct tl_softc		*sc;
408	int			reg;
409	int			val;
410{
411	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
412	CSR_WRITE_4(sc, TL_DIO_DATA + (reg & 3), val);
413	return;
414}
415
416static void tl_dio_setbit(sc, reg, bit)
417	struct tl_softc		*sc;
418	int			reg;
419	int			bit;
420{
421	u_int8_t			f;
422
423	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
424	f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
425	f |= bit;
426	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
427
428	return;
429}
430
431static void tl_dio_clrbit(sc, reg, bit)
432	struct tl_softc		*sc;
433	int			reg;
434	int			bit;
435{
436	u_int8_t			f;
437
438	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
439	f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
440	f &= ~bit;
441	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
442
443	return;
444}
445
446static void tl_dio_setbit16(sc, reg, bit)
447	struct tl_softc		*sc;
448	int			reg;
449	int			bit;
450{
451	u_int16_t			f;
452
453	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
454	f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
455	f |= bit;
456	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
457
458	return;
459}
460
461static void tl_dio_clrbit16(sc, reg, bit)
462	struct tl_softc		*sc;
463	int			reg;
464	int			bit;
465{
466	u_int16_t			f;
467
468	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
469	f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
470	f &= ~bit;
471	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
472
473	return;
474}
475
476/*
477 * Send an instruction or address to the EEPROM, check for ACK.
478 */
479static u_int8_t tl_eeprom_putbyte(sc, byte)
480	struct tl_softc		*sc;
481	int			byte;
482{
483	register int		i, ack = 0;
484
485	/*
486	 * Make sure we're in TX mode.
487	 */
488	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ETXEN);
489
490	/*
491	 * Feed in each bit and stobe the clock.
492	 */
493	for (i = 0x80; i; i >>= 1) {
494		if (byte & i) {
495			tl_dio_setbit(sc, TL_NETSIO, TL_SIO_EDATA);
496		} else {
497			tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_EDATA);
498		}
499		DELAY(1);
500		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
501		DELAY(1);
502		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
503	}
504
505	/*
506	 * Turn off TX mode.
507	 */
508	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
509
510	/*
511	 * Check for ack.
512	 */
513	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
514	ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA;
515	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
516
517	return(ack);
518}
519
520/*
521 * Read a byte of data stored in the EEPROM at address 'addr.'
522 */
523static u_int8_t tl_eeprom_getbyte(sc, addr, dest)
524	struct tl_softc		*sc;
525	int			addr;
526	u_int8_t		*dest;
527{
528	register int		i;
529	u_int8_t		byte = 0;
530
531	tl_dio_write8(sc, TL_NETSIO, 0);
532
533	EEPROM_START;
534
535	/*
536	 * Send write control code to EEPROM.
537	 */
538	if (tl_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
539		printf("tl%d: failed to send write command, status: %x\n",
540				sc->tl_unit, tl_dio_read8(sc, TL_NETSIO));
541		return(1);
542	}
543
544	/*
545	 * Send address of byte we want to read.
546	 */
547	if (tl_eeprom_putbyte(sc, addr)) {
548		printf("tl%d: failed to send address, status: %x\n",
549				sc->tl_unit, tl_dio_read8(sc, TL_NETSIO));
550		return(1);
551	}
552
553	EEPROM_STOP;
554	EEPROM_START;
555	/*
556	 * Send read control code to EEPROM.
557	 */
558	if (tl_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
559		printf("tl%d: failed to send write command, status: %x\n",
560				sc->tl_unit, tl_dio_read8(sc, TL_NETSIO));
561		return(1);
562	}
563
564	/*
565	 * Start reading bits from EEPROM.
566	 */
567	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
568	for (i = 0x80; i; i >>= 1) {
569		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
570		DELAY(1);
571		if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA)
572			byte |= i;
573		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
574		DELAY(1);
575	}
576
577	EEPROM_STOP;
578
579	/*
580	 * No ACK generated for read, so just return byte.
581	 */
582
583	*dest = byte;
584
585	return(0);
586}
587
588/*
589 * Read a sequence of bytes from the EEPROM.
590 */
591static int tl_read_eeprom(sc, dest, off, cnt)
592	struct tl_softc		*sc;
593	caddr_t			dest;
594	int			off;
595	int			cnt;
596{
597	int			err = 0, i;
598	u_int8_t		byte = 0;
599
600	for (i = 0; i < cnt; i++) {
601		err = tl_eeprom_getbyte(sc, off + i, &byte);
602		if (err)
603			break;
604		*(dest + i) = byte;
605	}
606
607	return(err ? 1 : 0);
608}
609
610static void tl_mii_sync(sc)
611	struct tl_softc		*sc;
612{
613	register int		i;
614
615	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
616
617	for (i = 0; i < 32; i++) {
618		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
619		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
620	}
621
622	return;
623}
624
625static void tl_mii_send(sc, bits, cnt)
626	struct tl_softc		*sc;
627	u_int32_t		bits;
628	int			cnt;
629{
630	int			i;
631
632	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
633		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
634		if (bits & i) {
635			tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MDATA);
636		} else {
637			tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MDATA);
638		}
639		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
640	}
641}
642
643static int tl_mii_readreg(sc, frame)
644	struct tl_softc		*sc;
645	struct tl_mii_frame	*frame;
646
647{
648	int			i, ack;
649	int			minten = 0;
650
651	TL_LOCK(sc);
652
653	tl_mii_sync(sc);
654
655	/*
656	 * Set up frame for RX.
657	 */
658	frame->mii_stdelim = TL_MII_STARTDELIM;
659	frame->mii_opcode = TL_MII_READOP;
660	frame->mii_turnaround = 0;
661	frame->mii_data = 0;
662
663	/*
664	 * Turn off MII interrupt by forcing MINTEN low.
665	 */
666	minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
667	if (minten) {
668		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
669	}
670
671	/*
672 	 * Turn on data xmit.
673	 */
674	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
675
676	/*
677	 * Send command/address info.
678	 */
679	tl_mii_send(sc, frame->mii_stdelim, 2);
680	tl_mii_send(sc, frame->mii_opcode, 2);
681	tl_mii_send(sc, frame->mii_phyaddr, 5);
682	tl_mii_send(sc, frame->mii_regaddr, 5);
683
684	/*
685	 * Turn off xmit.
686	 */
687	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
688
689	/* Idle bit */
690	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
691	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
692
693	/* Check for ack */
694	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
695	ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA;
696
697	/* Complete the cycle */
698	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
699
700	/*
701	 * Now try reading data bits. If the ack failed, we still
702	 * need to clock through 16 cycles to keep the PHYs in sync.
703	 */
704	if (ack) {
705		for(i = 0; i < 16; i++) {
706			tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
707			tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
708		}
709		goto fail;
710	}
711
712	for (i = 0x8000; i; i >>= 1) {
713		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
714		if (!ack) {
715			if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA)
716				frame->mii_data |= i;
717		}
718		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
719	}
720
721fail:
722
723	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
724	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
725
726	/* Reenable interrupts */
727	if (minten) {
728		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
729	}
730
731	TL_UNLOCK(sc);
732
733	if (ack)
734		return(1);
735	return(0);
736}
737
738static int tl_mii_writereg(sc, frame)
739	struct tl_softc		*sc;
740	struct tl_mii_frame	*frame;
741
742{
743	int			minten;
744
745	TL_LOCK(sc);
746
747	tl_mii_sync(sc);
748
749	/*
750	 * Set up frame for TX.
751	 */
752
753	frame->mii_stdelim = TL_MII_STARTDELIM;
754	frame->mii_opcode = TL_MII_WRITEOP;
755	frame->mii_turnaround = TL_MII_TURNAROUND;
756
757	/*
758	 * Turn off MII interrupt by forcing MINTEN low.
759	 */
760	minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
761	if (minten) {
762		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
763	}
764
765	/*
766 	 * Turn on data output.
