sfxge_tx.c revision 312157
1/*-
2 * Copyright (c) 2010-2016 Solarflare Communications Inc.
3 * All rights reserved.
4 *
5 * This software was developed in part by Philip Paeps under contract for
6 * Solarflare Communications, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright notice,
12 *    this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright notice,
14 *    this list of conditions and the following disclaimer in the documentation
15 *    and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
19 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
24 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
25 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
26 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
27 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 *
29 * The views and conclusions contained in the software and documentation are
30 * those of the authors and should not be interpreted as representing official
31 * policies, either expressed or implied, of the FreeBSD Project.
32 */
33
34/* Theory of operation:
35 *
36 * Tx queues allocation and mapping
37 *
38 * One Tx queue with enabled checksum offload is allocated per Rx channel
39 * (event queue).  Also 2 Tx queues (one without checksum offload and one
40 * with IP checksum offload only) are allocated and bound to event queue 0.
41 * sfxge_txq_type is used as Tx queue label.
42 *
43 * So, event queue plus label mapping to Tx queue index is:
44 *	if event queue index is 0, TxQ-index = TxQ-label * [0..SFXGE_TXQ_NTYPES)
45 *	else TxQ-index = SFXGE_TXQ_NTYPES + EvQ-index - 1
46 * See sfxge_get_txq_by_label() sfxge_ev.c
47 */
48
49#include <sys/cdefs.h>
50__FBSDID("$FreeBSD: stable/11/sys/dev/sfxge/sfxge_tx.c 312157 2017-01-14 10:16:36Z arybchik $");
51
52#include "opt_rss.h"
53
54#include <sys/param.h>
55#include <sys/malloc.h>
56#include <sys/mbuf.h>
57#include <sys/smp.h>
58#include <sys/socket.h>
59#include <sys/sysctl.h>
60#include <sys/syslog.h>
61#include <sys/limits.h>
62
63#include <net/bpf.h>
64#include <net/ethernet.h>
65#include <net/if.h>
66#include <net/if_vlan_var.h>
67
68#include <netinet/in.h>
69#include <netinet/ip.h>
70#include <netinet/ip6.h>
71#include <netinet/tcp.h>
72
73#ifdef RSS
74#include <net/rss_config.h>
75#endif
76
77#include "common/efx.h"
78
79#include "sfxge.h"
80#include "sfxge_tx.h"
81
82
83#define	SFXGE_PARAM_TX_DPL_GET_MAX	SFXGE_PARAM(tx_dpl_get_max)
84static int sfxge_tx_dpl_get_max = SFXGE_TX_DPL_GET_PKT_LIMIT_DEFAULT;
85TUNABLE_INT(SFXGE_PARAM_TX_DPL_GET_MAX, &sfxge_tx_dpl_get_max);
86SYSCTL_INT(_hw_sfxge, OID_AUTO, tx_dpl_get_max, CTLFLAG_RDTUN,
87	   &sfxge_tx_dpl_get_max, 0,
88	   "Maximum number of any packets in deferred packet get-list");
89
90#define	SFXGE_PARAM_TX_DPL_GET_NON_TCP_MAX \
91	SFXGE_PARAM(tx_dpl_get_non_tcp_max)
92static int sfxge_tx_dpl_get_non_tcp_max =
93	SFXGE_TX_DPL_GET_NON_TCP_PKT_LIMIT_DEFAULT;
94TUNABLE_INT(SFXGE_PARAM_TX_DPL_GET_NON_TCP_MAX, &sfxge_tx_dpl_get_non_tcp_max);
95SYSCTL_INT(_hw_sfxge, OID_AUTO, tx_dpl_get_non_tcp_max, CTLFLAG_RDTUN,
96	   &sfxge_tx_dpl_get_non_tcp_max, 0,
97	   "Maximum number of non-TCP packets in deferred packet get-list");
98
99#define	SFXGE_PARAM_TX_DPL_PUT_MAX	SFXGE_PARAM(tx_dpl_put_max)
100static int sfxge_tx_dpl_put_max = SFXGE_TX_DPL_PUT_PKT_LIMIT_DEFAULT;
101TUNABLE_INT(SFXGE_PARAM_TX_DPL_PUT_MAX, &sfxge_tx_dpl_put_max);
102SYSCTL_INT(_hw_sfxge, OID_AUTO, tx_dpl_put_max, CTLFLAG_RDTUN,
103	   &sfxge_tx_dpl_put_max, 0,
104	   "Maximum number of any packets in deferred packet put-list");
105
106#define	SFXGE_PARAM_TSO_FW_ASSISTED	SFXGE_PARAM(tso_fw_assisted)
107static int sfxge_tso_fw_assisted = (SFXGE_FATSOV1 | SFXGE_FATSOV2);
108TUNABLE_INT(SFXGE_PARAM_TSO_FW_ASSISTED, &sfxge_tso_fw_assisted);
109SYSCTL_INT(_hw_sfxge, OID_AUTO, tso_fw_assisted, CTLFLAG_RDTUN,
110	   &sfxge_tso_fw_assisted, 0,
111	   "Bitmask of FW-assisted TSO allowed to use if supported by NIC firmware");
112
113
114static const struct {
115	const char *name;
116	size_t offset;
117} sfxge_tx_stats[] = {
118#define	SFXGE_TX_STAT(name, member) \
119	{ #name, offsetof(struct sfxge_txq, member) }
120	SFXGE_TX_STAT(tso_bursts, tso_bursts),
121	SFXGE_TX_STAT(tso_packets, tso_packets),
122	SFXGE_TX_STAT(tso_long_headers, tso_long_headers),
123	SFXGE_TX_STAT(tso_pdrop_too_many, tso_pdrop_too_many),
124	SFXGE_TX_STAT(tso_pdrop_no_rsrc, tso_pdrop_no_rsrc),
125	SFXGE_TX_STAT(tx_collapses, collapses),
126	SFXGE_TX_STAT(tx_drops, drops),
127	SFXGE_TX_STAT(tx_get_overflow, get_overflow),
128	SFXGE_TX_STAT(tx_get_non_tcp_overflow, get_non_tcp_overflow),
129	SFXGE_TX_STAT(tx_put_overflow, put_overflow),
130	SFXGE_TX_STAT(tx_netdown_drops, netdown_drops),
131};
132
133
134/* Forward declarations. */
135static void sfxge_tx_qdpl_service(struct sfxge_txq *txq);
136static void sfxge_tx_qlist_post(struct sfxge_txq *txq);
137static void sfxge_tx_qunblock(struct sfxge_txq *txq);
138static int sfxge_tx_queue_tso(struct sfxge_txq *txq, struct mbuf *mbuf,
139			      const bus_dma_segment_t *dma_seg, int n_dma_seg,
140			      int vlan_tagged);
141
142static int
143sfxge_tx_maybe_insert_tag(struct sfxge_txq *txq, struct mbuf *mbuf)
144{
145	uint16_t this_tag = ((mbuf->m_flags & M_VLANTAG) ?
146			     mbuf->m_pkthdr.ether_vtag :
147			     0);
148
149	if (this_tag == txq->hw_vlan_tci)
150		return (0);
151
152	efx_tx_qdesc_vlantci_create(txq->common,
153				    bswap16(this_tag),
154				    &txq->pend_desc[0]);
155	txq->n_pend_desc = 1;
156	txq->hw_vlan_tci = this_tag;
157	return (1);
158}
159
160static inline void
161sfxge_next_stmp(struct sfxge_txq *txq, struct sfxge_tx_mapping **pstmp)
162{
163	KASSERT((*pstmp)->flags == 0, ("stmp flags are not 0"));
164	if (__predict_false(*pstmp ==
165			    &txq->stmp[txq->ptr_mask]))
166		*pstmp = &txq->stmp[0];
167	else
168		(*pstmp)++;
169}
170
171
172void
173sfxge_tx_qcomplete(struct sfxge_txq *txq, struct sfxge_evq *evq)
174{
175	unsigned int completed;
176
177	SFXGE_EVQ_LOCK_ASSERT_OWNED(evq);
178
179	completed = txq->completed;
180	while (completed != txq->pending) {
181		struct sfxge_tx_mapping *stmp;
182		unsigned int id;
183
184		id = completed++ & txq->ptr_mask;
185
186		stmp = &txq->stmp[id];
187		if (stmp->flags & TX_BUF_UNMAP) {
188			bus_dmamap_unload(txq->packet_dma_tag, stmp->map);
189			if (stmp->flags & TX_BUF_MBUF) {
190				struct mbuf *m = stmp->u.mbuf;
191				do
192					m = m_free(m);
193				while (m != NULL);
194			} else {
195				free(stmp->u.heap_buf, M_SFXGE);
196			}
197			stmp->flags = 0;
198		}
199	}
200	txq->completed = completed;
201
202	/* Check whether we need to unblock the queue. */
203	mb();
204	if (txq->blocked) {
205		unsigned int level;
206
207		level = txq->added - txq->completed;
208		if (level <= SFXGE_TXQ_UNBLOCK_LEVEL(txq->entries))
209			sfxge_tx_qunblock(txq);
210	}
211}
212
213static unsigned int
214sfxge_is_mbuf_non_tcp(struct mbuf *mbuf)
215{
216	/* Absence of TCP checksum flags does not mean that it is non-TCP
217	 * but it should be true if user wants to achieve high throughput.
218	 */
219	return (!(mbuf->m_pkthdr.csum_flags & (CSUM_IP_TCP | CSUM_IP6_TCP)));
220}
221
222/*
223 * Reorder the put list and append it to the get list.
