if_tl.c revision 257176
121308Sache/*-
221308Sache * Copyright (c) 1997, 1998
321308Sache *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
421308Sache *
521308Sache * Redistribution and use in source and binary forms, with or without
621308Sache * modification, are permitted provided that the following conditions
721308Sache * are met:
821308Sache * 1. Redistributions of source code must retain the above copyright
921308Sache *    notice, this list of conditions and the following disclaimer.
1058310Sache * 2. Redistributions in binary form must reproduce the above copyright
1121308Sache *    notice, this list of conditions and the following disclaimer in the
1221308Sache *    documentation and/or other materials provided with the distribution.
1321308Sache * 3. All advertising materials mentioning features or use of this software
1421308Sache *    must display the following acknowledgement:
1521308Sache *	This product includes software developed by Bill Paul.
1621308Sache * 4. Neither the name of the author nor the names of any co-contributors
1721308Sache *    may be used to endorse or promote products derived from this software
1821308Sache *    without specific prior written permission.
1921308Sache *
2021308Sache * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
2158310Sache * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
2221308Sache * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
2321308Sache * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
2421308Sache * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
2521308Sache * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
2621308Sache * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
2721308Sache * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
2821308Sache * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
2921308Sache * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
3021308Sache * THE POSSIBILITY OF SUCH DAMAGE.
3121308Sache */
3221308Sache
3321308Sache#include <sys/cdefs.h>
3421308Sache__FBSDID("$FreeBSD: head/sys/dev/tl/if_tl.c 257176 2013-10-26 17:58:36Z glebius $");
3521308Sache
3675406Sache/*
3775406Sache * Texas Instruments ThunderLAN driver for FreeBSD 2.2.6 and 3.x.
3875406Sache * Supports many Compaq PCI NICs based on the ThunderLAN ethernet controller,
3975406Sache * the National Semiconductor DP83840A physical interface and the
4075406Sache * Microchip Technology 24Cxx series serial EEPROM.
4175406Sache *
4275406Sache * Written using the following four documents:
4375406Sache *
4475406Sache * Texas Instruments ThunderLAN Programmer's Guide (www.ti.com)
4575406Sache * National Semiconductor DP83840A data sheet (www.national.com)
4675406Sache * Microchip Technology 24C02C data sheet (www.microchip.com)
4775406Sache * Micro Linear ML6692 100BaseTX only PHY data sheet (www.microlinear.com)
4875406Sache *
4975406Sache * Written by Bill Paul <wpaul@ctr.columbia.edu>
5075406Sache * Electrical Engineering Department
5175406Sache * Columbia University, New York City
5275406Sache */
5375406Sache/*
5475406Sache * Some notes about the ThunderLAN:
5575406Sache *
5675406Sache * The ThunderLAN controller is a single chip containing PCI controller
5775406Sache * logic, approximately 3K of on-board SRAM, a LAN controller, and media
5875406Sache * independent interface (MII) bus. The MII allows the ThunderLAN chip to
5975406Sache * control up to 32 different physical interfaces (PHYs). The ThunderLAN
6075406Sache * also has a built-in 10baseT PHY, allowing a single ThunderLAN controller
6175406Sache * to act as a complete ethernet interface.
6275406Sache *
6321308Sache * Other PHYs may be attached to the ThunderLAN; the Compaq 10/100 cards
6475406Sache * use a National Semiconductor DP83840A PHY that supports 10 or 100Mb/sec
6575406Sache * in full or half duplex. Some of the Compaq Deskpro machines use a
6675406Sache * Level 1 LXT970 PHY with the same capabilities. Certain Olicom adapters
6775406Sache * use a Micro Linear ML6692 100BaseTX only PHY, which can be used in
6875406Sache * concert with the ThunderLAN's internal PHY to provide full 10/100
6921308Sache * support. This is cheaper than using a standalone external PHY for both
7021308Sache * 10/100 modes and letting the ThunderLAN's internal PHY go to waste.
7175406Sache * A serial EEPROM is also attached to the ThunderLAN chip to provide
7275406Sache * power-up default register settings and for storing the adapter's
7375406Sache * station address. Although not supported by this driver, the ThunderLAN
7475406Sache * chip can also be connected to token ring PHYs.
7575406Sache *
7675406Sache * The ThunderLAN has a set of registers which can be used to issue
7775406Sache * commands, acknowledge interrupts, and to manipulate other internal
7875406Sache * registers on its DIO bus. The primary registers can be accessed
7975406Sache * using either programmed I/O (inb/outb) or via PCI memory mapping,
8075406Sache * depending on how the card is configured during the PCI probing
8175406Sache * phase. It is even possible to have both PIO and memory mapped
8275406Sache * access turned on at the same time.
8375406Sache *
8475406Sache * Frame reception and transmission with the ThunderLAN chip is done
8575406Sache * using frame 'lists.' A list structure looks more or less like this:
8675406Sache *
8721308Sache * struct tl_frag {
8821308Sache *	u_int32_t		fragment_address;
8975406Sache *	u_int32_t		fragment_size;
9075406Sache * };
9175406Sache * struct tl_list {
9275406Sache *	u_int32_t		forward_pointer;
9375406Sache *	u_int16_t		cstat;
9475406Sache *	u_int16_t		frame_size;
9575406Sache *	struct tl_frag		fragments[10];
9675406Sache * };
9775406Sache *
9875406Sache * The forward pointer in the list header can be either a 0 or the address
9921308Sache * of another list, which allows several lists to be linked together. Each
10021308Sache * list contains up to 10 fragment descriptors. This means the chip allows
10175406Sache * ethernet frames to be broken up into up to 10 chunks for transfer to
10275406Sache * and from the SRAM. Note that the forward pointer and fragment buffer
10375406Sache * addresses are physical memory addresses, not virtual. Note also that
10475406Sache * a single ethernet frame can not span lists: if the host wants to
10575406Sache * transmit a frame and the frame data is split up over more than 10
10675406Sache * buffers, the frame has to collapsed before it can be transmitted.
10775406Sache *
10821308Sache * To receive frames, the driver sets up a number of lists and populates
10921308Sache * the fragment descriptors, then it sends an RX GO command to the chip.
11075406Sache * When a frame is received, the chip will DMA it into the memory regions
11175406Sache * specified by the fragment descriptors and then trigger an RX 'end of
11275406Sache * frame interrupt' when done. The driver may choose to use only one
11375406Sache * fragment per list; this may result is slighltly less efficient use
11475406Sache * of memory in exchange for improving performance.
11575406Sache *
11675406Sache * To transmit frames, the driver again sets up lists and fragment
11775406Sache * descriptors, only this time the buffers contain frame data that
11875406Sache * is to be DMA'ed into the chip instead of out of it. Once the chip
11975406Sache * has transfered the data into its on-board SRAM, it will trigger a
12075406Sache * TX 'end of frame' interrupt. It will also generate an 'end of channel'
12175406Sache * interrupt when it reaches the end of the list.
12275406Sache */
12375406Sache/*
12475406Sache * Some notes about this driver:
12575406Sache *
12675406Sache * The ThunderLAN chip provides a couple of different ways to organize
12775406Sache * reception, transmission and interrupt handling. The simplest approach
12875406Sache * is to use one list each for transmission and reception. In this mode,
12975406Sache * the ThunderLAN will generate two interrupts for every received frame
13075406Sache * (one RX EOF and one RX EOC) and two for each transmitted frame (one
13175406Sache * TX EOF and one TX EOC). This may make the driver simpler but it hurts
13275406Sache * performance to have to handle so many interrupts.
13375406Sache *
13475406Sache * Initially I wanted to create a circular list of receive buffers so
13575406Sache * that the ThunderLAN chip would think there was an infinitely long
13621308Sache * receive channel and never deliver an RXEOC interrupt. However this
13721308Sache * doesn't work correctly under heavy load: while the manual says the
13875406Sache * chip will trigger an RXEOF interrupt each time a frame is copied into
13975406Sache * memory, you can't count on the chip waiting around for you to acknowledge
14075406Sache * the interrupt before it starts trying to DMA the next frame. The result
14175406Sache * is that the chip might traverse the entire circular list and then wrap
14275406Sache * around before you have a chance to do anything about it. Consequently,
14375406Sache * the receive list is terminated (with a 0 in the forward pointer in the
14421308Sache * last element). Each time an RXEOF interrupt arrives, the used list
14521308Sache * is shifted to the end of the list. This gives the appearance of an
14675406Sache * infinitely large RX chain so long as the driver doesn't fall behind
14775406Sache * the chip and allow all of the lists to be filled up.
14875406Sache *
14975406Sache * If all the lists are filled, the adapter will deliver an RX 'end of
15075406Sache * channel' interrupt when it hits the 0 forward pointer at the end of
15175406Sache * the chain. The RXEOC handler then cleans out the RX chain and resets
15275406Sache * the list head pointer in the ch_parm register and restarts the receiver.
15375406Sache *
15475406Sache * For frame transmission, it is possible to program the ThunderLAN's
15575406Sache * transmit interrupt threshold so that the chip can acknowledge multiple
15675406Sache * lists with only a single TX EOF interrupt. This allows the driver to
15775406Sache * queue several frames in one shot, and only have to handle a total
15875406Sache * two interrupts (one TX EOF and one TX EOC) no matter how many frames
15975406Sache * are transmitted. Frame transmission is done directly out of the
16075406Sache * mbufs passed to the tl_start() routine via the interface send queue.
16175406Sache * The driver simply sets up the fragment descriptors in the transmit
16275406Sache * lists to point to the mbuf data regions and sends a TX GO command.
16375406Sache *
16475406Sache * Note that since the RX and TX lists themselves are always used
16575406Sache * only by the driver, the are malloc()ed once at driver initialization
16675406Sache * time and never free()ed.
16775406Sache *
16875406Sache * Also, in order to remain as platform independent as possible, this
16975406Sache * driver uses memory mapped register access to manipulate the card
17075406Sache * as opposed to programmed I/O. This avoids the use of the inb/outb
17175406Sache * (and related) instructions which are specific to the i386 platform.
17221308Sache *
17321308Sache * Using these techniques, this driver achieves very high performance
17475406Sache * by minimizing the amount of interrupts generated during large
17575406Sache * transfers and by completely avoiding buffer copies. Frame transfer
17675406Sache * to and from the ThunderLAN chip is performed entirely by the chip
17775406Sache * itself thereby reducing the load on the host CPU.
17875406Sache */
17921308Sache
18021308Sache#include <sys/param.h>
18121308Sache#include <sys/systm.h>
18275406Sache#include <sys/sockio.h>
18375406Sache#include <sys/mbuf.h>
18475406Sache#include <sys/malloc.h>
18575406Sache#include <sys/kernel.h>
18675406Sache#include <sys/module.h>
18775406Sache#include <sys/socket.h>
18875406Sache
18975406Sache#include <net/if.h>
19075406Sache#include <net/if_var.h>
19175406Sache#include <net/if_arp.h>
19275406Sache#include <net/ethernet.h>
19375406Sache#include <net/if_dl.h>
19475406Sache#include <net/if_media.h>
19575406Sache#include <net/if_types.h>
19675406Sache
19775406Sache#include <net/bpf.h>
19875406Sache
19975406Sache#include <vm/vm.h>              /* for vtophys */
20075406Sache#include <vm/pmap.h>            /* for vtophys */
20175406Sache#include <machine/bus.h>
20275406Sache#include <machine/resource.h>
20375406Sache#include <sys/bus.h>
20475406Sache#include <sys/rman.h>
20575406Sache
20675406Sache#include <dev/mii/mii.h>
20775406Sache#include <dev/mii/mii_bitbang.h>
20875406Sache#include <dev/mii/miivar.h>
20975406Sache
21075406Sache#include <dev/pci/pcireg.h>
21175406Sache#include <dev/pci/pcivar.h>
21275406Sache
21375406Sache/*
21475406Sache * Default to using PIO register access mode to pacify certain
21575406Sache * laptop docking stations with built-in ThunderLAN chips that
21675406Sache * don't seem to handle memory mapped mode properly.
