if_tl.c revision 87846
1301226Slidl/*
2301226Slidl * Copyright (c) 1997, 1998
3301226Slidl *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4301226Slidl *
5301226Slidl * Redistribution and use in source and binary forms, with or without
6301226Slidl * modification, are permitted provided that the following conditions
7301226Slidl * are met:
8301226Slidl * 1. Redistributions of source code must retain the above copyright
9301226Slidl *    notice, this list of conditions and the following disclaimer.
10301226Slidl * 2. Redistributions in binary form must reproduce the above copyright
11301226Slidl *    notice, this list of conditions and the following disclaimer in the
12301226Slidl *    documentation and/or other materials provided with the distribution.
13301226Slidl * 3. All advertising materials mentioning features or use of this software
14301226Slidl *    must display the following acknowledgement:
15301226Slidl *	This product includes software developed by Bill Paul.
16301226Slidl * 4. Neither the name of the author nor the names of any co-contributors
17301226Slidl *    may be used to endorse or promote products derived from this software
18301226Slidl *    without specific prior written permission.
19301226Slidl *
20301226Slidl * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21301226Slidl * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22301226Slidl * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 *
32 * $FreeBSD: head/sys/pci/if_tl.c 87846 2001-12-14 05:56:35Z luigi $
33 */
34
35/*
36 * Texas Instruments ThunderLAN driver for FreeBSD 2.2.6 and 3.x.
37 * Supports many Compaq PCI NICs based on the ThunderLAN ethernet controller,
38 * the National Semiconductor DP83840A physical interface and the
39 * Microchip Technology 24Cxx series serial EEPROM.
40 *
41 * Written using the following four documents:
42 *
43 * Texas Instruments ThunderLAN Programmer's Guide (www.ti.com)
44 * National Semiconductor DP83840A data sheet (www.national.com)
45 * Microchip Technology 24C02C data sheet (www.microchip.com)
46 * Micro Linear ML6692 100BaseTX only PHY data sheet (www.microlinear.com)
47 *
48 * Written by Bill Paul <wpaul@ctr.columbia.edu>
49 * Electrical Engineering Department
50 * Columbia University, New York City
51 */
52
53/*
54 * Some notes about the ThunderLAN:
55 *
56 * The ThunderLAN controller is a single chip containing PCI controller
57 * logic, approximately 3K of on-board SRAM, a LAN controller, and media
58 * independent interface (MII) bus. The MII allows the ThunderLAN chip to
59 * control up to 32 different physical interfaces (PHYs). The ThunderLAN
60 * also has a built-in 10baseT PHY, allowing a single ThunderLAN controller
61 * to act as a complete ethernet interface.
62 *
63 * Other PHYs may be attached to the ThunderLAN; the Compaq 10/100 cards
64 * use a National Semiconductor DP83840A PHY that supports 10 or 100Mb/sec
65 * in full or half duplex. Some of the Compaq Deskpro machines use a
66 * Level 1 LXT970 PHY with the same capabilities. Certain Olicom adapters
67 * use a Micro Linear ML6692 100BaseTX only PHY, which can be used in
68 * concert with the ThunderLAN's internal PHY to provide full 10/100
69 * support. This is cheaper than using a standalone external PHY for both
70 * 10/100 modes and letting the ThunderLAN's internal PHY go to waste.
71 * A serial EEPROM is also attached to the ThunderLAN chip to provide
72 * power-up default register settings and for storing the adapter's
73 * station address. Although not supported by this driver, the ThunderLAN
74 * chip can also be connected to token ring PHYs.
75 *
76 * The ThunderLAN has a set of registers which can be used to issue
77 * commands, acknowledge interrupts, and to manipulate other internal
78 * registers on its DIO bus. The primary registers can be accessed
79 * using either programmed I/O (inb/outb) or via PCI memory mapping,
80 * depending on how the card is configured during the PCI probing
81 * phase. It is even possible to have both PIO and memory mapped
82 * access turned on at the same time.
83 *
84 * Frame reception and transmission with the ThunderLAN chip is done
85 * using frame 'lists.' A list structure looks more or less like this:
86 *
87 * struct tl_frag {
88 *	u_int32_t		fragment_address;
89 *	u_int32_t		fragment_size;
90 * };
91 * struct tl_list {
92 *	u_int32_t		forward_pointer;
93 *	u_int16_t		cstat;
94 *	u_int16_t		frame_size;
95 *	struct tl_frag		fragments[10];
96 * };
97 *
98 * The forward pointer in the list header can be either a 0 or the address
99 * of another list, which allows several lists to be linked together. Each
100 * list contains up to 10 fragment descriptors. This means the chip allows
101 * ethernet frames to be broken up into up to 10 chunks for transfer to
102 * and from the SRAM. Note that the forward pointer and fragment buffer
103 * addresses are physical memory addresses, not virtual. Note also that
104 * a single ethernet frame can not span lists: if the host wants to
105 * transmit a frame and the frame data is split up over more than 10
106 * buffers, the frame has to collapsed before it can be transmitted.
107 *
108 * To receive frames, the driver sets up a number of lists and populates
109 * the fragment descriptors, then it sends an RX GO command to the chip.
110 * When a frame is received, the chip will DMA it into the memory regions
111 * specified by the fragment descriptors and then trigger an RX 'end of
112 * frame interrupt' when done. The driver may choose to use only one
113 * fragment per list; this may result is slighltly less efficient use
114 * of memory in exchange for improving performance.
115 *
116 * To transmit frames, the driver again sets up lists and fragment
117 * descriptors, only this time the buffers contain frame data that
118 * is to be DMA'ed into the chip instead of out of it. Once the chip
119 * has transfered the data into its on-board SRAM, it will trigger a
120 * TX 'end of frame' interrupt. It will also generate an 'end of channel'
121 * interrupt when it reaches the end of the list.
122 */
123
124/*
125 * Some notes about this driver:
126 *
127 * The ThunderLAN chip provides a couple of different ways to organize
128 * reception, transmission and interrupt handling. The simplest approach
129 * is to use one list each for transmission and reception. In this mode,
130 * the ThunderLAN will generate two interrupts for every received frame
131 * (one RX EOF and one RX EOC) and two for each transmitted frame (one
132 * TX EOF and one TX EOC). This may make the driver simpler but it hurts
133 * performance to have to handle so many interrupts.
134 *
135 * Initially I wanted to create a circular list of receive buffers so
136 * that the ThunderLAN chip would think there was an infinitely long
137 * receive channel and never deliver an RXEOC interrupt. However this
138 * doesn't work correctly under heavy load: while the manual says the
139 * chip will trigger an RXEOF interrupt each time a frame is copied into
140 * memory, you can't count on the chip waiting around for you to acknowledge
141 * the interrupt before it starts trying to DMA the next frame. The result
142 * is that the chip might traverse the entire circular list and then wrap
143 * around before you have a chance to do anything about it. Consequently,
144 * the receive list is terminated (with a 0 in the forward pointer in the
145 * last element). Each time an RXEOF interrupt arrives, the used list
146 * is shifted to the end of the list. This gives the appearance of an
147 * infinitely large RX chain so long as the driver doesn't fall behind
148 * the chip and allow all of the lists to be filled up.
149 *
150 * If all the lists are filled, the adapter will deliver an RX 'end of
151 * channel' interrupt when it hits the 0 forward pointer at the end of
152 * the chain. The RXEOC handler then cleans out the RX chain and resets
153 * the list head pointer in the ch_parm register and restarts the receiver.
154 *
155 * For frame transmission, it is possible to program the ThunderLAN's
156 * transmit interrupt threshold so that the chip can acknowledge multiple
157 * lists with only a single TX EOF interrupt. This allows the driver to
158 * queue several frames in one shot, and only have to handle a total
159 * two interrupts (one TX EOF and one TX EOC) no matter how many frames
160 * are transmitted. Frame transmission is done directly out of the
161 * mbufs passed to the tl_start() routine via the interface send queue.
162 * The driver simply sets up the fragment descriptors in the transmit
163 * lists to point to the mbuf data regions and sends a TX GO command.
164 *
165 * Note that since the RX and TX lists themselves are always used
166 * only by the driver, the are malloc()ed once at driver initialization
167 * time and never free()ed.
168 *
169 * Also, in order to remain as platform independent as possible, this
170 * driver uses memory mapped register access to manipulate the card
171 * as opposed to programmed I/O. This avoids the use of the inb/outb
172 * (and related) instructions which are specific to the i386 platform.
173 *
174 * Using these techniques, this driver achieves very high performance
175 * by minimizing the amount of interrupts generated during large
176 * transfers and by completely avoiding buffer copies. Frame transfer
177 * to and from the ThunderLAN chip is performed entirely by the chip
178 * itself thereby reducing the load on the host CPU.
179 */
180
181#include <sys/param.h>
182#include <sys/systm.h>
183#include <sys/sockio.h>
184#include <sys/mbuf.h>
185#include <sys/malloc.h>
186#include <sys/kernel.h>
187#include <sys/socket.h>
188
189#include <net/if.h>
190#include <net/if_arp.h>
191#include <net/ethernet.h>
192#include <net/if_dl.h>
193#include <net/if_media.h>
194
195#include <net/bpf.h>
196
197#include <vm/vm.h>              /* for vtophys */
198#include <vm/pmap.h>            /* for vtophys */
199#include <machine/bus_memio.h>
200#include <machine/bus_pio.h>
201#include <machine/bus.h>
202#include <machine/resource.h>
203#include <sys/bus.h>
204#include <sys/rman.h>
205
206#include <dev/mii/mii.h>
207#include <dev/mii/miivar.h>
208
209#include <pci/pcireg.h>
210#include <pci/pcivar.h>
211
212/*
213 * Default to using PIO register access mode to pacify certain
214 * laptop docking stations with built-in ThunderLAN chips that
215 * don't seem to handle memory mapped mode properly.
216 */
217#define TL_USEIOSPACE
218
219#include <pci/if_tlreg.h>
220
221MODULE_DEPEND(tl, miibus, 1, 1, 1);
222
223/* "controller miibus0" required.  See GENERIC if you get errors here. */
224#include "miibus_if.h"
225
226#if !defined(lint)
227static const char rcsid[] =
228  "$FreeBSD: head/sys/pci/if_tl.c 87846 2001-12-14 05:56:35Z luigi $";
229#endif
230
231/*
232 * Various supported device vendors/types and their names.