224 */
225static void
226sfxge_tx_qdpl_swizzle(struct sfxge_txq *txq)
227{
228	struct sfxge_tx_dpl *stdp;
229	struct mbuf *mbuf, *get_next, **get_tailp;
230	volatile uintptr_t *putp;
231	uintptr_t put;
232	unsigned int count;
233	unsigned int non_tcp_count;
234
235	SFXGE_TXQ_LOCK_ASSERT_OWNED(txq);
236
237	stdp = &txq->dpl;
238
239	/* Acquire the put list. */
240	putp = &stdp->std_put;
241	put = atomic_readandclear_ptr(putp);
242	mbuf = (void *)put;
243
244	if (mbuf == NULL)
245		return;
246
247	/* Reverse the put list. */
248	get_tailp = &mbuf->m_nextpkt;
249	get_next = NULL;
250
251	count = 0;
252	non_tcp_count = 0;
253	do {
254		struct mbuf *put_next;
255
256		non_tcp_count += sfxge_is_mbuf_non_tcp(mbuf);
257		put_next = mbuf->m_nextpkt;
258		mbuf->m_nextpkt = get_next;
259		get_next = mbuf;
260		mbuf = put_next;
261
262		count++;
263	} while (mbuf != NULL);
264
265	if (count > stdp->std_put_hiwat)
266		stdp->std_put_hiwat = count;
267
268	/* Append the reversed put list to the get list. */
269	KASSERT(*get_tailp == NULL, ("*get_tailp != NULL"));
270	*stdp->std_getp = get_next;
271	stdp->std_getp = get_tailp;
272	stdp->std_get_count += count;
273	stdp->std_get_non_tcp_count += non_tcp_count;
274}
275
276static void
277sfxge_tx_qreap(struct sfxge_txq *txq)
278{
279	SFXGE_TXQ_LOCK_ASSERT_OWNED(txq);
280
281	txq->reaped = txq->completed;
282}
283
284static void
285sfxge_tx_qlist_post(struct sfxge_txq *txq)
286{
287	unsigned int old_added;
288	unsigned int block_level;
289	unsigned int level;
290	int rc;
291
292	SFXGE_TXQ_LOCK_ASSERT_OWNED(txq);
293
294	KASSERT(txq->n_pend_desc != 0, ("txq->n_pend_desc == 0"));
295	KASSERT(txq->n_pend_desc <= txq->max_pkt_desc,
296		("txq->n_pend_desc too large"));
297	KASSERT(!txq->blocked, ("txq->blocked"));
298
299	old_added = txq->added;
300
301	/* Post the fragment list. */
302	rc = efx_tx_qdesc_post(txq->common, txq->pend_desc, txq->n_pend_desc,
303			  txq->reaped, &txq->added);
304	KASSERT(rc == 0, ("efx_tx_qdesc_post() failed"));
305
306	/* If efx_tx_qdesc_post() had to refragment, our information about
307	 * buffers to free may be associated with the wrong
308	 * descriptors.
309	 */
310	KASSERT(txq->added - old_added == txq->n_pend_desc,
311		("efx_tx_qdesc_post() refragmented descriptors"));
312
313	level = txq->added - txq->reaped;
314	KASSERT(level <= txq->entries, ("overfilled TX queue"));
315
316	/* Clear the fragment list. */
317	txq->n_pend_desc = 0;
318
319	/*
320	 * Set the block level to ensure there is space to generate a
321	 * large number of descriptors for TSO.
322	 */
323	block_level = EFX_TXQ_LIMIT(txq->entries) - txq->max_pkt_desc;
324
325	/* Have we reached the block level? */
326	if (level < block_level)
327		return;
328
329	/* Reap, and check again */
330	sfxge_tx_qreap(txq);
331	level = txq->added - txq->reaped;
332	if (level < block_level)
333		return;
334
335	txq->blocked = 1;
336
337	/*
338	 * Avoid a race with completion interrupt handling that could leave
339	 * the queue blocked.
340	 */
341	mb();
342	sfxge_tx_qreap(txq);
343	level = txq->added - txq->reaped;
344	if (level < block_level) {
345		mb();
346		txq->blocked = 0;
347	}
348}
349
350static int sfxge_tx_queue_mbuf(struct sfxge_txq *txq, struct mbuf *mbuf)
351{
352	bus_dmamap_t *used_map;
353	bus_dmamap_t map;
354	bus_dma_segment_t dma_seg[SFXGE_TX_MAPPING_MAX_SEG];
355	unsigned int id;
356	struct sfxge_tx_mapping *stmp;
357	efx_desc_t *desc;
358	int n_dma_seg;
359	int rc;
360	int i;
361	int eop;
362	int vlan_tagged;
363
364	KASSERT(!txq->blocked, ("txq->blocked"));
365
366#if SFXGE_TX_PARSE_EARLY
367	/*
368	 * If software TSO is used, we still need to copy packet header,
369	 * even if we have already parsed it early before enqueue.
370	 */
371	if ((mbuf->m_pkthdr.csum_flags & CSUM_TSO) &&
372	    (txq->tso_fw_assisted == 0))
373		prefetch_read_many(mbuf->m_data);
374#else
375	/*
376	 * Prefetch packet header since we need to parse it and extract
377	 * IP ID, TCP sequence number and flags.
378	 */
379	if (mbuf->m_pkthdr.csum_flags & CSUM_TSO)
380		prefetch_read_many(mbuf->m_data);
381#endif
382
383	if (__predict_false(txq->init_state != SFXGE_TXQ_STARTED)) {
384		rc = EINTR;
385		goto reject;
386	}
387
388	/* Load the packet for DMA. */
389	id = txq->added & txq->ptr_mask;
390	stmp = &txq->stmp[id];
391	rc = bus_dmamap_load_mbuf_sg(txq->packet_dma_tag, stmp->map,
392				     mbuf, dma_seg, &n_dma_seg, 0);
393	if (rc == EFBIG) {
394		/* Try again. */
395		struct mbuf *new_mbuf = m_collapse(mbuf, M_NOWAIT,
396						   SFXGE_TX_MAPPING_MAX_SEG);
397		if (new_mbuf == NULL)
398			goto reject;
399		++txq->collapses;
400		mbuf = new_mbuf;
401		rc = bus_dmamap_load_mbuf_sg(txq->packet_dma_tag,
402					     stmp->map, mbuf,
403					     dma_seg, &n_dma_seg, 0);
404	}
405	if (rc != 0)
406		goto reject;
407
408	/* Make the packet visible to the hardware. */
409	bus_dmamap_sync(txq->packet_dma_tag, stmp->map, BUS_DMASYNC_PREWRITE);
410
411	used_map = &stmp->map;
412
413	vlan_tagged = sfxge_tx_maybe_insert_tag(txq, mbuf);
414	if (vlan_tagged) {
415		sfxge_next_stmp(txq, &stmp);
416	}
417	if (mbuf->m_pkthdr.csum_flags & CSUM_TSO) {
418		rc = sfxge_tx_queue_tso(txq, mbuf, dma_seg, n_dma_seg, vlan_tagged);
419		if (rc < 0)
420			goto reject_mapped;
421		stmp = &txq->stmp[(rc - 1) & txq->ptr_mask];
422	} else {
423		/* Add the mapping to the fragment list, and set flags
424		 * for the buffer.
425		 */
426
427		i = 0;
428		for (;;) {
429			desc = &txq->pend_desc[i + vlan_tagged];
430			eop = (i == n_dma_seg - 1);
431			efx_tx_qdesc_dma_create(txq->common,
432						dma_seg[i].ds_addr,
433						dma_seg[i].ds_len,
434						eop,
435						desc);
436			if (eop)
437				break;
438			i++;
439			sfxge_next_stmp(txq, &stmp);
440		}
441		txq->n_pend_desc = n_dma_seg + vlan_tagged;
442	}
443
444	/*
445	 * If the mapping required more than one descriptor
446	 * then we need to associate the DMA map with the last
447	 * descriptor, not the first.
448	 */
449	if (used_map != &stmp->map) {
450		map = stmp->map;
451		stmp->map = *used_map;
452		*used_map = map;
453	}
454
455	stmp->u.mbuf = mbuf;
456	stmp->flags = TX_BUF_UNMAP | TX_BUF_MBUF;
457
458	/* Post the fragment list. */
459	sfxge_tx_qlist_post(txq);
460
461	return (0);
462
463reject_mapped:
464	bus_dmamap_unload(txq->packet_dma_tag, *used_map);
465reject:
466	/* Drop the packet on the floor. */
467	m_freem(mbuf);
468	++txq->drops;
469
470	return (rc);
471}
472
473/*
474 * Drain the deferred packet list into the transmit queue.
475 */
476static void
477sfxge_tx_qdpl_drain(struct sfxge_txq *txq)
478{
479	struct sfxge_softc *sc;
480	struct sfxge_tx_dpl *stdp;
481	struct mbuf *mbuf, *next;
482	unsigned int count;
483	unsigned int non_tcp_count;
484	unsigned int pushed;
485	int rc;
486
487	SFXGE_TXQ_LOCK_ASSERT_OWNED(txq);
488
489	sc = txq->sc;
490	stdp = &txq->dpl;
491	pushed = txq->added;
492
493	if (__predict_true(txq->init_state == SFXGE_TXQ_STARTED)) {
494		prefetch_read_many(sc->enp);
495		prefetch_read_many(txq->common);
496	}
497
498	mbuf = stdp->std_get;
499	count = stdp->std_get_count;
500	non_tcp_count = stdp->std_get_non_tcp_count;
501
502	if (count > stdp->std_get_hiwat)
503		stdp->std_get_hiwat = count;
504
505	while (count != 0) {
506		KASSERT(mbuf != NULL, ("mbuf == NULL"));
507
508		next = mbuf->m_nextpkt;
509		mbuf->m_nextpkt = NULL;
510
511		ETHER_BPF_MTAP(sc->ifnet, mbuf); /* packet capture */
512
513		if (next != NULL)
514			prefetch_read_many(next);
515
516		rc = sfxge_tx_queue_mbuf(txq, mbuf);
517		--count;
518		non_tcp_count -= sfxge_is_mbuf_non_tcp(mbuf);
519		mbuf = next;
520		if (rc != 0)
521			continue;
522
523		if (txq->blocked)
524			break;
525
526		/* Push the fragments to the hardware in batches. */
527		if (txq->added - pushed >= SFXGE_TX_BATCH) {
528			efx_tx_qpush(txq->common, txq->added, pushed);
529			pushed = txq->added;
530		}
531	}
532
533	if (count == 0) {
534		KASSERT(mbuf == NULL, ("mbuf != NULL"));
535		KASSERT(non_tcp_count == 0,
536			("inconsistent TCP/non-TCP detection"));
537		stdp->std_get = NULL;
538		stdp->std_get_count = 0;
539		stdp->std_get_non_tcp_count = 0;
540		stdp->std_getp = &stdp->std_get;
541	} else {
542		stdp->std_get = mbuf;
543		stdp->std_get_count = count;
544		stdp->std_get_non_tcp_count = non_tcp_count;
545	}
546
547	if (txq->added != pushed)
548		efx_tx_qpush(txq->common, txq->added, pushed);
549
550	KASSERT(txq->blocked || stdp->std_get_count == 0,
551		("queue unblocked but count is non-zero"));
552}
553
554#define	SFXGE_TX_QDPL_PENDING(_txq)	((_txq)->dpl.std_put != 0)
555
556/*
557 * Service the deferred packet list.