767	 */
768	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
769
770	tl_mii_send(sc, frame->mii_stdelim, 2);
771	tl_mii_send(sc, frame->mii_opcode, 2);
772	tl_mii_send(sc, frame->mii_phyaddr, 5);
773	tl_mii_send(sc, frame->mii_regaddr, 5);
774	tl_mii_send(sc, frame->mii_turnaround, 2);
775	tl_mii_send(sc, frame->mii_data, 16);
776
777	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
778	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
779
780	/*
781	 * Turn off xmit.
782	 */
783	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
784
785	/* Reenable interrupts */
786	if (minten)
787		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
788
789	TL_UNLOCK(sc);
790
791	return(0);
792}
793
794static int tl_miibus_readreg(dev, phy, reg)
795	device_t		dev;
796	int			phy, reg;
797{
798	struct tl_softc		*sc;
799	struct tl_mii_frame	frame;
800
801	sc = device_get_softc(dev);
802	bzero((char *)&frame, sizeof(frame));
803
804	frame.mii_phyaddr = phy;
805	frame.mii_regaddr = reg;
806	tl_mii_readreg(sc, &frame);
807
808	return(frame.mii_data);
809}
810
811static int tl_miibus_writereg(dev, phy, reg, data)
812	device_t		dev;
813	int			phy, reg, data;
814{
815	struct tl_softc		*sc;
816	struct tl_mii_frame	frame;
817
818	sc = device_get_softc(dev);
819	bzero((char *)&frame, sizeof(frame));
820
821	frame.mii_phyaddr = phy;
822	frame.mii_regaddr = reg;
823	frame.mii_data = data;
824
825	tl_mii_writereg(sc, &frame);
826
827	return(0);
828}
829
830static void tl_miibus_statchg(dev)
831	device_t		dev;
832{
833	struct tl_softc		*sc;
834	struct mii_data		*mii;
835
836	sc = device_get_softc(dev);
837	TL_LOCK(sc);
838	mii = device_get_softc(sc->tl_miibus);
839
840	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
841		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
842	} else {
843		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
844	}
845	TL_UNLOCK(sc);
846
847	return;
848}
849
850/*
851 * Set modes for bitrate devices.
852 */
853static void tl_setmode(sc, media)
854	struct tl_softc		*sc;
855	int			media;
856{
857	if (IFM_SUBTYPE(media) == IFM_10_5)
858		tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
859	if (IFM_SUBTYPE(media) == IFM_10_T) {
860		tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
861		if ((media & IFM_GMASK) == IFM_FDX) {
862			tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
863			tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
864		} else {
865			tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
866			tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
867		}
868	}
869
870	return;
871}
872
873/*
874 * Calculate the hash of a MAC address for programming the multicast hash
875 * table.  This hash is simply the address split into 6-bit chunks
876 * XOR'd, e.g.
877 * byte: 000000|00 1111|1111 22|222222|333333|33 4444|4444 55|555555
878 * bit:  765432|10 7654|3210 76|543210|765432|10 7654|3210 76|543210
879 * Bytes 0-2 and 3-5 are symmetrical, so are folded together.  Then
880 * the folded 24-bit value is split into 6-bit portions and XOR'd.
881 */
882static int tl_calchash(addr)
883	caddr_t			addr;
884{
885	int			t;
886
887	t = (addr[0] ^ addr[3]) << 16 | (addr[1] ^ addr[4]) << 8 |
888		(addr[2] ^ addr[5]);
889	return ((t >> 18) ^ (t >> 12) ^ (t >> 6) ^ t) & 0x3f;
890}
891
892/*
893 * The ThunderLAN has a perfect MAC address filter in addition to
894 * the multicast hash filter. The perfect filter can be programmed
895 * with up to four MAC addresses. The first one is always used to
896 * hold the station address, which leaves us free to use the other
897 * three for multicast addresses.
898 */
899static void tl_setfilt(sc, addr, slot)
900	struct tl_softc		*sc;
901	caddr_t			addr;
902	int			slot;
903{
904	int			i;
905	u_int16_t		regaddr;
906
907	regaddr = TL_AREG0_B5 + (slot * ETHER_ADDR_LEN);
908
909	for (i = 0; i < ETHER_ADDR_LEN; i++)
910		tl_dio_write8(sc, regaddr + i, *(addr + i));
911
912	return;
913}
914
915/*
916 * XXX In FreeBSD 3.0, multicast addresses are managed using a doubly
917 * linked list. This is fine, except addresses are added from the head
918 * end of the list. We want to arrange for 224.0.0.1 (the "all hosts")
919 * group to always be in the perfect filter, but as more groups are added,
920 * the 224.0.0.1 entry (which is always added first) gets pushed down
921 * the list and ends up at the tail. So after 3 or 4 multicast groups
922 * are added, the all-hosts entry gets pushed out of the perfect filter
923 * and into the hash table.
924 *
925 * Because the multicast list is a doubly-linked list as opposed to a
926 * circular queue, we don't have the ability to just grab the tail of
927 * the list and traverse it backwards. Instead, we have to traverse
928 * the list once to find the tail, then traverse it again backwards to
929 * update the multicast filter.
930 */
931static void tl_setmulti(sc)
932	struct tl_softc		*sc;
933{
934	struct ifnet		*ifp;
935	u_int32_t		hashes[2] = { 0, 0 };
936	int			h, i;
937	struct ifmultiaddr	*ifma;
938	u_int8_t		dummy[] = { 0, 0, 0, 0, 0 ,0 };
939	ifp = &sc->arpcom.ac_if;
940
941	/* First, zot all the existing filters. */
942	for (i = 1; i < 4; i++)
943		tl_setfilt(sc, (caddr_t)&dummy, i);
944	tl_dio_write32(sc, TL_HASH1, 0);
945	tl_dio_write32(sc, TL_HASH2, 0);
946
947	/* Now program new ones. */
948	if (ifp->if_flags & IFF_ALLMULTI) {
949		hashes[0] = 0xFFFFFFFF;
950		hashes[1] = 0xFFFFFFFF;
951	} else {
952		i = 1;
953		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
954			if (ifma->ifma_addr->sa_family != AF_LINK)
955				continue;
956			/*
957			 * Program the first three multicast groups
958			 * into the perfect filter. For all others,
959			 * use the hash table.
960			 */
961			if (i < 4) {
962				tl_setfilt(sc,
963			LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
964				i++;
965				continue;
966			}
967
968			h = tl_calchash(
969				LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
970			if (h < 32)
971				hashes[0] |= (1 << h);
972			else
973				hashes[1] |= (1 << (h - 32));
974		}
975	}
976
977	tl_dio_write32(sc, TL_HASH1, hashes[0]);
978	tl_dio_write32(sc, TL_HASH2, hashes[1]);
979
980	return;
981}
982
983/*
984 * This routine is recommended by the ThunderLAN manual to insure that
985 * the internal PHY is powered up correctly. It also recommends a one
986 * second pause at the end to 'wait for the clocks to start' but in my
987 * experience this isn't necessary.
988 */
989static void tl_hardreset(dev)
990	device_t		dev;
991{
992	struct tl_softc		*sc;
993	int			i;
994	u_int16_t		flags;
995
996	sc = device_get_softc(dev);
997
998	tl_mii_sync(sc);
999
1000	flags = BMCR_LOOP|BMCR_ISO|BMCR_PDOWN;
1001
1002	for (i = 0; i < MII_NPHY; i++)
1003		tl_miibus_writereg(dev, i, MII_BMCR, flags);
1004
1005	tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_ISO);
1006	DELAY(50000);
1007	tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_LOOP|BMCR_ISO);
1008	tl_mii_sync(sc);
1009	while(tl_miibus_readreg(dev, 31, MII_BMCR) & BMCR_RESET);
1010
1011	DELAY(50000);
1012	return;
1013}
1014
1015static void tl_softreset(sc, internal)
1016	struct tl_softc		*sc;
1017	int			internal;
1018{
1019        u_int32_t               cmd, dummy, i;
1020
1021        /* Assert the adapter reset bit. */
1022	CMD_SET(sc, TL_CMD_ADRST);
1023
1024        /* Turn off interrupts */
1025	CMD_SET(sc, TL_CMD_INTSOFF);
1026
1027	/* First, clear the stats registers. */
1028	for (i = 0; i < 5; i++)
1029		dummy = tl_dio_read32(sc, TL_TXGOODFRAMES);
1030
1031        /* Clear Areg and Hash registers */
1032	for (i = 0; i < 8; i++)
1033		tl_dio_write32(sc, TL_AREG0_B5, 0x00000000);
1034
1035        /*
1036	 * Set up Netconfig register. Enable one channel and
1037	 * one fragment mode.
