if_tl.c revision 129878
1/*
2 * Copyright (c) 1997, 1998
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/pci/if_tl.c 129878 2004-05-30 20:00:41Z phk $");
35
36/*
37 * Texas Instruments ThunderLAN driver for FreeBSD 2.2.6 and 3.x.
38 * Supports many Compaq PCI NICs based on the ThunderLAN ethernet controller,
39 * the National Semiconductor DP83840A physical interface and the
40 * Microchip Technology 24Cxx series serial EEPROM.
41 *
42 * Written using the following four documents:
43 *
44 * Texas Instruments ThunderLAN Programmer's Guide (www.ti.com)
45 * National Semiconductor DP83840A data sheet (www.national.com)
46 * Microchip Technology 24C02C data sheet (www.microchip.com)
47 * Micro Linear ML6692 100BaseTX only PHY data sheet (www.microlinear.com)
48 *
49 * Written by Bill Paul <wpaul@ctr.columbia.edu>
50 * Electrical Engineering Department
51 * Columbia University, New York City
52 */
53/*
54 * Some notes about the ThunderLAN:
55 *
56 * The ThunderLAN controller is a single chip containing PCI controller
57 * logic, approximately 3K of on-board SRAM, a LAN controller, and media
58 * independent interface (MII) bus. The MII allows the ThunderLAN chip to
59 * control up to 32 different physical interfaces (PHYs). The ThunderLAN
60 * also has a built-in 10baseT PHY, allowing a single ThunderLAN controller
61 * to act as a complete ethernet interface.
62 *
63 * Other PHYs may be attached to the ThunderLAN; the Compaq 10/100 cards
64 * use a National Semiconductor DP83840A PHY that supports 10 or 100Mb/sec
65 * in full or half duplex. Some of the Compaq Deskpro machines use a
66 * Level 1 LXT970 PHY with the same capabilities. Certain Olicom adapters
67 * use a Micro Linear ML6692 100BaseTX only PHY, which can be used in
68 * concert with the ThunderLAN's internal PHY to provide full 10/100
69 * support. This is cheaper than using a standalone external PHY for both
70 * 10/100 modes and letting the ThunderLAN's internal PHY go to waste.
71 * A serial EEPROM is also attached to the ThunderLAN chip to provide
72 * power-up default register settings and for storing the adapter's
73 * station address. Although not supported by this driver, the ThunderLAN
74 * chip can also be connected to token ring PHYs.
75 *
76 * The ThunderLAN has a set of registers which can be used to issue
77 * commands, acknowledge interrupts, and to manipulate other internal
78 * registers on its DIO bus. The primary registers can be accessed
79 * using either programmed I/O (inb/outb) or via PCI memory mapping,
80 * depending on how the card is configured during the PCI probing
81 * phase. It is even possible to have both PIO and memory mapped
82 * access turned on at the same time.
83 *
84 * Frame reception and transmission with the ThunderLAN chip is done
85 * using frame 'lists.' A list structure looks more or less like this:
86 *
87 * struct tl_frag {
88 *	u_int32_t		fragment_address;
89 *	u_int32_t		fragment_size;
90 * };
91 * struct tl_list {
92 *	u_int32_t		forward_pointer;
93 *	u_int16_t		cstat;
94 *	u_int16_t		frame_size;
95 *	struct tl_frag		fragments[10];
96 * };
97 *
98 * The forward pointer in the list header can be either a 0 or the address
99 * of another list, which allows several lists to be linked together. Each
100 * list contains up to 10 fragment descriptors. This means the chip allows
101 * ethernet frames to be broken up into up to 10 chunks for transfer to
102 * and from the SRAM. Note that the forward pointer and fragment buffer
103 * addresses are physical memory addresses, not virtual. Note also that
104 * a single ethernet frame can not span lists: if the host wants to
105 * transmit a frame and the frame data is split up over more than 10
106 * buffers, the frame has to collapsed before it can be transmitted.
107 *
108 * To receive frames, the driver sets up a number of lists and populates
109 * the fragment descriptors, then it sends an RX GO command to the chip.
110 * When a frame is received, the chip will DMA it into the memory regions
111 * specified by the fragment descriptors and then trigger an RX 'end of
112 * frame interrupt' when done. The driver may choose to use only one
113 * fragment per list; this may result is slighltly less efficient use
114 * of memory in exchange for improving performance.
115 *
116 * To transmit frames, the driver again sets up lists and fragment
117 * descriptors, only this time the buffers contain frame data that
118 * is to be DMA'ed into the chip instead of out of it. Once the chip
119 * has transfered the data into its on-board SRAM, it will trigger a
120 * TX 'end of frame' interrupt. It will also generate an 'end of channel'
121 * interrupt when it reaches the end of the list.
122 */
123/*
124 * Some notes about this driver:
125 *
126 * The ThunderLAN chip provides a couple of different ways to organize
127 * reception, transmission and interrupt handling. The simplest approach
128 * is to use one list each for transmission and reception. In this mode,
129 * the ThunderLAN will generate two interrupts for every received frame
130 * (one RX EOF and one RX EOC) and two for each transmitted frame (one
131 * TX EOF and one TX EOC). This may make the driver simpler but it hurts
132 * performance to have to handle so many interrupts.
133 *
134 * Initially I wanted to create a circular list of receive buffers so
135 * that the ThunderLAN chip would think there was an infinitely long
136 * receive channel and never deliver an RXEOC interrupt. However this
137 * doesn't work correctly under heavy load: while the manual says the
138 * chip will trigger an RXEOF interrupt each time a frame is copied into
139 * memory, you can't count on the chip waiting around for you to acknowledge
140 * the interrupt before it starts trying to DMA the next frame. The result
141 * is that the chip might traverse the entire circular list and then wrap
142 * around before you have a chance to do anything about it. Consequently,
143 * the receive list is terminated (with a 0 in the forward pointer in the
144 * last element). Each time an RXEOF interrupt arrives, the used list
145 * is shifted to the end of the list. This gives the appearance of an
146 * infinitely large RX chain so long as the driver doesn't fall behind
147 * the chip and allow all of the lists to be filled up.
148 *
149 * If all the lists are filled, the adapter will deliver an RX 'end of
150 * channel' interrupt when it hits the 0 forward pointer at the end of
151 * the chain. The RXEOC handler then cleans out the RX chain and resets
152 * the list head pointer in the ch_parm register and restarts the receiver.
153 *
154 * For frame transmission, it is possible to program the ThunderLAN's
155 * transmit interrupt threshold so that the chip can acknowledge multiple
156 * lists with only a single TX EOF interrupt. This allows the driver to
157 * queue several frames in one shot, and only have to handle a total
158 * two interrupts (one TX EOF and one TX EOC) no matter how many frames
159 * are transmitted. Frame transmission is done directly out of the
160 * mbufs passed to the tl_start() routine via the interface send queue.
161 * The driver simply sets up the fragment descriptors in the transmit
162 * lists to point to the mbuf data regions and sends a TX GO command.
163 *
164 * Note that since the RX and TX lists themselves are always used
165 * only by the driver, the are malloc()ed once at driver initialization
166 * time and never free()ed.
167 *
168 * Also, in order to remain as platform independent as possible, this
169 * driver uses memory mapped register access to manipulate the card
170 * as opposed to programmed I/O. This avoids the use of the inb/outb
171 * (and related) instructions which are specific to the i386 platform.
172 *
173 * Using these techniques, this driver achieves very high performance
174 * by minimizing the amount of interrupts generated during large
175 * transfers and by completely avoiding buffer copies. Frame transfer
176 * to and from the ThunderLAN chip is performed entirely by the chip
177 * itself thereby reducing the load on the host CPU.
178 */
179
180#include <sys/param.h>
181#include <sys/systm.h>
182#include <sys/sockio.h>
183#include <sys/mbuf.h>
184#include <sys/malloc.h>
185#include <sys/kernel.h>
186#include <sys/module.h>
187#include <sys/socket.h>
188
189#include <net/if.h>
190#include <net/if_arp.h>
191#include <net/ethernet.h>
192#include <net/if_dl.h>
193#include <net/if_media.h>
194
195#include <net/bpf.h>
196
197#include <vm/vm.h>              /* for vtophys */
198#include <vm/pmap.h>            /* for vtophys */
199#include <machine/bus_memio.h>
200#include <machine/bus_pio.h>
201#include <machine/bus.h>
202#include <machine/resource.h>
203#include <sys/bus.h>
204#include <sys/rman.h>
205
206#include <dev/mii/mii.h>
207#include <dev/mii/miivar.h>
208
209#include <dev/pci/pcireg.h>
210#include <dev/pci/pcivar.h>
211
212/*
213 * Default to using PIO register access mode to pacify certain
214 * laptop docking stations with built-in ThunderLAN chips that
215 * don't seem to handle memory mapped mode properly.
216 */
217#define TL_USEIOSPACE
218
219#include <pci/if_tlreg.h>
220
221MODULE_DEPEND(tl, pci, 1, 1, 1);
222MODULE_DEPEND(tl, ether, 1, 1, 1);
223MODULE_DEPEND(tl, miibus, 1, 1, 1);
224
225/* "controller miibus0" required.  See GENERIC if you get errors here. */
226#include "miibus_if.h"
227
228/*
229 * Various supported device vendors/types and their names.
