if_tl.c revision 226995
1/*-
2 * Copyright (c) 1997, 1998
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/tl/if_tl.c 226995 2011-11-01 16:13:59Z marius $");
35
36/*
37 * Texas Instruments ThunderLAN driver for FreeBSD 2.2.6 and 3.x.
38 * Supports many Compaq PCI NICs based on the ThunderLAN ethernet controller,
39 * the National Semiconductor DP83840A physical interface and the
40 * Microchip Technology 24Cxx series serial EEPROM.
41 *
42 * Written using the following four documents:
43 *
44 * Texas Instruments ThunderLAN Programmer's Guide (www.ti.com)
45 * National Semiconductor DP83840A data sheet (www.national.com)
46 * Microchip Technology 24C02C data sheet (www.microchip.com)
47 * Micro Linear ML6692 100BaseTX only PHY data sheet (www.microlinear.com)
48 *
49 * Written by Bill Paul <wpaul@ctr.columbia.edu>
50 * Electrical Engineering Department
51 * Columbia University, New York City
52 */
53/*
54 * Some notes about the ThunderLAN:
55 *
56 * The ThunderLAN controller is a single chip containing PCI controller
57 * logic, approximately 3K of on-board SRAM, a LAN controller, and media
58 * independent interface (MII) bus. The MII allows the ThunderLAN chip to
59 * control up to 32 different physical interfaces (PHYs). The ThunderLAN
60 * also has a built-in 10baseT PHY, allowing a single ThunderLAN controller
61 * to act as a complete ethernet interface.
62 *
63 * Other PHYs may be attached to the ThunderLAN; the Compaq 10/100 cards
64 * use a National Semiconductor DP83840A PHY that supports 10 or 100Mb/sec
65 * in full or half duplex. Some of the Compaq Deskpro machines use a
66 * Level 1 LXT970 PHY with the same capabilities. Certain Olicom adapters
67 * use a Micro Linear ML6692 100BaseTX only PHY, which can be used in
68 * concert with the ThunderLAN's internal PHY to provide full 10/100
69 * support. This is cheaper than using a standalone external PHY for both
70 * 10/100 modes and letting the ThunderLAN's internal PHY go to waste.
71 * A serial EEPROM is also attached to the ThunderLAN chip to provide
72 * power-up default register settings and for storing the adapter's
73 * station address. Although not supported by this driver, the ThunderLAN
74 * chip can also be connected to token ring PHYs.
75 *
76 * The ThunderLAN has a set of registers which can be used to issue
77 * commands, acknowledge interrupts, and to manipulate other internal
78 * registers on its DIO bus. The primary registers can be accessed
79 * using either programmed I/O (inb/outb) or via PCI memory mapping,
80 * depending on how the card is configured during the PCI probing
81 * phase. It is even possible to have both PIO and memory mapped
82 * access turned on at the same time.
83 *
84 * Frame reception and transmission with the ThunderLAN chip is done
85 * using frame 'lists.' A list structure looks more or less like this:
86 *
87 * struct tl_frag {
88 *	u_int32_t		fragment_address;
89 *	u_int32_t		fragment_size;
90 * };
91 * struct tl_list {
92 *	u_int32_t		forward_pointer;
93 *	u_int16_t		cstat;
94 *	u_int16_t		frame_size;
95 *	struct tl_frag		fragments[10];
96 * };
97 *
98 * The forward pointer in the list header can be either a 0 or the address
99 * of another list, which allows several lists to be linked together. Each
100 * list contains up to 10 fragment descriptors. This means the chip allows
101 * ethernet frames to be broken up into up to 10 chunks for transfer to
102 * and from the SRAM. Note that the forward pointer and fragment buffer
103 * addresses are physical memory addresses, not virtual. Note also that
104 * a single ethernet frame can not span lists: if the host wants to
105 * transmit a frame and the frame data is split up over more than 10
106 * buffers, the frame has to collapsed before it can be transmitted.
107 *
108 * To receive frames, the driver sets up a number of lists and populates
109 * the fragment descriptors, then it sends an RX GO command to the chip.
110 * When a frame is received, the chip will DMA it into the memory regions
111 * specified by the fragment descriptors and then trigger an RX 'end of
112 * frame interrupt' when done. The driver may choose to use only one
113 * fragment per list; this may result is slighltly less efficient use
114 * of memory in exchange for improving performance.
115 *
116 * To transmit frames, the driver again sets up lists and fragment
117 * descriptors, only this time the buffers contain frame data that
118 * is to be DMA'ed into the chip instead of out of it. Once the chip
119 * has transfered the data into its on-board SRAM, it will trigger a
120 * TX 'end of frame' interrupt. It will also generate an 'end of channel'
121 * interrupt when it reaches the end of the list.
122 */
123/*
124 * Some notes about this driver:
125 *
126 * The ThunderLAN chip provides a couple of different ways to organize
127 * reception, transmission and interrupt handling. The simplest approach
128 * is to use one list each for transmission and reception. In this mode,
129 * the ThunderLAN will generate two interrupts for every received frame
130 * (one RX EOF and one RX EOC) and two for each transmitted frame (one
131 * TX EOF and one TX EOC). This may make the driver simpler but it hurts
132 * performance to have to handle so many interrupts.
133 *
134 * Initially I wanted to create a circular list of receive buffers so
135 * that the ThunderLAN chip would think there was an infinitely long
136 * receive channel and never deliver an RXEOC interrupt. However this
137 * doesn't work correctly under heavy load: while the manual says the
138 * chip will trigger an RXEOF interrupt each time a frame is copied into
139 * memory, you can't count on the chip waiting around for you to acknowledge
140 * the interrupt before it starts trying to DMA the next frame. The result
141 * is that the chip might traverse the entire circular list and then wrap
142 * around before you have a chance to do anything about it. Consequently,
143 * the receive list is terminated (with a 0 in the forward pointer in the
144 * last element). Each time an RXEOF interrupt arrives, the used list
145 * is shifted to the end of the list. This gives the appearance of an
146 * infinitely large RX chain so long as the driver doesn't fall behind
147 * the chip and allow all of the lists to be filled up.
148 *
149 * If all the lists are filled, the adapter will deliver an RX 'end of
150 * channel' interrupt when it hits the 0 forward pointer at the end of
151 * the chain. The RXEOC handler then cleans out the RX chain and resets
152 * the list head pointer in the ch_parm register and restarts the receiver.
153 *
154 * For frame transmission, it is possible to program the ThunderLAN's
155 * transmit interrupt threshold so that the chip can acknowledge multiple
156 * lists with only a single TX EOF interrupt. This allows the driver to
157 * queue several frames in one shot, and only have to handle a total
158 * two interrupts (one TX EOF and one TX EOC) no matter how many frames
159 * are transmitted. Frame transmission is done directly out of the
160 * mbufs passed to the tl_start() routine via the interface send queue.
161 * The driver simply sets up the fragment descriptors in the transmit
162 * lists to point to the mbuf data regions and sends a TX GO command.
163 *
164 * Note that since the RX and TX lists themselves are always used
165 * only by the driver, the are malloc()ed once at driver initialization
166 * time and never free()ed.
167 *
168 * Also, in order to remain as platform independent as possible, this
169 * driver uses memory mapped register access to manipulate the card
170 * as opposed to programmed I/O. This avoids the use of the inb/outb
171 * (and related) instructions which are specific to the i386 platform.
172 *
173 * Using these techniques, this driver achieves very high performance
174 * by minimizing the amount of interrupts generated during large
175 * transfers and by completely avoiding buffer copies. Frame transfer
176 * to and from the ThunderLAN chip is performed entirely by the chip
177 * itself thereby reducing the load on the host CPU.
178 */
179
180#include <sys/param.h>
181#include <sys/systm.h>
182#include <sys/sockio.h>
183#include <sys/mbuf.h>
184#include <sys/malloc.h>
185#include <sys/kernel.h>
186#include <sys/module.h>
187#include <sys/socket.h>
188
189#include <net/if.h>
190#include <net/if_arp.h>
191#include <net/ethernet.h>
192#include <net/if_dl.h>
193#include <net/if_media.h>
194#include <net/if_types.h>
195
196#include <net/bpf.h>
197
198#include <vm/vm.h>              /* for vtophys */
199#include <vm/pmap.h>            /* for vtophys */
200#include <machine/bus.h>
201#include <machine/resource.h>
202#include <sys/bus.h>
203#include <sys/rman.h>
204
205#include <dev/mii/mii.h>
206#include <dev/mii/mii_bitbang.h>
207#include <dev/mii/miivar.h>
208
209#include <dev/pci/pcireg.h>
210#include <dev/pci/pcivar.h>
211
212/*
213 * Default to using PIO register access mode to pacify certain
214 * laptop docking stations with built-in ThunderLAN chips that
215 * don't seem to handle memory mapped mode properly.
216 */
217#define TL_USEIOSPACE
218
219#include <dev/tl/if_tlreg.h>
220
221MODULE_DEPEND(tl, pci, 1, 1, 1);
222MODULE_DEPEND(tl, ether, 1, 1, 1);
223MODULE_DEPEND(tl, miibus, 1, 1, 1);
224
225/* "device miibus" required.  See GENERIC if you get errors here. */
226#include "miibus_if.h"
227
228/*
229 * Various supported device vendors/types and their names.
