if_tl.c revision 242625
1/*-
2 * Copyright (c) 1997, 1998
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/tl/if_tl.c 242625 2012-11-05 19:16:27Z dim $");
35
36/*
37 * Texas Instruments ThunderLAN driver for FreeBSD 2.2.6 and 3.x.
38 * Supports many Compaq PCI NICs based on the ThunderLAN ethernet controller,
39 * the National Semiconductor DP83840A physical interface and the
40 * Microchip Technology 24Cxx series serial EEPROM.
41 *
42 * Written using the following four documents:
43 *
44 * Texas Instruments ThunderLAN Programmer's Guide (www.ti.com)
45 * National Semiconductor DP83840A data sheet (www.national.com)
46 * Microchip Technology 24C02C data sheet (www.microchip.com)
47 * Micro Linear ML6692 100BaseTX only PHY data sheet (www.microlinear.com)
48 *
49 * Written by Bill Paul <wpaul@ctr.columbia.edu>
50 * Electrical Engineering Department
51 * Columbia University, New York City
52 */
53/*
54 * Some notes about the ThunderLAN:
55 *
56 * The ThunderLAN controller is a single chip containing PCI controller
57 * logic, approximately 3K of on-board SRAM, a LAN controller, and media
58 * independent interface (MII) bus. The MII allows the ThunderLAN chip to
59 * control up to 32 different physical interfaces (PHYs). The ThunderLAN
60 * also has a built-in 10baseT PHY, allowing a single ThunderLAN controller
61 * to act as a complete ethernet interface.
62 *
63 * Other PHYs may be attached to the ThunderLAN; the Compaq 10/100 cards
64 * use a National Semiconductor DP83840A PHY that supports 10 or 100Mb/sec
65 * in full or half duplex. Some of the Compaq Deskpro machines use a
66 * Level 1 LXT970 PHY with the same capabilities. Certain Olicom adapters
67 * use a Micro Linear ML6692 100BaseTX only PHY, which can be used in
68 * concert with the ThunderLAN's internal PHY to provide full 10/100
69 * support. This is cheaper than using a standalone external PHY for both
70 * 10/100 modes and letting the ThunderLAN's internal PHY go to waste.
71 * A serial EEPROM is also attached to the ThunderLAN chip to provide
72 * power-up default register settings and for storing the adapter's
73 * station address. Although not supported by this driver, the ThunderLAN
74 * chip can also be connected to token ring PHYs.
75 *
76 * The ThunderLAN has a set of registers which can be used to issue
77 * commands, acknowledge interrupts, and to manipulate other internal
78 * registers on its DIO bus. The primary registers can be accessed
79 * using either programmed I/O (inb/outb) or via PCI memory mapping,
80 * depending on how the card is configured during the PCI probing
81 * phase. It is even possible to have both PIO and memory mapped
82 * access turned on at the same time.
83 *
84 * Frame reception and transmission with the ThunderLAN chip is done
85 * using frame 'lists.' A list structure looks more or less like this:
86 *
87 * struct tl_frag {
88 *	u_int32_t		fragment_address;
89 *	u_int32_t		fragment_size;
90 * };
91 * struct tl_list {
92 *	u_int32_t		forward_pointer;
93 *	u_int16_t		cstat;
94 *	u_int16_t		frame_size;
95 *	struct tl_frag		fragments[10];
96 * };
97 *
98 * The forward pointer in the list header can be either a 0 or the address
99 * of another list, which allows several lists to be linked together. Each
100 * list contains up to 10 fragment descriptors. This means the chip allows
101 * ethernet frames to be broken up into up to 10 chunks for transfer to
102 * and from the SRAM. Note that the forward pointer and fragment buffer
103 * addresses are physical memory addresses, not virtual. Note also that
104 * a single ethernet frame can not span lists: if the host wants to
105 * transmit a frame and the frame data is split up over more than 10
106 * buffers, the frame has to collapsed before it can be transmitted.
107 *
108 * To receive frames, the driver sets up a number of lists and populates
109 * the fragment descriptors, then it sends an RX GO command to the chip.
110 * When a frame is received, the chip will DMA it into the memory regions
111 * specified by the fragment descriptors and then trigger an RX 'end of
112 * frame interrupt' when done. The driver may choose to use only one
113 * fragment per list; this may result is slighltly less efficient use
114 * of memory in exchange for improving performance.
115 *
116 * To transmit frames, the driver again sets up lists and fragment
117 * descriptors, only this time the buffers contain frame data that
118 * is to be DMA'ed into the chip instead of out of it. Once the chip
119 * has transfered the data into its on-board SRAM, it will trigger a
120 * TX 'end of frame' interrupt. It will also generate an 'end of channel'
121 * interrupt when it reaches the end of the list.
122 */
123/*
124 * Some notes about this driver:
125 *
126 * The ThunderLAN chip provides a couple of different ways to organize
127 * reception, transmission and interrupt handling. The simplest approach
128 * is to use one list each for transmission and reception. In this mode,
129 * the ThunderLAN will generate two interrupts for every received frame
130 * (one RX EOF and one RX EOC) and two for each transmitted frame (one
131 * TX EOF and one TX EOC). This may make the driver simpler but it hurts
132 * performance to have to handle so many interrupts.
133 *
134 * Initially I wanted to create a circular list of receive buffers so
135 * that the ThunderLAN chip would think there was an infinitely long
136 * receive channel and never deliver an RXEOC interrupt. However this
137 * doesn't work correctly under heavy load: while the manual says the
138 * chip will trigger an RXEOF interrupt each time a frame is copied into
139 * memory, you can't count on the chip waiting around for you to acknowledge
140 * the interrupt before it starts trying to DMA the next frame. The result
141 * is that the chip might traverse the entire circular list and then wrap
142 * around before you have a chance to do anything about it. Consequently,
143 * the receive list is terminated (with a 0 in the forward pointer in the
144 * last element). Each time an RXEOF interrupt arrives, the used list
145 * is shifted to the end of the list. This gives the appearance of an
146 * infinitely large RX chain so long as the driver doesn't fall behind
147 * the chip and allow all of the lists to be filled up.
148 *
149 * If all the lists are filled, the adapter will deliver an RX 'end of
150 * channel' interrupt when it hits the 0 forward pointer at the end of
151 * the chain. The RXEOC handler then cleans out the RX chain and resets
152 * the list head pointer in the ch_parm register and restarts the receiver.
153 *
154 * For frame transmission, it is possible to program the ThunderLAN's
155 * transmit interrupt threshold so that the chip can acknowledge multiple
156 * lists with only a single TX EOF interrupt. This allows the driver to
157 * queue several frames in one shot, and only have to handle a total
158 * two interrupts (one TX EOF and one TX EOC) no matter how many frames
159 * are transmitted. Frame transmission is done directly out of the
160 * mbufs passed to the tl_start() routine via the interface send queue.
161 * The driver simply sets up the fragment descriptors in the transmit
162 * lists to point to the mbuf data regions and sends a TX GO command.
163 *
164 * Note that since the RX and TX lists themselves are always used
165 * only by the driver, the are malloc()ed once at driver initialization
166 * time and never free()ed.
167 *
168 * Also, in order to remain as platform independent as possible, this
169 * driver uses memory mapped register access to manipulate the card
170 * as opposed to programmed I/O. This avoids the use of the inb/outb
171 * (and related) instructions which are specific to the i386 platform.
172 *
173 * Using these techniques, this driver achieves very high performance
174 * by minimizing the amount of interrupts generated during large
175 * transfers and by completely avoiding buffer copies. Frame transfer
176 * to and from the ThunderLAN chip is performed entirely by the chip
177 * itself thereby reducing the load on the host CPU.
178 */
179
180#include <sys/param.h>
181#include <sys/systm.h>
182#include <sys/sockio.h>
183#include <sys/mbuf.h>
184#include <sys/malloc.h>
185#include <sys/kernel.h>
186#include <sys/module.h>
187#include <sys/socket.h>
188
189#include <net/if.h>
190#include <net/if_arp.h>
191#include <net/ethernet.h>
192#include <net/if_dl.h>
193#include <net/if_media.h>
194#include <net/if_types.h>
195
196#include <net/bpf.h>
197
198#include <vm/vm.h>              /* for vtophys */
199#include <vm/pmap.h>            /* for vtophys */
200#include <machine/bus.h>
201#include <machine/resource.h>
202#include <sys/bus.h>
203#include <sys/rman.h>
204
205#include <dev/mii/mii.h>
206#include <dev/mii/mii_bitbang.h>
207#include <dev/mii/miivar.h>
208
209#include <dev/pci/pcireg.h>
210#include <dev/pci/pcivar.h>
211
212/*
213 * Default to using PIO register access mode to pacify certain
214 * laptop docking stations with built-in ThunderLAN chips that
215 * don't seem to handle memory mapped mode properly.
216 */
217#define TL_USEIOSPACE
218
219#include <dev/tl/if_tlreg.h>
220
221MODULE_DEPEND(tl, pci, 1, 1, 1);
222MODULE_DEPEND(tl, ether, 1, 1, 1);
223MODULE_DEPEND(tl, miibus, 1, 1, 1);
224
225/* "device miibus" required.  See GENERIC if you get errors here. */
226#include "miibus_if.h"
227
228/*
229 * Various supported device vendors/types and their names.
