if_tl.c revision 113812
1/*
2 * Copyright (c) 1997, 1998
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33/*
34 * Texas Instruments ThunderLAN driver for FreeBSD 2.2.6 and 3.x.
35 * Supports many Compaq PCI NICs based on the ThunderLAN ethernet controller,
36 * the National Semiconductor DP83840A physical interface and the
37 * Microchip Technology 24Cxx series serial EEPROM.
38 *
39 * Written using the following four documents:
40 *
41 * Texas Instruments ThunderLAN Programmer's Guide (www.ti.com)
42 * National Semiconductor DP83840A data sheet (www.national.com)
43 * Microchip Technology 24C02C data sheet (www.microchip.com)
44 * Micro Linear ML6692 100BaseTX only PHY data sheet (www.microlinear.com)
45 *
46 * Written by Bill Paul <wpaul@ctr.columbia.edu>
47 * Electrical Engineering Department
48 * Columbia University, New York City
49 */
50
51/*
52 * Some notes about the ThunderLAN:
53 *
54 * The ThunderLAN controller is a single chip containing PCI controller
55 * logic, approximately 3K of on-board SRAM, a LAN controller, and media
56 * independent interface (MII) bus. The MII allows the ThunderLAN chip to
57 * control up to 32 different physical interfaces (PHYs). The ThunderLAN
58 * also has a built-in 10baseT PHY, allowing a single ThunderLAN controller
59 * to act as a complete ethernet interface.
60 *
61 * Other PHYs may be attached to the ThunderLAN; the Compaq 10/100 cards
62 * use a National Semiconductor DP83840A PHY that supports 10 or 100Mb/sec
63 * in full or half duplex. Some of the Compaq Deskpro machines use a
64 * Level 1 LXT970 PHY with the same capabilities. Certain Olicom adapters
65 * use a Micro Linear ML6692 100BaseTX only PHY, which can be used in
66 * concert with the ThunderLAN's internal PHY to provide full 10/100
67 * support. This is cheaper than using a standalone external PHY for both
68 * 10/100 modes and letting the ThunderLAN's internal PHY go to waste.
69 * A serial EEPROM is also attached to the ThunderLAN chip to provide
70 * power-up default register settings and for storing the adapter's
71 * station address. Although not supported by this driver, the ThunderLAN
72 * chip can also be connected to token ring PHYs.
73 *
74 * The ThunderLAN has a set of registers which can be used to issue
75 * commands, acknowledge interrupts, and to manipulate other internal
76 * registers on its DIO bus. The primary registers can be accessed
77 * using either programmed I/O (inb/outb) or via PCI memory mapping,
78 * depending on how the card is configured during the PCI probing
79 * phase. It is even possible to have both PIO and memory mapped
80 * access turned on at the same time.
81 *
82 * Frame reception and transmission with the ThunderLAN chip is done
83 * using frame 'lists.' A list structure looks more or less like this:
84 *
85 * struct tl_frag {
86 *	u_int32_t		fragment_address;
87 *	u_int32_t		fragment_size;
88 * };
89 * struct tl_list {
90 *	u_int32_t		forward_pointer;
91 *	u_int16_t		cstat;
92 *	u_int16_t		frame_size;
93 *	struct tl_frag		fragments[10];
94 * };
95 *
96 * The forward pointer in the list header can be either a 0 or the address
97 * of another list, which allows several lists to be linked together. Each
98 * list contains up to 10 fragment descriptors. This means the chip allows
99 * ethernet frames to be broken up into up to 10 chunks for transfer to
100 * and from the SRAM. Note that the forward pointer and fragment buffer
101 * addresses are physical memory addresses, not virtual. Note also that
102 * a single ethernet frame can not span lists: if the host wants to
103 * transmit a frame and the frame data is split up over more than 10
104 * buffers, the frame has to collapsed before it can be transmitted.
105 *
106 * To receive frames, the driver sets up a number of lists and populates
107 * the fragment descriptors, then it sends an RX GO command to the chip.
108 * When a frame is received, the chip will DMA it into the memory regions
109 * specified by the fragment descriptors and then trigger an RX 'end of
110 * frame interrupt' when done. The driver may choose to use only one
111 * fragment per list; this may result is slighltly less efficient use
112 * of memory in exchange for improving performance.
113 *
114 * To transmit frames, the driver again sets up lists and fragment
115 * descriptors, only this time the buffers contain frame data that
116 * is to be DMA'ed into the chip instead of out of it. Once the chip
117 * has transfered the data into its on-board SRAM, it will trigger a
118 * TX 'end of frame' interrupt. It will also generate an 'end of channel'
119 * interrupt when it reaches the end of the list.
120 */
121
122/*
123 * Some notes about this driver:
124 *
125 * The ThunderLAN chip provides a couple of different ways to organize
126 * reception, transmission and interrupt handling. The simplest approach
127 * is to use one list each for transmission and reception. In this mode,
128 * the ThunderLAN will generate two interrupts for every received frame
129 * (one RX EOF and one RX EOC) and two for each transmitted frame (one
130 * TX EOF and one TX EOC). This may make the driver simpler but it hurts
131 * performance to have to handle so many interrupts.
132 *
133 * Initially I wanted to create a circular list of receive buffers so
134 * that the ThunderLAN chip would think there was an infinitely long
135 * receive channel and never deliver an RXEOC interrupt. However this
136 * doesn't work correctly under heavy load: while the manual says the
137 * chip will trigger an RXEOF interrupt each time a frame is copied into
138 * memory, you can't count on the chip waiting around for you to acknowledge
139 * the interrupt before it starts trying to DMA the next frame. The result
140 * is that the chip might traverse the entire circular list and then wrap
141 * around before you have a chance to do anything about it. Consequently,
142 * the receive list is terminated (with a 0 in the forward pointer in the
143 * last element). Each time an RXEOF interrupt arrives, the used list
144 * is shifted to the end of the list. This gives the appearance of an
145 * infinitely large RX chain so long as the driver doesn't fall behind
146 * the chip and allow all of the lists to be filled up.
147 *
148 * If all the lists are filled, the adapter will deliver an RX 'end of
149 * channel' interrupt when it hits the 0 forward pointer at the end of
150 * the chain. The RXEOC handler then cleans out the RX chain and resets
151 * the list head pointer in the ch_parm register and restarts the receiver.
152 *
153 * For frame transmission, it is possible to program the ThunderLAN's
154 * transmit interrupt threshold so that the chip can acknowledge multiple
155 * lists with only a single TX EOF interrupt. This allows the driver to
156 * queue several frames in one shot, and only have to handle a total
157 * two interrupts (one TX EOF and one TX EOC) no matter how many frames
158 * are transmitted. Frame transmission is done directly out of the
159 * mbufs passed to the tl_start() routine via the interface send queue.
160 * The driver simply sets up the fragment descriptors in the transmit
161 * lists to point to the mbuf data regions and sends a TX GO command.
162 *
163 * Note that since the RX and TX lists themselves are always used
164 * only by the driver, the are malloc()ed once at driver initialization
165 * time and never free()ed.
166 *
167 * Also, in order to remain as platform independent as possible, this
168 * driver uses memory mapped register access to manipulate the card
169 * as opposed to programmed I/O. This avoids the use of the inb/outb
170 * (and related) instructions which are specific to the i386 platform.
171 *
172 * Using these techniques, this driver achieves very high performance
173 * by minimizing the amount of interrupts generated during large
174 * transfers and by completely avoiding buffer copies. Frame transfer
175 * to and from the ThunderLAN chip is performed entirely by the chip
176 * itself thereby reducing the load on the host CPU.
177 */
178
179#include <sys/cdefs.h>
180__FBSDID("$FreeBSD: head/sys/pci/if_tl.c 113812 2003-04-21 18:34:04Z imp $");
181
182#include <sys/param.h>
183#include <sys/systm.h>
184#include <sys/sockio.h>
185#include <sys/mbuf.h>
186#include <sys/malloc.h>
187#include <sys/kernel.h>
188#include <sys/socket.h>
189
190#include <net/if.h>
191#include <net/if_arp.h>
192#include <net/ethernet.h>
193#include <net/if_dl.h>
194#include <net/if_media.h>
195
196#include <net/bpf.h>
197
198#include <vm/vm.h>              /* for vtophys */
199#include <vm/pmap.h>            /* for vtophys */
200#include <machine/bus_memio.h>
201#include <machine/bus_pio.h>
202#include <machine/bus.h>
203#include <machine/resource.h>
204#include <sys/bus.h>
205#include <sys/rman.h>
206
207#include <dev/mii/mii.h>
208#include <dev/mii/miivar.h>
209
210#include <pci/pcireg.h>
211#include <pci/pcivar.h>
212
213/*
214 * Default to using PIO register access mode to pacify certain
215 * laptop docking stations with built-in ThunderLAN chips that
216 * don't seem to handle memory mapped mode properly.
217 */
218#define TL_USEIOSPACE
219
220#include <pci/if_tlreg.h>
221
222MODULE_DEPEND(tl, pci, 1, 1, 1);
223MODULE_DEPEND(tl, ether, 1, 1, 1);
224MODULE_DEPEND(tl, miibus, 1, 1, 1);
225
226/* "controller miibus0" required.  See GENERIC if you get errors here. */
227#include "miibus_if.h"
228
229/*
230 * Various supported device vendors/types and their names.