230 */
231
232static struct tl_type tl_devs[] = {
233	{ TI_VENDORID,	TI_DEVICEID_THUNDERLAN,
234		"Texas Instruments ThunderLAN" },
235	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10,
236		"Compaq Netelligent 10" },
237	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100,
238		"Compaq Netelligent 10/100" },
239	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_PROLIANT,
240		"Compaq Netelligent 10/100 Proliant" },
241	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_DUAL,
242		"Compaq Netelligent 10/100 Dual Port" },
243	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_INTEGRATED,
244		"Compaq NetFlex-3/P Integrated" },
245	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P,
246		"Compaq NetFlex-3/P" },
247	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_BNC,
248		"Compaq NetFlex 3/P w/ BNC" },
249	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_EMBEDDED,
250		"Compaq Netelligent 10/100 TX Embedded UTP" },
251	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_T2_UTP_COAX,
252		"Compaq Netelligent 10 T/2 PCI UTP/Coax" },
253	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_TX_UTP,
254		"Compaq Netelligent 10/100 TX UTP" },
255	{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2183,
256		"Olicom OC-2183/2185" },
257	{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2325,
258		"Olicom OC-2325" },
259	{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2326,
260		"Olicom OC-2326 10/100 TX UTP" },
261	{ 0, 0, NULL }
262};
263
264static int tl_probe		(device_t);
265static int tl_attach		(device_t);
266static int tl_detach		(device_t);
267static int tl_intvec_rxeoc	(void *, u_int32_t);
268static int tl_intvec_txeoc	(void *, u_int32_t);
269static int tl_intvec_txeof	(void *, u_int32_t);
270static int tl_intvec_rxeof	(void *, u_int32_t);
271static int tl_intvec_adchk	(void *, u_int32_t);
272static int tl_intvec_netsts	(void *, u_int32_t);
273
274static int tl_newbuf		(struct tl_softc *, struct tl_chain_onefrag *);
275static void tl_stats_update	(void *);
276static int tl_encap		(struct tl_softc *, struct tl_chain *,
277						struct mbuf *);
278
279static void tl_intr		(void *);
280static void tl_start		(struct ifnet *);
281static int tl_ioctl		(struct ifnet *, u_long, caddr_t);
282static void tl_init		(void *);
283static void tl_stop		(struct tl_softc *);
284static void tl_watchdog		(struct ifnet *);
285static void tl_shutdown		(device_t);
286static int tl_ifmedia_upd	(struct ifnet *);
287static void tl_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
288
289static u_int8_t tl_eeprom_putbyte	(struct tl_softc *, int);
290static u_int8_t	tl_eeprom_getbyte	(struct tl_softc *, int, u_int8_t *);
291static int tl_read_eeprom	(struct tl_softc *, caddr_t, int, int);
292
293static void tl_mii_sync		(struct tl_softc *);
294static void tl_mii_send		(struct tl_softc *, u_int32_t, int);
295static int tl_mii_readreg	(struct tl_softc *, struct tl_mii_frame *);
296static int tl_mii_writereg	(struct tl_softc *, struct tl_mii_frame *);
297static int tl_miibus_readreg	(device_t, int, int);
298static int tl_miibus_writereg	(device_t, int, int, int);
299static void tl_miibus_statchg	(device_t);
300
301static void tl_setmode		(struct tl_softc *, int);
302static uint32_t tl_mchash	(const uint8_t *);
303static void tl_setmulti		(struct tl_softc *);
304static void tl_setfilt		(struct tl_softc *, caddr_t, int);
305static void tl_softreset	(struct tl_softc *, int);
306static void tl_hardreset	(device_t);
307static int tl_list_rx_init	(struct tl_softc *);
308static int tl_list_tx_init	(struct tl_softc *);
309
310static u_int8_t tl_dio_read8	(struct tl_softc *, int);
311static u_int16_t tl_dio_read16	(struct tl_softc *, int);
312static u_int32_t tl_dio_read32	(struct tl_softc *, int);
313static void tl_dio_write8	(struct tl_softc *, int, int);
314static void tl_dio_write16	(struct tl_softc *, int, int);
315static void tl_dio_write32	(struct tl_softc *, int, int);
316static void tl_dio_setbit	(struct tl_softc *, int, int);
317static void tl_dio_clrbit	(struct tl_softc *, int, int);
318static void tl_dio_setbit16	(struct tl_softc *, int, int);
319static void tl_dio_clrbit16	(struct tl_softc *, int, int);
320
321#ifdef TL_USEIOSPACE
322#define TL_RES		SYS_RES_IOPORT
323#define TL_RID		TL_PCI_LOIO
324#else
325#define TL_RES		SYS_RES_MEMORY
326#define TL_RID		TL_PCI_LOMEM
327#endif
328
329static device_method_t tl_methods[] = {
330	/* Device interface */
331	DEVMETHOD(device_probe,		tl_probe),
332	DEVMETHOD(device_attach,	tl_attach),
333	DEVMETHOD(device_detach,	tl_detach),
334	DEVMETHOD(device_shutdown,	tl_shutdown),
335
336	/* bus interface */
337	DEVMETHOD(bus_print_child,	bus_generic_print_child),
338	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
339
340	/* MII interface */
341	DEVMETHOD(miibus_readreg,	tl_miibus_readreg),
342	DEVMETHOD(miibus_writereg,	tl_miibus_writereg),
343	DEVMETHOD(miibus_statchg,	tl_miibus_statchg),
344
345	{ 0, 0 }
346};
347
348static driver_t tl_driver = {
349	"tl",
350	tl_methods,
351	sizeof(struct tl_softc)
352};
353
354static devclass_t tl_devclass;
355
356DRIVER_MODULE(tl, pci, tl_driver, tl_devclass, 0, 0);
357DRIVER_MODULE(miibus, tl, miibus_driver, miibus_devclass, 0, 0);
358
359static u_int8_t tl_dio_read8(sc, reg)
360	struct tl_softc		*sc;
361	int			reg;
362{
363	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
364	return(CSR_READ_1(sc, TL_DIO_DATA + (reg & 3)));
365}
366
367static u_int16_t tl_dio_read16(sc, reg)
368	struct tl_softc		*sc;
369	int			reg;
370{
371	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
372	return(CSR_READ_2(sc, TL_DIO_DATA + (reg & 3)));
373}
374
375static u_int32_t tl_dio_read32(sc, reg)
376	struct tl_softc		*sc;
377	int			reg;
378{
379	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
380	return(CSR_READ_4(sc, TL_DIO_DATA + (reg & 3)));
381}
382
383static void tl_dio_write8(sc, reg, val)
384	struct tl_softc		*sc;
385	int			reg;
386	int			val;
387{
388	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
389	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), val);
390	return;
391}
392
393static void tl_dio_write16(sc, reg, val)
394	struct tl_softc		*sc;
395	int			reg;
396	int			val;
397{
398	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
399	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), val);
400	return;
401}
402
403static void tl_dio_write32(sc, reg, val)
404	struct tl_softc		*sc;
405	int			reg;
406	int			val;
407{
408	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
409	CSR_WRITE_4(sc, TL_DIO_DATA + (reg & 3), val);
410	return;
411}
412
413static void
414tl_dio_setbit(sc, reg, bit)
415	struct tl_softc		*sc;
416	int			reg;
417	int			bit;
418{
419	u_int8_t			f;
420
421	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
422	f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
423	f |= bit;
424	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
425
426	return;
427}
428
429static void
430tl_dio_clrbit(sc, reg, bit)
431	struct tl_softc		*sc;
432	int			reg;
433	int			bit;
434{
435	u_int8_t			f;
436
437	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
438	f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
439	f &= ~bit;
440	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
441
442	return;
443}
444
445static void tl_dio_setbit16(sc, reg, bit)
446	struct tl_softc		*sc;
447	int			reg;
448	int			bit;
449{
450	u_int16_t			f;
451
452	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
453	f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
454	f |= bit;
455	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
456
457	return;
458}
459
460static void tl_dio_clrbit16(sc, reg, bit)
461	struct tl_softc		*sc;
462	int			reg;
463	int			bit;
464{
465	u_int16_t			f;
466
467	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
468	f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
469	f &= ~bit;
470	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
471
472	return;
473}
474
475/*
476 * Send an instruction or address to the EEPROM, check for ACK.
477 */
478static u_int8_t tl_eeprom_putbyte(sc, byte)
479	struct tl_softc		*sc;
480	int			byte;
481{
482	register int		i, ack = 0;
483
484	/*
485	 * Make sure we're in TX mode.
486	 */
487	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ETXEN);
488
489	/*
490	 * Feed in each bit and stobe the clock.
491	 */
492	for (i = 0x80; i; i >>= 1) {
493		if (byte & i) {
494			tl_dio_setbit(sc, TL_NETSIO, TL_SIO_EDATA);
495		} else {
496			tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_EDATA);
497		}
498		DELAY(1);
499		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
500		DELAY(1);
501		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
502	}
503
504	/*
505	 * Turn off TX mode.
506	 */
507	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
508
509	/*
510	 * Check for ack.
511	 */
512	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
513	ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA;
514	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
515
516	return(ack);
517}
518
519/*
520 * Read a byte of data stored in the EEPROM at address 'addr.'
521 */
522static u_int8_t tl_eeprom_getbyte(sc, addr, dest)
523	struct tl_softc		*sc;
524	int			addr;
525	u_int8_t		*dest;
526{
527	register int		i;
528	u_int8_t		byte = 0;
529	struct ifnet		*ifp = &sc->arpcom.ac_if;
530
531	tl_dio_write8(sc, TL_NETSIO, 0);
532
533	EEPROM_START;
534
535	/*
536	 * Send write control code to EEPROM.
537	 */
538	if (tl_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
539		if_printf(ifp, "failed to send write command, status: %x\n",
540		    tl_dio_read8(sc, TL_NETSIO));
541		return(1);
542	}
543
544	/*
545	 * Send address of byte we want to read.
546	 */
547	if (tl_eeprom_putbyte(sc, addr)) {
548		if_printf(ifp, "failed to send address, status: %x\n",
549		    tl_dio_read8(sc, TL_NETSIO));
550		return(1);
551	}
552
553	EEPROM_STOP;
554	EEPROM_START;
555	/*
556	 * Send read control code to EEPROM.
557	 */
558	if (tl_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
559		if_printf(ifp, "failed to send write command, status: %x\n",
560		    tl_dio_read8(sc, TL_NETSIO));
561		return(1);
562	}
563
564	/*
565	 * Start reading bits from EEPROM.