230 */
231
232static const struct tl_type tl_devs[] = {
233	{ TI_VENDORID,	TI_DEVICEID_THUNDERLAN,
234		"Texas Instruments ThunderLAN" },
235	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10,
236		"Compaq Netelligent 10" },
237	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100,
238		"Compaq Netelligent 10/100" },
239	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_PROLIANT,
240		"Compaq Netelligent 10/100 Proliant" },
241	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_DUAL,
242		"Compaq Netelligent 10/100 Dual Port" },
243	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_INTEGRATED,
244		"Compaq NetFlex-3/P Integrated" },
245	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P,
246		"Compaq NetFlex-3/P" },
247	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_BNC,
248		"Compaq NetFlex 3/P w/ BNC" },
249	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_EMBEDDED,
250		"Compaq Netelligent 10/100 TX Embedded UTP" },
251	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_T2_UTP_COAX,
252		"Compaq Netelligent 10 T/2 PCI UTP/Coax" },
253	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_TX_UTP,
254		"Compaq Netelligent 10/100 TX UTP" },
255	{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2183,
256		"Olicom OC-2183/2185" },
257	{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2325,
258		"Olicom OC-2325" },
259	{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2326,
260		"Olicom OC-2326 10/100 TX UTP" },
261	{ 0, 0, NULL }
262};
263
264static int tl_probe(device_t);
265static int tl_attach(device_t);
266static int tl_detach(device_t);
267static int tl_intvec_rxeoc(void *, u_int32_t);
268static int tl_intvec_txeoc(void *, u_int32_t);
269static int tl_intvec_txeof(void *, u_int32_t);
270static int tl_intvec_rxeof(void *, u_int32_t);
271static int tl_intvec_adchk(void *, u_int32_t);
272static int tl_intvec_netsts(void *, u_int32_t);
273
274static int tl_newbuf(struct tl_softc *, struct tl_chain_onefrag *);
275static void tl_stats_update(void *);
276static int tl_encap(struct tl_softc *, struct tl_chain *, struct mbuf *);
277
278static void tl_intr(void *);
279static void tl_start(struct ifnet *);
280static void tl_start_locked(struct ifnet *);
281static int tl_ioctl(struct ifnet *, u_long, caddr_t);
282static void tl_init(void *);
283static void tl_init_locked(struct tl_softc *);
284static void tl_stop(struct tl_softc *);
285static void tl_watchdog(struct tl_softc *);
286static int tl_shutdown(device_t);
287static int tl_ifmedia_upd(struct ifnet *);
288static void tl_ifmedia_sts(struct ifnet *, struct ifmediareq *);
289
290static u_int8_t tl_eeprom_putbyte(struct tl_softc *, int);
291static u_int8_t	tl_eeprom_getbyte(struct tl_softc *, int, u_int8_t *);
292static int tl_read_eeprom(struct tl_softc *, caddr_t, int, int);
293
294static int tl_miibus_readreg(device_t, int, int);
295static int tl_miibus_writereg(device_t, int, int, int);
296static void tl_miibus_statchg(device_t);
297
298static void tl_setmode(struct tl_softc *, int);
299static uint32_t tl_mchash(const uint8_t *);
300static void tl_setmulti(struct tl_softc *);
301static void tl_setfilt(struct tl_softc *, caddr_t, int);
302static void tl_softreset(struct tl_softc *, int);
303static void tl_hardreset(device_t);
304static int tl_list_rx_init(struct tl_softc *);
305static int tl_list_tx_init(struct tl_softc *);
306
307static u_int8_t tl_dio_read8(struct tl_softc *, int);
308static u_int16_t tl_dio_read16(struct tl_softc *, int);
309static u_int32_t tl_dio_read32(struct tl_softc *, int);
310static void tl_dio_write8(struct tl_softc *, int, int);
311static void tl_dio_write16(struct tl_softc *, int, int);
312static void tl_dio_write32(struct tl_softc *, int, int);
313static void tl_dio_setbit(struct tl_softc *, int, int);
314static void tl_dio_clrbit(struct tl_softc *, int, int);
315static void tl_dio_setbit16(struct tl_softc *, int, int);
316static void tl_dio_clrbit16(struct tl_softc *, int, int);
317
318/*
319 * MII bit-bang glue
320 */
321static uint32_t tl_mii_bitbang_read(device_t);
322static void tl_mii_bitbang_write(device_t, uint32_t);
323
324static const struct mii_bitbang_ops tl_mii_bitbang_ops = {
325	tl_mii_bitbang_read,
326	tl_mii_bitbang_write,
327	{
328		TL_SIO_MDATA,	/* MII_BIT_MDO */
329		TL_SIO_MDATA,	/* MII_BIT_MDI */
330		TL_SIO_MCLK,	/* MII_BIT_MDC */
331		TL_SIO_MTXEN,	/* MII_BIT_DIR_HOST_PHY */
332		0,		/* MII_BIT_DIR_PHY_HOST */
333	}
334};
335
336#ifdef TL_USEIOSPACE
337#define TL_RES		SYS_RES_IOPORT
338#define TL_RID		TL_PCI_LOIO
339#else
340#define TL_RES		SYS_RES_MEMORY
341#define TL_RID		TL_PCI_LOMEM
342#endif
343
344static device_method_t tl_methods[] = {
345	/* Device interface */
346	DEVMETHOD(device_probe,		tl_probe),
347	DEVMETHOD(device_attach,	tl_attach),
348	DEVMETHOD(device_detach,	tl_detach),
349	DEVMETHOD(device_shutdown,	tl_shutdown),
350
351	/* MII interface */
352	DEVMETHOD(miibus_readreg,	tl_miibus_readreg),
353	DEVMETHOD(miibus_writereg,	tl_miibus_writereg),
354	DEVMETHOD(miibus_statchg,	tl_miibus_statchg),
355
356	DEVMETHOD_END
357};
358
359static driver_t tl_driver = {
360	"tl",
361	tl_methods,
362	sizeof(struct tl_softc)
363};
364
365static devclass_t tl_devclass;
366
367DRIVER_MODULE(tl, pci, tl_driver, tl_devclass, 0, 0);
368DRIVER_MODULE(miibus, tl, miibus_driver, miibus_devclass, 0, 0);
369
370static u_int8_t tl_dio_read8(sc, reg)
371	struct tl_softc		*sc;
372	int			reg;
373{
374
375	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
376		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
377	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
378	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
379		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
380	return(CSR_READ_1(sc, TL_DIO_DATA + (reg & 3)));
381}
382
383static u_int16_t tl_dio_read16(sc, reg)
384	struct tl_softc		*sc;
385	int			reg;
386{
387
388	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
389		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
390	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
391	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
392		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
393	return(CSR_READ_2(sc, TL_DIO_DATA + (reg & 3)));
394}
395
396static u_int32_t tl_dio_read32(sc, reg)
397	struct tl_softc		*sc;
398	int			reg;
399{
400
401	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
402		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
403	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
404	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
405		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
406	return(CSR_READ_4(sc, TL_DIO_DATA + (reg & 3)));
407}
408
409static void tl_dio_write8(sc, reg, val)
410	struct tl_softc		*sc;
411	int			reg;
412	int			val;
413{
414
415	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
416		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
417	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
418	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
419		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
420	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), val);
421}
422
423static void tl_dio_write16(sc, reg, val)
424	struct tl_softc		*sc;
425	int			reg;
426	int			val;
427{
428
429	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
430		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
431	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
432	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
433		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
434	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), val);
435}
436
437static void tl_dio_write32(sc, reg, val)
438	struct tl_softc		*sc;
439	int			reg;
440	int			val;
441{
442
443	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
444		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
445	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
446	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
447		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
448	CSR_WRITE_4(sc, TL_DIO_DATA + (reg & 3), val);
449}
450
451static void
452tl_dio_setbit(sc, reg, bit)
453	struct tl_softc		*sc;
454	int			reg;
455	int			bit;
456{
457	u_int8_t			f;
458
459	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
460		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
461	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
462	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
463		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
464	f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
465	f |= bit;
466	CSR_BARRIER(sc, TL_DIO_DATA + (reg & 3), 1,
467		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
468	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
469}
470
471static void
472tl_dio_clrbit(sc, reg, bit)
473	struct tl_softc		*sc;
474	int			reg;
475	int			bit;
476{
477	u_int8_t			f;
478
479	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
480		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
481	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
482	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
483		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
484	f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
485	f &= ~bit;
486	CSR_BARRIER(sc, TL_DIO_DATA + (reg & 3), 1,
487		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
488	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
489}
490
491static void tl_dio_setbit16(sc, reg, bit)
492	struct tl_softc		*sc;
493	int			reg;
494	int			bit;
495{
496	u_int16_t			f;
497
498	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
499		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
500	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
501	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
502		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
503	f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
504	f |= bit;
505	CSR_BARRIER(sc, TL_DIO_DATA + (reg & 3), 2,
506		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
507	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
508}
509
510static void tl_dio_clrbit16(sc, reg, bit)
511	struct tl_softc		*sc;
512	int			reg;
513	int			bit;
514{
515	u_int16_t			f;
516
517	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
518		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
519	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
520	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
521		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
522	f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
523	f &= ~bit;
524	CSR_BARRIER(sc, TL_DIO_DATA + (reg & 3), 2,
525		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
526	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
527}
528
529/*
530 * Send an instruction or address to the EEPROM, check for ACK.
531 */
532static u_int8_t tl_eeprom_putbyte(sc, byte)
533	struct tl_softc		*sc;
534	int			byte;
535{
536	register int		i, ack = 0;
537
538	/*
539	 * Make sure we're in TX mode.
540	 */
541	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ETXEN);
542
543	/*
544	 * Feed in each bit and stobe the clock.
545	 */
546	for (i = 0x80; i; i >>= 1) {
547		if (byte & i) {
548			tl_dio_setbit(sc, TL_NETSIO, TL_SIO_EDATA);
549		} else {
550			tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_EDATA);
551		}
552		DELAY(1);
553		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
554		DELAY(1);
555		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
556	}
557
558	/*
559	 * Turn off TX mode.
560	 */
561	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
562
563	/*
564	 * Check for ack.
565	 */
566	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
567	ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA;
568	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
569
570	return(ack);
571}
572
573/*
574 * Read a byte of data stored in the EEPROM at address 'addr.'