231 */
232
233static struct tl_type tl_devs[] = {
234	{ TI_VENDORID,	TI_DEVICEID_THUNDERLAN,
235		"Texas Instruments ThunderLAN" },
236	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10,
237		"Compaq Netelligent 10" },
238	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100,
239		"Compaq Netelligent 10/100" },
240	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_PROLIANT,
241		"Compaq Netelligent 10/100 Proliant" },
242	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_DUAL,
243		"Compaq Netelligent 10/100 Dual Port" },
244	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_INTEGRATED,
245		"Compaq NetFlex-3/P Integrated" },
246	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P,
247		"Compaq NetFlex-3/P" },
248	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_BNC,
249		"Compaq NetFlex 3/P w/ BNC" },
250	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_EMBEDDED,
251		"Compaq Netelligent 10/100 TX Embedded UTP" },
252	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_T2_UTP_COAX,
253		"Compaq Netelligent 10 T/2 PCI UTP/Coax" },
254	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_TX_UTP,
255		"Compaq Netelligent 10/100 TX UTP" },
256	{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2183,
257		"Olicom OC-2183/2185" },
258	{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2325,
259		"Olicom OC-2325" },
260	{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2326,
261		"Olicom OC-2326 10/100 TX UTP" },
262	{ 0, 0, NULL }
263};
264
265static int tl_probe		(device_t);
266static int tl_attach		(device_t);
267static int tl_detach		(device_t);
268static int tl_intvec_rxeoc	(void *, u_int32_t);
269static int tl_intvec_txeoc	(void *, u_int32_t);
270static int tl_intvec_txeof	(void *, u_int32_t);
271static int tl_intvec_rxeof	(void *, u_int32_t);
272static int tl_intvec_adchk	(void *, u_int32_t);
273static int tl_intvec_netsts	(void *, u_int32_t);
274
275static int tl_newbuf		(struct tl_softc *, struct tl_chain_onefrag *);
276static void tl_stats_update	(void *);
277static int tl_encap		(struct tl_softc *, struct tl_chain *,
278						struct mbuf *);
279
280static void tl_intr		(void *);
281static void tl_start		(struct ifnet *);
282static int tl_ioctl		(struct ifnet *, u_long, caddr_t);
283static void tl_init		(void *);
284static void tl_stop		(struct tl_softc *);
285static void tl_watchdog		(struct ifnet *);
286static void tl_shutdown		(device_t);
287static int tl_ifmedia_upd	(struct ifnet *);
288static void tl_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
289
290static u_int8_t tl_eeprom_putbyte	(struct tl_softc *, int);
291static u_int8_t	tl_eeprom_getbyte	(struct tl_softc *, int, u_int8_t *);
292static int tl_read_eeprom	(struct tl_softc *, caddr_t, int, int);
293
294static void tl_mii_sync		(struct tl_softc *);
295static void tl_mii_send		(struct tl_softc *, u_int32_t, int);
296static int tl_mii_readreg	(struct tl_softc *, struct tl_mii_frame *);
297static int tl_mii_writereg	(struct tl_softc *, struct tl_mii_frame *);
298static int tl_miibus_readreg	(device_t, int, int);
299static int tl_miibus_writereg	(device_t, int, int, int);
300static void tl_miibus_statchg	(device_t);
301
302static void tl_setmode		(struct tl_softc *, int);
303static int tl_calchash		(caddr_t);
304static void tl_setmulti		(struct tl_softc *);
305static void tl_setfilt		(struct tl_softc *, caddr_t, int);
306static void tl_softreset	(struct tl_softc *, int);
307static void tl_hardreset	(device_t);
308static int tl_list_rx_init	(struct tl_softc *);
309static int tl_list_tx_init	(struct tl_softc *);
310
311static u_int8_t tl_dio_read8	(struct tl_softc *, int);
312static u_int16_t tl_dio_read16	(struct tl_softc *, int);
313static u_int32_t tl_dio_read32	(struct tl_softc *, int);
314static void tl_dio_write8	(struct tl_softc *, int, int);
315static void tl_dio_write16	(struct tl_softc *, int, int);
316static void tl_dio_write32	(struct tl_softc *, int, int);
317static void tl_dio_setbit	(struct tl_softc *, int, int);
318static void tl_dio_clrbit	(struct tl_softc *, int, int);
319static void tl_dio_setbit16	(struct tl_softc *, int, int);
320static void tl_dio_clrbit16	(struct tl_softc *, int, int);
321
322#ifdef TL_USEIOSPACE
323#define TL_RES		SYS_RES_IOPORT
324#define TL_RID		TL_PCI_LOIO
325#else
326#define TL_RES		SYS_RES_MEMORY
327#define TL_RID		TL_PCI_LOMEM
328#endif
329
330static device_method_t tl_methods[] = {
331	/* Device interface */
332	DEVMETHOD(device_probe,		tl_probe),
333	DEVMETHOD(device_attach,	tl_attach),
334	DEVMETHOD(device_detach,	tl_detach),
335	DEVMETHOD(device_shutdown,	tl_shutdown),
336
337	/* bus interface */
338	DEVMETHOD(bus_print_child,	bus_generic_print_child),
339	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
340
341	/* MII interface */
342	DEVMETHOD(miibus_readreg,	tl_miibus_readreg),
343	DEVMETHOD(miibus_writereg,	tl_miibus_writereg),
344	DEVMETHOD(miibus_statchg,	tl_miibus_statchg),
345
346	{ 0, 0 }
347};
348
349static driver_t tl_driver = {
350	"tl",
351	tl_methods,
352	sizeof(struct tl_softc)
353};
354
355static devclass_t tl_devclass;
356
357DRIVER_MODULE(tl, pci, tl_driver, tl_devclass, 0, 0);
358DRIVER_MODULE(miibus, tl, miibus_driver, miibus_devclass, 0, 0);
359
360static u_int8_t tl_dio_read8(sc, reg)
361	struct tl_softc		*sc;
362	int			reg;
363{
364	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
365	return(CSR_READ_1(sc, TL_DIO_DATA + (reg & 3)));
366}
367
368static u_int16_t tl_dio_read16(sc, reg)
369	struct tl_softc		*sc;
370	int			reg;
371{
372	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
373	return(CSR_READ_2(sc, TL_DIO_DATA + (reg & 3)));
374}
375
376static u_int32_t tl_dio_read32(sc, reg)
377	struct tl_softc		*sc;
378	int			reg;
379{
380	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
381	return(CSR_READ_4(sc, TL_DIO_DATA + (reg & 3)));
382}
383
384static void tl_dio_write8(sc, reg, val)
385	struct tl_softc		*sc;
386	int			reg;
387	int			val;
388{
389	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
390	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), val);
391	return;
392}
393
394static void tl_dio_write16(sc, reg, val)
395	struct tl_softc		*sc;
396	int			reg;
397	int			val;
398{
399	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
400	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), val);
401	return;
402}
403
404static void tl_dio_write32(sc, reg, val)
405	struct tl_softc		*sc;
406	int			reg;
407	int			val;
408{
409	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
410	CSR_WRITE_4(sc, TL_DIO_DATA + (reg & 3), val);
411	return;
412}
413
414static void
415tl_dio_setbit(sc, reg, bit)
416	struct tl_softc		*sc;
417	int			reg;
418	int			bit;
419{
420	u_int8_t			f;
421
422	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
423	f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
424	f |= bit;
425	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
426
427	return;
428}
429
430static void
431tl_dio_clrbit(sc, reg, bit)
432	struct tl_softc		*sc;
433	int			reg;
434	int			bit;
435{
436	u_int8_t			f;
437
438	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
439	f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
440	f &= ~bit;
441	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
442
443	return;
444}
445
446static void tl_dio_setbit16(sc, reg, bit)
447	struct tl_softc		*sc;
448	int			reg;
449	int			bit;
450{
451	u_int16_t			f;
452
453	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
454	f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
455	f |= bit;
456	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
457
458	return;
459}
460
461static void tl_dio_clrbit16(sc, reg, bit)
462	struct tl_softc		*sc;
463	int			reg;
464	int			bit;
465{
466	u_int16_t			f;
467
468	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
469	f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
470	f &= ~bit;
471	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
472
473	return;
474}
475
476/*
477 * Send an instruction or address to the EEPROM, check for ACK.
478 */
479static u_int8_t tl_eeprom_putbyte(sc, byte)
480	struct tl_softc		*sc;
481	int			byte;
482{
483	register int		i, ack = 0;
484
485	/*
486	 * Make sure we're in TX mode.
487	 */
488	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ETXEN);
489
490	/*
491	 * Feed in each bit and stobe the clock.
492	 */
493	for (i = 0x80; i; i >>= 1) {
494		if (byte & i) {
495			tl_dio_setbit(sc, TL_NETSIO, TL_SIO_EDATA);
496		} else {
497			tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_EDATA);
498		}
499		DELAY(1);
500		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
501		DELAY(1);
502		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
503	}
504
505	/*
506	 * Turn off TX mode.
507	 */
508	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
509
510	/*
511	 * Check for ack.
512	 */
513	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
514	ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA;
515	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
516
517	return(ack);
518}
519
520/*
521 * Read a byte of data stored in the EEPROM at address 'addr.'
522 */
523static u_int8_t tl_eeprom_getbyte(sc, addr, dest)
524	struct tl_softc		*sc;
525	int			addr;
526	u_int8_t		*dest;
527{
528	register int		i;
529	u_int8_t		byte = 0;
530	struct ifnet		*ifp = &sc->arpcom.ac_if;
531
532	tl_dio_write8(sc, TL_NETSIO, 0);
533
534	EEPROM_START;
535
536	/*
537	 * Send write control code to EEPROM.
538	 */
539	if (tl_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
540		if_printf(ifp, "failed to send write command, status: %x\n",
541		    tl_dio_read8(sc, TL_NETSIO));
542		return(1);
543	}
544
545	/*
546	 * Send address of byte we want to read.
547	 */
548	if (tl_eeprom_putbyte(sc, addr)) {
549		if_printf(ifp, "failed to send address, status: %x\n",
550		    tl_dio_read8(sc, TL_NETSIO));
551		return(1);
552	}
553
554	EEPROM_STOP;
555	EEPROM_START;
556	/*
557	 * Send read control code to EEPROM.
558	 */
559	if (tl_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
560		if_printf(ifp, "failed to send write command, status: %x\n",
561		    tl_dio_read8(sc, TL_NETSIO));
562		return(1);
563	}
564
565	/*
566	 * Start reading bits from EEPROM.