233 */
234
235static struct tl_type tl_devs[] = {
236	{ TI_VENDORID,	TI_DEVICEID_THUNDERLAN,
237		"Texas Instruments ThunderLAN" },
238	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10,
239		"Compaq Netelligent 10" },
240	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100,
241		"Compaq Netelligent 10/100" },
242	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_PROLIANT,
243		"Compaq Netelligent 10/100 Proliant" },
244	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_DUAL,
245		"Compaq Netelligent 10/100 Dual Port" },
246	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_INTEGRATED,
247		"Compaq NetFlex-3/P Integrated" },
248	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P,
249		"Compaq NetFlex-3/P" },
250	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_BNC,
251		"Compaq NetFlex 3/P w/ BNC" },
252	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_EMBEDDED,
253		"Compaq Netelligent 10/100 TX Embedded UTP" },
254	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_T2_UTP_COAX,
255		"Compaq Netelligent 10 T/2 PCI UTP/Coax" },
256	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_TX_UTP,
257		"Compaq Netelligent 10/100 TX UTP" },
258	{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2183,
259		"Olicom OC-2183/2185" },
260	{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2325,
261		"Olicom OC-2325" },
262	{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2326,
263		"Olicom OC-2326 10/100 TX UTP" },
264	{ 0, 0, NULL }
265};
266
267static int tl_probe		__P((device_t));
268static int tl_attach		__P((device_t));
269static int tl_detach		__P((device_t));
270static int tl_intvec_rxeoc	__P((void *, u_int32_t));
271static int tl_intvec_txeoc	__P((void *, u_int32_t));
272static int tl_intvec_txeof	__P((void *, u_int32_t));
273static int tl_intvec_rxeof	__P((void *, u_int32_t));
274static int tl_intvec_adchk	__P((void *, u_int32_t));
275static int tl_intvec_netsts	__P((void *, u_int32_t));
276
277static int tl_newbuf		__P((struct tl_softc *,
278					struct tl_chain_onefrag *));
279static void tl_stats_update	__P((void *));
280static int tl_encap		__P((struct tl_softc *, struct tl_chain *,
281						struct mbuf *));
282
283static void tl_intr		__P((void *));
284static void tl_start		__P((struct ifnet *));
285static int tl_ioctl		__P((struct ifnet *, u_long, caddr_t));
286static void tl_init		__P((void *));
287static void tl_stop		__P((struct tl_softc *));
288static void tl_watchdog		__P((struct ifnet *));
289static void tl_shutdown		__P((device_t));
290static int tl_ifmedia_upd	__P((struct ifnet *));
291static void tl_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
292
293static u_int8_t tl_eeprom_putbyte	__P((struct tl_softc *, int));
294static u_int8_t	tl_eeprom_getbyte	__P((struct tl_softc *,
295						int, u_int8_t *));
296static int tl_read_eeprom	__P((struct tl_softc *, caddr_t, int, int));
297
298static void tl_mii_sync		__P((struct tl_softc *));
299static void tl_mii_send		__P((struct tl_softc *, u_int32_t, int));
300static int tl_mii_readreg	__P((struct tl_softc *, struct tl_mii_frame *));
301static int tl_mii_writereg	__P((struct tl_softc *, struct tl_mii_frame *));
302static int tl_miibus_readreg	__P((device_t, int, int));
303static int tl_miibus_writereg	__P((device_t, int, int, int));
304static void tl_miibus_statchg	__P((device_t));
305
306static void tl_setmode		__P((struct tl_softc *, int));
307static int tl_calchash		__P((caddr_t));
308static void tl_setmulti		__P((struct tl_softc *));
309static void tl_setfilt		__P((struct tl_softc *, caddr_t, int));
310static void tl_softreset	__P((struct tl_softc *, int));
311static void tl_hardreset	__P((device_t));
312static int tl_list_rx_init	__P((struct tl_softc *));
313static int tl_list_tx_init	__P((struct tl_softc *));
314
315static u_int8_t tl_dio_read8	__P((struct tl_softc *, int));
316static u_int16_t tl_dio_read16	__P((struct tl_softc *, int));
317static u_int32_t tl_dio_read32	__P((struct tl_softc *, int));
318static void tl_dio_write8	__P((struct tl_softc *, int, int));
319static void tl_dio_write16	__P((struct tl_softc *, int, int));
320static void tl_dio_write32	__P((struct tl_softc *, int, int));
321static void tl_dio_setbit	__P((struct tl_softc *, int, int));
322static void tl_dio_clrbit	__P((struct tl_softc *, int, int));
323static void tl_dio_setbit16	__P((struct tl_softc *, int, int));
324static void tl_dio_clrbit16	__P((struct tl_softc *, int, int));
325
326#ifdef TL_USEIOSPACE
327#define TL_RES		SYS_RES_IOPORT
328#define TL_RID		TL_PCI_LOIO
329#else
330#define TL_RES		SYS_RES_MEMORY
331#define TL_RID		TL_PCI_LOMEM
332#endif
333
334static device_method_t tl_methods[] = {
335	/* Device interface */
336	DEVMETHOD(device_probe,		tl_probe),
337	DEVMETHOD(device_attach,	tl_attach),
338	DEVMETHOD(device_detach,	tl_detach),
339	DEVMETHOD(device_shutdown,	tl_shutdown),
340
341	/* bus interface */
342	DEVMETHOD(bus_print_child,	bus_generic_print_child),
343	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
344
345	/* MII interface */
346	DEVMETHOD(miibus_readreg,	tl_miibus_readreg),
347	DEVMETHOD(miibus_writereg,	tl_miibus_writereg),
348	DEVMETHOD(miibus_statchg,	tl_miibus_statchg),
349
350	{ 0, 0 }
351};
352
353static driver_t tl_driver = {
354	"tl",
355	tl_methods,
356	sizeof(struct tl_softc)
357};
358
359static devclass_t tl_devclass;
360
361DRIVER_MODULE(if_tl, pci, tl_driver, tl_devclass, 0, 0);
362DRIVER_MODULE(miibus, tl, miibus_driver, miibus_devclass, 0, 0);
363
364static u_int8_t tl_dio_read8(sc, reg)
365	struct tl_softc		*sc;
366	int			reg;
367{
368	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
369	return(CSR_READ_1(sc, TL_DIO_DATA + (reg & 3)));
370}
371
372static u_int16_t tl_dio_read16(sc, reg)
373	struct tl_softc		*sc;
374	int			reg;
375{
376	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
377	return(CSR_READ_2(sc, TL_DIO_DATA + (reg & 3)));
378}
379
380static u_int32_t tl_dio_read32(sc, reg)
381	struct tl_softc		*sc;
382	int			reg;
383{
384	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
385	return(CSR_READ_4(sc, TL_DIO_DATA + (reg & 3)));
386}
387
388static void tl_dio_write8(sc, reg, val)
389	struct tl_softc		*sc;
390	int			reg;
391	int			val;
392{
393	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
394	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), val);
395	return;
396}
397
398static void tl_dio_write16(sc, reg, val)
399	struct tl_softc		*sc;
400	int			reg;
401	int			val;
402{
403	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
404	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), val);
405	return;
406}
407
408static void tl_dio_write32(sc, reg, val)
409	struct tl_softc		*sc;
410	int			reg;
411	int			val;
412{
413	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
414	CSR_WRITE_4(sc, TL_DIO_DATA + (reg & 3), val);
415	return;
416}
417
418static void tl_dio_setbit(sc, reg, bit)
419	struct tl_softc		*sc;
420	int			reg;
421	int			bit;
422{
423	u_int8_t			f;
424
425	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
426	f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
427	f |= bit;
428	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
429
430	return;
431}
432
433static void tl_dio_clrbit(sc, reg, bit)
434	struct tl_softc		*sc;
435	int			reg;
436	int			bit;
437{
438	u_int8_t			f;
439
440	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
441	f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
442	f &= ~bit;
443	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
444
445	return;
446}
447
448static void tl_dio_setbit16(sc, reg, bit)
449	struct tl_softc		*sc;
450	int			reg;
451	int			bit;
452{
453	u_int16_t			f;
454
455	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
456	f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
457	f |= bit;
458	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
459
460	return;
461}
462
463static void tl_dio_clrbit16(sc, reg, bit)
464	struct tl_softc		*sc;
465	int			reg;
466	int			bit;
467{
468	u_int16_t			f;
469
470	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
471	f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
472	f &= ~bit;
473	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
474
475	return;
476}
477
478/*
479 * Send an instruction or address to the EEPROM, check for ACK.
480 */
481static u_int8_t tl_eeprom_putbyte(sc, byte)
482	struct tl_softc		*sc;
483	int			byte;
484{
485	register int		i, ack = 0;
486
487	/*
488	 * Make sure we're in TX mode.
489	 */
490	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ETXEN);
491
492	/*
493	 * Feed in each bit and stobe the clock.
494	 */
495	for (i = 0x80; i; i >>= 1) {
496		if (byte & i) {
497			tl_dio_setbit(sc, TL_NETSIO, TL_SIO_EDATA);
498		} else {
499			tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_EDATA);
500		}
501		DELAY(1);
502		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
503		DELAY(1);
504		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
505	}
506
507	/*
508	 * Turn off TX mode.
509	 */
510	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
511
512	/*
513	 * Check for ack.
514	 */
515	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
516	ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA;
517	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
518
519	return(ack);
520}
521
522/*
523 * Read a byte of data stored in the EEPROM at address 'addr.'
524 */
525static u_int8_t tl_eeprom_getbyte(sc, addr, dest)
526	struct tl_softc		*sc;
527	int			addr;
528	u_int8_t		*dest;
529{
530	register int		i;
531	u_int8_t		byte = 0;
532
533	tl_dio_write8(sc, TL_NETSIO, 0);
534
535	EEPROM_START;
536
537	/*
538	 * Send write control code to EEPROM.
539	 */
540	if (tl_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
541		printf("tl%d: failed to send write command, status: %x\n",
542				sc->tl_unit, tl_dio_read8(sc, TL_NETSIO));
543		return(1);
544	}
545
546	/*
547	 * Send address of byte we want to read.
