11573Srgrimes/*-
21573Srgrimes * Copyright (c) 1997, 1998, 1999
31573Srgrimes *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
41573Srgrimes *
51573Srgrimes * Redistribution and use in source and binary forms, with or without
61573Srgrimes * modification, are permitted provided that the following conditions
71573Srgrimes * are met:
81573Srgrimes * 1. Redistributions of source code must retain the above copyright
91573Srgrimes *    notice, this list of conditions and the following disclaimer.
101573Srgrimes * 2. Redistributions in binary form must reproduce the above copyright
111573Srgrimes *    notice, this list of conditions and the following disclaimer in the
121573Srgrimes *    documentation and/or other materials provided with the distribution.
131573Srgrimes * 3. All advertising materials mentioning features or use of this software
141573Srgrimes *    must display the following acknowledgement:
151573Srgrimes *	This product includes software developed by Bill Paul.
161573Srgrimes * 4. Neither the name of the author nor the names of any co-contributors
171573Srgrimes *    may be used to endorse or promote products derived from this software
181573Srgrimes *    without specific prior written permission.
191573Srgrimes *
201573Srgrimes * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
211573Srgrimes * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
221573Srgrimes * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
231573Srgrimes * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
241573Srgrimes * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
251573Srgrimes * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
261573Srgrimes * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
271573Srgrimes * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
281573Srgrimes * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
291573Srgrimes * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
301573Srgrimes * THE POSSIBILITY OF SUCH DAMAGE.
311573Srgrimes */
321573Srgrimes
331573Srgrimes#include <sys/cdefs.h>
341573Srgrimes__FBSDID("$FreeBSD$");
351573Srgrimes
361573Srgrimes#ifdef HAVE_KERNEL_OPTION_HEADERS
3792986Sobrien#include "opt_device_polling.h"
3892986Sobrien#endif
391573Srgrimes
401573Srgrimes#include <sys/param.h>
411573Srgrimes#include <sys/systm.h>
421573Srgrimes#include <sys/bus.h>
431573Srgrimes#include <sys/endian.h>
441573Srgrimes#include <sys/kernel.h>
4511659Sphk#include <sys/lock.h>
461573Srgrimes#include <sys/malloc.h>
471573Srgrimes#include <sys/mbuf.h>
48100146Swollman#include <sys/module.h>
491573Srgrimes#include <sys/rman.h>
50100146Swollman#include <sys/socket.h>
511573Srgrimes#include <sys/sockio.h>
521573Srgrimes#include <sys/sysctl.h>
531573Srgrimes
54100146Swollman#include <net/bpf.h>
55100146Swollman#include <net/if.h>
56100146Swollman#include <net/if_var.h>
57100146Swollman#include <net/if_arp.h>
58100146Swollman#include <net/ethernet.h>
59100146Swollman#include <net/if_dl.h>
60100146Swollman#include <net/if_media.h>
61100146Swollman#include <net/if_types.h>
621573Srgrimes#include <net/if_vlan_var.h>
631573Srgrimes
641573Srgrimes#include <machine/bus.h>
651573Srgrimes#include <machine/resource.h>
661573Srgrimes
671573Srgrimes#include <dev/mii/mii.h>
68#include <dev/mii/mii_bitbang.h>
69#include <dev/mii/miivar.h>
70
71#include <dev/pci/pcireg.h>
72#include <dev/pci/pcivar.h>
73
74#include <dev/ste/if_stereg.h>
75
76/* "device miibus" required.  See GENERIC if you get errors here. */
77#include "miibus_if.h"
78
79MODULE_DEPEND(ste, pci, 1, 1, 1);
80MODULE_DEPEND(ste, ether, 1, 1, 1);
81MODULE_DEPEND(ste, miibus, 1, 1, 1);
82
83/* Define to show Tx error status. */
84#define	STE_SHOW_TXERRORS
85
86/*
87 * Various supported device vendors/types and their names.
88 */
89static const struct ste_type ste_devs[] = {
90	{ ST_VENDORID, ST_DEVICEID_ST201_1, "Sundance ST201 10/100BaseTX" },
91	{ ST_VENDORID, ST_DEVICEID_ST201_2, "Sundance ST201 10/100BaseTX" },
92	{ DL_VENDORID, DL_DEVICEID_DL10050, "D-Link DL10050 10/100BaseTX" },
93	{ 0, 0, NULL }
94};
95
96static int	ste_attach(device_t);
97static int	ste_detach(device_t);
98static int	ste_probe(device_t);
99static int	ste_resume(device_t);
100static int	ste_shutdown(device_t);
101static int	ste_suspend(device_t);
102
103static int	ste_dma_alloc(struct ste_softc *);
104static void	ste_dma_free(struct ste_softc *);
105static void	ste_dmamap_cb(void *, bus_dma_segment_t *, int, int);
106static int 	ste_eeprom_wait(struct ste_softc *);
107static int	ste_encap(struct ste_softc *, struct mbuf **,
108		    struct ste_chain *);
109static int	ste_ifmedia_upd(struct ifnet *);
110static void	ste_ifmedia_sts(struct ifnet *, struct ifmediareq *);
111static void	ste_init(void *);
112static void	ste_init_locked(struct ste_softc *);
113static int	ste_init_rx_list(struct ste_softc *);
114static void	ste_init_tx_list(struct ste_softc *);
115static void	ste_intr(void *);
116static int	ste_ioctl(struct ifnet *, u_long, caddr_t);
117static uint32_t ste_mii_bitbang_read(device_t);
118static void	ste_mii_bitbang_write(device_t, uint32_t);
119static int	ste_miibus_readreg(device_t, int, int);
120static void	ste_miibus_statchg(device_t);
121static int	ste_miibus_writereg(device_t, int, int, int);
122static int	ste_newbuf(struct ste_softc *, struct ste_chain_onefrag *);
123static int	ste_read_eeprom(struct ste_softc *, uint16_t *, int, int);
124static void	ste_reset(struct ste_softc *);
125static void	ste_restart_tx(struct ste_softc *);
126static int	ste_rxeof(struct ste_softc *, int);
127static void	ste_rxfilter(struct ste_softc *);
128static void	ste_setwol(struct ste_softc *);
129static void	ste_start(struct ifnet *);
130static void	ste_start_locked(struct ifnet *);
131static void	ste_stats_clear(struct ste_softc *);
132static void	ste_stats_update(struct ste_softc *);
133static void	ste_stop(struct ste_softc *);
134static void	ste_sysctl_node(struct ste_softc *);
135static void	ste_tick(void *);
136static void	ste_txeoc(struct ste_softc *);
137static void	ste_txeof(struct ste_softc *);
138static void	ste_wait(struct ste_softc *);
139static void	ste_watchdog(struct ste_softc *);
140
141/*
142 * MII bit-bang glue
143 */
144static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
145	ste_mii_bitbang_read,
146	ste_mii_bitbang_write,
147	{
148		STE_PHYCTL_MDATA,	/* MII_BIT_MDO */
149		STE_PHYCTL_MDATA,	/* MII_BIT_MDI */
150		STE_PHYCTL_MCLK,	/* MII_BIT_MDC */
151		STE_PHYCTL_MDIR,	/* MII_BIT_DIR_HOST_PHY */
152		0,			/* MII_BIT_DIR_PHY_HOST */
153	}
154};
155
156static device_method_t ste_methods[] = {
157	/* Device interface */
158	DEVMETHOD(device_probe,		ste_probe),
159	DEVMETHOD(device_attach,	ste_attach),
160	DEVMETHOD(device_detach,	ste_detach),
161	DEVMETHOD(device_shutdown,	ste_shutdown),
162	DEVMETHOD(device_suspend,	ste_suspend),
163	DEVMETHOD(device_resume,	ste_resume),
164
165	/* MII interface */
166	DEVMETHOD(miibus_readreg,	ste_miibus_readreg),
167	DEVMETHOD(miibus_writereg,	ste_miibus_writereg),
168	DEVMETHOD(miibus_statchg,	ste_miibus_statchg),
169
170	DEVMETHOD_END
171};
172
173static driver_t ste_driver = {
174	"ste",
175	ste_methods,
176	sizeof(struct ste_softc)
177};
178
179static devclass_t ste_devclass;
180
181DRIVER_MODULE(ste, pci, ste_driver, ste_devclass, 0, 0);
182DRIVER_MODULE(miibus, ste, miibus_driver, miibus_devclass, 0, 0);
183
184#define STE_SETBIT4(sc, reg, x)				\
185	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
186
187#define STE_CLRBIT4(sc, reg, x)				\
188	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
189
190#define STE_SETBIT2(sc, reg, x)				\
191	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | (x))
192
193#define STE_CLRBIT2(sc, reg, x)				\
194	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~(x))
195
196#define STE_SETBIT1(sc, reg, x)				\
197	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | (x))
198
199#define STE_CLRBIT1(sc, reg, x)				\
200	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~(x))
201
202/*
203 * Read the MII serial port for the MII bit-bang module.
204 */
205static uint32_t
206ste_mii_bitbang_read(device_t dev)
207{
208	struct ste_softc *sc;
209	uint32_t val;
210
211	sc = device_get_softc(dev);
212
213	val = CSR_READ_1(sc, STE_PHYCTL);
214	CSR_BARRIER(sc, STE_PHYCTL, 1,
215	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
216
217	return (val);
218}
219
220/*
221 * Write the MII serial port for the MII bit-bang module.