1038	 */
1039	tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_ONECHAN|TL_CFG_ONEFRAG);
1040	if (internal && !sc->tl_bitrate) {
1041		tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
1042	} else {
1043		tl_dio_clrbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
1044	}
1045
1046	/* Handle cards with bitrate devices. */
1047	if (sc->tl_bitrate)
1048		tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_BITRATE);
1049
1050	/*
1051	 * Load adapter irq pacing timer and tx threshold.
1052	 * We make the transmit threshold 1 initially but we may
1053	 * change that later.
1054	 */
1055	cmd = CSR_READ_4(sc, TL_HOSTCMD);
1056	cmd |= TL_CMD_NES;
1057	cmd &= ~(TL_CMD_RT|TL_CMD_EOC|TL_CMD_ACK_MASK|TL_CMD_CHSEL_MASK);
1058	CMD_PUT(sc, cmd | (TL_CMD_LDTHR | TX_THR));
1059	CMD_PUT(sc, cmd | (TL_CMD_LDTMR | 0x00000003));
1060
1061        /* Unreset the MII */
1062	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_NMRST);
1063
1064	/* Take the adapter out of reset */
1065	tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NRESET|TL_CMD_NWRAP);
1066
1067	/* Wait for things to settle down a little. */
1068	DELAY(500);
1069
1070        return;
1071}
1072
1073/*
1074 * Probe for a ThunderLAN chip. Check the PCI vendor and device IDs
1075 * against our list and return its name if we find a match.
1076 */
1077static int tl_probe(dev)
1078	device_t		dev;
1079{
1080	struct tl_type		*t;
1081
1082	t = tl_devs;
1083
1084	while(t->tl_name != NULL) {
1085		if ((pci_get_vendor(dev) == t->tl_vid) &&
1086		    (pci_get_device(dev) == t->tl_did)) {
1087			device_set_desc(dev, t->tl_name);
1088			return(0);
1089		}
1090		t++;
1091	}
1092
1093	return(ENXIO);
1094}
1095
1096static int tl_attach(dev)
1097	device_t		dev;
1098{
1099	int			i;
1100	u_int32_t		command;
1101	u_int16_t		did, vid;
1102	struct tl_type		*t;
1103	struct ifnet		*ifp;
1104	struct tl_softc		*sc;
1105	int			unit, error = 0, rid;
1106
1107	vid = pci_get_vendor(dev);
1108	did = pci_get_device(dev);
1109	sc = device_get_softc(dev);
1110	unit = device_get_unit(dev);
1111	bzero(sc, sizeof(struct tl_softc));
1112
1113	t = tl_devs;
1114	while(t->tl_name != NULL) {
1115		if (vid == t->tl_vid && did == t->tl_did)
1116			break;
1117		t++;
1118	}
1119
1120	if (t->tl_name == NULL) {
1121		printf("tl%d: unknown device!?\n", unit);
1122		goto fail;
1123	}
1124
1125	mtx_init(&sc->tl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1126	    MTX_DEF | MTX_RECURSE);
1127	TL_LOCK(sc);
1128
1129	/*
1130	 * Map control/status registers.
1131	 */
1132	pci_enable_busmaster(dev);
1133	pci_enable_io(dev, SYS_RES_IOPORT);
1134	pci_enable_io(dev, SYS_RES_MEMORY);
1135	command = pci_read_config(dev, PCIR_COMMAND, 4);
1136
1137#ifdef TL_USEIOSPACE
1138	if (!(command & PCIM_CMD_PORTEN)) {
1139		printf("tl%d: failed to enable I/O ports!\n", unit);
1140		error = ENXIO;
1141		goto fail;
1142	}
1143
1144	rid = TL_PCI_LOIO;
1145	sc->tl_res = bus_alloc_resource(dev, SYS_RES_IOPORT, &rid,
1146		0, ~0, 1, RF_ACTIVE);
1147
1148	/*
1149	 * Some cards have the I/O and memory mapped address registers
1150	 * reversed. Try both combinations before giving up.
1151	 */
1152	if (sc->tl_res == NULL) {
1153		rid = TL_PCI_LOMEM;
1154		sc->tl_res = bus_alloc_resource(dev, SYS_RES_IOPORT, &rid,
1155		    0, ~0, 1, RF_ACTIVE);
1156	}
1157#else
1158	if (!(command & PCIM_CMD_MEMEN)) {
1159		printf("tl%d: failed to enable memory mapping!\n", unit);
1160		error = ENXIO;
1161		goto fail;
1162	}
1163
1164	rid = TL_PCI_LOMEM;
1165	sc->tl_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
1166	    0, ~0, 1, RF_ACTIVE);
1167	if (sc->tl_res == NULL) {
1168		rid = TL_PCI_LOIO;
1169		sc->tl_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
1170		    0, ~0, 1, RF_ACTIVE);
1171	}
1172#endif
1173
1174	if (sc->tl_res == NULL) {
1175		printf("tl%d: couldn't map ports/memory\n", unit);
1176		error = ENXIO;
1177		goto fail;
1178	}
1179
1180	sc->tl_btag = rman_get_bustag(sc->tl_res);
1181	sc->tl_bhandle = rman_get_bushandle(sc->tl_res);
1182
1183#ifdef notdef
1184	/*
1185	 * The ThunderLAN manual suggests jacking the PCI latency
1186	 * timer all the way up to its maximum value. I'm not sure
1187	 * if this is really necessary, but what the manual wants,
1188	 * the manual gets.
1189	 */
1190	command = pci_read_config(dev, TL_PCI_LATENCY_TIMER, 4);
1191	command |= 0x0000FF00;
1192	pci_write_config(dev, TL_PCI_LATENCY_TIMER, command, 4);
1193#endif
1194
1195	/* Allocate interrupt */
1196	rid = 0;
1197	sc->tl_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1198	    RF_SHAREABLE | RF_ACTIVE);
1199
1200	if (sc->tl_irq == NULL) {
1201		bus_release_resource(dev, TL_RES, TL_RID, sc->tl_res);
1202		printf("tl%d: couldn't map interrupt\n", unit);
1203		error = ENXIO;
1204		goto fail;
1205	}
1206
1207	error = bus_setup_intr(dev, sc->tl_irq, INTR_TYPE_NET,
1208	    tl_intr, sc, &sc->tl_intrhand);
1209
1210	if (error) {
1211		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->tl_irq);
1212		bus_release_resource(dev, TL_RES, TL_RID, sc->tl_res);
1213		printf("tl%d: couldn't set up irq\n", unit);
1214		goto fail;
1215	}
1216
1217	/*
1218	 * Now allocate memory for the TX and RX lists.
1219	 */
1220	sc->tl_ldata = contigmalloc(sizeof(struct tl_list_data), M_DEVBUF,
1221	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1222
1223	if (sc->tl_ldata == NULL) {
1224		bus_teardown_intr(dev, sc->tl_irq, sc->tl_intrhand);
1225		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->tl_irq);
1226		bus_release_resource(dev, TL_RES, TL_RID, sc->tl_res);
1227		printf("tl%d: no memory for list buffers!\n", unit);
1228		error = ENXIO;
1229		goto fail;
1230	}
1231
1232	bzero(sc->tl_ldata, sizeof(struct tl_list_data));
1233
1234	sc->tl_unit = unit;
1235	sc->tl_dinfo = t;
1236	if (t->tl_vid == COMPAQ_VENDORID || t->tl_vid == TI_VENDORID)
1237		sc->tl_eeaddr = TL_EEPROM_EADDR;
1238	if (t->tl_vid == OLICOM_VENDORID)
1239		sc->tl_eeaddr = TL_EEPROM_EADDR_OC;
1240
1241	/* Reset the adapter. */
1242	tl_softreset(sc, 1);
1243	tl_hardreset(dev);
1244	tl_softreset(sc, 1);
1245
1246	/*
1247	 * Get station address from the EEPROM.