566	 */
567	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
568	for (i = 0x80; i; i >>= 1) {
569		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
570		DELAY(1);
571		if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA)
572			byte |= i;
573		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
574		DELAY(1);
575	}
576
577	EEPROM_STOP;
578
579	/*
580	 * No ACK generated for read, so just return byte.
581	 */
582
583	*dest = byte;
584
585	return(0);
586}
587
588/*
589 * Read a sequence of bytes from the EEPROM.
590 */
591static int
592tl_read_eeprom(sc, dest, off, cnt)
593	struct tl_softc		*sc;
594	caddr_t			dest;
595	int			off;
596	int			cnt;
597{
598	int			err = 0, i;
599	u_int8_t		byte = 0;
600
601	for (i = 0; i < cnt; i++) {
602		err = tl_eeprom_getbyte(sc, off + i, &byte);
603		if (err)
604			break;
605		*(dest + i) = byte;
606	}
607
608	return(err ? 1 : 0);
609}
610
611static void
612tl_mii_sync(sc)
613	struct tl_softc		*sc;
614{
615	register int		i;
616
617	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
618
619	for (i = 0; i < 32; i++) {
620		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
621		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
622	}
623
624	return;
625}
626
627static void
628tl_mii_send(sc, bits, cnt)
629	struct tl_softc		*sc;
630	u_int32_t		bits;
631	int			cnt;
632{
633	int			i;
634
635	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
636		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
637		if (bits & i) {
638			tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MDATA);
639		} else {
640			tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MDATA);
641		}
642		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
643	}
644}
645
646static int
647tl_mii_readreg(sc, frame)
648	struct tl_softc		*sc;
649	struct tl_mii_frame	*frame;
650
651{
652	int			i, ack;
653	int			minten = 0;
654
655	TL_LOCK(sc);
656
657	tl_mii_sync(sc);
658
659	/*
660	 * Set up frame for RX.
661	 */
662	frame->mii_stdelim = TL_MII_STARTDELIM;
663	frame->mii_opcode = TL_MII_READOP;
664	frame->mii_turnaround = 0;
665	frame->mii_data = 0;
666
667	/*
668	 * Turn off MII interrupt by forcing MINTEN low.
669	 */
670	minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
671	if (minten) {
672		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
673	}
674
675	/*
676 	 * Turn on data xmit.
677	 */
678	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
679
680	/*
681	 * Send command/address info.
682	 */
683	tl_mii_send(sc, frame->mii_stdelim, 2);
684	tl_mii_send(sc, frame->mii_opcode, 2);
685	tl_mii_send(sc, frame->mii_phyaddr, 5);
686	tl_mii_send(sc, frame->mii_regaddr, 5);
687
688	/*
689	 * Turn off xmit.
690	 */
691	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
692
693	/* Idle bit */
694	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
695	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
696
697	/* Check for ack */
698	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
699	ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA;
700
701	/* Complete the cycle */
702	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
703
704	/*
705	 * Now try reading data bits. If the ack failed, we still
706	 * need to clock through 16 cycles to keep the PHYs in sync.
707	 */
708	if (ack) {
709		for(i = 0; i < 16; i++) {
710			tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
711			tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
712		}
713		goto fail;
714	}
715
716	for (i = 0x8000; i; i >>= 1) {
717		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
718		if (!ack) {
719			if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA)
720				frame->mii_data |= i;
721		}
722		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
723	}
724
725fail:
726
727	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
728	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
729
730	/* Reenable interrupts */
731	if (minten) {
732		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
733	}
734
735	TL_UNLOCK(sc);
736
737	if (ack)
738		return(1);
739	return(0);
740}
741
742static int
743tl_mii_writereg(sc, frame)
744	struct tl_softc		*sc;
745	struct tl_mii_frame	*frame;
746
747{
748	int			minten;
749
750	TL_LOCK(sc);
751
752	tl_mii_sync(sc);
753
754	/*
755	 * Set up frame for TX.
756	 */
757
758	frame->mii_stdelim = TL_MII_STARTDELIM;
759	frame->mii_opcode = TL_MII_WRITEOP;
760	frame->mii_turnaround = TL_MII_TURNAROUND;
761
762	/*
763	 * Turn off MII interrupt by forcing MINTEN low.
764	 */
765	minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
766	if (minten) {
767		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
768	}
769
770	/*
771 	 * Turn on data output.
772	 */
773	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
774
775	tl_mii_send(sc, frame->mii_stdelim, 2);
776	tl_mii_send(sc, frame->mii_opcode, 2);
777	tl_mii_send(sc, frame->mii_phyaddr, 5);
778	tl_mii_send(sc, frame->mii_regaddr, 5);
779	tl_mii_send(sc, frame->mii_turnaround, 2);
780	tl_mii_send(sc, frame->mii_data, 16);
781
782	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
783	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
784
785	/*
786	 * Turn off xmit.
787	 */
788	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
789
790	/* Reenable interrupts */
791	if (minten)
792		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
793
794	TL_UNLOCK(sc);
795
796	return(0);
797}
798
799static int
800tl_miibus_readreg(dev, phy, reg)
801	device_t		dev;
802	int			phy, reg;
803{
804	struct tl_softc		*sc;
805	struct tl_mii_frame	frame;
806
807	sc = device_get_softc(dev);
808	bzero((char *)&frame, sizeof(frame));
809
810	frame.mii_phyaddr = phy;
811	frame.mii_regaddr = reg;
812	tl_mii_readreg(sc, &frame);
813
814	return(frame.mii_data);
815}
816
817static int
818tl_miibus_writereg(dev, phy, reg, data)
819	device_t		dev;
820	int			phy, reg, data;
821{
822	struct tl_softc		*sc;
823	struct tl_mii_frame	frame;
824
825	sc = device_get_softc(dev);
826	bzero((char *)&frame, sizeof(frame));
827
828	frame.mii_phyaddr = phy;
829	frame.mii_regaddr = reg;
830	frame.mii_data = data;
831
832	tl_mii_writereg(sc, &frame);
833
834	return(0);
835}
836
837static void
838tl_miibus_statchg(dev)
839	device_t		dev;
840{
841	struct tl_softc		*sc;
842	struct mii_data		*mii;
843
844	sc = device_get_softc(dev);
845	TL_LOCK(sc);
846	mii = device_get_softc(sc->tl_miibus);
847
848	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
849		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
850	} else {
851		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
852	}
853	TL_UNLOCK(sc);
854
855	return;
856}
857
858/*
859 * Set modes for bitrate devices.
860 */
861static void
862tl_setmode(sc, media)
863	struct tl_softc		*sc;
864	int			media;
865{
866	if (IFM_SUBTYPE(media) == IFM_10_5)
867		tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
868	if (IFM_SUBTYPE(media) == IFM_10_T) {
869		tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
870		if ((media & IFM_GMASK) == IFM_FDX) {
871			tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
872			tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
873		} else {
874			tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
875			tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
876		}
877	}
878
879	return;
880}
881
882/*
883 * Calculate the hash of a MAC address for programming the multicast hash
884 * table.  This hash is simply the address split into 6-bit chunks
885 * XOR'd, e.g.
886 * byte: 000000|00 1111|1111 22|222222|333333|33 4444|4444 55|555555
887 * bit:  765432|10 7654|3210 76|543210|765432|10 7654|3210 76|543210
888 * Bytes 0-2 and 3-5 are symmetrical, so are folded together.  Then
889 * the folded 24-bit value is split into 6-bit portions and XOR'd.
890 */
891static uint32_t
892tl_mchash(addr)
893	const uint8_t *addr;
894{
895	int t;
896
897	t = (addr[0] ^ addr[3]) << 16 | (addr[1] ^ addr[4]) << 8 |
898		(addr[2] ^ addr[5]);
899	return ((t >> 18) ^ (t >> 12) ^ (t >> 6) ^ t) & 0x3f;
900}
901
902/*
903 * The ThunderLAN has a perfect MAC address filter in addition to
904 * the multicast hash filter. The perfect filter can be programmed
905 * with up to four MAC addresses. The first one is always used to
906 * hold the station address, which leaves us free to use the other
907 * three for multicast addresses.
908 */
909static void
910tl_setfilt(sc, addr, slot)
911	struct tl_softc		*sc;
912	caddr_t			addr;
913	int			slot;
914{
915	int			i;
916	u_int16_t		regaddr;
917
918	regaddr = TL_AREG0_B5 + (slot * ETHER_ADDR_LEN);
919
920	for (i = 0; i < ETHER_ADDR_LEN; i++)
921		tl_dio_write8(sc, regaddr + i, *(addr + i));
922
923	return;
924}
925
926/*
927 * XXX In FreeBSD 3.0, multicast addresses are managed using a doubly
928 * linked list. This is fine, except addresses are added from the head
929 * end of the list. We want to arrange for 224.0.0.1 (the "all hosts")
930 * group to always be in the perfect filter, but as more groups are added,
931 * the 224.0.0.1 entry (which is always added first) gets pushed down
932 * the list and ends up at the tail. So after 3 or 4 multicast groups
933 * are added, the all-hosts entry gets pushed out of the perfect filter
934 * and into the hash table.
935 *
936 * Because the multicast list is a doubly-linked list as opposed to a
937 * circular queue, we don't have the ability to just grab the tail of
938 * the list and traverse it backwards. Instead, we have to traverse
939 * the list once to find the tail, then traverse it again backwards to
940 * update the multicast filter.