567	 */
568	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
569	for (i = 0x80; i; i >>= 1) {
570		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
571		DELAY(1);
572		if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA)
573			byte |= i;
574		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
575		DELAY(1);
576	}
577
578	EEPROM_STOP;
579
580	/*
581	 * No ACK generated for read, so just return byte.
582	 */
583
584	*dest = byte;
585
586	return(0);
587}
588
589/*
590 * Read a sequence of bytes from the EEPROM.
591 */
592static int
593tl_read_eeprom(sc, dest, off, cnt)
594	struct tl_softc		*sc;
595	caddr_t			dest;
596	int			off;
597	int			cnt;
598{
599	int			err = 0, i;
600	u_int8_t		byte = 0;
601
602	for (i = 0; i < cnt; i++) {
603		err = tl_eeprom_getbyte(sc, off + i, &byte);
604		if (err)
605			break;
606		*(dest + i) = byte;
607	}
608
609	return(err ? 1 : 0);
610}
611
612static void
613tl_mii_sync(sc)
614	struct tl_softc		*sc;
615{
616	register int		i;
617
618	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
619
620	for (i = 0; i < 32; i++) {
621		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
622		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
623	}
624
625	return;
626}
627
628static void
629tl_mii_send(sc, bits, cnt)
630	struct tl_softc		*sc;
631	u_int32_t		bits;
632	int			cnt;
633{
634	int			i;
635
636	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
637		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
638		if (bits & i) {
639			tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MDATA);
640		} else {
641			tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MDATA);
642		}
643		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
644	}
645}
646
647static int
648tl_mii_readreg(sc, frame)
649	struct tl_softc		*sc;
650	struct tl_mii_frame	*frame;
651
652{
653	int			i, ack;
654	int			minten = 0;
655
656	TL_LOCK(sc);
657
658	tl_mii_sync(sc);
659
660	/*
661	 * Set up frame for RX.
662	 */
663	frame->mii_stdelim = TL_MII_STARTDELIM;
664	frame->mii_opcode = TL_MII_READOP;
665	frame->mii_turnaround = 0;
666	frame->mii_data = 0;
667
668	/*
669	 * Turn off MII interrupt by forcing MINTEN low.
670	 */
671	minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
672	if (minten) {
673		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
674	}
675
676	/*
677 	 * Turn on data xmit.
678	 */
679	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
680
681	/*
682	 * Send command/address info.
683	 */
684	tl_mii_send(sc, frame->mii_stdelim, 2);
685	tl_mii_send(sc, frame->mii_opcode, 2);
686	tl_mii_send(sc, frame->mii_phyaddr, 5);
687	tl_mii_send(sc, frame->mii_regaddr, 5);
688
689	/*
690	 * Turn off xmit.
691	 */
692	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
693
694	/* Idle bit */
695	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
696	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
697
698	/* Check for ack */
699	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
700	ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA;
701
702	/* Complete the cycle */
703	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
704
705	/*
706	 * Now try reading data bits. If the ack failed, we still
707	 * need to clock through 16 cycles to keep the PHYs in sync.
708	 */
709	if (ack) {
710		for(i = 0; i < 16; i++) {
711			tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
712			tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
713		}
714		goto fail;
715	}
716
717	for (i = 0x8000; i; i >>= 1) {
718		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
719		if (!ack) {
720			if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA)
721				frame->mii_data |= i;
722		}
723		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
724	}
725
726fail:
727
728	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
729	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
730
731	/* Reenable interrupts */
732	if (minten) {
733		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
734	}
735
736	TL_UNLOCK(sc);
737
738	if (ack)
739		return(1);
740	return(0);
741}
742
743static int
744tl_mii_writereg(sc, frame)
745	struct tl_softc		*sc;
746	struct tl_mii_frame	*frame;
747
748{
749	int			minten;
750
751	TL_LOCK(sc);
752
753	tl_mii_sync(sc);
754
755	/*
756	 * Set up frame for TX.
757	 */
758
759	frame->mii_stdelim = TL_MII_STARTDELIM;
760	frame->mii_opcode = TL_MII_WRITEOP;
761	frame->mii_turnaround = TL_MII_TURNAROUND;
762
763	/*
764	 * Turn off MII interrupt by forcing MINTEN low.
765	 */
766	minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
767	if (minten) {
768		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
769	}
770
771	/*
772 	 * Turn on data output.
773	 */
774	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
775
776	tl_mii_send(sc, frame->mii_stdelim, 2);
777	tl_mii_send(sc, frame->mii_opcode, 2);
778	tl_mii_send(sc, frame->mii_phyaddr, 5);
779	tl_mii_send(sc, frame->mii_regaddr, 5);
780	tl_mii_send(sc, frame->mii_turnaround, 2);
781	tl_mii_send(sc, frame->mii_data, 16);
782
783	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
784	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
785
786	/*
787	 * Turn off xmit.
788	 */
789	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
790
791	/* Reenable interrupts */
792	if (minten)
793		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
794
795	TL_UNLOCK(sc);
796
797	return(0);
798}
799
800static int
801tl_miibus_readreg(dev, phy, reg)
802	device_t		dev;
803	int			phy, reg;
804{
805	struct tl_softc		*sc;
806	struct tl_mii_frame	frame;
807
808	sc = device_get_softc(dev);
809	bzero((char *)&frame, sizeof(frame));
810
811	frame.mii_phyaddr = phy;
812	frame.mii_regaddr = reg;
813	tl_mii_readreg(sc, &frame);
814
815	return(frame.mii_data);
816}
817
818static int
819tl_miibus_writereg(dev, phy, reg, data)
820	device_t		dev;
821	int			phy, reg, data;
822{
823	struct tl_softc		*sc;
824	struct tl_mii_frame	frame;
825
826	sc = device_get_softc(dev);
827	bzero((char *)&frame, sizeof(frame));
828
829	frame.mii_phyaddr = phy;
830	frame.mii_regaddr = reg;
831	frame.mii_data = data;
832
833	tl_mii_writereg(sc, &frame);
834
835	return(0);
836}
837
838static void
839tl_miibus_statchg(dev)
840	device_t		dev;
841{
842	struct tl_softc		*sc;
843	struct mii_data		*mii;
844
845	sc = device_get_softc(dev);
846	TL_LOCK(sc);
847	mii = device_get_softc(sc->tl_miibus);
848
849	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
850		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
851	} else {
852		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
853	}
854	TL_UNLOCK(sc);
855
856	return;
857}
858
859/*
860 * Set modes for bitrate devices.
861 */
862static void
863tl_setmode(sc, media)
864	struct tl_softc		*sc;
865	int			media;
866{
867	if (IFM_SUBTYPE(media) == IFM_10_5)
868		tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
869	if (IFM_SUBTYPE(media) == IFM_10_T) {
870		tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
871		if ((media & IFM_GMASK) == IFM_FDX) {
872			tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
873			tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
874		} else {
875			tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
876			tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
877		}
878	}
879
880	return;
881}
882
883/*
884 * Calculate the hash of a MAC address for programming the multicast hash
885 * table.  This hash is simply the address split into 6-bit chunks
886 * XOR'd, e.g.
887 * byte: 000000|00 1111|1111 22|222222|333333|33 4444|4444 55|555555
888 * bit:  765432|10 7654|3210 76|543210|765432|10 7654|3210 76|543210
889 * Bytes 0-2 and 3-5 are symmetrical, so are folded together.  Then
890 * the folded 24-bit value is split into 6-bit portions and XOR'd.
891 */
892static int
893tl_calchash(addr)
894	caddr_t			addr;
895{
896	int			t;
897
898	t = (addr[0] ^ addr[3]) << 16 | (addr[1] ^ addr[4]) << 8 |
899		(addr[2] ^ addr[5]);
900	return ((t >> 18) ^ (t >> 12) ^ (t >> 6) ^ t) & 0x3f;
901}
902
903/*
904 * The ThunderLAN has a perfect MAC address filter in addition to
905 * the multicast hash filter. The perfect filter can be programmed
906 * with up to four MAC addresses. The first one is always used to
907 * hold the station address, which leaves us free to use the other
908 * three for multicast addresses.
909 */
910static void
911tl_setfilt(sc, addr, slot)
912	struct tl_softc		*sc;
913	caddr_t			addr;
914	int			slot;
915{
916	int			i;
917	u_int16_t		regaddr;
918
919	regaddr = TL_AREG0_B5 + (slot * ETHER_ADDR_LEN);
920
921	for (i = 0; i < ETHER_ADDR_LEN; i++)
922		tl_dio_write8(sc, regaddr + i, *(addr + i));
923
924	return;
925}
926
927/*
928 * XXX In FreeBSD 3.0, multicast addresses are managed using a doubly
929 * linked list. This is fine, except addresses are added from the head
930 * end of the list. We want to arrange for 224.0.0.1 (the "all hosts")
931 * group to always be in the perfect filter, but as more groups are added,
932 * the 224.0.0.1 entry (which is always added first) gets pushed down
933 * the list and ends up at the tail. So after 3 or 4 multicast groups
934 * are added, the all-hosts entry gets pushed out of the perfect filter
935 * and into the hash table.
936 *
937 * Because the multicast list is a doubly-linked list as opposed to a
938 * circular queue, we don't have the ability to just grab the tail of
939 * the list and traverse it backwards. Instead, we have to traverse
940 * the list once to find the tail, then traverse it again backwards to
941 * update the multicast filter.
942 */
943static void
944tl_setmulti(sc)
945	struct tl_softc		*sc;
946{
947	struct ifnet		*ifp;
948	u_int32_t		hashes[2] = { 0, 0 };
949	int			h, i;
950	struct ifmultiaddr	*ifma;
951	u_int8_t		dummy[] = { 0, 0, 0, 0, 0 ,0 };
952	ifp = &sc->arpcom.ac_if;
953
954	/* First, zot all the existing filters. */
955	for (i = 1; i < 4; i++)
956		tl_setfilt(sc, (caddr_t)&dummy, i);
957	tl_dio_write32(sc, TL_HASH1, 0);
958	tl_dio_write32(sc, TL_HASH2, 0);
959
960	/* Now program new ones. */
961	if (ifp->if_flags & IFF_ALLMULTI) {
962		hashes[0] = 0xFFFFFFFF;
963		hashes[1] = 0xFFFFFFFF;
964	} else {
965		i = 1;
966		TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
967			if (ifma->ifma_addr->sa_family != AF_LINK)
968				continue;
969			/*
970			 * Program the first three multicast groups
971			 * into the perfect filter. For all others,
972			 * use the hash table.