230 */
231
232static const struct tl_type const tl_devs[] = {
233	{ TI_VENDORID,	TI_DEVICEID_THUNDERLAN,
234		"Texas Instruments ThunderLAN" },
235	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10,
236		"Compaq Netelligent 10" },
237	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100,
238		"Compaq Netelligent 10/100" },
239	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_PROLIANT,
240		"Compaq Netelligent 10/100 Proliant" },
241	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_DUAL,
242		"Compaq Netelligent 10/100 Dual Port" },
243	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_INTEGRATED,
244		"Compaq NetFlex-3/P Integrated" },
245	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P,
246		"Compaq NetFlex-3/P" },
247	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_BNC,
248		"Compaq NetFlex 3/P w/ BNC" },
249	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_EMBEDDED,
250		"Compaq Netelligent 10/100 TX Embedded UTP" },
251	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_T2_UTP_COAX,
252		"Compaq Netelligent 10 T/2 PCI UTP/Coax" },
253	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_TX_UTP,
254		"Compaq Netelligent 10/100 TX UTP" },
255	{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2183,
256		"Olicom OC-2183/2185" },
257	{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2325,
258		"Olicom OC-2325" },
259	{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2326,
260		"Olicom OC-2326 10/100 TX UTP" },
261	{ 0, 0, NULL }
262};
263
264static int tl_probe(device_t);
265static int tl_attach(device_t);
266static int tl_detach(device_t);
267static int tl_intvec_rxeoc(void *, u_int32_t);
268static int tl_intvec_txeoc(void *, u_int32_t);
269static int tl_intvec_txeof(void *, u_int32_t);
270static int tl_intvec_rxeof(void *, u_int32_t);
271static int tl_intvec_adchk(void *, u_int32_t);
272static int tl_intvec_netsts(void *, u_int32_t);
273
274static int tl_newbuf(struct tl_softc *, struct tl_chain_onefrag *);
275static void tl_stats_update(void *);
276static int tl_encap(struct tl_softc *, struct tl_chain *, struct mbuf *);
277
278static void tl_intr(void *);
279static void tl_start(struct ifnet *);
280static void tl_start_locked(struct ifnet *);
281static int tl_ioctl(struct ifnet *, u_long, caddr_t);
282static void tl_init(void *);
283static void tl_init_locked(struct tl_softc *);
284static void tl_stop(struct tl_softc *);
285static void tl_watchdog(struct tl_softc *);
286static int tl_shutdown(device_t);
287static int tl_ifmedia_upd(struct ifnet *);
288static void tl_ifmedia_sts(struct ifnet *, struct ifmediareq *);
289
290static u_int8_t tl_eeprom_putbyte(struct tl_softc *, int);
291static u_int8_t	tl_eeprom_getbyte(struct tl_softc *, int, u_int8_t *);
292static int tl_read_eeprom(struct tl_softc *, caddr_t, int, int);
293
294static int tl_miibus_readreg(device_t, int, int);
295static int tl_miibus_writereg(device_t, int, int, int);
296static void tl_miibus_statchg(device_t);
297
298static void tl_setmode(struct tl_softc *, int);
299static uint32_t tl_mchash(const uint8_t *);
300static void tl_setmulti(struct tl_softc *);
301static void tl_setfilt(struct tl_softc *, caddr_t, int);
302static void tl_softreset(struct tl_softc *, int);
303static void tl_hardreset(device_t);
304static int tl_list_rx_init(struct tl_softc *);
305static int tl_list_tx_init(struct tl_softc *);
306
307static u_int8_t tl_dio_read8(struct tl_softc *, int);
308static u_int16_t tl_dio_read16(struct tl_softc *, int);
309static u_int32_t tl_dio_read32(struct tl_softc *, int);
310static void tl_dio_write8(struct tl_softc *, int, int);
311static void tl_dio_write16(struct tl_softc *, int, int);
312static void tl_dio_write32(struct tl_softc *, int, int);
313static void tl_dio_setbit(struct tl_softc *, int, int);
314static void tl_dio_clrbit(struct tl_softc *, int, int);
315static void tl_dio_setbit16(struct tl_softc *, int, int);
316static void tl_dio_clrbit16(struct tl_softc *, int, int);
317
318/*
319 * MII bit-bang glue
320 */
321static uint32_t tl_mii_bitbang_read(device_t);
322static void tl_mii_bitbang_write(device_t, uint32_t);
323
324static const struct mii_bitbang_ops tl_mii_bitbang_ops = {
325	tl_mii_bitbang_read,
326	tl_mii_bitbang_write,
327	{
328		TL_SIO_MDATA,	/* MII_BIT_MDO */
329		TL_SIO_MDATA,	/* MII_BIT_MDI */
330		TL_SIO_MCLK,	/* MII_BIT_MDC */
331		TL_SIO_MTXEN,	/* MII_BIT_DIR_HOST_PHY */
332		0,		/* MII_BIT_DIR_PHY_HOST */
333	}
334};
335
336#ifdef TL_USEIOSPACE
337#define TL_RES		SYS_RES_IOPORT
338#define TL_RID		TL_PCI_LOIO
339#else
340#define TL_RES		SYS_RES_MEMORY
341#define TL_RID		TL_PCI_LOMEM
342#endif
343
344static device_method_t tl_methods[] = {
345	/* Device interface */
346	DEVMETHOD(device_probe,		tl_probe),
347	DEVMETHOD(device_attach,	tl_attach),
348	DEVMETHOD(device_detach,	tl_detach),
349	DEVMETHOD(device_shutdown,	tl_shutdown),
350
351	/* bus interface */
352	DEVMETHOD(bus_print_child,	bus_generic_print_child),
353	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
354
355	/* MII interface */
356	DEVMETHOD(miibus_readreg,	tl_miibus_readreg),
357	DEVMETHOD(miibus_writereg,	tl_miibus_writereg),
358	DEVMETHOD(miibus_statchg,	tl_miibus_statchg),
359
360	{ 0, 0 }
361};
362
363static driver_t tl_driver = {
364	"tl",
365	tl_methods,
366	sizeof(struct tl_softc)
367};
368
369static devclass_t tl_devclass;
370
371DRIVER_MODULE(tl, pci, tl_driver, tl_devclass, 0, 0);
372DRIVER_MODULE(miibus, tl, miibus_driver, miibus_devclass, 0, 0);
373
374static u_int8_t tl_dio_read8(sc, reg)
375	struct tl_softc		*sc;
376	int			reg;
377{
378
379	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
380		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
381	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
382	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
383		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
384	return(CSR_READ_1(sc, TL_DIO_DATA + (reg & 3)));
385}
386
387static u_int16_t tl_dio_read16(sc, reg)
388	struct tl_softc		*sc;
389	int			reg;
390{
391
392	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
393		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
394	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
395	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
396		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
397	return(CSR_READ_2(sc, TL_DIO_DATA + (reg & 3)));
398}
399
400static u_int32_t tl_dio_read32(sc, reg)
401	struct tl_softc		*sc;
402	int			reg;
403{
404
405	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
406		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
407	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
408	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
409		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
410	return(CSR_READ_4(sc, TL_DIO_DATA + (reg & 3)));
411}
412
413static void tl_dio_write8(sc, reg, val)
414	struct tl_softc		*sc;
415	int			reg;
416	int			val;
417{
418
419	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
420		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
421	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
422	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
423		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
424	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), val);
425}
426
427static void tl_dio_write16(sc, reg, val)
428	struct tl_softc		*sc;
429	int			reg;
430	int			val;
431{
432
433	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
434		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
435	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
436	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
437		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
438	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), val);
439}
440
441static void tl_dio_write32(sc, reg, val)
442	struct tl_softc		*sc;
443	int			reg;
444	int			val;
445{
446
447	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
448		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
449	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
450	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
451		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
452	CSR_WRITE_4(sc, TL_DIO_DATA + (reg & 3), val);
453}
454
455static void
456tl_dio_setbit(sc, reg, bit)
457	struct tl_softc		*sc;
458	int			reg;
459	int			bit;
460{
461	u_int8_t			f;
462
463	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
464		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
465	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
466	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
467		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
468	f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
469	f |= bit;
470	CSR_BARRIER(sc, TL_DIO_DATA + (reg & 3), 1,
471		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
472	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
473}
474
475static void
476tl_dio_clrbit(sc, reg, bit)
477	struct tl_softc		*sc;
478	int			reg;
479	int			bit;
480{
481	u_int8_t			f;
482
483	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
484		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
485	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
486	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
487		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
488	f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
489	f &= ~bit;
490	CSR_BARRIER(sc, TL_DIO_DATA + (reg & 3), 1,
491		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
492	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
493}
494
495static void tl_dio_setbit16(sc, reg, bit)
496	struct tl_softc		*sc;
497	int			reg;
498	int			bit;
499{
500	u_int16_t			f;
501
502	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
503		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
504	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
505	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
506		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
507	f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
508	f |= bit;
509	CSR_BARRIER(sc, TL_DIO_DATA + (reg & 3), 2,
510		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
511	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
512}
513
514static void tl_dio_clrbit16(sc, reg, bit)
515	struct tl_softc		*sc;
516	int			reg;
517	int			bit;
518{
519	u_int16_t			f;
520
521	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
522		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
523	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
524	CSR_BARRIER(sc, TL_DIO_ADDR, 2,
525		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
526	f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
527	f &= ~bit;
528	CSR_BARRIER(sc, TL_DIO_DATA + (reg & 3), 2,
529		BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
530	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
531}
532
533/*
534 * Send an instruction or address to the EEPROM, check for ACK.
535 */
536static u_int8_t tl_eeprom_putbyte(sc, byte)
537	struct tl_softc		*sc;
538	int			byte;
539{
540	register int		i, ack = 0;
541
542	/*
543	 * Make sure we're in TX mode.
544	 */
545	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ETXEN);
546
547	/*
548	 * Feed in each bit and stobe the clock.
549	 */
550	for (i = 0x80; i; i >>= 1) {
551		if (byte & i) {
552			tl_dio_setbit(sc, TL_NETSIO, TL_SIO_EDATA);
553		} else {
554			tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_EDATA);
555		}
556		DELAY(1);
557		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
558		DELAY(1);
559		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
560	}
561
562	/*
563	 * Turn off TX mode.
564	 */
565	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
566
567	/*
568	 * Check for ack.
569	 */
570	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
571	ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA;
572	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
573
574	return(ack);
575}
576
577/*
578 * Read a byte of data stored in the EEPROM at address 'addr.'