548	 */
549	if (tl_eeprom_putbyte(sc, addr)) {
550		printf("tl%d: failed to send address, status: %x\n",
551				sc->tl_unit, tl_dio_read8(sc, TL_NETSIO));
552		return(1);
553	}
554
555	EEPROM_STOP;
556	EEPROM_START;
557	/*
558	 * Send read control code to EEPROM.
559	 */
560	if (tl_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
561		printf("tl%d: failed to send write command, status: %x\n",
562				sc->tl_unit, tl_dio_read8(sc, TL_NETSIO));
563		return(1);
564	}
565
566	/*
567	 * Start reading bits from EEPROM.
568	 */
569	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
570	for (i = 0x80; i; i >>= 1) {
571		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
572		DELAY(1);
573		if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA)
574			byte |= i;
575		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
576		DELAY(1);
577	}
578
579	EEPROM_STOP;
580
581	/*
582	 * No ACK generated for read, so just return byte.
583	 */
584
585	*dest = byte;
586
587	return(0);
588}
589
590/*
591 * Read a sequence of bytes from the EEPROM.
592 */
593static int tl_read_eeprom(sc, dest, off, cnt)
594	struct tl_softc		*sc;
595	caddr_t			dest;
596	int			off;
597	int			cnt;
598{
599	int			err = 0, i;
600	u_int8_t		byte = 0;
601
602	for (i = 0; i < cnt; i++) {
603		err = tl_eeprom_getbyte(sc, off + i, &byte);
604		if (err)
605			break;
606		*(dest + i) = byte;
607	}
608
609	return(err ? 1 : 0);
610}
611
612static void tl_mii_sync(sc)
613	struct tl_softc		*sc;
614{
615	register int		i;
616
617	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
618
619	for (i = 0; i < 32; i++) {
620		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
621		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
622	}
623
624	return;
625}
626
627static void tl_mii_send(sc, bits, cnt)
628	struct tl_softc		*sc;
629	u_int32_t		bits;
630	int			cnt;
631{
632	int			i;
633
634	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
635		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
636		if (bits & i) {
637			tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MDATA);
638		} else {
639			tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MDATA);
640		}
641		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
642	}
643}
644
645static int tl_mii_readreg(sc, frame)
646	struct tl_softc		*sc;
647	struct tl_mii_frame	*frame;
648
649{
650	int			i, ack;
651	int			minten = 0;
652
653	TL_LOCK(sc);
654
655	tl_mii_sync(sc);
656
657	/*
658	 * Set up frame for RX.
659	 */
660	frame->mii_stdelim = TL_MII_STARTDELIM;
661	frame->mii_opcode = TL_MII_READOP;
662	frame->mii_turnaround = 0;
663	frame->mii_data = 0;
664
665	/*
666	 * Turn off MII interrupt by forcing MINTEN low.
667	 */
668	minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
669	if (minten) {
670		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
671	}
672
673	/*
674 	 * Turn on data xmit.
675	 */
676	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
677
678	/*
679	 * Send command/address info.
680	 */
681	tl_mii_send(sc, frame->mii_stdelim, 2);
682	tl_mii_send(sc, frame->mii_opcode, 2);
683	tl_mii_send(sc, frame->mii_phyaddr, 5);
684	tl_mii_send(sc, frame->mii_regaddr, 5);
685
686	/*
687	 * Turn off xmit.
688	 */
689	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
690
691	/* Idle bit */
692	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
693	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
694
695	/* Check for ack */
696	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
697	ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA;
698
699	/* Complete the cycle */
700	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
701
702	/*
703	 * Now try reading data bits. If the ack failed, we still
704	 * need to clock through 16 cycles to keep the PHYs in sync.
705	 */
706	if (ack) {
707		for(i = 0; i < 16; i++) {
708			tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
709			tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
710		}
711		goto fail;
712	}
713
714	for (i = 0x8000; i; i >>= 1) {
715		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
716		if (!ack) {
717			if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA)
718				frame->mii_data |= i;
719		}
720		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
721	}
722
723fail:
724
725	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
726	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
727
728	/* Reenable interrupts */
729	if (minten) {
730		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
731	}
732
733	TL_UNLOCK(sc);
734
735	if (ack)
736		return(1);
737	return(0);
738}
739
740static int tl_mii_writereg(sc, frame)
741	struct tl_softc		*sc;
742	struct tl_mii_frame	*frame;
743
744{
745	int			minten;
746
747	TL_LOCK(sc);
748
749	tl_mii_sync(sc);
750
751	/*
752	 * Set up frame for TX.
753	 */
754
755	frame->mii_stdelim = TL_MII_STARTDELIM;
756	frame->mii_opcode = TL_MII_WRITEOP;
757	frame->mii_turnaround = TL_MII_TURNAROUND;
758
759	/*
760	 * Turn off MII interrupt by forcing MINTEN low.
761	 */
762	minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
763	if (minten) {
764		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
765	}
766
767	/*
768 	 * Turn on data output.
769	 */
770	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
771
772	tl_mii_send(sc, frame->mii_stdelim, 2);
773	tl_mii_send(sc, frame->mii_opcode, 2);
774	tl_mii_send(sc, frame->mii_phyaddr, 5);
775	tl_mii_send(sc, frame->mii_regaddr, 5);
776	tl_mii_send(sc, frame->mii_turnaround, 2);
777	tl_mii_send(sc, frame->mii_data, 16);
778
779	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
780	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
781
782	/*
783	 * Turn off xmit.
784	 */
785	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
786
787	/* Reenable interrupts */
788	if (minten)
789		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
790
791	TL_UNLOCK(sc);
792
793	return(0);
794}
795
796static int tl_miibus_readreg(dev, phy, reg)
797	device_t		dev;
798	int			phy, reg;
799{
800	struct tl_softc		*sc;
801	struct tl_mii_frame	frame;
802
803	sc = device_get_softc(dev);
804	bzero((char *)&frame, sizeof(frame));
805
806	frame.mii_phyaddr = phy;
807	frame.mii_regaddr = reg;
808	tl_mii_readreg(sc, &frame);
809
810	return(frame.mii_data);
811}
812
813static int tl_miibus_writereg(dev, phy, reg, data)
814	device_t		dev;
815	int			phy, reg, data;
816{
817	struct tl_softc		*sc;
818	struct tl_mii_frame	frame;
819
820	sc = device_get_softc(dev);
821	bzero((char *)&frame, sizeof(frame));
822
823	frame.mii_phyaddr = phy;
824	frame.mii_regaddr = reg;
825	frame.mii_data = data;
826
827	tl_mii_writereg(sc, &frame);
828
829	return(0);
830}
831
832static void tl_miibus_statchg(dev)
833	device_t		dev;
834{
835	struct tl_softc		*sc;
836	struct mii_data		*mii;
837
838	sc = device_get_softc(dev);
839	TL_LOCK(sc);
840	mii = device_get_softc(sc->tl_miibus);
841
842	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
843		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
844	} else {
845		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
846	}
847	TL_UNLOCK(sc);
848
849	return;
850}
851
852/*
853 * Set modes for bitrate devices.
854 */
855static void tl_setmode(sc, media)
856	struct tl_softc		*sc;
857	int			media;
858{
859	if (IFM_SUBTYPE(media) == IFM_10_5)
860		tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
861	if (IFM_SUBTYPE(media) == IFM_10_T) {
862		tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
863		if ((media & IFM_GMASK) == IFM_FDX) {
864			tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
865			tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
866		} else {
867			tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
868			tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
869		}
870	}
871
872	return;
873}
874
875/*
876 * Calculate the hash of a MAC address for programming the multicast hash
877 * table.  This hash is simply the address split into 6-bit chunks
878 * XOR'd, e.g.
879 * byte: 000000|00 1111|1111 22|222222|333333|33 4444|4444 55|555555
880 * bit:  765432|10 7654|3210 76|543210|765432|10 7654|3210 76|543210
881 * Bytes 0-2 and 3-5 are symmetrical, so are folded together.  Then
882 * the folded 24-bit value is split into 6-bit portions and XOR'd.
883 */
884static int tl_calchash(addr)
885	caddr_t			addr;
886{
887	int			t;
888
889	t = (addr[0] ^ addr[3]) << 16 | (addr[1] ^ addr[4]) << 8 |
890		(addr[2] ^ addr[5]);
891	return ((t >> 18) ^ (t >> 12) ^ (t >> 6) ^ t) & 0x3f;
892}
893
894/*
895 * The ThunderLAN has a perfect MAC address filter in addition to
896 * the multicast hash filter. The perfect filter can be programmed
897 * with up to four MAC addresses. The first one is always used to
898 * hold the station address, which leaves us free to use the other
899 * three for multicast addresses.
900 */
901static void tl_setfilt(sc, addr, slot)
902	struct tl_softc		*sc;
903	caddr_t			addr;
904	int			slot;
905{
906	int			i;
907	u_int16_t		regaddr;
908
909	regaddr = TL_AREG0_B5 + (slot * ETHER_ADDR_LEN);
910
911	for (i = 0; i < ETHER_ADDR_LEN; i++)
912		tl_dio_write8(sc, regaddr + i, *(addr + i));
913
914	return;
915}
916
917/*
918 * XXX In FreeBSD 3.0, multicast addresses are managed using a doubly
919 * linked list. This is fine, except addresses are added from the head
920 * end of the list. We want to arrange for 224.0.0.1 (the "all hosts")
921 * group to always be in the perfect filter, but as more groups are added,
922 * the 224.0.0.1 entry (which is always added first) gets pushed down
923 * the list and ends up at the tail. So after 3 or 4 multicast groups
924 * are added, the all-hosts entry gets pushed out of the perfect filter
925 * and into the hash table.
926 *
927 * Because the multicast list is a doubly-linked list as opposed to a
928 * circular queue, we don't have the ability to just grab the tail of
929 * the list and traverse it backwards. Instead, we have to traverse
930 * the list once to find the tail, then traverse it again backwards to
931 * update the multicast filter.