1248	 */
1249	if (tl_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1250				sc->tl_eeaddr, ETHER_ADDR_LEN)) {
1251		bus_teardown_intr(dev, sc->tl_irq, sc->tl_intrhand);
1252		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->tl_irq);
1253		bus_release_resource(dev, TL_RES, TL_RID, sc->tl_res);
1254		contigfree(sc->tl_ldata,
1255		    sizeof(struct tl_list_data), M_DEVBUF);
1256		printf("tl%d: failed to read station address\n", unit);
1257		error = ENXIO;
1258		goto fail;
1259	}
1260
1261        /*
1262         * XXX Olicom, in its desire to be different from the
1263         * rest of the world, has done strange things with the
1264         * encoding of the station address in the EEPROM. First
1265         * of all, they store the address at offset 0xF8 rather
1266         * than at 0x83 like the ThunderLAN manual suggests.
1267         * Second, they store the address in three 16-bit words in
1268         * network byte order, as opposed to storing it sequentially
1269         * like all the other ThunderLAN cards. In order to get
1270         * the station address in a form that matches what the Olicom
1271         * diagnostic utility specifies, we have to byte-swap each
1272         * word. To make things even more confusing, neither 00:00:28
1273         * nor 00:00:24 appear in the IEEE OUI database.
1274         */
1275        if (sc->tl_dinfo->tl_vid == OLICOM_VENDORID) {
1276                for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
1277                        u_int16_t               *p;
1278                        p = (u_int16_t *)&sc->arpcom.ac_enaddr[i];
1279                        *p = ntohs(*p);
1280                }
1281        }
1282
1283	/*
1284	 * A ThunderLAN chip was detected. Inform the world.
1285	 */
1286	printf("tl%d: Ethernet address: %6D\n", unit,
1287				sc->arpcom.ac_enaddr, ":");
1288
1289	ifp = &sc->arpcom.ac_if;
1290	ifp->if_softc = sc;
1291	ifp->if_unit = sc->tl_unit;
1292	ifp->if_name = "tl";
1293	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1294	ifp->if_ioctl = tl_ioctl;
1295	ifp->if_output = ether_output;
1296	ifp->if_start = tl_start;
1297	ifp->if_watchdog = tl_watchdog;
1298	ifp->if_init = tl_init;
1299	ifp->if_mtu = ETHERMTU;
1300	ifp->if_snd.ifq_maxlen = TL_TX_LIST_CNT - 1;
1301	callout_handle_init(&sc->tl_stat_ch);
1302
1303	/* Reset the adapter again. */
1304	tl_softreset(sc, 1);
1305	tl_hardreset(dev);
1306	tl_softreset(sc, 1);
1307
1308	/*
1309	 * Do MII setup. If no PHYs are found, then this is a
1310	 * bitrate ThunderLAN chip that only supports 10baseT
1311	 * and AUI/BNC.
1312	 */
1313	if (mii_phy_probe(dev, &sc->tl_miibus,
1314	    tl_ifmedia_upd, tl_ifmedia_sts)) {
1315		struct ifmedia		*ifm;
1316		sc->tl_bitrate = 1;
1317		ifmedia_init(&sc->ifmedia, 0, tl_ifmedia_upd, tl_ifmedia_sts);
1318		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1319		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
1320		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1321		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_5, 0, NULL);
1322		ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_10_T);
1323		/* Reset again, this time setting bitrate mode. */
1324		tl_softreset(sc, 1);
1325		ifm = &sc->ifmedia;
1326		ifm->ifm_media = ifm->ifm_cur->ifm_media;
1327		tl_ifmedia_upd(ifp);
1328	}
1329
1330	/*
1331	 * Call MI attach routine.
1332	 */
1333	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
1334	TL_UNLOCK(sc);
1335	return(0);
1336
1337fail:
1338	TL_UNLOCK(sc);
1339	mtx_destroy(&sc->tl_mtx);
1340	return(error);
1341}
1342
1343static int tl_detach(dev)
1344	device_t		dev;
1345{
1346	struct tl_softc		*sc;
1347	struct ifnet		*ifp;
1348
1349	sc = device_get_softc(dev);
1350	TL_LOCK(sc);
1351	ifp = &sc->arpcom.ac_if;
1352
1353	tl_stop(sc);
1354	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
1355
1356	bus_generic_detach(dev);
1357	device_delete_child(dev, sc->tl_miibus);
1358
1359	contigfree(sc->tl_ldata, sizeof(struct tl_list_data), M_DEVBUF);
1360	if (sc->tl_bitrate)
1361		ifmedia_removeall(&sc->ifmedia);
1362
1363	bus_teardown_intr(dev, sc->tl_irq, sc->tl_intrhand);
1364	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->tl_irq);
1365	bus_release_resource(dev, TL_RES, TL_RID, sc->tl_res);
1366
1367	TL_UNLOCK(sc);
1368	mtx_destroy(&sc->tl_mtx);
1369
1370	return(0);
1371}
1372
1373/*
1374 * Initialize the transmit lists.
1375 */
1376static int tl_list_tx_init(sc)
1377	struct tl_softc		*sc;
1378{
1379	struct tl_chain_data	*cd;
1380	struct tl_list_data	*ld;
1381	int			i;
1382
1383	cd = &sc->tl_cdata;
1384	ld = sc->tl_ldata;
1385	for (i = 0; i < TL_TX_LIST_CNT; i++) {
1386		cd->tl_tx_chain[i].tl_ptr = &ld->tl_tx_list[i];
1387		if (i == (TL_TX_LIST_CNT - 1))
1388			cd->tl_tx_chain[i].tl_next = NULL;
1389		else
1390			cd->tl_tx_chain[i].tl_next = &cd->tl_tx_chain[i + 1];
1391	}
1392
1393	cd->tl_tx_free = &cd->tl_tx_chain[0];
1394	cd->tl_tx_tail = cd->tl_tx_head = NULL;
1395	sc->tl_txeoc = 1;
1396
1397	return(0);
1398}
1399
1400/*
1401 * Initialize the RX lists and allocate mbufs for them.
1402 */
1403static int tl_list_rx_init(sc)
1404	struct tl_softc		*sc;
1405{
1406	struct tl_chain_data	*cd;
1407	struct tl_list_data	*ld;
1408	int			i;
1409
1410	cd = &sc->tl_cdata;
1411	ld = sc->tl_ldata;
1412
1413	for (i = 0; i < TL_RX_LIST_CNT; i++) {
1414		cd->tl_rx_chain[i].tl_ptr =
1415			(struct tl_list_onefrag *)&ld->tl_rx_list[i];
1416		if (tl_newbuf(sc, &cd->tl_rx_chain[i]) == ENOBUFS)
1417			return(ENOBUFS);
1418		if (i == (TL_RX_LIST_CNT - 1)) {
1419			cd->tl_rx_chain[i].tl_next = NULL;
1420			ld->tl_rx_list[i].tlist_fptr = 0;
1421		} else {
1422			cd->tl_rx_chain[i].tl_next = &cd->tl_rx_chain[i + 1];
1423			ld->tl_rx_list[i].tlist_fptr =
1424					vtophys(&ld->tl_rx_list[i + 1]);
1425		}
1426	}
1427
1428	cd->tl_rx_head = &cd->tl_rx_chain[0];
1429	cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
1430
1431	return(0);
1432}
1433
1434static int tl_newbuf(sc, c)
1435	struct tl_softc		*sc;
1436	struct tl_chain_onefrag	*c;
1437{
1438	struct mbuf		*m_new = NULL;
1439
1440	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1441	if (m_new == NULL)
1442		return(ENOBUFS);
1443
1444	MCLGET(m_new, M_DONTWAIT);
1445	if (!(m_new->m_flags & M_EXT)) {
1446		m_freem(m_new);
1447		return(ENOBUFS);
1448	}
1449
1450#ifdef __alpha__
1451	m_new->m_data += 2;
1452#endif
1453
1454	c->tl_mbuf = m_new;
1455	c->tl_next = NULL;
1456	c->tl_ptr->tlist_frsize = MCLBYTES;
1457	c->tl_ptr->tlist_fptr = 0;
1458	c->tl_ptr->tl_frag.tlist_dadr = vtophys(mtod(m_new, caddr_t));
1459	c->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
1460	c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1461
1462	return(0);
1463}
1464/*
1465 * Interrupt handler for RX 'end of frame' condition (EOF). This
1466 * tells us that a full ethernet frame has been captured and we need
1467 * to handle it.