579 */
580static u_int8_t tl_eeprom_getbyte(sc, addr, dest)
581	struct tl_softc		*sc;
582	int			addr;
583	u_int8_t		*dest;
584{
585	register int		i;
586	u_int8_t		byte = 0;
587	device_t		tl_dev = sc->tl_dev;
588
589	tl_dio_write8(sc, TL_NETSIO, 0);
590
591	EEPROM_START;
592
593	/*
594	 * Send write control code to EEPROM.
595	 */
596	if (tl_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
597		device_printf(tl_dev, "failed to send write command, status: %x\n",
598		    tl_dio_read8(sc, TL_NETSIO));
599		return(1);
600	}
601
602	/*
603	 * Send address of byte we want to read.
604	 */
605	if (tl_eeprom_putbyte(sc, addr)) {
606		device_printf(tl_dev, "failed to send address, status: %x\n",
607		    tl_dio_read8(sc, TL_NETSIO));
608		return(1);
609	}
610
611	EEPROM_STOP;
612	EEPROM_START;
613	/*
614	 * Send read control code to EEPROM.
615	 */
616	if (tl_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
617		device_printf(tl_dev, "failed to send write command, status: %x\n",
618		    tl_dio_read8(sc, TL_NETSIO));
619		return(1);
620	}
621
622	/*
623	 * Start reading bits from EEPROM.
624	 */
625	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
626	for (i = 0x80; i; i >>= 1) {
627		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
628		DELAY(1);
629		if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA)
630			byte |= i;
631		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
632		DELAY(1);
633	}
634
635	EEPROM_STOP;
636
637	/*
638	 * No ACK generated for read, so just return byte.
639	 */
640
641	*dest = byte;
642
643	return(0);
644}
645
646/*
647 * Read a sequence of bytes from the EEPROM.
648 */
649static int
650tl_read_eeprom(sc, dest, off, cnt)
651	struct tl_softc		*sc;
652	caddr_t			dest;
653	int			off;
654	int			cnt;
655{
656	int			err = 0, i;
657	u_int8_t		byte = 0;
658
659	for (i = 0; i < cnt; i++) {
660		err = tl_eeprom_getbyte(sc, off + i, &byte);
661		if (err)
662			break;
663		*(dest + i) = byte;
664	}
665
666	return(err ? 1 : 0);
667}
668
669#define	TL_SIO_MII	(TL_SIO_MCLK | TL_SIO_MDATA | TL_SIO_MTXEN)
670
671/*
672 * Read the MII serial port for the MII bit-bang module.
673 */
674static uint32_t
675tl_mii_bitbang_read(device_t dev)
676{
677	struct tl_softc *sc;
678	uint32_t val;
679
680	sc = device_get_softc(dev);
681
682	val = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MII;
683	CSR_BARRIER(sc, TL_NETSIO, 1,
684	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
685
686	return (val);
687}
688
689/*
690 * Write the MII serial port for the MII bit-bang module.
691 */
692static void
693tl_mii_bitbang_write(device_t dev, uint32_t val)
694{
695	struct tl_softc *sc;
696
697	sc = device_get_softc(dev);
698
699	val = (tl_dio_read8(sc, TL_NETSIO) & ~TL_SIO_MII) | val;
700	CSR_BARRIER(sc, TL_NETSIO, 1,
701	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
702	tl_dio_write8(sc, TL_NETSIO, val);
703	CSR_BARRIER(sc, TL_NETSIO, 1,
704	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
705}
706
707static int
708tl_miibus_readreg(dev, phy, reg)
709	device_t		dev;
710	int			phy, reg;
711{
712	struct tl_softc		*sc;
713	int			minten, val;
714
715	sc = device_get_softc(dev);
716
717	/*
718	 * Turn off MII interrupt by forcing MINTEN low.
719	 */
720	minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
721	if (minten) {
722		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
723	}
724
725	val = mii_bitbang_readreg(dev, &tl_mii_bitbang_ops, phy, reg);
726
727	/* Reenable interrupts. */
728	if (minten) {
729		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
730	}
731
732	return (val);
733}
734
735static int
736tl_miibus_writereg(dev, phy, reg, data)
737	device_t		dev;
738	int			phy, reg, data;
739{
740	struct tl_softc		*sc;
741	int			minten;
742
743	sc = device_get_softc(dev);
744
745	/*
746	 * Turn off MII interrupt by forcing MINTEN low.
747	 */
748	minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
749	if (minten) {
750		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
751	}
752
753	mii_bitbang_writereg(dev, &tl_mii_bitbang_ops, phy, reg, data);
754
755	/* Reenable interrupts. */
756	if (minten) {
757		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
758	}
759
760	return(0);
761}
762
763static void
764tl_miibus_statchg(dev)
765	device_t		dev;
766{
767	struct tl_softc		*sc;
768	struct mii_data		*mii;
769
770	sc = device_get_softc(dev);
771	mii = device_get_softc(sc->tl_miibus);
772
773	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
774		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
775	} else {
776		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
777	}
778}
779
780/*
781 * Set modes for bitrate devices.
782 */
783static void
784tl_setmode(sc, media)
785	struct tl_softc		*sc;
786	int			media;
787{
788	if (IFM_SUBTYPE(media) == IFM_10_5)
789		tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
790	if (IFM_SUBTYPE(media) == IFM_10_T) {
791		tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
792		if ((media & IFM_GMASK) == IFM_FDX) {
793			tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
794			tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
795		} else {
796			tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
797			tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
798		}
799	}
800}
801
802/*
803 * Calculate the hash of a MAC address for programming the multicast hash
804 * table.  This hash is simply the address split into 6-bit chunks
805 * XOR'd, e.g.
806 * byte: 000000|00 1111|1111 22|222222|333333|33 4444|4444 55|555555
807 * bit:  765432|10 7654|3210 76|543210|765432|10 7654|3210 76|543210
808 * Bytes 0-2 and 3-5 are symmetrical, so are folded together.  Then
809 * the folded 24-bit value is split into 6-bit portions and XOR'd.
810 */
811static uint32_t
812tl_mchash(addr)
813	const uint8_t *addr;
814{
815	int t;
816
817	t = (addr[0] ^ addr[3]) << 16 | (addr[1] ^ addr[4]) << 8 |
818		(addr[2] ^ addr[5]);
819	return ((t >> 18) ^ (t >> 12) ^ (t >> 6) ^ t) & 0x3f;
820}
821
822/*
823 * The ThunderLAN has a perfect MAC address filter in addition to
824 * the multicast hash filter. The perfect filter can be programmed
825 * with up to four MAC addresses. The first one is always used to
826 * hold the station address, which leaves us free to use the other
827 * three for multicast addresses.
828 */
829static void
830tl_setfilt(sc, addr, slot)
831	struct tl_softc		*sc;
832	caddr_t			addr;
833	int			slot;
834{
835	int			i;
836	u_int16_t		regaddr;
837
838	regaddr = TL_AREG0_B5 + (slot * ETHER_ADDR_LEN);
839
840	for (i = 0; i < ETHER_ADDR_LEN; i++)
841		tl_dio_write8(sc, regaddr + i, *(addr + i));
842}
843
844/*
845 * XXX In FreeBSD 3.0, multicast addresses are managed using a doubly
846 * linked list. This is fine, except addresses are added from the head
847 * end of the list. We want to arrange for 224.0.0.1 (the "all hosts")
848 * group to always be in the perfect filter, but as more groups are added,
849 * the 224.0.0.1 entry (which is always added first) gets pushed down
850 * the list and ends up at the tail. So after 3 or 4 multicast groups
851 * are added, the all-hosts entry gets pushed out of the perfect filter
852 * and into the hash table.
853 *
854 * Because the multicast list is a doubly-linked list as opposed to a
855 * circular queue, we don't have the ability to just grab the tail of
856 * the list and traverse it backwards. Instead, we have to traverse
857 * the list once to find the tail, then traverse it again backwards to
858 * update the multicast filter.
859 */
860static void
861tl_setmulti(sc)
862	struct tl_softc		*sc;
863{
864	struct ifnet		*ifp;
865	u_int32_t		hashes[2] = { 0, 0 };
866	int			h, i;
867	struct ifmultiaddr	*ifma;
868	u_int8_t		dummy[] = { 0, 0, 0, 0, 0 ,0 };
869	ifp = sc->tl_ifp;
870
871	/* First, zot all the existing filters. */
872	for (i = 1; i < 4; i++)
873		tl_setfilt(sc, (caddr_t)&dummy, i);
874	tl_dio_write32(sc, TL_HASH1, 0);
875	tl_dio_write32(sc, TL_HASH2, 0);
876
877	/* Now program new ones. */
878	if (ifp->if_flags & IFF_ALLMULTI) {
879		hashes[0] = 0xFFFFFFFF;
880		hashes[1] = 0xFFFFFFFF;
881	} else {
882		i = 1;
883		if_maddr_rlock(ifp);
884		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
885			if (ifma->ifma_addr->sa_family != AF_LINK)
886				continue;
887			/*
888			 * Program the first three multicast groups
889			 * into the perfect filter. For all others,
890			 * use the hash table.
891			 */
892			if (i < 4) {
893				tl_setfilt(sc,
894			LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
895				i++;
896				continue;
897			}
898
899			h = tl_mchash(
900				LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
901			if (h < 32)
902				hashes[0] |= (1 << h);
903			else
904				hashes[1] |= (1 << (h - 32));
905		}
906		if_maddr_runlock(ifp);
907	}
908
909	tl_dio_write32(sc, TL_HASH1, hashes[0]);
910	tl_dio_write32(sc, TL_HASH2, hashes[1]);
911}
912
913/*
914 * This routine is recommended by the ThunderLAN manual to insure that
915 * the internal PHY is powered up correctly. It also recommends a one
916 * second pause at the end to 'wait for the clocks to start' but in my
917 * experience this isn't necessary.