222 */
223static void
224ste_mii_bitbang_write(device_t dev, uint32_t val)
225{
226	struct ste_softc *sc;
227
228	sc = device_get_softc(dev);
229
230	CSR_WRITE_1(sc, STE_PHYCTL, val);
231	CSR_BARRIER(sc, STE_PHYCTL, 1,
232	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
233}
234
235static int
236ste_miibus_readreg(device_t dev, int phy, int reg)
237{
238
239	return (mii_bitbang_readreg(dev, &ste_mii_bitbang_ops, phy, reg));
240}
241
242static int
243ste_miibus_writereg(device_t dev, int phy, int reg, int data)
244{
245
246	mii_bitbang_writereg(dev, &ste_mii_bitbang_ops, phy, reg, data);
247
248	return (0);
249}
250
251static void
252ste_miibus_statchg(device_t dev)
253{
254	struct ste_softc *sc;
255	struct mii_data *mii;
256	struct ifnet *ifp;
257	uint16_t cfg;
258
259	sc = device_get_softc(dev);
260
261	mii = device_get_softc(sc->ste_miibus);
262	ifp = sc->ste_ifp;
263	if (mii == NULL || ifp == NULL ||
264	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
265		return;
266
267	sc->ste_flags &= ~STE_FLAG_LINK;
268	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
269	    (IFM_ACTIVE | IFM_AVALID)) {
270		switch (IFM_SUBTYPE(mii->mii_media_active)) {
271		case IFM_10_T:
272		case IFM_100_TX:
273		case IFM_100_FX:
274		case IFM_100_T4:
275			sc->ste_flags |= STE_FLAG_LINK;
276		default:
277			break;
278		}
279	}
280
281	/* Program MACs with resolved speed/duplex/flow-control. */
282	if ((sc->ste_flags & STE_FLAG_LINK) != 0) {
283		cfg = CSR_READ_2(sc, STE_MACCTL0);
284		cfg &= ~(STE_MACCTL0_FLOWCTL_ENABLE | STE_MACCTL0_FULLDUPLEX);
285		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
286			/*
287			 * ST201 data sheet says driver should enable receiving
288			 * MAC control frames bit of receive mode register to
289			 * receive flow-control frames but the register has no
290			 * such bits. In addition the controller has no ability
291			 * to send pause frames so it should be handled in
292			 * driver. Implementing pause timer handling in driver
293			 * layer is not trivial, so don't enable flow-control
294			 * here.
295			 */
296			cfg |= STE_MACCTL0_FULLDUPLEX;
297		}
298		CSR_WRITE_2(sc, STE_MACCTL0, cfg);
299	}
300}
301
302static int
303ste_ifmedia_upd(struct ifnet *ifp)
304{
305	struct ste_softc *sc;
306	struct mii_data	*mii;
307	struct mii_softc *miisc;
308	int error;
309
310	sc = ifp->if_softc;
311	STE_LOCK(sc);
312	mii = device_get_softc(sc->ste_miibus);
313	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
314		PHY_RESET(miisc);
315	error = mii_mediachg(mii);
316	STE_UNLOCK(sc);
317
318	return (error);
319}
320
321static void
322ste_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
323{
324	struct ste_softc *sc;
325	struct mii_data *mii;
326
327	sc = ifp->if_softc;
328	mii = device_get_softc(sc->ste_miibus);
329
330	STE_LOCK(sc);
331	if ((ifp->if_flags & IFF_UP) == 0) {
332		STE_UNLOCK(sc);
333		return;
334	}
335	mii_pollstat(mii);
336	ifmr->ifm_active = mii->mii_media_active;
337	ifmr->ifm_status = mii->mii_media_status;
338	STE_UNLOCK(sc);
339}
340
341static void
342ste_wait(struct ste_softc *sc)
343{
344	int i;
345
346	for (i = 0; i < STE_TIMEOUT; i++) {
347		if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
348			break;
349		DELAY(1);
350	}
351
352	if (i == STE_TIMEOUT)
353		device_printf(sc->ste_dev, "command never completed!\n");
354}
355
356/*
357 * The EEPROM is slow: give it time to come ready after issuing
358 * it a command.
359 */
360static int
361ste_eeprom_wait(struct ste_softc *sc)
362{
363	int i;
364
365	DELAY(1000);
366
367	for (i = 0; i < 100; i++) {
368		if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
369			DELAY(1000);
370		else
371			break;
372	}
373
374	if (i == 100) {
375		device_printf(sc->ste_dev, "eeprom failed to come ready\n");
376		return (1);
377	}
378
379	return (0);
380}
381
382/*
383 * Read a sequence of words from the EEPROM. Note that ethernet address
384 * data is stored in the EEPROM in network byte order.
385 */
386static int
387ste_read_eeprom(struct ste_softc *sc, uint16_t *dest, int off, int cnt)
388{
389	int err = 0, i;
390
391	if (ste_eeprom_wait(sc))
392		return (1);
393
394	for (i = 0; i < cnt; i++) {
395		CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
396		err = ste_eeprom_wait(sc);
397		if (err)
398			break;
399		*dest = le16toh(CSR_READ_2(sc, STE_EEPROM_DATA));
400		dest++;
401	}
402
403	return (err ? 1 : 0);
404}
405
406static void
407ste_rxfilter(struct ste_softc *sc)
408{
409	struct ifnet *ifp;
410	struct ifmultiaddr *ifma;
411	uint32_t hashes[2] = { 0, 0 };
412	uint8_t rxcfg;
413	int h;
414
415	STE_LOCK_ASSERT(sc);
416
417	ifp = sc->ste_ifp;
418	rxcfg = CSR_READ_1(sc, STE_RX_MODE);
419	rxcfg |= STE_RXMODE_UNICAST;
420	rxcfg &= ~(STE_RXMODE_ALLMULTI | STE_RXMODE_MULTIHASH |
421	    STE_RXMODE_BROADCAST | STE_RXMODE_PROMISC);
422	if (ifp->if_flags & IFF_BROADCAST)
423		rxcfg |= STE_RXMODE_BROADCAST;
424	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
425		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
426			rxcfg |= STE_RXMODE_ALLMULTI;
427		if ((ifp->if_flags & IFF_PROMISC) != 0)
428			rxcfg |= STE_RXMODE_PROMISC;
429		goto chipit;
430	}
431
432	rxcfg |= STE_RXMODE_MULTIHASH;
433	/* Now program new ones. */
434	if_maddr_rlock(ifp);
435	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
436		if (ifma->ifma_addr->sa_family != AF_LINK)
437			continue;
438		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
439		    ifma->ifma_addr), ETHER_ADDR_LEN) & 0x3F;
440		if (h < 32)
441			hashes[0] |= (1 << h);
442		else
443			hashes[1] |= (1 << (h - 32));
444	}
445	if_maddr_runlock(ifp);
446
447chipit:
448	CSR_WRITE_2(sc, STE_MAR0, hashes[0] & 0xFFFF);
449	CSR_WRITE_2(sc, STE_MAR1, (hashes[0] >> 16) & 0xFFFF);
450	CSR_WRITE_2(sc, STE_MAR2, hashes[1] & 0xFFFF);
451	CSR_WRITE_2(sc, STE_MAR3, (hashes[1] >> 16) & 0xFFFF);
452	CSR_WRITE_1(sc, STE_RX_MODE, rxcfg);
453	CSR_READ_1(sc, STE_RX_MODE);
454}
455
456#ifdef DEVICE_POLLING
457static poll_handler_t ste_poll, ste_poll_locked;
458
459static int
460ste_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
461{
462	struct ste_softc *sc = ifp->if_softc;
463	int rx_npkts = 0;
464
465	STE_LOCK(sc);
466	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
467		rx_npkts = ste_poll_locked(ifp, cmd, count);
468	STE_UNLOCK(sc);
469	return (rx_npkts);
470}
471
472static int
473ste_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
474{
475	struct ste_softc *sc = ifp->if_softc;
476	int rx_npkts;
477
478	STE_LOCK_ASSERT(sc);
479
480	rx_npkts = ste_rxeof(sc, count);
481	ste_txeof(sc);
482	ste_txeoc(sc);
483	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
484		ste_start_locked(ifp);
485
486	if (cmd == POLL_AND_CHECK_STATUS) {
487		uint16_t status;
488
489		status = CSR_READ_2(sc, STE_ISR_ACK);
490
491		if (status & STE_ISR_STATS_OFLOW)
492			ste_stats_update(sc);
493
494		if (status & STE_ISR_HOSTERR) {
495			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
496			ste_init_locked(sc);
497		}
498	}
499	return (rx_npkts);
500}
501#endif /* DEVICE_POLLING */
502
503static void
504ste_intr(void *xsc)
505{
506	struct ste_softc *sc;
507	struct ifnet *ifp;
508	uint16_t intrs, status;
509
510	sc = xsc;
511	STE_LOCK(sc);
512	ifp = sc->ste_ifp;
513
514#ifdef DEVICE_POLLING
515	if (ifp->if_capenable & IFCAP_POLLING) {
516		STE_UNLOCK(sc);
517		return;
518	}
519#endif
520	/* Reading STE_ISR_ACK clears STE_IMR register. */
521	status = CSR_READ_2(sc, STE_ISR_ACK);
522	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
523		STE_UNLOCK(sc);
524		return;
525	}
526
527	intrs = STE_INTRS;
528	if (status == 0xFFFF || (status & intrs) == 0)
529		goto done;
530
531	if (sc->ste_int_rx_act > 0) {
532		status &= ~STE_ISR_RX_DMADONE;
533		intrs &= ~STE_IMR_RX_DMADONE;
534	}
535
536	if ((status & (STE_ISR_SOFTINTR | STE_ISR_RX_DMADONE)) != 0) {
537		ste_rxeof(sc, -1);
538		/*
539		 * The controller has no ability to Rx interrupt
540		 * moderation feature. Receiving 64 bytes frames
541		 * from wire generates too many interrupts which in
542		 * turn make system useless to process other useful
543		 * things. Fortunately ST201 supports single shot
544		 * timer so use the timer to implement Rx interrupt
545		 * moderation in driver. This adds more register
546		 * access but it greatly reduces number of Rx
547		 * interrupts under high network load.