941 */
942static void
943tl_setmulti(sc)
944	struct tl_softc		*sc;
945{
946	struct ifnet		*ifp;
947	u_int32_t		hashes[2] = { 0, 0 };
948	int			h, i;
949	struct ifmultiaddr	*ifma;
950	u_int8_t		dummy[] = { 0, 0, 0, 0, 0 ,0 };
951	ifp = &sc->arpcom.ac_if;
952
953	/* First, zot all the existing filters. */
954	for (i = 1; i < 4; i++)
955		tl_setfilt(sc, (caddr_t)&dummy, i);
956	tl_dio_write32(sc, TL_HASH1, 0);
957	tl_dio_write32(sc, TL_HASH2, 0);
958
959	/* Now program new ones. */
960	if (ifp->if_flags & IFF_ALLMULTI) {
961		hashes[0] = 0xFFFFFFFF;
962		hashes[1] = 0xFFFFFFFF;
963	} else {
964		i = 1;
965		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
966			if (ifma->ifma_addr->sa_family != AF_LINK)
967				continue;
968			/*
969			 * Program the first three multicast groups
970			 * into the perfect filter. For all others,
971			 * use the hash table.
972			 */
973			if (i < 4) {
974				tl_setfilt(sc,
975			LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
976				i++;
977				continue;
978			}
979
980			h = tl_mchash(
981				LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
982			if (h < 32)
983				hashes[0] |= (1 << h);
984			else
985				hashes[1] |= (1 << (h - 32));
986		}
987	}
988
989	tl_dio_write32(sc, TL_HASH1, hashes[0]);
990	tl_dio_write32(sc, TL_HASH2, hashes[1]);
991
992	return;
993}
994
995/*
996 * This routine is recommended by the ThunderLAN manual to insure that
997 * the internal PHY is powered up correctly. It also recommends a one
998 * second pause at the end to 'wait for the clocks to start' but in my
999 * experience this isn't necessary.
1000 */
1001static void
1002tl_hardreset(dev)
1003	device_t		dev;
1004{
1005	struct tl_softc		*sc;
1006	int			i;
1007	u_int16_t		flags;
1008
1009	sc = device_get_softc(dev);
1010
1011	tl_mii_sync(sc);
1012
1013	flags = BMCR_LOOP|BMCR_ISO|BMCR_PDOWN;
1014
1015	for (i = 0; i < MII_NPHY; i++)
1016		tl_miibus_writereg(dev, i, MII_BMCR, flags);
1017
1018	tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_ISO);
1019	DELAY(50000);
1020	tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_LOOP|BMCR_ISO);
1021	tl_mii_sync(sc);
1022	while(tl_miibus_readreg(dev, 31, MII_BMCR) & BMCR_RESET);
1023
1024	DELAY(50000);
1025	return;
1026}
1027
1028static void
1029tl_softreset(sc, internal)
1030	struct tl_softc		*sc;
1031	int			internal;
1032{
1033        u_int32_t               cmd, dummy, i;
1034
1035        /* Assert the adapter reset bit. */
1036	CMD_SET(sc, TL_CMD_ADRST);
1037
1038        /* Turn off interrupts */
1039	CMD_SET(sc, TL_CMD_INTSOFF);
1040
1041	/* First, clear the stats registers. */
1042	for (i = 0; i < 5; i++)
1043		dummy = tl_dio_read32(sc, TL_TXGOODFRAMES);
1044
1045        /* Clear Areg and Hash registers */
1046	for (i = 0; i < 8; i++)
1047		tl_dio_write32(sc, TL_AREG0_B5, 0x00000000);
1048
1049        /*
1050	 * Set up Netconfig register. Enable one channel and
1051	 * one fragment mode.
1052	 */
1053	tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_ONECHAN|TL_CFG_ONEFRAG);
1054	if (internal && !sc->tl_bitrate) {
1055		tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
1056	} else {
1057		tl_dio_clrbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
1058	}
1059
1060	/* Handle cards with bitrate devices. */
1061	if (sc->tl_bitrate)
1062		tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_BITRATE);
1063
1064	/*
1065	 * Load adapter irq pacing timer and tx threshold.
1066	 * We make the transmit threshold 1 initially but we may
1067	 * change that later.
1068	 */
1069	cmd = CSR_READ_4(sc, TL_HOSTCMD);
1070	cmd |= TL_CMD_NES;
1071	cmd &= ~(TL_CMD_RT|TL_CMD_EOC|TL_CMD_ACK_MASK|TL_CMD_CHSEL_MASK);
1072	CMD_PUT(sc, cmd | (TL_CMD_LDTHR | TX_THR));
1073	CMD_PUT(sc, cmd | (TL_CMD_LDTMR | 0x00000003));
1074
1075        /* Unreset the MII */
1076	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_NMRST);
1077
1078	/* Take the adapter out of reset */
1079	tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NRESET|TL_CMD_NWRAP);
1080
1081	/* Wait for things to settle down a little. */
1082	DELAY(500);
1083
1084        return;
1085}
1086
1087/*
1088 * Probe for a ThunderLAN chip. Check the PCI vendor and device IDs
1089 * against our list and return its name if we find a match.
1090 */
1091static int
1092tl_probe(dev)
1093	device_t		dev;
1094{
1095	struct tl_type		*t;
1096
1097	t = tl_devs;
1098
1099	while(t->tl_name != NULL) {
1100		if ((pci_get_vendor(dev) == t->tl_vid) &&
1101		    (pci_get_device(dev) == t->tl_did)) {
1102			device_set_desc(dev, t->tl_name);
1103			return(0);
1104		}
1105		t++;
1106	}
1107
1108	return(ENXIO);
1109}
1110
1111static int
1112tl_attach(dev)
1113	device_t		dev;
1114{
1115	int			i;
1116	u_int16_t		did, vid;
1117	struct tl_type		*t;
1118	struct ifnet		*ifp;
1119	struct tl_softc		*sc;
1120	int			unit, error = 0, rid;
1121
1122	vid = pci_get_vendor(dev);
1123	did = pci_get_device(dev);
1124	sc = device_get_softc(dev);
1125	unit = device_get_unit(dev);
1126
1127	t = tl_devs;
1128	while(t->tl_name != NULL) {
1129		if (vid == t->tl_vid && did == t->tl_did)
1130			break;
1131		t++;
1132	}
1133
1134	if (t->tl_name == NULL) {
1135		device_printf(dev, "unknown device!?\n");
1136		return (ENXIO);
1137	}
1138
1139	mtx_init(&sc->tl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1140	    MTX_DEF | MTX_RECURSE);
1141
1142	/*
1143	 * Map control/status registers.
1144	 */
1145	pci_enable_busmaster(dev);
1146
1147#ifdef TL_USEIOSPACE
1148
1149	rid = TL_PCI_LOIO;
1150	sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1151		RF_ACTIVE);
1152
1153	/*
1154	 * Some cards have the I/O and memory mapped address registers
1155	 * reversed. Try both combinations before giving up.
1156	 */
1157	if (sc->tl_res == NULL) {
1158		rid = TL_PCI_LOMEM;
1159		sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1160		    RF_ACTIVE);
1161	}
1162#else
1163	rid = TL_PCI_LOMEM;
1164	sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1165	    RF_ACTIVE);
1166	if (sc->tl_res == NULL) {
1167		rid = TL_PCI_LOIO;
1168		sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1169		    RF_ACTIVE);
1170	}
1171#endif
1172
1173	if (sc->tl_res == NULL) {
1174		device_printf(dev, "couldn't map ports/memory\n");
1175		error = ENXIO;
1176		goto fail;
1177	}
1178
1179	sc->tl_btag = rman_get_bustag(sc->tl_res);
1180	sc->tl_bhandle = rman_get_bushandle(sc->tl_res);
1181
1182#ifdef notdef
1183	/*
1184	 * The ThunderLAN manual suggests jacking the PCI latency
1185	 * timer all the way up to its maximum value. I'm not sure
1186	 * if this is really necessary, but what the manual wants,
1187	 * the manual gets.
1188	 */
1189	command = pci_read_config(dev, TL_PCI_LATENCY_TIMER, 4);
1190	command |= 0x0000FF00;
1191	pci_write_config(dev, TL_PCI_LATENCY_TIMER, command, 4);
1192#endif
1193
1194	/* Allocate interrupt */
1195	rid = 0;
1196	sc->tl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1197	    RF_SHAREABLE | RF_ACTIVE);
1198
1199	if (sc->tl_irq == NULL) {
1200		device_printf(dev, "couldn't map interrupt\n");
1201		error = ENXIO;
1202		goto fail;
1203	}
1204
1205	/*
1206	 * Now allocate memory for the TX and RX lists.
1207	 */
1208	sc->tl_ldata = contigmalloc(sizeof(struct tl_list_data), M_DEVBUF,
1209	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1210
1211	if (sc->tl_ldata == NULL) {
1212		device_printf(dev, "no memory for list buffers!\n");
1213		error = ENXIO;
1214		goto fail;
1215	}
1216
1217	bzero(sc->tl_ldata, sizeof(struct tl_list_data));
1218
1219	sc->tl_dinfo = t;
1220	if (t->tl_vid == COMPAQ_VENDORID || t->tl_vid == TI_VENDORID)
1221		sc->tl_eeaddr = TL_EEPROM_EADDR;
1222	if (t->tl_vid == OLICOM_VENDORID)
1223		sc->tl_eeaddr = TL_EEPROM_EADDR_OC;
1224
1225	/* Reset the adapter. */
1226	tl_softreset(sc, 1);
1227	tl_hardreset(dev);
1228	tl_softreset(sc, 1);
1229
1230	/*
1231	 * Get station address from the EEPROM.
1232	 */
1233	if (tl_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1234				sc->tl_eeaddr, ETHER_ADDR_LEN)) {
1235		device_printf(dev, "failed to read station address\n");
1236		error = ENXIO;
1237		goto fail;
1238	}
1239
1240        /*
1241         * XXX Olicom, in its desire to be different from the
1242         * rest of the world, has done strange things with the
1243         * encoding of the station address in the EEPROM. First
1244         * of all, they store the address at offset 0xF8 rather
1245         * than at 0x83 like the ThunderLAN manual suggests.
1246         * Second, they store the address in three 16-bit words in
1247         * network byte order, as opposed to storing it sequentially
1248         * like all the other ThunderLAN cards. In order to get
1249         * the station address in a form that matches what the Olicom
1250         * diagnostic utility specifies, we have to byte-swap each
1251         * word. To make things even more confusing, neither 00:00:28
1252         * nor 00:00:24 appear in the IEEE OUI database.