558 *
559 * NOTE: drops the txq mutex!
560 */
561static void
562sfxge_tx_qdpl_service(struct sfxge_txq *txq)
563{
564	SFXGE_TXQ_LOCK_ASSERT_OWNED(txq);
565
566	do {
567		if (SFXGE_TX_QDPL_PENDING(txq))
568			sfxge_tx_qdpl_swizzle(txq);
569
570		if (!txq->blocked)
571			sfxge_tx_qdpl_drain(txq);
572
573		SFXGE_TXQ_UNLOCK(txq);
574	} while (SFXGE_TX_QDPL_PENDING(txq) &&
575		 SFXGE_TXQ_TRYLOCK(txq));
576}
577
578/*
579 * Put a packet on the deferred packet get-list.
580 */
581static int
582sfxge_tx_qdpl_put_locked(struct sfxge_txq *txq, struct mbuf *mbuf)
583{
584	struct sfxge_tx_dpl *stdp;
585
586	stdp = &txq->dpl;
587
588	KASSERT(mbuf->m_nextpkt == NULL, ("mbuf->m_nextpkt != NULL"));
589
590	SFXGE_TXQ_LOCK_ASSERT_OWNED(txq);
591
592	if (stdp->std_get_count >= stdp->std_get_max) {
593		txq->get_overflow++;
594		return (ENOBUFS);
595	}
596	if (sfxge_is_mbuf_non_tcp(mbuf)) {
597		if (stdp->std_get_non_tcp_count >=
598		    stdp->std_get_non_tcp_max) {
599			txq->get_non_tcp_overflow++;
600			return (ENOBUFS);
601		}
602		stdp->std_get_non_tcp_count++;
603	}
604
605	*(stdp->std_getp) = mbuf;
606	stdp->std_getp = &mbuf->m_nextpkt;
607	stdp->std_get_count++;
608
609	return (0);
610}
611
612/*
613 * Put a packet on the deferred packet put-list.
614 *
615 * We overload the csum_data field in the mbuf to keep track of this length
616 * because there is no cheap alternative to avoid races.
617 */
618static int
619sfxge_tx_qdpl_put_unlocked(struct sfxge_txq *txq, struct mbuf *mbuf)
620{
621	struct sfxge_tx_dpl *stdp;
622	volatile uintptr_t *putp;
623	uintptr_t old;
624	uintptr_t new;
625	unsigned int put_count;
626
627	KASSERT(mbuf->m_nextpkt == NULL, ("mbuf->m_nextpkt != NULL"));
628
629	SFXGE_TXQ_LOCK_ASSERT_NOTOWNED(txq);
630
631	stdp = &txq->dpl;
632	putp = &stdp->std_put;
633	new = (uintptr_t)mbuf;
634
635	do {
636		old = *putp;
637		if (old != 0) {
638			struct mbuf *mp = (struct mbuf *)old;
639			put_count = mp->m_pkthdr.csum_data;
640		} else
641			put_count = 0;
642		if (put_count >= stdp->std_put_max) {
643			atomic_add_long(&txq->put_overflow, 1);
644			return (ENOBUFS);
645		}
646		mbuf->m_pkthdr.csum_data = put_count + 1;
647		mbuf->m_nextpkt = (void *)old;
648	} while (atomic_cmpset_ptr(putp, old, new) == 0);
649
650	return (0);
651}
652
653/*
654 * Called from if_transmit - will try to grab the txq lock and enqueue to the
655 * put list if it succeeds, otherwise try to push onto the defer list if space.
656 */
657static int
658sfxge_tx_packet_add(struct sfxge_txq *txq, struct mbuf *m)
659{
660	int rc;
661
662	if (!SFXGE_LINK_UP(txq->sc)) {
663		atomic_add_long(&txq->netdown_drops, 1);
664		return (ENETDOWN);
665	}
666
667	/*
668	 * Try to grab the txq lock.  If we are able to get the lock,
669	 * the packet will be appended to the "get list" of the deferred
670	 * packet list.  Otherwise, it will be pushed on the "put list".
671	 */
672	if (SFXGE_TXQ_TRYLOCK(txq)) {
673		/* First swizzle put-list to get-list to keep order */
674		sfxge_tx_qdpl_swizzle(txq);
675
676		rc = sfxge_tx_qdpl_put_locked(txq, m);
677
678		/* Try to service the list. */
679		sfxge_tx_qdpl_service(txq);
680		/* Lock has been dropped. */
681	} else {
682		rc = sfxge_tx_qdpl_put_unlocked(txq, m);
683
684		/*
685		 * Try to grab the lock again.
686		 *
687		 * If we are able to get the lock, we need to process
688		 * the deferred packet list.  If we are not able to get
689		 * the lock, another thread is processing the list.
690		 */
691		if ((rc == 0) && SFXGE_TXQ_TRYLOCK(txq)) {
692			sfxge_tx_qdpl_service(txq);
693			/* Lock has been dropped. */
694		}
695	}
696
697	SFXGE_TXQ_LOCK_ASSERT_NOTOWNED(txq);
698
699	return (rc);
700}
701
702static void
703sfxge_tx_qdpl_flush(struct sfxge_txq *txq)
704{
705	struct sfxge_tx_dpl *stdp = &txq->dpl;
706	struct mbuf *mbuf, *next;
707
708	SFXGE_TXQ_LOCK(txq);
709
710	sfxge_tx_qdpl_swizzle(txq);
711	for (mbuf = stdp->std_get; mbuf != NULL; mbuf = next) {
712		next = mbuf->m_nextpkt;
713		m_freem(mbuf);
714	}
715	stdp->std_get = NULL;
716	stdp->std_get_count = 0;
717	stdp->std_get_non_tcp_count = 0;
718	stdp->std_getp = &stdp->std_get;
719
720	SFXGE_TXQ_UNLOCK(txq);
721}
722
723void
724sfxge_if_qflush(struct ifnet *ifp)
725{
726	struct sfxge_softc *sc;
727	unsigned int i;
728
729	sc = ifp->if_softc;
730
731	for (i = 0; i < sc->txq_count; i++)
732		sfxge_tx_qdpl_flush(sc->txq[i]);
733}
734
735#if SFXGE_TX_PARSE_EARLY
736
737/* There is little space for user data in mbuf pkthdr, so we
738 * use l*hlen fields which are not used by the driver otherwise
739 * to store header offsets.
740 * The fields are 8-bit, but it's ok, no header may be longer than 255 bytes.
741 */
742
743
744#define TSO_MBUF_PROTO(_mbuf)    ((_mbuf)->m_pkthdr.PH_loc.sixteen[0])
745/* We abuse l5hlen here because PH_loc can hold only 64 bits of data */
746#define TSO_MBUF_FLAGS(_mbuf)    ((_mbuf)->m_pkthdr.l5hlen)
747#define TSO_MBUF_PACKETID(_mbuf) ((_mbuf)->m_pkthdr.PH_loc.sixteen[1])
748#define TSO_MBUF_SEQNUM(_mbuf)   ((_mbuf)->m_pkthdr.PH_loc.thirtytwo[1])
749
750static void sfxge_parse_tx_packet(struct mbuf *mbuf)
751{
752	struct ether_header *eh = mtod(mbuf, struct ether_header *);
753	const struct tcphdr *th;
754	struct tcphdr th_copy;
755
756	/* Find network protocol and header */
757	TSO_MBUF_PROTO(mbuf) = eh->ether_type;
758	if (TSO_MBUF_PROTO(mbuf) == htons(ETHERTYPE_VLAN)) {
759		struct ether_vlan_header *veh =
760			mtod(mbuf, struct ether_vlan_header *);
761		TSO_MBUF_PROTO(mbuf) = veh->evl_proto;
762		mbuf->m_pkthdr.l2hlen = sizeof(*veh);
763	} else {
764		mbuf->m_pkthdr.l2hlen = sizeof(*eh);
765	}
766
767	/* Find TCP header */
768	if (TSO_MBUF_PROTO(mbuf) == htons(ETHERTYPE_IP)) {
769		const struct ip *iph = (const struct ip *)mtodo(mbuf, mbuf->m_pkthdr.l2hlen);
770
771		KASSERT(iph->ip_p == IPPROTO_TCP,
772			("TSO required on non-TCP packet"));
773		mbuf->m_pkthdr.l3hlen = mbuf->m_pkthdr.l2hlen + 4 * iph->ip_hl;
774		TSO_MBUF_PACKETID(mbuf) = iph->ip_id;
775	} else {
776		KASSERT(TSO_MBUF_PROTO(mbuf) == htons(ETHERTYPE_IPV6),
777			("TSO required on non-IP packet"));
778		KASSERT(((const struct ip6_hdr *)mtodo(mbuf, mbuf->m_pkthdr.l2hlen))->ip6_nxt ==
779			IPPROTO_TCP,
780			("TSO required on non-TCP packet"));
781		mbuf->m_pkthdr.l3hlen = mbuf->m_pkthdr.l2hlen + sizeof(struct ip6_hdr);
782		TSO_MBUF_PACKETID(mbuf) = 0;
783	}
784
785	KASSERT(mbuf->m_len >= mbuf->m_pkthdr.l3hlen,
786		("network header is fragmented in mbuf"));
787
788	/* We need TCP header including flags (window is the next) */
789	if (mbuf->m_len < mbuf->m_pkthdr.l3hlen + offsetof(struct tcphdr, th_win)) {
790		m_copydata(mbuf, mbuf->m_pkthdr.l3hlen, sizeof(th_copy),
791			   (caddr_t)&th_copy);
792		th = &th_copy;
793	} else {
794		th = (const struct tcphdr *)mtodo(mbuf, mbuf->m_pkthdr.l3hlen);
795	}
796
797	mbuf->m_pkthdr.l4hlen = mbuf->m_pkthdr.l3hlen + 4 * th->th_off;
798	TSO_MBUF_SEQNUM(mbuf) = ntohl(th->th_seq);
799
800	/* These flags must not be duplicated */
801	/*
802	 * RST should not be duplicated as well, but FreeBSD kernel
803	 * generates TSO packets with RST flag. So, do not assert
804	 * its absence.