1468 *
1469 * Reception is done using 'lists' which consist of a header and a
1470 * series of 10 data count/data address pairs that point to buffers.
1471 * Initially you're supposed to create a list, populate it with pointers
1472 * to buffers, then load the physical address of the list into the
1473 * ch_parm register. The adapter is then supposed to DMA the received
1474 * frame into the buffers for you.
1475 *
1476 * To make things as fast as possible, we have the chip DMA directly
1477 * into mbufs. This saves us from having to do a buffer copy: we can
1478 * just hand the mbufs directly to ether_input(). Once the frame has
1479 * been sent on its way, the 'list' structure is assigned a new buffer
1480 * and moved to the end of the RX chain. As long we we stay ahead of
1481 * the chip, it will always think it has an endless receive channel.
1482 *
1483 * If we happen to fall behind and the chip manages to fill up all of
1484 * the buffers, it will generate an end of channel interrupt and wait
1485 * for us to empty the chain and restart the receiver.
1486 */
1487static int tl_intvec_rxeof(xsc, type)
1488	void			*xsc;
1489	u_int32_t		type;
1490{
1491	struct tl_softc		*sc;
1492	int			r = 0, total_len = 0;
1493	struct ether_header	*eh;
1494	struct mbuf		*m;
1495	struct ifnet		*ifp;
1496	struct tl_chain_onefrag	*cur_rx;
1497
1498	sc = xsc;
1499	ifp = &sc->arpcom.ac_if;
1500
1501	while(sc->tl_cdata.tl_rx_head != NULL) {
1502		cur_rx = sc->tl_cdata.tl_rx_head;
1503		if (!(cur_rx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
1504			break;
1505		r++;
1506		sc->tl_cdata.tl_rx_head = cur_rx->tl_next;
1507		m = cur_rx->tl_mbuf;
1508		total_len = cur_rx->tl_ptr->tlist_frsize;
1509
1510		if (tl_newbuf(sc, cur_rx) == ENOBUFS) {
1511			ifp->if_ierrors++;
1512			cur_rx->tl_ptr->tlist_frsize = MCLBYTES;
1513			cur_rx->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1514			cur_rx->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
1515			continue;
1516		}
1517
1518		sc->tl_cdata.tl_rx_tail->tl_ptr->tlist_fptr =
1519						vtophys(cur_rx->tl_ptr);
1520		sc->tl_cdata.tl_rx_tail->tl_next = cur_rx;
1521		sc->tl_cdata.tl_rx_tail = cur_rx;
1522
1523		eh = mtod(m, struct ether_header *);
1524		m->m_pkthdr.rcvif = ifp;
1525
1526		/*
1527		 * Note: when the ThunderLAN chip is in 'capture all
1528		 * frames' mode, it will receive its own transmissions.
1529		 * We drop don't need to process our own transmissions,
1530		 * so we drop them here and continue.
1531		 */
1532		/*if (ifp->if_flags & IFF_PROMISC && */
1533		if (!bcmp(eh->ether_shost, sc->arpcom.ac_enaddr,
1534		 					ETHER_ADDR_LEN)) {
1535				m_freem(m);
1536				continue;
1537		}
1538
1539		/* Remove header from mbuf and pass it on. */
1540		m->m_pkthdr.len = m->m_len =
1541				total_len - sizeof(struct ether_header);
1542		m->m_data += sizeof(struct ether_header);
1543		ether_input(ifp, eh, m);
1544	}
1545
1546	return(r);
1547}
1548
1549/*
1550 * The RX-EOC condition hits when the ch_parm address hasn't been
1551 * initialized or the adapter reached a list with a forward pointer
1552 * of 0 (which indicates the end of the chain). In our case, this means
1553 * the card has hit the end of the receive buffer chain and we need to
1554 * empty out the buffers and shift the pointer back to the beginning again.
1555 */
1556static int tl_intvec_rxeoc(xsc, type)
1557	void			*xsc;
1558	u_int32_t		type;
1559{
1560	struct tl_softc		*sc;
1561	int			r;
1562	struct tl_chain_data	*cd;
1563
1564
1565	sc = xsc;
1566	cd = &sc->tl_cdata;
1567
1568	/* Flush out the receive queue and ack RXEOF interrupts. */
1569	r = tl_intvec_rxeof(xsc, type);
1570	CMD_PUT(sc, TL_CMD_ACK | r | (type & ~(0x00100000)));
1571	r = 1;
1572	cd->tl_rx_head = &cd->tl_rx_chain[0];
1573	cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
1574	CSR_WRITE_4(sc, TL_CH_PARM, vtophys(sc->tl_cdata.tl_rx_head->tl_ptr));
1575	r |= (TL_CMD_GO|TL_CMD_RT);
1576	return(r);
1577}
1578
1579static int tl_intvec_txeof(xsc, type)
1580	void			*xsc;
1581	u_int32_t		type;
1582{
1583	struct tl_softc		*sc;
1584	int			r = 0;
1585	struct tl_chain		*cur_tx;
1586
1587	sc = xsc;
1588
1589	/*
1590	 * Go through our tx list and free mbufs for those
1591	 * frames that have been sent.
1592	 */
1593	while (sc->tl_cdata.tl_tx_head != NULL) {
1594		cur_tx = sc->tl_cdata.tl_tx_head;
1595		if (!(cur_tx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
1596			break;
1597		sc->tl_cdata.tl_tx_head = cur_tx->tl_next;
1598
1599		r++;
1600		m_freem(cur_tx->tl_mbuf);
1601		cur_tx->tl_mbuf = NULL;
1602
1603		cur_tx->tl_next = sc->tl_cdata.tl_tx_free;
1604		sc->tl_cdata.tl_tx_free = cur_tx;
1605		if (!cur_tx->tl_ptr->tlist_fptr)
1606			break;
1607	}
1608
1609	return(r);
1610}
1611
1612/*
1613 * The transmit end of channel interrupt. The adapter triggers this
1614 * interrupt to tell us it hit the end of the current transmit list.
1615 *
1616 * A note about this: it's possible for a condition to arise where
1617 * tl_start() may try to send frames between TXEOF and TXEOC interrupts.
1618 * You have to avoid this since the chip expects things to go in a
1619 * particular order: transmit, acknowledge TXEOF, acknowledge TXEOC.
1620 * When the TXEOF handler is called, it will free all of the transmitted
1621 * frames and reset the tx_head pointer to NULL. However, a TXEOC
1622 * interrupt should be received and acknowledged before any more frames
1623 * are queued for transmission. If tl_statrt() is called after TXEOF
1624 * resets the tx_head pointer but _before_ the TXEOC interrupt arrives,
1625 * it could attempt to issue a transmit command prematurely.
1626 *
1627 * To guard against this, tl_start() will only issue transmit commands
1628 * if the tl_txeoc flag is set, and only the TXEOC interrupt handler
1629 * can set this flag once tl_start() has cleared it.