21775406Sache */
21875406Sache#define TL_USEIOSPACE
21975406Sache
22075406Sache#include <dev/tl/if_tlreg.h>
22175406Sache
22275406SacheMODULE_DEPEND(tl, pci, 1, 1, 1);
22375406SacheMODULE_DEPEND(tl, ether, 1, 1, 1);
22475406SacheMODULE_DEPEND(tl, miibus, 1, 1, 1);
22575406Sache
22675406Sache/* "device miibus" required.  See GENERIC if you get errors here. */
22775406Sache#include "miibus_if.h"
22875406Sache
22975406Sache/*
23075406Sache * Various supported device vendors/types and their names.
23175406Sache */
23275406Sache
23375406Sachestatic const struct tl_type tl_devs[] = {
23475406Sache	{ TI_VENDORID,	TI_DEVICEID_THUNDERLAN,
23575406Sache		"Texas Instruments ThunderLAN" },
23675406Sache	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10,
23775406Sache		"Compaq Netelligent 10" },
23875406Sache	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100,
23975406Sache		"Compaq Netelligent 10/100" },
24075406Sache	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_PROLIANT,
24175406Sache		"Compaq Netelligent 10/100 Proliant" },
24275406Sache	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_DUAL,
24375406Sache		"Compaq Netelligent 10/100 Dual Port" },
24475406Sache	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_INTEGRATED,
24575406Sache		"Compaq NetFlex-3/P Integrated" },
24675406Sache	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P,
24775406Sache		"Compaq NetFlex-3/P" },
24875406Sache	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_BNC,
24975406Sache		"Compaq NetFlex 3/P w/ BNC" },
25075406Sache	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_EMBEDDED,
25175406Sache		"Compaq Netelligent 10/100 TX Embedded UTP" },
25275406Sache	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_T2_UTP_COAX,
25375406Sache		"Compaq Netelligent 10 T/2 PCI UTP/Coax" },
25475406Sache	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_TX_UTP,
25575406Sache		"Compaq Netelligent 10/100 TX UTP" },
25675406Sache	{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2183,
25775406Sache		"Olicom OC-2183/2185" },
25875406Sache	{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2325,
25975406Sache		"Olicom OC-2325" },
26075406Sache	{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2326,
26175406Sache		"Olicom OC-2326 10/100 TX UTP" },
26275406Sache	{ 0, 0, NULL }
26375406Sache};
26475406Sache
26575406Sachestatic int tl_probe(device_t);
26675406Sachestatic int tl_attach(device_t);
26775406Sachestatic int tl_detach(device_t);
26875406Sachestatic int tl_intvec_rxeoc(void *, u_int32_t);
26975406Sachestatic int tl_intvec_txeoc(void *, u_int32_t);
27075406Sachestatic int tl_intvec_txeof(void *, u_int32_t);
27175406Sachestatic int tl_intvec_rxeof(void *, u_int32_t);
27275406Sachestatic int tl_intvec_adchk(void *, u_int32_t);
27375406Sachestatic int tl_intvec_netsts(void *, u_int32_t);
27475406Sache
27575406Sachestatic int tl_newbuf(struct tl_softc *, struct tl_chain_onefrag *);
27675406Sachestatic void tl_stats_update(void *);
27775406Sachestatic int tl_encap(struct tl_softc *, struct tl_chain *, struct mbuf *);
27875406Sache
27975406Sachestatic void tl_intr(void *);
28075406Sachestatic void tl_start(struct ifnet *);
28175406Sachestatic void tl_start_locked(struct ifnet *);
28275406Sachestatic int tl_ioctl(struct ifnet *, u_long, caddr_t);
28375406Sachestatic void tl_init(void *);
28475406Sachestatic void tl_init_locked(struct tl_softc *);
28575406Sachestatic void tl_stop(struct tl_softc *);
28675406Sachestatic void tl_watchdog(struct tl_softc *);
28775406Sachestatic int tl_shutdown(device_t);
28875406Sachestatic int tl_ifmedia_upd(struct ifnet *);
28975406Sachestatic void tl_ifmedia_sts(struct ifnet *, struct ifmediareq *);
29075406Sache
29175406Sachestatic u_int8_t tl_eeprom_putbyte(struct tl_softc *, int);
29275406Sachestatic u_int8_t	tl_eeprom_getbyte(struct tl_softc *, int, u_int8_t *);
29375406Sachestatic int tl_read_eeprom(struct tl_softc *, caddr_t, int, int);
29475406Sache
29575406Sachestatic int tl_miibus_readreg(device_t, int, int);
29675406Sachestatic int tl_miibus_writereg(device_t, int, int, int);
29775406Sachestatic void tl_miibus_statchg(device_t);
29875406Sache
29975406Sachestatic void tl_setmode(struct tl_softc *, int);
30075406Sachestatic uint32_t tl_mchash(const uint8_t *);
30175406Sachestatic void tl_setmulti(struct tl_softc *);
30275406Sachestatic void tl_setfilt(struct tl_softc *, caddr_t, int);
30375406Sachestatic void tl_softreset(struct tl_softc *, int);
30475406Sachestatic void tl_hardreset(device_t);
30575406Sachestatic int tl_list_rx_init(struct tl_softc *);
30675406Sachestatic int tl_list_tx_init(struct tl_softc *);
30775406Sache
30875406Sachestatic u_int8_t tl_dio_read8(struct tl_softc *, int);
30975406Sachestatic u_int16_t tl_dio_read16(struct tl_softc *, int);
31021308Sachestatic u_int32_t tl_dio_read32(struct tl_softc *, int);
31121308Sachestatic void tl_dio_write8(struct tl_softc *, int, int);
31221308Sachestatic void tl_dio_write16(struct tl_softc *, int, int);
31321308Sachestatic void tl_dio_write32(struct tl_softc *, int, int);
31421308Sachestatic void tl_dio_setbit(struct tl_softc *, int, int);
31521308Sachestatic void tl_dio_clrbit(struct tl_softc *, int, int);
31675406Sachestatic void tl_dio_setbit16(struct tl_softc *, int, int);
31775406Sachestatic void tl_dio_clrbit16(struct tl_softc *, int, int);
31875406Sache
31975406Sache/*
32075406Sache * MII bit-bang glue
32175406Sache */
32275406Sachestatic uint32_t tl_mii_bitbang_read(device_t);
32375406Sachestatic void tl_mii_bitbang_write(device_t, uint32_t);
32475406Sache
32575406Sachestatic const struct mii_bitbang_ops tl_mii_bitbang_ops = {
32675406Sache	tl_mii_bitbang_read,
32775406Sache	tl_mii_bitbang_write,
32875406Sache	{
32975406Sache		TL_SIO_MDATA,	/* MII_BIT_MDO */
33075406Sache		TL_SIO_MDATA,	/* MII_BIT_MDI */
33175406Sache		TL_SIO_MCLK,	/* MII_BIT_MDC */
33275406Sache		TL_SIO_MTXEN,	/* MII_BIT_DIR_HOST_PHY */
33375406Sache		0,		/* MII_BIT_DIR_PHY_HOST */
33475406Sache	}
33575406Sache};
33675406Sache
33775406Sache#ifdef TL_USEIOSPACE
33875406Sache#define TL_RES		SYS_RES_IOPORT
33975406Sache#define TL_RID		TL_PCI_LOIO
34075406Sache#else
34175406Sache#define TL_RES		SYS_RES_MEMORY
34275406Sache#define TL_RID		TL_PCI_LOMEM
34321308Sache#endif
34475406Sache
34575406Sachestatic device_method_t tl_methods[] = {
34675406Sache	/* Device interface */
34775406Sache	DEVMETHOD(device_probe,		tl_probe),
34875406Sache	DEVMETHOD(device_attach,	tl_attach),
34921308Sache	DEVMETHOD(device_detach,	tl_detach),
35021308Sache	DEVMETHOD(device_shutdown,	tl_shutdown),
35175406Sache
35275406Sache	/* MII interface */
35375406Sache	DEVMETHOD(miibus_readreg,	tl_miibus_readreg),
35475406Sache	DEVMETHOD(miibus_writereg,	tl_miibus_writereg),
35575406Sache	DEVMETHOD(miibus_statchg,	tl_miibus_statchg),
35675406Sache
35775406Sache	DEVMETHOD_END
35875406Sache};
35975406Sache
36075406Sachestatic driver_t tl_driver = {
36175406Sache	"tl",
36275406Sache	tl_methods,
36375406Sache	sizeof(struct tl_softc)
36475406Sache};
36575406Sache
36675406Sachestatic devclass_t tl_devclass;
36721308Sache
36821308SacheDRIVER_MODULE(tl, pci, tl_driver, tl_devclass, 0, 0);
36975406SacheDRIVER_MODULE(miibus, tl, miibus_driver, miibus_devclass, 0, 0);
37075406Sache
37175406Sachestatic u_int8_t tl_dio_read8(sc, reg)
37275406Sache	struct tl_softc		*sc;
37375406Sache	int			reg;
37475406Sache{
37575406Sache
37675406Sache	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
37775406Sache		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
37875406Sache	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
37921308Sache	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
38021308Sache		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
38175406Sache	return(CSR_READ_1(sc, TL_DIO_DATA + (reg & 3)));
38275406Sache}
38375406Sache
38475406Sachestatic u_int16_t tl_dio_read16(sc, reg)
38575406Sache	struct tl_softc		*sc;
38675406Sache	int			reg;
38775406Sache{
38821308Sache
38921308Sache	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
39075406Sache		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
39175406Sache	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
39275406Sache	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
39375406Sache		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
39475406Sache	return(CSR_READ_2(sc, TL_DIO_DATA + (reg & 3)));
39575406Sache}
39675406Sache
39775406Sachestatic u_int32_t tl_dio_read32(sc, reg)
39875406Sache	struct tl_softc		*sc;
39975406Sache	int			reg;
40075406Sache{
40175406Sache
40275406Sache	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
40375406Sache		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
40475406Sache	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
40575406Sache	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
40675406Sache		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
40775406Sache	return(CSR_READ_4(sc, TL_DIO_DATA + (reg & 3)));
40875406Sache}
40975406Sache
41075406Sachestatic void tl_dio_write8(sc, reg, val)
41175406Sache	struct tl_softc		*sc;
41275406Sache	int			reg;
41375406Sache	int			val;
41475406Sache{
41575406Sache
41621308Sache	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
41721308Sache		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
41875406Sache	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
41975406Sache	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
42075406Sache		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
42175406Sache	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), val);
42275406Sache}
42375406Sache
42421308Sachestatic void tl_dio_write16(sc, reg, val)
42521308Sache	struct tl_softc		*sc;
42675406Sache	int			reg;
42775406Sache	int			val;
42875406Sache{
42975406Sache
43075406Sache	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
43175406Sache		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
43275406Sache	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
43375406Sache	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
43475406Sache		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
43575406Sache	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), val);
43675406Sache}
43775406Sache
43875406Sachestatic void tl_dio_write32(sc, reg, val)
43975406Sache	struct tl_softc		*sc;
44075406Sache	int			reg;
44175406Sache	int			val;
44275406Sache{
44375406Sache
44475406Sache	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
44575406Sache		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
44675406Sache	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
44775406Sache	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
44875406Sache		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