805	 */
806	KASSERT(!(th->th_flags & (TH_URG | TH_SYN)),
807		("incompatible TCP flag 0x%x on TSO packet",
808		 th->th_flags & (TH_URG | TH_SYN)));
809	TSO_MBUF_FLAGS(mbuf) = th->th_flags;
810}
811#endif
812
813/*
814 * TX start -- called by the stack.
815 */
816int
817sfxge_if_transmit(struct ifnet *ifp, struct mbuf *m)
818{
819	struct sfxge_softc *sc;
820	struct sfxge_txq *txq;
821	int rc;
822
823	sc = (struct sfxge_softc *)ifp->if_softc;
824
825	/*
826	 * Transmit may be called when interface is up from the kernel
827	 * point of view, but not yet up (in progress) from the driver
828	 * point of view. I.e. link aggregation bring up.
829	 * Transmit may be called when interface is up from the driver
830	 * point of view, but already down from the kernel point of
831	 * view. I.e. Rx when interface shutdown is in progress.
832	 */
833	KASSERT((ifp->if_flags & IFF_UP) || (sc->if_flags & IFF_UP),
834		("interface not up"));
835
836	/* Pick the desired transmit queue. */
837	if (m->m_pkthdr.csum_flags &
838	    (CSUM_DELAY_DATA | CSUM_TCP_IPV6 | CSUM_UDP_IPV6 | CSUM_TSO)) {
839		int index = 0;
840
841#ifdef RSS
842		uint32_t bucket_id;
843
844		/*
845		 * Select a TX queue which matches the corresponding
846		 * RX queue for the hash in order to assign both
847		 * TX and RX parts of the flow to the same CPU
848		 */
849		if (rss_m2bucket(m, &bucket_id) == 0)
850			index = bucket_id % (sc->txq_count - (SFXGE_TXQ_NTYPES - 1));
851#else
852		/* check if flowid is set */
853		if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
854			uint32_t hash = m->m_pkthdr.flowid;
855			uint32_t idx = hash % nitems(sc->rx_indir_table);
856
857			index = sc->rx_indir_table[idx];
858		}
859#endif
860#if SFXGE_TX_PARSE_EARLY
861		if (m->m_pkthdr.csum_flags & CSUM_TSO)
862			sfxge_parse_tx_packet(m);
863#endif
864		txq = sc->txq[SFXGE_TXQ_IP_TCP_UDP_CKSUM + index];
865	} else if (m->m_pkthdr.csum_flags & CSUM_DELAY_IP) {
866		txq = sc->txq[SFXGE_TXQ_IP_CKSUM];
867	} else {
868		txq = sc->txq[SFXGE_TXQ_NON_CKSUM];
869	}
870
871	rc = sfxge_tx_packet_add(txq, m);
872	if (rc != 0)
873		m_freem(m);
874
875	return (rc);
876}
877
878/*
879 * Software "TSO".  Not quite as good as doing it in hardware, but
880 * still faster than segmenting in the stack.
881 */
882
883struct sfxge_tso_state {
884	/* Output position */
885	unsigned out_len;	/* Remaining length in current segment */
886	unsigned seqnum;	/* Current sequence number */
887	unsigned packet_space;	/* Remaining space in current packet */
888	unsigned segs_space;	/* Remaining number of DMA segments
889				   for the packet (FATSOv2 only) */
890
891	/* Input position */
892	uint64_t dma_addr;	/* DMA address of current position */
893	unsigned in_len;	/* Remaining length in current mbuf */
894
895	const struct mbuf *mbuf; /* Input mbuf (head of chain) */
896	u_short protocol;	/* Network protocol (after VLAN decap) */
897	ssize_t nh_off;		/* Offset of network header */
898	ssize_t tcph_off;	/* Offset of TCP header */
899	unsigned header_len;	/* Number of bytes of header */
900	unsigned seg_size;	/* TCP segment size */
901	int fw_assisted;	/* Use FW-assisted TSO */
902	u_short packet_id;	/* IPv4 packet ID from the original packet */
903	uint8_t tcp_flags;	/* TCP flags */
904	efx_desc_t header_desc; /* Precomputed header descriptor for
905				 * FW-assisted TSO */
906};
907
908#if !SFXGE_TX_PARSE_EARLY
909static const struct ip *tso_iph(const struct sfxge_tso_state *tso)
910{
911	KASSERT(tso->protocol == htons(ETHERTYPE_IP),
912		("tso_iph() in non-IPv4 state"));
913	return (const struct ip *)(tso->mbuf->m_data + tso->nh_off);
914}
915
916static __unused const struct ip6_hdr *tso_ip6h(const struct sfxge_tso_state *tso)
917{
918	KASSERT(tso->protocol == htons(ETHERTYPE_IPV6),
919		("tso_ip6h() in non-IPv6 state"));
920	return (const struct ip6_hdr *)(tso->mbuf->m_data + tso->nh_off);
921}
922
923static const struct tcphdr *tso_tcph(const struct sfxge_tso_state *tso)
924{
925	return (const struct tcphdr *)(tso->mbuf->m_data + tso->tcph_off);
926}
927#endif
928
929
930/* Size of preallocated TSO header buffers.  Larger blocks must be
931 * allocated from the heap.
932 */
933#define	TSOH_STD_SIZE	128
934
935/* At most half the descriptors in the queue at any time will refer to
936 * a TSO header buffer, since they must always be followed by a
937 * payload descriptor referring to an mbuf.
938 */
939#define	TSOH_COUNT(_txq_entries)	((_txq_entries) / 2u)
940#define	TSOH_PER_PAGE	(PAGE_SIZE / TSOH_STD_SIZE)
941#define	TSOH_PAGE_COUNT(_txq_entries)	\
942	howmany(TSOH_COUNT(_txq_entries), TSOH_PER_PAGE)
943
944static int tso_init(struct sfxge_txq *txq)
945{
946	struct sfxge_softc *sc = txq->sc;
947	unsigned int tsoh_page_count = TSOH_PAGE_COUNT(sc->txq_entries);
948	int i, rc;
949
950	/* Allocate TSO header buffers */
951	txq->tsoh_buffer = malloc(tsoh_page_count * sizeof(txq->tsoh_buffer[0]),
952				  M_SFXGE, M_WAITOK);
953
954	for (i = 0; i < tsoh_page_count; i++) {
955		rc = sfxge_dma_alloc(sc, PAGE_SIZE, &txq->tsoh_buffer[i]);
956		if (rc != 0)
957			goto fail;
958	}
959
960	return (0);
961
962fail:
963	while (i-- > 0)
964		sfxge_dma_free(&txq->tsoh_buffer[i]);
965	free(txq->tsoh_buffer, M_SFXGE);
966	txq->tsoh_buffer = NULL;
967	return (rc);
968}
969
970static void tso_fini(struct sfxge_txq *txq)
971{
972	int i;
973
974	if (txq->tsoh_buffer != NULL) {
975		for (i = 0; i < TSOH_PAGE_COUNT(txq->sc->txq_entries); i++)
976			sfxge_dma_free(&txq->tsoh_buffer[i]);
977		free(txq->tsoh_buffer, M_SFXGE);
978	}
979}
980
981static void tso_start(struct sfxge_txq *txq, struct sfxge_tso_state *tso,
982		      const bus_dma_segment_t *hdr_dma_seg,
983		      struct mbuf *mbuf)
984{
985	const efx_nic_cfg_t *encp = efx_nic_cfg_get(txq->sc->enp);
986#if !SFXGE_TX_PARSE_EARLY
987	struct ether_header *eh = mtod(mbuf, struct ether_header *);
988	const struct tcphdr *th;
989	struct tcphdr th_copy;
990#endif
991
992	tso->fw_assisted = txq->tso_fw_assisted;
993	tso->mbuf = mbuf;
994
995	/* Find network protocol and header */
996#if !SFXGE_TX_PARSE_EARLY
997	tso->protocol = eh->ether_type;
998	if (tso->protocol == htons(ETHERTYPE_VLAN)) {
999		struct ether_vlan_header *veh =
1000			mtod(mbuf, struct ether_vlan_header *);
1001		tso->protocol = veh->evl_proto;
1002		tso->nh_off = sizeof(*veh);
1003	} else {
1004		tso->nh_off = sizeof(*eh);
1005	}
1006#else
1007	tso->protocol = TSO_MBUF_PROTO(mbuf);
1008	tso->nh_off = mbuf->m_pkthdr.l2hlen;
1009	tso->tcph_off = mbuf->m_pkthdr.l3hlen;
1010	tso->packet_id = ntohs(TSO_MBUF_PACKETID(mbuf));
1011#endif
1012
1013#if !SFXGE_TX_PARSE_EARLY
1014	/* Find TCP header */
1015	if (tso->protocol == htons(ETHERTYPE_IP)) {
1016		KASSERT(tso_iph(tso)->ip_p == IPPROTO_TCP,
1017			("TSO required on non-TCP packet"));
1018		tso->tcph_off = tso->nh_off + 4 * tso_iph(tso)->ip_hl;
1019		tso->packet_id = ntohs(tso_iph(tso)->ip_id);
1020	} else {
1021		KASSERT(tso->protocol == htons(ETHERTYPE_IPV6),
1022			("TSO required on non-IP packet"));
1023		KASSERT(tso_ip6h(tso)->ip6_nxt == IPPROTO_TCP,
1024			("TSO required on non-TCP packet"));
1025		tso->tcph_off = tso->nh_off + sizeof(struct ip6_hdr);
1026		tso->packet_id = 0;
1027	}
1028#endif
1029
1030
1031	if (tso->fw_assisted &&
1032	    __predict_false(tso->tcph_off >
1033			    encp->enc_tx_tso_tcp_header_offset_limit)) {
1034		tso->fw_assisted = 0;
1035	}
1036
1037
1038#if !SFXGE_TX_PARSE_EARLY
1039	KASSERT(mbuf->m_len >= tso->tcph_off,
1040		("network header is fragmented in mbuf"));
1041	/* We need TCP header including flags (window is the next) */
1042	if (mbuf->m_len < tso->tcph_off + offsetof(struct tcphdr, th_win)) {
1043		m_copydata(tso->mbuf, tso->tcph_off, sizeof(th_copy),
1044			   (caddr_t)&th_copy);
1045		th = &th_copy;
1046	} else {
1047		th = tso_tcph(tso);
1048	}
1049	tso->header_len = tso->tcph_off + 4 * th->th_off;
1050#else
1051	tso->header_len = mbuf->m_pkthdr.l4hlen;
1052#endif
1053	tso->seg_size = mbuf->m_pkthdr.tso_segsz;
1054
1055#if !SFXGE_TX_PARSE_EARLY
1056	tso->seqnum = ntohl(th->th_seq);
1057
1058	/* These flags must not be duplicated */
1059	/*
1060	 * RST should not be duplicated as well, but FreeBSD kernel
1061	 * generates TSO packets with RST flag. So, do not assert
1062	 * its absence.