1630 */
1631static int tl_intvec_txeoc(xsc, type)
1632	void			*xsc;
1633	u_int32_t		type;
1634{
1635	struct tl_softc		*sc;
1636	struct ifnet		*ifp;
1637	u_int32_t		cmd;
1638
1639	sc = xsc;
1640	ifp = &sc->arpcom.ac_if;
1641
1642	/* Clear the timeout timer. */
1643	ifp->if_timer = 0;
1644
1645	if (sc->tl_cdata.tl_tx_head == NULL) {
1646		ifp->if_flags &= ~IFF_OACTIVE;
1647		sc->tl_cdata.tl_tx_tail = NULL;
1648		sc->tl_txeoc = 1;
1649	} else {
1650		sc->tl_txeoc = 0;
1651		/* First we have to ack the EOC interrupt. */
1652		CMD_PUT(sc, TL_CMD_ACK | 0x00000001 | type);
1653		/* Then load the address of the next TX list. */
1654		CSR_WRITE_4(sc, TL_CH_PARM,
1655		    vtophys(sc->tl_cdata.tl_tx_head->tl_ptr));
1656		/* Restart TX channel. */
1657		cmd = CSR_READ_4(sc, TL_HOSTCMD);
1658		cmd &= ~TL_CMD_RT;
1659		cmd |= TL_CMD_GO|TL_CMD_INTSON;
1660		CMD_PUT(sc, cmd);
1661		return(0);
1662	}
1663
1664	return(1);
1665}
1666
1667static int tl_intvec_adchk(xsc, type)
1668	void			*xsc;
1669	u_int32_t		type;
1670{
1671	struct tl_softc		*sc;
1672
1673	sc = xsc;
1674
1675	if (type)
1676		printf("tl%d: adapter check: %x\n", sc->tl_unit,
1677			(unsigned int)CSR_READ_4(sc, TL_CH_PARM));
1678
1679	tl_softreset(sc, 1);
1680	tl_stop(sc);
1681	tl_init(sc);
1682	CMD_SET(sc, TL_CMD_INTSON);
1683
1684	return(0);
1685}
1686
1687static int tl_intvec_netsts(xsc, type)
1688	void			*xsc;
1689	u_int32_t		type;
1690{
1691	struct tl_softc		*sc;
1692	u_int16_t		netsts;
1693
1694	sc = xsc;
1695
1696	netsts = tl_dio_read16(sc, TL_NETSTS);
1697	tl_dio_write16(sc, TL_NETSTS, netsts);
1698
1699	printf("tl%d: network status: %x\n", sc->tl_unit, netsts);
1700
1701	return(1);
1702}
1703
1704static void tl_intr(xsc)
1705	void			*xsc;
1706{
1707	struct tl_softc		*sc;
1708	struct ifnet		*ifp;
1709	int			r = 0;
1710	u_int32_t		type = 0;
1711	u_int16_t		ints = 0;
1712	u_int8_t		ivec = 0;
1713
1714	sc = xsc;
1715	TL_LOCK(sc);
1716
1717	/* Disable interrupts */
1718	ints = CSR_READ_2(sc, TL_HOST_INT);
1719	CSR_WRITE_2(sc, TL_HOST_INT, ints);
1720	type = (ints << 16) & 0xFFFF0000;
1721	ivec = (ints & TL_VEC_MASK) >> 5;
1722	ints = (ints & TL_INT_MASK) >> 2;
1723
1724	ifp = &sc->arpcom.ac_if;
1725
1726	switch(ints) {
1727	case (TL_INTR_INVALID):
1728#ifdef DIAGNOSTIC
1729		printf("tl%d: got an invalid interrupt!\n", sc->tl_unit);
1730#endif
1731		/* Re-enable interrupts but don't ack this one. */
1732		CMD_PUT(sc, type);
1733		r = 0;
1734		break;
1735	case (TL_INTR_TXEOF):
1736		r = tl_intvec_txeof((void *)sc, type);
1737		break;
1738	case (TL_INTR_TXEOC):
1739		r = tl_intvec_txeoc((void *)sc, type);
1740		break;
1741	case (TL_INTR_STATOFLOW):
1742		tl_stats_update(sc);
1743		r = 1;
1744		break;
1745	case (TL_INTR_RXEOF):
1746		r = tl_intvec_rxeof((void *)sc, type);
1747		break;
1748	case (TL_INTR_DUMMY):
1749		printf("tl%d: got a dummy interrupt\n", sc->tl_unit);
1750		r = 1;
1751		break;
1752	case (TL_INTR_ADCHK):
1753		if (ivec)
1754			r = tl_intvec_adchk((void *)sc, type);
1755		else
1756			r = tl_intvec_netsts((void *)sc, type);
1757		break;
1758	case (TL_INTR_RXEOC):
1759		r = tl_intvec_rxeoc((void *)sc, type);
1760		break;
1761	default:
1762		printf("tl%d: bogus interrupt type\n", ifp->if_unit);
1763		break;
1764	}
1765
1766	/* Re-enable interrupts */
1767	if (r) {
1768		CMD_PUT(sc, TL_CMD_ACK | r | type);
1769	}
1770
1771	if (ifp->if_snd.ifq_head != NULL)
1772		tl_start(ifp);
1773
1774	TL_UNLOCK(sc);
1775
1776	return;
1777}
1778
1779static void tl_stats_update(xsc)
1780	void			*xsc;
1781{
1782	struct tl_softc		*sc;
1783	struct ifnet		*ifp;
1784	struct tl_stats		tl_stats;
1785	struct mii_data		*mii;
1786	u_int32_t		*p;
1787
1788	bzero((char *)&tl_stats, sizeof(struct tl_stats));
1789
1790	sc = xsc;
1791	TL_LOCK(sc);
1792	ifp = &sc->arpcom.ac_if;
1793
1794	p = (u_int32_t *)&tl_stats;
1795
1796	CSR_WRITE_2(sc, TL_DIO_ADDR, TL_TXGOODFRAMES|TL_DIO_ADDR_INC);
1797	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1798	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1799	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1800	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1801	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1802
1803	ifp->if_opackets += tl_tx_goodframes(tl_stats);
1804	ifp->if_collisions += tl_stats.tl_tx_single_collision +
1805				tl_stats.tl_tx_multi_collision;
1806	ifp->if_ipackets += tl_rx_goodframes(tl_stats);
1807	ifp->if_ierrors += tl_stats.tl_crc_errors + tl_stats.tl_code_errors +
1808			    tl_rx_overrun(tl_stats);
1809	ifp->if_oerrors += tl_tx_underrun(tl_stats);
1810
1811	if (tl_tx_underrun(tl_stats)) {
1812		u_int8_t		tx_thresh;
1813		tx_thresh = tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_TXTHRESH;
1814		if (tx_thresh != TL_AC_TXTHRESH_WHOLEPKT) {
1815			tx_thresh >>= 4;
1816			tx_thresh++;
1817			printf("tl%d: tx underrun -- increasing "
1818			    "tx threshold to %d bytes\n", sc->tl_unit,
1819			    (64 * (tx_thresh * 4)));
1820			tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
1821			tl_dio_setbit(sc, TL_ACOMMIT, tx_thresh << 4);
1822		}
1823	}
1824
1825	sc->tl_stat_ch = timeout(tl_stats_update, sc, hz);
1826
1827	if (!sc->tl_bitrate) {
1828		mii = device_get_softc(sc->tl_miibus);
1829		mii_tick(mii);
1830	}
1831
1832	TL_UNLOCK(sc);
1833
1834	return;
1835}
1836
1837/*
1838 * Encapsulate an mbuf chain in a list by coupling the mbuf data
1839 * pointers to the fragment pointers.
1840 */
1841static int tl_encap(sc, c, m_head)
1842	struct tl_softc		*sc;
1843	struct tl_chain		*c;
1844	struct mbuf		*m_head;
1845{
1846	int			frag = 0;
1847	struct tl_frag		*f = NULL;
1848	int			total_len;
1849	struct mbuf		*m;
1850
1851	/*
1852 	 * Start packing the mbufs in this chain into
1853	 * the fragment pointers. Stop when we run out
1854 	 * of fragments or hit the end of the mbuf chain.
1855	 */
1856	m = m_head;
1857	total_len = 0;
1858
1859	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1860		if (m->m_len != 0) {
1861			if (frag == TL_MAXFRAGS)
1862				break;
1863			total_len+= m->m_len;
1864			c->tl_ptr->tl_frag[frag].tlist_dadr =
1865				vtophys(mtod(m, vm_offset_t));
1866			c->tl_ptr->tl_frag[frag].tlist_dcnt = m->m_len;
1867			frag++;
1868		}
1869	}
1870
1871	/*
1872	 * Handle special cases.