918 */
919static void
920tl_hardreset(dev)
921	device_t		dev;
922{
923	struct tl_softc		*sc;
924	int			i;
925	u_int16_t		flags;
926
927	sc = device_get_softc(dev);
928
929	mii_bitbang_sync(dev, &tl_mii_bitbang_ops);
930
931	flags = BMCR_LOOP|BMCR_ISO|BMCR_PDOWN;
932
933	for (i = 0; i < MII_NPHY; i++)
934		tl_miibus_writereg(dev, i, MII_BMCR, flags);
935
936	tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_ISO);
937	DELAY(50000);
938	tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_LOOP|BMCR_ISO);
939	mii_bitbang_sync(dev, &tl_mii_bitbang_ops);
940	while(tl_miibus_readreg(dev, 31, MII_BMCR) & BMCR_RESET);
941
942	DELAY(50000);
943}
944
945static void
946tl_softreset(sc, internal)
947	struct tl_softc		*sc;
948	int			internal;
949{
950        u_int32_t               cmd, dummy, i;
951
952        /* Assert the adapter reset bit. */
953	CMD_SET(sc, TL_CMD_ADRST);
954
955        /* Turn off interrupts */
956	CMD_SET(sc, TL_CMD_INTSOFF);
957
958	/* First, clear the stats registers. */
959	for (i = 0; i < 5; i++)
960		dummy = tl_dio_read32(sc, TL_TXGOODFRAMES);
961
962        /* Clear Areg and Hash registers */
963	for (i = 0; i < 8; i++)
964		tl_dio_write32(sc, TL_AREG0_B5, 0x00000000);
965
966        /*
967	 * Set up Netconfig register. Enable one channel and
968	 * one fragment mode.
969	 */
970	tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_ONECHAN|TL_CFG_ONEFRAG);
971	if (internal && !sc->tl_bitrate) {
972		tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
973	} else {
974		tl_dio_clrbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
975	}
976
977	/* Handle cards with bitrate devices. */
978	if (sc->tl_bitrate)
979		tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_BITRATE);
980
981	/*
982	 * Load adapter irq pacing timer and tx threshold.
983	 * We make the transmit threshold 1 initially but we may
984	 * change that later.
985	 */
986	cmd = CSR_READ_4(sc, TL_HOSTCMD);
987	cmd |= TL_CMD_NES;
988	cmd &= ~(TL_CMD_RT|TL_CMD_EOC|TL_CMD_ACK_MASK|TL_CMD_CHSEL_MASK);
989	CMD_PUT(sc, cmd | (TL_CMD_LDTHR | TX_THR));
990	CMD_PUT(sc, cmd | (TL_CMD_LDTMR | 0x00000003));
991
992        /* Unreset the MII */
993	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_NMRST);
994
995	/* Take the adapter out of reset */
996	tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NRESET|TL_CMD_NWRAP);
997
998	/* Wait for things to settle down a little. */
999	DELAY(500);
1000}
1001
1002/*
1003 * Probe for a ThunderLAN chip. Check the PCI vendor and device IDs
1004 * against our list and return its name if we find a match.
1005 */
1006static int
1007tl_probe(dev)
1008	device_t		dev;
1009{
1010	const struct tl_type	*t;
1011
1012	t = tl_devs;
1013
1014	while(t->tl_name != NULL) {
1015		if ((pci_get_vendor(dev) == t->tl_vid) &&
1016		    (pci_get_device(dev) == t->tl_did)) {
1017			device_set_desc(dev, t->tl_name);
1018			return (BUS_PROBE_DEFAULT);
1019		}
1020		t++;
1021	}
1022
1023	return(ENXIO);
1024}
1025
1026static int
1027tl_attach(dev)
1028	device_t		dev;
1029{
1030	u_int16_t		did, vid;
1031	const struct tl_type	*t;
1032	struct ifnet		*ifp;
1033	struct tl_softc		*sc;
1034	int			error, flags, i, rid, unit;
1035	u_char			eaddr[6];
1036
1037	vid = pci_get_vendor(dev);
1038	did = pci_get_device(dev);
1039	sc = device_get_softc(dev);
1040	sc->tl_dev = dev;
1041	unit = device_get_unit(dev);
1042
1043	t = tl_devs;
1044	while(t->tl_name != NULL) {
1045		if (vid == t->tl_vid && did == t->tl_did)
1046			break;
1047		t++;
1048	}
1049
1050	if (t->tl_name == NULL) {
1051		device_printf(dev, "unknown device!?\n");
1052		return (ENXIO);
1053	}
1054
1055	mtx_init(&sc->tl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1056	    MTX_DEF);
1057
1058	/*
1059	 * Map control/status registers.
1060	 */
1061	pci_enable_busmaster(dev);
1062
1063#ifdef TL_USEIOSPACE
1064
1065	rid = TL_PCI_LOIO;
1066	sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1067		RF_ACTIVE);
1068
1069	/*
1070	 * Some cards have the I/O and memory mapped address registers
1071	 * reversed. Try both combinations before giving up.
1072	 */
1073	if (sc->tl_res == NULL) {
1074		rid = TL_PCI_LOMEM;
1075		sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1076		    RF_ACTIVE);
1077	}
1078#else
1079	rid = TL_PCI_LOMEM;
1080	sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1081	    RF_ACTIVE);
1082	if (sc->tl_res == NULL) {
1083		rid = TL_PCI_LOIO;
1084		sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1085		    RF_ACTIVE);
1086	}
1087#endif
1088
1089	if (sc->tl_res == NULL) {
1090		device_printf(dev, "couldn't map ports/memory\n");
1091		error = ENXIO;
1092		goto fail;
1093	}
1094
1095#ifdef notdef
1096	/*
1097	 * The ThunderLAN manual suggests jacking the PCI latency
1098	 * timer all the way up to its maximum value. I'm not sure
1099	 * if this is really necessary, but what the manual wants,
1100	 * the manual gets.
1101	 */
1102	command = pci_read_config(dev, TL_PCI_LATENCY_TIMER, 4);
1103	command |= 0x0000FF00;
1104	pci_write_config(dev, TL_PCI_LATENCY_TIMER, command, 4);
1105#endif
1106
1107	/* Allocate interrupt */
1108	rid = 0;
1109	sc->tl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1110	    RF_SHAREABLE | RF_ACTIVE);
1111
1112	if (sc->tl_irq == NULL) {
1113		device_printf(dev, "couldn't map interrupt\n");
1114		error = ENXIO;
1115		goto fail;
1116	}
1117
1118	/*
1119	 * Now allocate memory for the TX and RX lists.
1120	 */
1121	sc->tl_ldata = contigmalloc(sizeof(struct tl_list_data), M_DEVBUF,
1122	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1123
1124	if (sc->tl_ldata == NULL) {
1125		device_printf(dev, "no memory for list buffers!\n");
1126		error = ENXIO;
1127		goto fail;
1128	}
1129
1130	bzero(sc->tl_ldata, sizeof(struct tl_list_data));
1131
1132	if (vid == COMPAQ_VENDORID || vid == TI_VENDORID)
1133		sc->tl_eeaddr = TL_EEPROM_EADDR;
1134	if (vid == OLICOM_VENDORID)
1135		sc->tl_eeaddr = TL_EEPROM_EADDR_OC;
1136
1137	/* Reset the adapter. */
1138	tl_softreset(sc, 1);
1139	tl_hardreset(dev);
1140	tl_softreset(sc, 1);
1141
1142	/*
1143	 * Get station address from the EEPROM.
1144	 */
1145	if (tl_read_eeprom(sc, eaddr, sc->tl_eeaddr, ETHER_ADDR_LEN)) {
1146		device_printf(dev, "failed to read station address\n");
1147		error = ENXIO;
1148		goto fail;
1149	}
1150
1151        /*
1152         * XXX Olicom, in its desire to be different from the
1153         * rest of the world, has done strange things with the
1154         * encoding of the station address in the EEPROM. First
1155         * of all, they store the address at offset 0xF8 rather
1156         * than at 0x83 like the ThunderLAN manual suggests.
1157         * Second, they store the address in three 16-bit words in
1158         * network byte order, as opposed to storing it sequentially
1159         * like all the other ThunderLAN cards. In order to get
1160         * the station address in a form that matches what the Olicom
1161         * diagnostic utility specifies, we have to byte-swap each
1162         * word. To make things even more confusing, neither 00:00:28
1163         * nor 00:00:24 appear in the IEEE OUI database.
1164         */
1165        if (vid == OLICOM_VENDORID) {
1166                for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
1167                        u_int16_t               *p;
1168                        p = (u_int16_t *)&eaddr[i];
1169                        *p = ntohs(*p);
1170                }
1171        }
1172
1173	ifp = sc->tl_ifp = if_alloc(IFT_ETHER);
1174	if (ifp == NULL) {
1175		device_printf(dev, "can not if_alloc()\n");
1176		error = ENOSPC;
1177		goto fail;
1178	}
1179	ifp->if_softc = sc;
1180	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1181	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1182	ifp->if_ioctl = tl_ioctl;
1183	ifp->if_start = tl_start;
1184	ifp->if_init = tl_init;
1185	ifp->if_mtu = ETHERMTU;
1186	ifp->if_snd.ifq_maxlen = TL_TX_LIST_CNT - 1;
1187	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1188	ifp->if_capenable |= IFCAP_VLAN_MTU;
1189	callout_init_mtx(&sc->tl_stat_callout, &sc->tl_mtx, 0);
1190
1191	/* Reset the adapter again. */
1192	tl_softreset(sc, 1);
1193	tl_hardreset(dev);
1194	tl_softreset(sc, 1);
1195
1196	/*
1197	 * Do MII setup. If no PHYs are found, then this is a
1198	 * bitrate ThunderLAN chip that only supports 10baseT
1199	 * and AUI/BNC.
1200	 * XXX mii_attach() can fail for reason different than
1201	 * no PHYs found!