575 */
576static u_int8_t tl_eeprom_getbyte(sc, addr, dest)
577	struct tl_softc		*sc;
578	int			addr;
579	u_int8_t		*dest;
580{
581	register int		i;
582	u_int8_t		byte = 0;
583	device_t		tl_dev = sc->tl_dev;
584
585	tl_dio_write8(sc, TL_NETSIO, 0);
586
587	EEPROM_START;
588
589	/*
590	 * Send write control code to EEPROM.
591	 */
592	if (tl_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
593		device_printf(tl_dev, "failed to send write command, status: %x\n",
594		    tl_dio_read8(sc, TL_NETSIO));
595		return(1);
596	}
597
598	/*
599	 * Send address of byte we want to read.
600	 */
601	if (tl_eeprom_putbyte(sc, addr)) {
602		device_printf(tl_dev, "failed to send address, status: %x\n",
603		    tl_dio_read8(sc, TL_NETSIO));
604		return(1);
605	}
606
607	EEPROM_STOP;
608	EEPROM_START;
609	/*
610	 * Send read control code to EEPROM.
611	 */
612	if (tl_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
613		device_printf(tl_dev, "failed to send write command, status: %x\n",
614		    tl_dio_read8(sc, TL_NETSIO));
615		return(1);
616	}
617
618	/*
619	 * Start reading bits from EEPROM.
620	 */
621	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
622	for (i = 0x80; i; i >>= 1) {
623		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
624		DELAY(1);
625		if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA)
626			byte |= i;
627		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
628		DELAY(1);
629	}
630
631	EEPROM_STOP;
632
633	/*
634	 * No ACK generated for read, so just return byte.
635	 */
636
637	*dest = byte;
638
639	return(0);
640}
641
642/*
643 * Read a sequence of bytes from the EEPROM.
644 */
645static int
646tl_read_eeprom(sc, dest, off, cnt)
647	struct tl_softc		*sc;
648	caddr_t			dest;
649	int			off;
650	int			cnt;
651{
652	int			err = 0, i;
653	u_int8_t		byte = 0;
654
655	for (i = 0; i < cnt; i++) {
656		err = tl_eeprom_getbyte(sc, off + i, &byte);
657		if (err)
658			break;
659		*(dest + i) = byte;
660	}
661
662	return(err ? 1 : 0);
663}
664
665#define	TL_SIO_MII	(TL_SIO_MCLK | TL_SIO_MDATA | TL_SIO_MTXEN)
666
667/*
668 * Read the MII serial port for the MII bit-bang module.
669 */
670static uint32_t
671tl_mii_bitbang_read(device_t dev)
672{
673	struct tl_softc *sc;
674	uint32_t val;
675
676	sc = device_get_softc(dev);
677
678	val = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MII;
679	CSR_BARRIER(sc, TL_NETSIO, 1,
680	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
681
682	return (val);
683}
684
685/*
686 * Write the MII serial port for the MII bit-bang module.
687 */
688static void
689tl_mii_bitbang_write(device_t dev, uint32_t val)
690{
691	struct tl_softc *sc;
692
693	sc = device_get_softc(dev);
694
695	val = (tl_dio_read8(sc, TL_NETSIO) & ~TL_SIO_MII) | val;
696	CSR_BARRIER(sc, TL_NETSIO, 1,
697	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
698	tl_dio_write8(sc, TL_NETSIO, val);
699	CSR_BARRIER(sc, TL_NETSIO, 1,
700	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
701}
702
703static int
704tl_miibus_readreg(dev, phy, reg)
705	device_t		dev;
706	int			phy, reg;
707{
708	struct tl_softc		*sc;
709	int			minten, val;
710
711	sc = device_get_softc(dev);
712
713	/*
714	 * Turn off MII interrupt by forcing MINTEN low.
715	 */
716	minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
717	if (minten) {
718		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
719	}
720
721	val = mii_bitbang_readreg(dev, &tl_mii_bitbang_ops, phy, reg);
722
723	/* Reenable interrupts. */
724	if (minten) {
725		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
726	}
727
728	return (val);
729}
730
731static int
732tl_miibus_writereg(dev, phy, reg, data)
733	device_t		dev;
734	int			phy, reg, data;
735{
736	struct tl_softc		*sc;
737	int			minten;
738
739	sc = device_get_softc(dev);
740
741	/*
742	 * Turn off MII interrupt by forcing MINTEN low.
743	 */
744	minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
745	if (minten) {
746		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
747	}
748
749	mii_bitbang_writereg(dev, &tl_mii_bitbang_ops, phy, reg, data);
750
751	/* Reenable interrupts. */
752	if (minten) {
753		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
754	}
755
756	return(0);
757}
758
759static void
760tl_miibus_statchg(dev)
761	device_t		dev;
762{
763	struct tl_softc		*sc;
764	struct mii_data		*mii;
765
766	sc = device_get_softc(dev);
767	mii = device_get_softc(sc->tl_miibus);
768
769	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
770		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
771	} else {
772		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
773	}
774}
775
776/*
777 * Set modes for bitrate devices.
778 */
779static void
780tl_setmode(sc, media)
781	struct tl_softc		*sc;
782	int			media;
783{
784	if (IFM_SUBTYPE(media) == IFM_10_5)
785		tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
786	if (IFM_SUBTYPE(media) == IFM_10_T) {
787		tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
788		if ((media & IFM_GMASK) == IFM_FDX) {
789			tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
790			tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
791		} else {
792			tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
793			tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
794		}
795	}
796}
797
798/*
799 * Calculate the hash of a MAC address for programming the multicast hash
800 * table.  This hash is simply the address split into 6-bit chunks
801 * XOR'd, e.g.
802 * byte: 000000|00 1111|1111 22|222222|333333|33 4444|4444 55|555555
803 * bit:  765432|10 7654|3210 76|543210|765432|10 7654|3210 76|543210
804 * Bytes 0-2 and 3-5 are symmetrical, so are folded together.  Then
805 * the folded 24-bit value is split into 6-bit portions and XOR'd.
806 */
807static uint32_t
808tl_mchash(addr)
809	const uint8_t *addr;
810{
811	int t;
812
813	t = (addr[0] ^ addr[3]) << 16 | (addr[1] ^ addr[4]) << 8 |
814		(addr[2] ^ addr[5]);
815	return ((t >> 18) ^ (t >> 12) ^ (t >> 6) ^ t) & 0x3f;
816}
817
818/*
819 * The ThunderLAN has a perfect MAC address filter in addition to
820 * the multicast hash filter. The perfect filter can be programmed
821 * with up to four MAC addresses. The first one is always used to
822 * hold the station address, which leaves us free to use the other
823 * three for multicast addresses.
824 */
825static void
826tl_setfilt(sc, addr, slot)
827	struct tl_softc		*sc;
828	caddr_t			addr;
829	int			slot;
830{
831	int			i;
832	u_int16_t		regaddr;
833
834	regaddr = TL_AREG0_B5 + (slot * ETHER_ADDR_LEN);
835
836	for (i = 0; i < ETHER_ADDR_LEN; i++)
837		tl_dio_write8(sc, regaddr + i, *(addr + i));
838}
839
840/*
841 * XXX In FreeBSD 3.0, multicast addresses are managed using a doubly
842 * linked list. This is fine, except addresses are added from the head
843 * end of the list. We want to arrange for 224.0.0.1 (the "all hosts")
844 * group to always be in the perfect filter, but as more groups are added,
845 * the 224.0.0.1 entry (which is always added first) gets pushed down
846 * the list and ends up at the tail. So after 3 or 4 multicast groups
847 * are added, the all-hosts entry gets pushed out of the perfect filter
848 * and into the hash table.
849 *
850 * Because the multicast list is a doubly-linked list as opposed to a
851 * circular queue, we don't have the ability to just grab the tail of
852 * the list and traverse it backwards. Instead, we have to traverse
853 * the list once to find the tail, then traverse it again backwards to
854 * update the multicast filter.
855 */
856static void
857tl_setmulti(sc)
858	struct tl_softc		*sc;
859{
860	struct ifnet		*ifp;
861	u_int32_t		hashes[2] = { 0, 0 };
862	int			h, i;
863	struct ifmultiaddr	*ifma;
864	u_int8_t		dummy[] = { 0, 0, 0, 0, 0 ,0 };
865	ifp = sc->tl_ifp;
866
867	/* First, zot all the existing filters. */
868	for (i = 1; i < 4; i++)
869		tl_setfilt(sc, (caddr_t)&dummy, i);
870	tl_dio_write32(sc, TL_HASH1, 0);
871	tl_dio_write32(sc, TL_HASH2, 0);
872
873	/* Now program new ones. */
874	if (ifp->if_flags & IFF_ALLMULTI) {
875		hashes[0] = 0xFFFFFFFF;
876		hashes[1] = 0xFFFFFFFF;
877	} else {
878		i = 1;
879		if_maddr_rlock(ifp);
880		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
881			if (ifma->ifma_addr->sa_family != AF_LINK)
882				continue;
883			/*
884			 * Program the first three multicast groups
885			 * into the perfect filter. For all others,
886			 * use the hash table.
887			 */
888			if (i < 4) {
889				tl_setfilt(sc,
890			LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
891				i++;
892				continue;
893			}
894
895			h = tl_mchash(
896				LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
897			if (h < 32)
898				hashes[0] |= (1 << h);
899			else
900				hashes[1] |= (1 << (h - 32));
901		}
902		if_maddr_runlock(ifp);
903	}
904
905	tl_dio_write32(sc, TL_HASH1, hashes[0]);
906	tl_dio_write32(sc, TL_HASH2, hashes[1]);
907}
908
909/*
910 * This routine is recommended by the ThunderLAN manual to insure that
911 * the internal PHY is powered up correctly. It also recommends a one
912 * second pause at the end to 'wait for the clocks to start' but in my
913 * experience this isn't necessary.