932 */
933static void tl_setmulti(sc)
934	struct tl_softc		*sc;
935{
936	struct ifnet		*ifp;
937	u_int32_t		hashes[2] = { 0, 0 };
938	int			h, i;
939	struct ifmultiaddr	*ifma;
940	u_int8_t		dummy[] = { 0, 0, 0, 0, 0 ,0 };
941	ifp = &sc->arpcom.ac_if;
942
943	/* First, zot all the existing filters. */
944	for (i = 1; i < 4; i++)
945		tl_setfilt(sc, (caddr_t)&dummy, i);
946	tl_dio_write32(sc, TL_HASH1, 0);
947	tl_dio_write32(sc, TL_HASH2, 0);
948
949	/* Now program new ones. */
950	if (ifp->if_flags & IFF_ALLMULTI) {
951		hashes[0] = 0xFFFFFFFF;
952		hashes[1] = 0xFFFFFFFF;
953	} else {
954		i = 1;
955		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
956			if (ifma->ifma_addr->sa_family != AF_LINK)
957				continue;
958			/*
959			 * Program the first three multicast groups
960			 * into the perfect filter. For all others,
961			 * use the hash table.
962			 */
963			if (i < 4) {
964				tl_setfilt(sc,
965			LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
966				i++;
967				continue;
968			}
969
970			h = tl_calchash(
971				LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
972			if (h < 32)
973				hashes[0] |= (1 << h);
974			else
975				hashes[1] |= (1 << (h - 32));
976		}
977	}
978
979	tl_dio_write32(sc, TL_HASH1, hashes[0]);
980	tl_dio_write32(sc, TL_HASH2, hashes[1]);
981
982	return;
983}
984
985/*
986 * This routine is recommended by the ThunderLAN manual to insure that
987 * the internal PHY is powered up correctly. It also recommends a one
988 * second pause at the end to 'wait for the clocks to start' but in my
989 * experience this isn't necessary.
990 */
991static void tl_hardreset(dev)
992	device_t		dev;
993{
994	struct tl_softc		*sc;
995	int			i;
996	u_int16_t		flags;
997
998	sc = device_get_softc(dev);
999
1000	tl_mii_sync(sc);
1001
1002	flags = BMCR_LOOP|BMCR_ISO|BMCR_PDOWN;
1003
1004	for (i = 0; i < MII_NPHY; i++)
1005		tl_miibus_writereg(dev, i, MII_BMCR, flags);
1006
1007	tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_ISO);
1008	DELAY(50000);
1009	tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_LOOP|BMCR_ISO);
1010	tl_mii_sync(sc);
1011	while(tl_miibus_readreg(dev, 31, MII_BMCR) & BMCR_RESET);
1012
1013	DELAY(50000);
1014	return;
1015}
1016
1017static void tl_softreset(sc, internal)
1018	struct tl_softc		*sc;
1019	int			internal;
1020{
1021        u_int32_t               cmd, dummy, i;
1022
1023        /* Assert the adapter reset bit. */
1024	CMD_SET(sc, TL_CMD_ADRST);
1025
1026        /* Turn off interrupts */
1027	CMD_SET(sc, TL_CMD_INTSOFF);
1028
1029	/* First, clear the stats registers. */
1030	for (i = 0; i < 5; i++)
1031		dummy = tl_dio_read32(sc, TL_TXGOODFRAMES);
1032
1033        /* Clear Areg and Hash registers */
1034	for (i = 0; i < 8; i++)
1035		tl_dio_write32(sc, TL_AREG0_B5, 0x00000000);
1036
1037        /*
1038	 * Set up Netconfig register. Enable one channel and
1039	 * one fragment mode.
1040	 */
1041	tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_ONECHAN|TL_CFG_ONEFRAG);
1042	if (internal && !sc->tl_bitrate) {
1043		tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
1044	} else {
1045		tl_dio_clrbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
1046	}
1047
1048	/* Handle cards with bitrate devices. */
1049	if (sc->tl_bitrate)
1050		tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_BITRATE);
1051
1052	/*
1053	 * Load adapter irq pacing timer and tx threshold.
1054	 * We make the transmit threshold 1 initially but we may
1055	 * change that later.
1056	 */
1057	cmd = CSR_READ_4(sc, TL_HOSTCMD);
1058	cmd |= TL_CMD_NES;
1059	cmd &= ~(TL_CMD_RT|TL_CMD_EOC|TL_CMD_ACK_MASK|TL_CMD_CHSEL_MASK);
1060	CMD_PUT(sc, cmd | (TL_CMD_LDTHR | TX_THR));
1061	CMD_PUT(sc, cmd | (TL_CMD_LDTMR | 0x00000003));
1062
1063        /* Unreset the MII */
1064	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_NMRST);
1065
1066	/* Take the adapter out of reset */
1067	tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NRESET|TL_CMD_NWRAP);
1068
1069	/* Wait for things to settle down a little. */
1070	DELAY(500);
1071
1072        return;
1073}
1074
1075/*
1076 * Probe for a ThunderLAN chip. Check the PCI vendor and device IDs
1077 * against our list and return its name if we find a match.
1078 */
1079static int tl_probe(dev)
1080	device_t		dev;
1081{
1082	struct tl_type		*t;
1083
1084	t = tl_devs;
1085
1086	while(t->tl_name != NULL) {
1087		if ((pci_get_vendor(dev) == t->tl_vid) &&
1088		    (pci_get_device(dev) == t->tl_did)) {
1089			device_set_desc(dev, t->tl_name);
1090			return(0);
1091		}
1092		t++;
1093	}
1094
1095	return(ENXIO);
1096}
1097
1098static int tl_attach(dev)
1099	device_t		dev;
1100{
1101	int			i;
1102	u_int32_t		command;
1103	u_int16_t		did, vid;
1104	struct tl_type		*t;
1105	struct ifnet		*ifp;
1106	struct tl_softc		*sc;
1107	int			unit, error = 0, rid;
1108
1109	vid = pci_get_vendor(dev);
1110	did = pci_get_device(dev);
1111	sc = device_get_softc(dev);
1112	unit = device_get_unit(dev);
1113	bzero(sc, sizeof(struct tl_softc));
1114
1115	t = tl_devs;
1116	while(t->tl_name != NULL) {
1117		if (vid == t->tl_vid && did == t->tl_did)
1118			break;
1119		t++;
1120	}
1121
1122	if (t->tl_name == NULL) {
1123		printf("tl%d: unknown device!?\n", unit);
1124		goto fail;
1125	}
1126
1127	mtx_init(&sc->tl_mtx, device_get_nameunit(dev), MTX_DEF | MTX_RECURSE);
1128	TL_LOCK(sc);
1129
1130	/*
1131	 * Map control/status registers.
1132	 */
1133	pci_enable_busmaster(dev);
1134	pci_enable_io(dev, SYS_RES_IOPORT);
1135	pci_enable_io(dev, SYS_RES_MEMORY);
1136	command = pci_read_config(dev, PCIR_COMMAND, 4);
1137
1138#ifdef TL_USEIOSPACE
1139	if (!(command & PCIM_CMD_PORTEN)) {
1140		printf("tl%d: failed to enable I/O ports!\n", unit);
1141		error = ENXIO;
1142		goto fail;
1143	}
1144
1145	rid = TL_PCI_LOIO;
1146	sc->tl_res = bus_alloc_resource(dev, SYS_RES_IOPORT, &rid,
1147		0, ~0, 1, RF_ACTIVE);
1148
1149	/*
1150	 * Some cards have the I/O and memory mapped address registers
1151	 * reversed. Try both combinations before giving up.
1152	 */
1153	if (sc->tl_res == NULL) {
1154		rid = TL_PCI_LOMEM;
1155		sc->tl_res = bus_alloc_resource(dev, SYS_RES_IOPORT, &rid,
1156		    0, ~0, 1, RF_ACTIVE);
1157	}
1158#else
1159	if (!(command & PCIM_CMD_MEMEN)) {
1160		printf("tl%d: failed to enable memory mapping!\n", unit);
1161		error = ENXIO;
1162		goto fail;
1163	}
1164
1165	rid = TL_PCI_LOMEM;
1166	sc->tl_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
1167	    0, ~0, 1, RF_ACTIVE);
1168	if (sc->tl_res == NULL) {
1169		rid = TL_PCI_LOIO;
1170		sc->tl_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
1171		    0, ~0, 1, RF_ACTIVE);
1172	}
1173#endif
1174
1175	if (sc->tl_res == NULL) {
1176		printf("tl%d: couldn't map ports/memory\n", unit);
1177		error = ENXIO;
1178		goto fail;
1179	}
1180
1181	sc->tl_btag = rman_get_bustag(sc->tl_res);
1182	sc->tl_bhandle = rman_get_bushandle(sc->tl_res);
1183
1184#ifdef notdef
1185	/*
1186	 * The ThunderLAN manual suggests jacking the PCI latency
1187	 * timer all the way up to its maximum value. I'm not sure
1188	 * if this is really necessary, but what the manual wants,
1189	 * the manual gets.
1190	 */
1191	command = pci_read_config(dev, TL_PCI_LATENCY_TIMER, 4);
1192	command |= 0x0000FF00;
1193	pci_write_config(dev, TL_PCI_LATENCY_TIMER, command, 4);
1194#endif
1195
1196	/* Allocate interrupt */
1197	rid = 0;
1198	sc->tl_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1199	    RF_SHAREABLE | RF_ACTIVE);
1200
1201	if (sc->tl_irq == NULL) {
1202		bus_release_resource(dev, TL_RES, TL_RID, sc->tl_res);
1203		printf("tl%d: couldn't map interrupt\n", unit);
1204		error = ENXIO;
1205		goto fail;
1206	}
1207
1208	error = bus_setup_intr(dev, sc->tl_irq, INTR_TYPE_NET,
1209	    tl_intr, sc, &sc->tl_intrhand);
1210
1211	if (error) {
1212		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->tl_irq);
1213		bus_release_resource(dev, TL_RES, TL_RID, sc->tl_res);
1214		printf("tl%d: couldn't set up irq\n", unit);
1215		goto fail;
1216	}
1217
1218	/*
1219	 * Now allocate memory for the TX and RX lists.