1063	 */
1064	KASSERT(!(th->th_flags & (TH_URG | TH_SYN)),
1065		("incompatible TCP flag 0x%x on TSO packet",
1066		 th->th_flags & (TH_URG | TH_SYN)));
1067	tso->tcp_flags = th->th_flags;
1068#else
1069	tso->seqnum = TSO_MBUF_SEQNUM(mbuf);
1070	tso->tcp_flags = TSO_MBUF_FLAGS(mbuf);
1071#endif
1072
1073	tso->out_len = mbuf->m_pkthdr.len - tso->header_len;
1074
1075	if (tso->fw_assisted) {
1076		if (hdr_dma_seg->ds_len >= tso->header_len)
1077			efx_tx_qdesc_dma_create(txq->common,
1078						hdr_dma_seg->ds_addr,
1079						tso->header_len,
1080						B_FALSE,
1081						&tso->header_desc);
1082		else
1083			tso->fw_assisted = 0;
1084	}
1085}
1086
1087/*
1088 * tso_fill_packet_with_fragment - form descriptors for the current fragment
1089 *
1090 * Form descriptors for the current fragment, until we reach the end
1091 * of fragment or end-of-packet.  Return 0 on success, 1 if not enough
1092 * space.
1093 */
1094static void tso_fill_packet_with_fragment(struct sfxge_txq *txq,
1095					  struct sfxge_tso_state *tso)
1096{
1097	efx_desc_t *desc;
1098	int n;
1099	uint64_t dma_addr = tso->dma_addr;
1100	boolean_t eop;
1101
1102	if (tso->in_len == 0 || tso->packet_space == 0)
1103		return;
1104
1105	KASSERT(tso->in_len > 0, ("TSO input length went negative"));
1106	KASSERT(tso->packet_space > 0, ("TSO packet space went negative"));
1107
1108	if (tso->fw_assisted & SFXGE_FATSOV2) {
1109		n = tso->in_len;
1110		tso->out_len -= n;
1111		tso->seqnum += n;
1112		tso->in_len = 0;
1113		if (n < tso->packet_space) {
1114			tso->packet_space -= n;
1115			tso->segs_space--;
1116		} else {
1117			tso->packet_space = tso->seg_size -
1118			    (n - tso->packet_space) % tso->seg_size;
1119			tso->segs_space =
1120			    EFX_TX_FATSOV2_DMA_SEGS_PER_PKT_MAX - 1 -
1121			    (tso->packet_space != tso->seg_size);
1122		}
1123	} else {
1124		n = min(tso->in_len, tso->packet_space);
1125		tso->packet_space -= n;
1126		tso->out_len -= n;
1127		tso->dma_addr += n;
1128		tso->in_len -= n;
1129	}
1130
1131	/*
1132	 * It is OK to use binary OR below to avoid extra branching
1133	 * since all conditions may always be checked.
1134	 */
1135	eop = (tso->out_len == 0) | (tso->packet_space == 0) |
1136	    (tso->segs_space == 0);
1137
1138	desc = &txq->pend_desc[txq->n_pend_desc++];
1139	efx_tx_qdesc_dma_create(txq->common, dma_addr, n, eop, desc);
1140}
1141
1142/* Callback from bus_dmamap_load() for long TSO headers. */
1143static void tso_map_long_header(void *dma_addr_ret,
1144				bus_dma_segment_t *segs, int nseg,
1145				int error)
1146{
1147	*(uint64_t *)dma_addr_ret = ((__predict_true(error == 0) &&
1148				      __predict_true(nseg == 1)) ?
1149				     segs->ds_addr : 0);
1150}
1151
1152/*
1153 * tso_start_new_packet - generate a new header and prepare for the new packet
1154 *
1155 * Generate a new header and prepare for the new packet.  Return 0 on
1156 * success, or an error code if failed to alloc header.
1157 */
1158static int tso_start_new_packet(struct sfxge_txq *txq,
1159				struct sfxge_tso_state *tso,
1160				unsigned int *idp)
1161{
1162	unsigned int id = *idp;
1163	struct tcphdr *tsoh_th;
1164	unsigned ip_length;
1165	caddr_t header;
1166	uint64_t dma_addr;
1167	bus_dmamap_t map;
1168	efx_desc_t *desc;
1169	int rc;
1170
1171	if (tso->fw_assisted) {
1172		if (tso->fw_assisted & SFXGE_FATSOV2) {
1173			/* Add 2 FATSOv2 option descriptors */
1174			desc = &txq->pend_desc[txq->n_pend_desc];
1175			efx_tx_qdesc_tso2_create(txq->common,
1176						 tso->packet_id,
1177						 tso->seqnum,
1178						 tso->seg_size,
1179						 desc,
1180						 EFX_TX_FATSOV2_OPT_NDESCS);
1181			desc += EFX_TX_FATSOV2_OPT_NDESCS;
1182			txq->n_pend_desc += EFX_TX_FATSOV2_OPT_NDESCS;
1183			KASSERT(txq->stmp[id].flags == 0, ("stmp flags are not 0"));
1184			id = (id + EFX_TX_FATSOV2_OPT_NDESCS) & txq->ptr_mask;
1185
1186			tso->segs_space =
1187			    EFX_TX_FATSOV2_DMA_SEGS_PER_PKT_MAX - 1;
1188		} else {
1189			uint8_t tcp_flags = tso->tcp_flags;
1190
1191			if (tso->out_len > tso->seg_size)
1192				tcp_flags &= ~(TH_FIN | TH_PUSH);
1193
1194			/* Add FATSOv1 option descriptor */
1195			desc = &txq->pend_desc[txq->n_pend_desc++];
1196			efx_tx_qdesc_tso_create(txq->common,
1197						tso->packet_id,
1198						tso->seqnum,
1199						tcp_flags,
1200						desc++);
1201			KASSERT(txq->stmp[id].flags == 0, ("stmp flags are not 0"));
1202			id = (id + 1) & txq->ptr_mask;
1203
1204			tso->seqnum += tso->seg_size;
1205			tso->segs_space = UINT_MAX;
1206		}
1207
1208		/* Header DMA descriptor */
1209		*desc = tso->header_desc;
1210		txq->n_pend_desc++;
1211		KASSERT(txq->stmp[id].flags == 0, ("stmp flags are not 0"));
1212		id = (id + 1) & txq->ptr_mask;
1213	} else {
1214		/* Allocate a DMA-mapped header buffer. */
1215		if (__predict_true(tso->header_len <= TSOH_STD_SIZE)) {
1216			unsigned int page_index = (id / 2) / TSOH_PER_PAGE;
1217			unsigned int buf_index = (id / 2) % TSOH_PER_PAGE;
1218
1219			header = (txq->tsoh_buffer[page_index].esm_base +
1220				  buf_index * TSOH_STD_SIZE);
1221			dma_addr = (txq->tsoh_buffer[page_index].esm_addr +
1222				    buf_index * TSOH_STD_SIZE);
1223			map = txq->tsoh_buffer[page_index].esm_map;
1224
1225			KASSERT(txq->stmp[id].flags == 0,
1226				("stmp flags are not 0"));
1227		} else {
1228			struct sfxge_tx_mapping *stmp = &txq->stmp[id];
1229
1230			/* We cannot use bus_dmamem_alloc() as that may sleep */
1231			header = malloc(tso->header_len, M_SFXGE, M_NOWAIT);
1232			if (__predict_false(!header))
1233				return (ENOMEM);
1234			rc = bus_dmamap_load(txq->packet_dma_tag, stmp->map,
1235					     header, tso->header_len,
1236					     tso_map_long_header, &dma_addr,
1237					     BUS_DMA_NOWAIT);
1238			if (__predict_false(dma_addr == 0)) {
1239				if (rc == 0) {
1240					/* Succeeded but got >1 segment */
1241					bus_dmamap_unload(txq->packet_dma_tag,
1242							  stmp->map);
1243					rc = EINVAL;
1244				}
1245				free(header, M_SFXGE);
1246				return (rc);
1247			}
1248			map = stmp->map;
1249
1250			txq->tso_long_headers++;
1251			stmp->u.heap_buf = header;
1252			stmp->flags = TX_BUF_UNMAP;
1253		}
1254
1255		tsoh_th = (struct tcphdr *)(header + tso->tcph_off);
1256
1257		/* Copy and update the headers. */
1258		m_copydata(tso->mbuf, 0, tso->header_len, header);
1259
1260		tsoh_th->th_seq = htonl(tso->seqnum);
1261		tso->seqnum += tso->seg_size;
1262		if (tso->out_len > tso->seg_size) {
1263			/* This packet will not finish the TSO burst. */
1264			ip_length = tso->header_len - tso->nh_off + tso->seg_size;
1265			tsoh_th->th_flags &= ~(TH_FIN | TH_PUSH);
1266		} else {
1267			/* This packet will be the last in the TSO burst. */
1268			ip_length = tso->header_len - tso->nh_off + tso->out_len;
1269		}
1270
1271		if (tso->protocol == htons(ETHERTYPE_IP)) {
1272			struct ip *tsoh_iph = (struct ip *)(header + tso->nh_off);
1273			tsoh_iph->ip_len = htons(ip_length);
1274			/* XXX We should increment ip_id, but FreeBSD doesn't
1275			 * currently allocate extra IDs for multiple segments.