1873	 * Special case #1: we used up all 10 fragments, but
1874	 * we have more mbufs left in the chain. Copy the
1875	 * data into an mbuf cluster. Note that we don't
1876	 * bother clearing the values in the other fragment
1877	 * pointers/counters; it wouldn't gain us anything,
1878	 * and would waste cycles.
1879	 */
1880	if (m != NULL) {
1881		struct mbuf		*m_new = NULL;
1882
1883		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1884		if (m_new == NULL) {
1885			printf("tl%d: no memory for tx list\n", sc->tl_unit);
1886			return(1);
1887		}
1888		if (m_head->m_pkthdr.len > MHLEN) {
1889			MCLGET(m_new, M_DONTWAIT);
1890			if (!(m_new->m_flags & M_EXT)) {
1891				m_freem(m_new);
1892				printf("tl%d: no memory for tx list\n",
1893				sc->tl_unit);
1894				return(1);
1895			}
1896		}
1897		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1898					mtod(m_new, caddr_t));
1899		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1900		m_freem(m_head);
1901		m_head = m_new;
1902		f = &c->tl_ptr->tl_frag[0];
1903		f->tlist_dadr = vtophys(mtod(m_new, caddr_t));
1904		f->tlist_dcnt = total_len = m_new->m_len;
1905		frag = 1;
1906	}
1907
1908	/*
1909	 * Special case #2: the frame is smaller than the minimum
1910	 * frame size. We have to pad it to make the chip happy.
1911	 */
1912	if (total_len < TL_MIN_FRAMELEN) {
1913		if (frag == TL_MAXFRAGS)
1914			printf("tl%d: all frags filled but "
1915				"frame still to small!\n", sc->tl_unit);
1916		f = &c->tl_ptr->tl_frag[frag];
1917		f->tlist_dcnt = TL_MIN_FRAMELEN - total_len;
1918		f->tlist_dadr = vtophys(&sc->tl_ldata->tl_pad);
1919		total_len += f->tlist_dcnt;
1920		frag++;
1921	}
1922
1923	c->tl_mbuf = m_head;
1924	c->tl_ptr->tl_frag[frag - 1].tlist_dcnt |= TL_LAST_FRAG;
1925	c->tl_ptr->tlist_frsize = total_len;
1926	c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1927	c->tl_ptr->tlist_fptr = 0;
1928
1929	return(0);
1930}
1931
1932/*
1933 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1934 * to the mbuf data regions directly in the transmit lists. We also save a
1935 * copy of the pointers since the transmit list fragment pointers are
1936 * physical addresses.
1937 */
1938static void tl_start(ifp)
1939	struct ifnet		*ifp;
1940{
1941	struct tl_softc		*sc;
1942	struct mbuf		*m_head = NULL;
1943	u_int32_t		cmd;
1944	struct tl_chain		*prev = NULL, *cur_tx = NULL, *start_tx;
1945
1946	sc = ifp->if_softc;
1947	TL_LOCK(sc);
1948
1949	/*
1950	 * Check for an available queue slot. If there are none,
1951	 * punt.
1952	 */
1953	if (sc->tl_cdata.tl_tx_free == NULL) {
1954		ifp->if_flags |= IFF_OACTIVE;
1955		TL_UNLOCK(sc);
1956		return;
1957	}
1958
1959	start_tx = sc->tl_cdata.tl_tx_free;
1960
1961	while(sc->tl_cdata.tl_tx_free != NULL) {
1962		IF_DEQUEUE(&ifp->if_snd, m_head);
1963		if (m_head == NULL)
1964			break;
1965
1966		/* Pick a chain member off the free list. */
1967		cur_tx = sc->tl_cdata.tl_tx_free;
1968		sc->tl_cdata.tl_tx_free = cur_tx->tl_next;
1969
1970		cur_tx->tl_next = NULL;
1971
1972		/* Pack the data into the list. */
1973		tl_encap(sc, cur_tx, m_head);
1974
1975		/* Chain it together */
1976		if (prev != NULL) {
1977			prev->tl_next = cur_tx;
1978			prev->tl_ptr->tlist_fptr = vtophys(cur_tx->tl_ptr);
1979		}
1980		prev = cur_tx;
1981
1982		/*
1983		 * If there's a BPF listener, bounce a copy of this frame
1984		 * to him.
1985		 */
1986		if (ifp->if_bpf)
1987			bpf_mtap(ifp, cur_tx->tl_mbuf);
1988	}
1989
1990	/*
1991	 * If there are no packets queued, bail.
1992	 */
1993	if (cur_tx == NULL) {
1994		TL_UNLOCK(sc);
1995		return;
1996	}
1997
1998	/*
1999	 * That's all we can stands, we can't stands no more.
2000	 * If there are no other transfers pending, then issue the
2001	 * TX GO command to the adapter to start things moving.
2002	 * Otherwise, just leave the data in the queue and let
2003	 * the EOF/EOC interrupt handler send.
2004	 */
2005	if (sc->tl_cdata.tl_tx_head == NULL) {
2006		sc->tl_cdata.tl_tx_head = start_tx;
2007		sc->tl_cdata.tl_tx_tail = cur_tx;
2008
2009		if (sc->tl_txeoc) {
2010			sc->tl_txeoc = 0;
2011			CSR_WRITE_4(sc, TL_CH_PARM, vtophys(start_tx->tl_ptr));
2012			cmd = CSR_READ_4(sc, TL_HOSTCMD);
2013			cmd &= ~TL_CMD_RT;
2014			cmd |= TL_CMD_GO|TL_CMD_INTSON;
2015			CMD_PUT(sc, cmd);
2016		}
2017	} else {
2018		sc->tl_cdata.tl_tx_tail->tl_next = start_tx;
2019		sc->tl_cdata.tl_tx_tail = cur_tx;
2020	}
2021
2022	/*
2023	 * Set a timeout in case the chip goes out to lunch.
2024	 */
2025	ifp->if_timer = 5;
2026	TL_UNLOCK(sc);
2027
2028	return;
2029}
2030
2031static void tl_init(xsc)
2032	void			*xsc;
2033{
2034	struct tl_softc		*sc = xsc;
2035	struct ifnet		*ifp = &sc->arpcom.ac_if;
2036	struct mii_data		*mii;
2037
2038	TL_LOCK(sc);
2039
2040	ifp = &sc->arpcom.ac_if;
2041
2042	/*
2043	 * Cancel pending I/O.
2044	 */
2045	tl_stop(sc);
2046
2047	/* Initialize TX FIFO threshold */
2048	tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
2049	tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH_16LONG);
2050
2051        /* Set PCI burst size */
2052	tl_dio_write8(sc, TL_BSIZEREG, TL_RXBURST_16LONG|TL_TXBURST_16LONG);
2053
2054	/*
2055	 * Set 'capture all frames' bit for promiscuous mode.
2056	 */
2057	if (ifp->if_flags & IFF_PROMISC)
2058		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
2059	else
2060		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
2061
2062	/*
2063	 * Set capture broadcast bit to capture broadcast frames.
2064	 */
2065	if (ifp->if_flags & IFF_BROADCAST)
2066		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_NOBRX);
2067	else
2068		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NOBRX);
2069
2070	tl_dio_write16(sc, TL_MAXRX, MCLBYTES);
2071
2072	/* Init our MAC address */
2073	tl_setfilt(sc, (caddr_t)&sc->arpcom.ac_enaddr, 0);
2074
2075	/* Init multicast filter, if needed. */
2076	tl_setmulti(sc);
2077
2078	/* Init circular RX list. */
2079	if (tl_list_rx_init(sc) == ENOBUFS) {
2080		printf("tl%d: initialization failed: no "
2081			"memory for rx buffers\n", sc->tl_unit);
2082		tl_stop(sc);
2083		TL_UNLOCK(sc);
2084		return;
2085	}
2086
2087	/* Init TX pointers. */
2088	tl_list_tx_init(sc);
2089
2090	/* Enable PCI interrupts. */
2091	CMD_SET(sc, TL_CMD_INTSON);
2092
2093	/* Load the address of the rx list */
2094	CMD_SET(sc, TL_CMD_RT);
2095	CSR_WRITE_4(sc, TL_CH_PARM, vtophys(&sc->tl_ldata->tl_rx_list[0]));
2096
2097	if (!sc->tl_bitrate) {
2098		if (sc->tl_miibus != NULL) {
2099			mii = device_get_softc(sc->tl_miibus);
2100			mii_mediachg(mii);
2101		}
2102	}
2103
2104	/* Send the RX go command */
2105	CMD_SET(sc, TL_CMD_GO|TL_CMD_NES|TL_CMD_RT);
2106
2107	ifp->if_flags |= IFF_RUNNING;
2108	ifp->if_flags &= ~IFF_OACTIVE;
2109
2110	/* Start the stats update counter */
2111	sc->tl_stat_ch = timeout(tl_stats_update, sc, hz);
2112	TL_UNLOCK(sc);
2113
2114	return;
2115}
2116
2117/*
2118 * Set media options.