1202	 */
1203	flags = 0;
1204	if (vid == COMPAQ_VENDORID) {
1205		if (did == COMPAQ_DEVICEID_NETEL_10_100_PROLIANT ||
1206		    did == COMPAQ_DEVICEID_NETFLEX_3P_INTEGRATED ||
1207		    did == COMPAQ_DEVICEID_NETFLEX_3P_BNC ||
1208		    did == COMPAQ_DEVICEID_NETEL_10_T2_UTP_COAX)
1209			flags |= MIIF_MACPRIV0;
1210		if (did == COMPAQ_DEVICEID_NETEL_10 ||
1211		    did == COMPAQ_DEVICEID_NETEL_10_100_DUAL ||
1212		    did == COMPAQ_DEVICEID_NETFLEX_3P ||
1213		    did == COMPAQ_DEVICEID_NETEL_10_100_EMBEDDED)
1214			flags |= MIIF_MACPRIV1;
1215	} else if (vid == OLICOM_VENDORID && did == OLICOM_DEVICEID_OC2183)
1216			flags |= MIIF_MACPRIV0 | MIIF_MACPRIV1;
1217	if (mii_attach(dev, &sc->tl_miibus, ifp, tl_ifmedia_upd,
1218	    tl_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0)) {
1219		struct ifmedia		*ifm;
1220		sc->tl_bitrate = 1;
1221		ifmedia_init(&sc->ifmedia, 0, tl_ifmedia_upd, tl_ifmedia_sts);
1222		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1223		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
1224		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1225		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_5, 0, NULL);
1226		ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_10_T);
1227		/* Reset again, this time setting bitrate mode. */
1228		tl_softreset(sc, 1);
1229		ifm = &sc->ifmedia;
1230		ifm->ifm_media = ifm->ifm_cur->ifm_media;
1231		tl_ifmedia_upd(ifp);
1232	}
1233
1234	/*
1235	 * Call MI attach routine.
1236	 */
1237	ether_ifattach(ifp, eaddr);
1238
1239	/* Hook interrupt last to avoid having to lock softc */
1240	error = bus_setup_intr(dev, sc->tl_irq, INTR_TYPE_NET | INTR_MPSAFE,
1241	    NULL, tl_intr, sc, &sc->tl_intrhand);
1242
1243	if (error) {
1244		device_printf(dev, "couldn't set up irq\n");
1245		ether_ifdetach(ifp);
1246		goto fail;
1247	}
1248
1249fail:
1250	if (error)
1251		tl_detach(dev);
1252
1253	return(error);
1254}
1255
1256/*
1257 * Shutdown hardware and free up resources. This can be called any
1258 * time after the mutex has been initialized. It is called in both
1259 * the error case in attach and the normal detach case so it needs
1260 * to be careful about only freeing resources that have actually been
1261 * allocated.
1262 */
1263static int
1264tl_detach(dev)
1265	device_t		dev;
1266{
1267	struct tl_softc		*sc;
1268	struct ifnet		*ifp;
1269
1270	sc = device_get_softc(dev);
1271	KASSERT(mtx_initialized(&sc->tl_mtx), ("tl mutex not initialized"));
1272	ifp = sc->tl_ifp;
1273
1274	/* These should only be active if attach succeeded */
1275	if (device_is_attached(dev)) {
1276		ether_ifdetach(ifp);
1277		TL_LOCK(sc);
1278		tl_stop(sc);
1279		TL_UNLOCK(sc);
1280		callout_drain(&sc->tl_stat_callout);
1281	}
1282	if (sc->tl_miibus)
1283		device_delete_child(dev, sc->tl_miibus);
1284	bus_generic_detach(dev);
1285
1286	if (sc->tl_ldata)
1287		contigfree(sc->tl_ldata, sizeof(struct tl_list_data), M_DEVBUF);
1288	if (sc->tl_bitrate)
1289		ifmedia_removeall(&sc->ifmedia);
1290
1291	if (sc->tl_intrhand)
1292		bus_teardown_intr(dev, sc->tl_irq, sc->tl_intrhand);
1293	if (sc->tl_irq)
1294		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->tl_irq);
1295	if (sc->tl_res)
1296		bus_release_resource(dev, TL_RES, TL_RID, sc->tl_res);
1297
1298	if (ifp)
1299		if_free(ifp);
1300
1301	mtx_destroy(&sc->tl_mtx);
1302
1303	return(0);
1304}
1305
1306/*
1307 * Initialize the transmit lists.
1308 */
1309static int
1310tl_list_tx_init(sc)
1311	struct tl_softc		*sc;
1312{
1313	struct tl_chain_data	*cd;
1314	struct tl_list_data	*ld;
1315	int			i;
1316
1317	cd = &sc->tl_cdata;
1318	ld = sc->tl_ldata;
1319	for (i = 0; i < TL_TX_LIST_CNT; i++) {
1320		cd->tl_tx_chain[i].tl_ptr = &ld->tl_tx_list[i];
1321		if (i == (TL_TX_LIST_CNT - 1))
1322			cd->tl_tx_chain[i].tl_next = NULL;
1323		else
1324			cd->tl_tx_chain[i].tl_next = &cd->tl_tx_chain[i + 1];
1325	}
1326
1327	cd->tl_tx_free = &cd->tl_tx_chain[0];
1328	cd->tl_tx_tail = cd->tl_tx_head = NULL;
1329	sc->tl_txeoc = 1;
1330
1331	return(0);
1332}
1333
1334/*
1335 * Initialize the RX lists and allocate mbufs for them.
1336 */
1337static int
1338tl_list_rx_init(sc)
1339	struct tl_softc		*sc;
1340{
1341	struct tl_chain_data		*cd;
1342	struct tl_list_data		*ld;
1343	int				i;
1344
1345	cd = &sc->tl_cdata;
1346	ld = sc->tl_ldata;
1347
1348	for (i = 0; i < TL_RX_LIST_CNT; i++) {
1349		cd->tl_rx_chain[i].tl_ptr =
1350			(struct tl_list_onefrag *)&ld->tl_rx_list[i];
1351		if (tl_newbuf(sc, &cd->tl_rx_chain[i]) == ENOBUFS)
1352			return(ENOBUFS);
1353		if (i == (TL_RX_LIST_CNT - 1)) {
1354			cd->tl_rx_chain[i].tl_next = NULL;
1355			ld->tl_rx_list[i].tlist_fptr = 0;
1356		} else {
1357			cd->tl_rx_chain[i].tl_next = &cd->tl_rx_chain[i + 1];
1358			ld->tl_rx_list[i].tlist_fptr =
1359					vtophys(&ld->tl_rx_list[i + 1]);
1360		}
1361	}
1362
1363	cd->tl_rx_head = &cd->tl_rx_chain[0];
1364	cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
1365
1366	return(0);
1367}
1368
1369static int
1370tl_newbuf(sc, c)
1371	struct tl_softc		*sc;
1372	struct tl_chain_onefrag	*c;
1373{
1374	struct mbuf		*m_new = NULL;
1375
1376	m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1377	if (m_new == NULL)
1378		return(ENOBUFS);
1379
1380	c->tl_mbuf = m_new;
1381	c->tl_next = NULL;
1382	c->tl_ptr->tlist_frsize = MCLBYTES;
1383	c->tl_ptr->tlist_fptr = 0;
1384	c->tl_ptr->tl_frag.tlist_dadr = vtophys(mtod(m_new, caddr_t));
1385	c->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
1386	c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1387
1388	return(0);
1389}
1390/*
1391 * Interrupt handler for RX 'end of frame' condition (EOF). This
1392 * tells us that a full ethernet frame has been captured and we need
1393 * to handle it.
1394 *
1395 * Reception is done using 'lists' which consist of a header and a
1396 * series of 10 data count/data address pairs that point to buffers.
1397 * Initially you're supposed to create a list, populate it with pointers
1398 * to buffers, then load the physical address of the list into the
1399 * ch_parm register. The adapter is then supposed to DMA the received
1400 * frame into the buffers for you.
1401 *
1402 * To make things as fast as possible, we have the chip DMA directly
1403 * into mbufs. This saves us from having to do a buffer copy: we can
1404 * just hand the mbufs directly to ether_input(). Once the frame has
1405 * been sent on its way, the 'list' structure is assigned a new buffer
1406 * and moved to the end of the RX chain. As long we we stay ahead of
1407 * the chip, it will always think it has an endless receive channel.
1408 *
1409 * If we happen to fall behind and the chip manages to fill up all of
1410 * the buffers, it will generate an end of channel interrupt and wait
1411 * for us to empty the chain and restart the receiver.
1412 */
1413static int
1414tl_intvec_rxeof(xsc, type)
1415	void			*xsc;
1416	u_int32_t		type;
1417{
1418	struct tl_softc		*sc;
1419	int			r = 0, total_len = 0;
1420	struct ether_header	*eh;
1421	struct mbuf		*m;
1422	struct ifnet		*ifp;
1423	struct tl_chain_onefrag	*cur_rx;
1424
1425	sc = xsc;
1426	ifp = sc->tl_ifp;
1427
1428	TL_LOCK_ASSERT(sc);
1429
1430	while(sc->tl_cdata.tl_rx_head != NULL) {
1431		cur_rx = sc->tl_cdata.tl_rx_head;
1432		if (!(cur_rx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
1433			break;
1434		r++;
1435		sc->tl_cdata.tl_rx_head = cur_rx->tl_next;
1436		m = cur_rx->tl_mbuf;
1437		total_len = cur_rx->tl_ptr->tlist_frsize;
1438
1439		if (tl_newbuf(sc, cur_rx) == ENOBUFS) {
1440			ifp->if_ierrors++;
1441			cur_rx->tl_ptr->tlist_frsize = MCLBYTES;
1442			cur_rx->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1443			cur_rx->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
1444			continue;
1445		}
1446
1447		sc->tl_cdata.tl_rx_tail->tl_ptr->tlist_fptr =
1448						vtophys(cur_rx->tl_ptr);
1449		sc->tl_cdata.tl_rx_tail->tl_next = cur_rx;
1450		sc->tl_cdata.tl_rx_tail = cur_rx;
1451
1452		/*
1453		 * Note: when the ThunderLAN chip is in 'capture all
1454		 * frames' mode, it will receive its own transmissions.