973			 */
974			if (i < 4) {
975				tl_setfilt(sc,
976			LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
977				i++;
978				continue;
979			}
980
981			h = tl_calchash(
982				LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
983			if (h < 32)
984				hashes[0] |= (1 << h);
985			else
986				hashes[1] |= (1 << (h - 32));
987		}
988	}
989
990	tl_dio_write32(sc, TL_HASH1, hashes[0]);
991	tl_dio_write32(sc, TL_HASH2, hashes[1]);
992
993	return;
994}
995
996/*
997 * This routine is recommended by the ThunderLAN manual to insure that
998 * the internal PHY is powered up correctly. It also recommends a one
999 * second pause at the end to 'wait for the clocks to start' but in my
1000 * experience this isn't necessary.
1001 */
1002static void
1003tl_hardreset(dev)
1004	device_t		dev;
1005{
1006	struct tl_softc		*sc;
1007	int			i;
1008	u_int16_t		flags;
1009
1010	sc = device_get_softc(dev);
1011
1012	tl_mii_sync(sc);
1013
1014	flags = BMCR_LOOP|BMCR_ISO|BMCR_PDOWN;
1015
1016	for (i = 0; i < MII_NPHY; i++)
1017		tl_miibus_writereg(dev, i, MII_BMCR, flags);
1018
1019	tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_ISO);
1020	DELAY(50000);
1021	tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_LOOP|BMCR_ISO);
1022	tl_mii_sync(sc);
1023	while(tl_miibus_readreg(dev, 31, MII_BMCR) & BMCR_RESET);
1024
1025	DELAY(50000);
1026	return;
1027}
1028
1029static void
1030tl_softreset(sc, internal)
1031	struct tl_softc		*sc;
1032	int			internal;
1033{
1034        u_int32_t               cmd, dummy, i;
1035
1036        /* Assert the adapter reset bit. */
1037	CMD_SET(sc, TL_CMD_ADRST);
1038
1039        /* Turn off interrupts */
1040	CMD_SET(sc, TL_CMD_INTSOFF);
1041
1042	/* First, clear the stats registers. */
1043	for (i = 0; i < 5; i++)
1044		dummy = tl_dio_read32(sc, TL_TXGOODFRAMES);
1045
1046        /* Clear Areg and Hash registers */
1047	for (i = 0; i < 8; i++)
1048		tl_dio_write32(sc, TL_AREG0_B5, 0x00000000);
1049
1050        /*
1051	 * Set up Netconfig register. Enable one channel and
1052	 * one fragment mode.
1053	 */
1054	tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_ONECHAN|TL_CFG_ONEFRAG);
1055	if (internal && !sc->tl_bitrate) {
1056		tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
1057	} else {
1058		tl_dio_clrbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
1059	}
1060
1061	/* Handle cards with bitrate devices. */
1062	if (sc->tl_bitrate)
1063		tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_BITRATE);
1064
1065	/*
1066	 * Load adapter irq pacing timer and tx threshold.
1067	 * We make the transmit threshold 1 initially but we may
1068	 * change that later.
1069	 */
1070	cmd = CSR_READ_4(sc, TL_HOSTCMD);
1071	cmd |= TL_CMD_NES;
1072	cmd &= ~(TL_CMD_RT|TL_CMD_EOC|TL_CMD_ACK_MASK|TL_CMD_CHSEL_MASK);
1073	CMD_PUT(sc, cmd | (TL_CMD_LDTHR | TX_THR));
1074	CMD_PUT(sc, cmd | (TL_CMD_LDTMR | 0x00000003));
1075
1076        /* Unreset the MII */
1077	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_NMRST);
1078
1079	/* Take the adapter out of reset */
1080	tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NRESET|TL_CMD_NWRAP);
1081
1082	/* Wait for things to settle down a little. */
1083	DELAY(500);
1084
1085        return;
1086}
1087
1088/*
1089 * Probe for a ThunderLAN chip. Check the PCI vendor and device IDs
1090 * against our list and return its name if we find a match.
1091 */
1092static int
1093tl_probe(dev)
1094	device_t		dev;
1095{
1096	struct tl_type		*t;
1097
1098	t = tl_devs;
1099
1100	while(t->tl_name != NULL) {
1101		if ((pci_get_vendor(dev) == t->tl_vid) &&
1102		    (pci_get_device(dev) == t->tl_did)) {
1103			device_set_desc(dev, t->tl_name);
1104			return(0);
1105		}
1106		t++;
1107	}
1108
1109	return(ENXIO);
1110}
1111
1112static int
1113tl_attach(dev)
1114	device_t		dev;
1115{
1116	int			i;
1117	u_int16_t		did, vid;
1118	struct tl_type		*t;
1119	struct ifnet		*ifp;
1120	struct tl_softc		*sc;
1121	int			unit, error = 0, rid;
1122
1123	vid = pci_get_vendor(dev);
1124	did = pci_get_device(dev);
1125	sc = device_get_softc(dev);
1126	unit = device_get_unit(dev);
1127
1128	t = tl_devs;
1129	while(t->tl_name != NULL) {
1130		if (vid == t->tl_vid && did == t->tl_did)
1131			break;
1132		t++;
1133	}
1134
1135	if (t->tl_name == NULL) {
1136		device_printf(dev, "unknown device!?\n");
1137		return (ENXIO);
1138	}
1139
1140	mtx_init(&sc->tl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1141	    MTX_DEF | MTX_RECURSE);
1142
1143	/*
1144	 * Map control/status registers.
1145	 */
1146	pci_enable_busmaster(dev);
1147
1148#ifdef TL_USEIOSPACE
1149
1150	rid = TL_PCI_LOIO;
1151	sc->tl_res = bus_alloc_resource(dev, SYS_RES_IOPORT, &rid,
1152		0, ~0, 1, RF_ACTIVE);
1153
1154	/*
1155	 * Some cards have the I/O and memory mapped address registers
1156	 * reversed. Try both combinations before giving up.
1157	 */
1158	if (sc->tl_res == NULL) {
1159		rid = TL_PCI_LOMEM;
1160		sc->tl_res = bus_alloc_resource(dev, SYS_RES_IOPORT, &rid,
1161		    0, ~0, 1, RF_ACTIVE);
1162	}
1163#else
1164	rid = TL_PCI_LOMEM;
1165	sc->tl_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
1166	    0, ~0, 1, RF_ACTIVE);
1167	if (sc->tl_res == NULL) {
1168		rid = TL_PCI_LOIO;
1169		sc->tl_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
1170		    0, ~0, 1, RF_ACTIVE);
1171	}
1172#endif
1173
1174	if (sc->tl_res == NULL) {
1175		device_printf(dev, "couldn't map ports/memory\n");
1176		error = ENXIO;
1177		goto fail;
1178	}
1179
1180	sc->tl_btag = rman_get_bustag(sc->tl_res);
1181	sc->tl_bhandle = rman_get_bushandle(sc->tl_res);
1182
1183#ifdef notdef
1184	/*
1185	 * The ThunderLAN manual suggests jacking the PCI latency
1186	 * timer all the way up to its maximum value. I'm not sure
1187	 * if this is really necessary, but what the manual wants,
1188	 * the manual gets.
1189	 */
1190	command = pci_read_config(dev, TL_PCI_LATENCY_TIMER, 4);
1191	command |= 0x0000FF00;
1192	pci_write_config(dev, TL_PCI_LATENCY_TIMER, command, 4);
1193#endif
1194
1195	/* Allocate interrupt */
1196	rid = 0;
1197	sc->tl_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1198	    RF_SHAREABLE | RF_ACTIVE);
1199
1200	if (sc->tl_irq == NULL) {
1201		device_printf(dev, "couldn't map interrupt\n");
1202		error = ENXIO;
1203		goto fail;
1204	}
1205
1206	/*
1207	 * Now allocate memory for the TX and RX lists.
1208	 */
1209	sc->tl_ldata = contigmalloc(sizeof(struct tl_list_data), M_DEVBUF,
1210	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1211
1212	if (sc->tl_ldata == NULL) {
1213		device_printf(dev, "no memory for list buffers!\n");
1214		error = ENXIO;
1215		goto fail;
1216	}
1217
1218	bzero(sc->tl_ldata, sizeof(struct tl_list_data));
1219
1220	sc->tl_dinfo = t;
1221	if (t->tl_vid == COMPAQ_VENDORID || t->tl_vid == TI_VENDORID)
1222		sc->tl_eeaddr = TL_EEPROM_EADDR;
1223	if (t->tl_vid == OLICOM_VENDORID)
1224		sc->tl_eeaddr = TL_EEPROM_EADDR_OC;
1225
1226	/* Reset the adapter. */
1227	tl_softreset(sc, 1);
1228	tl_hardreset(dev);
1229	tl_softreset(sc, 1);
1230
1231	/*
1232	 * Get station address from the EEPROM.
1233	 */
1234	if (tl_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1235				sc->tl_eeaddr, ETHER_ADDR_LEN)) {
1236		device_printf(dev, "failed to read station address\n");
1237		error = ENXIO;
1238		goto fail;
1239	}
1240
1241        /*
1242         * XXX Olicom, in its desire to be different from the
1243         * rest of the world, has done strange things with the
1244         * encoding of the station address in the EEPROM. First
1245         * of all, they store the address at offset 0xF8 rather
1246         * than at 0x83 like the ThunderLAN manual suggests.
