fsl_sdhci.c revision 318197
1/*-
2 * Copyright (c) 2013 Ian Lepore <ian@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 */
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/11/sys/dev/sdhci/fsl_sdhci.c 318197 2017-05-11 20:55:11Z marius $");
29
30/*
31 * SDHCI driver glue for Freescale i.MX SoC and QorIQ families.
32 *
33 * This supports both eSDHC (earlier SoCs) and uSDHC (more recent SoCs).
34 */
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/types.h>
39#include <sys/bus.h>
40#include <sys/callout.h>
41#include <sys/kernel.h>
42#include <sys/libkern.h>
43#include <sys/lock.h>
44#include <sys/malloc.h>
45#include <sys/module.h>
46#include <sys/mutex.h>
47#include <sys/resource.h>
48#include <sys/rman.h>
49#include <sys/sysctl.h>
50#include <sys/taskqueue.h>
51#include <sys/time.h>
52
53#include <machine/bus.h>
54#include <machine/resource.h>
55#ifdef __arm__
56#include <machine/intr.h>
57
58#include <arm/freescale/imx/imx_ccmvar.h>
59#endif
60
61#include <dev/gpio/gpiobusvar.h>
62
63#include <dev/ofw/ofw_bus.h>
64#include <dev/ofw/ofw_bus_subr.h>
65
66#include <dev/mmc/bridge.h>
67
68#include <dev/sdhci/sdhci.h>
69#include <dev/sdhci/sdhci_fdt_gpio.h>
70
71#include "mmcbr_if.h"
72#include "sdhci_if.h"
73
74struct fsl_sdhci_softc {
75	device_t		dev;
76	struct resource *	mem_res;
77	struct resource *	irq_res;
78	void *			intr_cookie;
79	struct sdhci_slot	slot;
80	struct callout		r1bfix_callout;
81	sbintime_t		r1bfix_timeout_at;
82	struct sdhci_fdt_gpio * gpio;
83	uint32_t		baseclk_hz;
84	uint32_t		cmd_and_mode;
85	uint32_t		r1bfix_intmask;
86	uint16_t		sdclockreg_freq_bits;
87	uint8_t			r1bfix_type;
88	uint8_t			hwtype;
89};
90
91#define	R1BFIX_NONE	0	/* No fix needed at next interrupt. */
92#define	R1BFIX_NODATA	1	/* Synthesize DATA_END for R1B w/o data. */
93#define	R1BFIX_AC12	2	/* Wait for busy after auto command 12. */
94
95#define	HWTYPE_NONE	0	/* Hardware not recognized/supported. */
96#define	HWTYPE_ESDHC	1	/* fsl5x and earlier. */
97#define	HWTYPE_USDHC	2	/* fsl6. */
98
99/*
100 * Freescale-specific registers, or in some cases the layout of bits within the
101 * sdhci-defined register is different on Freescale.  These names all begin with
102 * SDHC_ (not SDHCI_).
103 */
104
105#define	SDHC_WTMK_LVL		0x44	/* Watermark Level register. */
106#define	USDHC_MIX_CONTROL	0x48	/* Mix(ed) Control register. */
107#define	SDHC_VEND_SPEC		0xC0	/* Vendor-specific register. */
108#define	 SDHC_VEND_FRC_SDCLK_ON	(1 <<  8)
109#define	 SDHC_VEND_IPGEN	(1 << 11)
110#define	 SDHC_VEND_HCKEN	(1 << 12)
111#define	 SDHC_VEND_PEREN	(1 << 13)
112
113#define	SDHC_PRES_STATE		0x24
114#define	  SDHC_PRES_CIHB	  (1 <<  0)
115#define	  SDHC_PRES_CDIHB	  (1 <<  1)
116#define	  SDHC_PRES_DLA		  (1 <<  2)
117#define	  SDHC_PRES_SDSTB	  (1 <<  3)
118#define	  SDHC_PRES_IPGOFF	  (1 <<  4)