1220	 */
1221	sc->tl_ldata = contigmalloc(sizeof(struct tl_list_data), M_DEVBUF,
1222	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1223
1224	if (sc->tl_ldata == NULL) {
1225		bus_teardown_intr(dev, sc->tl_irq, sc->tl_intrhand);
1226		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->tl_irq);
1227		bus_release_resource(dev, TL_RES, TL_RID, sc->tl_res);
1228		printf("tl%d: no memory for list buffers!\n", unit);
1229		error = ENXIO;
1230		goto fail;
1231	}
1232
1233	bzero(sc->tl_ldata, sizeof(struct tl_list_data));
1234
1235	sc->tl_unit = unit;
1236	sc->tl_dinfo = t;
1237	if (t->tl_vid == COMPAQ_VENDORID || t->tl_vid == TI_VENDORID)
1238		sc->tl_eeaddr = TL_EEPROM_EADDR;
1239	if (t->tl_vid == OLICOM_VENDORID)
1240		sc->tl_eeaddr = TL_EEPROM_EADDR_OC;
1241
1242	/* Reset the adapter. */
1243	tl_softreset(sc, 1);
1244	tl_hardreset(dev);
1245	tl_softreset(sc, 1);
1246
1247	/*
1248	 * Get station address from the EEPROM.
1249	 */
1250	if (tl_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1251				sc->tl_eeaddr, ETHER_ADDR_LEN)) {
1252		bus_teardown_intr(dev, sc->tl_irq, sc->tl_intrhand);
1253		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->tl_irq);
1254		bus_release_resource(dev, TL_RES, TL_RID, sc->tl_res);
1255		contigfree(sc->tl_ldata,
1256		    sizeof(struct tl_list_data), M_DEVBUF);
1257		printf("tl%d: failed to read station address\n", unit);
1258		error = ENXIO;
1259		goto fail;
1260	}
1261
1262        /*
1263         * XXX Olicom, in its desire to be different from the
1264         * rest of the world, has done strange things with the
1265         * encoding of the station address in the EEPROM. First
1266         * of all, they store the address at offset 0xF8 rather
1267         * than at 0x83 like the ThunderLAN manual suggests.
1268         * Second, they store the address in three 16-bit words in
1269         * network byte order, as opposed to storing it sequentially
1270         * like all the other ThunderLAN cards. In order to get
1271         * the station address in a form that matches what the Olicom
1272         * diagnostic utility specifies, we have to byte-swap each
1273         * word. To make things even more confusing, neither 00:00:28
1274         * nor 00:00:24 appear in the IEEE OUI database.
1275         */
1276        if (sc->tl_dinfo->tl_vid == OLICOM_VENDORID) {
1277                for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
1278                        u_int16_t               *p;
1279                        p = (u_int16_t *)&sc->arpcom.ac_enaddr[i];
1280                        *p = ntohs(*p);
1281                }
1282        }
1283
1284	/*
1285	 * A ThunderLAN chip was detected. Inform the world.
1286	 */
1287	printf("tl%d: Ethernet address: %6D\n", unit,
1288				sc->arpcom.ac_enaddr, ":");
1289
1290	ifp = &sc->arpcom.ac_if;
1291	ifp->if_softc = sc;
1292	ifp->if_unit = sc->tl_unit;
1293	ifp->if_name = "tl";
1294	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1295	ifp->if_ioctl = tl_ioctl;
1296	ifp->if_output = ether_output;
1297	ifp->if_start = tl_start;
1298	ifp->if_watchdog = tl_watchdog;
1299	ifp->if_init = tl_init;
1300	ifp->if_mtu = ETHERMTU;
1301	ifp->if_snd.ifq_maxlen = TL_TX_LIST_CNT - 1;
1302	callout_handle_init(&sc->tl_stat_ch);
1303
1304	/* Reset the adapter again. */
1305	tl_softreset(sc, 1);
1306	tl_hardreset(dev);
1307	tl_softreset(sc, 1);
1308
1309	/*
1310	 * Do MII setup. If no PHYs are found, then this is a
1311	 * bitrate ThunderLAN chip that only supports 10baseT
1312	 * and AUI/BNC.
1313	 */
1314	if (mii_phy_probe(dev, &sc->tl_miibus,
1315	    tl_ifmedia_upd, tl_ifmedia_sts)) {
1316		struct ifmedia		*ifm;
1317		sc->tl_bitrate = 1;
1318		ifmedia_init(&sc->ifmedia, 0, tl_ifmedia_upd, tl_ifmedia_sts);
1319		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1320		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
1321		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1322		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_5, 0, NULL);
1323		ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_10_T);
1324		/* Reset again, this time setting bitrate mode. */
1325		tl_softreset(sc, 1);
1326		ifm = &sc->ifmedia;
1327		ifm->ifm_media = ifm->ifm_cur->ifm_media;
1328		tl_ifmedia_upd(ifp);
1329	}
1330
1331	/*
1332	 * Call MI attach routine.
1333	 */
1334	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
1335	TL_UNLOCK(sc);
1336	return(0);
1337
1338fail:
1339	TL_UNLOCK(sc);
1340	mtx_destroy(&sc->tl_mtx);
1341	return(error);
1342}
1343
1344static int tl_detach(dev)
1345	device_t		dev;
1346{
1347	struct tl_softc		*sc;
1348	struct ifnet		*ifp;
1349
1350	sc = device_get_softc(dev);
1351	TL_LOCK(sc);
1352	ifp = &sc->arpcom.ac_if;
1353
1354	tl_stop(sc);
1355	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
1356
1357	bus_generic_detach(dev);
1358	device_delete_child(dev, sc->tl_miibus);
1359
1360	contigfree(sc->tl_ldata, sizeof(struct tl_list_data), M_DEVBUF);
1361	if (sc->tl_bitrate)
1362		ifmedia_removeall(&sc->ifmedia);
1363
1364	bus_teardown_intr(dev, sc->tl_irq, sc->tl_intrhand);
1365	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->tl_irq);
1366	bus_release_resource(dev, TL_RES, TL_RID, sc->tl_res);
1367
1368	TL_UNLOCK(sc);
1369	mtx_destroy(&sc->tl_mtx);
1370
1371	return(0);
1372}
1373
1374/*
1375 * Initialize the transmit lists.
1376 */
1377static int tl_list_tx_init(sc)
1378	struct tl_softc		*sc;
1379{
1380	struct tl_chain_data	*cd;
1381	struct tl_list_data	*ld;
1382	int			i;
1383
1384	cd = &sc->tl_cdata;
1385	ld = sc->tl_ldata;
1386	for (i = 0; i < TL_TX_LIST_CNT; i++) {
1387		cd->tl_tx_chain[i].tl_ptr = &ld->tl_tx_list[i];
1388		if (i == (TL_TX_LIST_CNT - 1))
1389			cd->tl_tx_chain[i].tl_next = NULL;
1390		else
1391			cd->tl_tx_chain[i].tl_next = &cd->tl_tx_chain[i + 1];
1392	}
1393
1394	cd->tl_tx_free = &cd->tl_tx_chain[0];
1395	cd->tl_tx_tail = cd->tl_tx_head = NULL;
1396	sc->tl_txeoc = 1;
1397
1398	return(0);
1399}
1400
1401/*
1402 * Initialize the RX lists and allocate mbufs for them.
1403 */
1404static int tl_list_rx_init(sc)
1405	struct tl_softc		*sc;
1406{
1407	struct tl_chain_data	*cd;
1408	struct tl_list_data	*ld;
1409	int			i;
1410
1411	cd = &sc->tl_cdata;
1412	ld = sc->tl_ldata;
1413
1414	for (i = 0; i < TL_RX_LIST_CNT; i++) {
1415		cd->tl_rx_chain[i].tl_ptr =
1416			(struct tl_list_onefrag *)&ld->tl_rx_list[i];
1417		if (tl_newbuf(sc, &cd->tl_rx_chain[i]) == ENOBUFS)
1418			return(ENOBUFS);
1419		if (i == (TL_RX_LIST_CNT - 1)) {
1420			cd->tl_rx_chain[i].tl_next = NULL;
1421			ld->tl_rx_list[i].tlist_fptr = 0;
1422		} else {
1423			cd->tl_rx_chain[i].tl_next = &cd->tl_rx_chain[i + 1];
1424			ld->tl_rx_list[i].tlist_fptr =
1425					vtophys(&ld->tl_rx_list[i + 1]);
1426		}
1427	}
1428
1429	cd->tl_rx_head = &cd->tl_rx_chain[0];
1430	cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
1431
1432	return(0);
1433}
1434
1435static int tl_newbuf(sc, c)
1436	struct tl_softc		*sc;
1437	struct tl_chain_onefrag	*c;
1438{
1439	struct mbuf		*m_new = NULL;
1440
1441	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1442	if (m_new == NULL)
1443		return(ENOBUFS);
1444
1445	MCLGET(m_new, M_DONTWAIT);
1446	if (!(m_new->m_flags & M_EXT)) {
1447		m_freem(m_new);
1448		return(ENOBUFS);
1449	}
1450
1451#ifdef __alpha__
1452	m_new->m_data += 2;
1453#endif
1454
1455	c->tl_mbuf = m_new;
1456	c->tl_next = NULL;
1457	c->tl_ptr->tlist_frsize = MCLBYTES;
1458	c->tl_ptr->tlist_fptr = 0;
1459	c->tl_ptr->tl_frag.tlist_dadr = vtophys(mtod(m_new, caddr_t));
1460	c->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
1461	c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1462
1463	return(0);
1464}
1465/*
1466 * Interrupt handler for RX 'end of frame' condition (EOF). This
1467 * tells us that a full ethernet frame has been captured and we need
1468 * to handle it.
1469 *
1470 * Reception is done using 'lists' which consist of a header and a
1471 * series of 10 data count/data address pairs that point to buffers.
1472 * Initially you're supposed to create a list, populate it with pointers
1473 * to buffers, then load the physical address of the list into the
1474 * ch_parm register. The adapter is then supposed to DMA the received
1475 * frame into the buffers for you.
1476 *
1477 * To make things as fast as possible, we have the chip DMA directly
1478 * into mbufs. This saves us from having to do a buffer copy: we can
1479 * just hand the mbufs directly to ether_input(). Once the frame has
1480 * been sent on its way, the 'list' structure is assigned a new buffer
1481 * and moved to the end of the RX chain. As long we we stay ahead of
1482 * the chip, it will always think it has an endless receive channel.
1483 *
1484 * If we happen to fall behind and the chip manages to fill up all of
1485 * the buffers, it will generate an end of channel interrupt and wait
1486 * for us to empty the chain and restart the receiver.