1247         * Second, they store the address in three 16-bit words in
1248         * network byte order, as opposed to storing it sequentially
1249         * like all the other ThunderLAN cards. In order to get
1250         * the station address in a form that matches what the Olicom
1251         * diagnostic utility specifies, we have to byte-swap each
1252         * word. To make things even more confusing, neither 00:00:28
1253         * nor 00:00:24 appear in the IEEE OUI database.
1254         */
1255        if (sc->tl_dinfo->tl_vid == OLICOM_VENDORID) {
1256                for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
1257                        u_int16_t               *p;
1258                        p = (u_int16_t *)&sc->arpcom.ac_enaddr[i];
1259                        *p = ntohs(*p);
1260                }
1261        }
1262
1263	/*
1264	 * A ThunderLAN chip was detected. Inform the world.
1265	 */
1266	device_printf(dev, "Ethernet address: %6D\n",
1267				sc->arpcom.ac_enaddr, ":");
1268
1269	ifp = &sc->arpcom.ac_if;
1270	ifp->if_softc = sc;
1271	ifp->if_unit = unit;
1272	ifp->if_name = "tl";
1273	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1274	ifp->if_ioctl = tl_ioctl;
1275	ifp->if_output = ether_output;
1276	ifp->if_start = tl_start;
1277	ifp->if_watchdog = tl_watchdog;
1278	ifp->if_init = tl_init;
1279	ifp->if_mtu = ETHERMTU;
1280	ifp->if_snd.ifq_maxlen = TL_TX_LIST_CNT - 1;
1281	callout_handle_init(&sc->tl_stat_ch);
1282
1283	/* Reset the adapter again. */
1284	tl_softreset(sc, 1);
1285	tl_hardreset(dev);
1286	tl_softreset(sc, 1);
1287
1288	/*
1289	 * Do MII setup. If no PHYs are found, then this is a
1290	 * bitrate ThunderLAN chip that only supports 10baseT
1291	 * and AUI/BNC.
1292	 */
1293	if (mii_phy_probe(dev, &sc->tl_miibus,
1294	    tl_ifmedia_upd, tl_ifmedia_sts)) {
1295		struct ifmedia		*ifm;
1296		sc->tl_bitrate = 1;
1297		ifmedia_init(&sc->ifmedia, 0, tl_ifmedia_upd, tl_ifmedia_sts);
1298		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1299		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
1300		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1301		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_5, 0, NULL);
1302		ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_10_T);
1303		/* Reset again, this time setting bitrate mode. */
1304		tl_softreset(sc, 1);
1305		ifm = &sc->ifmedia;
1306		ifm->ifm_media = ifm->ifm_cur->ifm_media;
1307		tl_ifmedia_upd(ifp);
1308	}
1309
1310	/*
1311	 * Call MI attach routine.
1312	 */
1313	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
1314
1315	/* Hook interrupt last to avoid having to lock softc */
1316	error = bus_setup_intr(dev, sc->tl_irq, INTR_TYPE_NET,
1317	    tl_intr, sc, &sc->tl_intrhand);
1318
1319	if (error) {
1320		device_printf(dev, "couldn't set up irq\n");
1321		ether_ifdetach(ifp);
1322		goto fail;
1323	}
1324
1325fail:
1326	if (error)
1327		tl_detach(dev);
1328
1329	return(error);
1330}
1331
1332/*
1333 * Shutdown hardware and free up resources. This can be called any
1334 * time after the mutex has been initialized. It is called in both
1335 * the error case in attach and the normal detach case so it needs
1336 * to be careful about only freeing resources that have actually been
1337 * allocated.
1338 */
1339static int
1340tl_detach(dev)
1341	device_t		dev;
1342{
1343	struct tl_softc		*sc;
1344	struct ifnet		*ifp;
1345
1346	sc = device_get_softc(dev);
1347	KASSERT(mtx_initialized(&sc->tl_mtx), ("tl mutex not initialized"));
1348	TL_LOCK(sc);
1349	ifp = &sc->arpcom.ac_if;
1350
1351	/* These should only be active if attach succeeded */
1352	if (device_is_attached(dev)) {
1353		tl_stop(sc);
1354		ether_ifdetach(ifp);
1355	}
1356	if (sc->tl_miibus)
1357		device_delete_child(dev, sc->tl_miibus);
1358	bus_generic_detach(dev);
1359
1360	if (sc->tl_ldata)
1361		contigfree(sc->tl_ldata, sizeof(struct tl_list_data), M_DEVBUF);
1362	if (sc->tl_bitrate)
1363		ifmedia_removeall(&sc->ifmedia);
1364
1365	if (sc->tl_intrhand)
1366		bus_teardown_intr(dev, sc->tl_irq, sc->tl_intrhand);
1367	if (sc->tl_irq)
1368		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->tl_irq);
1369	if (sc->tl_res)
1370		bus_release_resource(dev, TL_RES, TL_RID, sc->tl_res);
1371
1372	TL_UNLOCK(sc);
1373	mtx_destroy(&sc->tl_mtx);
1374
1375	return(0);
1376}
1377
1378/*
1379 * Initialize the transmit lists.
1380 */
1381static int
1382tl_list_tx_init(sc)
1383	struct tl_softc		*sc;
1384{
1385	struct tl_chain_data	*cd;
1386	struct tl_list_data	*ld;
1387	int			i;
1388
1389	cd = &sc->tl_cdata;
1390	ld = sc->tl_ldata;
1391	for (i = 0; i < TL_TX_LIST_CNT; i++) {
1392		cd->tl_tx_chain[i].tl_ptr = &ld->tl_tx_list[i];
1393		if (i == (TL_TX_LIST_CNT - 1))
1394			cd->tl_tx_chain[i].tl_next = NULL;
1395		else
1396			cd->tl_tx_chain[i].tl_next = &cd->tl_tx_chain[i + 1];
1397	}
1398
1399	cd->tl_tx_free = &cd->tl_tx_chain[0];
1400	cd->tl_tx_tail = cd->tl_tx_head = NULL;
1401	sc->tl_txeoc = 1;
1402
1403	return(0);
1404}
1405
1406/*
1407 * Initialize the RX lists and allocate mbufs for them.
1408 */
1409static int
1410tl_list_rx_init(sc)
1411	struct tl_softc		*sc;
1412{
1413	struct tl_chain_data	*cd;
1414	struct tl_list_data	*ld;
1415	int			i;
1416
1417	cd = &sc->tl_cdata;
1418	ld = sc->tl_ldata;
1419
1420	for (i = 0; i < TL_RX_LIST_CNT; i++) {
1421		cd->tl_rx_chain[i].tl_ptr =
1422			(struct tl_list_onefrag *)&ld->tl_rx_list[i];
1423		if (tl_newbuf(sc, &cd->tl_rx_chain[i]) == ENOBUFS)
1424			return(ENOBUFS);
1425		if (i == (TL_RX_LIST_CNT - 1)) {
1426			cd->tl_rx_chain[i].tl_next = NULL;
1427			ld->tl_rx_list[i].tlist_fptr = 0;
1428		} else {
1429			cd->tl_rx_chain[i].tl_next = &cd->tl_rx_chain[i + 1];
1430			ld->tl_rx_list[i].tlist_fptr =
1431					vtophys(&ld->tl_rx_list[i + 1]);
1432		}
1433	}
1434
1435	cd->tl_rx_head = &cd->tl_rx_chain[0];
1436	cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
1437
1438	return(0);
1439}
1440
1441static int
1442tl_newbuf(sc, c)
1443	struct tl_softc		*sc;
1444	struct tl_chain_onefrag	*c;
1445{
1446	struct mbuf		*m_new = NULL;
1447
1448	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1449	if (m_new == NULL)
1450		return(ENOBUFS);
1451
1452	MCLGET(m_new, M_DONTWAIT);
1453	if (!(m_new->m_flags & M_EXT)) {
1454		m_freem(m_new);
1455		return(ENOBUFS);
1456	}
1457
1458#ifdef __alpha__
1459	m_new->m_data += 2;
1460#endif
1461
1462	c->tl_mbuf = m_new;
1463	c->tl_next = NULL;
1464	c->tl_ptr->tlist_frsize = MCLBYTES;
1465	c->tl_ptr->tlist_fptr = 0;
1466	c->tl_ptr->tl_frag.tlist_dadr = vtophys(mtod(m_new, caddr_t));
1467	c->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
1468	c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1469
1470	return(0);
1471}
1472/*
1473 * Interrupt handler for RX 'end of frame' condition (EOF). This
1474 * tells us that a full ethernet frame has been captured and we need
1475 * to handle it.
1476 *
1477 * Reception is done using 'lists' which consist of a header and a
1478 * series of 10 data count/data address pairs that point to buffers.
1479 * Initially you're supposed to create a list, populate it with pointers
1480 * to buffers, then load the physical address of the list into the
1481 * ch_parm register. The adapter is then supposed to DMA the received
1482 * frame into the buffers for you.
1483 *
1484 * To make things as fast as possible, we have the chip DMA directly
1485 * into mbufs. This saves us from having to do a buffer copy: we can
1486 * just hand the mbufs directly to ether_input(). Once the frame has
1487 * been sent on its way, the 'list' structure is assigned a new buffer
1488 * and moved to the end of the RX chain. As long we we stay ahead of
1489 * the chip, it will always think it has an endless receive channel.
1490 *
1491 * If we happen to fall behind and the chip manages to fill up all of
1492 * the buffers, it will generate an end of channel interrupt and wait
1493 * for us to empty the chain and restart the receiver.