44975406Sache	CSR_WRITE_4(sc, TL_DIO_DATA + (reg & 3), val);
45075406Sache}
45175406Sache
45221308Sachestatic void
45321308Sachetl_dio_setbit(sc, reg, bit)
45475406Sache	struct tl_softc		*sc;
45575406Sache	int			reg;
45675406Sache	int			bit;
45775406Sache{
45875406Sache	u_int8_t			f;
45921308Sache
46021308Sache	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
46121308Sache		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
46221308Sache	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
46321308Sache	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
46421308Sache		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
46521308Sache	f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
46621308Sache	f |= bit;
46721308Sache	CSR_BARRIER(sc, TL_DIO_DATA + (reg & 3), 1,
46821308Sache		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
46921308Sache	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
47021308Sache}
47121308Sache
47221308Sachestatic void
47321308Sachetl_dio_clrbit(sc, reg, bit)
47421308Sache	struct tl_softc		*sc;
47521308Sache	int			reg;
47621308Sache	int			bit;
47721308Sache{
47821308Sache	u_int8_t			f;
47921308Sache
48021308Sache	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
48121308Sache		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
48221308Sache	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
48321308Sache	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
48421308Sache		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
48521308Sache	f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
48621308Sache	f &= ~bit;
48721308Sache	CSR_BARRIER(sc, TL_DIO_DATA + (reg & 3), 1,
48821308Sache		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
48921308Sache	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
49021308Sache}
49121308Sache
49221308Sachestatic void tl_dio_setbit16(sc, reg, bit)
49321308Sache	struct tl_softc		*sc;
49421308Sache	int			reg;
49521308Sache	int			bit;
49621308Sache{
49721308Sache	u_int16_t			f;
49821308Sache
49921308Sache	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
50021308Sache		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
50121308Sache	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
50221308Sache	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
50321308Sache		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
50421308Sache	f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
50521308Sache	f |= bit;
50621308Sache	CSR_BARRIER(sc, TL_DIO_DATA + (reg & 3), 2,
50721308Sache		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
50821308Sache	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
50921308Sache}
51021308Sache
51121308Sachestatic void tl_dio_clrbit16(sc, reg, bit)
51221308Sache	struct tl_softc		*sc;
51321308Sache	int			reg;
51421308Sache	int			bit;
51521308Sache{
51621308Sache	u_int16_t			f;
51721308Sache
51821308Sache	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
51921308Sache		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
52021308Sache	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
52121308Sache	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
52221308Sache		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
52321308Sache	f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
52421308Sache	f &= ~bit;
52521308Sache	CSR_BARRIER(sc, TL_DIO_DATA + (reg & 3), 2,
52621308Sache		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
52721308Sache	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
52821308Sache}
52921308Sache
53021308Sache/*
53121308Sache * Send an instruction or address to the EEPROM, check for ACK.
53221308Sache */
53321308Sachestatic u_int8_t tl_eeprom_putbyte(sc, byte)
53421308Sache	struct tl_softc		*sc;
53521308Sache	int			byte;
53621308Sache{
53721308Sache	register int		i, ack = 0;
53821308Sache
53921308Sache	/*
54021308Sache	 * Make sure we're in TX mode.
54121308Sache	 */
54221308Sache	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ETXEN);
54321308Sache
54421308Sache	/*
54521308Sache	 * Feed in each bit and stobe the clock.
54621308Sache	 */
54721308Sache	for (i = 0x80; i; i >>= 1) {
54821308Sache		if (byte & i) {
54921308Sache			tl_dio_setbit(sc, TL_NETSIO, TL_SIO_EDATA);
55021308Sache		} else {
55121308Sache			tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_EDATA);
55221308Sache		}
55321308Sache		DELAY(1);
55421308Sache		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
55521308Sache		DELAY(1);
55621308Sache		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
55721308Sache	}
55821308Sache
55921308Sache	/*
56021308Sache	 * Turn off TX mode.
56121308Sache	 */
56221308Sache	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
56321308Sache
56421308Sache	/*
56521308Sache	 * Check for ack.
56621308Sache	 */
56721308Sache	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
56821308Sache	ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA;
56921308Sache	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
57021308Sache
57121308Sache	return(ack);
57221308Sache}
57321308Sache
57421308Sache/*
57521308Sache * Read a byte of data stored in the EEPROM at address 'addr.'
57621308Sache */
57721308Sachestatic u_int8_t tl_eeprom_getbyte(sc, addr, dest)
57821308Sache	struct tl_softc		*sc;
57921308Sache	int			addr;
58021308Sache	u_int8_t		*dest;
58121308Sache{
58221308Sache	register int		i;
58321308Sache	u_int8_t		byte = 0;
58421308Sache	device_t		tl_dev = sc->tl_dev;
58521308Sache
58621308Sache	tl_dio_write8(sc, TL_NETSIO, 0);
58721308Sache
58821308Sache	EEPROM_START;
58921308Sache
59021308Sache	/*
59121308Sache	 * Send write control code to EEPROM.
59221308Sache	 */
59321308Sache	if (tl_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
59421308Sache		device_printf(tl_dev, "failed to send write command, status: %x\n",
59521308Sache		    tl_dio_read8(sc, TL_NETSIO));
59621308Sache		return(1);
59721308Sache	}
59821308Sache
59921308Sache	/*
60021308Sache	 * Send address of byte we want to read.
60175406Sache	 */
60275406Sache	if (tl_eeprom_putbyte(sc, addr)) {
60375406Sache		device_printf(tl_dev, "failed to send address, status: %x\n",
60475406Sache		    tl_dio_read8(sc, TL_NETSIO));
60575406Sache		return(1);
60675406Sache	}
60775406Sache
60875406Sache	EEPROM_STOP;
60975406Sache	EEPROM_START;
61075406Sache	/*
61175406Sache	 * Send read control code to EEPROM.
61275406Sache	 */
61375406Sache	if (tl_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
61475406Sache		device_printf(tl_dev, "failed to send write command, status: %x\n",
61575406Sache		    tl_dio_read8(sc, TL_NETSIO));
61675406Sache		return(1);
61775406Sache	}
61875406Sache
61975406Sache	/*
62075406Sache	 * Start reading bits from EEPROM.
62175406Sache	 */
62275406Sache	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
62375406Sache	for (i = 0x80; i; i >>= 1) {
62475406Sache		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
62575406Sache		DELAY(1);
62675406Sache		if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA)
62775406Sache			byte |= i;
62821308Sache		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
62975406Sache		DELAY(1);
63075406Sache	}
63175406Sache
63275406Sache	EEPROM_STOP;
63375406Sache
63421308Sache	/*
63521308Sache	 * No ACK generated for read, so just return byte.
63675406Sache	 */
63775406Sache
63875406Sache	*dest = byte;
63975406Sache
64075406Sache	return(0);
64175406Sache}
64275406Sache
64375406Sache/*
64475406Sache * Read a sequence of bytes from the EEPROM.
64575406Sache */
64675406Sachestatic int
64775406Sachetl_read_eeprom(sc, dest, off, cnt)
64875406Sache	struct tl_softc		*sc;
64975406Sache	caddr_t			dest;
65075406Sache	int			off;
65175406Sache	int			cnt;
65221308Sache{
65321308Sache	int			err = 0, i;
65475406Sache	u_int8_t		byte = 0;
65575406Sache
65675406Sache	for (i = 0; i < cnt; i++) {
65775406Sache		err = tl_eeprom_getbyte(sc, off + i, &byte);
65875406Sache		if (err)
65975406Sache			break;
66075406Sache		*(dest + i) = byte;
66175406Sache	}
66275406Sache
66375406Sache	return(err ? 1 : 0);
66421308Sache}
66521308Sache
66675406Sache#define	TL_SIO_MII	(TL_SIO_MCLK | TL_SIO_MDATA | TL_SIO_MTXEN)
66775406Sache
66875406Sache/*
66975406Sache * Read the MII serial port for the MII bit-bang module.
67075406Sache */
67175406Sachestatic uint32_t
67275406Sachetl_mii_bitbang_read(device_t dev)
67321308Sache{
67421308Sache	struct tl_softc *sc;
67575406Sache	uint32_t val;
67675406Sache
67775406Sache	sc = device_get_softc(dev);
67875406Sache
67975406Sache	val = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MII;
68075406Sache	CSR_BARRIER(sc, TL_NETSIO, 1,
68175406Sache	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
68275406Sache
68375406Sache	return (val);
68475406Sache}
68575406Sache
68675406Sache/*
68775406Sache * Write the MII serial port for the MII bit-bang module.
68875406Sache */
68975406Sachestatic void
69075406Sachetl_mii_bitbang_write(device_t dev, uint32_t val)
69175406Sache{
69275406Sache	struct tl_softc *sc;
69375406Sache
69475406Sache	sc = device_get_softc(dev);
69575406Sache
69675406Sache	val = (tl_dio_read8(sc, TL_NETSIO) & ~TL_SIO_MII) | val;
69775406Sache	CSR_BARRIER(sc, TL_NETSIO, 1,
69875406Sache	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
69975406Sache	tl_dio_write8(sc, TL_NETSIO, val);
70075406Sache	CSR_BARRIER(sc, TL_NETSIO, 1,
70121308Sache	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
70221308Sache}
70375406Sache
70475406Sachestatic int
70575406Sachetl_miibus_readreg(dev, phy, reg)
70675406Sache	device_t		dev;
70775406Sache	int			phy, reg;
70875406Sache{
70921308Sache	struct tl_softc		*sc;
71021308Sache	int			minten, val;
71175406Sache
71275406Sache	sc = device_get_softc(dev);
71375406Sache
71475406Sache	/*
71575406Sache	 * Turn off MII interrupt by forcing MINTEN low.
71675406Sache	 */
71775406Sache	minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
71875406Sache	if (minten) {
71975406Sache		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
72075406Sache	}
72175406Sache
72275406Sache	val = mii_bitbang_readreg(dev, &tl_mii_bitbang_ops, phy, reg);
72375406Sache
72475406Sache	/* Reenable interrupts. */
72575406Sache	if (minten) {
72675406Sache		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
72775406Sache	}
72875406Sache
72975406Sache	return (val);
73075406Sache}
73175406Sache
73275406Sachestatic int
73375406Sachetl_miibus_writereg(dev, phy, reg, data)
73475406Sache	device_t		dev;
73575406Sache	int			phy, reg, data;
73675406Sache{
73721308Sache	struct tl_softc		*sc;
73821308Sache	int			minten;
73975406Sache
74075406Sache	sc = device_get_softc(dev);
74175406Sache
74275406Sache	/*
74375406Sache	 * Turn off MII interrupt by forcing MINTEN low.