1487 */
1488static int tl_intvec_rxeof(xsc, type)
1489	void			*xsc;
1490	u_int32_t		type;
1491{
1492	struct tl_softc		*sc;
1493	int			r = 0, total_len = 0;
1494	struct ether_header	*eh;
1495	struct mbuf		*m;
1496	struct ifnet		*ifp;
1497	struct tl_chain_onefrag	*cur_rx;
1498
1499	sc = xsc;
1500	ifp = &sc->arpcom.ac_if;
1501
1502	while(sc->tl_cdata.tl_rx_head != NULL) {
1503		cur_rx = sc->tl_cdata.tl_rx_head;
1504		if (!(cur_rx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
1505			break;
1506		r++;
1507		sc->tl_cdata.tl_rx_head = cur_rx->tl_next;
1508		m = cur_rx->tl_mbuf;
1509		total_len = cur_rx->tl_ptr->tlist_frsize;
1510
1511		if (tl_newbuf(sc, cur_rx) == ENOBUFS) {
1512			ifp->if_ierrors++;
1513			cur_rx->tl_ptr->tlist_frsize = MCLBYTES;
1514			cur_rx->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1515			cur_rx->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
1516			continue;
1517		}
1518
1519		sc->tl_cdata.tl_rx_tail->tl_ptr->tlist_fptr =
1520						vtophys(cur_rx->tl_ptr);
1521		sc->tl_cdata.tl_rx_tail->tl_next = cur_rx;
1522		sc->tl_cdata.tl_rx_tail = cur_rx;
1523
1524		eh = mtod(m, struct ether_header *);
1525		m->m_pkthdr.rcvif = ifp;
1526
1527		/*
1528		 * Note: when the ThunderLAN chip is in 'capture all
1529		 * frames' mode, it will receive its own transmissions.
1530		 * We drop don't need to process our own transmissions,
1531		 * so we drop them here and continue.
1532		 */
1533		/*if (ifp->if_flags & IFF_PROMISC && */
1534		if (!bcmp(eh->ether_shost, sc->arpcom.ac_enaddr,
1535		 					ETHER_ADDR_LEN)) {
1536				m_freem(m);
1537				continue;
1538		}
1539
1540		/* Remove header from mbuf and pass it on. */
1541		m->m_pkthdr.len = m->m_len =
1542				total_len - sizeof(struct ether_header);
1543		m->m_data += sizeof(struct ether_header);
1544		ether_input(ifp, eh, m);
1545	}
1546
1547	return(r);
1548}
1549
1550/*
1551 * The RX-EOC condition hits when the ch_parm address hasn't been
1552 * initialized or the adapter reached a list with a forward pointer
1553 * of 0 (which indicates the end of the chain). In our case, this means
1554 * the card has hit the end of the receive buffer chain and we need to
1555 * empty out the buffers and shift the pointer back to the beginning again.
1556 */
1557static int tl_intvec_rxeoc(xsc, type)
1558	void			*xsc;
1559	u_int32_t		type;
1560{
1561	struct tl_softc		*sc;
1562	int			r;
1563	struct tl_chain_data	*cd;
1564
1565
1566	sc = xsc;
1567	cd = &sc->tl_cdata;
1568
1569	/* Flush out the receive queue and ack RXEOF interrupts. */
1570	r = tl_intvec_rxeof(xsc, type);
1571	CMD_PUT(sc, TL_CMD_ACK | r | (type & ~(0x00100000)));
1572	r = 1;
1573	cd->tl_rx_head = &cd->tl_rx_chain[0];
1574	cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
1575	CSR_WRITE_4(sc, TL_CH_PARM, vtophys(sc->tl_cdata.tl_rx_head->tl_ptr));
1576	r |= (TL_CMD_GO|TL_CMD_RT);
1577	return(r);
1578}
1579
1580static int tl_intvec_txeof(xsc, type)
1581	void			*xsc;
1582	u_int32_t		type;
1583{
1584	struct tl_softc		*sc;
1585	int			r = 0;
1586	struct tl_chain		*cur_tx;
1587
1588	sc = xsc;
1589
1590	/*
1591	 * Go through our tx list and free mbufs for those
1592	 * frames that have been sent.
1593	 */
1594	while (sc->tl_cdata.tl_tx_head != NULL) {
1595		cur_tx = sc->tl_cdata.tl_tx_head;
1596		if (!(cur_tx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
1597			break;
1598		sc->tl_cdata.tl_tx_head = cur_tx->tl_next;
1599
1600		r++;
1601		m_freem(cur_tx->tl_mbuf);
1602		cur_tx->tl_mbuf = NULL;
1603
1604		cur_tx->tl_next = sc->tl_cdata.tl_tx_free;
1605		sc->tl_cdata.tl_tx_free = cur_tx;
1606		if (!cur_tx->tl_ptr->tlist_fptr)
1607			break;
1608	}
1609
1610	return(r);
1611}
1612
1613/*
1614 * The transmit end of channel interrupt. The adapter triggers this
1615 * interrupt to tell us it hit the end of the current transmit list.
1616 *
1617 * A note about this: it's possible for a condition to arise where
1618 * tl_start() may try to send frames between TXEOF and TXEOC interrupts.
1619 * You have to avoid this since the chip expects things to go in a
1620 * particular order: transmit, acknowledge TXEOF, acknowledge TXEOC.
1621 * When the TXEOF handler is called, it will free all of the transmitted
1622 * frames and reset the tx_head pointer to NULL. However, a TXEOC
1623 * interrupt should be received and acknowledged before any more frames
1624 * are queued for transmission. If tl_statrt() is called after TXEOF
1625 * resets the tx_head pointer but _before_ the TXEOC interrupt arrives,
1626 * it could attempt to issue a transmit command prematurely.
1627 *
1628 * To guard against this, tl_start() will only issue transmit commands
1629 * if the tl_txeoc flag is set, and only the TXEOC interrupt handler
1630 * can set this flag once tl_start() has cleared it.
1631 */
1632static int tl_intvec_txeoc(xsc, type)
1633	void			*xsc;
1634	u_int32_t		type;
1635{
1636	struct tl_softc		*sc;
1637	struct ifnet		*ifp;
1638	u_int32_t		cmd;
1639
1640	sc = xsc;
1641	ifp = &sc->arpcom.ac_if;
1642
1643	/* Clear the timeout timer. */
1644	ifp->if_timer = 0;
1645
1646	if (sc->tl_cdata.tl_tx_head == NULL) {
1647		ifp->if_flags &= ~IFF_OACTIVE;
1648		sc->tl_cdata.tl_tx_tail = NULL;
1649		sc->tl_txeoc = 1;
1650	} else {
1651		sc->tl_txeoc = 0;
1652		/* First we have to ack the EOC interrupt. */
1653		CMD_PUT(sc, TL_CMD_ACK | 0x00000001 | type);
1654		/* Then load the address of the next TX list. */
1655		CSR_WRITE_4(sc, TL_CH_PARM,
1656		    vtophys(sc->tl_cdata.tl_tx_head->tl_ptr));
1657		/* Restart TX channel. */
1658		cmd = CSR_READ_4(sc, TL_HOSTCMD);
1659		cmd &= ~TL_CMD_RT;
1660		cmd |= TL_CMD_GO|TL_CMD_INTSON;
1661		CMD_PUT(sc, cmd);
1662		return(0);
1663	}
1664
1665	return(1);
1666}
1667
1668static int tl_intvec_adchk(xsc, type)
1669	void			*xsc;
1670	u_int32_t		type;
1671{
1672	struct tl_softc		*sc;
1673
1674	sc = xsc;
1675
1676	if (type)
1677		printf("tl%d: adapter check: %x\n", sc->tl_unit,
1678			(unsigned int)CSR_READ_4(sc, TL_CH_PARM));
1679
1680	tl_softreset(sc, 1);
1681	tl_stop(sc);
1682	tl_init(sc);
1683	CMD_SET(sc, TL_CMD_INTSON);
1684
1685	return(0);
1686}
1687
1688static int tl_intvec_netsts(xsc, type)
1689	void			*xsc;
1690	u_int32_t		type;
1691{
1692	struct tl_softc		*sc;
1693	u_int16_t		netsts;
1694
1695	sc = xsc;
1696
1697	netsts = tl_dio_read16(sc, TL_NETSTS);
1698	tl_dio_write16(sc, TL_NETSTS, netsts);
1699
1700	printf("tl%d: network status: %x\n", sc->tl_unit, netsts);
1701
1702	return(1);
1703}
1704
1705static void tl_intr(xsc)
1706	void			*xsc;
1707{
1708	struct tl_softc		*sc;
1709	struct ifnet		*ifp;
1710	int			r = 0;
1711	u_int32_t		type = 0;
1712	u_int16_t		ints = 0;
1713	u_int8_t		ivec = 0;
1714
1715	sc = xsc;
1716	TL_LOCK(sc);
1717
1718	/* Disable interrupts */
1719	ints = CSR_READ_2(sc, TL_HOST_INT);
1720	CSR_WRITE_2(sc, TL_HOST_INT, ints);
1721	type = (ints << 16) & 0xFFFF0000;
1722	ivec = (ints & TL_VEC_MASK) >> 5;
1723	ints = (ints & TL_INT_MASK) >> 2;
1724
1725	ifp = &sc->arpcom.ac_if;
1726
1727	switch(ints) {
1728	case (TL_INTR_INVALID):
1729#ifdef DIAGNOSTIC
1730		printf("tl%d: got an invalid interrupt!\n", sc->tl_unit);
1731#endif
1732		/* Re-enable interrupts but don't ack this one. */
1733		CMD_PUT(sc, type);
1734		r = 0;
1735		break;
1736	case (TL_INTR_TXEOF):
1737		r = tl_intvec_txeof((void *)sc, type);
1738		break;
1739	case (TL_INTR_TXEOC):
1740		r = tl_intvec_txeoc((void *)sc, type);
1741		break;
1742	case (TL_INTR_STATOFLOW):
1743		tl_stats_update(sc);
1744		r = 1;
1745		break;
1746	case (TL_INTR_RXEOF):
1747		r = tl_intvec_rxeof((void *)sc, type);
1748		break;
1749	case (TL_INTR_DUMMY):
1750		printf("tl%d: got a dummy interrupt\n", sc->tl_unit);
1751		r = 1;
1752		break;
1753	case (TL_INTR_ADCHK):
1754		if (ivec)