548		 */
549		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
550		    (sc->ste_int_rx_mod != 0)) {
551			if ((status & STE_ISR_RX_DMADONE) != 0) {
552				CSR_WRITE_2(sc, STE_COUNTDOWN,
553				    STE_TIMER_USECS(sc->ste_int_rx_mod));
554				intrs &= ~STE_IMR_RX_DMADONE;
555				sc->ste_int_rx_act = 1;
556			} else {
557				intrs |= STE_IMR_RX_DMADONE;
558				sc->ste_int_rx_act = 0;
559			}
560		}
561	}
562	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
563		if ((status & STE_ISR_TX_DMADONE) != 0)
564			ste_txeof(sc);
565		if ((status & STE_ISR_TX_DONE) != 0)
566			ste_txeoc(sc);
567		if ((status & STE_ISR_STATS_OFLOW) != 0)
568			ste_stats_update(sc);
569		if ((status & STE_ISR_HOSTERR) != 0) {
570			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
571			ste_init_locked(sc);
572			STE_UNLOCK(sc);
573			return;
574		}
575		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
576			ste_start_locked(ifp);
577done:
578		/* Re-enable interrupts */
579		CSR_WRITE_2(sc, STE_IMR, intrs);
580	}
581	STE_UNLOCK(sc);
582}
583
584/*
585 * A frame has been uploaded: pass the resulting mbuf chain up to
586 * the higher level protocols.
587 */
588static int
589ste_rxeof(struct ste_softc *sc, int count)
590{
591        struct mbuf *m;
592        struct ifnet *ifp;
593	struct ste_chain_onefrag *cur_rx;
594	uint32_t rxstat;
595	int total_len, rx_npkts;
596
597	ifp = sc->ste_ifp;
598
599	bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
600	    sc->ste_cdata.ste_rx_list_map,
601	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
602
603	cur_rx = sc->ste_cdata.ste_rx_head;
604	for (rx_npkts = 0; rx_npkts < STE_RX_LIST_CNT; rx_npkts++,
605	    cur_rx = cur_rx->ste_next) {
606		rxstat = le32toh(cur_rx->ste_ptr->ste_status);
607		if ((rxstat & STE_RXSTAT_DMADONE) == 0)
608			break;
609#ifdef DEVICE_POLLING
610		if (ifp->if_capenable & IFCAP_POLLING) {
611			if (count == 0)
612				break;
613			count--;
614		}
615#endif
616		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
617			break;
618		/*
619		 * If an error occurs, update stats, clear the
620		 * status word and leave the mbuf cluster in place:
621		 * it should simply get re-used next time this descriptor
622	 	 * comes up in the ring.
623		 */
624		if (rxstat & STE_RXSTAT_FRAME_ERR) {
625			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
626			cur_rx->ste_ptr->ste_status = 0;
627			continue;
628		}
629
630		/* No errors; receive the packet. */
631		m = cur_rx->ste_mbuf;
632		total_len = STE_RX_BYTES(rxstat);
633
634		/*
635		 * Try to conjure up a new mbuf cluster. If that
636		 * fails, it means we have an out of memory condition and
637		 * should leave the buffer in place and continue. This will
638		 * result in a lost packet, but there's little else we
639		 * can do in this situation.
640		 */
641		if (ste_newbuf(sc, cur_rx) != 0) {
642			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
643			cur_rx->ste_ptr->ste_status = 0;
644			continue;
645		}
646
647		m->m_pkthdr.rcvif = ifp;
648		m->m_pkthdr.len = m->m_len = total_len;
649
650		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
651		STE_UNLOCK(sc);
652		(*ifp->if_input)(ifp, m);
653		STE_LOCK(sc);
654	}
655
656	if (rx_npkts > 0) {
657		sc->ste_cdata.ste_rx_head = cur_rx;
658		bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
659		    sc->ste_cdata.ste_rx_list_map,
660		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
661	}
662
663	return (rx_npkts);
664}
665
666static void
667ste_txeoc(struct ste_softc *sc)
668{
669	uint16_t txstat;
670	struct ifnet *ifp;
671
672	STE_LOCK_ASSERT(sc);
673
674	ifp = sc->ste_ifp;
675
676	/*
677	 * STE_TX_STATUS register implements a queue of up to 31
678	 * transmit status byte. Writing an arbitrary value to the
679	 * register will advance the queue to the next transmit
680	 * status byte. This means if driver does not read
681	 * STE_TX_STATUS register after completing sending more
682	 * than 31 frames the controller would be stalled so driver
683	 * should re-wake the Tx MAC. This is the most severe
684	 * limitation of ST201 based controller.
685	 */
686	for (;;) {
687		txstat = CSR_READ_2(sc, STE_TX_STATUS);
688		if ((txstat & STE_TXSTATUS_TXDONE) == 0)
689			break;
690		if ((txstat & (STE_TXSTATUS_UNDERRUN |
691		    STE_TXSTATUS_EXCESSCOLLS | STE_TXSTATUS_RECLAIMERR |
692		    STE_TXSTATUS_STATSOFLOW)) != 0) {
693			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
694#ifdef	STE_SHOW_TXERRORS
695			device_printf(sc->ste_dev, "TX error : 0x%b\n",
696			    txstat & 0xFF, STE_ERR_BITS);
697#endif
698			if ((txstat & STE_TXSTATUS_UNDERRUN) != 0 &&
699			    sc->ste_tx_thresh < STE_PACKET_SIZE) {
700				sc->ste_tx_thresh += STE_MIN_FRAMELEN;
701				if (sc->ste_tx_thresh > STE_PACKET_SIZE)
702					sc->ste_tx_thresh = STE_PACKET_SIZE;
703				device_printf(sc->ste_dev,
704				    "TX underrun, increasing TX"
705				    " start threshold to %d bytes\n",
706				    sc->ste_tx_thresh);
707				/* Make sure to disable active DMA cycles. */
708				STE_SETBIT4(sc, STE_DMACTL,
709				    STE_DMACTL_TXDMA_STALL);
710				ste_wait(sc);
711				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
712				ste_init_locked(sc);
713				break;
714			}
715			/* Restart Tx. */
716			ste_restart_tx(sc);
717		}
718		/*
719		 * Advance to next status and ACK TxComplete
720		 * interrupt. ST201 data sheet was wrong here, to
721		 * get next Tx status, we have to write both
722		 * STE_TX_STATUS and STE_TX_FRAMEID register.
723		 * Otherwise controller returns the same status
724		 * as well as not acknowledge Tx completion
725		 * interrupt.
726		 */
727		CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
728	}
729}
730
731static void
732ste_tick(void *arg)
733{
734	struct ste_softc *sc;
735	struct mii_data *mii;
736
737	sc = (struct ste_softc *)arg;
738
739	STE_LOCK_ASSERT(sc);
740
741	mii = device_get_softc(sc->ste_miibus);
742	mii_tick(mii);
743	/*
744	 * ukphy(4) does not seem to generate CB that reports
745	 * resolved link state so if we know we lost a link,
746	 * explicitly check the link state.
747	 */
748	if ((sc->ste_flags & STE_FLAG_LINK) == 0)
749		ste_miibus_statchg(sc->ste_dev);
750	/*
751	 * Because we are not generating Tx completion
752	 * interrupt for every frame, reclaim transmitted
753	 * buffers here.
754	 */
755	ste_txeof(sc);
756	ste_txeoc(sc);
757	ste_stats_update(sc);
758	ste_watchdog(sc);
759	callout_reset(&sc->ste_callout, hz, ste_tick, sc);
760}
761
762static void
763ste_txeof(struct ste_softc *sc)
764{
765	struct ifnet *ifp;
766	struct ste_chain *cur_tx;
767	uint32_t txstat;
768	int idx;
769
770	STE_LOCK_ASSERT(sc);
771
772	ifp = sc->ste_ifp;
773	idx = sc->ste_cdata.ste_tx_cons;
774	if (idx == sc->ste_cdata.ste_tx_prod)
775		return;
776
777	bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
778	    sc->ste_cdata.ste_tx_list_map,
779	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
780
781	while (idx != sc->ste_cdata.ste_tx_prod) {
782		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
783		txstat = le32toh(cur_tx->ste_ptr->ste_ctl);
784		if ((txstat & STE_TXCTL_DMADONE) == 0)
785			break;
786		bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map,
787		    BUS_DMASYNC_POSTWRITE);
788		bus_dmamap_unload(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map);
789		KASSERT(cur_tx->ste_mbuf != NULL,
790		    ("%s: freeing NULL mbuf!\n", __func__));
791		m_freem(cur_tx->ste_mbuf);
792		cur_tx->ste_mbuf = NULL;
793		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
794		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
795		sc->ste_cdata.ste_tx_cnt--;
796		STE_INC(idx, STE_TX_LIST_CNT);
797	}
798
799	sc->ste_cdata.ste_tx_cons = idx;
800	if (sc->ste_cdata.ste_tx_cnt == 0)
801		sc->ste_timer = 0;
802}
803
804static void
805ste_stats_clear(struct ste_softc *sc)
806{
807
808	STE_LOCK_ASSERT(sc);
809
810	/* Rx stats. */
811	CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO);
812	CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI);
813	CSR_READ_2(sc, STE_STAT_RX_FRAMES);
814	CSR_READ_1(sc, STE_STAT_RX_BCAST);
815	CSR_READ_1(sc, STE_STAT_RX_MCAST);
816	CSR_READ_1(sc, STE_STAT_RX_LOST);
817	/* Tx stats. */
818	CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO);
819	CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI);
820	CSR_READ_2(sc, STE_STAT_TX_FRAMES);
821	CSR_READ_1(sc, STE_STAT_TX_BCAST);
822	CSR_READ_1(sc, STE_STAT_TX_MCAST);
823	CSR_READ_1(sc, STE_STAT_CARRIER_ERR);
824	CSR_READ_1(sc, STE_STAT_SINGLE_COLLS);
825	CSR_READ_1(sc, STE_STAT_MULTI_COLLS);
826	CSR_READ_1(sc, STE_STAT_LATE_COLLS);
827	CSR_READ_1(sc, STE_STAT_TX_DEFER);
828	CSR_READ_1(sc, STE_STAT_TX_EXDEFER);
829	CSR_READ_1(sc, STE_STAT_TX_ABORT);
830}
831
832static void
833ste_stats_update(struct ste_softc *sc)
834{
835	struct ifnet *ifp;
836	struct ste_hw_stats *stats;
837	uint32_t val;
838
839	STE_LOCK_ASSERT(sc);
840
841	ifp = sc->ste_ifp;
842	stats = &sc->ste_stats;
843	/* Rx stats. */
844	val = (uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO) |
845	    ((uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI)) << 16;
846	val &= 0x000FFFFF;
847	stats->rx_bytes += val;
848	stats->rx_frames += CSR_READ_2(sc, STE_STAT_RX_FRAMES);
849	stats->rx_bcast_frames += CSR_READ_1(sc, STE_STAT_RX_BCAST);
850	stats->rx_mcast_frames += CSR_READ_1(sc, STE_STAT_RX_MCAST);
851	stats->rx_lost_frames += CSR_READ_1(sc, STE_STAT_RX_LOST);
852	/* Tx stats. */
853	val = (uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO) |
854	    ((uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI)) << 16;
855	val &= 0x000FFFFF;
856	stats->tx_bytes += val;
857	stats->tx_frames += CSR_READ_2(sc, STE_STAT_TX_FRAMES);
858	stats->tx_bcast_frames += CSR_READ_1(sc, STE_STAT_TX_BCAST);
859	stats->tx_mcast_frames += CSR_READ_1(sc, STE_STAT_TX_MCAST);
860	stats->tx_carrsense_errs += CSR_READ_1(sc, STE_STAT_CARRIER_ERR);
861	val = CSR_READ_1(sc, STE_STAT_SINGLE_COLLS);
862	stats->tx_single_colls += val;
863	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, val);
864	val = CSR_READ_1(sc, STE_STAT_MULTI_COLLS);
865	stats->tx_multi_colls += val;
866	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, val);
867	val += CSR_READ_1(sc, STE_STAT_LATE_COLLS);
868	stats->tx_late_colls += val;
869	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, val);
870	stats->tx_frames_defered += CSR_READ_1(sc, STE_STAT_TX_DEFER);
871	stats->tx_excess_defers += CSR_READ_1(sc, STE_STAT_TX_EXDEFER);
872	stats->tx_abort += CSR_READ_1(sc, STE_STAT_TX_ABORT);
873}
874
875/*
876 * Probe for a Sundance ST201 chip. Check the PCI vendor and device
877 * IDs against our list and return a device name if we find a match.