74421308Sache	 */
74521308Sache	minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
74621308Sache	if (minten) {
74775406Sache		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
74875406Sache	}
74975406Sache
75075406Sache	mii_bitbang_writereg(dev, &tl_mii_bitbang_ops, phy, reg, data);
75175406Sache
75275406Sache	/* Reenable interrupts. */
75375406Sache	if (minten) {
75475406Sache		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
75575406Sache	}
75675406Sache
75775406Sache	return(0);
75875406Sache}
75975406Sache
76075406Sachestatic void
76175406Sachetl_miibus_statchg(dev)
76275406Sache	device_t		dev;
76375406Sache{
76475406Sache	struct tl_softc		*sc;
76575406Sache	struct mii_data		*mii;
76675406Sache
76775406Sache	sc = device_get_softc(dev);
76875406Sache	mii = device_get_softc(sc->tl_miibus);
76975406Sache
77075406Sache	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
77175406Sache		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
77275406Sache	} else {
77375406Sache		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
77475406Sache	}
77575406Sache}
77675406Sache
77775406Sache/*
77875406Sache * Set modes for bitrate devices.
77975406Sache */
78075406Sachestatic void
78175406Sachetl_setmode(sc, media)
78275406Sache	struct tl_softc		*sc;
78375406Sache	int			media;
78475406Sache{
78575406Sache	if (IFM_SUBTYPE(media) == IFM_10_5)
78675406Sache		tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
78775406Sache	if (IFM_SUBTYPE(media) == IFM_10_T) {
78875406Sache		tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
78975406Sache		if ((media & IFM_GMASK) == IFM_FDX) {
79075406Sache			tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
79175406Sache			tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
79275406Sache		} else {
79375406Sache			tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
79475406Sache			tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
79575406Sache		}
79675406Sache	}
79775406Sache}
79875406Sache
79975406Sache/*
80075406Sache * Calculate the hash of a MAC address for programming the multicast hash
80175406Sache * table.  This hash is simply the address split into 6-bit chunks
80275406Sache * XOR'd, e.g.
80375406Sache * byte: 000000|00 1111|1111 22|222222|333333|33 4444|4444 55|555555
80475406Sache * bit:  765432|10 7654|3210 76|543210|765432|10 7654|3210 76|543210
80575406Sache * Bytes 0-2 and 3-5 are symmetrical, so are folded together.  Then
80675406Sache * the folded 24-bit value is split into 6-bit portions and XOR'd.
80775406Sache */
80875406Sachestatic uint32_t
80975406Sachetl_mchash(addr)
81075406Sache	const uint8_t *addr;
81175406Sache{
81275406Sache	int t;
81375406Sache
81475406Sache	t = (addr[0] ^ addr[3]) << 16 | (addr[1] ^ addr[4]) << 8 |
81575406Sache		(addr[2] ^ addr[5]);
81675406Sache	return ((t >> 18) ^ (t >> 12) ^ (t >> 6) ^ t) & 0x3f;
81775406Sache}
81875406Sache
81975406Sache/*
82075406Sache * The ThunderLAN has a perfect MAC address filter in addition to
82175406Sache * the multicast hash filter. The perfect filter can be programmed
82275406Sache * with up to four MAC addresses. The first one is always used to
82375406Sache * hold the station address, which leaves us free to use the other
82475406Sache * three for multicast addresses.
82575406Sache */
82675406Sachestatic void
82775406Sachetl_setfilt(sc, addr, slot)
82875406Sache	struct tl_softc		*sc;
82975406Sache	caddr_t			addr;
83075406Sache	int			slot;
83175406Sache{
83275406Sache	int			i;
83375406Sache	u_int16_t		regaddr;
83475406Sache
83575406Sache	regaddr = TL_AREG0_B5 + (slot * ETHER_ADDR_LEN);
83675406Sache
83775406Sache	for (i = 0; i < ETHER_ADDR_LEN; i++)
83875406Sache		tl_dio_write8(sc, regaddr + i, *(addr + i));
83975406Sache}
84075406Sache
84175406Sache/*
84275406Sache * XXX In FreeBSD 3.0, multicast addresses are managed using a doubly
84375406Sache * linked list. This is fine, except addresses are added from the head
84475406Sache * end of the list. We want to arrange for 224.0.0.1 (the "all hosts")
84575406Sache * group to always be in the perfect filter, but as more groups are added,
84675406Sache * the 224.0.0.1 entry (which is always added first) gets pushed down
84775406Sache * the list and ends up at the tail. So after 3 or 4 multicast groups
84875406Sache * are added, the all-hosts entry gets pushed out of the perfect filter
84975406Sache * and into the hash table.
85075406Sache *
85175406Sache * Because the multicast list is a doubly-linked list as opposed to a
85275406Sache * circular queue, we don't have the ability to just grab the tail of
85375406Sache * the list and traverse it backwards. Instead, we have to traverse
85475406Sache * the list once to find the tail, then traverse it again backwards to
85575406Sache * update the multicast filter.
85675406Sache */
85775406Sachestatic void
85875406Sachetl_setmulti(sc)
85975406Sache	struct tl_softc		*sc;
86075406Sache{
86175406Sache	struct ifnet		*ifp;
86275406Sache	u_int32_t		hashes[2] = { 0, 0 };
86375406Sache	int			h, i;
86475406Sache	struct ifmultiaddr	*ifma;
86575406Sache	u_int8_t		dummy[] = { 0, 0, 0, 0, 0 ,0 };
86675406Sache	ifp = sc->tl_ifp;
86775406Sache
86875406Sache	/* First, zot all the existing filters. */
86975406Sache	for (i = 1; i < 4; i++)
87075406Sache		tl_setfilt(sc, (caddr_t)&dummy, i);
87175406Sache	tl_dio_write32(sc, TL_HASH1, 0);
87275406Sache	tl_dio_write32(sc, TL_HASH2, 0);
87375406Sache
87475406Sache	/* Now program new ones. */
87521308Sache	if (ifp->if_flags & IFF_ALLMULTI) {
87621308Sache		hashes[0] = 0xFFFFFFFF;
87721308Sache		hashes[1] = 0xFFFFFFFF;
878	} else {
879		i = 1;
880		if_maddr_rlock(ifp);
881		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
882			if (ifma->ifma_addr->sa_family != AF_LINK)
883				continue;
884			/*
885			 * Program the first three multicast groups
886			 * into the perfect filter. For all others,
887			 * use the hash table.
888			 */
889			if (i < 4) {
890				tl_setfilt(sc,
891			LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
892				i++;
893				continue;
894			}
895
896			h = tl_mchash(
897				LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
898			if (h < 32)
899				hashes[0] |= (1 << h);
900			else
901				hashes[1] |= (1 << (h - 32));
902		}
903		if_maddr_runlock(ifp);
904	}
905
906	tl_dio_write32(sc, TL_HASH1, hashes[0]);
907	tl_dio_write32(sc, TL_HASH2, hashes[1]);
908}
909
910/*
911 * This routine is recommended by the ThunderLAN manual to insure that
912 * the internal PHY is powered up correctly. It also recommends a one
913 * second pause at the end to 'wait for the clocks to start' but in my
914 * experience this isn't necessary.
915 */
916static void
917tl_hardreset(dev)
918	device_t		dev;
919{
920	int			i;
921	u_int16_t		flags;
922
923	mii_bitbang_sync(dev, &tl_mii_bitbang_ops);
924
925	flags = BMCR_LOOP|BMCR_ISO|BMCR_PDOWN;
926
927	for (i = 0; i < MII_NPHY; i++)
928		tl_miibus_writereg(dev, i, MII_BMCR, flags);
929
930	tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_ISO);
931	DELAY(50000);
932	tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_LOOP|BMCR_ISO);
933	mii_bitbang_sync(dev, &tl_mii_bitbang_ops);
934	while(tl_miibus_readreg(dev, 31, MII_BMCR) & BMCR_RESET);
935
936	DELAY(50000);
937}
938
939static void
940tl_softreset(sc, internal)
941	struct tl_softc		*sc;
942	int			internal;
943{
944        u_int32_t               cmd, dummy, i;
945
946        /* Assert the adapter reset bit. */
947	CMD_SET(sc, TL_CMD_ADRST);
948
949        /* Turn off interrupts */
950	CMD_SET(sc, TL_CMD_INTSOFF);
951
952	/* First, clear the stats registers. */
953	for (i = 0; i < 5; i++)
954		dummy = tl_dio_read32(sc, TL_TXGOODFRAMES);
955
956        /* Clear Areg and Hash registers */
957	for (i = 0; i < 8; i++)
958		tl_dio_write32(sc, TL_AREG0_B5, 0x00000000);
959
960        /*
961	 * Set up Netconfig register. Enable one channel and
962	 * one fragment mode.
963	 */
964	tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_ONECHAN|TL_CFG_ONEFRAG);
965	if (internal && !sc->tl_bitrate) {
966		tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
967	} else {
968		tl_dio_clrbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
969	}
970
971	/* Handle cards with bitrate devices. */
972	if (sc->tl_bitrate)
973		tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_BITRATE);
974
975	/*
976	 * Load adapter irq pacing timer and tx threshold.
977	 * We make the transmit threshold 1 initially but we may
978	 * change that later.
979	 */
980	cmd = CSR_READ_4(sc, TL_HOSTCMD);
981	cmd |= TL_CMD_NES;
982	cmd &= ~(TL_CMD_RT|TL_CMD_EOC|TL_CMD_ACK_MASK|TL_CMD_CHSEL_MASK);
983	CMD_PUT(sc, cmd | (TL_CMD_LDTHR | TX_THR));
984	CMD_PUT(sc, cmd | (TL_CMD_LDTMR | 0x00000003));
985
986        /* Unreset the MII */
987	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_NMRST);
988
989	/* Take the adapter out of reset */
990	tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NRESET|TL_CMD_NWRAP);
991
992	/* Wait for things to settle down a little. */
993	DELAY(500);
994}
995
996/*
997 * Probe for a ThunderLAN chip. Check the PCI vendor and device IDs
998 * against our list and return its name if we find a match.
999 */
1000static int
1001tl_probe(dev)
1002	device_t		dev;
1003{
1004	const struct tl_type	*t;
1005
1006	t = tl_devs;
1007
1008	while(t->tl_name != NULL) {
1009		if ((pci_get_vendor(dev) == t->tl_vid) &&
1010		    (pci_get_device(dev) == t->tl_did)) {
1011			device_set_desc(dev, t->tl_name);
1012			return (BUS_PROBE_DEFAULT);
1013		}
1014		t++;
1015	}
1016
1017	return(ENXIO);
1018}
1019
1020static int
1021tl_attach(dev)
1022	device_t		dev;
1023{
1024	u_int16_t		did, vid;
1025	const struct tl_type	*t;
1026	struct ifnet		*ifp;
1027	struct tl_softc		*sc;
1028	int			error, flags, i, rid, unit;
1029	u_char			eaddr[6];
1030
1031	vid = pci_get_vendor(dev);
1032	did = pci_get_device(dev);
1033	sc = device_get_softc(dev);
1034	sc->tl_dev = dev;
1035	unit = device_get_unit(dev);
1036
1037	t = tl_devs;
1038	while(t->tl_name != NULL) {
1039		if (vid == t->tl_vid && did == t->tl_did)
1040			break;
1041		t++;
1042	}
1043
1044	if (t->tl_name == NULL) {
1045		device_printf(dev, "unknown device!?\n");
1046		return (ENXIO);
1047	}
1048
1049	mtx_init(&sc->tl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1050	    MTX_DEF);
1051
1052	/*
1053	 * Map control/status registers.