914 */
915static void
916tl_hardreset(dev)
917	device_t		dev;
918{
919	int			i;
920	u_int16_t		flags;
921
922	mii_bitbang_sync(dev, &tl_mii_bitbang_ops);
923
924	flags = BMCR_LOOP|BMCR_ISO|BMCR_PDOWN;
925
926	for (i = 0; i < MII_NPHY; i++)
927		tl_miibus_writereg(dev, i, MII_BMCR, flags);
928
929	tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_ISO);
930	DELAY(50000);
931	tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_LOOP|BMCR_ISO);
932	mii_bitbang_sync(dev, &tl_mii_bitbang_ops);
933	while(tl_miibus_readreg(dev, 31, MII_BMCR) & BMCR_RESET);
934
935	DELAY(50000);
936}
937
938static void
939tl_softreset(sc, internal)
940	struct tl_softc		*sc;
941	int			internal;
942{
943        u_int32_t               cmd, dummy, i;
944
945        /* Assert the adapter reset bit. */
946	CMD_SET(sc, TL_CMD_ADRST);
947
948        /* Turn off interrupts */
949	CMD_SET(sc, TL_CMD_INTSOFF);
950
951	/* First, clear the stats registers. */
952	for (i = 0; i < 5; i++)
953		dummy = tl_dio_read32(sc, TL_TXGOODFRAMES);
954
955        /* Clear Areg and Hash registers */
956	for (i = 0; i < 8; i++)
957		tl_dio_write32(sc, TL_AREG0_B5, 0x00000000);
958
959        /*
960	 * Set up Netconfig register. Enable one channel and
961	 * one fragment mode.
962	 */
963	tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_ONECHAN|TL_CFG_ONEFRAG);
964	if (internal && !sc->tl_bitrate) {
965		tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
966	} else {
967		tl_dio_clrbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
968	}
969
970	/* Handle cards with bitrate devices. */
971	if (sc->tl_bitrate)
972		tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_BITRATE);
973
974	/*
975	 * Load adapter irq pacing timer and tx threshold.
976	 * We make the transmit threshold 1 initially but we may
977	 * change that later.
978	 */
979	cmd = CSR_READ_4(sc, TL_HOSTCMD);
980	cmd |= TL_CMD_NES;
981	cmd &= ~(TL_CMD_RT|TL_CMD_EOC|TL_CMD_ACK_MASK|TL_CMD_CHSEL_MASK);
982	CMD_PUT(sc, cmd | (TL_CMD_LDTHR | TX_THR));
983	CMD_PUT(sc, cmd | (TL_CMD_LDTMR | 0x00000003));
984
985        /* Unreset the MII */
986	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_NMRST);
987
988	/* Take the adapter out of reset */
989	tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NRESET|TL_CMD_NWRAP);
990
991	/* Wait for things to settle down a little. */
992	DELAY(500);
993}
994
995/*
996 * Probe for a ThunderLAN chip. Check the PCI vendor and device IDs
997 * against our list and return its name if we find a match.
998 */
999static int
1000tl_probe(dev)
1001	device_t		dev;
1002{
1003	const struct tl_type	*t;
1004
1005	t = tl_devs;
1006
1007	while(t->tl_name != NULL) {
1008		if ((pci_get_vendor(dev) == t->tl_vid) &&
1009		    (pci_get_device(dev) == t->tl_did)) {
1010			device_set_desc(dev, t->tl_name);
1011			return (BUS_PROBE_DEFAULT);
1012		}
1013		t++;
1014	}
1015
1016	return(ENXIO);
1017}
1018
1019static int
1020tl_attach(dev)
1021	device_t		dev;
1022{
1023	u_int16_t		did, vid;
1024	const struct tl_type	*t;
1025	struct ifnet		*ifp;
1026	struct tl_softc		*sc;
1027	int			error, flags, i, rid, unit;
1028	u_char			eaddr[6];
1029
1030	vid = pci_get_vendor(dev);
1031	did = pci_get_device(dev);
1032	sc = device_get_softc(dev);
1033	sc->tl_dev = dev;
1034	unit = device_get_unit(dev);
1035
1036	t = tl_devs;
1037	while(t->tl_name != NULL) {
1038		if (vid == t->tl_vid && did == t->tl_did)
1039			break;
1040		t++;
1041	}
1042
1043	if (t->tl_name == NULL) {
1044		device_printf(dev, "unknown device!?\n");
1045		return (ENXIO);
1046	}
1047
1048	mtx_init(&sc->tl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1049	    MTX_DEF);
1050
1051	/*
1052	 * Map control/status registers.
1053	 */
1054	pci_enable_busmaster(dev);
1055
1056#ifdef TL_USEIOSPACE
1057
1058	rid = TL_PCI_LOIO;
1059	sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1060		RF_ACTIVE);
1061
1062	/*
1063	 * Some cards have the I/O and memory mapped address registers
1064	 * reversed. Try both combinations before giving up.
1065	 */
1066	if (sc->tl_res == NULL) {
1067		rid = TL_PCI_LOMEM;
1068		sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1069		    RF_ACTIVE);
1070	}
1071#else
1072	rid = TL_PCI_LOMEM;
1073	sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1074	    RF_ACTIVE);
1075	if (sc->tl_res == NULL) {
1076		rid = TL_PCI_LOIO;
1077		sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1078		    RF_ACTIVE);
1079	}
1080#endif
1081
1082	if (sc->tl_res == NULL) {
1083		device_printf(dev, "couldn't map ports/memory\n");
1084		error = ENXIO;
1085		goto fail;
1086	}
1087
1088#ifdef notdef
1089	/*
1090	 * The ThunderLAN manual suggests jacking the PCI latency
1091	 * timer all the way up to its maximum value. I'm not sure
1092	 * if this is really necessary, but what the manual wants,
1093	 * the manual gets.
1094	 */
1095	command = pci_read_config(dev, TL_PCI_LATENCY_TIMER, 4);
1096	command |= 0x0000FF00;
1097	pci_write_config(dev, TL_PCI_LATENCY_TIMER, command, 4);
1098#endif
1099
1100	/* Allocate interrupt */
1101	rid = 0;
1102	sc->tl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1103	    RF_SHAREABLE | RF_ACTIVE);
1104
1105	if (sc->tl_irq == NULL) {
1106		device_printf(dev, "couldn't map interrupt\n");
1107		error = ENXIO;
1108		goto fail;
1109	}
1110
1111	/*
1112	 * Now allocate memory for the TX and RX lists.
1113	 */
1114	sc->tl_ldata = contigmalloc(sizeof(struct tl_list_data), M_DEVBUF,
1115	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1116
1117	if (sc->tl_ldata == NULL) {
1118		device_printf(dev, "no memory for list buffers!\n");
1119		error = ENXIO;
1120		goto fail;
1121	}
1122
1123	bzero(sc->tl_ldata, sizeof(struct tl_list_data));
1124
1125	if (vid == COMPAQ_VENDORID || vid == TI_VENDORID)
1126		sc->tl_eeaddr = TL_EEPROM_EADDR;
1127	if (vid == OLICOM_VENDORID)
1128		sc->tl_eeaddr = TL_EEPROM_EADDR_OC;
1129
1130	/* Reset the adapter. */
1131	tl_softreset(sc, 1);
1132	tl_hardreset(dev);
1133	tl_softreset(sc, 1);
1134
1135	/*
1136	 * Get station address from the EEPROM.
1137	 */
1138	if (tl_read_eeprom(sc, eaddr, sc->tl_eeaddr, ETHER_ADDR_LEN)) {
1139		device_printf(dev, "failed to read station address\n");
1140		error = ENXIO;
1141		goto fail;
1142	}
1143
1144        /*
1145         * XXX Olicom, in its desire to be different from the
1146         * rest of the world, has done strange things with the
1147         * encoding of the station address in the EEPROM. First
1148         * of all, they store the address at offset 0xF8 rather
1149         * than at 0x83 like the ThunderLAN manual suggests.
1150         * Second, they store the address in three 16-bit words in
1151         * network byte order, as opposed to storing it sequentially
1152         * like all the other ThunderLAN cards. In order to get
1153         * the station address in a form that matches what the Olicom
1154         * diagnostic utility specifies, we have to byte-swap each
1155         * word. To make things even more confusing, neither 00:00:28
1156         * nor 00:00:24 appear in the IEEE OUI database.
1157         */
1158        if (vid == OLICOM_VENDORID) {
1159                for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
1160                        u_int16_t               *p;
1161                        p = (u_int16_t *)&eaddr[i];
1162                        *p = ntohs(*p);
1163                }
1164        }
1165
1166	ifp = sc->tl_ifp = if_alloc(IFT_ETHER);
1167	if (ifp == NULL) {
1168		device_printf(dev, "can not if_alloc()\n");
1169		error = ENOSPC;
1170		goto fail;
1171	}
1172	ifp->if_softc = sc;
1173	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1174	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1175	ifp->if_ioctl = tl_ioctl;
1176	ifp->if_start = tl_start;
1177	ifp->if_init = tl_init;
1178	ifp->if_snd.ifq_maxlen = TL_TX_LIST_CNT - 1;
1179	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1180	ifp->if_capenable |= IFCAP_VLAN_MTU;
1181	callout_init_mtx(&sc->tl_stat_callout, &sc->tl_mtx, 0);
1182
1183	/* Reset the adapter again. */
1184	tl_softreset(sc, 1);
1185	tl_hardreset(dev);
1186	tl_softreset(sc, 1);
1187
1188	/*
1189	 * Do MII setup. If no PHYs are found, then this is a
1190	 * bitrate ThunderLAN chip that only supports 10baseT
1191	 * and AUI/BNC.
1192	 * XXX mii_attach() can fail for reason different than
1193	 * no PHYs found!