878 */
879static int
880ste_probe(device_t dev)
881{
882	const struct ste_type *t;
883
884	t = ste_devs;
885
886	while (t->ste_name != NULL) {
887		if ((pci_get_vendor(dev) == t->ste_vid) &&
888		    (pci_get_device(dev) == t->ste_did)) {
889			device_set_desc(dev, t->ste_name);
890			return (BUS_PROBE_DEFAULT);
891		}
892		t++;
893	}
894
895	return (ENXIO);
896}
897
898/*
899 * Attach the interface. Allocate softc structures, do ifmedia
900 * setup and ethernet/BPF attach.
901 */
902static int
903ste_attach(device_t dev)
904{
905	struct ste_softc *sc;
906	struct ifnet *ifp;
907	uint16_t eaddr[ETHER_ADDR_LEN / 2];
908	int error = 0, phy, pmc, prefer_iomap, rid;
909
910	sc = device_get_softc(dev);
911	sc->ste_dev = dev;
912
913	/*
914	 * Only use one PHY since this chip reports multiple
915	 * Note on the DFE-550 the PHY is at 1 on the DFE-580
916	 * it is at 0 & 1.  It is rev 0x12.
917	 */
918	if (pci_get_vendor(dev) == DL_VENDORID &&
919	    pci_get_device(dev) == DL_DEVICEID_DL10050 &&
920	    pci_get_revid(dev) == 0x12 )
921		sc->ste_flags |= STE_FLAG_ONE_PHY;
922
923	mtx_init(&sc->ste_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
924	    MTX_DEF);
925	/*
926	 * Map control/status registers.
927	 */
928	pci_enable_busmaster(dev);
929
930	/*
931	 * Prefer memory space register mapping over IO space but use
932	 * IO space for a device that is known to have issues on memory
933	 * mapping.
934	 */
935	prefer_iomap = 0;
936	if (pci_get_device(dev) == ST_DEVICEID_ST201_1)
937		prefer_iomap = 1;
938	else
939		resource_int_value(device_get_name(sc->ste_dev),
940		    device_get_unit(sc->ste_dev), "prefer_iomap",
941		    &prefer_iomap);
942	if (prefer_iomap == 0) {
943		sc->ste_res_id = PCIR_BAR(1);
944		sc->ste_res_type = SYS_RES_MEMORY;
945		sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
946		    &sc->ste_res_id, RF_ACTIVE);
947	}
948	if (prefer_iomap || sc->ste_res == NULL) {
949		sc->ste_res_id = PCIR_BAR(0);
950		sc->ste_res_type = SYS_RES_IOPORT;
951		sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
952		    &sc->ste_res_id, RF_ACTIVE);
953	}
954	if (sc->ste_res == NULL) {
955		device_printf(dev, "couldn't map ports/memory\n");
956		error = ENXIO;
957		goto fail;
958	}
959
960	/* Allocate interrupt */
961	rid = 0;
962	sc->ste_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
963	    RF_SHAREABLE | RF_ACTIVE);
964
965	if (sc->ste_irq == NULL) {
966		device_printf(dev, "couldn't map interrupt\n");
967		error = ENXIO;
968		goto fail;
969	}
970
971	callout_init_mtx(&sc->ste_callout, &sc->ste_mtx, 0);
972
973	/* Reset the adapter. */
974	ste_reset(sc);
975
976	/*
977	 * Get station address from the EEPROM.
978	 */
979	if (ste_read_eeprom(sc, eaddr, STE_EEADDR_NODE0, ETHER_ADDR_LEN / 2)) {
980		device_printf(dev, "failed to read station address\n");
981		error = ENXIO;
982		goto fail;
983	}
984	ste_sysctl_node(sc);
985
986	if ((error = ste_dma_alloc(sc)) != 0)
987		goto fail;
988
989	ifp = sc->ste_ifp = if_alloc(IFT_ETHER);
990	if (ifp == NULL) {
991		device_printf(dev, "can not if_alloc()\n");
992		error = ENOSPC;
993		goto fail;
994	}
995
996	/* Do MII setup. */
997	phy = MII_PHY_ANY;
998	if ((sc->ste_flags & STE_FLAG_ONE_PHY) != 0)
999		phy = 0;
1000	error = mii_attach(dev, &sc->ste_miibus, ifp, ste_ifmedia_upd,
1001		ste_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
1002	if (error != 0) {
1003		device_printf(dev, "attaching PHYs failed\n");
1004		goto fail;
1005	}
1006
1007	ifp->if_softc = sc;
1008	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1009	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1010	ifp->if_ioctl = ste_ioctl;
1011	ifp->if_start = ste_start;
1012	ifp->if_init = ste_init;
1013	IFQ_SET_MAXLEN(&ifp->if_snd, STE_TX_LIST_CNT - 1);
1014	ifp->if_snd.ifq_drv_maxlen = STE_TX_LIST_CNT - 1;
1015	IFQ_SET_READY(&ifp->if_snd);
1016
1017	sc->ste_tx_thresh = STE_TXSTART_THRESH;
1018
1019	/*
1020	 * Call MI attach routine.
1021	 */
1022	ether_ifattach(ifp, (uint8_t *)eaddr);
1023
1024	/*
1025	 * Tell the upper layer(s) we support long frames.
1026	 */
1027	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
1028	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1029	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0)
1030		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
1031	ifp->if_capenable = ifp->if_capabilities;
1032#ifdef DEVICE_POLLING
1033	ifp->if_capabilities |= IFCAP_POLLING;
1034#endif
1035
1036	/* Hook interrupt last to avoid having to lock softc */
1037	error = bus_setup_intr(dev, sc->ste_irq, INTR_TYPE_NET | INTR_MPSAFE,
1038	    NULL, ste_intr, sc, &sc->ste_intrhand);
1039
1040	if (error) {
1041		device_printf(dev, "couldn't set up irq\n");
1042		ether_ifdetach(ifp);
1043		goto fail;
1044	}
1045
1046fail:
1047	if (error)
1048		ste_detach(dev);
1049
1050	return (error);
1051}
1052
1053/*
1054 * Shutdown hardware and free up resources. This can be called any
1055 * time after the mutex has been initialized. It is called in both
1056 * the error case in attach and the normal detach case so it needs
1057 * to be careful about only freeing resources that have actually been
1058 * allocated.