1253         */
1254        if (sc->tl_dinfo->tl_vid == OLICOM_VENDORID) {
1255                for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
1256                        u_int16_t               *p;
1257                        p = (u_int16_t *)&sc->arpcom.ac_enaddr[i];
1258                        *p = ntohs(*p);
1259                }
1260        }
1261
1262	ifp = &sc->arpcom.ac_if;
1263	ifp->if_softc = sc;
1264	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1265	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1266	ifp->if_ioctl = tl_ioctl;
1267	ifp->if_start = tl_start;
1268	ifp->if_watchdog = tl_watchdog;
1269	ifp->if_init = tl_init;
1270	ifp->if_mtu = ETHERMTU;
1271	ifp->if_snd.ifq_maxlen = TL_TX_LIST_CNT - 1;
1272	callout_handle_init(&sc->tl_stat_ch);
1273
1274	/* Reset the adapter again. */
1275	tl_softreset(sc, 1);
1276	tl_hardreset(dev);
1277	tl_softreset(sc, 1);
1278
1279	/*
1280	 * Do MII setup. If no PHYs are found, then this is a
1281	 * bitrate ThunderLAN chip that only supports 10baseT
1282	 * and AUI/BNC.
1283	 */
1284	if (mii_phy_probe(dev, &sc->tl_miibus,
1285	    tl_ifmedia_upd, tl_ifmedia_sts)) {
1286		struct ifmedia		*ifm;
1287		sc->tl_bitrate = 1;
1288		ifmedia_init(&sc->ifmedia, 0, tl_ifmedia_upd, tl_ifmedia_sts);
1289		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1290		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
1291		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1292		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_5, 0, NULL);
1293		ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_10_T);
1294		/* Reset again, this time setting bitrate mode. */
1295		tl_softreset(sc, 1);
1296		ifm = &sc->ifmedia;
1297		ifm->ifm_media = ifm->ifm_cur->ifm_media;
1298		tl_ifmedia_upd(ifp);
1299	}
1300
1301	/*
1302	 * Call MI attach routine.
1303	 */
1304	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
1305
1306	/* Hook interrupt last to avoid having to lock softc */
1307	error = bus_setup_intr(dev, sc->tl_irq, INTR_TYPE_NET,
1308	    tl_intr, sc, &sc->tl_intrhand);
1309
1310	if (error) {
1311		device_printf(dev, "couldn't set up irq\n");
1312		ether_ifdetach(ifp);
1313		goto fail;
1314	}
1315
1316fail:
1317	if (error)
1318		tl_detach(dev);
1319
1320	return(error);
1321}
1322
1323/*
1324 * Shutdown hardware and free up resources. This can be called any
1325 * time after the mutex has been initialized. It is called in both
1326 * the error case in attach and the normal detach case so it needs
1327 * to be careful about only freeing resources that have actually been
1328 * allocated.
1329 */
1330static int
1331tl_detach(dev)
1332	device_t		dev;
1333{
1334	struct tl_softc		*sc;
1335	struct ifnet		*ifp;
1336
1337	sc = device_get_softc(dev);
1338	KASSERT(mtx_initialized(&sc->tl_mtx), ("tl mutex not initialized"));
1339	TL_LOCK(sc);
1340	ifp = &sc->arpcom.ac_if;
1341
1342	/* These should only be active if attach succeeded */
1343	if (device_is_attached(dev)) {
1344		tl_stop(sc);
1345		ether_ifdetach(ifp);
1346	}
1347	if (sc->tl_miibus)
1348		device_delete_child(dev, sc->tl_miibus);
1349	bus_generic_detach(dev);
1350
1351	if (sc->tl_ldata)
1352		contigfree(sc->tl_ldata, sizeof(struct tl_list_data), M_DEVBUF);
1353	if (sc->tl_bitrate)
1354		ifmedia_removeall(&sc->ifmedia);
1355
1356	if (sc->tl_intrhand)
1357		bus_teardown_intr(dev, sc->tl_irq, sc->tl_intrhand);
1358	if (sc->tl_irq)
1359		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->tl_irq);
1360	if (sc->tl_res)
1361		bus_release_resource(dev, TL_RES, TL_RID, sc->tl_res);
1362
1363	TL_UNLOCK(sc);
1364	mtx_destroy(&sc->tl_mtx);
1365
1366	return(0);
1367}
1368
1369/*
1370 * Initialize the transmit lists.
1371 */
1372static int
1373tl_list_tx_init(sc)
1374	struct tl_softc		*sc;
1375{
1376	struct tl_chain_data	*cd;
1377	struct tl_list_data	*ld;
1378	int			i;
1379
1380	cd = &sc->tl_cdata;
1381	ld = sc->tl_ldata;
1382	for (i = 0; i < TL_TX_LIST_CNT; i++) {
1383		cd->tl_tx_chain[i].tl_ptr = &ld->tl_tx_list[i];
1384		if (i == (TL_TX_LIST_CNT - 1))
1385			cd->tl_tx_chain[i].tl_next = NULL;
1386		else
1387			cd->tl_tx_chain[i].tl_next = &cd->tl_tx_chain[i + 1];
1388	}
1389
1390	cd->tl_tx_free = &cd->tl_tx_chain[0];
1391	cd->tl_tx_tail = cd->tl_tx_head = NULL;
1392	sc->tl_txeoc = 1;
1393
1394	return(0);
1395}
1396
1397/*
1398 * Initialize the RX lists and allocate mbufs for them.
1399 */
1400static int
1401tl_list_rx_init(sc)
1402	struct tl_softc		*sc;
1403{
1404	struct tl_chain_data	*cd;
1405	struct tl_list_data	*ld;
1406	int			i;
1407
1408	cd = &sc->tl_cdata;
1409	ld = sc->tl_ldata;
1410
1411	for (i = 0; i < TL_RX_LIST_CNT; i++) {
1412		cd->tl_rx_chain[i].tl_ptr =
1413			(struct tl_list_onefrag *)&ld->tl_rx_list[i];
1414		if (tl_newbuf(sc, &cd->tl_rx_chain[i]) == ENOBUFS)
1415			return(ENOBUFS);
1416		if (i == (TL_RX_LIST_CNT - 1)) {
1417			cd->tl_rx_chain[i].tl_next = NULL;
1418			ld->tl_rx_list[i].tlist_fptr = 0;
1419		} else {
1420			cd->tl_rx_chain[i].tl_next = &cd->tl_rx_chain[i + 1];
1421			ld->tl_rx_list[i].tlist_fptr =
1422					vtophys(&ld->tl_rx_list[i + 1]);
1423		}
1424	}
1425
1426	cd->tl_rx_head = &cd->tl_rx_chain[0];
1427	cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
1428
1429	return(0);
1430}
1431
1432static int
1433tl_newbuf(sc, c)
1434	struct tl_softc		*sc;
1435	struct tl_chain_onefrag	*c;
1436{
1437	struct mbuf		*m_new = NULL;
1438
1439	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1440	if (m_new == NULL)
1441		return(ENOBUFS);
1442
1443	MCLGET(m_new, M_DONTWAIT);
1444	if (!(m_new->m_flags & M_EXT)) {
1445		m_freem(m_new);
1446		return(ENOBUFS);
1447	}
1448
1449#ifdef __alpha__
1450	m_new->m_data += 2;
1451#endif
1452
1453	c->tl_mbuf = m_new;
1454	c->tl_next = NULL;
1455	c->tl_ptr->tlist_frsize = MCLBYTES;
1456	c->tl_ptr->tlist_fptr = 0;
1457	c->tl_ptr->tl_frag.tlist_dadr = vtophys(mtod(m_new, caddr_t));
1458	c->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
1459	c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1460
1461	return(0);
1462}
1463/*
1464 * Interrupt handler for RX 'end of frame' condition (EOF). This
1465 * tells us that a full ethernet frame has been captured and we need
1466 * to handle it.
1467 *
1468 * Reception is done using 'lists' which consist of a header and a
1469 * series of 10 data count/data address pairs that point to buffers.
1470 * Initially you're supposed to create a list, populate it with pointers
1471 * to buffers, then load the physical address of the list into the
1472 * ch_parm register. The adapter is then supposed to DMA the received
1473 * frame into the buffers for you.
1474 *
1475 * To make things as fast as possible, we have the chip DMA directly
1476 * into mbufs. This saves us from having to do a buffer copy: we can
1477 * just hand the mbufs directly to ether_input(). Once the frame has
1478 * been sent on its way, the 'list' structure is assigned a new buffer
1479 * and moved to the end of the RX chain. As long we we stay ahead of
1480 * the chip, it will always think it has an endless receive channel.
1481 *
1482 * If we happen to fall behind and the chip manages to fill up all of
1483 * the buffers, it will generate an end of channel interrupt and wait
1484 * for us to empty the chain and restart the receiver.
1485 */
1486static int
1487tl_intvec_rxeof(xsc, type)
1488	void			*xsc;
1489	u_int32_t		type;
1490{
1491	struct tl_softc		*sc;
1492	int			r = 0, total_len = 0;
1493	struct ether_header	*eh;
1494	struct mbuf		*m;
1495	struct ifnet		*ifp;
1496	struct tl_chain_onefrag	*cur_rx;
1497
1498	sc = xsc;
1499	ifp = &sc->arpcom.ac_if;
1500
1501	TL_LOCK_ASSERT(sc);
1502
1503	while(sc->tl_cdata.tl_rx_head != NULL) {
1504		cur_rx = sc->tl_cdata.tl_rx_head;
1505		if (!(cur_rx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
1506			break;
1507		r++;
1508		sc->tl_cdata.tl_rx_head = cur_rx->tl_next;
1509		m = cur_rx->tl_mbuf;
1510		total_len = cur_rx->tl_ptr->tlist_frsize;
1511
1512		if (tl_newbuf(sc, cur_rx) == ENOBUFS) {
1513			ifp->if_ierrors++;
1514			cur_rx->tl_ptr->tlist_frsize = MCLBYTES;
1515			cur_rx->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1516			cur_rx->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
1517			continue;
1518		}
1519
1520		sc->tl_cdata.tl_rx_tail->tl_ptr->tlist_fptr =
1521						vtophys(cur_rx->tl_ptr);
1522		sc->tl_cdata.tl_rx_tail->tl_next = cur_rx;
1523		sc->tl_cdata.tl_rx_tail = cur_rx;
1524
1525		/*
1526		 * Note: when the ThunderLAN chip is in 'capture all
1527		 * frames' mode, it will receive its own transmissions.