1054	 */
1055	pci_enable_busmaster(dev);
1056
1057#ifdef TL_USEIOSPACE
1058
1059	rid = TL_PCI_LOIO;
1060	sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1061		RF_ACTIVE);
1062
1063	/*
1064	 * Some cards have the I/O and memory mapped address registers
1065	 * reversed. Try both combinations before giving up.
1066	 */
1067	if (sc->tl_res == NULL) {
1068		rid = TL_PCI_LOMEM;
1069		sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1070		    RF_ACTIVE);
1071	}
1072#else
1073	rid = TL_PCI_LOMEM;
1074	sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1075	    RF_ACTIVE);
1076	if (sc->tl_res == NULL) {
1077		rid = TL_PCI_LOIO;
1078		sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1079		    RF_ACTIVE);
1080	}
1081#endif
1082
1083	if (sc->tl_res == NULL) {
1084		device_printf(dev, "couldn't map ports/memory\n");
1085		error = ENXIO;
1086		goto fail;
1087	}
1088
1089#ifdef notdef
1090	/*
1091	 * The ThunderLAN manual suggests jacking the PCI latency
1092	 * timer all the way up to its maximum value. I'm not sure
1093	 * if this is really necessary, but what the manual wants,
1094	 * the manual gets.
1095	 */
1096	command = pci_read_config(dev, TL_PCI_LATENCY_TIMER, 4);
1097	command |= 0x0000FF00;
1098	pci_write_config(dev, TL_PCI_LATENCY_TIMER, command, 4);
1099#endif
1100
1101	/* Allocate interrupt */
1102	rid = 0;
1103	sc->tl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1104	    RF_SHAREABLE | RF_ACTIVE);
1105
1106	if (sc->tl_irq == NULL) {
1107		device_printf(dev, "couldn't map interrupt\n");
1108		error = ENXIO;
1109		goto fail;
1110	}
1111
1112	/*
1113	 * Now allocate memory for the TX and RX lists.
1114	 */
1115	sc->tl_ldata = contigmalloc(sizeof(struct tl_list_data), M_DEVBUF,
1116	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1117
1118	if (sc->tl_ldata == NULL) {
1119		device_printf(dev, "no memory for list buffers!\n");
1120		error = ENXIO;
1121		goto fail;
1122	}
1123
1124	bzero(sc->tl_ldata, sizeof(struct tl_list_data));
1125
1126	if (vid == COMPAQ_VENDORID || vid == TI_VENDORID)
1127		sc->tl_eeaddr = TL_EEPROM_EADDR;
1128	if (vid == OLICOM_VENDORID)
1129		sc->tl_eeaddr = TL_EEPROM_EADDR_OC;
1130
1131	/* Reset the adapter. */
1132	tl_softreset(sc, 1);
1133	tl_hardreset(dev);
1134	tl_softreset(sc, 1);
1135
1136	/*
1137	 * Get station address from the EEPROM.
1138	 */
1139	if (tl_read_eeprom(sc, eaddr, sc->tl_eeaddr, ETHER_ADDR_LEN)) {
1140		device_printf(dev, "failed to read station address\n");
1141		error = ENXIO;
1142		goto fail;
1143	}
1144
1145        /*
1146         * XXX Olicom, in its desire to be different from the
1147         * rest of the world, has done strange things with the
1148         * encoding of the station address in the EEPROM. First
1149         * of all, they store the address at offset 0xF8 rather
1150         * than at 0x83 like the ThunderLAN manual suggests.
1151         * Second, they store the address in three 16-bit words in
1152         * network byte order, as opposed to storing it sequentially
1153         * like all the other ThunderLAN cards. In order to get
1154         * the station address in a form that matches what the Olicom
1155         * diagnostic utility specifies, we have to byte-swap each
1156         * word. To make things even more confusing, neither 00:00:28
1157         * nor 00:00:24 appear in the IEEE OUI database.
1158         */
1159        if (vid == OLICOM_VENDORID) {
1160                for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
1161                        u_int16_t               *p;
1162                        p = (u_int16_t *)&eaddr[i];
1163                        *p = ntohs(*p);
1164                }
1165        }
1166
1167	ifp = sc->tl_ifp = if_alloc(IFT_ETHER);
1168	if (ifp == NULL) {
1169		device_printf(dev, "can not if_alloc()\n");
1170		error = ENOSPC;
1171		goto fail;
1172	}
1173	ifp->if_softc = sc;
1174	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1175	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1176	ifp->if_ioctl = tl_ioctl;
1177	ifp->if_start = tl_start;
1178	ifp->if_init = tl_init;
1179	ifp->if_snd.ifq_maxlen = TL_TX_LIST_CNT - 1;
1180	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1181	ifp->if_capenable |= IFCAP_VLAN_MTU;
1182	callout_init_mtx(&sc->tl_stat_callout, &sc->tl_mtx, 0);
1183
1184	/* Reset the adapter again. */
1185	tl_softreset(sc, 1);
1186	tl_hardreset(dev);
1187	tl_softreset(sc, 1);
1188
1189	/*
1190	 * Do MII setup. If no PHYs are found, then this is a
1191	 * bitrate ThunderLAN chip that only supports 10baseT
1192	 * and AUI/BNC.
1193	 * XXX mii_attach() can fail for reason different than
1194	 * no PHYs found!
1195	 */
1196	flags = 0;
1197	if (vid == COMPAQ_VENDORID) {
1198		if (did == COMPAQ_DEVICEID_NETEL_10_100_PROLIANT ||
1199		    did == COMPAQ_DEVICEID_NETFLEX_3P_INTEGRATED ||
1200		    did == COMPAQ_DEVICEID_NETFLEX_3P_BNC ||
1201		    did == COMPAQ_DEVICEID_NETEL_10_T2_UTP_COAX)
1202			flags |= MIIF_MACPRIV0;
1203		if (did == COMPAQ_DEVICEID_NETEL_10 ||
1204		    did == COMPAQ_DEVICEID_NETEL_10_100_DUAL ||
1205		    did == COMPAQ_DEVICEID_NETFLEX_3P ||
1206		    did == COMPAQ_DEVICEID_NETEL_10_100_EMBEDDED)
1207			flags |= MIIF_MACPRIV1;
1208	} else if (vid == OLICOM_VENDORID && did == OLICOM_DEVICEID_OC2183)
1209			flags |= MIIF_MACPRIV0 | MIIF_MACPRIV1;
1210	if (mii_attach(dev, &sc->tl_miibus, ifp, tl_ifmedia_upd,
1211	    tl_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0)) {
1212		struct ifmedia		*ifm;
1213		sc->tl_bitrate = 1;
1214		ifmedia_init(&sc->ifmedia, 0, tl_ifmedia_upd, tl_ifmedia_sts);
1215		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1216		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
1217		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1218		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_5, 0, NULL);
1219		ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_10_T);
1220		/* Reset again, this time setting bitrate mode. */
1221		tl_softreset(sc, 1);
1222		ifm = &sc->ifmedia;
1223		ifm->ifm_media = ifm->ifm_cur->ifm_media;
1224		tl_ifmedia_upd(ifp);
1225	}
1226
1227	/*
1228	 * Call MI attach routine.
1229	 */
1230	ether_ifattach(ifp, eaddr);
1231
1232	/* Hook interrupt last to avoid having to lock softc */
1233	error = bus_setup_intr(dev, sc->tl_irq, INTR_TYPE_NET | INTR_MPSAFE,
1234	    NULL, tl_intr, sc, &sc->tl_intrhand);
1235
1236	if (error) {
1237		device_printf(dev, "couldn't set up irq\n");
1238		ether_ifdetach(ifp);
1239		goto fail;
1240	}
1241
1242fail:
1243	if (error)
1244		tl_detach(dev);
1245
1246	return(error);
1247}
1248
1249/*
1250 * Shutdown hardware and free up resources. This can be called any
1251 * time after the mutex has been initialized. It is called in both
1252 * the error case in attach and the normal detach case so it needs
1253 * to be careful about only freeing resources that have actually been
1254 * allocated.
1255 */
1256static int
1257tl_detach(dev)
1258	device_t		dev;
1259{
1260	struct tl_softc		*sc;
1261	struct ifnet		*ifp;
1262
1263	sc = device_get_softc(dev);
1264	KASSERT(mtx_initialized(&sc->tl_mtx), ("tl mutex not initialized"));
1265	ifp = sc->tl_ifp;
1266
1267	/* These should only be active if attach succeeded */
1268	if (device_is_attached(dev)) {
1269		ether_ifdetach(ifp);
1270		TL_LOCK(sc);
1271		tl_stop(sc);
1272		TL_UNLOCK(sc);
1273		callout_drain(&sc->tl_stat_callout);
1274	}
1275	if (sc->tl_miibus)
1276		device_delete_child(dev, sc->tl_miibus);
1277	bus_generic_detach(dev);
1278
1279	if (sc->tl_ldata)
1280		contigfree(sc->tl_ldata, sizeof(struct tl_list_data), M_DEVBUF);
1281	if (sc->tl_bitrate)
1282		ifmedia_removeall(&sc->ifmedia);
1283
1284	if (sc->tl_intrhand)
1285		bus_teardown_intr(dev, sc->tl_irq, sc->tl_intrhand);
1286	if (sc->tl_irq)
1287		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->tl_irq);
1288	if (sc->tl_res)
1289		bus_release_resource(dev, TL_RES, TL_RID, sc->tl_res);
1290
1291	if (ifp)
1292		if_free(ifp);
1293
1294	mtx_destroy(&sc->tl_mtx);
1295
1296	return(0);
1297}
1298
1299/*
1300 * Initialize the transmit lists.
1301 */
1302static int
1303tl_list_tx_init(sc)
1304	struct tl_softc		*sc;
1305{
1306	struct tl_chain_data	*cd;
1307	struct tl_list_data	*ld;
1308	int			i;
1309
1310	cd = &sc->tl_cdata;
1311	ld = sc->tl_ldata;
1312	for (i = 0; i < TL_TX_LIST_CNT; i++) {
1313		cd->tl_tx_chain[i].tl_ptr = &ld->tl_tx_list[i];
1314		if (i == (TL_TX_LIST_CNT - 1))
1315			cd->tl_tx_chain[i].tl_next = NULL;
1316		else
1317			cd->tl_tx_chain[i].tl_next = &cd->tl_tx_chain[i + 1];
1318	}
1319
1320	cd->tl_tx_free = &cd->tl_tx_chain[0];
1321	cd->tl_tx_tail = cd->tl_tx_head = NULL;
1322	sc->tl_txeoc = 1;
1323
1324	return(0);
1325}
1326
1327/*
1328 * Initialize the RX lists and allocate mbufs for them.