1194	 */
1195	flags = 0;
1196	if (vid == COMPAQ_VENDORID) {
1197		if (did == COMPAQ_DEVICEID_NETEL_10_100_PROLIANT ||
1198		    did == COMPAQ_DEVICEID_NETFLEX_3P_INTEGRATED ||
1199		    did == COMPAQ_DEVICEID_NETFLEX_3P_BNC ||
1200		    did == COMPAQ_DEVICEID_NETEL_10_T2_UTP_COAX)
1201			flags |= MIIF_MACPRIV0;
1202		if (did == COMPAQ_DEVICEID_NETEL_10 ||
1203		    did == COMPAQ_DEVICEID_NETEL_10_100_DUAL ||
1204		    did == COMPAQ_DEVICEID_NETFLEX_3P ||
1205		    did == COMPAQ_DEVICEID_NETEL_10_100_EMBEDDED)
1206			flags |= MIIF_MACPRIV1;
1207	} else if (vid == OLICOM_VENDORID && did == OLICOM_DEVICEID_OC2183)
1208			flags |= MIIF_MACPRIV0 | MIIF_MACPRIV1;
1209	if (mii_attach(dev, &sc->tl_miibus, ifp, tl_ifmedia_upd,
1210	    tl_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0)) {
1211		struct ifmedia		*ifm;
1212		sc->tl_bitrate = 1;
1213		ifmedia_init(&sc->ifmedia, 0, tl_ifmedia_upd, tl_ifmedia_sts);
1214		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1215		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
1216		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1217		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_5, 0, NULL);
1218		ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_10_T);
1219		/* Reset again, this time setting bitrate mode. */
1220		tl_softreset(sc, 1);
1221		ifm = &sc->ifmedia;
1222		ifm->ifm_media = ifm->ifm_cur->ifm_media;
1223		tl_ifmedia_upd(ifp);
1224	}
1225
1226	/*
1227	 * Call MI attach routine.
1228	 */
1229	ether_ifattach(ifp, eaddr);
1230
1231	/* Hook interrupt last to avoid having to lock softc */
1232	error = bus_setup_intr(dev, sc->tl_irq, INTR_TYPE_NET | INTR_MPSAFE,
1233	    NULL, tl_intr, sc, &sc->tl_intrhand);
1234
1235	if (error) {
1236		device_printf(dev, "couldn't set up irq\n");
1237		ether_ifdetach(ifp);
1238		goto fail;
1239	}
1240
1241fail:
1242	if (error)
1243		tl_detach(dev);
1244
1245	return(error);
1246}
1247
1248/*
1249 * Shutdown hardware and free up resources. This can be called any
1250 * time after the mutex has been initialized. It is called in both
1251 * the error case in attach and the normal detach case so it needs
1252 * to be careful about only freeing resources that have actually been
1253 * allocated.
1254 */
1255static int
1256tl_detach(dev)
1257	device_t		dev;
1258{
1259	struct tl_softc		*sc;
1260	struct ifnet		*ifp;
1261
1262	sc = device_get_softc(dev);
1263	KASSERT(mtx_initialized(&sc->tl_mtx), ("tl mutex not initialized"));
1264	ifp = sc->tl_ifp;
1265
1266	/* These should only be active if attach succeeded */
1267	if (device_is_attached(dev)) {
1268		ether_ifdetach(ifp);
1269		TL_LOCK(sc);
1270		tl_stop(sc);
1271		TL_UNLOCK(sc);
1272		callout_drain(&sc->tl_stat_callout);
1273	}
1274	if (sc->tl_miibus)
1275		device_delete_child(dev, sc->tl_miibus);
1276	bus_generic_detach(dev);
1277
1278	if (sc->tl_ldata)
1279		contigfree(sc->tl_ldata, sizeof(struct tl_list_data), M_DEVBUF);
1280	if (sc->tl_bitrate)
1281		ifmedia_removeall(&sc->ifmedia);
1282
1283	if (sc->tl_intrhand)
1284		bus_teardown_intr(dev, sc->tl_irq, sc->tl_intrhand);
1285	if (sc->tl_irq)
1286		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->tl_irq);
1287	if (sc->tl_res)
1288		bus_release_resource(dev, TL_RES, TL_RID, sc->tl_res);
1289
1290	if (ifp)
1291		if_free(ifp);
1292
1293	mtx_destroy(&sc->tl_mtx);
1294
1295	return(0);
1296}
1297
1298/*
1299 * Initialize the transmit lists.
1300 */
1301static int
1302tl_list_tx_init(sc)
1303	struct tl_softc		*sc;
1304{
1305	struct tl_chain_data	*cd;
1306	struct tl_list_data	*ld;
1307	int			i;
1308
1309	cd = &sc->tl_cdata;
1310	ld = sc->tl_ldata;
1311	for (i = 0; i < TL_TX_LIST_CNT; i++) {
1312		cd->tl_tx_chain[i].tl_ptr = &ld->tl_tx_list[i];
1313		if (i == (TL_TX_LIST_CNT - 1))
1314			cd->tl_tx_chain[i].tl_next = NULL;
1315		else
1316			cd->tl_tx_chain[i].tl_next = &cd->tl_tx_chain[i + 1];
1317	}
1318
1319	cd->tl_tx_free = &cd->tl_tx_chain[0];
1320	cd->tl_tx_tail = cd->tl_tx_head = NULL;
1321	sc->tl_txeoc = 1;
1322
1323	return(0);
1324}
1325
1326/*
1327 * Initialize the RX lists and allocate mbufs for them.
1328 */
1329static int
1330tl_list_rx_init(sc)
1331	struct tl_softc		*sc;
1332{
1333	struct tl_chain_data		*cd;
1334	struct tl_list_data		*ld;
1335	int				i;
1336
1337	cd = &sc->tl_cdata;
1338	ld = sc->tl_ldata;
1339
1340	for (i = 0; i < TL_RX_LIST_CNT; i++) {
1341		cd->tl_rx_chain[i].tl_ptr =
1342			(struct tl_list_onefrag *)&ld->tl_rx_list[i];
1343		if (tl_newbuf(sc, &cd->tl_rx_chain[i]) == ENOBUFS)
1344			return(ENOBUFS);
1345		if (i == (TL_RX_LIST_CNT - 1)) {
1346			cd->tl_rx_chain[i].tl_next = NULL;
1347			ld->tl_rx_list[i].tlist_fptr = 0;
1348		} else {
1349			cd->tl_rx_chain[i].tl_next = &cd->tl_rx_chain[i + 1];
1350			ld->tl_rx_list[i].tlist_fptr =
1351					vtophys(&ld->tl_rx_list[i + 1]);
1352		}
1353	}
1354
1355	cd->tl_rx_head = &cd->tl_rx_chain[0];
1356	cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
1357
1358	return(0);
1359}
1360
1361static int
1362tl_newbuf(sc, c)
1363	struct tl_softc		*sc;
1364	struct tl_chain_onefrag	*c;
1365{
1366	struct mbuf		*m_new = NULL;
1367
1368	m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1369	if (m_new == NULL)
1370		return(ENOBUFS);
1371
1372	c->tl_mbuf = m_new;
1373	c->tl_next = NULL;
1374	c->tl_ptr->tlist_frsize = MCLBYTES;
1375	c->tl_ptr->tlist_fptr = 0;
1376	c->tl_ptr->tl_frag.tlist_dadr = vtophys(mtod(m_new, caddr_t));
1377	c->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
1378	c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1379
1380	return(0);
1381}
1382/*
1383 * Interrupt handler for RX 'end of frame' condition (EOF). This
1384 * tells us that a full ethernet frame has been captured and we need
1385 * to handle it.
1386 *
1387 * Reception is done using 'lists' which consist of a header and a
1388 * series of 10 data count/data address pairs that point to buffers.
1389 * Initially you're supposed to create a list, populate it with pointers
1390 * to buffers, then load the physical address of the list into the
1391 * ch_parm register. The adapter is then supposed to DMA the received
1392 * frame into the buffers for you.
1393 *
1394 * To make things as fast as possible, we have the chip DMA directly
1395 * into mbufs. This saves us from having to do a buffer copy: we can
1396 * just hand the mbufs directly to ether_input(). Once the frame has
1397 * been sent on its way, the 'list' structure is assigned a new buffer
1398 * and moved to the end of the RX chain. As long we we stay ahead of
1399 * the chip, it will always think it has an endless receive channel.
1400 *
1401 * If we happen to fall behind and the chip manages to fill up all of
1402 * the buffers, it will generate an end of channel interrupt and wait
1403 * for us to empty the chain and restart the receiver.
1404 */
1405static int
1406tl_intvec_rxeof(xsc, type)
1407	void			*xsc;
1408	u_int32_t		type;
1409{
1410	struct tl_softc		*sc;
1411	int			r = 0, total_len = 0;
1412	struct ether_header	*eh;
1413	struct mbuf		*m;
1414	struct ifnet		*ifp;
1415	struct tl_chain_onefrag	*cur_rx;
1416
1417	sc = xsc;
1418	ifp = sc->tl_ifp;
1419
1420	TL_LOCK_ASSERT(sc);
1421
1422	while(sc->tl_cdata.tl_rx_head != NULL) {
1423		cur_rx = sc->tl_cdata.tl_rx_head;
1424		if (!(cur_rx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
1425			break;
1426		r++;
1427		sc->tl_cdata.tl_rx_head = cur_rx->tl_next;
1428		m = cur_rx->tl_mbuf;
1429		total_len = cur_rx->tl_ptr->tlist_frsize;
1430
1431		if (tl_newbuf(sc, cur_rx) == ENOBUFS) {
1432			ifp->if_ierrors++;
1433			cur_rx->tl_ptr->tlist_frsize = MCLBYTES;
1434			cur_rx->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1435			cur_rx->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
1436			continue;
1437		}
1438
1439		sc->tl_cdata.tl_rx_tail->tl_ptr->tlist_fptr =
1440						vtophys(cur_rx->tl_ptr);
1441		sc->tl_cdata.tl_rx_tail->tl_next = cur_rx;
1442		sc->tl_cdata.tl_rx_tail = cur_rx;
1443
1444		/*
1445		 * Note: when the ThunderLAN chip is in 'capture all
1446		 * frames' mode, it will receive its own transmissions.