1455		 * We drop don't need to process our own transmissions,
1456		 * so we drop them here and continue.
1457		 */
1458		eh = mtod(m, struct ether_header *);
1459		/*if (ifp->if_flags & IFF_PROMISC && */
1460		if (!bcmp(eh->ether_shost, IF_LLADDR(sc->tl_ifp),
1461		 					ETHER_ADDR_LEN)) {
1462				m_freem(m);
1463				continue;
1464		}
1465
1466		m->m_pkthdr.rcvif = ifp;
1467		m->m_pkthdr.len = m->m_len = total_len;
1468
1469		TL_UNLOCK(sc);
1470		(*ifp->if_input)(ifp, m);
1471		TL_LOCK(sc);
1472	}
1473
1474	return(r);
1475}
1476
1477/*
1478 * The RX-EOC condition hits when the ch_parm address hasn't been
1479 * initialized or the adapter reached a list with a forward pointer
1480 * of 0 (which indicates the end of the chain). In our case, this means
1481 * the card has hit the end of the receive buffer chain and we need to
1482 * empty out the buffers and shift the pointer back to the beginning again.
1483 */
1484static int
1485tl_intvec_rxeoc(xsc, type)
1486	void			*xsc;
1487	u_int32_t		type;
1488{
1489	struct tl_softc		*sc;
1490	int			r;
1491	struct tl_chain_data	*cd;
1492
1493
1494	sc = xsc;
1495	cd = &sc->tl_cdata;
1496
1497	/* Flush out the receive queue and ack RXEOF interrupts. */
1498	r = tl_intvec_rxeof(xsc, type);
1499	CMD_PUT(sc, TL_CMD_ACK | r | (type & ~(0x00100000)));
1500	r = 1;
1501	cd->tl_rx_head = &cd->tl_rx_chain[0];
1502	cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
1503	CSR_WRITE_4(sc, TL_CH_PARM, vtophys(sc->tl_cdata.tl_rx_head->tl_ptr));
1504	r |= (TL_CMD_GO|TL_CMD_RT);
1505	return(r);
1506}
1507
1508static int
1509tl_intvec_txeof(xsc, type)
1510	void			*xsc;
1511	u_int32_t		type;
1512{
1513	struct tl_softc		*sc;
1514	int			r = 0;
1515	struct tl_chain		*cur_tx;
1516
1517	sc = xsc;
1518
1519	/*
1520	 * Go through our tx list and free mbufs for those
1521	 * frames that have been sent.
1522	 */
1523	while (sc->tl_cdata.tl_tx_head != NULL) {
1524		cur_tx = sc->tl_cdata.tl_tx_head;
1525		if (!(cur_tx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
1526			break;
1527		sc->tl_cdata.tl_tx_head = cur_tx->tl_next;
1528
1529		r++;
1530		m_freem(cur_tx->tl_mbuf);
1531		cur_tx->tl_mbuf = NULL;
1532
1533		cur_tx->tl_next = sc->tl_cdata.tl_tx_free;
1534		sc->tl_cdata.tl_tx_free = cur_tx;
1535		if (!cur_tx->tl_ptr->tlist_fptr)
1536			break;
1537	}
1538
1539	return(r);
1540}
1541
1542/*
1543 * The transmit end of channel interrupt. The adapter triggers this
1544 * interrupt to tell us it hit the end of the current transmit list.
1545 *
1546 * A note about this: it's possible for a condition to arise where
1547 * tl_start() may try to send frames between TXEOF and TXEOC interrupts.
1548 * You have to avoid this since the chip expects things to go in a
1549 * particular order: transmit, acknowledge TXEOF, acknowledge TXEOC.
1550 * When the TXEOF handler is called, it will free all of the transmitted
1551 * frames and reset the tx_head pointer to NULL. However, a TXEOC
1552 * interrupt should be received and acknowledged before any more frames
1553 * are queued for transmission. If tl_statrt() is called after TXEOF
1554 * resets the tx_head pointer but _before_ the TXEOC interrupt arrives,
1555 * it could attempt to issue a transmit command prematurely.
1556 *
1557 * To guard against this, tl_start() will only issue transmit commands
1558 * if the tl_txeoc flag is set, and only the TXEOC interrupt handler
1559 * can set this flag once tl_start() has cleared it.
1560 */
1561static int
1562tl_intvec_txeoc(xsc, type)
1563	void			*xsc;
1564	u_int32_t		type;
1565{
1566	struct tl_softc		*sc;
1567	struct ifnet		*ifp;
1568	u_int32_t		cmd;
1569
1570	sc = xsc;
1571	ifp = sc->tl_ifp;
1572
1573	/* Clear the timeout timer. */
1574	sc->tl_timer = 0;
1575
1576	if (sc->tl_cdata.tl_tx_head == NULL) {
1577		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1578		sc->tl_cdata.tl_tx_tail = NULL;
1579		sc->tl_txeoc = 1;
1580	} else {
1581		sc->tl_txeoc = 0;
1582		/* First we have to ack the EOC interrupt. */
1583		CMD_PUT(sc, TL_CMD_ACK | 0x00000001 | type);
1584		/* Then load the address of the next TX list. */
1585		CSR_WRITE_4(sc, TL_CH_PARM,
1586		    vtophys(sc->tl_cdata.tl_tx_head->tl_ptr));
1587		/* Restart TX channel. */
1588		cmd = CSR_READ_4(sc, TL_HOSTCMD);
1589		cmd &= ~TL_CMD_RT;
1590		cmd |= TL_CMD_GO|TL_CMD_INTSON;
1591		CMD_PUT(sc, cmd);
1592		return(0);
1593	}
1594
1595	return(1);
1596}
1597
1598static int
1599tl_intvec_adchk(xsc, type)
1600	void			*xsc;
1601	u_int32_t		type;
1602{
1603	struct tl_softc		*sc;
1604
1605	sc = xsc;
1606
1607	if (type)
1608		device_printf(sc->tl_dev, "adapter check: %x\n",
1609			(unsigned int)CSR_READ_4(sc, TL_CH_PARM));
1610
1611	tl_softreset(sc, 1);
1612	tl_stop(sc);
1613	tl_init_locked(sc);
1614	CMD_SET(sc, TL_CMD_INTSON);
1615
1616	return(0);
1617}
1618
1619static int
1620tl_intvec_netsts(xsc, type)
1621	void			*xsc;
1622	u_int32_t		type;
1623{
1624	struct tl_softc		*sc;
1625	u_int16_t		netsts;
1626
1627	sc = xsc;
1628
1629	netsts = tl_dio_read16(sc, TL_NETSTS);
1630	tl_dio_write16(sc, TL_NETSTS, netsts);
1631
1632	device_printf(sc->tl_dev, "network status: %x\n", netsts);
1633
1634	return(1);
1635}
1636
1637static void
1638tl_intr(xsc)
1639	void			*xsc;
1640{
1641	struct tl_softc		*sc;
1642	struct ifnet		*ifp;
1643	int			r = 0;
1644	u_int32_t		type = 0;
1645	u_int16_t		ints = 0;
1646	u_int8_t		ivec = 0;
1647
1648	sc = xsc;
1649	TL_LOCK(sc);
1650
1651	/* Disable interrupts */
1652	ints = CSR_READ_2(sc, TL_HOST_INT);
1653	CSR_WRITE_2(sc, TL_HOST_INT, ints);
1654	type = (ints << 16) & 0xFFFF0000;
1655	ivec = (ints & TL_VEC_MASK) >> 5;
1656	ints = (ints & TL_INT_MASK) >> 2;
1657
1658	ifp = sc->tl_ifp;
1659
1660	switch(ints) {
1661	case (TL_INTR_INVALID):
1662#ifdef DIAGNOSTIC
1663		device_printf(sc->tl_dev, "got an invalid interrupt!\n");
1664#endif
1665		/* Re-enable interrupts but don't ack this one. */
1666		CMD_PUT(sc, type);
1667		r = 0;
1668		break;
1669	case (TL_INTR_TXEOF):
1670		r = tl_intvec_txeof((void *)sc, type);
1671		break;
1672	case (TL_INTR_TXEOC):
1673		r = tl_intvec_txeoc((void *)sc, type);
1674		break;
1675	case (TL_INTR_STATOFLOW):
1676		tl_stats_update(sc);
1677		r = 1;
1678		break;
1679	case (TL_INTR_RXEOF):
1680		r = tl_intvec_rxeof((void *)sc, type);
1681		break;
1682	case (TL_INTR_DUMMY):
1683		device_printf(sc->tl_dev, "got a dummy interrupt\n");
1684		r = 1;
1685		break;
1686	case (TL_INTR_ADCHK):
1687		if (ivec)
1688			r = tl_intvec_adchk((void *)sc, type);
1689		else
1690			r = tl_intvec_netsts((void *)sc, type);
1691		break;
1692	case (TL_INTR_RXEOC):
1693		r = tl_intvec_rxeoc((void *)sc, type);
1694		break;
1695	default:
1696		device_printf(sc->tl_dev, "bogus interrupt type\n");
1697		break;
1698	}
1699
1700	/* Re-enable interrupts */
1701	if (r) {
1702		CMD_PUT(sc, TL_CMD_ACK | r | type);
1703	}
1704
1705	if (ifp->if_snd.ifq_head != NULL)
1706		tl_start_locked(ifp);
1707
1708	TL_UNLOCK(sc);
1709}
1710
1711static void
1712tl_stats_update(xsc)
1713	void			*xsc;
1714{
1715	struct tl_softc		*sc;
1716	struct ifnet		*ifp;
1717	struct tl_stats		tl_stats;
1718	struct mii_data		*mii;
1719	u_int32_t		*p;
1720
1721	bzero((char *)&tl_stats, sizeof(struct tl_stats));
1722
1723	sc = xsc;
1724	TL_LOCK_ASSERT(sc);
1725	ifp = sc->tl_ifp;
1726
1727	p = (u_int32_t *)&tl_stats;
1728
1729	CSR_WRITE_2(sc, TL_DIO_ADDR, TL_TXGOODFRAMES|TL_DIO_ADDR_INC);
1730	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1731	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1732	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1733	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1734	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1735
1736	ifp->if_opackets += tl_tx_goodframes(tl_stats);
1737	ifp->if_collisions += tl_stats.tl_tx_single_collision +
1738				tl_stats.tl_tx_multi_collision;
1739	ifp->if_ipackets += tl_rx_goodframes(tl_stats);
1740	ifp->if_ierrors += tl_stats.tl_crc_errors + tl_stats.tl_code_errors +
1741			    tl_rx_overrun(tl_stats);
1742	ifp->if_oerrors += tl_tx_underrun(tl_stats);
1743
1744	if (tl_tx_underrun(tl_stats)) {
1745		u_int8_t		tx_thresh;
1746		tx_thresh = tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_TXTHRESH;
1747		if (tx_thresh != TL_AC_TXTHRESH_WHOLEPKT) {
1748			tx_thresh >>= 4;
1749			tx_thresh++;
1750			device_printf(sc->tl_dev, "tx underrun -- increasing "
1751			    "tx threshold to %d bytes\n",
1752			    (64 * (tx_thresh * 4)));
1753			tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
1754			tl_dio_setbit(sc, TL_ACOMMIT, tx_thresh << 4);
1755		}
1756	}
1757
1758	if (sc->tl_timer > 0 && --sc->tl_timer == 0)
1759		tl_watchdog(sc);
1760
1761	callout_reset(&sc->tl_stat_callout, hz, tl_stats_update, sc);
1762
1763	if (!sc->tl_bitrate) {
1764		mii = device_get_softc(sc->tl_miibus);
1765		mii_tick(mii);
1766	}
1767}
1768
1769/*
1770 * Encapsulate an mbuf chain in a list by coupling the mbuf data
1771 * pointers to the fragment pointers.