1059 */
1060static int
1061ste_detach(device_t dev)
1062{
1063	struct ste_softc *sc;
1064	struct ifnet *ifp;
1065
1066	sc = device_get_softc(dev);
1067	KASSERT(mtx_initialized(&sc->ste_mtx), ("ste mutex not initialized"));
1068	ifp = sc->ste_ifp;
1069
1070#ifdef DEVICE_POLLING
1071	if (ifp->if_capenable & IFCAP_POLLING)
1072		ether_poll_deregister(ifp);
1073#endif
1074
1075	/* These should only be active if attach succeeded */
1076	if (device_is_attached(dev)) {
1077		ether_ifdetach(ifp);
1078		STE_LOCK(sc);
1079		ste_stop(sc);
1080		STE_UNLOCK(sc);
1081		callout_drain(&sc->ste_callout);
1082	}
1083	if (sc->ste_miibus)
1084		device_delete_child(dev, sc->ste_miibus);
1085	bus_generic_detach(dev);
1086
1087	if (sc->ste_intrhand)
1088		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1089	if (sc->ste_irq)
1090		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1091	if (sc->ste_res)
1092		bus_release_resource(dev, sc->ste_res_type, sc->ste_res_id,
1093		    sc->ste_res);
1094
1095	if (ifp)
1096		if_free(ifp);
1097
1098	ste_dma_free(sc);
1099	mtx_destroy(&sc->ste_mtx);
1100
1101	return (0);
1102}
1103
1104struct ste_dmamap_arg {
1105	bus_addr_t	ste_busaddr;
1106};
1107
1108static void
1109ste_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1110{
1111	struct ste_dmamap_arg *ctx;
1112
1113	if (error != 0)
1114		return;
1115
1116	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1117
1118	ctx = (struct ste_dmamap_arg *)arg;
1119	ctx->ste_busaddr = segs[0].ds_addr;
1120}
1121
1122static int
1123ste_dma_alloc(struct ste_softc *sc)
1124{
1125	struct ste_chain *txc;
1126	struct ste_chain_onefrag *rxc;
1127	struct ste_dmamap_arg ctx;
1128	int error, i;
1129
1130	/* Create parent DMA tag. */
1131	error = bus_dma_tag_create(
1132	    bus_get_dma_tag(sc->ste_dev), /* parent */
1133	    1, 0,			/* alignment, boundary */
1134	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1135	    BUS_SPACE_MAXADDR,		/* highaddr */
1136	    NULL, NULL,			/* filter, filterarg */
1137	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1138	    0,				/* nsegments */
1139	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1140	    0,				/* flags */
1141	    NULL, NULL,			/* lockfunc, lockarg */
1142	    &sc->ste_cdata.ste_parent_tag);
1143	if (error != 0) {
1144		device_printf(sc->ste_dev,
1145		    "could not create parent DMA tag.\n");
1146		goto fail;
1147	}
1148
1149	/* Create DMA tag for Tx descriptor list. */
1150	error = bus_dma_tag_create(
1151	    sc->ste_cdata.ste_parent_tag, /* parent */
1152	    STE_DESC_ALIGN, 0,		/* alignment, boundary */
1153	    BUS_SPACE_MAXADDR,		/* lowaddr */
1154	    BUS_SPACE_MAXADDR,		/* highaddr */
1155	    NULL, NULL,			/* filter, filterarg */
1156	    STE_TX_LIST_SZ,		/* maxsize */
1157	    1,				/* nsegments */
1158	    STE_TX_LIST_SZ,		/* maxsegsize */
1159	    0,				/* flags */
1160	    NULL, NULL,			/* lockfunc, lockarg */
1161	    &sc->ste_cdata.ste_tx_list_tag);
1162	if (error != 0) {
1163		device_printf(sc->ste_dev,
1164		    "could not create Tx list DMA tag.\n");
1165		goto fail;
1166	}
1167
1168	/* Create DMA tag for Rx descriptor list. */
1169	error = bus_dma_tag_create(
1170	    sc->ste_cdata.ste_parent_tag, /* parent */
1171	    STE_DESC_ALIGN, 0,		/* alignment, boundary */
1172	    BUS_SPACE_MAXADDR,		/* lowaddr */
1173	    BUS_SPACE_MAXADDR,		/* highaddr */
1174	    NULL, NULL,			/* filter, filterarg */
1175	    STE_RX_LIST_SZ,		/* maxsize */
1176	    1,				/* nsegments */
1177	    STE_RX_LIST_SZ,		/* maxsegsize */
1178	    0,				/* flags */
1179	    NULL, NULL,			/* lockfunc, lockarg */
1180	    &sc->ste_cdata.ste_rx_list_tag);
1181	if (error != 0) {
1182		device_printf(sc->ste_dev,
1183		    "could not create Rx list DMA tag.\n");
1184		goto fail;
1185	}
1186
1187	/* Create DMA tag for Tx buffers. */
1188	error = bus_dma_tag_create(
1189	    sc->ste_cdata.ste_parent_tag, /* parent */
1190	    1, 0,			/* alignment, boundary */
1191	    BUS_SPACE_MAXADDR,		/* lowaddr */
1192	    BUS_SPACE_MAXADDR,		/* highaddr */
1193	    NULL, NULL,			/* filter, filterarg */
1194	    MCLBYTES * STE_MAXFRAGS,	/* maxsize */
1195	    STE_MAXFRAGS,		/* nsegments */
1196	    MCLBYTES,			/* maxsegsize */
1197	    0,				/* flags */
1198	    NULL, NULL,			/* lockfunc, lockarg */
1199	    &sc->ste_cdata.ste_tx_tag);
1200	if (error != 0) {
1201		device_printf(sc->ste_dev, "could not create Tx DMA tag.\n");
1202		goto fail;
1203	}
1204
1205	/* Create DMA tag for Rx buffers. */
1206	error = bus_dma_tag_create(
1207	    sc->ste_cdata.ste_parent_tag, /* parent */
1208	    1, 0,			/* alignment, boundary */
1209	    BUS_SPACE_MAXADDR,		/* lowaddr */
1210	    BUS_SPACE_MAXADDR,		/* highaddr */
1211	    NULL, NULL,			/* filter, filterarg */
1212	    MCLBYTES,			/* maxsize */
1213	    1,				/* nsegments */
1214	    MCLBYTES,			/* maxsegsize */
1215	    0,				/* flags */
1216	    NULL, NULL,			/* lockfunc, lockarg */
1217	    &sc->ste_cdata.ste_rx_tag);
1218	if (error != 0) {
1219		device_printf(sc->ste_dev, "could not create Rx DMA tag.\n");
1220		goto fail;
1221	}
1222
1223	/* Allocate DMA'able memory and load the DMA map for Tx list. */
1224	error = bus_dmamem_alloc(sc->ste_cdata.ste_tx_list_tag,
1225	    (void **)&sc->ste_ldata.ste_tx_list,
1226	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1227	    &sc->ste_cdata.ste_tx_list_map);
1228	if (error != 0) {
1229		device_printf(sc->ste_dev,
1230		    "could not allocate DMA'able memory for Tx list.\n");
1231		goto fail;
1232	}
1233	ctx.ste_busaddr = 0;
1234	error = bus_dmamap_load(sc->ste_cdata.ste_tx_list_tag,
1235	    sc->ste_cdata.ste_tx_list_map, sc->ste_ldata.ste_tx_list,
1236	    STE_TX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
1237	if (error != 0 || ctx.ste_busaddr == 0) {
1238		device_printf(sc->ste_dev,
1239		    "could not load DMA'able memory for Tx list.\n");
1240		goto fail;
1241	}
1242	sc->ste_ldata.ste_tx_list_paddr = ctx.ste_busaddr;
1243
1244	/* Allocate DMA'able memory and load the DMA map for Rx list. */
1245	error = bus_dmamem_alloc(sc->ste_cdata.ste_rx_list_tag,
1246	    (void **)&sc->ste_ldata.ste_rx_list,
1247	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1248	    &sc->ste_cdata.ste_rx_list_map);
1249	if (error != 0) {
1250		device_printf(sc->ste_dev,
1251		    "could not allocate DMA'able memory for Rx list.\n");
1252		goto fail;
1253	}
1254	ctx.ste_busaddr = 0;
1255	error = bus_dmamap_load(sc->ste_cdata.ste_rx_list_tag,
1256	    sc->ste_cdata.ste_rx_list_map, sc->ste_ldata.ste_rx_list,
1257	    STE_RX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
1258	if (error != 0 || ctx.ste_busaddr == 0) {
1259		device_printf(sc->ste_dev,
1260		    "could not load DMA'able memory for Rx list.\n");
1261		goto fail;
1262	}
1263	sc->ste_ldata.ste_rx_list_paddr = ctx.ste_busaddr;
1264
1265	/* Create DMA maps for Tx buffers. */
1266	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1267		txc = &sc->ste_cdata.ste_tx_chain[i];
1268		txc->ste_ptr = NULL;
1269		txc->ste_mbuf = NULL;
1270		txc->ste_next = NULL;
1271		txc->ste_phys = 0;
1272		txc->ste_map = NULL;
1273		error = bus_dmamap_create(sc->ste_cdata.ste_tx_tag, 0,
1274		    &txc->ste_map);
1275		if (error != 0) {
1276			device_printf(sc->ste_dev,
1277			    "could not create Tx dmamap.\n");
1278			goto fail;
1279		}
1280	}
1281	/* Create DMA maps for Rx buffers. */
1282	if ((error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
1283	    &sc->ste_cdata.ste_rx_sparemap)) != 0) {
1284		device_printf(sc->ste_dev,
1285		    "could not create spare Rx dmamap.\n");
1286		goto fail;
1287	}
1288	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1289		rxc = &sc->ste_cdata.ste_rx_chain[i];
1290		rxc->ste_ptr = NULL;
1291		rxc->ste_mbuf = NULL;
1292		rxc->ste_next = NULL;
1293		rxc->ste_map = NULL;
1294		error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
1295		    &rxc->ste_map);
1296		if (error != 0) {
1297			device_printf(sc->ste_dev,
1298			    "could not create Rx dmamap.\n");
1299			goto fail;
1300		}
1301	}
1302
1303fail:
1304	return (error);
1305}
1306
1307static void
1308ste_dma_free(struct ste_softc *sc)
1309{
1310	struct ste_chain *txc;
1311	struct ste_chain_onefrag *rxc;
1312	int i;
1313
1314	/* Tx buffers. */
1315	if (sc->ste_cdata.ste_tx_tag != NULL) {
1316		for (i = 0; i < STE_TX_LIST_CNT; i++) {
1317			txc = &sc->ste_cdata.ste_tx_chain[i];
1318			if (txc->ste_map != NULL) {
1319				bus_dmamap_destroy(sc->ste_cdata.ste_tx_tag,
1320				    txc->ste_map);
1321				txc->ste_map = NULL;
1322			}
1323		}
1324		bus_dma_tag_destroy(sc->ste_cdata.ste_tx_tag);