1528		 * We drop don't need to process our own transmissions,
1529		 * so we drop them here and continue.
1530		 */
1531		eh = mtod(m, struct ether_header *);
1532		/*if (ifp->if_flags & IFF_PROMISC && */
1533		if (!bcmp(eh->ether_shost, sc->arpcom.ac_enaddr,
1534		 					ETHER_ADDR_LEN)) {
1535				m_freem(m);
1536				continue;
1537		}
1538
1539		m->m_pkthdr.rcvif = ifp;
1540		m->m_pkthdr.len = m->m_len = total_len;
1541
1542		TL_UNLOCK(sc);
1543		(*ifp->if_input)(ifp, m);
1544		TL_LOCK(sc);
1545	}
1546
1547	return(r);
1548}
1549
1550/*
1551 * The RX-EOC condition hits when the ch_parm address hasn't been
1552 * initialized or the adapter reached a list with a forward pointer
1553 * of 0 (which indicates the end of the chain). In our case, this means
1554 * the card has hit the end of the receive buffer chain and we need to
1555 * empty out the buffers and shift the pointer back to the beginning again.
1556 */
1557static int
1558tl_intvec_rxeoc(xsc, type)
1559	void			*xsc;
1560	u_int32_t		type;
1561{
1562	struct tl_softc		*sc;
1563	int			r;
1564	struct tl_chain_data	*cd;
1565
1566
1567	sc = xsc;
1568	cd = &sc->tl_cdata;
1569
1570	/* Flush out the receive queue and ack RXEOF interrupts. */
1571	r = tl_intvec_rxeof(xsc, type);
1572	CMD_PUT(sc, TL_CMD_ACK | r | (type & ~(0x00100000)));
1573	r = 1;
1574	cd->tl_rx_head = &cd->tl_rx_chain[0];
1575	cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
1576	CSR_WRITE_4(sc, TL_CH_PARM, vtophys(sc->tl_cdata.tl_rx_head->tl_ptr));
1577	r |= (TL_CMD_GO|TL_CMD_RT);
1578	return(r);
1579}
1580
1581static int
1582tl_intvec_txeof(xsc, type)
1583	void			*xsc;
1584	u_int32_t		type;
1585{
1586	struct tl_softc		*sc;
1587	int			r = 0;
1588	struct tl_chain		*cur_tx;
1589
1590	sc = xsc;
1591
1592	/*
1593	 * Go through our tx list and free mbufs for those
1594	 * frames that have been sent.
1595	 */
1596	while (sc->tl_cdata.tl_tx_head != NULL) {
1597		cur_tx = sc->tl_cdata.tl_tx_head;
1598		if (!(cur_tx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
1599			break;
1600		sc->tl_cdata.tl_tx_head = cur_tx->tl_next;
1601
1602		r++;
1603		m_freem(cur_tx->tl_mbuf);
1604		cur_tx->tl_mbuf = NULL;
1605
1606		cur_tx->tl_next = sc->tl_cdata.tl_tx_free;
1607		sc->tl_cdata.tl_tx_free = cur_tx;
1608		if (!cur_tx->tl_ptr->tlist_fptr)
1609			break;
1610	}
1611
1612	return(r);
1613}
1614
1615/*
1616 * The transmit end of channel interrupt. The adapter triggers this
1617 * interrupt to tell us it hit the end of the current transmit list.
1618 *
1619 * A note about this: it's possible for a condition to arise where
1620 * tl_start() may try to send frames between TXEOF and TXEOC interrupts.
1621 * You have to avoid this since the chip expects things to go in a
1622 * particular order: transmit, acknowledge TXEOF, acknowledge TXEOC.
1623 * When the TXEOF handler is called, it will free all of the transmitted
1624 * frames and reset the tx_head pointer to NULL. However, a TXEOC
1625 * interrupt should be received and acknowledged before any more frames
1626 * are queued for transmission. If tl_statrt() is called after TXEOF
1627 * resets the tx_head pointer but _before_ the TXEOC interrupt arrives,
1628 * it could attempt to issue a transmit command prematurely.
1629 *
1630 * To guard against this, tl_start() will only issue transmit commands
1631 * if the tl_txeoc flag is set, and only the TXEOC interrupt handler
1632 * can set this flag once tl_start() has cleared it.
1633 */
1634static int
1635tl_intvec_txeoc(xsc, type)
1636	void			*xsc;
1637	u_int32_t		type;
1638{
1639	struct tl_softc		*sc;
1640	struct ifnet		*ifp;
1641	u_int32_t		cmd;
1642
1643	sc = xsc;
1644	ifp = &sc->arpcom.ac_if;
1645
1646	/* Clear the timeout timer. */
1647	ifp->if_timer = 0;
1648
1649	if (sc->tl_cdata.tl_tx_head == NULL) {
1650		ifp->if_flags &= ~IFF_OACTIVE;
1651		sc->tl_cdata.tl_tx_tail = NULL;
1652		sc->tl_txeoc = 1;
1653	} else {
1654		sc->tl_txeoc = 0;
1655		/* First we have to ack the EOC interrupt. */
1656		CMD_PUT(sc, TL_CMD_ACK | 0x00000001 | type);
1657		/* Then load the address of the next TX list. */
1658		CSR_WRITE_4(sc, TL_CH_PARM,
1659		    vtophys(sc->tl_cdata.tl_tx_head->tl_ptr));
1660		/* Restart TX channel. */
1661		cmd = CSR_READ_4(sc, TL_HOSTCMD);
1662		cmd &= ~TL_CMD_RT;
1663		cmd |= TL_CMD_GO|TL_CMD_INTSON;
1664		CMD_PUT(sc, cmd);
1665		return(0);
1666	}
1667
1668	return(1);
1669}
1670
1671static int
1672tl_intvec_adchk(xsc, type)
1673	void			*xsc;
1674	u_int32_t		type;
1675{
1676	struct tl_softc		*sc;
1677
1678	sc = xsc;
1679
1680	if (type)
1681		if_printf(&sc->arpcom.ac_if, "adapter check: %x\n",
1682			(unsigned int)CSR_READ_4(sc, TL_CH_PARM));
1683
1684	tl_softreset(sc, 1);
1685	tl_stop(sc);
1686	tl_init(sc);
1687	CMD_SET(sc, TL_CMD_INTSON);
1688
1689	return(0);
1690}
1691
1692static int
1693tl_intvec_netsts(xsc, type)
1694	void			*xsc;
1695	u_int32_t		type;
1696{
1697	struct tl_softc		*sc;
1698	u_int16_t		netsts;
1699
1700	sc = xsc;
1701
1702	netsts = tl_dio_read16(sc, TL_NETSTS);
1703	tl_dio_write16(sc, TL_NETSTS, netsts);
1704
1705	if_printf(&sc->arpcom.ac_if, "network status: %x\n", netsts);
1706
1707	return(1);
1708}
1709
1710static void
1711tl_intr(xsc)
1712	void			*xsc;
1713{
1714	struct tl_softc		*sc;
1715	struct ifnet		*ifp;
1716	int			r = 0;
1717	u_int32_t		type = 0;
1718	u_int16_t		ints = 0;
1719	u_int8_t		ivec = 0;
1720
1721	sc = xsc;
1722	TL_LOCK(sc);
1723
1724	/* Disable interrupts */
1725	ints = CSR_READ_2(sc, TL_HOST_INT);
1726	CSR_WRITE_2(sc, TL_HOST_INT, ints);
1727	type = (ints << 16) & 0xFFFF0000;
1728	ivec = (ints & TL_VEC_MASK) >> 5;
1729	ints = (ints & TL_INT_MASK) >> 2;
1730
1731	ifp = &sc->arpcom.ac_if;
1732
1733	switch(ints) {
1734	case (TL_INTR_INVALID):
1735#ifdef DIAGNOSTIC
1736		if_printf(ifp, "got an invalid interrupt!\n");
1737#endif
1738		/* Re-enable interrupts but don't ack this one. */
1739		CMD_PUT(sc, type);
1740		r = 0;
1741		break;
1742	case (TL_INTR_TXEOF):
1743		r = tl_intvec_txeof((void *)sc, type);
1744		break;
1745	case (TL_INTR_TXEOC):
1746		r = tl_intvec_txeoc((void *)sc, type);
1747		break;
1748	case (TL_INTR_STATOFLOW):
1749		tl_stats_update(sc);
1750		r = 1;
1751		break;
1752	case (TL_INTR_RXEOF):
1753		r = tl_intvec_rxeof((void *)sc, type);
1754		break;
1755	case (TL_INTR_DUMMY):
1756		if_printf(ifp, "got a dummy interrupt\n");
1757		r = 1;
1758		break;
1759	case (TL_INTR_ADCHK):
1760		if (ivec)
1761			r = tl_intvec_adchk((void *)sc, type);
1762		else
1763			r = tl_intvec_netsts((void *)sc, type);
1764		break;
1765	case (TL_INTR_RXEOC):
1766		r = tl_intvec_rxeoc((void *)sc, type);
1767		break;
1768	default:
1769		if_printf(ifp, "bogus interrupt type\n");
1770		break;
1771	}
1772
1773	/* Re-enable interrupts */
1774	if (r) {
1775		CMD_PUT(sc, TL_CMD_ACK | r | type);
1776	}
1777
1778	if (ifp->if_snd.ifq_head != NULL)
1779		tl_start(ifp);
1780
1781	TL_UNLOCK(sc);
1782
1783	return;
1784}
1785
1786static void
1787tl_stats_update(xsc)
1788	void			*xsc;
1789{
1790	struct tl_softc		*sc;
1791	struct ifnet		*ifp;
1792	struct tl_stats		tl_stats;
1793	struct mii_data		*mii;
1794	u_int32_t		*p;
1795
1796	bzero((char *)&tl_stats, sizeof(struct tl_stats));
1797
1798	sc = xsc;
1799	TL_LOCK(sc);
1800	ifp = &sc->arpcom.ac_if;
1801
1802	p = (u_int32_t *)&tl_stats;
1803
1804	CSR_WRITE_2(sc, TL_DIO_ADDR, TL_TXGOODFRAMES|TL_DIO_ADDR_INC);
1805	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1806	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1807	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1808	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1809	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1810
1811	ifp->if_opackets += tl_tx_goodframes(tl_stats);
1812	ifp->if_collisions += tl_stats.tl_tx_single_collision +
1813				tl_stats.tl_tx_multi_collision;
1814	ifp->if_ipackets += tl_rx_goodframes(tl_stats);
1815	ifp->if_ierrors += tl_stats.tl_crc_errors + tl_stats.tl_code_errors +
1816			    tl_rx_overrun(tl_stats);
1817	ifp->if_oerrors += tl_tx_underrun(tl_stats);
1818
1819	if (tl_tx_underrun(tl_stats)) {
1820		u_int8_t		tx_thresh;
1821		tx_thresh = tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_TXTHRESH;
1822		if (tx_thresh != TL_AC_TXTHRESH_WHOLEPKT) {
1823			tx_thresh >>= 4;
1824			tx_thresh++;
1825			if_printf(ifp, "tx underrun -- increasing "
1826			    "tx threshold to %d bytes\n",
1827			    (64 * (tx_thresh * 4)));
1828			tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
1829			tl_dio_setbit(sc, TL_ACOMMIT, tx_thresh << 4);
1830		}
1831	}
1832
1833	sc->tl_stat_ch = timeout(tl_stats_update, sc, hz);
1834
1835	if (!sc->tl_bitrate) {
1836		mii = device_get_softc(sc->tl_miibus);
1837		mii_tick(mii);
1838	}
1839
1840	TL_UNLOCK(sc);
1841
1842	return;
1843}
1844
1845/*
1846 * Encapsulate an mbuf chain in a list by coupling the mbuf data
1847 * pointers to the fragment pointers.