1755			r = tl_intvec_adchk((void *)sc, type);
1756		else
1757			r = tl_intvec_netsts((void *)sc, type);
1758		break;
1759	case (TL_INTR_RXEOC):
1760		r = tl_intvec_rxeoc((void *)sc, type);
1761		break;
1762	default:
1763		printf("tl%d: bogus interrupt type\n", ifp->if_unit);
1764		break;
1765	}
1766
1767	/* Re-enable interrupts */
1768	if (r) {
1769		CMD_PUT(sc, TL_CMD_ACK | r | type);
1770	}
1771
1772	if (ifp->if_snd.ifq_head != NULL)
1773		tl_start(ifp);
1774
1775	TL_UNLOCK(sc);
1776
1777	return;
1778}
1779
1780static void tl_stats_update(xsc)
1781	void			*xsc;
1782{
1783	struct tl_softc		*sc;
1784	struct ifnet		*ifp;
1785	struct tl_stats		tl_stats;
1786	struct mii_data		*mii;
1787	u_int32_t		*p;
1788
1789	bzero((char *)&tl_stats, sizeof(struct tl_stats));
1790
1791	sc = xsc;
1792	TL_LOCK(sc);
1793	ifp = &sc->arpcom.ac_if;
1794
1795	p = (u_int32_t *)&tl_stats;
1796
1797	CSR_WRITE_2(sc, TL_DIO_ADDR, TL_TXGOODFRAMES|TL_DIO_ADDR_INC);
1798	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1799	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1800	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1801	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1802	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1803
1804	ifp->if_opackets += tl_tx_goodframes(tl_stats);
1805	ifp->if_collisions += tl_stats.tl_tx_single_collision +
1806				tl_stats.tl_tx_multi_collision;
1807	ifp->if_ipackets += tl_rx_goodframes(tl_stats);
1808	ifp->if_ierrors += tl_stats.tl_crc_errors + tl_stats.tl_code_errors +
1809			    tl_rx_overrun(tl_stats);
1810	ifp->if_oerrors += tl_tx_underrun(tl_stats);
1811
1812	if (tl_tx_underrun(tl_stats)) {
1813		u_int8_t		tx_thresh;
1814		tx_thresh = tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_TXTHRESH;
1815		if (tx_thresh != TL_AC_TXTHRESH_WHOLEPKT) {
1816			tx_thresh >>= 4;
1817			tx_thresh++;
1818			printf("tl%d: tx underrun -- increasing "
1819			    "tx threshold to %d bytes\n", sc->tl_unit,
1820			    (64 * (tx_thresh * 4)));
1821			tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
1822			tl_dio_setbit(sc, TL_ACOMMIT, tx_thresh << 4);
1823		}
1824	}
1825
1826	sc->tl_stat_ch = timeout(tl_stats_update, sc, hz);
1827
1828	if (!sc->tl_bitrate) {
1829		mii = device_get_softc(sc->tl_miibus);
1830		mii_tick(mii);
1831	}
1832
1833	TL_UNLOCK(sc);
1834
1835	return;
1836}
1837
1838/*
1839 * Encapsulate an mbuf chain in a list by coupling the mbuf data
1840 * pointers to the fragment pointers.
1841 */
1842static int tl_encap(sc, c, m_head)
1843	struct tl_softc		*sc;
1844	struct tl_chain		*c;
1845	struct mbuf		*m_head;
1846{
1847	int			frag = 0;
1848	struct tl_frag		*f = NULL;
1849	int			total_len;
1850	struct mbuf		*m;
1851
1852	/*
1853 	 * Start packing the mbufs in this chain into
1854	 * the fragment pointers. Stop when we run out
1855 	 * of fragments or hit the end of the mbuf chain.
1856	 */
1857	m = m_head;
1858	total_len = 0;
1859
1860	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1861		if (m->m_len != 0) {
1862			if (frag == TL_MAXFRAGS)
1863				break;
1864			total_len+= m->m_len;
1865			c->tl_ptr->tl_frag[frag].tlist_dadr =
1866				vtophys(mtod(m, vm_offset_t));
1867			c->tl_ptr->tl_frag[frag].tlist_dcnt = m->m_len;
1868			frag++;
1869		}
1870	}
1871
1872	/*
1873	 * Handle special cases.
1874	 * Special case #1: we used up all 10 fragments, but
1875	 * we have more mbufs left in the chain. Copy the
1876	 * data into an mbuf cluster. Note that we don't
1877	 * bother clearing the values in the other fragment
1878	 * pointers/counters; it wouldn't gain us anything,
1879	 * and would waste cycles.
1880	 */
1881	if (m != NULL) {
1882		struct mbuf		*m_new = NULL;
1883
1884		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1885		if (m_new == NULL) {
1886			printf("tl%d: no memory for tx list\n", sc->tl_unit);
1887			return(1);
1888		}
1889		if (m_head->m_pkthdr.len > MHLEN) {
1890			MCLGET(m_new, M_DONTWAIT);
1891			if (!(m_new->m_flags & M_EXT)) {
1892				m_freem(m_new);
1893				printf("tl%d: no memory for tx list\n",
1894				sc->tl_unit);
1895				return(1);
1896			}
1897		}
1898		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1899					mtod(m_new, caddr_t));
1900		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1901		m_freem(m_head);
1902		m_head = m_new;
1903		f = &c->tl_ptr->tl_frag[0];
1904		f->tlist_dadr = vtophys(mtod(m_new, caddr_t));
1905		f->tlist_dcnt = total_len = m_new->m_len;
1906		frag = 1;
1907	}
1908
1909	/*
1910	 * Special case #2: the frame is smaller than the minimum
1911	 * frame size. We have to pad it to make the chip happy.
1912	 */
1913	if (total_len < TL_MIN_FRAMELEN) {
1914		if (frag == TL_MAXFRAGS)
1915			printf("tl%d: all frags filled but "
1916				"frame still to small!\n", sc->tl_unit);
1917		f = &c->tl_ptr->tl_frag[frag];
1918		f->tlist_dcnt = TL_MIN_FRAMELEN - total_len;
1919		f->tlist_dadr = vtophys(&sc->tl_ldata->tl_pad);
1920		total_len += f->tlist_dcnt;
1921		frag++;
1922	}
1923
1924	c->tl_mbuf = m_head;
1925	c->tl_ptr->tl_frag[frag - 1].tlist_dcnt |= TL_LAST_FRAG;
1926	c->tl_ptr->tlist_frsize = total_len;
1927	c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1928	c->tl_ptr->tlist_fptr = 0;
1929
1930	return(0);
1931}
1932
1933/*
1934 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1935 * to the mbuf data regions directly in the transmit lists. We also save a
1936 * copy of the pointers since the transmit list fragment pointers are
1937 * physical addresses.
1938 */
1939static void tl_start(ifp)
1940	struct ifnet		*ifp;
1941{
1942	struct tl_softc		*sc;
1943	struct mbuf		*m_head = NULL;
1944	u_int32_t		cmd;
1945	struct tl_chain		*prev = NULL, *cur_tx = NULL, *start_tx;
1946
1947	sc = ifp->if_softc;
1948	TL_LOCK(sc);
1949
1950	/*
1951	 * Check for an available queue slot. If there are none,
1952	 * punt.
1953	 */
1954	if (sc->tl_cdata.tl_tx_free == NULL) {
1955		ifp->if_flags |= IFF_OACTIVE;
1956		TL_UNLOCK(sc);
1957		return;
1958	}
1959
1960	start_tx = sc->tl_cdata.tl_tx_free;
1961
1962	while(sc->tl_cdata.tl_tx_free != NULL) {
1963		IF_DEQUEUE(&ifp->if_snd, m_head);
1964		if (m_head == NULL)
1965			break;
1966
1967		/* Pick a chain member off the free list. */
1968		cur_tx = sc->tl_cdata.tl_tx_free;
1969		sc->tl_cdata.tl_tx_free = cur_tx->tl_next;
1970
1971		cur_tx->tl_next = NULL;
1972
1973		/* Pack the data into the list. */
1974		tl_encap(sc, cur_tx, m_head);
1975
1976		/* Chain it together */
1977		if (prev != NULL) {
1978			prev->tl_next = cur_tx;
1979			prev->tl_ptr->tlist_fptr = vtophys(cur_tx->tl_ptr);
1980		}
1981		prev = cur_tx;
1982
1983		/*
1984		 * If there's a BPF listener, bounce a copy of this frame
1985		 * to him.
1986		 */
1987		if (ifp->if_bpf)
1988			bpf_mtap(ifp, cur_tx->tl_mbuf);
1989	}
1990
1991	/*
1992	 * If there are no packets queued, bail.
1993	 */
1994	if (cur_tx == NULL) {
1995		TL_UNLOCK(sc);
1996		return;
1997	}
1998
1999	/*
2000	 * That's all we can stands, we can't stands no more.
2001	 * If there are no other transfers pending, then issue the
2002	 * TX GO command to the adapter to start things moving.
2003	 * Otherwise, just leave the data in the queue and let
2004	 * the EOF/EOC interrupt handler send.
2005	 */
2006	if (sc->tl_cdata.tl_tx_head == NULL) {
2007		sc->tl_cdata.tl_tx_head = start_tx;
2008		sc->tl_cdata.tl_tx_tail = cur_tx;
2009
2010		if (sc->tl_txeoc) {
2011			sc->tl_txeoc = 0;
2012			CSR_WRITE_4(sc, TL_CH_PARM, vtophys(start_tx->tl_ptr));
2013			cmd = CSR_READ_4(sc, TL_HOSTCMD);
2014			cmd &= ~TL_CMD_RT;
2015			cmd |= TL_CMD_GO|TL_CMD_INTSON;
2016			CMD_PUT(sc, cmd);
2017		}
2018	} else {
2019		sc->tl_cdata.tl_tx_tail->tl_next = start_tx;
2020		sc->tl_cdata.tl_tx_tail = cur_tx;
2021	}
2022
2023	/*
2024	 * Set a timeout in case the chip goes out to lunch.