1494 */
1495static int
1496tl_intvec_rxeof(xsc, type)
1497	void			*xsc;
1498	u_int32_t		type;
1499{
1500	struct tl_softc		*sc;
1501	int			r = 0, total_len = 0;
1502	struct ether_header	*eh;
1503	struct mbuf		*m;
1504	struct ifnet		*ifp;
1505	struct tl_chain_onefrag	*cur_rx;
1506
1507	sc = xsc;
1508	ifp = &sc->arpcom.ac_if;
1509
1510	while(sc->tl_cdata.tl_rx_head != NULL) {
1511		cur_rx = sc->tl_cdata.tl_rx_head;
1512		if (!(cur_rx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
1513			break;
1514		r++;
1515		sc->tl_cdata.tl_rx_head = cur_rx->tl_next;
1516		m = cur_rx->tl_mbuf;
1517		total_len = cur_rx->tl_ptr->tlist_frsize;
1518
1519		if (tl_newbuf(sc, cur_rx) == ENOBUFS) {
1520			ifp->if_ierrors++;
1521			cur_rx->tl_ptr->tlist_frsize = MCLBYTES;
1522			cur_rx->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1523			cur_rx->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
1524			continue;
1525		}
1526
1527		sc->tl_cdata.tl_rx_tail->tl_ptr->tlist_fptr =
1528						vtophys(cur_rx->tl_ptr);
1529		sc->tl_cdata.tl_rx_tail->tl_next = cur_rx;
1530		sc->tl_cdata.tl_rx_tail = cur_rx;
1531
1532		/*
1533		 * Note: when the ThunderLAN chip is in 'capture all
1534		 * frames' mode, it will receive its own transmissions.
1535		 * We drop don't need to process our own transmissions,
1536		 * so we drop them here and continue.
1537		 */
1538		eh = mtod(m, struct ether_header *);
1539		/*if (ifp->if_flags & IFF_PROMISC && */
1540		if (!bcmp(eh->ether_shost, sc->arpcom.ac_enaddr,
1541		 					ETHER_ADDR_LEN)) {
1542				m_freem(m);
1543				continue;
1544		}
1545
1546		m->m_pkthdr.rcvif = ifp;
1547		m->m_pkthdr.len = m->m_len = total_len;
1548
1549		(*ifp->if_input)(ifp, m);
1550	}
1551
1552	return(r);
1553}
1554
1555/*
1556 * The RX-EOC condition hits when the ch_parm address hasn't been
1557 * initialized or the adapter reached a list with a forward pointer
1558 * of 0 (which indicates the end of the chain). In our case, this means
1559 * the card has hit the end of the receive buffer chain and we need to
1560 * empty out the buffers and shift the pointer back to the beginning again.
1561 */
1562static int
1563tl_intvec_rxeoc(xsc, type)
1564	void			*xsc;
1565	u_int32_t		type;
1566{
1567	struct tl_softc		*sc;
1568	int			r;
1569	struct tl_chain_data	*cd;
1570
1571
1572	sc = xsc;
1573	cd = &sc->tl_cdata;
1574
1575	/* Flush out the receive queue and ack RXEOF interrupts. */
1576	r = tl_intvec_rxeof(xsc, type);
1577	CMD_PUT(sc, TL_CMD_ACK | r | (type & ~(0x00100000)));
1578	r = 1;
1579	cd->tl_rx_head = &cd->tl_rx_chain[0];
1580	cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
1581	CSR_WRITE_4(sc, TL_CH_PARM, vtophys(sc->tl_cdata.tl_rx_head->tl_ptr));
1582	r |= (TL_CMD_GO|TL_CMD_RT);
1583	return(r);
1584}
1585
1586static int
1587tl_intvec_txeof(xsc, type)
1588	void			*xsc;
1589	u_int32_t		type;
1590{
1591	struct tl_softc		*sc;
1592	int			r = 0;
1593	struct tl_chain		*cur_tx;
1594
1595	sc = xsc;
1596
1597	/*
1598	 * Go through our tx list and free mbufs for those
1599	 * frames that have been sent.
1600	 */
1601	while (sc->tl_cdata.tl_tx_head != NULL) {
1602		cur_tx = sc->tl_cdata.tl_tx_head;
1603		if (!(cur_tx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
1604			break;
1605		sc->tl_cdata.tl_tx_head = cur_tx->tl_next;
1606
1607		r++;
1608		m_freem(cur_tx->tl_mbuf);
1609		cur_tx->tl_mbuf = NULL;
1610
1611		cur_tx->tl_next = sc->tl_cdata.tl_tx_free;
1612		sc->tl_cdata.tl_tx_free = cur_tx;
1613		if (!cur_tx->tl_ptr->tlist_fptr)
1614			break;
1615	}
1616
1617	return(r);
1618}
1619
1620/*
1621 * The transmit end of channel interrupt. The adapter triggers this
1622 * interrupt to tell us it hit the end of the current transmit list.
1623 *
1624 * A note about this: it's possible for a condition to arise where
1625 * tl_start() may try to send frames between TXEOF and TXEOC interrupts.
1626 * You have to avoid this since the chip expects things to go in a
1627 * particular order: transmit, acknowledge TXEOF, acknowledge TXEOC.
1628 * When the TXEOF handler is called, it will free all of the transmitted
1629 * frames and reset the tx_head pointer to NULL. However, a TXEOC
1630 * interrupt should be received and acknowledged before any more frames
1631 * are queued for transmission. If tl_statrt() is called after TXEOF
1632 * resets the tx_head pointer but _before_ the TXEOC interrupt arrives,
1633 * it could attempt to issue a transmit command prematurely.
1634 *
1635 * To guard against this, tl_start() will only issue transmit commands
1636 * if the tl_txeoc flag is set, and only the TXEOC interrupt handler
1637 * can set this flag once tl_start() has cleared it.
1638 */
1639static int
1640tl_intvec_txeoc(xsc, type)
1641	void			*xsc;
1642	u_int32_t		type;
1643{
1644	struct tl_softc		*sc;
1645	struct ifnet		*ifp;
1646	u_int32_t		cmd;
1647
1648	sc = xsc;
1649	ifp = &sc->arpcom.ac_if;
1650
1651	/* Clear the timeout timer. */
1652	ifp->if_timer = 0;
1653
1654	if (sc->tl_cdata.tl_tx_head == NULL) {
1655		ifp->if_flags &= ~IFF_OACTIVE;
1656		sc->tl_cdata.tl_tx_tail = NULL;
1657		sc->tl_txeoc = 1;
1658	} else {
1659		sc->tl_txeoc = 0;
1660		/* First we have to ack the EOC interrupt. */
1661		CMD_PUT(sc, TL_CMD_ACK | 0x00000001 | type);
1662		/* Then load the address of the next TX list. */
1663		CSR_WRITE_4(sc, TL_CH_PARM,
1664		    vtophys(sc->tl_cdata.tl_tx_head->tl_ptr));
1665		/* Restart TX channel. */
1666		cmd = CSR_READ_4(sc, TL_HOSTCMD);
1667		cmd &= ~TL_CMD_RT;
1668		cmd |= TL_CMD_GO|TL_CMD_INTSON;
1669		CMD_PUT(sc, cmd);
1670		return(0);
1671	}
1672
1673	return(1);
1674}
1675
1676static int
1677tl_intvec_adchk(xsc, type)
1678	void			*xsc;
1679	u_int32_t		type;
1680{
1681	struct tl_softc		*sc;
1682
1683	sc = xsc;
1684
1685	if (type)
1686		if_printf(&sc->arpcom.ac_if, "adapter check: %x\n",
1687			(unsigned int)CSR_READ_4(sc, TL_CH_PARM));
1688
1689	tl_softreset(sc, 1);
1690	tl_stop(sc);
1691	tl_init(sc);
1692	CMD_SET(sc, TL_CMD_INTSON);
1693
1694	return(0);
1695}
1696
1697static int
1698tl_intvec_netsts(xsc, type)
1699	void			*xsc;
1700	u_int32_t		type;
1701{
1702	struct tl_softc		*sc;
1703	u_int16_t		netsts;
1704
1705	sc = xsc;
1706
1707	netsts = tl_dio_read16(sc, TL_NETSTS);
1708	tl_dio_write16(sc, TL_NETSTS, netsts);
1709
1710	if_printf(&sc->arpcom.ac_if, "network status: %x\n", netsts);
1711
1712	return(1);
1713}
1714
1715static void
1716tl_intr(xsc)
1717	void			*xsc;
1718{
1719	struct tl_softc		*sc;
1720	struct ifnet		*ifp;
1721	int			r = 0;
1722	u_int32_t		type = 0;
1723	u_int16_t		ints = 0;
1724	u_int8_t		ivec = 0;
1725
1726	sc = xsc;
1727	TL_LOCK(sc);
1728
1729	/* Disable interrupts */
1730	ints = CSR_READ_2(sc, TL_HOST_INT);
1731	CSR_WRITE_2(sc, TL_HOST_INT, ints);
1732	type = (ints << 16) & 0xFFFF0000;
1733	ivec = (ints & TL_VEC_MASK) >> 5;
1734	ints = (ints & TL_INT_MASK) >> 2;
1735
1736	ifp = &sc->arpcom.ac_if;
1737
1738	switch(ints) {
1739	case (TL_INTR_INVALID):
1740#ifdef DIAGNOSTIC
1741		if_printf(ifp, "got an invalid interrupt!\n");
1742#endif
1743		/* Re-enable interrupts but don't ack this one. */
1744		CMD_PUT(sc, type);
1745		r = 0;
1746		break;
1747	case (TL_INTR_TXEOF):
1748		r = tl_intvec_txeof((void *)sc, type);
1749		break;
1750	case (TL_INTR_TXEOC):
1751		r = tl_intvec_txeoc((void *)sc, type);
1752		break;
1753	case (TL_INTR_STATOFLOW):
1754		tl_stats_update(sc);
1755		r = 1;
1756		break;
1757	case (TL_INTR_RXEOF):
1758		r = tl_intvec_rxeof((void *)sc, type);
1759		break;
1760	case (TL_INTR_DUMMY):
1761		if_printf(ifp, "got a dummy interrupt\n");
1762		r = 1;
1763		break;
1764	case (TL_INTR_ADCHK):
1765		if (ivec)
1766			r = tl_intvec_adchk((void *)sc, type);
1767		else
1768			r = tl_intvec_netsts((void *)sc, type);
1769		break;
1770	case (TL_INTR_RXEOC):
1771		r = tl_intvec_rxeoc((void *)sc, type);
1772		break;
1773	default:
1774		if_printf(ifp, "bogus interrupt type\n");
1775		break;
1776	}
1777
1778	/* Re-enable interrupts */
1779	if (r) {
1780		CMD_PUT(sc, TL_CMD_ACK | r | type);
1781	}
1782
1783	if (ifp->if_snd.ifq_head != NULL)
1784		tl_start(ifp);
1785
1786	TL_UNLOCK(sc);
1787
1788	return;
1789}
1790
1791static void
1792tl_stats_update(xsc)
1793	void			*xsc;
1794{
1795	struct tl_softc		*sc;
1796	struct ifnet		*ifp;
1797	struct tl_stats		tl_stats;
1798	struct mii_data		*mii;
1799	u_int32_t		*p;
1800
1801	bzero((char *)&tl_stats, sizeof(struct tl_stats));
1802
1803	sc = xsc;
1804	TL_LOCK(sc);
1805	ifp = &sc->arpcom.ac_if;
1806
1807	p = (u_int32_t *)&tl_stats;
1808
1809	CSR_WRITE_2(sc, TL_DIO_ADDR, TL_TXGOODFRAMES|TL_DIO_ADDR_INC);
1810	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1811	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1812	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1813	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1814	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1815
1816	ifp->if_opackets += tl_tx_goodframes(tl_stats);
1817	ifp->if_collisions += tl_stats.tl_tx_single_collision +
1818				tl_stats.tl_tx_multi_collision;
1819	ifp->if_ipackets += tl_rx_goodframes(tl_stats);
1820	ifp->if_ierrors += tl_stats.tl_crc_errors + tl_stats.tl_code_errors +
1821			    tl_rx_overrun(tl_stats);
1822	ifp->if_oerrors += tl_tx_underrun(tl_stats);
1823
1824	if (tl_tx_underrun(tl_stats)) {
1825		u_int8_t		tx_thresh;
1826		tx_thresh = tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_TXTHRESH;
1827		if (tx_thresh != TL_AC_TXTHRESH_WHOLEPKT) {
1828			tx_thresh >>= 4;
1829			tx_thresh++;
1830			if_printf(ifp, "tx underrun -- increasing "
1831			    "tx threshold to %d bytes\n",
1832			    (64 * (tx_thresh * 4)));
1833			tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
1834			tl_dio_setbit(sc, TL_ACOMMIT, tx_thresh << 4);
1835		}
1836	}
1837
1838	sc->tl_stat_ch = timeout(tl_stats_update, sc, hz);
1839
1840	if (!sc->tl_bitrate) {
1841		mii = device_get_softc(sc->tl_miibus);
1842		mii_tick(mii);
1843	}
1844
1845	TL_UNLOCK(sc);
1846
1847	return;
1848}
1849
1850/*
1851 * Encapsulate an mbuf chain in a list by coupling the mbuf data
1852 * pointers to the fragment pointers.