1329 */
1330static int
1331tl_list_rx_init(sc)
1332	struct tl_softc		*sc;
1333{
1334	struct tl_chain_data		*cd;
1335	struct tl_list_data		*ld;
1336	int				i;
1337
1338	cd = &sc->tl_cdata;
1339	ld = sc->tl_ldata;
1340
1341	for (i = 0; i < TL_RX_LIST_CNT; i++) {
1342		cd->tl_rx_chain[i].tl_ptr =
1343			(struct tl_list_onefrag *)&ld->tl_rx_list[i];
1344		if (tl_newbuf(sc, &cd->tl_rx_chain[i]) == ENOBUFS)
1345			return(ENOBUFS);
1346		if (i == (TL_RX_LIST_CNT - 1)) {
1347			cd->tl_rx_chain[i].tl_next = NULL;
1348			ld->tl_rx_list[i].tlist_fptr = 0;
1349		} else {
1350			cd->tl_rx_chain[i].tl_next = &cd->tl_rx_chain[i + 1];
1351			ld->tl_rx_list[i].tlist_fptr =
1352					vtophys(&ld->tl_rx_list[i + 1]);
1353		}
1354	}
1355
1356	cd->tl_rx_head = &cd->tl_rx_chain[0];
1357	cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
1358
1359	return(0);
1360}
1361
1362static int
1363tl_newbuf(sc, c)
1364	struct tl_softc		*sc;
1365	struct tl_chain_onefrag	*c;
1366{
1367	struct mbuf		*m_new = NULL;
1368
1369	m_new = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1370	if (m_new == NULL)
1371		return(ENOBUFS);
1372
1373	c->tl_mbuf = m_new;
1374	c->tl_next = NULL;
1375	c->tl_ptr->tlist_frsize = MCLBYTES;
1376	c->tl_ptr->tlist_fptr = 0;
1377	c->tl_ptr->tl_frag.tlist_dadr = vtophys(mtod(m_new, caddr_t));
1378	c->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
1379	c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1380
1381	return(0);
1382}
1383/*
1384 * Interrupt handler for RX 'end of frame' condition (EOF). This
1385 * tells us that a full ethernet frame has been captured and we need
1386 * to handle it.
1387 *
1388 * Reception is done using 'lists' which consist of a header and a
1389 * series of 10 data count/data address pairs that point to buffers.
1390 * Initially you're supposed to create a list, populate it with pointers
1391 * to buffers, then load the physical address of the list into the
1392 * ch_parm register. The adapter is then supposed to DMA the received
1393 * frame into the buffers for you.
1394 *
1395 * To make things as fast as possible, we have the chip DMA directly
1396 * into mbufs. This saves us from having to do a buffer copy: we can
1397 * just hand the mbufs directly to ether_input(). Once the frame has
1398 * been sent on its way, the 'list' structure is assigned a new buffer
1399 * and moved to the end of the RX chain. As long we we stay ahead of
1400 * the chip, it will always think it has an endless receive channel.
1401 *
1402 * If we happen to fall behind and the chip manages to fill up all of
1403 * the buffers, it will generate an end of channel interrupt and wait
1404 * for us to empty the chain and restart the receiver.
1405 */
1406static int
1407tl_intvec_rxeof(xsc, type)
1408	void			*xsc;
1409	u_int32_t		type;
1410{
1411	struct tl_softc		*sc;
1412	int			r = 0, total_len = 0;
1413	struct ether_header	*eh;
1414	struct mbuf		*m;
1415	struct ifnet		*ifp;
1416	struct tl_chain_onefrag	*cur_rx;
1417
1418	sc = xsc;
1419	ifp = sc->tl_ifp;
1420
1421	TL_LOCK_ASSERT(sc);
1422
1423	while(sc->tl_cdata.tl_rx_head != NULL) {
1424		cur_rx = sc->tl_cdata.tl_rx_head;
1425		if (!(cur_rx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
1426			break;
1427		r++;
1428		sc->tl_cdata.tl_rx_head = cur_rx->tl_next;
1429		m = cur_rx->tl_mbuf;
1430		total_len = cur_rx->tl_ptr->tlist_frsize;
1431
1432		if (tl_newbuf(sc, cur_rx) == ENOBUFS) {
1433			ifp->if_ierrors++;
1434			cur_rx->tl_ptr->tlist_frsize = MCLBYTES;
1435			cur_rx->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1436			cur_rx->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
1437			continue;
1438		}
1439
1440		sc->tl_cdata.tl_rx_tail->tl_ptr->tlist_fptr =
1441						vtophys(cur_rx->tl_ptr);
1442		sc->tl_cdata.tl_rx_tail->tl_next = cur_rx;
1443		sc->tl_cdata.tl_rx_tail = cur_rx;
1444
1445		/*
1446		 * Note: when the ThunderLAN chip is in 'capture all
1447		 * frames' mode, it will receive its own transmissions.
1448		 * We drop don't need to process our own transmissions,
1449		 * so we drop them here and continue.
1450		 */
1451		eh = mtod(m, struct ether_header *);
1452		/*if (ifp->if_flags & IFF_PROMISC && */
1453		if (!bcmp(eh->ether_shost, IF_LLADDR(sc->tl_ifp),
1454		 					ETHER_ADDR_LEN)) {
1455				m_freem(m);
1456				continue;
1457		}
1458
1459		m->m_pkthdr.rcvif = ifp;
1460		m->m_pkthdr.len = m->m_len = total_len;
1461
1462		TL_UNLOCK(sc);
1463		(*ifp->if_input)(ifp, m);
1464		TL_LOCK(sc);
1465	}
1466
1467	return(r);
1468}
1469
1470/*
1471 * The RX-EOC condition hits when the ch_parm address hasn't been
1472 * initialized or the adapter reached a list with a forward pointer
1473 * of 0 (which indicates the end of the chain). In our case, this means
1474 * the card has hit the end of the receive buffer chain and we need to
1475 * empty out the buffers and shift the pointer back to the beginning again.
1476 */
1477static int
1478tl_intvec_rxeoc(xsc, type)
1479	void			*xsc;
1480	u_int32_t		type;
1481{
1482	struct tl_softc		*sc;
1483	int			r;
1484	struct tl_chain_data	*cd;
1485
1486
1487	sc = xsc;
1488	cd = &sc->tl_cdata;
1489
1490	/* Flush out the receive queue and ack RXEOF interrupts. */
1491	r = tl_intvec_rxeof(xsc, type);
1492	CMD_PUT(sc, TL_CMD_ACK | r | (type & ~(0x00100000)));
1493	r = 1;
1494	cd->tl_rx_head = &cd->tl_rx_chain[0];
1495	cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
1496	CSR_WRITE_4(sc, TL_CH_PARM, vtophys(sc->tl_cdata.tl_rx_head->tl_ptr));
1497	r |= (TL_CMD_GO|TL_CMD_RT);
1498	return(r);
1499}
1500
1501static int
1502tl_intvec_txeof(xsc, type)
1503	void			*xsc;
1504	u_int32_t		type;
1505{
1506	struct tl_softc		*sc;
1507	int			r = 0;
1508	struct tl_chain		*cur_tx;
1509
1510	sc = xsc;
1511
1512	/*
1513	 * Go through our tx list and free mbufs for those
1514	 * frames that have been sent.
1515	 */
1516	while (sc->tl_cdata.tl_tx_head != NULL) {
1517		cur_tx = sc->tl_cdata.tl_tx_head;
1518		if (!(cur_tx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
1519			break;
1520		sc->tl_cdata.tl_tx_head = cur_tx->tl_next;
1521
1522		r++;
1523		m_freem(cur_tx->tl_mbuf);
1524		cur_tx->tl_mbuf = NULL;
1525
1526		cur_tx->tl_next = sc->tl_cdata.tl_tx_free;
1527		sc->tl_cdata.tl_tx_free = cur_tx;
1528		if (!cur_tx->tl_ptr->tlist_fptr)
1529			break;
1530	}
1531
1532	return(r);
1533}
1534
1535/*
1536 * The transmit end of channel interrupt. The adapter triggers this
1537 * interrupt to tell us it hit the end of the current transmit list.
1538 *
1539 * A note about this: it's possible for a condition to arise where
1540 * tl_start() may try to send frames between TXEOF and TXEOC interrupts.
1541 * You have to avoid this since the chip expects things to go in a
1542 * particular order: transmit, acknowledge TXEOF, acknowledge TXEOC.
1543 * When the TXEOF handler is called, it will free all of the transmitted
1544 * frames and reset the tx_head pointer to NULL. However, a TXEOC
1545 * interrupt should be received and acknowledged before any more frames
1546 * are queued for transmission. If tl_statrt() is called after TXEOF
1547 * resets the tx_head pointer but _before_ the TXEOC interrupt arrives,
1548 * it could attempt to issue a transmit command prematurely.
1549 *
1550 * To guard against this, tl_start() will only issue transmit commands
1551 * if the tl_txeoc flag is set, and only the TXEOC interrupt handler
1552 * can set this flag once tl_start() has cleared it.