1772 */
1773static int
1774tl_encap(sc, c, m_head)
1775	struct tl_softc		*sc;
1776	struct tl_chain		*c;
1777	struct mbuf		*m_head;
1778{
1779	int			frag = 0;
1780	struct tl_frag		*f = NULL;
1781	int			total_len;
1782	struct mbuf		*m;
1783	struct ifnet		*ifp = sc->tl_ifp;
1784
1785	/*
1786 	 * Start packing the mbufs in this chain into
1787	 * the fragment pointers. Stop when we run out
1788 	 * of fragments or hit the end of the mbuf chain.
1789	 */
1790	m = m_head;
1791	total_len = 0;
1792
1793	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1794		if (m->m_len != 0) {
1795			if (frag == TL_MAXFRAGS)
1796				break;
1797			total_len+= m->m_len;
1798			c->tl_ptr->tl_frag[frag].tlist_dadr =
1799				vtophys(mtod(m, vm_offset_t));
1800			c->tl_ptr->tl_frag[frag].tlist_dcnt = m->m_len;
1801			frag++;
1802		}
1803	}
1804
1805	/*
1806	 * Handle special cases.
1807	 * Special case #1: we used up all 10 fragments, but
1808	 * we have more mbufs left in the chain. Copy the
1809	 * data into an mbuf cluster. Note that we don't
1810	 * bother clearing the values in the other fragment
1811	 * pointers/counters; it wouldn't gain us anything,
1812	 * and would waste cycles.
1813	 */
1814	if (m != NULL) {
1815		struct mbuf		*m_new = NULL;
1816
1817		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1818		if (m_new == NULL) {
1819			if_printf(ifp, "no memory for tx list\n");
1820			return(1);
1821		}
1822		if (m_head->m_pkthdr.len > MHLEN) {
1823			MCLGET(m_new, M_DONTWAIT);
1824			if (!(m_new->m_flags & M_EXT)) {
1825				m_freem(m_new);
1826				if_printf(ifp, "no memory for tx list\n");
1827				return(1);
1828			}
1829		}
1830		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1831					mtod(m_new, caddr_t));
1832		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1833		m_freem(m_head);
1834		m_head = m_new;
1835		f = &c->tl_ptr->tl_frag[0];
1836		f->tlist_dadr = vtophys(mtod(m_new, caddr_t));
1837		f->tlist_dcnt = total_len = m_new->m_len;
1838		frag = 1;
1839	}
1840
1841	/*
1842	 * Special case #2: the frame is smaller than the minimum
1843	 * frame size. We have to pad it to make the chip happy.
1844	 */
1845	if (total_len < TL_MIN_FRAMELEN) {
1846		if (frag == TL_MAXFRAGS)
1847			if_printf(ifp,
1848			    "all frags filled but frame still to small!\n");
1849		f = &c->tl_ptr->tl_frag[frag];
1850		f->tlist_dcnt = TL_MIN_FRAMELEN - total_len;
1851		f->tlist_dadr = vtophys(&sc->tl_ldata->tl_pad);
1852		total_len += f->tlist_dcnt;
1853		frag++;
1854	}
1855
1856	c->tl_mbuf = m_head;
1857	c->tl_ptr->tl_frag[frag - 1].tlist_dcnt |= TL_LAST_FRAG;
1858	c->tl_ptr->tlist_frsize = total_len;
1859	c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1860	c->tl_ptr->tlist_fptr = 0;
1861
1862	return(0);
1863}
1864
1865/*
1866 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1867 * to the mbuf data regions directly in the transmit lists. We also save a
1868 * copy of the pointers since the transmit list fragment pointers are
1869 * physical addresses.
1870 */
1871static void
1872tl_start(ifp)
1873	struct ifnet		*ifp;
1874{
1875	struct tl_softc		*sc;
1876
1877	sc = ifp->if_softc;
1878	TL_LOCK(sc);
1879	tl_start_locked(ifp);
1880	TL_UNLOCK(sc);
1881}
1882
1883static void
1884tl_start_locked(ifp)
1885	struct ifnet		*ifp;
1886{
1887	struct tl_softc		*sc;
1888	struct mbuf		*m_head = NULL;
1889	u_int32_t		cmd;
1890	struct tl_chain		*prev = NULL, *cur_tx = NULL, *start_tx;
1891
1892	sc = ifp->if_softc;
1893	TL_LOCK_ASSERT(sc);
1894
1895	/*
1896	 * Check for an available queue slot. If there are none,
1897	 * punt.
1898	 */
1899	if (sc->tl_cdata.tl_tx_free == NULL) {
1900		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1901		return;
1902	}
1903
1904	start_tx = sc->tl_cdata.tl_tx_free;
1905
1906	while(sc->tl_cdata.tl_tx_free != NULL) {
1907		IF_DEQUEUE(&ifp->if_snd, m_head);
1908		if (m_head == NULL)
1909			break;
1910
1911		/* Pick a chain member off the free list. */
1912		cur_tx = sc->tl_cdata.tl_tx_free;
1913		sc->tl_cdata.tl_tx_free = cur_tx->tl_next;
1914
1915		cur_tx->tl_next = NULL;
1916
1917		/* Pack the data into the list. */
1918		tl_encap(sc, cur_tx, m_head);
1919
1920		/* Chain it together */
1921		if (prev != NULL) {
1922			prev->tl_next = cur_tx;
1923			prev->tl_ptr->tlist_fptr = vtophys(cur_tx->tl_ptr);
1924		}
1925		prev = cur_tx;
1926
1927		/*
1928		 * If there's a BPF listener, bounce a copy of this frame
1929		 * to him.
1930		 */
1931		BPF_MTAP(ifp, cur_tx->tl_mbuf);
1932	}
1933
1934	/*
1935	 * If there are no packets queued, bail.
1936	 */
1937	if (cur_tx == NULL)
1938		return;
1939
1940	/*
1941	 * That's all we can stands, we can't stands no more.
1942	 * If there are no other transfers pending, then issue the
1943	 * TX GO command to the adapter to start things moving.
1944	 * Otherwise, just leave the data in the queue and let
1945	 * the EOF/EOC interrupt handler send.
1946	 */
1947	if (sc->tl_cdata.tl_tx_head == NULL) {
1948		sc->tl_cdata.tl_tx_head = start_tx;
1949		sc->tl_cdata.tl_tx_tail = cur_tx;
1950
1951		if (sc->tl_txeoc) {
1952			sc->tl_txeoc = 0;
1953			CSR_WRITE_4(sc, TL_CH_PARM, vtophys(start_tx->tl_ptr));
1954			cmd = CSR_READ_4(sc, TL_HOSTCMD);
1955			cmd &= ~TL_CMD_RT;
1956			cmd |= TL_CMD_GO|TL_CMD_INTSON;
1957			CMD_PUT(sc, cmd);
1958		}
1959	} else {
1960		sc->tl_cdata.tl_tx_tail->tl_next = start_tx;
1961		sc->tl_cdata.tl_tx_tail = cur_tx;
1962	}
1963
1964	/*
1965	 * Set a timeout in case the chip goes out to lunch.
1966	 */
1967	sc->tl_timer = 5;
1968}
1969
1970static void
1971tl_init(xsc)
1972	void			*xsc;
1973{
1974	struct tl_softc		*sc = xsc;
1975
1976	TL_LOCK(sc);
1977	tl_init_locked(sc);
1978	TL_UNLOCK(sc);
1979}
1980
1981static void
1982tl_init_locked(sc)
1983	struct tl_softc		*sc;
1984{
1985	struct ifnet		*ifp = sc->tl_ifp;
1986	struct mii_data		*mii;
1987
1988	TL_LOCK_ASSERT(sc);
1989
1990	ifp = sc->tl_ifp;
1991
1992	/*
1993	 * Cancel pending I/O.