1325		sc->ste_cdata.ste_tx_tag = NULL;
1326	}
1327	/* Rx buffers. */
1328	if (sc->ste_cdata.ste_rx_tag != NULL) {
1329		for (i = 0; i < STE_RX_LIST_CNT; i++) {
1330			rxc = &sc->ste_cdata.ste_rx_chain[i];
1331			if (rxc->ste_map != NULL) {
1332				bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
1333				    rxc->ste_map);
1334				rxc->ste_map = NULL;
1335			}
1336		}
1337		if (sc->ste_cdata.ste_rx_sparemap != NULL) {
1338			bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
1339			    sc->ste_cdata.ste_rx_sparemap);
1340			sc->ste_cdata.ste_rx_sparemap = NULL;
1341		}
1342		bus_dma_tag_destroy(sc->ste_cdata.ste_rx_tag);
1343		sc->ste_cdata.ste_rx_tag = NULL;
1344	}
1345	/* Tx descriptor list. */
1346	if (sc->ste_cdata.ste_tx_list_tag != NULL) {
1347		if (sc->ste_ldata.ste_tx_list_paddr != 0)
1348			bus_dmamap_unload(sc->ste_cdata.ste_tx_list_tag,
1349			    sc->ste_cdata.ste_tx_list_map);
1350		if (sc->ste_ldata.ste_tx_list != NULL)
1351			bus_dmamem_free(sc->ste_cdata.ste_tx_list_tag,
1352			    sc->ste_ldata.ste_tx_list,
1353			    sc->ste_cdata.ste_tx_list_map);
1354		sc->ste_ldata.ste_tx_list = NULL;
1355		sc->ste_ldata.ste_tx_list_paddr = 0;
1356		bus_dma_tag_destroy(sc->ste_cdata.ste_tx_list_tag);
1357		sc->ste_cdata.ste_tx_list_tag = NULL;
1358	}
1359	/* Rx descriptor list. */
1360	if (sc->ste_cdata.ste_rx_list_tag != NULL) {
1361		if (sc->ste_ldata.ste_rx_list_paddr != 0)
1362			bus_dmamap_unload(sc->ste_cdata.ste_rx_list_tag,
1363			    sc->ste_cdata.ste_rx_list_map);
1364		if (sc->ste_ldata.ste_rx_list != NULL)
1365			bus_dmamem_free(sc->ste_cdata.ste_rx_list_tag,
1366			    sc->ste_ldata.ste_rx_list,
1367			    sc->ste_cdata.ste_rx_list_map);
1368		sc->ste_ldata.ste_rx_list = NULL;
1369		sc->ste_ldata.ste_rx_list_paddr = 0;
1370		bus_dma_tag_destroy(sc->ste_cdata.ste_rx_list_tag);
1371		sc->ste_cdata.ste_rx_list_tag = NULL;
1372	}
1373	if (sc->ste_cdata.ste_parent_tag != NULL) {
1374		bus_dma_tag_destroy(sc->ste_cdata.ste_parent_tag);
1375		sc->ste_cdata.ste_parent_tag = NULL;
1376	}
1377}
1378
1379static int
1380ste_newbuf(struct ste_softc *sc, struct ste_chain_onefrag *rxc)
1381{
1382	struct mbuf *m;
1383	bus_dma_segment_t segs[1];
1384	bus_dmamap_t map;
1385	int error, nsegs;
1386
1387	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1388	if (m == NULL)
1389		return (ENOBUFS);
1390	m->m_len = m->m_pkthdr.len = MCLBYTES;
1391	m_adj(m, ETHER_ALIGN);
1392
1393	if ((error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_rx_tag,
1394	    sc->ste_cdata.ste_rx_sparemap, m, segs, &nsegs, 0)) != 0) {
1395		m_freem(m);
1396		return (error);
1397	}
1398	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1399
1400	if (rxc->ste_mbuf != NULL) {
1401		bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
1402		    BUS_DMASYNC_POSTREAD);
1403		bus_dmamap_unload(sc->ste_cdata.ste_rx_tag, rxc->ste_map);
1404	}
1405	map = rxc->ste_map;
1406	rxc->ste_map = sc->ste_cdata.ste_rx_sparemap;
1407	sc->ste_cdata.ste_rx_sparemap = map;
1408	bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
1409	    BUS_DMASYNC_PREREAD);
1410	rxc->ste_mbuf = m;
1411	rxc->ste_ptr->ste_status = 0;
1412	rxc->ste_ptr->ste_frag.ste_addr = htole32(segs[0].ds_addr);
1413	rxc->ste_ptr->ste_frag.ste_len = htole32(segs[0].ds_len |
1414	    STE_FRAG_LAST);
1415	return (0);
1416}
1417
1418static int
1419ste_init_rx_list(struct ste_softc *sc)
1420{
1421	struct ste_chain_data *cd;
1422	struct ste_list_data *ld;
1423	int error, i;
1424
1425	sc->ste_int_rx_act = 0;
1426	cd = &sc->ste_cdata;
1427	ld = &sc->ste_ldata;
1428	bzero(ld->ste_rx_list, STE_RX_LIST_SZ);
1429	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1430		cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
1431		error = ste_newbuf(sc, &cd->ste_rx_chain[i]);
1432		if (error != 0)
1433			return (error);
1434		if (i == (STE_RX_LIST_CNT - 1)) {
1435			cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[0];
1436			ld->ste_rx_list[i].ste_next =
1437			    htole32(ld->ste_rx_list_paddr +
1438			    (sizeof(struct ste_desc_onefrag) * 0));
1439		} else {
1440			cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[i + 1];
1441			ld->ste_rx_list[i].ste_next =
1442			    htole32(ld->ste_rx_list_paddr +
1443			    (sizeof(struct ste_desc_onefrag) * (i + 1)));
1444		}
1445	}
1446
1447	cd->ste_rx_head = &cd->ste_rx_chain[0];
1448	bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
1449	    sc->ste_cdata.ste_rx_list_map,
1450	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1451
1452	return (0);
1453}
1454
1455static void
1456ste_init_tx_list(struct ste_softc *sc)
1457{
1458	struct ste_chain_data *cd;
1459	struct ste_list_data *ld;
1460	int i;
1461
1462	cd = &sc->ste_cdata;
1463	ld = &sc->ste_ldata;
1464	bzero(ld->ste_tx_list, STE_TX_LIST_SZ);
1465	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1466		cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
1467		cd->ste_tx_chain[i].ste_mbuf = NULL;
1468		if (i == (STE_TX_LIST_CNT - 1)) {
1469			cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[0];
1470			cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
1471			    ld->ste_tx_list_paddr +
1472			    (sizeof(struct ste_desc) * 0)));
1473		} else {
1474			cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[i + 1];
1475			cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
1476			    ld->ste_tx_list_paddr +
1477			    (sizeof(struct ste_desc) * (i + 1))));
1478		}
1479	}
1480
1481	cd->ste_last_tx = NULL;
1482	cd->ste_tx_prod = 0;
1483	cd->ste_tx_cons = 0;
1484	cd->ste_tx_cnt = 0;
1485
1486	bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
1487	    sc->ste_cdata.ste_tx_list_map,
1488	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1489}
1490
1491static void
1492ste_init(void *xsc)
1493{
1494	struct ste_softc *sc;
1495
1496	sc = xsc;
1497	STE_LOCK(sc);
1498	ste_init_locked(sc);
1499	STE_UNLOCK(sc);
1500}
1501
1502static void
1503ste_init_locked(struct ste_softc *sc)
1504{
1505	struct ifnet *ifp;
1506	struct mii_data *mii;
1507	uint8_t val;
1508	int i;
1509
1510	STE_LOCK_ASSERT(sc);
1511	ifp = sc->ste_ifp;
1512	mii = device_get_softc(sc->ste_miibus);
1513
1514	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1515		return;
1516
1517	ste_stop(sc);
1518	/* Reset the chip to a known state. */
1519	ste_reset(sc);
1520
1521	/* Init our MAC address */
1522	for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
1523		CSR_WRITE_2(sc, STE_PAR0 + i,
1524		    ((IF_LLADDR(sc->ste_ifp)[i] & 0xff) |
1525		     IF_LLADDR(sc->ste_ifp)[i + 1] << 8));
1526	}
1527
1528	/* Init RX list */
1529	if (ste_init_rx_list(sc) != 0) {
1530		device_printf(sc->ste_dev,
1531		    "initialization failed: no memory for RX buffers\n");
1532		ste_stop(sc);
1533		return;
1534	}
1535
1536	/* Set RX polling interval */
1537	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 64);
1538
1539	/* Init TX descriptors */
1540	ste_init_tx_list(sc);
1541
1542	/* Clear and disable WOL. */
1543	val = CSR_READ_1(sc, STE_WAKE_EVENT);
1544	val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB |
1545	    STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB);
1546	CSR_WRITE_1(sc, STE_WAKE_EVENT, val);
1547
1548	/* Set the TX freethresh value */
1549	CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8);
1550
1551	/* Set the TX start threshold for best performance. */
1552	CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
1553
1554	/* Set the TX reclaim threshold. */
1555	CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4));
1556
1557	/* Accept VLAN length packets */
1558	CSR_WRITE_2(sc, STE_MAX_FRAMELEN, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN);
1559
1560	/* Set up the RX filter. */
1561	ste_rxfilter(sc);
1562
1563	/* Load the address of the RX list. */
1564	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1565	ste_wait(sc);
1566	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
1567	    STE_ADDR_LO(sc->ste_ldata.ste_rx_list_paddr));
1568	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1569	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1570
1571	/* Set TX polling interval(defer until we TX first packet). */
1572	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1573
1574	/* Load address of the TX list */
1575	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1576	ste_wait(sc);
1577	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1578	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1579	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1580	ste_wait(sc);
1581	/* Select 3.2us timer. */
1582	STE_CLRBIT4(sc, STE_DMACTL, STE_DMACTL_COUNTDOWN_SPEED |