1276			 */
1277		} else {
1278			struct ip6_hdr *tsoh_iph =
1279				(struct ip6_hdr *)(header + tso->nh_off);
1280			tsoh_iph->ip6_plen = htons(ip_length - sizeof(*tsoh_iph));
1281		}
1282
1283		/* Make the header visible to the hardware. */
1284		bus_dmamap_sync(txq->packet_dma_tag, map, BUS_DMASYNC_PREWRITE);
1285
1286		/* Form a descriptor for this header. */
1287		desc = &txq->pend_desc[txq->n_pend_desc++];
1288		efx_tx_qdesc_dma_create(txq->common,
1289					dma_addr,
1290					tso->header_len,
1291					0,
1292					desc);
1293		id = (id + 1) & txq->ptr_mask;
1294
1295		tso->segs_space = UINT_MAX;
1296	}
1297	tso->packet_space = tso->seg_size;
1298	txq->tso_packets++;
1299	*idp = id;
1300
1301	return (0);
1302}
1303
1304static int
1305sfxge_tx_queue_tso(struct sfxge_txq *txq, struct mbuf *mbuf,
1306		   const bus_dma_segment_t *dma_seg, int n_dma_seg,
1307		   int vlan_tagged)
1308{
1309	struct sfxge_tso_state tso;
1310	unsigned int id;
1311	unsigned skipped = 0;
1312
1313	tso_start(txq, &tso, dma_seg, mbuf);
1314
1315	while (dma_seg->ds_len + skipped <= tso.header_len) {
1316		skipped += dma_seg->ds_len;
1317		--n_dma_seg;
1318		KASSERT(n_dma_seg, ("no payload found in TSO packet"));
1319		++dma_seg;
1320	}
1321	tso.in_len = dma_seg->ds_len - (tso.header_len - skipped);
1322	tso.dma_addr = dma_seg->ds_addr + (tso.header_len - skipped);
1323
1324	id = (txq->added + vlan_tagged) & txq->ptr_mask;
1325	if (__predict_false(tso_start_new_packet(txq, &tso, &id)))
1326		return (-1);
1327
1328	while (1) {
1329		tso_fill_packet_with_fragment(txq, &tso);
1330		/* Exactly one DMA descriptor is added */
1331		KASSERT(txq->stmp[id].flags == 0, ("stmp flags are not 0"));
1332		id = (id + 1) & txq->ptr_mask;
1333
1334		/* Move onto the next fragment? */
1335		if (tso.in_len == 0) {
1336			--n_dma_seg;
1337			if (n_dma_seg == 0)
1338				break;
1339			++dma_seg;
1340			tso.in_len = dma_seg->ds_len;
1341			tso.dma_addr = dma_seg->ds_addr;
1342		}
1343
1344		/* End of packet? */
1345		if ((tso.packet_space == 0) | (tso.segs_space == 0)) {
1346			unsigned int n_fatso_opt_desc =
1347			    (tso.fw_assisted & SFXGE_FATSOV2) ?
1348			    EFX_TX_FATSOV2_OPT_NDESCS :
1349			    (tso.fw_assisted & SFXGE_FATSOV1) ? 1 : 0;
1350
1351			/* If the queue is now full due to tiny MSS,
1352			 * or we can't create another header, discard
1353			 * the remainder of the input mbuf but do not
1354			 * roll back the work we have done.
1355			 */
1356			if (txq->n_pend_desc + n_fatso_opt_desc +
1357			    1 /* header */ + n_dma_seg > txq->max_pkt_desc) {
1358				txq->tso_pdrop_too_many++;
1359				break;
1360			}
1361			if (__predict_false(tso_start_new_packet(txq, &tso,
1362								 &id))) {
1363				txq->tso_pdrop_no_rsrc++;
1364				break;
1365			}
1366		}
1367	}
1368
1369	txq->tso_bursts++;
1370	return (id);
1371}
1372
1373static void
1374sfxge_tx_qunblock(struct sfxge_txq *txq)
1375{
1376	struct sfxge_softc *sc;
1377	struct sfxge_evq *evq;
1378
1379	sc = txq->sc;
1380	evq = sc->evq[txq->evq_index];
1381
1382	SFXGE_EVQ_LOCK_ASSERT_OWNED(evq);
1383
1384	if (__predict_false(txq->init_state != SFXGE_TXQ_STARTED))
1385		return;
1386
1387	SFXGE_TXQ_LOCK(txq);
1388
1389	if (txq->blocked) {
1390		unsigned int level;
1391
1392		level = txq->added - txq->completed;
1393		if (level <= SFXGE_TXQ_UNBLOCK_LEVEL(txq->entries)) {
1394			/* reaped must be in sync with blocked */
1395			sfxge_tx_qreap(txq);
1396			txq->blocked = 0;
1397		}
1398	}
1399
1400	sfxge_tx_qdpl_service(txq);
1401	/* note: lock has been dropped */
1402}
1403
1404void
1405sfxge_tx_qflush_done(struct sfxge_txq *txq)
1406{
1407
1408	txq->flush_state = SFXGE_FLUSH_DONE;
1409}
1410
1411static void
1412sfxge_tx_qstop(struct sfxge_softc *sc, unsigned int index)
1413{
1414	struct sfxge_txq *txq;
1415	struct sfxge_evq *evq;
1416	unsigned int count;
1417
1418	SFXGE_ADAPTER_LOCK_ASSERT_OWNED(sc);
1419
1420	txq = sc->txq[index];
1421	evq = sc->evq[txq->evq_index];
1422
1423	SFXGE_EVQ_LOCK(evq);
1424	SFXGE_TXQ_LOCK(txq);
1425
1426	KASSERT(txq->init_state == SFXGE_TXQ_STARTED,
1427	    ("txq->init_state != SFXGE_TXQ_STARTED"));
1428
1429	txq->init_state = SFXGE_TXQ_INITIALIZED;
1430
1431	if (txq->flush_state != SFXGE_FLUSH_DONE) {
1432		txq->flush_state = SFXGE_FLUSH_PENDING;
1433
1434		SFXGE_EVQ_UNLOCK(evq);
1435		SFXGE_TXQ_UNLOCK(txq);
1436
1437		/* Flush the transmit queue. */
1438		if (efx_tx_qflush(txq->common) != 0) {
1439			log(LOG_ERR, "%s: Flushing Tx queue %u failed\n",
1440			    device_get_nameunit(sc->dev), index);
1441			txq->flush_state = SFXGE_FLUSH_DONE;
1442		} else {
1443			count = 0;
1444			do {
1445				/* Spin for 100ms. */
1446				DELAY(100000);
1447				if (txq->flush_state != SFXGE_FLUSH_PENDING)
1448					break;
1449			} while (++count < 20);
1450		}
1451		SFXGE_EVQ_LOCK(evq);
1452		SFXGE_TXQ_LOCK(txq);
1453
1454		KASSERT(txq->flush_state != SFXGE_FLUSH_FAILED,
1455		    ("txq->flush_state == SFXGE_FLUSH_FAILED"));
1456
1457		if (txq->flush_state != SFXGE_FLUSH_DONE) {
1458			/* Flush timeout */
1459			log(LOG_ERR, "%s: Cannot flush Tx queue %u\n",
1460			    device_get_nameunit(sc->dev), index);
1461			txq->flush_state = SFXGE_FLUSH_DONE;
1462		}
1463	}
1464
1465	txq->blocked = 0;
1466	txq->pending = txq->added;
1467
1468	sfxge_tx_qcomplete(txq, evq);
1469	KASSERT(txq->completed == txq->added,
1470	    ("txq->completed != txq->added"));
1471
1472	sfxge_tx_qreap(txq);
1473	KASSERT(txq->reaped == txq->completed,
1474	    ("txq->reaped != txq->completed"));
1475
1476	txq->added = 0;
1477	txq->pending = 0;
1478	txq->completed = 0;
1479	txq->reaped = 0;
1480
1481	/* Destroy the common code transmit queue. */
1482	efx_tx_qdestroy(txq->common);
1483	txq->common = NULL;
1484
1485	efx_sram_buf_tbl_clear(sc->enp, txq->buf_base_id,
1486	    EFX_TXQ_NBUFS(sc->txq_entries));
1487
1488	SFXGE_EVQ_UNLOCK(evq);
1489	SFXGE_TXQ_UNLOCK(txq);
1490}
1491
1492/*
1493 * Estimate maximum number of Tx descriptors required for TSO packet.
1494 * With minimum MSS and maximum mbuf length we might need more (even
1495 * than a ring-ful of descriptors), but this should not happen in
1496 * practice except due to deliberate attack.  In that case we will
1497 * truncate the output at a packet boundary.
1498 */
1499static unsigned int
1500sfxge_tx_max_pkt_desc(const struct sfxge_softc *sc, enum sfxge_txq_type type,
1501		      unsigned int tso_fw_assisted)
1502{
1503	/* One descriptor for every input fragment */
1504	unsigned int max_descs = SFXGE_TX_MAPPING_MAX_SEG;
1505	unsigned int sw_tso_max_descs;
1506	unsigned int fa_tso_v1_max_descs = 0;
1507	unsigned int fa_tso_v2_max_descs = 0;
1508
1509	/* VLAN tagging Tx option descriptor may be required */
1510	if (efx_nic_cfg_get(sc->enp)->enc_hw_tx_insert_vlan_enabled)
1511		max_descs++;
1512
1513	if (type == SFXGE_TXQ_IP_TCP_UDP_CKSUM) {
1514		/*
1515		 * Plus header and payload descriptor for each output segment.
1516		 * Minus one since header fragment is already counted.
1517		 * Even if FATSO is used, we should be ready to fallback
1518		 * to do it in the driver.
1519		 */
1520		sw_tso_max_descs = SFXGE_TSO_MAX_SEGS * 2 - 1;
1521
1522		/* FW assisted TSOv1 requires one more descriptor per segment
1523		 * in comparison to SW TSO */
1524		if (tso_fw_assisted & SFXGE_FATSOV1)
1525			fa_tso_v1_max_descs =
1526			    sw_tso_max_descs + SFXGE_TSO_MAX_SEGS;
1527
1528		/* FW assisted TSOv2 requires 3 (2 FATSO plus header) extra
1529		 * descriptors per superframe limited by number of DMA fetches
1530		 * per packet. The first packet header is already counted.