1994	 */
1995	tl_stop(sc);
1996
1997	/* Initialize TX FIFO threshold */
1998	tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
1999	tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH_16LONG);
2000
2001        /* Set PCI burst size */
2002	tl_dio_write8(sc, TL_BSIZEREG, TL_RXBURST_16LONG|TL_TXBURST_16LONG);
2003
2004	/*
2005	 * Set 'capture all frames' bit for promiscuous mode.
2006	 */
2007	if (ifp->if_flags & IFF_PROMISC)
2008		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
2009	else
2010		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
2011
2012	/*
2013	 * Set capture broadcast bit to capture broadcast frames.
2014	 */
2015	if (ifp->if_flags & IFF_BROADCAST)
2016		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_NOBRX);
2017	else
2018		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NOBRX);
2019
2020	tl_dio_write16(sc, TL_MAXRX, MCLBYTES);
2021
2022	/* Init our MAC address */
2023	tl_setfilt(sc, IF_LLADDR(sc->tl_ifp), 0);
2024
2025	/* Init multicast filter, if needed. */
2026	tl_setmulti(sc);
2027
2028	/* Init circular RX list. */
2029	if (tl_list_rx_init(sc) == ENOBUFS) {
2030		device_printf(sc->tl_dev,
2031		    "initialization failed: no memory for rx buffers\n");
2032		tl_stop(sc);
2033		return;
2034	}
2035
2036	/* Init TX pointers. */
2037	tl_list_tx_init(sc);
2038
2039	/* Enable PCI interrupts. */
2040	CMD_SET(sc, TL_CMD_INTSON);
2041
2042	/* Load the address of the rx list */
2043	CMD_SET(sc, TL_CMD_RT);
2044	CSR_WRITE_4(sc, TL_CH_PARM, vtophys(&sc->tl_ldata->tl_rx_list[0]));
2045
2046	if (!sc->tl_bitrate) {
2047		if (sc->tl_miibus != NULL) {
2048			mii = device_get_softc(sc->tl_miibus);
2049			mii_mediachg(mii);
2050		}
2051	} else {
2052		tl_ifmedia_upd(ifp);
2053	}
2054
2055	/* Send the RX go command */
2056	CMD_SET(sc, TL_CMD_GO|TL_CMD_NES|TL_CMD_RT);
2057
2058	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2059	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2060
2061	/* Start the stats update counter */
2062	callout_reset(&sc->tl_stat_callout, hz, tl_stats_update, sc);
2063}
2064
2065/*
2066 * Set media options.
2067 */
2068static int
2069tl_ifmedia_upd(ifp)
2070	struct ifnet		*ifp;
2071{
2072	struct tl_softc		*sc;
2073	struct mii_data		*mii = NULL;
2074
2075	sc = ifp->if_softc;
2076
2077	TL_LOCK(sc);
2078	if (sc->tl_bitrate)
2079		tl_setmode(sc, sc->ifmedia.ifm_media);
2080	else {
2081		mii = device_get_softc(sc->tl_miibus);
2082		mii_mediachg(mii);
2083	}
2084	TL_UNLOCK(sc);
2085
2086	return(0);
2087}
2088
2089/*
2090 * Report current media status.
2091 */
2092static void
2093tl_ifmedia_sts(ifp, ifmr)
2094	struct ifnet		*ifp;
2095	struct ifmediareq	*ifmr;
2096{
2097	struct tl_softc		*sc;
2098	struct mii_data		*mii;
2099
2100	sc = ifp->if_softc;
2101
2102	TL_LOCK(sc);
2103	ifmr->ifm_active = IFM_ETHER;
2104
2105	if (sc->tl_bitrate) {
2106		if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD1)
2107			ifmr->ifm_active = IFM_ETHER|IFM_10_5;
2108		else
2109			ifmr->ifm_active = IFM_ETHER|IFM_10_T;
2110		if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD3)
2111			ifmr->ifm_active |= IFM_HDX;
2112		else
2113			ifmr->ifm_active |= IFM_FDX;
2114		return;
2115	} else {
2116		mii = device_get_softc(sc->tl_miibus);
2117		mii_pollstat(mii);
2118		ifmr->ifm_active = mii->mii_media_active;
2119		ifmr->ifm_status = mii->mii_media_status;
2120	}
2121	TL_UNLOCK(sc);
2122}
2123
2124static int
2125tl_ioctl(ifp, command, data)
2126	struct ifnet		*ifp;
2127	u_long			command;
2128	caddr_t			data;
2129{
2130	struct tl_softc		*sc = ifp->if_softc;
2131	struct ifreq		*ifr = (struct ifreq *) data;
2132	int			error = 0;
2133
2134	switch(command) {
2135	case SIOCSIFFLAGS:
2136		TL_LOCK(sc);
2137		if (ifp->if_flags & IFF_UP) {
2138			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2139			    ifp->if_flags & IFF_PROMISC &&
2140			    !(sc->tl_if_flags & IFF_PROMISC)) {
2141				tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
2142				tl_setmulti(sc);
2143			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2144			    !(ifp->if_flags & IFF_PROMISC) &&
2145			    sc->tl_if_flags & IFF_PROMISC) {
2146				tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
2147				tl_setmulti(sc);
2148			} else
2149				tl_init_locked(sc);
2150		} else {
2151			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2152				tl_stop(sc);
2153			}
2154		}
2155		sc->tl_if_flags = ifp->if_flags;
2156		TL_UNLOCK(sc);
2157		error = 0;
2158		break;
2159	case SIOCADDMULTI:
2160	case SIOCDELMULTI:
2161		TL_LOCK(sc);
2162		tl_setmulti(sc);
2163		TL_UNLOCK(sc);
2164		error = 0;
2165		break;
2166	case SIOCSIFMEDIA:
2167	case SIOCGIFMEDIA:
2168		if (sc->tl_bitrate)
2169			error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2170		else {
2171			struct mii_data		*mii;
2172			mii = device_get_softc(sc->tl_miibus);
2173			error = ifmedia_ioctl(ifp, ifr,
2174			    &mii->mii_media, command);
2175		}
2176		break;
2177	default:
2178		error = ether_ioctl(ifp, command, data);
2179		break;
2180	}
2181
2182	return(error);
2183}
2184
2185static void
2186tl_watchdog(sc)
2187	struct tl_softc		*sc;
2188{
2189	struct ifnet		*ifp;
2190
2191	TL_LOCK_ASSERT(sc);
2192	ifp = sc->tl_ifp;
2193
2194	if_printf(ifp, "device timeout\n");
2195
2196	ifp->if_oerrors++;
2197
2198	tl_softreset(sc, 1);
2199	tl_init_locked(sc);
2200}
2201
2202/*
2203 * Stop the adapter and free any mbufs allocated to the
2204 * RX and TX lists.
2205 */
2206static void
2207tl_stop(sc)
2208	struct tl_softc		*sc;
2209{
2210	register int		i;
2211	struct ifnet		*ifp;
2212
2213	TL_LOCK_ASSERT(sc);
2214
2215	ifp = sc->tl_ifp;
2216
2217	/* Stop the stats updater. */
2218	callout_stop(&sc->tl_stat_callout);
2219
2220	/* Stop the transmitter */
2221	CMD_CLR(sc, TL_CMD_RT);
2222	CMD_SET(sc, TL_CMD_STOP);
2223	CSR_WRITE_4(sc, TL_CH_PARM, 0);
2224
2225	/* Stop the receiver */
2226	CMD_SET(sc, TL_CMD_RT);
2227	CMD_SET(sc, TL_CMD_STOP);
2228	CSR_WRITE_4(sc, TL_CH_PARM, 0);
2229
2230	/*
2231	 * Disable host interrupts.
2232	 */
2233	CMD_SET(sc, TL_CMD_INTSOFF);
2234
2235	/*
2236	 * Clear list pointer.
2237	 */
2238	CSR_WRITE_4(sc, TL_CH_PARM, 0);
2239
2240	/*
2241	 * Free the RX lists.
2242	 */
2243	for (i = 0; i < TL_RX_LIST_CNT; i++) {
2244		if (sc->tl_cdata.tl_rx_chain[i].tl_mbuf != NULL) {
2245			m_freem(sc->tl_cdata.tl_rx_chain[i].tl_mbuf);
2246			sc->tl_cdata.tl_rx_chain[i].tl_mbuf = NULL;
2247		}
2248	}
2249	bzero((char *)&sc->tl_ldata->tl_rx_list,
2250		sizeof(sc->tl_ldata->tl_rx_list));
2251
2252	/*
2253	 * Free the TX list buffers.
2254	 */
2255	for (i = 0; i < TL_TX_LIST_CNT; i++) {
2256		if (sc->tl_cdata.tl_tx_chain[i].tl_mbuf != NULL) {
2257			m_freem(sc->tl_cdata.tl_tx_chain[i].tl_mbuf);
2258			sc->tl_cdata.tl_tx_chain[i].tl_mbuf = NULL;
2259		}
2260	}
2261	bzero((char *)&sc->tl_ldata->tl_tx_list,
2262		sizeof(sc->tl_ldata->tl_tx_list));
2263
2264	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2265}
2266
2267/*
2268 * Stop all chip I/O so that the kernel's probe routines don't
2269 * get confused by errant DMAs when rebooting.
2270 */
2271static int
2272tl_shutdown(dev)
2273	device_t		dev;
2274{
2275	struct tl_softc		*sc;
2276
2277	sc = device_get_softc(dev);
2278
2279	TL_LOCK(sc);
2280	tl_stop(sc);
2281	TL_UNLOCK(sc);
2282
2283	return (0);
2284}
2285