1447		 * We drop don't need to process our own transmissions,
1448		 * so we drop them here and continue.
1449		 */
1450		eh = mtod(m, struct ether_header *);
1451		/*if (ifp->if_flags & IFF_PROMISC && */
1452		if (!bcmp(eh->ether_shost, IF_LLADDR(sc->tl_ifp),
1453		 					ETHER_ADDR_LEN)) {
1454				m_freem(m);
1455				continue;
1456		}
1457
1458		m->m_pkthdr.rcvif = ifp;
1459		m->m_pkthdr.len = m->m_len = total_len;
1460
1461		TL_UNLOCK(sc);
1462		(*ifp->if_input)(ifp, m);
1463		TL_LOCK(sc);
1464	}
1465
1466	return(r);
1467}
1468
1469/*
1470 * The RX-EOC condition hits when the ch_parm address hasn't been
1471 * initialized or the adapter reached a list with a forward pointer
1472 * of 0 (which indicates the end of the chain). In our case, this means
1473 * the card has hit the end of the receive buffer chain and we need to
1474 * empty out the buffers and shift the pointer back to the beginning again.
1475 */
1476static int
1477tl_intvec_rxeoc(xsc, type)
1478	void			*xsc;
1479	u_int32_t		type;
1480{
1481	struct tl_softc		*sc;
1482	int			r;
1483	struct tl_chain_data	*cd;
1484
1485
1486	sc = xsc;
1487	cd = &sc->tl_cdata;
1488
1489	/* Flush out the receive queue and ack RXEOF interrupts. */
1490	r = tl_intvec_rxeof(xsc, type);
1491	CMD_PUT(sc, TL_CMD_ACK | r | (type & ~(0x00100000)));
1492	r = 1;
1493	cd->tl_rx_head = &cd->tl_rx_chain[0];
1494	cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
1495	CSR_WRITE_4(sc, TL_CH_PARM, vtophys(sc->tl_cdata.tl_rx_head->tl_ptr));
1496	r |= (TL_CMD_GO|TL_CMD_RT);
1497	return(r);
1498}
1499
1500static int
1501tl_intvec_txeof(xsc, type)
1502	void			*xsc;
1503	u_int32_t		type;
1504{
1505	struct tl_softc		*sc;
1506	int			r = 0;
1507	struct tl_chain		*cur_tx;
1508
1509	sc = xsc;
1510
1511	/*
1512	 * Go through our tx list and free mbufs for those
1513	 * frames that have been sent.
1514	 */
1515	while (sc->tl_cdata.tl_tx_head != NULL) {
1516		cur_tx = sc->tl_cdata.tl_tx_head;
1517		if (!(cur_tx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
1518			break;
1519		sc->tl_cdata.tl_tx_head = cur_tx->tl_next;
1520
1521		r++;
1522		m_freem(cur_tx->tl_mbuf);
1523		cur_tx->tl_mbuf = NULL;
1524
1525		cur_tx->tl_next = sc->tl_cdata.tl_tx_free;
1526		sc->tl_cdata.tl_tx_free = cur_tx;
1527		if (!cur_tx->tl_ptr->tlist_fptr)
1528			break;
1529	}
1530
1531	return(r);
1532}
1533
1534/*
1535 * The transmit end of channel interrupt. The adapter triggers this
1536 * interrupt to tell us it hit the end of the current transmit list.
1537 *
1538 * A note about this: it's possible for a condition to arise where
1539 * tl_start() may try to send frames between TXEOF and TXEOC interrupts.
1540 * You have to avoid this since the chip expects things to go in a
1541 * particular order: transmit, acknowledge TXEOF, acknowledge TXEOC.
1542 * When the TXEOF handler is called, it will free all of the transmitted
1543 * frames and reset the tx_head pointer to NULL. However, a TXEOC
1544 * interrupt should be received and acknowledged before any more frames
1545 * are queued for transmission. If tl_statrt() is called after TXEOF
1546 * resets the tx_head pointer but _before_ the TXEOC interrupt arrives,
1547 * it could attempt to issue a transmit command prematurely.
1548 *
1549 * To guard against this, tl_start() will only issue transmit commands
1550 * if the tl_txeoc flag is set, and only the TXEOC interrupt handler
1551 * can set this flag once tl_start() has cleared it.
1552 */
1553static int
1554tl_intvec_txeoc(xsc, type)
1555	void			*xsc;
1556	u_int32_t		type;
1557{
1558	struct tl_softc		*sc;
1559	struct ifnet		*ifp;
1560	u_int32_t		cmd;
1561
1562	sc = xsc;
1563	ifp = sc->tl_ifp;
1564
1565	/* Clear the timeout timer. */
1566	sc->tl_timer = 0;
1567
1568	if (sc->tl_cdata.tl_tx_head == NULL) {
1569		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1570		sc->tl_cdata.tl_tx_tail = NULL;
1571		sc->tl_txeoc = 1;
1572	} else {
1573		sc->tl_txeoc = 0;
1574		/* First we have to ack the EOC interrupt. */
1575		CMD_PUT(sc, TL_CMD_ACK | 0x00000001 | type);
1576		/* Then load the address of the next TX list. */
1577		CSR_WRITE_4(sc, TL_CH_PARM,
1578		    vtophys(sc->tl_cdata.tl_tx_head->tl_ptr));
1579		/* Restart TX channel. */
1580		cmd = CSR_READ_4(sc, TL_HOSTCMD);
1581		cmd &= ~TL_CMD_RT;
1582		cmd |= TL_CMD_GO|TL_CMD_INTSON;
1583		CMD_PUT(sc, cmd);
1584		return(0);
1585	}
1586
1587	return(1);
1588}
1589
1590static int
1591tl_intvec_adchk(xsc, type)
1592	void			*xsc;
1593	u_int32_t		type;
1594{
1595	struct tl_softc		*sc;
1596
1597	sc = xsc;
1598
1599	if (type)
1600		device_printf(sc->tl_dev, "adapter check: %x\n",
1601			(unsigned int)CSR_READ_4(sc, TL_CH_PARM));
1602
1603	tl_softreset(sc, 1);
1604	tl_stop(sc);
1605	tl_init_locked(sc);
1606	CMD_SET(sc, TL_CMD_INTSON);
1607
1608	return(0);
1609}
1610
1611static int
1612tl_intvec_netsts(xsc, type)
1613	void			*xsc;
1614	u_int32_t		type;
1615{
1616	struct tl_softc		*sc;
1617	u_int16_t		netsts;
1618
1619	sc = xsc;
1620
1621	netsts = tl_dio_read16(sc, TL_NETSTS);
1622	tl_dio_write16(sc, TL_NETSTS, netsts);
1623
1624	device_printf(sc->tl_dev, "network status: %x\n", netsts);
1625
1626	return(1);
1627}
1628
1629static void
1630tl_intr(xsc)
1631	void			*xsc;
1632{
1633	struct tl_softc		*sc;
1634	struct ifnet		*ifp;
1635	int			r = 0;
1636	u_int32_t		type = 0;
1637	u_int16_t		ints = 0;
1638	u_int8_t		ivec = 0;
1639
1640	sc = xsc;
1641	TL_LOCK(sc);
1642
1643	/* Disable interrupts */
1644	ints = CSR_READ_2(sc, TL_HOST_INT);
1645	CSR_WRITE_2(sc, TL_HOST_INT, ints);
1646	type = (ints << 16) & 0xFFFF0000;
1647	ivec = (ints & TL_VEC_MASK) >> 5;
1648	ints = (ints & TL_INT_MASK) >> 2;
1649
1650	ifp = sc->tl_ifp;
1651
1652	switch(ints) {
1653	case (TL_INTR_INVALID):
1654#ifdef DIAGNOSTIC
1655		device_printf(sc->tl_dev, "got an invalid interrupt!\n");
1656#endif
1657		/* Re-enable interrupts but don't ack this one. */
1658		CMD_PUT(sc, type);
1659		r = 0;
1660		break;
1661	case (TL_INTR_TXEOF):
1662		r = tl_intvec_txeof((void *)sc, type);
1663		break;
1664	case (TL_INTR_TXEOC):
1665		r = tl_intvec_txeoc((void *)sc, type);
1666		break;
1667	case (TL_INTR_STATOFLOW):
1668		tl_stats_update(sc);
1669		r = 1;
1670		break;
1671	case (TL_INTR_RXEOF):
1672		r = tl_intvec_rxeof((void *)sc, type);
1673		break;
1674	case (TL_INTR_DUMMY):
1675		device_printf(sc->tl_dev, "got a dummy interrupt\n");
1676		r = 1;
1677		break;
1678	case (TL_INTR_ADCHK):
1679		if (ivec)
1680			r = tl_intvec_adchk((void *)sc, type);
1681		else
1682			r = tl_intvec_netsts((void *)sc, type);
1683		break;
1684	case (TL_INTR_RXEOC):
1685		r = tl_intvec_rxeoc((void *)sc, type);
1686		break;
1687	default:
1688		device_printf(sc->tl_dev, "bogus interrupt type\n");
1689		break;
1690	}
1691
1692	/* Re-enable interrupts */
1693	if (r) {
1694		CMD_PUT(sc, TL_CMD_ACK | r | type);
1695	}
1696
1697	if (ifp->if_snd.ifq_head != NULL)
1698		tl_start_locked(ifp);
1699
1700	TL_UNLOCK(sc);
1701}
1702
1703static void
1704tl_stats_update(xsc)
1705	void			*xsc;
1706{
1707	struct tl_softc		*sc;
1708	struct ifnet		*ifp;
1709	struct tl_stats		tl_stats;
1710	struct mii_data		*mii;
1711	u_int32_t		*p;
1712
1713	bzero((char *)&tl_stats, sizeof(struct tl_stats));
1714
1715	sc = xsc;
1716	TL_LOCK_ASSERT(sc);
1717	ifp = sc->tl_ifp;
1718
1719	p = (u_int32_t *)&tl_stats;
1720
1721	CSR_WRITE_2(sc, TL_DIO_ADDR, TL_TXGOODFRAMES|TL_DIO_ADDR_INC);
1722	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1723	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1724	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1725	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1726	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1727
1728	ifp->if_opackets += tl_tx_goodframes(tl_stats);
1729	ifp->if_collisions += tl_stats.tl_tx_single_collision +
1730				tl_stats.tl_tx_multi_collision;
1731	ifp->if_ipackets += tl_rx_goodframes(tl_stats);
1732	ifp->if_ierrors += tl_stats.tl_crc_errors + tl_stats.tl_code_errors +
1733			    tl_rx_overrun(tl_stats);
1734	ifp->if_oerrors += tl_tx_underrun(tl_stats);
1735
1736	if (tl_tx_underrun(tl_stats)) {
1737		u_int8_t		tx_thresh;
1738		tx_thresh = tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_TXTHRESH;
1739		if (tx_thresh != TL_AC_TXTHRESH_WHOLEPKT) {
1740			tx_thresh >>= 4;
1741			tx_thresh++;
1742			device_printf(sc->tl_dev, "tx underrun -- increasing "
1743			    "tx threshold to %d bytes\n",
1744			    (64 * (tx_thresh * 4)));
1745			tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
1746			tl_dio_setbit(sc, TL_ACOMMIT, tx_thresh << 4);
1747		}
1748	}
1749
1750	if (sc->tl_timer > 0 && --sc->tl_timer == 0)
1751		tl_watchdog(sc);
1752
1753	callout_reset(&sc->tl_stat_callout, hz, tl_stats_update, sc);
1754
1755	if (!sc->tl_bitrate) {
1756		mii = device_get_softc(sc->tl_miibus);
1757		mii_tick(mii);
1758	}
1759}
1760
1761/*
1762 * Encapsulate an mbuf chain in a list by coupling the mbuf data
1763 * pointers to the fragment pointers.