1853 */
1854static int
1855tl_encap(sc, c, m_head)
1856	struct tl_softc		*sc;
1857	struct tl_chain		*c;
1858	struct mbuf		*m_head;
1859{
1860	int			frag = 0;
1861	struct tl_frag		*f = NULL;
1862	int			total_len;
1863	struct mbuf		*m;
1864	struct ifnet		*ifp = &sc->arpcom.ac_if;
1865
1866	/*
1867 	 * Start packing the mbufs in this chain into
1868	 * the fragment pointers. Stop when we run out
1869 	 * of fragments or hit the end of the mbuf chain.
1870	 */
1871	m = m_head;
1872	total_len = 0;
1873
1874	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1875		if (m->m_len != 0) {
1876			if (frag == TL_MAXFRAGS)
1877				break;
1878			total_len+= m->m_len;
1879			c->tl_ptr->tl_frag[frag].tlist_dadr =
1880				vtophys(mtod(m, vm_offset_t));
1881			c->tl_ptr->tl_frag[frag].tlist_dcnt = m->m_len;
1882			frag++;
1883		}
1884	}
1885
1886	/*
1887	 * Handle special cases.
1888	 * Special case #1: we used up all 10 fragments, but
1889	 * we have more mbufs left in the chain. Copy the
1890	 * data into an mbuf cluster. Note that we don't
1891	 * bother clearing the values in the other fragment
1892	 * pointers/counters; it wouldn't gain us anything,
1893	 * and would waste cycles.
1894	 */
1895	if (m != NULL) {
1896		struct mbuf		*m_new = NULL;
1897
1898		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1899		if (m_new == NULL) {
1900			if_printf(ifp, "no memory for tx list\n");
1901			return(1);
1902		}
1903		if (m_head->m_pkthdr.len > MHLEN) {
1904			MCLGET(m_new, M_DONTWAIT);
1905			if (!(m_new->m_flags & M_EXT)) {
1906				m_freem(m_new);
1907				if_printf(ifp, "no memory for tx list\n");
1908				return(1);
1909			}
1910		}
1911		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1912					mtod(m_new, caddr_t));
1913		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1914		m_freem(m_head);
1915		m_head = m_new;
1916		f = &c->tl_ptr->tl_frag[0];
1917		f->tlist_dadr = vtophys(mtod(m_new, caddr_t));
1918		f->tlist_dcnt = total_len = m_new->m_len;
1919		frag = 1;
1920	}
1921
1922	/*
1923	 * Special case #2: the frame is smaller than the minimum
1924	 * frame size. We have to pad it to make the chip happy.
1925	 */
1926	if (total_len < TL_MIN_FRAMELEN) {
1927		if (frag == TL_MAXFRAGS)
1928			if_printf(ifp,
1929			    "all frags filled but frame still to small!\n");
1930		f = &c->tl_ptr->tl_frag[frag];
1931		f->tlist_dcnt = TL_MIN_FRAMELEN - total_len;
1932		f->tlist_dadr = vtophys(&sc->tl_ldata->tl_pad);
1933		total_len += f->tlist_dcnt;
1934		frag++;
1935	}
1936
1937	c->tl_mbuf = m_head;
1938	c->tl_ptr->tl_frag[frag - 1].tlist_dcnt |= TL_LAST_FRAG;
1939	c->tl_ptr->tlist_frsize = total_len;
1940	c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1941	c->tl_ptr->tlist_fptr = 0;
1942
1943	return(0);
1944}
1945
1946/*
1947 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1948 * to the mbuf data regions directly in the transmit lists. We also save a
1949 * copy of the pointers since the transmit list fragment pointers are
1950 * physical addresses.
1951 */
1952static void
1953tl_start(ifp)
1954	struct ifnet		*ifp;
1955{
1956	struct tl_softc		*sc;
1957	struct mbuf		*m_head = NULL;
1958	u_int32_t		cmd;
1959	struct tl_chain		*prev = NULL, *cur_tx = NULL, *start_tx;
1960
1961	sc = ifp->if_softc;
1962	TL_LOCK(sc);
1963
1964	/*
1965	 * Check for an available queue slot. If there are none,
1966	 * punt.
1967	 */
1968	if (sc->tl_cdata.tl_tx_free == NULL) {
1969		ifp->if_flags |= IFF_OACTIVE;
1970		TL_UNLOCK(sc);
1971		return;
1972	}
1973
1974	start_tx = sc->tl_cdata.tl_tx_free;
1975
1976	while(sc->tl_cdata.tl_tx_free != NULL) {
1977		IF_DEQUEUE(&ifp->if_snd, m_head);
1978		if (m_head == NULL)
1979			break;
1980
1981		/* Pick a chain member off the free list. */
1982		cur_tx = sc->tl_cdata.tl_tx_free;
1983		sc->tl_cdata.tl_tx_free = cur_tx->tl_next;
1984
1985		cur_tx->tl_next = NULL;
1986
1987		/* Pack the data into the list. */
1988		tl_encap(sc, cur_tx, m_head);
1989
1990		/* Chain it together */
1991		if (prev != NULL) {
1992			prev->tl_next = cur_tx;
1993			prev->tl_ptr->tlist_fptr = vtophys(cur_tx->tl_ptr);
1994		}
1995		prev = cur_tx;
1996
1997		/*
1998		 * If there's a BPF listener, bounce a copy of this frame
1999		 * to him.
2000		 */
2001		BPF_MTAP(ifp, cur_tx->tl_mbuf);
2002	}
2003
2004	/*
2005	 * If there are no packets queued, bail.
2006	 */
2007	if (cur_tx == NULL) {
2008		TL_UNLOCK(sc);
2009		return;
2010	}
2011
2012	/*
2013	 * That's all we can stands, we can't stands no more.
2014	 * If there are no other transfers pending, then issue the
2015	 * TX GO command to the adapter to start things moving.
2016	 * Otherwise, just leave the data in the queue and let
2017	 * the EOF/EOC interrupt handler send.
2018	 */
2019	if (sc->tl_cdata.tl_tx_head == NULL) {
2020		sc->tl_cdata.tl_tx_head = start_tx;
2021		sc->tl_cdata.tl_tx_tail = cur_tx;
2022
2023		if (sc->tl_txeoc) {
2024			sc->tl_txeoc = 0;
2025			CSR_WRITE_4(sc, TL_CH_PARM, vtophys(start_tx->tl_ptr));
2026			cmd = CSR_READ_4(sc, TL_HOSTCMD);
2027			cmd &= ~TL_CMD_RT;
2028			cmd |= TL_CMD_GO|TL_CMD_INTSON;
2029			CMD_PUT(sc, cmd);
2030		}
2031	} else {
2032		sc->tl_cdata.tl_tx_tail->tl_next = start_tx;
2033		sc->tl_cdata.tl_tx_tail = cur_tx;
2034	}
2035
2036	/*
2037	 * Set a timeout in case the chip goes out to lunch.