1583	    STE_DMACTL_COUNTDOWN_MODE);
1584
1585	/* Enable receiver and transmitter */
1586	CSR_WRITE_2(sc, STE_MACCTL0, 0);
1587	CSR_WRITE_2(sc, STE_MACCTL1, 0);
1588	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
1589	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
1590
1591	/* Enable stats counters. */
1592	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
1593	/* Clear stats counters. */
1594	ste_stats_clear(sc);
1595
1596	CSR_WRITE_2(sc, STE_COUNTDOWN, 0);
1597	CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
1598#ifdef DEVICE_POLLING
1599	/* Disable interrupts if we are polling. */
1600	if (ifp->if_capenable & IFCAP_POLLING)
1601		CSR_WRITE_2(sc, STE_IMR, 0);
1602	else
1603#endif
1604	/* Enable interrupts. */
1605	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1606
1607	sc->ste_flags &= ~STE_FLAG_LINK;
1608	/* Switch to the current media. */
1609	mii_mediachg(mii);
1610
1611	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1612	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1613
1614	callout_reset(&sc->ste_callout, hz, ste_tick, sc);
1615}
1616
1617static void
1618ste_stop(struct ste_softc *sc)
1619{
1620	struct ifnet *ifp;
1621	struct ste_chain_onefrag *cur_rx;
1622	struct ste_chain *cur_tx;
1623	uint32_t val;
1624	int i;
1625
1626	STE_LOCK_ASSERT(sc);
1627	ifp = sc->ste_ifp;
1628
1629	callout_stop(&sc->ste_callout);
1630	sc->ste_timer = 0;
1631	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
1632
1633	CSR_WRITE_2(sc, STE_IMR, 0);
1634	CSR_WRITE_2(sc, STE_COUNTDOWN, 0);
1635	/* Stop pending DMA. */
1636	val = CSR_READ_4(sc, STE_DMACTL);
1637	val |= STE_DMACTL_TXDMA_STALL | STE_DMACTL_RXDMA_STALL;
1638	CSR_WRITE_4(sc, STE_DMACTL, val);
1639	ste_wait(sc);
1640	/* Disable auto-polling. */
1641	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 0);
1642	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1643	/* Nullify DMA address to stop any further DMA. */
1644	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR, 0);
1645	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1646	/* Stop TX/RX MAC. */
1647	val = CSR_READ_2(sc, STE_MACCTL1);
1648	val |= STE_MACCTL1_TX_DISABLE | STE_MACCTL1_RX_DISABLE |
1649	    STE_MACCTL1_STATS_DISABLE;
1650	CSR_WRITE_2(sc, STE_MACCTL1, val);
1651	for (i = 0; i < STE_TIMEOUT; i++) {
1652		DELAY(10);
1653		if ((CSR_READ_2(sc, STE_MACCTL1) & (STE_MACCTL1_TX_DISABLE |
1654		    STE_MACCTL1_RX_DISABLE | STE_MACCTL1_STATS_DISABLE)) == 0)
1655			break;
1656	}
1657	if (i == STE_TIMEOUT)
1658		device_printf(sc->ste_dev, "Stopping MAC timed out\n");
1659	/* Acknowledge any pending interrupts. */
1660	CSR_READ_2(sc, STE_ISR_ACK);
1661	ste_stats_update(sc);
1662
1663	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1664		cur_rx = &sc->ste_cdata.ste_rx_chain[i];
1665		if (cur_rx->ste_mbuf != NULL) {
1666			bus_dmamap_sync(sc->ste_cdata.ste_rx_tag,
1667			    cur_rx->ste_map, BUS_DMASYNC_POSTREAD);
1668			bus_dmamap_unload(sc->ste_cdata.ste_rx_tag,
1669			    cur_rx->ste_map);
1670			m_freem(cur_rx->ste_mbuf);
1671			cur_rx->ste_mbuf = NULL;
1672		}
1673	}
1674
1675	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1676		cur_tx = &sc->ste_cdata.ste_tx_chain[i];
1677		if (cur_tx->ste_mbuf != NULL) {
1678			bus_dmamap_sync(sc->ste_cdata.ste_tx_tag,
1679			    cur_tx->ste_map, BUS_DMASYNC_POSTWRITE);
1680			bus_dmamap_unload(sc->ste_cdata.ste_tx_tag,
1681			    cur_tx->ste_map);
1682			m_freem(cur_tx->ste_mbuf);
1683			cur_tx->ste_mbuf = NULL;
1684		}
1685	}
1686}
1687
1688static void
1689ste_reset(struct ste_softc *sc)
1690{
1691	uint32_t ctl;
1692	int i;
1693
1694	ctl = CSR_READ_4(sc, STE_ASICCTL);
1695	ctl |= STE_ASICCTL_GLOBAL_RESET | STE_ASICCTL_RX_RESET |
1696	    STE_ASICCTL_TX_RESET | STE_ASICCTL_DMA_RESET |
1697	    STE_ASICCTL_FIFO_RESET | STE_ASICCTL_NETWORK_RESET |
1698	    STE_ASICCTL_AUTOINIT_RESET |STE_ASICCTL_HOST_RESET |
1699	    STE_ASICCTL_EXTRESET_RESET;
1700	CSR_WRITE_4(sc, STE_ASICCTL, ctl);
1701	CSR_READ_4(sc, STE_ASICCTL);
1702	/*
1703	 * Due to the need of accessing EEPROM controller can take
1704	 * up to 1ms to complete the global reset.
1705	 */
1706	DELAY(1000);
1707
1708	for (i = 0; i < STE_TIMEOUT; i++) {
1709		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
1710			break;
1711		DELAY(10);
1712	}
1713
1714	if (i == STE_TIMEOUT)
1715		device_printf(sc->ste_dev, "global reset never completed\n");
1716}
1717
1718static void
1719ste_restart_tx(struct ste_softc *sc)
1720{
1721	uint16_t mac;
1722	int i;
1723
1724	for (i = 0; i < STE_TIMEOUT; i++) {
1725		mac = CSR_READ_2(sc, STE_MACCTL1);
1726		mac |= STE_MACCTL1_TX_ENABLE;
1727		CSR_WRITE_2(sc, STE_MACCTL1, mac);
1728		mac = CSR_READ_2(sc, STE_MACCTL1);
1729		if ((mac & STE_MACCTL1_TX_ENABLED) != 0)
1730			break;
1731		DELAY(10);
1732	}
1733
1734	if (i == STE_TIMEOUT)
1735		device_printf(sc->ste_dev, "starting Tx failed");
1736}
1737
1738static int
1739ste_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1740{
1741	struct ste_softc *sc;
1742	struct ifreq *ifr;
1743	struct mii_data *mii;
1744	int error = 0, mask;
1745
1746	sc = ifp->if_softc;
1747	ifr = (struct ifreq *)data;
1748
1749	switch (command) {
1750	case SIOCSIFFLAGS:
1751		STE_LOCK(sc);
1752		if ((ifp->if_flags & IFF_UP) != 0) {
1753			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
1754			    ((ifp->if_flags ^ sc->ste_if_flags) &
1755			     (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1756				ste_rxfilter(sc);
1757			else
1758				ste_init_locked(sc);
1759		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1760			ste_stop(sc);
1761		sc->ste_if_flags = ifp->if_flags;
1762		STE_UNLOCK(sc);
1763		break;
1764	case SIOCADDMULTI:
1765	case SIOCDELMULTI:
1766		STE_LOCK(sc);
1767		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1768			ste_rxfilter(sc);
1769		STE_UNLOCK(sc);
1770		break;
1771	case SIOCGIFMEDIA:
1772	case SIOCSIFMEDIA:
1773		mii = device_get_softc(sc->ste_miibus);
1774		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1775		break;
1776	case SIOCSIFCAP:
1777		STE_LOCK(sc);
1778		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1779#ifdef DEVICE_POLLING
1780		if ((mask & IFCAP_POLLING) != 0 &&
1781		    (IFCAP_POLLING & ifp->if_capabilities) != 0) {
1782			ifp->if_capenable ^= IFCAP_POLLING;
1783			if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
1784				error = ether_poll_register(ste_poll, ifp);
1785				if (error != 0) {
1786					STE_UNLOCK(sc);
1787					break;
1788				}
1789				/* Disable interrupts. */
1790				CSR_WRITE_2(sc, STE_IMR, 0);
1791			} else {
1792				error = ether_poll_deregister(ifp);
1793				/* Enable interrupts. */
1794				CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1795			}
1796		}
1797#endif /* DEVICE_POLLING */
1798		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1799		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1800			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1801		STE_UNLOCK(sc);
1802		break;
1803	default:
1804		error = ether_ioctl(ifp, command, data);
1805		break;
1806	}
1807
1808	return (error);
1809}
1810
1811static int
1812ste_encap(struct ste_softc *sc, struct mbuf **m_head, struct ste_chain *txc)
1813{
1814	struct ste_frag *frag;
1815	struct mbuf *m;
1816	struct ste_desc *desc;
1817	bus_dma_segment_t txsegs[STE_MAXFRAGS];
1818	int error, i, nsegs;
1819
1820	STE_LOCK_ASSERT(sc);
1821	M_ASSERTPKTHDR((*m_head));
1822
1823	error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
1824	    txc->ste_map, *m_head, txsegs, &nsegs, 0);
1825	if (error == EFBIG) {
1826		m = m_collapse(*m_head, M_NOWAIT, STE_MAXFRAGS);
1827		if (m == NULL) {
1828			m_freem(*m_head);
1829			*m_head = NULL;
1830			return (ENOMEM);
1831		}
1832		*m_head = m;
1833		error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
1834		    txc->ste_map, *m_head, txsegs, &nsegs, 0);
1835		if (error != 0) {
1836			m_freem(*m_head);
1837			*m_head = NULL;
1838			return (error);
1839		}
1840	} else if (error != 0)
1841		return (error);
1842	if (nsegs == 0) {
1843		m_freem(*m_head);
1844		*m_head = NULL;
1845		return (EIO);
1846	}
1847	bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, txc->ste_map,
1848	    BUS_DMASYNC_PREWRITE);
1849
1850	desc = txc->ste_ptr;
1851	for (i = 0; i < nsegs; i++) {
1852		frag = &desc->ste_frags[i];
1853		frag->ste_addr = htole32(STE_ADDR_LO(txsegs[i].ds_addr));
1854		frag->ste_len = htole32(txsegs[i].ds_len);
1855	}
1856	desc->ste_frags[i - 1].ste_len |= htole32(STE_FRAG_LAST);
1857	/*
1858	 * Because we use Tx polling we can't chain multiple
1859	 * Tx descriptors here. Otherwise we race with controller.