2025	 */
2026	ifp->if_timer = 5;
2027	TL_UNLOCK(sc);
2028
2029	return;
2030}
2031
2032static void tl_init(xsc)
2033	void			*xsc;
2034{
2035	struct tl_softc		*sc = xsc;
2036	struct ifnet		*ifp = &sc->arpcom.ac_if;
2037	struct mii_data		*mii;
2038
2039	TL_LOCK(sc);
2040
2041	ifp = &sc->arpcom.ac_if;
2042
2043	/*
2044	 * Cancel pending I/O.
2045	 */
2046	tl_stop(sc);
2047
2048	/* Initialize TX FIFO threshold */
2049	tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
2050	tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH_16LONG);
2051
2052        /* Set PCI burst size */
2053	tl_dio_write8(sc, TL_BSIZEREG, TL_RXBURST_16LONG|TL_TXBURST_16LONG);
2054
2055	/*
2056	 * Set 'capture all frames' bit for promiscuous mode.
2057	 */
2058	if (ifp->if_flags & IFF_PROMISC)
2059		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
2060	else
2061		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
2062
2063	/*
2064	 * Set capture broadcast bit to capture broadcast frames.
2065	 */
2066	if (ifp->if_flags & IFF_BROADCAST)
2067		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_NOBRX);
2068	else
2069		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NOBRX);
2070
2071	tl_dio_write16(sc, TL_MAXRX, MCLBYTES);
2072
2073	/* Init our MAC address */
2074	tl_setfilt(sc, (caddr_t)&sc->arpcom.ac_enaddr, 0);
2075
2076	/* Init multicast filter, if needed. */
2077	tl_setmulti(sc);
2078
2079	/* Init circular RX list. */
2080	if (tl_list_rx_init(sc) == ENOBUFS) {
2081		printf("tl%d: initialization failed: no "
2082			"memory for rx buffers\n", sc->tl_unit);
2083		tl_stop(sc);
2084		TL_UNLOCK(sc);
2085		return;
2086	}
2087
2088	/* Init TX pointers. */
2089	tl_list_tx_init(sc);
2090
2091	/* Enable PCI interrupts. */
2092	CMD_SET(sc, TL_CMD_INTSON);
2093
2094	/* Load the address of the rx list */
2095	CMD_SET(sc, TL_CMD_RT);
2096	CSR_WRITE_4(sc, TL_CH_PARM, vtophys(&sc->tl_ldata->tl_rx_list[0]));
2097
2098	if (!sc->tl_bitrate) {
2099		if (sc->tl_miibus != NULL) {
2100			mii = device_get_softc(sc->tl_miibus);
2101			mii_mediachg(mii);
2102		}
2103	}
2104
2105	/* Send the RX go command */
2106	CMD_SET(sc, TL_CMD_GO|TL_CMD_NES|TL_CMD_RT);
2107
2108	ifp->if_flags |= IFF_RUNNING;
2109	ifp->if_flags &= ~IFF_OACTIVE;
2110
2111	/* Start the stats update counter */
2112	sc->tl_stat_ch = timeout(tl_stats_update, sc, hz);
2113	TL_UNLOCK(sc);
2114
2115	return;
2116}
2117
2118/*
2119 * Set media options.
2120 */
2121static int tl_ifmedia_upd(ifp)
2122	struct ifnet		*ifp;
2123{
2124	struct tl_softc		*sc;
2125	struct mii_data		*mii = NULL;
2126
2127	sc = ifp->if_softc;
2128
2129	if (sc->tl_bitrate)
2130		tl_setmode(sc, sc->ifmedia.ifm_media);
2131	else {
2132		mii = device_get_softc(sc->tl_miibus);
2133		mii_mediachg(mii);
2134	}
2135
2136	return(0);
2137}
2138
2139/*
2140 * Report current media status.
2141 */
2142static void tl_ifmedia_sts(ifp, ifmr)
2143	struct ifnet		*ifp;
2144	struct ifmediareq	*ifmr;
2145{
2146	struct tl_softc		*sc;
2147	struct mii_data		*mii;
2148
2149	sc = ifp->if_softc;
2150
2151	ifmr->ifm_active = IFM_ETHER;
2152
2153	if (sc->tl_bitrate) {
2154		if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD1)
2155			ifmr->ifm_active = IFM_ETHER|IFM_10_5;
2156		else
2157			ifmr->ifm_active = IFM_ETHER|IFM_10_T;
2158		if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD3)
2159			ifmr->ifm_active |= IFM_HDX;
2160		else
2161			ifmr->ifm_active |= IFM_FDX;
2162		return;
2163	} else {
2164		mii = device_get_softc(sc->tl_miibus);
2165		mii_pollstat(mii);
2166		ifmr->ifm_active = mii->mii_media_active;
2167		ifmr->ifm_status = mii->mii_media_status;
2168	}
2169
2170	return;
2171}
2172
2173static int tl_ioctl(ifp, command, data)
2174	struct ifnet		*ifp;
2175	u_long			command;
2176	caddr_t			data;
2177{
2178	struct tl_softc		*sc = ifp->if_softc;
2179	struct ifreq		*ifr = (struct ifreq *) data;
2180	int			s, error = 0;
2181
2182	s = splimp();
2183
2184	switch(command) {
2185	case SIOCSIFADDR:
2186	case SIOCGIFADDR:
2187	case SIOCSIFMTU:
2188		error = ether_ioctl(ifp, command, data);
2189		break;
2190	case SIOCSIFFLAGS:
2191		if (ifp->if_flags & IFF_UP) {
2192			if (ifp->if_flags & IFF_RUNNING &&
2193			    ifp->if_flags & IFF_PROMISC &&
2194			    !(sc->tl_if_flags & IFF_PROMISC)) {
2195				tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
2196				tl_setmulti(sc);
2197			} else if (ifp->if_flags & IFF_RUNNING &&
2198			    !(ifp->if_flags & IFF_PROMISC) &&
2199			    sc->tl_if_flags & IFF_PROMISC) {
2200				tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
2201				tl_setmulti(sc);
2202			} else
2203				tl_init(sc);
2204		} else {
2205			if (ifp->if_flags & IFF_RUNNING) {
2206				tl_stop(sc);
2207			}
2208		}
2209		sc->tl_if_flags = ifp->if_flags;
2210		error = 0;
2211		break;
2212	case SIOCADDMULTI:
2213	case SIOCDELMULTI:
2214		tl_setmulti(sc);
2215		error = 0;
2216		break;
2217	case SIOCSIFMEDIA:
2218	case SIOCGIFMEDIA:
2219		if (sc->tl_bitrate)
2220			error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2221		else {
2222			struct mii_data		*mii;
2223			mii = device_get_softc(sc->tl_miibus);
2224			error = ifmedia_ioctl(ifp, ifr,
2225			    &mii->mii_media, command);
2226		}
2227		break;
2228	default:
2229		error = EINVAL;
2230		break;
2231	}
2232
2233	(void)splx(s);
2234
2235	return(error);
2236}
2237
2238static void tl_watchdog(ifp)
2239	struct ifnet		*ifp;
2240{
2241	struct tl_softc		*sc;
2242
2243	sc = ifp->if_softc;
2244
2245	printf("tl%d: device timeout\n", sc->tl_unit);
2246
2247	ifp->if_oerrors++;
2248
2249	tl_softreset(sc, 1);
2250	tl_init(sc);
2251
2252	return;
2253}
2254
2255/*
2256 * Stop the adapter and free any mbufs allocated to the
2257 * RX and TX lists.
2258 */
2259static void tl_stop(sc)
2260	struct tl_softc		*sc;
2261{
2262	register int		i;
2263	struct ifnet		*ifp;
2264
2265	TL_LOCK(sc);
2266
2267	ifp = &sc->arpcom.ac_if;
2268
2269	/* Stop the stats updater. */
2270	untimeout(tl_stats_update, sc, sc->tl_stat_ch);
2271
2272	/* Stop the transmitter */
2273	CMD_CLR(sc, TL_CMD_RT);
2274	CMD_SET(sc, TL_CMD_STOP);
2275	CSR_WRITE_4(sc, TL_CH_PARM, 0);
2276
2277	/* Stop the receiver */
2278	CMD_SET(sc, TL_CMD_RT);
2279	CMD_SET(sc, TL_CMD_STOP);
2280	CSR_WRITE_4(sc, TL_CH_PARM, 0);
2281
2282	/*
2283	 * Disable host interrupts.
2284	 */
2285	CMD_SET(sc, TL_CMD_INTSOFF);
2286
2287	/*
2288	 * Clear list pointer.
2289	 */
2290	CSR_WRITE_4(sc, TL_CH_PARM, 0);
2291
2292	/*
2293	 * Free the RX lists.
2294	 */
2295	for (i = 0; i < TL_RX_LIST_CNT; i++) {
2296		if (sc->tl_cdata.tl_rx_chain[i].tl_mbuf != NULL) {
2297			m_freem(sc->tl_cdata.tl_rx_chain[i].tl_mbuf);
2298			sc->tl_cdata.tl_rx_chain[i].tl_mbuf = NULL;
2299		}
2300	}
2301	bzero((char *)&sc->tl_ldata->tl_rx_list,
2302		sizeof(sc->tl_ldata->tl_rx_list));
2303
2304	/*
2305	 * Free the TX list buffers.
2306	 */
2307	for (i = 0; i < TL_TX_LIST_CNT; i++) {
2308		if (sc->tl_cdata.tl_tx_chain[i].tl_mbuf != NULL) {
2309			m_freem(sc->tl_cdata.tl_tx_chain[i].tl_mbuf);
2310			sc->tl_cdata.tl_tx_chain[i].tl_mbuf = NULL;
2311		}
2312	}
2313	bzero((char *)&sc->tl_ldata->tl_tx_list,
2314		sizeof(sc->tl_ldata->tl_tx_list));
2315
2316	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2317	TL_UNLOCK(sc);
2318
2319	return;
2320}
2321
2322/*
2323 * Stop all chip I/O so that the kernel's probe routines don't
2324 * get confused by errant DMAs when rebooting.
2325 */
2326static void tl_shutdown(dev)
2327	device_t		dev;
2328{
2329	struct tl_softc		*sc;
2330
2331	sc = device_get_softc(dev);
2332
2333	tl_stop(sc);
2334
2335	return;
2336}
2337