1764 */
1765static int
1766tl_encap(sc, c, m_head)
1767	struct tl_softc		*sc;
1768	struct tl_chain		*c;
1769	struct mbuf		*m_head;
1770{
1771	int			frag = 0;
1772	struct tl_frag		*f = NULL;
1773	int			total_len;
1774	struct mbuf		*m;
1775	struct ifnet		*ifp = sc->tl_ifp;
1776
1777	/*
1778 	 * Start packing the mbufs in this chain into
1779	 * the fragment pointers. Stop when we run out
1780 	 * of fragments or hit the end of the mbuf chain.
1781	 */
1782	m = m_head;
1783	total_len = 0;
1784
1785	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1786		if (m->m_len != 0) {
1787			if (frag == TL_MAXFRAGS)
1788				break;
1789			total_len+= m->m_len;
1790			c->tl_ptr->tl_frag[frag].tlist_dadr =
1791				vtophys(mtod(m, vm_offset_t));
1792			c->tl_ptr->tl_frag[frag].tlist_dcnt = m->m_len;
1793			frag++;
1794		}
1795	}
1796
1797	/*
1798	 * Handle special cases.
1799	 * Special case #1: we used up all 10 fragments, but
1800	 * we have more mbufs left in the chain. Copy the
1801	 * data into an mbuf cluster. Note that we don't
1802	 * bother clearing the values in the other fragment
1803	 * pointers/counters; it wouldn't gain us anything,
1804	 * and would waste cycles.
1805	 */
1806	if (m != NULL) {
1807		struct mbuf		*m_new = NULL;
1808
1809		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1810		if (m_new == NULL) {
1811			if_printf(ifp, "no memory for tx list\n");
1812			return(1);
1813		}
1814		if (m_head->m_pkthdr.len > MHLEN) {
1815			MCLGET(m_new, M_DONTWAIT);
1816			if (!(m_new->m_flags & M_EXT)) {
1817				m_freem(m_new);
1818				if_printf(ifp, "no memory for tx list\n");
1819				return(1);
1820			}
1821		}
1822		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1823					mtod(m_new, caddr_t));
1824		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1825		m_freem(m_head);
1826		m_head = m_new;
1827		f = &c->tl_ptr->tl_frag[0];
1828		f->tlist_dadr = vtophys(mtod(m_new, caddr_t));
1829		f->tlist_dcnt = total_len = m_new->m_len;
1830		frag = 1;
1831	}
1832
1833	/*
1834	 * Special case #2: the frame is smaller than the minimum
1835	 * frame size. We have to pad it to make the chip happy.
1836	 */
1837	if (total_len < TL_MIN_FRAMELEN) {
1838		if (frag == TL_MAXFRAGS)
1839			if_printf(ifp,
1840			    "all frags filled but frame still to small!\n");
1841		f = &c->tl_ptr->tl_frag[frag];
1842		f->tlist_dcnt = TL_MIN_FRAMELEN - total_len;
1843		f->tlist_dadr = vtophys(&sc->tl_ldata->tl_pad);
1844		total_len += f->tlist_dcnt;
1845		frag++;
1846	}
1847
1848	c->tl_mbuf = m_head;
1849	c->tl_ptr->tl_frag[frag - 1].tlist_dcnt |= TL_LAST_FRAG;
1850	c->tl_ptr->tlist_frsize = total_len;
1851	c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1852	c->tl_ptr->tlist_fptr = 0;
1853
1854	return(0);
1855}
1856
1857/*
1858 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1859 * to the mbuf data regions directly in the transmit lists. We also save a
1860 * copy of the pointers since the transmit list fragment pointers are
1861 * physical addresses.
1862 */
1863static void
1864tl_start(ifp)
1865	struct ifnet		*ifp;
1866{
1867	struct tl_softc		*sc;
1868
1869	sc = ifp->if_softc;
1870	TL_LOCK(sc);
1871	tl_start_locked(ifp);
1872	TL_UNLOCK(sc);
1873}
1874
1875static void
1876tl_start_locked(ifp)
1877	struct ifnet		*ifp;
1878{
1879	struct tl_softc		*sc;
1880	struct mbuf		*m_head = NULL;
1881	u_int32_t		cmd;
1882	struct tl_chain		*prev = NULL, *cur_tx = NULL, *start_tx;
1883
1884	sc = ifp->if_softc;
1885	TL_LOCK_ASSERT(sc);
1886
1887	/*
1888	 * Check for an available queue slot. If there are none,
1889	 * punt.
1890	 */
1891	if (sc->tl_cdata.tl_tx_free == NULL) {
1892		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1893		return;
1894	}
1895
1896	start_tx = sc->tl_cdata.tl_tx_free;
1897
1898	while(sc->tl_cdata.tl_tx_free != NULL) {
1899		IF_DEQUEUE(&ifp->if_snd, m_head);
1900		if (m_head == NULL)
1901			break;
1902
1903		/* Pick a chain member off the free list. */
1904		cur_tx = sc->tl_cdata.tl_tx_free;
1905		sc->tl_cdata.tl_tx_free = cur_tx->tl_next;
1906
1907		cur_tx->tl_next = NULL;
1908
1909		/* Pack the data into the list. */
1910		tl_encap(sc, cur_tx, m_head);
1911
1912		/* Chain it together */
1913		if (prev != NULL) {
1914			prev->tl_next = cur_tx;
1915			prev->tl_ptr->tlist_fptr = vtophys(cur_tx->tl_ptr);
1916		}
1917		prev = cur_tx;
1918
1919		/*
1920		 * If there's a BPF listener, bounce a copy of this frame
1921		 * to him.
1922		 */
1923		BPF_MTAP(ifp, cur_tx->tl_mbuf);
1924	}
1925
1926	/*
1927	 * If there are no packets queued, bail.
1928	 */
1929	if (cur_tx == NULL)
1930		return;
1931
1932	/*
1933	 * That's all we can stands, we can't stands no more.
1934	 * If there are no other transfers pending, then issue the
1935	 * TX GO command to the adapter to start things moving.
1936	 * Otherwise, just leave the data in the queue and let
1937	 * the EOF/EOC interrupt handler send.
1938	 */
1939	if (sc->tl_cdata.tl_tx_head == NULL) {
1940		sc->tl_cdata.tl_tx_head = start_tx;
1941		sc->tl_cdata.tl_tx_tail = cur_tx;
1942
1943		if (sc->tl_txeoc) {
1944			sc->tl_txeoc = 0;
1945			CSR_WRITE_4(sc, TL_CH_PARM, vtophys(start_tx->tl_ptr));
1946			cmd = CSR_READ_4(sc, TL_HOSTCMD);
1947			cmd &= ~TL_CMD_RT;
1948			cmd |= TL_CMD_GO|TL_CMD_INTSON;
1949			CMD_PUT(sc, cmd);
1950		}
1951	} else {
1952		sc->tl_cdata.tl_tx_tail->tl_next = start_tx;
1953		sc->tl_cdata.tl_tx_tail = cur_tx;
1954	}
1955
1956	/*
1957	 * Set a timeout in case the chip goes out to lunch.
1958	 */
1959	sc->tl_timer = 5;
1960}
1961
1962static void
1963tl_init(xsc)
1964	void			*xsc;
1965{
1966	struct tl_softc		*sc = xsc;
1967
1968	TL_LOCK(sc);
1969	tl_init_locked(sc);
1970	TL_UNLOCK(sc);
1971}
1972
1973static void
1974tl_init_locked(sc)
1975	struct tl_softc		*sc;
1976{
1977	struct ifnet		*ifp = sc->tl_ifp;
1978	struct mii_data		*mii;
1979
1980	TL_LOCK_ASSERT(sc);
1981
1982	ifp = sc->tl_ifp;
1983
1984	/*
1985	 * Cancel pending I/O.