1553 */
1554static int
1555tl_intvec_txeoc(xsc, type)
1556	void			*xsc;
1557	u_int32_t		type;
1558{
1559	struct tl_softc		*sc;
1560	struct ifnet		*ifp;
1561	u_int32_t		cmd;
1562
1563	sc = xsc;
1564	ifp = sc->tl_ifp;
1565
1566	/* Clear the timeout timer. */
1567	sc->tl_timer = 0;
1568
1569	if (sc->tl_cdata.tl_tx_head == NULL) {
1570		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1571		sc->tl_cdata.tl_tx_tail = NULL;
1572		sc->tl_txeoc = 1;
1573	} else {
1574		sc->tl_txeoc = 0;
1575		/* First we have to ack the EOC interrupt. */
1576		CMD_PUT(sc, TL_CMD_ACK | 0x00000001 | type);
1577		/* Then load the address of the next TX list. */
1578		CSR_WRITE_4(sc, TL_CH_PARM,
1579		    vtophys(sc->tl_cdata.tl_tx_head->tl_ptr));
1580		/* Restart TX channel. */
1581		cmd = CSR_READ_4(sc, TL_HOSTCMD);
1582		cmd &= ~TL_CMD_RT;
1583		cmd |= TL_CMD_GO|TL_CMD_INTSON;
1584		CMD_PUT(sc, cmd);
1585		return(0);
1586	}
1587
1588	return(1);
1589}
1590
1591static int
1592tl_intvec_adchk(xsc, type)
1593	void			*xsc;
1594	u_int32_t		type;
1595{
1596	struct tl_softc		*sc;
1597
1598	sc = xsc;
1599
1600	if (type)
1601		device_printf(sc->tl_dev, "adapter check: %x\n",
1602			(unsigned int)CSR_READ_4(sc, TL_CH_PARM));
1603
1604	tl_softreset(sc, 1);
1605	tl_stop(sc);
1606	tl_init_locked(sc);
1607	CMD_SET(sc, TL_CMD_INTSON);
1608
1609	return(0);
1610}
1611
1612static int
1613tl_intvec_netsts(xsc, type)
1614	void			*xsc;
1615	u_int32_t		type;
1616{
1617	struct tl_softc		*sc;
1618	u_int16_t		netsts;
1619
1620	sc = xsc;
1621
1622	netsts = tl_dio_read16(sc, TL_NETSTS);
1623	tl_dio_write16(sc, TL_NETSTS, netsts);
1624
1625	device_printf(sc->tl_dev, "network status: %x\n", netsts);
1626
1627	return(1);
1628}
1629
1630static void
1631tl_intr(xsc)
1632	void			*xsc;
1633{
1634	struct tl_softc		*sc;
1635	struct ifnet		*ifp;
1636	int			r = 0;
1637	u_int32_t		type = 0;
1638	u_int16_t		ints = 0;
1639	u_int8_t		ivec = 0;
1640
1641	sc = xsc;
1642	TL_LOCK(sc);
1643
1644	/* Disable interrupts */
1645	ints = CSR_READ_2(sc, TL_HOST_INT);
1646	CSR_WRITE_2(sc, TL_HOST_INT, ints);
1647	type = (ints << 16) & 0xFFFF0000;
1648	ivec = (ints & TL_VEC_MASK) >> 5;
1649	ints = (ints & TL_INT_MASK) >> 2;
1650
1651	ifp = sc->tl_ifp;
1652
1653	switch(ints) {
1654	case (TL_INTR_INVALID):
1655#ifdef DIAGNOSTIC
1656		device_printf(sc->tl_dev, "got an invalid interrupt!\n");
1657#endif
1658		/* Re-enable interrupts but don't ack this one. */
1659		CMD_PUT(sc, type);
1660		r = 0;
1661		break;
1662	case (TL_INTR_TXEOF):
1663		r = tl_intvec_txeof((void *)sc, type);
1664		break;
1665	case (TL_INTR_TXEOC):
1666		r = tl_intvec_txeoc((void *)sc, type);
1667		break;
1668	case (TL_INTR_STATOFLOW):
1669		tl_stats_update(sc);
1670		r = 1;
1671		break;
1672	case (TL_INTR_RXEOF):
1673		r = tl_intvec_rxeof((void *)sc, type);
1674		break;
1675	case (TL_INTR_DUMMY):
1676		device_printf(sc->tl_dev, "got a dummy interrupt\n");
1677		r = 1;
1678		break;
1679	case (TL_INTR_ADCHK):
1680		if (ivec)
1681			r = tl_intvec_adchk((void *)sc, type);
1682		else
1683			r = tl_intvec_netsts((void *)sc, type);
1684		break;
1685	case (TL_INTR_RXEOC):
1686		r = tl_intvec_rxeoc((void *)sc, type);
1687		break;
1688	default:
1689		device_printf(sc->tl_dev, "bogus interrupt type\n");
1690		break;
1691	}
1692
1693	/* Re-enable interrupts */
1694	if (r) {
1695		CMD_PUT(sc, TL_CMD_ACK | r | type);
1696	}
1697
1698	if (ifp->if_snd.ifq_head != NULL)
1699		tl_start_locked(ifp);
1700
1701	TL_UNLOCK(sc);
1702}
1703
1704static void
1705tl_stats_update(xsc)
1706	void			*xsc;
1707{
1708	struct tl_softc		*sc;
1709	struct ifnet		*ifp;
1710	struct tl_stats		tl_stats;
1711	struct mii_data		*mii;
1712	u_int32_t		*p;
1713
1714	bzero((char *)&tl_stats, sizeof(struct tl_stats));
1715
1716	sc = xsc;
1717	TL_LOCK_ASSERT(sc);
1718	ifp = sc->tl_ifp;
1719
1720	p = (u_int32_t *)&tl_stats;
1721
1722	CSR_WRITE_2(sc, TL_DIO_ADDR, TL_TXGOODFRAMES|TL_DIO_ADDR_INC);
1723	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1724	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1725	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1726	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1727	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1728
1729	ifp->if_opackets += tl_tx_goodframes(tl_stats);
1730	ifp->if_collisions += tl_stats.tl_tx_single_collision +
1731				tl_stats.tl_tx_multi_collision;
1732	ifp->if_ipackets += tl_rx_goodframes(tl_stats);
1733	ifp->if_ierrors += tl_stats.tl_crc_errors + tl_stats.tl_code_errors +
1734			    tl_rx_overrun(tl_stats);
1735	ifp->if_oerrors += tl_tx_underrun(tl_stats);
1736
1737	if (tl_tx_underrun(tl_stats)) {
1738		u_int8_t		tx_thresh;
1739		tx_thresh = tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_TXTHRESH;
1740		if (tx_thresh != TL_AC_TXTHRESH_WHOLEPKT) {
1741			tx_thresh >>= 4;
1742			tx_thresh++;
1743			device_printf(sc->tl_dev, "tx underrun -- increasing "
1744			    "tx threshold to %d bytes\n",
1745			    (64 * (tx_thresh * 4)));
1746			tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
1747			tl_dio_setbit(sc, TL_ACOMMIT, tx_thresh << 4);
1748		}
1749	}
1750
1751	if (sc->tl_timer > 0 && --sc->tl_timer == 0)
1752		tl_watchdog(sc);
1753
1754	callout_reset(&sc->tl_stat_callout, hz, tl_stats_update, sc);
1755
1756	if (!sc->tl_bitrate) {
1757		mii = device_get_softc(sc->tl_miibus);
1758		mii_tick(mii);
1759	}
1760}
1761
1762/*
1763 * Encapsulate an mbuf chain in a list by coupling the mbuf data
1764 * pointers to the fragment pointers.
1765 */
1766static int
1767tl_encap(sc, c, m_head)
1768	struct tl_softc		*sc;
1769	struct tl_chain		*c;
1770	struct mbuf		*m_head;
1771{
1772	int			frag = 0;
1773	struct tl_frag		*f = NULL;
1774	int			total_len;
1775	struct mbuf		*m;
1776	struct ifnet		*ifp = sc->tl_ifp;
1777
1778	/*
1779 	 * Start packing the mbufs in this chain into
1780	 * the fragment pointers. Stop when we run out
1781 	 * of fragments or hit the end of the mbuf chain.
1782	 */
1783	m = m_head;
1784	total_len = 0;
1785
1786	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1787		if (m->m_len != 0) {
1788			if (frag == TL_MAXFRAGS)
1789				break;
1790			total_len+= m->m_len;
1791			c->tl_ptr->tl_frag[frag].tlist_dadr =
1792				vtophys(mtod(m, vm_offset_t));
1793			c->tl_ptr->tl_frag[frag].tlist_dcnt = m->m_len;
1794			frag++;
1795		}
1796	}
1797
1798	/*
1799	 * Handle special cases.
1800	 * Special case #1: we used up all 10 fragments, but
1801	 * we have more mbufs left in the chain. Copy the
1802	 * data into an mbuf cluster. Note that we don't
1803	 * bother clearing the values in the other fragment
1804	 * pointers/counters; it wouldn't gain us anything,
1805	 * and would waste cycles.
1806	 */
1807	if (m != NULL) {
1808		struct mbuf		*m_new = NULL;
1809
1810		MGETHDR(m_new, M_NOWAIT, MT_DATA);
1811		if (m_new == NULL) {
1812			if_printf(ifp, "no memory for tx list\n");
1813			return(1);
1814		}
1815		if (m_head->m_pkthdr.len > MHLEN) {
1816			MCLGET(m_new, M_NOWAIT);
1817			if (!(m_new->m_flags & M_EXT)) {
1818				m_freem(m_new);
1819				if_printf(ifp, "no memory for tx list\n");
1820				return(1);
1821			}
1822		}
1823		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1824					mtod(m_new, caddr_t));
1825		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1826		m_freem(m_head);
1827		m_head = m_new;
1828		f = &c->tl_ptr->tl_frag[0];
1829		f->tlist_dadr = vtophys(mtod(m_new, caddr_t));
1830		f->tlist_dcnt = total_len = m_new->m_len;
1831		frag = 1;
1832	}
1833
1834	/*
1835	 * Special case #2: the frame is smaller than the minimum
1836	 * frame size. We have to pad it to make the chip happy.
1837	 */
1838	if (total_len < TL_MIN_FRAMELEN) {
1839		if (frag == TL_MAXFRAGS)
1840			if_printf(ifp,
1841			    "all frags filled but frame still to small!\n");
1842		f = &c->tl_ptr->tl_frag[frag];
1843		f->tlist_dcnt = TL_MIN_FRAMELEN - total_len;
1844		f->tlist_dadr = vtophys(&sc->tl_ldata->tl_pad);
1845		total_len += f->tlist_dcnt;
1846		frag++;
1847	}
1848
1849	c->tl_mbuf = m_head;
1850	c->tl_ptr->tl_frag[frag - 1].tlist_dcnt |= TL_LAST_FRAG;
1851	c->tl_ptr->tlist_frsize = total_len;
1852	c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1853	c->tl_ptr->tlist_fptr = 0;
1854
1855	return(0);
1856}
1857
1858/*
1859 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1860 * to the mbuf data regions directly in the transmit lists. We also save a
1861 * copy of the pointers since the transmit list fragment pointers are
1862 * physical addresses.
1863 */
1864static void
1865tl_start(ifp)
1866	struct ifnet		*ifp;
1867{
1868	struct tl_softc		*sc;
1869
1870	sc = ifp->if_softc;
1871	TL_LOCK(sc);
1872	tl_start_locked(ifp);
1873	TL_UNLOCK(sc);
1874}
1875
1876static void
1877tl_start_locked(ifp)
1878	struct ifnet		*ifp;
1879{
1880	struct tl_softc		*sc;
1881	struct mbuf		*m_head = NULL;
1882	u_int32_t		cmd;
1883	struct tl_chain		*prev = NULL, *cur_tx = NULL, *start_tx;
1884
1885	sc = ifp->if_softc;
1886	TL_LOCK_ASSERT(sc);
1887
1888	/*
1889	 * Check for an available queue slot. If there are none,
1890	 * punt.
1891	 */
1892	if (sc->tl_cdata.tl_tx_free == NULL) {
1893		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1894		return;
1895	}
1896
1897	start_tx = sc->tl_cdata.tl_tx_free;
1898
1899	while(sc->tl_cdata.tl_tx_free != NULL) {
1900		IF_DEQUEUE(&ifp->if_snd, m_head);
1901		if (m_head == NULL)
1902			break;
1903
1904		/* Pick a chain member off the free list. */
1905		cur_tx = sc->tl_cdata.tl_tx_free;
1906		sc->tl_cdata.tl_tx_free = cur_tx->tl_next;
1907
1908		cur_tx->tl_next = NULL;
1909
1910		/* Pack the data into the list. */
1911		tl_encap(sc, cur_tx, m_head);
1912
1913		/* Chain it together */
1914		if (prev != NULL) {
1915			prev->tl_next = cur_tx;
1916			prev->tl_ptr->tlist_fptr = vtophys(cur_tx->tl_ptr);
1917		}
1918		prev = cur_tx;
1919
1920		/*
1921		 * If there's a BPF listener, bounce a copy of this frame
1922		 * to him.
1923		 */
1924		BPF_MTAP(ifp, cur_tx->tl_mbuf);
1925	}
1926
1927	/*
1928	 * If there are no packets queued, bail.
1929	 */
1930	if (cur_tx == NULL)
1931		return;
1932
1933	/*
1934	 * That's all we can stands, we can't stands no more.
1935	 * If there are no other transfers pending, then issue the
1936	 * TX GO command to the adapter to start things moving.
1937	 * Otherwise, just leave the data in the queue and let
1938	 * the EOF/EOC interrupt handler send.