2038	 */
2039	ifp->if_timer = 5;
2040	TL_UNLOCK(sc);
2041
2042	return;
2043}
2044
2045static void
2046tl_init(xsc)
2047	void			*xsc;
2048{
2049	struct tl_softc		*sc = xsc;
2050	struct ifnet		*ifp = &sc->arpcom.ac_if;
2051	struct mii_data		*mii;
2052
2053	TL_LOCK(sc);
2054
2055	ifp = &sc->arpcom.ac_if;
2056
2057	/*
2058	 * Cancel pending I/O.
2059	 */
2060	tl_stop(sc);
2061
2062	/* Initialize TX FIFO threshold */
2063	tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
2064	tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH_16LONG);
2065
2066        /* Set PCI burst size */
2067	tl_dio_write8(sc, TL_BSIZEREG, TL_RXBURST_16LONG|TL_TXBURST_16LONG);
2068
2069	/*
2070	 * Set 'capture all frames' bit for promiscuous mode.
2071	 */
2072	if (ifp->if_flags & IFF_PROMISC)
2073		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
2074	else
2075		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
2076
2077	/*
2078	 * Set capture broadcast bit to capture broadcast frames.
2079	 */
2080	if (ifp->if_flags & IFF_BROADCAST)
2081		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_NOBRX);
2082	else
2083		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NOBRX);
2084
2085	tl_dio_write16(sc, TL_MAXRX, MCLBYTES);
2086
2087	/* Init our MAC address */
2088	tl_setfilt(sc, (caddr_t)&sc->arpcom.ac_enaddr, 0);
2089
2090	/* Init multicast filter, if needed. */
2091	tl_setmulti(sc);
2092
2093	/* Init circular RX list. */
2094	if (tl_list_rx_init(sc) == ENOBUFS) {
2095		if_printf(ifp,
2096		    "initialization failed: no memory for rx buffers\n");
2097		tl_stop(sc);
2098		TL_UNLOCK(sc);
2099		return;
2100	}
2101
2102	/* Init TX pointers. */
2103	tl_list_tx_init(sc);
2104
2105	/* Enable PCI interrupts. */
2106	CMD_SET(sc, TL_CMD_INTSON);
2107
2108	/* Load the address of the rx list */
2109	CMD_SET(sc, TL_CMD_RT);
2110	CSR_WRITE_4(sc, TL_CH_PARM, vtophys(&sc->tl_ldata->tl_rx_list[0]));
2111
2112	if (!sc->tl_bitrate) {
2113		if (sc->tl_miibus != NULL) {
2114			mii = device_get_softc(sc->tl_miibus);
2115			mii_mediachg(mii);
2116		}
2117	} else {
2118		tl_ifmedia_upd(ifp);
2119	}
2120
2121	/* Send the RX go command */
2122	CMD_SET(sc, TL_CMD_GO|TL_CMD_NES|TL_CMD_RT);
2123
2124	ifp->if_flags |= IFF_RUNNING;
2125	ifp->if_flags &= ~IFF_OACTIVE;
2126
2127	/* Start the stats update counter */
2128	sc->tl_stat_ch = timeout(tl_stats_update, sc, hz);
2129	TL_UNLOCK(sc);
2130
2131	return;
2132}
2133
2134/*
2135 * Set media options.
2136 */
2137static int
2138tl_ifmedia_upd(ifp)
2139	struct ifnet		*ifp;
2140{
2141	struct tl_softc		*sc;
2142	struct mii_data		*mii = NULL;
2143
2144	sc = ifp->if_softc;
2145
2146	if (sc->tl_bitrate)
2147		tl_setmode(sc, sc->ifmedia.ifm_media);
2148	else {
2149		mii = device_get_softc(sc->tl_miibus);
2150		mii_mediachg(mii);
2151	}
2152
2153	return(0);
2154}
2155
2156/*
2157 * Report current media status.
2158 */
2159static void
2160tl_ifmedia_sts(ifp, ifmr)
2161	struct ifnet		*ifp;
2162	struct ifmediareq	*ifmr;
2163{
2164	struct tl_softc		*sc;
2165	struct mii_data		*mii;
2166
2167	sc = ifp->if_softc;
2168
2169	ifmr->ifm_active = IFM_ETHER;
2170
2171	if (sc->tl_bitrate) {
2172		if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD1)
2173			ifmr->ifm_active = IFM_ETHER|IFM_10_5;
2174		else
2175			ifmr->ifm_active = IFM_ETHER|IFM_10_T;
2176		if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD3)
2177			ifmr->ifm_active |= IFM_HDX;
2178		else
2179			ifmr->ifm_active |= IFM_FDX;
2180		return;
2181	} else {
2182		mii = device_get_softc(sc->tl_miibus);
2183		mii_pollstat(mii);
2184		ifmr->ifm_active = mii->mii_media_active;
2185		ifmr->ifm_status = mii->mii_media_status;
2186	}
2187
2188	return;
2189}
2190
2191static int
2192tl_ioctl(ifp, command, data)
2193	struct ifnet		*ifp;
2194	u_long			command;
2195	caddr_t			data;
2196{
2197	struct tl_softc		*sc = ifp->if_softc;
2198	struct ifreq		*ifr = (struct ifreq *) data;
2199	int			s, error = 0;
2200
2201	s = splimp();
2202
2203	switch(command) {
2204	case SIOCSIFFLAGS:
2205		if (ifp->if_flags & IFF_UP) {
2206			if (ifp->if_flags & IFF_RUNNING &&
2207			    ifp->if_flags & IFF_PROMISC &&
2208			    !(sc->tl_if_flags & IFF_PROMISC)) {
2209				tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
2210				tl_setmulti(sc);
2211			} else if (ifp->if_flags & IFF_RUNNING &&
2212			    !(ifp->if_flags & IFF_PROMISC) &&
2213			    sc->tl_if_flags & IFF_PROMISC) {
2214				tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
2215				tl_setmulti(sc);
2216			} else
2217				tl_init(sc);
2218		} else {
2219			if (ifp->if_flags & IFF_RUNNING) {
2220				tl_stop(sc);
2221			}
2222		}
2223		sc->tl_if_flags = ifp->if_flags;
2224		error = 0;
2225		break;
2226	case SIOCADDMULTI:
2227	case SIOCDELMULTI:
2228		tl_setmulti(sc);
2229		error = 0;
2230		break;
2231	case SIOCSIFMEDIA:
2232	case SIOCGIFMEDIA:
2233		if (sc->tl_bitrate)
2234			error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2235		else {
2236			struct mii_data		*mii;
2237			mii = device_get_softc(sc->tl_miibus);
2238			error = ifmedia_ioctl(ifp, ifr,
2239			    &mii->mii_media, command);
2240		}
2241		break;
2242	default:
2243		error = ether_ioctl(ifp, command, data);
2244		break;
2245	}
2246
2247	(void)splx(s);
2248
2249	return(error);
2250}
2251
2252static void
2253tl_watchdog(ifp)
2254	struct ifnet		*ifp;
2255{
2256	struct tl_softc		*sc;
2257
2258	sc = ifp->if_softc;
2259
2260	if_printf(ifp, "device timeout\n");
2261
2262	ifp->if_oerrors++;
2263
2264	tl_softreset(sc, 1);
2265	tl_init(sc);
2266
2267	return;
2268}
2269
2270/*
2271 * Stop the adapter and free any mbufs allocated to the
2272 * RX and TX lists.
2273 */
2274static void
2275tl_stop(sc)
2276	struct tl_softc		*sc;
2277{
2278	register int		i;
2279	struct ifnet		*ifp;
2280
2281	TL_LOCK(sc);
2282
2283	ifp = &sc->arpcom.ac_if;
2284
2285	/* Stop the stats updater. */
2286	untimeout(tl_stats_update, sc, sc->tl_stat_ch);
2287
2288	/* Stop the transmitter */
2289	CMD_CLR(sc, TL_CMD_RT);
2290	CMD_SET(sc, TL_CMD_STOP);
2291	CSR_WRITE_4(sc, TL_CH_PARM, 0);
2292
2293	/* Stop the receiver */
2294	CMD_SET(sc, TL_CMD_RT);
2295	CMD_SET(sc, TL_CMD_STOP);
2296	CSR_WRITE_4(sc, TL_CH_PARM, 0);
2297
2298	/*
2299	 * Disable host interrupts.
2300	 */
2301	CMD_SET(sc, TL_CMD_INTSOFF);
2302
2303	/*
2304	 * Clear list pointer.
2305	 */
2306	CSR_WRITE_4(sc, TL_CH_PARM, 0);
2307
2308	/*
2309	 * Free the RX lists.
2310	 */
2311	for (i = 0; i < TL_RX_LIST_CNT; i++) {
2312		if (sc->tl_cdata.tl_rx_chain[i].tl_mbuf != NULL) {
2313			m_freem(sc->tl_cdata.tl_rx_chain[i].tl_mbuf);
2314			sc->tl_cdata.tl_rx_chain[i].tl_mbuf = NULL;
2315		}
2316	}
2317	bzero((char *)&sc->tl_ldata->tl_rx_list,
2318		sizeof(sc->tl_ldata->tl_rx_list));
2319
2320	/*
2321	 * Free the TX list buffers.
2322	 */
2323	for (i = 0; i < TL_TX_LIST_CNT; i++) {
2324		if (sc->tl_cdata.tl_tx_chain[i].tl_mbuf != NULL) {
2325			m_freem(sc->tl_cdata.tl_tx_chain[i].tl_mbuf);
2326			sc->tl_cdata.tl_tx_chain[i].tl_mbuf = NULL;
2327		}
2328	}
2329	bzero((char *)&sc->tl_ldata->tl_tx_list,
2330		sizeof(sc->tl_ldata->tl_tx_list));
2331
2332	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2333	TL_UNLOCK(sc);
2334
2335	return;
2336}
2337
2338/*
2339 * Stop all chip I/O so that the kernel's probe routines don't
2340 * get confused by errant DMAs when rebooting.
2341 */
2342static void
2343tl_shutdown(dev)
2344	device_t		dev;
2345{
2346	struct tl_softc		*sc;
2347
2348	sc = device_get_softc(dev);
2349
2350	tl_stop(sc);
2351
2352	return;
2353}
2354