1860	 */
1861	desc->ste_next = 0;
1862	if ((sc->ste_cdata.ste_tx_prod % STE_TX_INTR_FRAMES) == 0)
1863		desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS |
1864		    STE_TXCTL_DMAINTR);
1865	else
1866		desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS);
1867	txc->ste_mbuf = *m_head;
1868	STE_INC(sc->ste_cdata.ste_tx_prod, STE_TX_LIST_CNT);
1869	sc->ste_cdata.ste_tx_cnt++;
1870
1871	return (0);
1872}
1873
1874static void
1875ste_start(struct ifnet *ifp)
1876{
1877	struct ste_softc *sc;
1878
1879	sc = ifp->if_softc;
1880	STE_LOCK(sc);
1881	ste_start_locked(ifp);
1882	STE_UNLOCK(sc);
1883}
1884
1885static void
1886ste_start_locked(struct ifnet *ifp)
1887{
1888	struct ste_softc *sc;
1889	struct ste_chain *cur_tx;
1890	struct mbuf *m_head = NULL;
1891	int enq;
1892
1893	sc = ifp->if_softc;
1894	STE_LOCK_ASSERT(sc);
1895
1896	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1897	    IFF_DRV_RUNNING || (sc->ste_flags & STE_FLAG_LINK) == 0)
1898		return;
1899
1900	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
1901		if (sc->ste_cdata.ste_tx_cnt == STE_TX_LIST_CNT - 1) {
1902			/*
1903			 * Controller may have cached copy of the last used
1904			 * next ptr so we have to reserve one TFD to avoid
1905			 * TFD overruns.
1906			 */
1907			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1908			break;
1909		}
1910		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1911		if (m_head == NULL)
1912			break;
1913		cur_tx = &sc->ste_cdata.ste_tx_chain[sc->ste_cdata.ste_tx_prod];
1914		if (ste_encap(sc, &m_head, cur_tx) != 0) {
1915			if (m_head == NULL)
1916				break;
1917			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1918			break;
1919		}
1920		if (sc->ste_cdata.ste_last_tx == NULL) {
1921			bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
1922			    sc->ste_cdata.ste_tx_list_map,
1923			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1924			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1925			ste_wait(sc);
1926			CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
1927	    		    STE_ADDR_LO(sc->ste_ldata.ste_tx_list_paddr));
1928			CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64);
1929			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1930			ste_wait(sc);
1931		} else {
1932			sc->ste_cdata.ste_last_tx->ste_ptr->ste_next =
1933			    sc->ste_cdata.ste_last_tx->ste_phys;
1934			bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
1935			    sc->ste_cdata.ste_tx_list_map,
1936			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1937		}
1938		sc->ste_cdata.ste_last_tx = cur_tx;
1939
1940		enq++;
1941		/*
1942		 * If there's a BPF listener, bounce a copy of this frame
1943		 * to him.
1944	 	 */
1945		BPF_MTAP(ifp, m_head);
1946	}
1947
1948	if (enq > 0)
1949		sc->ste_timer = STE_TX_TIMEOUT;
1950}
1951
1952static void
1953ste_watchdog(struct ste_softc *sc)
1954{
1955	struct ifnet *ifp;
1956
1957	ifp = sc->ste_ifp;
1958	STE_LOCK_ASSERT(sc);
1959
1960	if (sc->ste_timer == 0 || --sc->ste_timer)
1961		return;
1962
1963	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1964	if_printf(ifp, "watchdog timeout\n");
1965
1966	ste_txeof(sc);
1967	ste_txeoc(sc);
1968	ste_rxeof(sc, -1);
1969	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1970	ste_init_locked(sc);
1971
1972	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1973		ste_start_locked(ifp);
1974}
1975
1976static int
1977ste_shutdown(device_t dev)
1978{
1979
1980	return (ste_suspend(dev));
1981}
1982
1983static int
1984ste_suspend(device_t dev)
1985{
1986	struct ste_softc *sc;
1987
1988	sc = device_get_softc(dev);
1989
1990	STE_LOCK(sc);
1991	ste_stop(sc);
1992	ste_setwol(sc);
1993	STE_UNLOCK(sc);
1994
1995	return (0);
1996}
1997
1998static int
1999ste_resume(device_t dev)
2000{
2001	struct ste_softc *sc;
2002	struct ifnet *ifp;
2003	int pmc;
2004	uint16_t pmstat;
2005
2006	sc = device_get_softc(dev);
2007	STE_LOCK(sc);
2008	if (pci_find_cap(sc->ste_dev, PCIY_PMG, &pmc) == 0) {
2009		/* Disable PME and clear PME status. */
2010		pmstat = pci_read_config(sc->ste_dev,
2011		    pmc + PCIR_POWER_STATUS, 2);
2012		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2013			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2014			pci_write_config(sc->ste_dev,
2015			    pmc + PCIR_POWER_STATUS, pmstat, 2);
2016		}
2017	}
2018	ifp = sc->ste_ifp;
2019	if ((ifp->if_flags & IFF_UP) != 0) {
2020		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2021		ste_init_locked(sc);
2022	}
2023	STE_UNLOCK(sc);
2024
2025	return (0);
2026}
2027
2028#define	STE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2029	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2030#define	STE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
2031	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
2032
2033static void
2034ste_sysctl_node(struct ste_softc *sc)
2035{
2036	struct sysctl_ctx_list *ctx;
2037	struct sysctl_oid_list *child, *parent;
2038	struct sysctl_oid *tree;
2039	struct ste_hw_stats *stats;
2040
2041	stats = &sc->ste_stats;
2042	ctx = device_get_sysctl_ctx(sc->ste_dev);
2043	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ste_dev));
2044
2045	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_rx_mod",
2046	    CTLFLAG_RW, &sc->ste_int_rx_mod, 0, "ste RX interrupt moderation");
2047	/* Pull in device tunables. */
2048	sc->ste_int_rx_mod = STE_IM_RX_TIMER_DEFAULT;
2049	resource_int_value(device_get_name(sc->ste_dev),
2050	    device_get_unit(sc->ste_dev), "int_rx_mod", &sc->ste_int_rx_mod);
2051
2052	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2053	    NULL, "STE statistics");
2054	parent = SYSCTL_CHILDREN(tree);
2055
2056	/* Rx statistics. */
2057	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
2058	    NULL, "Rx MAC statistics");
2059	child = SYSCTL_CHILDREN(tree);
2060	STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
2061	    &stats->rx_bytes, "Good octets");
2062	STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2063	    &stats->rx_frames, "Good frames");
2064	STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
2065	    &stats->rx_bcast_frames, "Good broadcast frames");
2066	STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
2067	    &stats->rx_mcast_frames, "Good multicast frames");
2068	STE_SYSCTL_STAT_ADD32(ctx, child, "lost_frames",
2069	    &stats->rx_lost_frames, "Lost frames");
2070
2071	/* Tx statistics. */
2072	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
2073	    NULL, "Tx MAC statistics");
2074	child = SYSCTL_CHILDREN(tree);
2075	STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
2076	    &stats->tx_bytes, "Good octets");
2077	STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2078	    &stats->tx_frames, "Good frames");
2079	STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
2080	    &stats->tx_bcast_frames, "Good broadcast frames");
2081	STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
2082	    &stats->tx_mcast_frames, "Good multicast frames");
2083	STE_SYSCTL_STAT_ADD32(ctx, child, "carrier_errs",
2084	    &stats->tx_carrsense_errs, "Carrier sense errors");
2085	STE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
2086	    &stats->tx_single_colls, "Single collisions");
2087	STE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
2088	    &stats->tx_multi_colls, "Multiple collisions");
2089	STE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
2090	    &stats->tx_late_colls, "Late collisions");
2091	STE_SYSCTL_STAT_ADD32(ctx, child, "defers",
2092	    &stats->tx_frames_defered, "Frames with deferrals");
2093	STE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
2094	    &stats->tx_excess_defers, "Frames with excessive derferrals");
2095	STE_SYSCTL_STAT_ADD32(ctx, child, "abort",
2096	    &stats->tx_abort, "Aborted frames due to Excessive collisions");
2097}
2098
2099#undef STE_SYSCTL_STAT_ADD32
2100#undef STE_SYSCTL_STAT_ADD64
2101
2102static void
2103ste_setwol(struct ste_softc *sc)
2104{
2105	struct ifnet *ifp;
2106	uint16_t pmstat;
2107	uint8_t val;
2108	int pmc;
2109
2110	STE_LOCK_ASSERT(sc);
2111
2112	if (pci_find_cap(sc->ste_dev, PCIY_PMG, &pmc) != 0) {
2113		/* Disable WOL. */
2114		CSR_READ_1(sc, STE_WAKE_EVENT);
2115		CSR_WRITE_1(sc, STE_WAKE_EVENT, 0);
2116		return;
2117	}
2118
2119	ifp = sc->ste_ifp;
2120	val = CSR_READ_1(sc, STE_WAKE_EVENT);
2121	val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB |
2122	    STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB);
2123	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2124		val |= STE_WAKEEVENT_MAGICPKT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB;
2125	CSR_WRITE_1(sc, STE_WAKE_EVENT, val);
2126	/* Request PME. */
2127	pmstat = pci_read_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, 2);
2128	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2129	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2130		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2131	pci_write_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2132}
2133