1531		 */
1532		if (tso_fw_assisted & SFXGE_FATSOV2) {
1533			fa_tso_v2_max_descs =
1534			    howmany(SFXGE_TX_MAPPING_MAX_SEG,
1535				    EFX_TX_FATSOV2_DMA_SEGS_PER_PKT_MAX - 1) *
1536			    (EFX_TX_FATSOV2_OPT_NDESCS + 1) - 1;
1537		}
1538
1539		max_descs += MAX(sw_tso_max_descs,
1540				 MAX(fa_tso_v1_max_descs, fa_tso_v2_max_descs));
1541	}
1542
1543	return (max_descs);
1544}
1545
1546static int
1547sfxge_tx_qstart(struct sfxge_softc *sc, unsigned int index)
1548{
1549	struct sfxge_txq *txq;
1550	efsys_mem_t *esmp;
1551	uint16_t flags;
1552	unsigned int tso_fw_assisted;
1553	struct sfxge_evq *evq;
1554	unsigned int desc_index;
1555	int rc;
1556
1557	SFXGE_ADAPTER_LOCK_ASSERT_OWNED(sc);
1558
1559	txq = sc->txq[index];
1560	esmp = &txq->mem;
1561	evq = sc->evq[txq->evq_index];
1562
1563	KASSERT(txq->init_state == SFXGE_TXQ_INITIALIZED,
1564	    ("txq->init_state != SFXGE_TXQ_INITIALIZED"));
1565	KASSERT(evq->init_state == SFXGE_EVQ_STARTED,
1566	    ("evq->init_state != SFXGE_EVQ_STARTED"));
1567
1568	/* Program the buffer table. */
1569	if ((rc = efx_sram_buf_tbl_set(sc->enp, txq->buf_base_id, esmp,
1570	    EFX_TXQ_NBUFS(sc->txq_entries))) != 0)
1571		return (rc);
1572
1573	/* Determine the kind of queue we are creating. */
1574	tso_fw_assisted = 0;
1575	switch (txq->type) {
1576	case SFXGE_TXQ_NON_CKSUM:
1577		flags = 0;
1578		break;
1579	case SFXGE_TXQ_IP_CKSUM:
1580		flags = EFX_TXQ_CKSUM_IPV4;
1581		break;
1582	case SFXGE_TXQ_IP_TCP_UDP_CKSUM:
1583		flags = EFX_TXQ_CKSUM_IPV4 | EFX_TXQ_CKSUM_TCPUDP;
1584		tso_fw_assisted = sc->tso_fw_assisted;
1585		if (tso_fw_assisted & SFXGE_FATSOV2)
1586			flags |= EFX_TXQ_FATSOV2;
1587		break;
1588	default:
1589		KASSERT(0, ("Impossible TX queue"));
1590		flags = 0;
1591		break;
1592	}
1593
1594	/* Create the common code transmit queue. */
1595	if ((rc = efx_tx_qcreate(sc->enp, index, txq->type, esmp,
1596	    sc->txq_entries, txq->buf_base_id, flags, evq->common,
1597	    &txq->common, &desc_index)) != 0) {
1598		/* Retry if no FATSOv2 resources, otherwise fail */
1599		if ((rc != ENOSPC) || (~flags & EFX_TXQ_FATSOV2))
1600			goto fail;
1601
1602		/* Looks like all FATSOv2 contexts are used */
1603		flags &= ~EFX_TXQ_FATSOV2;
1604		tso_fw_assisted &= ~SFXGE_FATSOV2;
1605		if ((rc = efx_tx_qcreate(sc->enp, index, txq->type, esmp,
1606		    sc->txq_entries, txq->buf_base_id, flags, evq->common,
1607		    &txq->common, &desc_index)) != 0)
1608			goto fail;
1609	}
1610
1611	/* Initialise queue descriptor indexes */
1612	txq->added = txq->pending = txq->completed = txq->reaped = desc_index;
1613
1614	SFXGE_TXQ_LOCK(txq);
1615
1616	/* Enable the transmit queue. */
1617	efx_tx_qenable(txq->common);
1618
1619	txq->init_state = SFXGE_TXQ_STARTED;
1620	txq->flush_state = SFXGE_FLUSH_REQUIRED;
1621	txq->tso_fw_assisted = tso_fw_assisted;
1622
1623	txq->max_pkt_desc = sfxge_tx_max_pkt_desc(sc, txq->type,
1624						  tso_fw_assisted);
1625
1626	SFXGE_TXQ_UNLOCK(txq);
1627
1628	return (0);
1629
1630fail:
1631	efx_sram_buf_tbl_clear(sc->enp, txq->buf_base_id,
1632	    EFX_TXQ_NBUFS(sc->txq_entries));
1633	return (rc);
1634}
1635
1636void
1637sfxge_tx_stop(struct sfxge_softc *sc)
1638{
1639	int index;
1640
1641	index = sc->txq_count;
1642	while (--index >= 0)
1643		sfxge_tx_qstop(sc, index);
1644
1645	/* Tear down the transmit module */
1646	efx_tx_fini(sc->enp);
1647}
1648
1649int
1650sfxge_tx_start(struct sfxge_softc *sc)
1651{
1652	int index;
1653	int rc;
1654
1655	/* Initialize the common code transmit module. */
1656	if ((rc = efx_tx_init(sc->enp)) != 0)
1657		return (rc);
1658
1659	for (index = 0; index < sc->txq_count; index++) {
1660		if ((rc = sfxge_tx_qstart(sc, index)) != 0)
1661			goto fail;
1662	}
1663
1664	return (0);
1665
1666fail:
1667	while (--index >= 0)
1668		sfxge_tx_qstop(sc, index);
1669
1670	efx_tx_fini(sc->enp);
1671
1672	return (rc);
1673}
1674
1675static int
1676sfxge_txq_stat_init(struct sfxge_txq *txq, struct sysctl_oid *txq_node)
1677{
1678	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(txq->sc->dev);
1679	struct sysctl_oid *stat_node;
1680	unsigned int id;
1681
1682	stat_node = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(txq_node), OID_AUTO,
1683				    "stats", CTLFLAG_RD, NULL,
1684				    "Tx queue statistics");
1685	if (stat_node == NULL)
1686		return (ENOMEM);
1687
1688	for (id = 0; id < nitems(sfxge_tx_stats); id++) {
1689		SYSCTL_ADD_ULONG(
1690		    ctx, SYSCTL_CHILDREN(stat_node), OID_AUTO,
1691		    sfxge_tx_stats[id].name, CTLFLAG_RD | CTLFLAG_STATS,
1692		    (unsigned long *)((caddr_t)txq + sfxge_tx_stats[id].offset),
1693		    "");
1694	}
1695
1696	return (0);
1697}
1698
1699/**
1700 * Destroy a transmit queue.
1701 */
1702static void
1703sfxge_tx_qfini(struct sfxge_softc *sc, unsigned int index)
1704{
1705	struct sfxge_txq *txq;
1706	unsigned int nmaps;
1707
1708	txq = sc->txq[index];
1709
1710	KASSERT(txq->init_state == SFXGE_TXQ_INITIALIZED,
1711	    ("txq->init_state != SFXGE_TXQ_INITIALIZED"));
1712
1713	if (txq->type == SFXGE_TXQ_IP_TCP_UDP_CKSUM)
1714		tso_fini(txq);
1715
1716	/* Free the context arrays. */
1717	free(txq->pend_desc, M_SFXGE);
1718	nmaps = sc->txq_entries;
1719	while (nmaps-- != 0)
1720		bus_dmamap_destroy(txq->packet_dma_tag, txq->stmp[nmaps].map);
1721	free(txq->stmp, M_SFXGE);
1722
1723	/* Release DMA memory mapping. */
1724	sfxge_dma_free(&txq->mem);
1725
1726	sc->txq[index] = NULL;
1727
1728	SFXGE_TXQ_LOCK_DESTROY(txq);
1729
1730	free(txq, M_SFXGE);
1731}
1732
1733static int
1734sfxge_tx_qinit(struct sfxge_softc *sc, unsigned int txq_index,
1735	       enum sfxge_txq_type type, unsigned int evq_index)
1736{
1737	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sc->enp);
1738	char name[16];
1739	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->dev);
1740	struct sysctl_oid *txq_node;
1741	struct sfxge_txq *txq;
1742	struct sfxge_evq *evq;
1743	struct sfxge_tx_dpl *stdp;
1744	struct sysctl_oid *dpl_node;
1745	efsys_mem_t *esmp;
1746	unsigned int nmaps;
1747	int rc;
1748
1749	txq = malloc(sizeof(struct sfxge_txq), M_SFXGE, M_ZERO | M_WAITOK);
1750	txq->sc = sc;
1751	txq->entries = sc->txq_entries;
1752	txq->ptr_mask = txq->entries - 1;
1753
1754	sc->txq[txq_index] = txq;
1755	esmp = &txq->mem;
1756
1757	evq = sc->evq[evq_index];
1758
1759	/* Allocate and zero DMA space for the descriptor ring. */
1760	if ((rc = sfxge_dma_alloc(sc, EFX_TXQ_SIZE(sc->txq_entries), esmp)) != 0)
1761		return (rc);
1762
1763	/* Allocate buffer table entries. */
1764	sfxge_sram_buf_tbl_alloc(sc, EFX_TXQ_NBUFS(sc->txq_entries),
1765				 &txq->buf_base_id);
1766
1767	/* Create a DMA tag for packet mappings. */
1768	if (bus_dma_tag_create(sc->parent_dma_tag, 1,
1769	    encp->enc_tx_dma_desc_boundary,
1770	    MIN(0x3FFFFFFFFFFFUL, BUS_SPACE_MAXADDR), BUS_SPACE_MAXADDR, NULL,
1771	    NULL, 0x11000, SFXGE_TX_MAPPING_MAX_SEG,
1772	    encp->enc_tx_dma_desc_size_max, 0, NULL, NULL,
1773	    &txq->packet_dma_tag) != 0) {
1774		device_printf(sc->dev, "Couldn't allocate txq DMA tag\n");
1775		rc = ENOMEM;
1776		goto fail;
1777	}
1778
1779	/* Allocate pending descriptor array for batching writes. */
1780	txq->pend_desc = malloc(sizeof(efx_desc_t) * sc->txq_entries,
1781				M_SFXGE, M_ZERO | M_WAITOK);
1782