2119 */
2120static int tl_ifmedia_upd(ifp)
2121	struct ifnet		*ifp;
2122{
2123	struct tl_softc		*sc;
2124	struct mii_data		*mii = NULL;
2125
2126	sc = ifp->if_softc;
2127
2128	if (sc->tl_bitrate)
2129		tl_setmode(sc, sc->ifmedia.ifm_media);
2130	else {
2131		mii = device_get_softc(sc->tl_miibus);
2132		mii_mediachg(mii);
2133	}
2134
2135	return(0);
2136}
2137
2138/*
2139 * Report current media status.
2140 */
2141static void tl_ifmedia_sts(ifp, ifmr)
2142	struct ifnet		*ifp;
2143	struct ifmediareq	*ifmr;
2144{
2145	struct tl_softc		*sc;
2146	struct mii_data		*mii;
2147
2148	sc = ifp->if_softc;
2149
2150	ifmr->ifm_active = IFM_ETHER;
2151
2152	if (sc->tl_bitrate) {
2153		if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD1)
2154			ifmr->ifm_active = IFM_ETHER|IFM_10_5;
2155		else
2156			ifmr->ifm_active = IFM_ETHER|IFM_10_T;
2157		if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD3)
2158			ifmr->ifm_active |= IFM_HDX;
2159		else
2160			ifmr->ifm_active |= IFM_FDX;
2161		return;
2162	} else {
2163		mii = device_get_softc(sc->tl_miibus);
2164		mii_pollstat(mii);
2165		ifmr->ifm_active = mii->mii_media_active;
2166		ifmr->ifm_status = mii->mii_media_status;
2167	}
2168
2169	return;
2170}
2171
2172static int tl_ioctl(ifp, command, data)
2173	struct ifnet		*ifp;
2174	u_long			command;
2175	caddr_t			data;
2176{
2177	struct tl_softc		*sc = ifp->if_softc;
2178	struct ifreq		*ifr = (struct ifreq *) data;
2179	int			s, error = 0;
2180
2181	s = splimp();
2182
2183	switch(command) {
2184	case SIOCSIFADDR:
2185	case SIOCGIFADDR:
2186	case SIOCSIFMTU:
2187		error = ether_ioctl(ifp, command, data);
2188		break;
2189	case SIOCSIFFLAGS:
2190		if (ifp->if_flags & IFF_UP) {
2191			if (ifp->if_flags & IFF_RUNNING &&
2192			    ifp->if_flags & IFF_PROMISC &&
2193			    !(sc->tl_if_flags & IFF_PROMISC)) {
2194				tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
2195				tl_setmulti(sc);
2196			} else if (ifp->if_flags & IFF_RUNNING &&
2197			    !(ifp->if_flags & IFF_PROMISC) &&
2198			    sc->tl_if_flags & IFF_PROMISC) {
2199				tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
2200				tl_setmulti(sc);
2201			} else
2202				tl_init(sc);
2203		} else {
2204			if (ifp->if_flags & IFF_RUNNING) {
2205				tl_stop(sc);
2206			}
2207		}
2208		sc->tl_if_flags = ifp->if_flags;
2209		error = 0;
2210		break;
2211	case SIOCADDMULTI:
2212	case SIOCDELMULTI:
2213		tl_setmulti(sc);
2214		error = 0;
2215		break;
2216	case SIOCSIFMEDIA:
2217	case SIOCGIFMEDIA:
2218		if (sc->tl_bitrate)
2219			error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2220		else {
2221			struct mii_data		*mii;
2222			mii = device_get_softc(sc->tl_miibus);
2223			error = ifmedia_ioctl(ifp, ifr,
2224			    &mii->mii_media, command);
2225		}
2226		break;
2227	default:
2228		error = EINVAL;
2229		break;
2230	}
2231
2232	(void)splx(s);
2233
2234	return(error);
2235}
2236
2237static void tl_watchdog(ifp)
2238	struct ifnet		*ifp;
2239{
2240	struct tl_softc		*sc;
2241
2242	sc = ifp->if_softc;
2243
2244	printf("tl%d: device timeout\n", sc->tl_unit);
2245
2246	ifp->if_oerrors++;
2247
2248	tl_softreset(sc, 1);
2249	tl_init(sc);
2250
2251	return;
2252}
2253
2254/*
2255 * Stop the adapter and free any mbufs allocated to the
2256 * RX and TX lists.
2257 */
2258static void tl_stop(sc)
2259	struct tl_softc		*sc;
2260{
2261	register int		i;
2262	struct ifnet		*ifp;
2263
2264	TL_LOCK(sc);
2265
2266	ifp = &sc->arpcom.ac_if;
2267
2268	/* Stop the stats updater. */
2269	untimeout(tl_stats_update, sc, sc->tl_stat_ch);
2270
2271	/* Stop the transmitter */
2272	CMD_CLR(sc, TL_CMD_RT);
2273	CMD_SET(sc, TL_CMD_STOP);
2274	CSR_WRITE_4(sc, TL_CH_PARM, 0);
2275
2276	/* Stop the receiver */
2277	CMD_SET(sc, TL_CMD_RT);
2278	CMD_SET(sc, TL_CMD_STOP);
2279	CSR_WRITE_4(sc, TL_CH_PARM, 0);
2280
2281	/*
2282	 * Disable host interrupts.
2283	 */
2284	CMD_SET(sc, TL_CMD_INTSOFF);
2285
2286	/*
2287	 * Clear list pointer.
2288	 */
2289	CSR_WRITE_4(sc, TL_CH_PARM, 0);
2290
2291	/*
2292	 * Free the RX lists.
2293	 */
2294	for (i = 0; i < TL_RX_LIST_CNT; i++) {
2295		if (sc->tl_cdata.tl_rx_chain[i].tl_mbuf != NULL) {
2296			m_freem(sc->tl_cdata.tl_rx_chain[i].tl_mbuf);
2297			sc->tl_cdata.tl_rx_chain[i].tl_mbuf = NULL;
2298		}
2299	}
2300	bzero((char *)&sc->tl_ldata->tl_rx_list,
2301		sizeof(sc->tl_ldata->tl_rx_list));
2302
2303	/*
2304	 * Free the TX list buffers.
2305	 */
2306	for (i = 0; i < TL_TX_LIST_CNT; i++) {
2307		if (sc->tl_cdata.tl_tx_chain[i].tl_mbuf != NULL) {
2308			m_freem(sc->tl_cdata.tl_tx_chain[i].tl_mbuf);
2309			sc->tl_cdata.tl_tx_chain[i].tl_mbuf = NULL;
2310		}
2311	}
2312	bzero((char *)&sc->tl_ldata->tl_tx_list,
2313		sizeof(sc->tl_ldata->tl_tx_list));
2314
2315	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2316	TL_UNLOCK(sc);
2317
2318	return;
2319}
2320
2321/*
2322 * Stop all chip I/O so that the kernel's probe routines don't
2323 * get confused by errant DMAs when rebooting.
2324 */
2325static void tl_shutdown(dev)
2326	device_t		dev;
2327{
2328	struct tl_softc		*sc;
2329
2330	sc = device_get_softc(dev);
2331
2332	tl_stop(sc);
2333
2334	return;
2335}
2336