1848 */
1849static int
1850tl_encap(sc, c, m_head)
1851	struct tl_softc		*sc;
1852	struct tl_chain		*c;
1853	struct mbuf		*m_head;
1854{
1855	int			frag = 0;
1856	struct tl_frag		*f = NULL;
1857	int			total_len;
1858	struct mbuf		*m;
1859	struct ifnet		*ifp = &sc->arpcom.ac_if;
1860
1861	/*
1862 	 * Start packing the mbufs in this chain into
1863	 * the fragment pointers. Stop when we run out
1864 	 * of fragments or hit the end of the mbuf chain.
1865	 */
1866	m = m_head;
1867	total_len = 0;
1868
1869	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1870		if (m->m_len != 0) {
1871			if (frag == TL_MAXFRAGS)
1872				break;
1873			total_len+= m->m_len;
1874			c->tl_ptr->tl_frag[frag].tlist_dadr =
1875				vtophys(mtod(m, vm_offset_t));
1876			c->tl_ptr->tl_frag[frag].tlist_dcnt = m->m_len;
1877			frag++;
1878		}
1879	}
1880
1881	/*
1882	 * Handle special cases.
1883	 * Special case #1: we used up all 10 fragments, but
1884	 * we have more mbufs left in the chain. Copy the
1885	 * data into an mbuf cluster. Note that we don't
1886	 * bother clearing the values in the other fragment
1887	 * pointers/counters; it wouldn't gain us anything,
1888	 * and would waste cycles.
1889	 */
1890	if (m != NULL) {
1891		struct mbuf		*m_new = NULL;
1892
1893		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1894		if (m_new == NULL) {
1895			if_printf(ifp, "no memory for tx list\n");
1896			return(1);
1897		}
1898		if (m_head->m_pkthdr.len > MHLEN) {
1899			MCLGET(m_new, M_DONTWAIT);
1900			if (!(m_new->m_flags & M_EXT)) {
1901				m_freem(m_new);
1902				if_printf(ifp, "no memory for tx list\n");
1903				return(1);
1904			}
1905		}
1906		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1907					mtod(m_new, caddr_t));
1908		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1909		m_freem(m_head);
1910		m_head = m_new;
1911		f = &c->tl_ptr->tl_frag[0];
1912		f->tlist_dadr = vtophys(mtod(m_new, caddr_t));
1913		f->tlist_dcnt = total_len = m_new->m_len;
1914		frag = 1;
1915	}
1916
1917	/*
1918	 * Special case #2: the frame is smaller than the minimum
1919	 * frame size. We have to pad it to make the chip happy.
1920	 */
1921	if (total_len < TL_MIN_FRAMELEN) {
1922		if (frag == TL_MAXFRAGS)
1923			if_printf(ifp,
1924			    "all frags filled but frame still to small!\n");
1925		f = &c->tl_ptr->tl_frag[frag];
1926		f->tlist_dcnt = TL_MIN_FRAMELEN - total_len;
1927		f->tlist_dadr = vtophys(&sc->tl_ldata->tl_pad);
1928		total_len += f->tlist_dcnt;
1929		frag++;
1930	}
1931
1932	c->tl_mbuf = m_head;
1933	c->tl_ptr->tl_frag[frag - 1].tlist_dcnt |= TL_LAST_FRAG;
1934	c->tl_ptr->tlist_frsize = total_len;
1935	c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1936	c->tl_ptr->tlist_fptr = 0;
1937
1938	return(0);
1939}
1940
1941/*
1942 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1943 * to the mbuf data regions directly in the transmit lists. We also save a
1944 * copy of the pointers since the transmit list fragment pointers are
1945 * physical addresses.
1946 */
1947static void
1948tl_start(ifp)
1949	struct ifnet		*ifp;
1950{
1951	struct tl_softc		*sc;
1952	struct mbuf		*m_head = NULL;
1953	u_int32_t		cmd;
1954	struct tl_chain		*prev = NULL, *cur_tx = NULL, *start_tx;
1955
1956	sc = ifp->if_softc;
1957	TL_LOCK(sc);
1958
1959	/*
1960	 * Check for an available queue slot. If there are none,
1961	 * punt.
1962	 */
1963	if (sc->tl_cdata.tl_tx_free == NULL) {
1964		ifp->if_flags |= IFF_OACTIVE;
1965		TL_UNLOCK(sc);
1966		return;
1967	}
1968
1969	start_tx = sc->tl_cdata.tl_tx_free;
1970
1971	while(sc->tl_cdata.tl_tx_free != NULL) {
1972		IF_DEQUEUE(&ifp->if_snd, m_head);
1973		if (m_head == NULL)
1974			break;
1975
1976		/* Pick a chain member off the free list. */
1977		cur_tx = sc->tl_cdata.tl_tx_free;
1978		sc->tl_cdata.tl_tx_free = cur_tx->tl_next;
1979
1980		cur_tx->tl_next = NULL;
1981
1982		/* Pack the data into the list. */
1983		tl_encap(sc, cur_tx, m_head);
1984
1985		/* Chain it together */
1986		if (prev != NULL) {
1987			prev->tl_next = cur_tx;
1988			prev->tl_ptr->tlist_fptr = vtophys(cur_tx->tl_ptr);
1989		}
1990		prev = cur_tx;
1991
1992		/*
1993		 * If there's a BPF listener, bounce a copy of this frame
1994		 * to him.
1995		 */
1996		BPF_MTAP(ifp, cur_tx->tl_mbuf);
1997	}
1998
1999	/*
2000	 * If there are no packets queued, bail.
2001	 */
2002	if (cur_tx == NULL) {
2003		TL_UNLOCK(sc);
2004		return;
2005	}
2006
2007	/*
2008	 * That's all we can stands, we can't stands no more.
2009	 * If there are no other transfers pending, then issue the
2010	 * TX GO command to the adapter to start things moving.
2011	 * Otherwise, just leave the data in the queue and let
2012	 * the EOF/EOC interrupt handler send.
2013	 */
2014	if (sc->tl_cdata.tl_tx_head == NULL) {
2015		sc->tl_cdata.tl_tx_head = start_tx;
2016		sc->tl_cdata.tl_tx_tail = cur_tx;
2017
2018		if (sc->tl_txeoc) {
2019			sc->tl_txeoc = 0;
2020			CSR_WRITE_4(sc, TL_CH_PARM, vtophys(start_tx->tl_ptr));
2021			cmd = CSR_READ_4(sc, TL_HOSTCMD);
2022			cmd &= ~TL_CMD_RT;
2023			cmd |= TL_CMD_GO|TL_CMD_INTSON;
2024			CMD_PUT(sc, cmd);
2025		}
2026	} else {
2027		sc->tl_cdata.tl_tx_tail->tl_next = start_tx;
2028		sc->tl_cdata.tl_tx_tail = cur_tx;
2029	}
2030
2031	/*
2032	 * Set a timeout in case the chip goes out to lunch.
2033	 */
2034	ifp->if_timer = 5;
2035	TL_UNLOCK(sc);
2036
2037	return;
2038}
2039
2040static void
2041tl_init(xsc)
2042	void			*xsc;
2043{
2044	struct tl_softc		*sc = xsc;
2045	struct ifnet		*ifp = &sc->arpcom.ac_if;
2046	struct mii_data		*mii;
2047
2048	TL_LOCK(sc);
2049
2050	ifp = &sc->arpcom.ac_if;
2051
2052	/*
2053	 * Cancel pending I/O.