1783	/* Allocate and initialise mbuf DMA mapping array. */
1784	txq->stmp = malloc(sizeof(struct sfxge_tx_mapping) * sc->txq_entries,
1785	    M_SFXGE, M_ZERO | M_WAITOK);
1786	for (nmaps = 0; nmaps < sc->txq_entries; nmaps++) {
1787		rc = bus_dmamap_create(txq->packet_dma_tag, 0,
1788				       &txq->stmp[nmaps].map);
1789		if (rc != 0)
1790			goto fail2;
1791	}
1792
1793	snprintf(name, sizeof(name), "%u", txq_index);
1794	txq_node = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(sc->txqs_node),
1795				   OID_AUTO, name, CTLFLAG_RD, NULL, "");
1796	if (txq_node == NULL) {
1797		rc = ENOMEM;
1798		goto fail_txq_node;
1799	}
1800
1801	if (type == SFXGE_TXQ_IP_TCP_UDP_CKSUM &&
1802	    (rc = tso_init(txq)) != 0)
1803		goto fail3;
1804
1805	/* Initialize the deferred packet list. */
1806	stdp = &txq->dpl;
1807	stdp->std_put_max = sfxge_tx_dpl_put_max;
1808	stdp->std_get_max = sfxge_tx_dpl_get_max;
1809	stdp->std_get_non_tcp_max = sfxge_tx_dpl_get_non_tcp_max;
1810	stdp->std_getp = &stdp->std_get;
1811
1812	SFXGE_TXQ_LOCK_INIT(txq, device_get_nameunit(sc->dev), txq_index);
1813
1814	dpl_node = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(txq_node), OID_AUTO,
1815				   "dpl", CTLFLAG_RD, NULL,
1816				   "Deferred packet list statistics");
1817	if (dpl_node == NULL) {
1818		rc = ENOMEM;
1819		goto fail_dpl_node;
1820	}
1821
1822	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(dpl_node), OID_AUTO,
1823			"get_count", CTLFLAG_RD | CTLFLAG_STATS,
1824			&stdp->std_get_count, 0, "");
1825	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(dpl_node), OID_AUTO,
1826			"get_non_tcp_count", CTLFLAG_RD | CTLFLAG_STATS,
1827			&stdp->std_get_non_tcp_count, 0, "");
1828	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(dpl_node), OID_AUTO,
1829			"get_hiwat", CTLFLAG_RD | CTLFLAG_STATS,
1830			&stdp->std_get_hiwat, 0, "");
1831	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(dpl_node), OID_AUTO,
1832			"put_hiwat", CTLFLAG_RD | CTLFLAG_STATS,
1833			&stdp->std_put_hiwat, 0, "");
1834
1835	rc = sfxge_txq_stat_init(txq, txq_node);
1836	if (rc != 0)
1837		goto fail_txq_stat_init;
1838
1839	txq->type = type;
1840	txq->evq_index = evq_index;
1841	txq->txq_index = txq_index;
1842	txq->init_state = SFXGE_TXQ_INITIALIZED;
1843	txq->hw_vlan_tci = 0;
1844
1845	return (0);
1846
1847fail_txq_stat_init:
1848fail_dpl_node:
1849fail3:
1850fail_txq_node:
1851	free(txq->pend_desc, M_SFXGE);
1852fail2:
1853	while (nmaps-- != 0)
1854		bus_dmamap_destroy(txq->packet_dma_tag, txq->stmp[nmaps].map);
1855	free(txq->stmp, M_SFXGE);
1856	bus_dma_tag_destroy(txq->packet_dma_tag);
1857
1858fail:
1859	sfxge_dma_free(esmp);
1860
1861	return (rc);
1862}
1863
1864static int
1865sfxge_tx_stat_handler(SYSCTL_HANDLER_ARGS)
1866{
1867	struct sfxge_softc *sc = arg1;
1868	unsigned int id = arg2;
1869	unsigned long sum;
1870	unsigned int index;
1871
1872	/* Sum across all TX queues */
1873	sum = 0;
1874	for (index = 0; index < sc->txq_count; index++)
1875		sum += *(unsigned long *)((caddr_t)sc->txq[index] +
1876					  sfxge_tx_stats[id].offset);
1877
1878	return (SYSCTL_OUT(req, &sum, sizeof(sum)));
1879}
1880
1881static void
1882sfxge_tx_stat_init(struct sfxge_softc *sc)
1883{
1884	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->dev);
1885	struct sysctl_oid_list *stat_list;
1886	unsigned int id;
1887
1888	stat_list = SYSCTL_CHILDREN(sc->stats_node);
1889
1890	for (id = 0; id < nitems(sfxge_tx_stats); id++) {
1891		SYSCTL_ADD_PROC(
1892			ctx, stat_list,
1893			OID_AUTO, sfxge_tx_stats[id].name,
1894			CTLTYPE_ULONG|CTLFLAG_RD,
1895			sc, id, sfxge_tx_stat_handler, "LU",
1896			"");
1897	}
1898}
1899
1900uint64_t
1901sfxge_tx_get_drops(struct sfxge_softc *sc)
1902{
1903	unsigned int index;
1904	uint64_t drops = 0;
1905	struct sfxge_txq *txq;
1906
1907	/* Sum across all TX queues */
1908	for (index = 0; index < sc->txq_count; index++) {
1909		txq = sc->txq[index];
1910		/*
1911		 * In theory, txq->put_overflow and txq->netdown_drops
1912		 * should use atomic operation and other should be
1913		 * obtained under txq lock, but it is just statistics.
1914		 */
1915		drops += txq->drops + txq->get_overflow +
1916			 txq->get_non_tcp_overflow +
1917			 txq->put_overflow + txq->netdown_drops +
1918			 txq->tso_pdrop_too_many + txq->tso_pdrop_no_rsrc;
1919	}
1920	return (drops);
1921}
1922
1923void
1924sfxge_tx_fini(struct sfxge_softc *sc)
1925{
1926	int index;
1927
1928	index = sc->txq_count;
1929	while (--index >= 0)
1930		sfxge_tx_qfini(sc, index);
1931
1932	sc->txq_count = 0;
1933}
1934
1935
1936int
1937sfxge_tx_init(struct sfxge_softc *sc)
1938{
1939	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sc->enp);
1940	struct sfxge_intr *intr;
1941	int index;
1942	int rc;
1943
1944	intr = &sc->intr;
1945
1946	KASSERT(intr->state == SFXGE_INTR_INITIALIZED,
1947	    ("intr->state != SFXGE_INTR_INITIALIZED"));
1948
1949	if (sfxge_tx_dpl_get_max <= 0) {
1950		log(LOG_ERR, "%s=%d must be greater than 0",
1951		    SFXGE_PARAM_TX_DPL_GET_MAX, sfxge_tx_dpl_get_max);
1952		rc = EINVAL;
1953		goto fail_tx_dpl_get_max;
1954	}
1955	if (sfxge_tx_dpl_get_non_tcp_max <= 0) {
1956		log(LOG_ERR, "%s=%d must be greater than 0",
1957		    SFXGE_PARAM_TX_DPL_GET_NON_TCP_MAX,
1958		    sfxge_tx_dpl_get_non_tcp_max);
1959		rc = EINVAL;
1960		goto fail_tx_dpl_get_non_tcp_max;
1961	}
1962	if (sfxge_tx_dpl_put_max < 0) {
1963		log(LOG_ERR, "%s=%d must be greater or equal to 0",
1964		    SFXGE_PARAM_TX_DPL_PUT_MAX, sfxge_tx_dpl_put_max);
1965		rc = EINVAL;
1966		goto fail_tx_dpl_put_max;
1967	}
1968
1969	sc->txq_count = SFXGE_TXQ_NTYPES - 1 + sc->intr.n_alloc;
1970
1971	sc->tso_fw_assisted = sfxge_tso_fw_assisted;
1972	if ((~encp->enc_features & EFX_FEATURE_FW_ASSISTED_TSO) ||
1973	    (!encp->enc_fw_assisted_tso_enabled))
1974		sc->tso_fw_assisted &= ~SFXGE_FATSOV1;
1975	if ((~encp->enc_features & EFX_FEATURE_FW_ASSISTED_TSO_V2) ||
1976	    (!encp->enc_fw_assisted_tso_v2_enabled))
1977		sc->tso_fw_assisted &= ~SFXGE_FATSOV2;
1978
1979	sc->txqs_node = SYSCTL_ADD_NODE(
1980		device_get_sysctl_ctx(sc->dev),
1981		SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)),
1982		OID_AUTO, "txq", CTLFLAG_RD, NULL, "Tx queues");
1983	if (sc->txqs_node == NULL) {
1984		rc = ENOMEM;
1985		goto fail_txq_node;
1986	}
1987
1988	/* Initialize the transmit queues */
1989	if ((rc = sfxge_tx_qinit(sc, SFXGE_TXQ_NON_CKSUM,
1990	    SFXGE_TXQ_NON_CKSUM, 0)) != 0)
1991		goto fail;
1992
1993	if ((rc = sfxge_tx_qinit(sc, SFXGE_TXQ_IP_CKSUM,
1994	    SFXGE_TXQ_IP_CKSUM, 0)) != 0)
1995		goto fail2;
1996
1997	for (index = 0;
1998	     index < sc->txq_count - SFXGE_TXQ_NTYPES + 1;
1999	     index++) {
2000		if ((rc = sfxge_tx_qinit(sc, SFXGE_TXQ_NTYPES - 1 + index,
2001		    SFXGE_TXQ_IP_TCP_UDP_CKSUM, index)) != 0)
2002			goto fail3;
2003	}
2004
2005	sfxge_tx_stat_init(sc);
2006
2007	return (0);
2008
2009fail3:
2010	while (--index >= 0)
2011		sfxge_tx_qfini(sc, SFXGE_TXQ_IP_TCP_UDP_CKSUM + index);
2012
2013	sfxge_tx_qfini(sc, SFXGE_TXQ_IP_CKSUM);
2014
2015fail2:
2016	sfxge_tx_qfini(sc, SFXGE_TXQ_NON_CKSUM);
2017
2018fail:
2019fail_txq_node:
2020	sc->txq_count = 0;
2021fail_tx_dpl_put_max:
2022fail_tx_dpl_get_non_tcp_max:
2023fail_tx_dpl_get_max:
2024	return (rc);
2025}
2026