1939	 */
1940	if (sc->tl_cdata.tl_tx_head == NULL) {
1941		sc->tl_cdata.tl_tx_head = start_tx;
1942		sc->tl_cdata.tl_tx_tail = cur_tx;
1943
1944		if (sc->tl_txeoc) {
1945			sc->tl_txeoc = 0;
1946			CSR_WRITE_4(sc, TL_CH_PARM, vtophys(start_tx->tl_ptr));
1947			cmd = CSR_READ_4(sc, TL_HOSTCMD);
1948			cmd &= ~TL_CMD_RT;
1949			cmd |= TL_CMD_GO|TL_CMD_INTSON;
1950			CMD_PUT(sc, cmd);
1951		}
1952	} else {
1953		sc->tl_cdata.tl_tx_tail->tl_next = start_tx;
1954		sc->tl_cdata.tl_tx_tail = cur_tx;
1955	}
1956
1957	/*
1958	 * Set a timeout in case the chip goes out to lunch.
1959	 */
1960	sc->tl_timer = 5;
1961}
1962
1963static void
1964tl_init(xsc)
1965	void			*xsc;
1966{
1967	struct tl_softc		*sc = xsc;
1968
1969	TL_LOCK(sc);
1970	tl_init_locked(sc);
1971	TL_UNLOCK(sc);
1972}
1973
1974static void
1975tl_init_locked(sc)
1976	struct tl_softc		*sc;
1977{
1978	struct ifnet		*ifp = sc->tl_ifp;
1979	struct mii_data		*mii;
1980
1981	TL_LOCK_ASSERT(sc);
1982
1983	ifp = sc->tl_ifp;
1984
1985	/*
1986	 * Cancel pending I/O.
1987	 */
1988	tl_stop(sc);
1989
1990	/* Initialize TX FIFO threshold */
1991	tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
1992	tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH_16LONG);
1993
1994        /* Set PCI burst size */
1995	tl_dio_write8(sc, TL_BSIZEREG, TL_RXBURST_16LONG|TL_TXBURST_16LONG);
1996
1997	/*
1998	 * Set 'capture all frames' bit for promiscuous mode.
1999	 */
2000	if (ifp->if_flags & IFF_PROMISC)
2001		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
2002	else
2003		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
2004
2005	/*
2006	 * Set capture broadcast bit to capture broadcast frames.
2007	 */
2008	if (ifp->if_flags & IFF_BROADCAST)
2009		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_NOBRX);
2010	else
2011		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NOBRX);
2012
2013	tl_dio_write16(sc, TL_MAXRX, MCLBYTES);
2014
2015	/* Init our MAC address */
2016	tl_setfilt(sc, IF_LLADDR(sc->tl_ifp), 0);
2017
2018	/* Init multicast filter, if needed. */
2019	tl_setmulti(sc);
2020
2021	/* Init circular RX list. */
2022	if (tl_list_rx_init(sc) == ENOBUFS) {
2023		device_printf(sc->tl_dev,
2024		    "initialization failed: no memory for rx buffers\n");
2025		tl_stop(sc);
2026		return;
2027	}
2028
2029	/* Init TX pointers. */
2030	tl_list_tx_init(sc);
2031
2032	/* Enable PCI interrupts. */
2033	CMD_SET(sc, TL_CMD_INTSON);
2034
2035	/* Load the address of the rx list */
2036	CMD_SET(sc, TL_CMD_RT);
2037	CSR_WRITE_4(sc, TL_CH_PARM, vtophys(&sc->tl_ldata->tl_rx_list[0]));
2038
2039	if (!sc->tl_bitrate) {
2040		if (sc->tl_miibus != NULL) {
2041			mii = device_get_softc(sc->tl_miibus);
2042			mii_mediachg(mii);
2043		}
2044	} else {
2045		tl_ifmedia_upd(ifp);
2046	}
2047
2048	/* Send the RX go command */
2049	CMD_SET(sc, TL_CMD_GO|TL_CMD_NES|TL_CMD_RT);
2050
2051	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2052	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2053
2054	/* Start the stats update counter */
2055	callout_reset(&sc->tl_stat_callout, hz, tl_stats_update, sc);
2056}
2057
2058/*
2059 * Set media options.
2060 */
2061static int
2062tl_ifmedia_upd(ifp)
2063	struct ifnet		*ifp;
2064{
2065	struct tl_softc		*sc;
2066	struct mii_data		*mii = NULL;
2067
2068	sc = ifp->if_softc;
2069
2070	TL_LOCK(sc);
2071	if (sc->tl_bitrate)
2072		tl_setmode(sc, sc->ifmedia.ifm_media);
2073	else {
2074		mii = device_get_softc(sc->tl_miibus);
2075		mii_mediachg(mii);
2076	}
2077	TL_UNLOCK(sc);
2078
2079	return(0);
2080}
2081
2082/*
2083 * Report current media status.
2084 */
2085static void
2086tl_ifmedia_sts(ifp, ifmr)
2087	struct ifnet		*ifp;
2088	struct ifmediareq	*ifmr;
2089{
2090	struct tl_softc		*sc;
2091	struct mii_data		*mii;
2092
2093	sc = ifp->if_softc;
2094
2095	TL_LOCK(sc);
2096	ifmr->ifm_active = IFM_ETHER;
2097
2098	if (sc->tl_bitrate) {
2099		if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD1)
2100			ifmr->ifm_active = IFM_ETHER|IFM_10_5;
2101		else
2102			ifmr->ifm_active = IFM_ETHER|IFM_10_T;
2103		if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD3)
2104			ifmr->ifm_active |= IFM_HDX;
2105		else
2106			ifmr->ifm_active |= IFM_FDX;
2107		return;
2108	} else {
2109		mii = device_get_softc(sc->tl_miibus);
2110		mii_pollstat(mii);
2111		ifmr->ifm_active = mii->mii_media_active;
2112		ifmr->ifm_status = mii->mii_media_status;
2113	}
2114	TL_UNLOCK(sc);
2115}
2116
2117static int
2118tl_ioctl(ifp, command, data)
2119	struct ifnet		*ifp;
2120	u_long			command;
2121	caddr_t			data;
2122{
2123	struct tl_softc		*sc = ifp->if_softc;
2124	struct ifreq		*ifr = (struct ifreq *) data;
2125	int			error = 0;
2126
2127	switch(command) {
2128	case SIOCSIFFLAGS:
2129		TL_LOCK(sc);
2130		if (ifp->if_flags & IFF_UP) {
2131			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2132			    ifp->if_flags & IFF_PROMISC &&
2133			    !(sc->tl_if_flags & IFF_PROMISC)) {
2134				tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
2135				tl_setmulti(sc);
2136			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2137			    !(ifp->if_flags & IFF_PROMISC) &&
2138			    sc->tl_if_flags & IFF_PROMISC) {
2139				tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
2140				tl_setmulti(sc);
2141			} else
2142				tl_init_locked(sc);
2143		} else {
2144			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2145				tl_stop(sc);
2146			}
2147		}
2148		sc->tl_if_flags = ifp->if_flags;
2149		TL_UNLOCK(sc);
2150		error = 0;
2151		break;
2152	case SIOCADDMULTI:
2153	case SIOCDELMULTI:
2154		TL_LOCK(sc);
2155		tl_setmulti(sc);
2156		TL_UNLOCK(sc);
2157		error = 0;
2158		break;
2159	case SIOCSIFMEDIA:
2160	case SIOCGIFMEDIA:
2161		if (sc->tl_bitrate)
2162			error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2163		else {
2164			struct mii_data		*mii;
2165			mii = device_get_softc(sc->tl_miibus);
2166			error = ifmedia_ioctl(ifp, ifr,
2167			    &mii->mii_media, command);
2168		}
2169		break;
2170	default:
2171		error = ether_ioctl(ifp, command, data);
2172		break;
2173	}
2174
2175	return(error);
2176}
2177
2178static void
2179tl_watchdog(sc)
2180	struct tl_softc		*sc;
2181{
2182	struct ifnet		*ifp;
2183
2184	TL_LOCK_ASSERT(sc);
2185	ifp = sc->tl_ifp;
2186
2187	if_printf(ifp, "device timeout\n");
2188
2189	ifp->if_oerrors++;
2190
2191	tl_softreset(sc, 1);
2192	tl_init_locked(sc);
2193}
2194
2195/*
2196 * Stop the adapter and free any mbufs allocated to the
2197 * RX and TX lists.
2198 */
2199static void
2200tl_stop(sc)
2201	struct tl_softc		*sc;
2202{
2203	register int		i;
2204	struct ifnet		*ifp;
2205
2206	TL_LOCK_ASSERT(sc);
2207
2208	ifp = sc->tl_ifp;
2209
2210	/* Stop the stats updater. */
2211	callout_stop(&sc->tl_stat_callout);
2212
2213	/* Stop the transmitter */
2214	CMD_CLR(sc, TL_CMD_RT);
2215	CMD_SET(sc, TL_CMD_STOP);
2216	CSR_WRITE_4(sc, TL_CH_PARM, 0);
2217
2218	/* Stop the receiver */
2219	CMD_SET(sc, TL_CMD_RT);
2220	CMD_SET(sc, TL_CMD_STOP);
2221	CSR_WRITE_4(sc, TL_CH_PARM, 0);
2222
2223	/*
2224	 * Disable host interrupts.
2225	 */
2226	CMD_SET(sc, TL_CMD_INTSOFF);
2227
2228	/*
2229	 * Clear list pointer.
2230	 */
2231	CSR_WRITE_4(sc, TL_CH_PARM, 0);
2232
2233	/*
2234	 * Free the RX lists.
2235	 */
2236	for (i = 0; i < TL_RX_LIST_CNT; i++) {
2237		if (sc->tl_cdata.tl_rx_chain[i].tl_mbuf != NULL) {
2238			m_freem(sc->tl_cdata.tl_rx_chain[i].tl_mbuf);
2239			sc->tl_cdata.tl_rx_chain[i].tl_mbuf = NULL;
2240		}
2241	}
2242	bzero((char *)&sc->tl_ldata->tl_rx_list,
2243		sizeof(sc->tl_ldata->tl_rx_list));
2244
2245	/*
2246	 * Free the TX list buffers.
2247	 */
2248	for (i = 0; i < TL_TX_LIST_CNT; i++) {
2249		if (sc->tl_cdata.tl_tx_chain[i].tl_mbuf != NULL) {
2250			m_freem(sc->tl_cdata.tl_tx_chain[i].tl_mbuf);
2251			sc->tl_cdata.tl_tx_chain[i].tl_mbuf = NULL;
2252		}
2253	}
2254	bzero((char *)&sc->tl_ldata->tl_tx_list,
2255		sizeof(sc->tl_ldata->tl_tx_list));
2256
2257	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2258}
2259
2260/*
2261 * Stop all chip I/O so that the kernel's probe routines don't
2262 * get confused by errant DMAs when rebooting.
2263 */
2264static int
2265tl_shutdown(dev)
2266	device_t		dev;
2267{
2268	struct tl_softc		*sc;
2269
2270	sc = device_get_softc(dev);
2271
2272	TL_LOCK(sc);
2273	tl_stop(sc);
2274	TL_UNLOCK(sc);
2275
2276	return (0);
2277}
2278