2054	 */
2055	tl_stop(sc);
2056
2057	/* Initialize TX FIFO threshold */
2058	tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
2059	tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH_16LONG);
2060
2061        /* Set PCI burst size */
2062	tl_dio_write8(sc, TL_BSIZEREG, TL_RXBURST_16LONG|TL_TXBURST_16LONG);
2063
2064	/*
2065	 * Set 'capture all frames' bit for promiscuous mode.
2066	 */
2067	if (ifp->if_flags & IFF_PROMISC)
2068		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
2069	else
2070		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
2071
2072	/*
2073	 * Set capture broadcast bit to capture broadcast frames.
2074	 */
2075	if (ifp->if_flags & IFF_BROADCAST)
2076		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_NOBRX);
2077	else
2078		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NOBRX);
2079
2080	tl_dio_write16(sc, TL_MAXRX, MCLBYTES);
2081
2082	/* Init our MAC address */
2083	tl_setfilt(sc, (caddr_t)&sc->arpcom.ac_enaddr, 0);
2084
2085	/* Init multicast filter, if needed. */
2086	tl_setmulti(sc);
2087
2088	/* Init circular RX list. */
2089	if (tl_list_rx_init(sc) == ENOBUFS) {
2090		if_printf(ifp,
2091		    "initialization failed: no memory for rx buffers\n");
2092		tl_stop(sc);
2093		TL_UNLOCK(sc);
2094		return;
2095	}
2096
2097	/* Init TX pointers. */
2098	tl_list_tx_init(sc);
2099
2100	/* Enable PCI interrupts. */
2101	CMD_SET(sc, TL_CMD_INTSON);
2102
2103	/* Load the address of the rx list */
2104	CMD_SET(sc, TL_CMD_RT);
2105	CSR_WRITE_4(sc, TL_CH_PARM, vtophys(&sc->tl_ldata->tl_rx_list[0]));
2106
2107	if (!sc->tl_bitrate) {
2108		if (sc->tl_miibus != NULL) {
2109			mii = device_get_softc(sc->tl_miibus);
2110			mii_mediachg(mii);
2111		}
2112	} else {
2113		tl_ifmedia_upd(ifp);
2114	}
2115
2116	/* Send the RX go command */
2117	CMD_SET(sc, TL_CMD_GO|TL_CMD_NES|TL_CMD_RT);
2118
2119	ifp->if_flags |= IFF_RUNNING;
2120	ifp->if_flags &= ~IFF_OACTIVE;
2121
2122	/* Start the stats update counter */
2123	sc->tl_stat_ch = timeout(tl_stats_update, sc, hz);
2124	TL_UNLOCK(sc);
2125
2126	return;
2127}
2128
2129/*
2130 * Set media options.
2131 */
2132static int
2133tl_ifmedia_upd(ifp)
2134	struct ifnet		*ifp;
2135{
2136	struct tl_softc		*sc;
2137	struct mii_data		*mii = NULL;
2138
2139	sc = ifp->if_softc;
2140
2141	if (sc->tl_bitrate)
2142		tl_setmode(sc, sc->ifmedia.ifm_media);
2143	else {
2144		mii = device_get_softc(sc->tl_miibus);
2145		mii_mediachg(mii);
2146	}
2147
2148	return(0);
2149}
2150
2151/*
2152 * Report current media status.
2153 */
2154static void
2155tl_ifmedia_sts(ifp, ifmr)
2156	struct ifnet		*ifp;
2157	struct ifmediareq	*ifmr;
2158{
2159	struct tl_softc		*sc;
2160	struct mii_data		*mii;
2161
2162	sc = ifp->if_softc;
2163
2164	ifmr->ifm_active = IFM_ETHER;
2165
2166	if (sc->tl_bitrate) {
2167		if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD1)
2168			ifmr->ifm_active = IFM_ETHER|IFM_10_5;
2169		else
2170			ifmr->ifm_active = IFM_ETHER|IFM_10_T;
2171		if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD3)
2172			ifmr->ifm_active |= IFM_HDX;
2173		else
2174			ifmr->ifm_active |= IFM_FDX;
2175		return;
2176	} else {
2177		mii = device_get_softc(sc->tl_miibus);
2178		mii_pollstat(mii);
2179		ifmr->ifm_active = mii->mii_media_active;
2180		ifmr->ifm_status = mii->mii_media_status;
2181	}
2182
2183	return;
2184}
2185
2186static int
2187tl_ioctl(ifp, command, data)
2188	struct ifnet		*ifp;
2189	u_long			command;
2190	caddr_t			data;
2191{
2192	struct tl_softc		*sc = ifp->if_softc;
2193	struct ifreq		*ifr = (struct ifreq *) data;
2194	int			s, error = 0;
2195
2196	s = splimp();
2197
2198	switch(command) {
2199	case SIOCSIFFLAGS:
2200		if (ifp->if_flags & IFF_UP) {
2201			if (ifp->if_flags & IFF_RUNNING &&
2202			    ifp->if_flags & IFF_PROMISC &&
2203			    !(sc->tl_if_flags & IFF_PROMISC)) {
2204				tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
2205				tl_setmulti(sc);
2206			} else if (ifp->if_flags & IFF_RUNNING &&
2207			    !(ifp->if_flags & IFF_PROMISC) &&
2208			    sc->tl_if_flags & IFF_PROMISC) {
2209				tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
2210				tl_setmulti(sc);
2211			} else
2212				tl_init(sc);
2213		} else {
2214			if (ifp->if_flags & IFF_RUNNING) {
2215				tl_stop(sc);
2216			}
2217		}
2218		sc->tl_if_flags = ifp->if_flags;
2219		error = 0;
2220		break;
2221	case SIOCADDMULTI:
2222	case SIOCDELMULTI:
2223		tl_setmulti(sc);
2224		error = 0;
2225		break;
2226	case SIOCSIFMEDIA:
2227	case SIOCGIFMEDIA:
2228		if (sc->tl_bitrate)
2229			error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2230		else {
2231			struct mii_data		*mii;
2232			mii = device_get_softc(sc->tl_miibus);
2233			error = ifmedia_ioctl(ifp, ifr,
2234			    &mii->mii_media, command);
2235		}
2236		break;
2237	default:
2238		error = ether_ioctl(ifp, command, data);
2239		break;
2240	}
2241
2242	(void)splx(s);
2243
2244	return(error);
2245}
2246
2247static void
2248tl_watchdog(ifp)
2249	struct ifnet		*ifp;
2250{
2251	struct tl_softc		*sc;
2252
2253	sc = ifp->if_softc;
2254
2255	if_printf(ifp, "device timeout\n");
2256
2257	ifp->if_oerrors++;
2258
2259	tl_softreset(sc, 1);
2260	tl_init(sc);
2261
2262	return;
2263}
2264
2265/*
2266 * Stop the adapter and free any mbufs allocated to the
2267 * RX and TX lists.
2268 */
2269static void
2270tl_stop(sc)
2271	struct tl_softc		*sc;
2272{
2273	register int		i;
2274	struct ifnet		*ifp;
2275
2276	TL_LOCK(sc);
2277
2278	ifp = &sc->arpcom.ac_if;
2279
2280	/* Stop the stats updater. */
2281	untimeout(tl_stats_update, sc, sc->tl_stat_ch);
2282
2283	/* Stop the transmitter */
2284	CMD_CLR(sc, TL_CMD_RT);
2285	CMD_SET(sc, TL_CMD_STOP);
2286	CSR_WRITE_4(sc, TL_CH_PARM, 0);
2287
2288	/* Stop the receiver */
2289	CMD_SET(sc, TL_CMD_RT);
2290	CMD_SET(sc, TL_CMD_STOP);
2291	CSR_WRITE_4(sc, TL_CH_PARM, 0);
2292
2293	/*
2294	 * Disable host interrupts.
2295	 */
2296	CMD_SET(sc, TL_CMD_INTSOFF);
2297
2298	/*
2299	 * Clear list pointer.
2300	 */
2301	CSR_WRITE_4(sc, TL_CH_PARM, 0);
2302
2303	/*
2304	 * Free the RX lists.
2305	 */
2306	for (i = 0; i < TL_RX_LIST_CNT; i++) {
2307		if (sc->tl_cdata.tl_rx_chain[i].tl_mbuf != NULL) {
2308			m_freem(sc->tl_cdata.tl_rx_chain[i].tl_mbuf);
2309			sc->tl_cdata.tl_rx_chain[i].tl_mbuf = NULL;
2310		}
2311	}
2312	bzero((char *)&sc->tl_ldata->tl_rx_list,
2313		sizeof(sc->tl_ldata->tl_rx_list));
2314
2315	/*
2316	 * Free the TX list buffers.
2317	 */
2318	for (i = 0; i < TL_TX_LIST_CNT; i++) {
2319		if (sc->tl_cdata.tl_tx_chain[i].tl_mbuf != NULL) {
2320			m_freem(sc->tl_cdata.tl_tx_chain[i].tl_mbuf);
2321			sc->tl_cdata.tl_tx_chain[i].tl_mbuf = NULL;
2322		}
2323	}
2324	bzero((char *)&sc->tl_ldata->tl_tx_list,
2325		sizeof(sc->tl_ldata->tl_tx_list));
2326
2327	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2328	TL_UNLOCK(sc);
2329
2330	return;
2331}
2332
2333/*
2334 * Stop all chip I/O so that the kernel's probe routines don't
2335 * get confused by errant DMAs when rebooting.
2336 */
2337static void
2338tl_shutdown(dev)
2339	device_t		dev;
2340{
2341	struct tl_softc		*sc;
2342
2343	sc = device_get_softc(dev);
2344
2345	tl_stop(sc);
2346
2347	return;
2348}
2349