1986	 */
1987	tl_stop(sc);
1988
1989	/* Initialize TX FIFO threshold */
1990	tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
1991	tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH_16LONG);
1992
1993        /* Set PCI burst size */
1994	tl_dio_write8(sc, TL_BSIZEREG, TL_RXBURST_16LONG|TL_TXBURST_16LONG);
1995
1996	/*
1997	 * Set 'capture all frames' bit for promiscuous mode.
1998	 */
1999	if (ifp->if_flags & IFF_PROMISC)
2000		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
2001	else
2002		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
2003
2004	/*
2005	 * Set capture broadcast bit to capture broadcast frames.
2006	 */
2007	if (ifp->if_flags & IFF_BROADCAST)
2008		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_NOBRX);
2009	else
2010		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NOBRX);
2011
2012	tl_dio_write16(sc, TL_MAXRX, MCLBYTES);
2013
2014	/* Init our MAC address */
2015	tl_setfilt(sc, IF_LLADDR(sc->tl_ifp), 0);
2016
2017	/* Init multicast filter, if needed. */
2018	tl_setmulti(sc);
2019
2020	/* Init circular RX list. */
2021	if (tl_list_rx_init(sc) == ENOBUFS) {
2022		device_printf(sc->tl_dev,
2023		    "initialization failed: no memory for rx buffers\n");
2024		tl_stop(sc);
2025		return;
2026	}
2027
2028	/* Init TX pointers. */
2029	tl_list_tx_init(sc);
2030
2031	/* Enable PCI interrupts. */
2032	CMD_SET(sc, TL_CMD_INTSON);
2033
2034	/* Load the address of the rx list */
2035	CMD_SET(sc, TL_CMD_RT);
2036	CSR_WRITE_4(sc, TL_CH_PARM, vtophys(&sc->tl_ldata->tl_rx_list[0]));
2037
2038	if (!sc->tl_bitrate) {
2039		if (sc->tl_miibus != NULL) {
2040			mii = device_get_softc(sc->tl_miibus);
2041			mii_mediachg(mii);
2042		}
2043	} else {
2044		tl_ifmedia_upd(ifp);
2045	}
2046
2047	/* Send the RX go command */
2048	CMD_SET(sc, TL_CMD_GO|TL_CMD_NES|TL_CMD_RT);
2049
2050	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2051	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2052
2053	/* Start the stats update counter */
2054	callout_reset(&sc->tl_stat_callout, hz, tl_stats_update, sc);
2055}
2056
2057/*
2058 * Set media options.
2059 */
2060static int
2061tl_ifmedia_upd(ifp)
2062	struct ifnet		*ifp;
2063{
2064	struct tl_softc		*sc;
2065	struct mii_data		*mii = NULL;
2066
2067	sc = ifp->if_softc;
2068
2069	TL_LOCK(sc);
2070	if (sc->tl_bitrate)
2071		tl_setmode(sc, sc->ifmedia.ifm_media);
2072	else {
2073		mii = device_get_softc(sc->tl_miibus);
2074		mii_mediachg(mii);
2075	}
2076	TL_UNLOCK(sc);
2077
2078	return(0);
2079}
2080
2081/*
2082 * Report current media status.
2083 */
2084static void
2085tl_ifmedia_sts(ifp, ifmr)
2086	struct ifnet		*ifp;
2087	struct ifmediareq	*ifmr;
2088{
2089	struct tl_softc		*sc;
2090	struct mii_data		*mii;
2091
2092	sc = ifp->if_softc;
2093
2094	TL_LOCK(sc);
2095	ifmr->ifm_active = IFM_ETHER;
2096
2097	if (sc->tl_bitrate) {
2098		if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD1)
2099			ifmr->ifm_active = IFM_ETHER|IFM_10_5;
2100		else
2101			ifmr->ifm_active = IFM_ETHER|IFM_10_T;
2102		if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD3)
2103			ifmr->ifm_active |= IFM_HDX;
2104		else
2105			ifmr->ifm_active |= IFM_FDX;
2106		return;
2107	} else {
2108		mii = device_get_softc(sc->tl_miibus);
2109		mii_pollstat(mii);
2110		ifmr->ifm_active = mii->mii_media_active;
2111		ifmr->ifm_status = mii->mii_media_status;
2112	}
2113	TL_UNLOCK(sc);
2114}
2115
2116static int
2117tl_ioctl(ifp, command, data)
2118	struct ifnet		*ifp;
2119	u_long			command;
2120	caddr_t			data;
2121{
2122	struct tl_softc		*sc = ifp->if_softc;
2123	struct ifreq		*ifr = (struct ifreq *) data;
2124	int			error = 0;
2125
2126	switch(command) {
2127	case SIOCSIFFLAGS:
2128		TL_LOCK(sc);
2129		if (ifp->if_flags & IFF_UP) {
2130			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2131			    ifp->if_flags & IFF_PROMISC &&
2132			    !(sc->tl_if_flags & IFF_PROMISC)) {
2133				tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
2134				tl_setmulti(sc);
2135			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2136			    !(ifp->if_flags & IFF_PROMISC) &&
2137			    sc->tl_if_flags & IFF_PROMISC) {
2138				tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
2139				tl_setmulti(sc);
2140			} else
2141				tl_init_locked(sc);
2142		} else {
2143			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2144				tl_stop(sc);
2145			}
2146		}
2147		sc->tl_if_flags = ifp->if_flags;
2148		TL_UNLOCK(sc);
2149		error = 0;
2150		break;
2151	case SIOCADDMULTI:
2152	case SIOCDELMULTI:
2153		TL_LOCK(sc);
2154		tl_setmulti(sc);
2155		TL_UNLOCK(sc);
2156		error = 0;
2157		break;
2158	case SIOCSIFMEDIA:
2159	case SIOCGIFMEDIA:
2160		if (sc->tl_bitrate)
2161			error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2162		else {
2163			struct mii_data		*mii;
2164			mii = device_get_softc(sc->tl_miibus);
2165			error = ifmedia_ioctl(ifp, ifr,
2166			    &mii->mii_media, command);
2167		}
2168		break;
2169	default:
2170		error = ether_ioctl(ifp, command, data);
2171		break;
2172	}
2173
2174	return(error);
2175}
2176
2177static void
2178tl_watchdog(sc)
2179	struct tl_softc		*sc;
2180{
2181	struct ifnet		*ifp;
2182
2183	TL_LOCK_ASSERT(sc);
2184	ifp = sc->tl_ifp;
2185
2186	if_printf(ifp, "device timeout\n");
2187
2188	ifp->if_oerrors++;
2189
2190	tl_softreset(sc, 1);
2191	tl_init_locked(sc);
2192}
2193
2194/*
2195 * Stop the adapter and free any mbufs allocated to the
2196 * RX and TX lists.
2197 */
2198static void
2199tl_stop(sc)
2200	struct tl_softc		*sc;
2201{
2202	register int		i;
2203	struct ifnet		*ifp;
2204
2205	TL_LOCK_ASSERT(sc);
2206
2207	ifp = sc->tl_ifp;
2208
2209	/* Stop the stats updater. */
2210	callout_stop(&sc->tl_stat_callout);
2211
2212	/* Stop the transmitter */
2213	CMD_CLR(sc, TL_CMD_RT);
2214	CMD_SET(sc, TL_CMD_STOP);
2215	CSR_WRITE_4(sc, TL_CH_PARM, 0);
2216
2217	/* Stop the receiver */
2218	CMD_SET(sc, TL_CMD_RT);
2219	CMD_SET(sc, TL_CMD_STOP);
2220	CSR_WRITE_4(sc, TL_CH_PARM, 0);
2221
2222	/*
2223	 * Disable host interrupts.
2224	 */
2225	CMD_SET(sc, TL_CMD_INTSOFF);
2226
2227	/*
2228	 * Clear list pointer.
2229	 */
2230	CSR_WRITE_4(sc, TL_CH_PARM, 0);
2231
2232	/*
2233	 * Free the RX lists.
2234	 */
2235	for (i = 0; i < TL_RX_LIST_CNT; i++) {
2236		if (sc->tl_cdata.tl_rx_chain[i].tl_mbuf != NULL) {
2237			m_freem(sc->tl_cdata.tl_rx_chain[i].tl_mbuf);
2238			sc->tl_cdata.tl_rx_chain[i].tl_mbuf = NULL;
2239		}
2240	}
2241	bzero((char *)&sc->tl_ldata->tl_rx_list,
2242		sizeof(sc->tl_ldata->tl_rx_list));
2243
2244	/*
2245	 * Free the TX list buffers.
2246	 */
2247	for (i = 0; i < TL_TX_LIST_CNT; i++) {
2248		if (sc->tl_cdata.tl_tx_chain[i].tl_mbuf != NULL) {
2249			m_freem(sc->tl_cdata.tl_tx_chain[i].tl_mbuf);
2250			sc->tl_cdata.tl_tx_chain[i].tl_mbuf = NULL;
2251		}
2252	}
2253	bzero((char *)&sc->tl_ldata->tl_tx_list,
2254		sizeof(sc->tl_ldata->tl_tx_list));
2255
2256	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2257}
2258
2259/*
2260 * Stop all chip I/O so that the kernel's probe routines don't
2261 * get confused by errant DMAs when rebooting.
2262 */
2263static int
2264tl_shutdown(dev)
2265	device_t		dev;
2266{
2267	struct tl_softc		*sc;
2268
2269	sc = device_get_softc(dev);
2270
2271	TL_LOCK(sc);
2272	tl_stop(sc);
2273	TL_UNLOCK(sc);
2274
2275	return (0);
2276}
2277