119#define	  SDHC_PRES_HCKOFF	  (1 <<  5)
120#define	  SDHC_PRES_PEROFF	  (1 <<  6)
121#define	  SDHC_PRES_SDOFF	  (1 <<  7)
122#define	  SDHC_PRES_WTA		  (1 <<  8)
123#define	  SDHC_PRES_RTA		  (1 <<  9)
124#define	  SDHC_PRES_BWEN	  (1 << 10)
125#define	  SDHC_PRES_BREN	  (1 << 11)
126#define	  SDHC_PRES_RTR		  (1 << 12)
127#define	  SDHC_PRES_CINST	  (1 << 16)
128#define	  SDHC_PRES_CDPL	  (1 << 18)
129#define	  SDHC_PRES_WPSPL	  (1 << 19)
130#define	  SDHC_PRES_CLSL	  (1 << 23)
131#define	  SDHC_PRES_DLSL_SHIFT	  24
132#define	  SDHC_PRES_DLSL_MASK	  (0xffU << SDHC_PRES_DLSL_SHIFT)
133
134#define	SDHC_PROT_CTRL		0x28
135#define	 SDHC_PROT_LED		(1 << 0)
136#define	 SDHC_PROT_WIDTH_1BIT	(0 << 1)
137#define	 SDHC_PROT_WIDTH_4BIT	(1 << 1)
138#define	 SDHC_PROT_WIDTH_8BIT	(2 << 1)
139#define	 SDHC_PROT_WIDTH_MASK	(3 << 1)
140#define	 SDHC_PROT_D3CD		(1 << 3)
141#define	 SDHC_PROT_EMODE_BIG	(0 << 4)
142#define	 SDHC_PROT_EMODE_HALF	(1 << 4)
143#define	 SDHC_PROT_EMODE_LITTLE	(2 << 4)
144#define	 SDHC_PROT_EMODE_MASK	(3 << 4)
145#define	 SDHC_PROT_SDMA		(0 << 8)
146#define	 SDHC_PROT_ADMA1	(1 << 8)
147#define	 SDHC_PROT_ADMA2	(2 << 8)
148#define	 SDHC_PROT_ADMA264	(3 << 8)
149#define	 SDHC_PROT_DMA_MASK	(3 << 8)
150#define	 SDHC_PROT_CDTL		(1 << 6)
151#define	 SDHC_PROT_CDSS		(1 << 7)
152
153#define	SDHC_SYS_CTRL		0x2c
154
155/*
156 * The clock enable bits exist in different registers for ESDHC vs USDHC, but
157 * they are the same bits in both cases.  The divisor values go into the
158 * standard sdhci clock register, but in different bit positions and meanings
159   than the sdhci spec values.
160 */
161#define	SDHC_CLK_IPGEN		(1 << 0)
162#define	SDHC_CLK_HCKEN		(1 << 1)
163#define	SDHC_CLK_PEREN		(1 << 2)
164#define	SDHC_CLK_SDCLKEN	(1 << 3)
165#define	SDHC_CLK_ENABLE_MASK	0x0000000f
166#define	SDHC_CLK_DIVISOR_MASK	0x000000f0
167#define	SDHC_CLK_DIVISOR_SHIFT	4
168#define	SDHC_CLK_PRESCALE_MASK	0x0000ff00
169#define	SDHC_CLK_PRESCALE_SHIFT	8
170
171static struct ofw_compat_data compat_data[] = {
172	{"fsl,imx6q-usdhc",	HWTYPE_USDHC},
173	{"fsl,imx6sl-usdhc",	HWTYPE_USDHC},
174	{"fsl,imx53-esdhc",	HWTYPE_ESDHC},
175	{"fsl,imx51-esdhc",	HWTYPE_ESDHC},
176	{"fsl,esdhc",		HWTYPE_ESDHC},
177	{NULL,			HWTYPE_NONE},
178};
179
180static uint16_t fsl_sdhc_get_clock(struct fsl_sdhci_softc *sc);
181static void fsl_sdhc_set_clock(struct fsl_sdhci_softc *sc, uint16_t val);
182static void fsl_sdhci_r1bfix_func(void *arg);
183
184static inline uint32_t
185RD4(struct fsl_sdhci_softc *sc, bus_size_t off)
186{
187
188	return (bus_read_4(sc->mem_res, off));
189}
190
191static inline void
192WR4(struct fsl_sdhci_softc *sc, bus_size_t off, uint32_t val)
193{
194
195	bus_write_4(sc->mem_res, off, val);
196}
197
198static uint8_t
199fsl_sdhci_read_1(device_t dev, struct sdhci_slot *slot, bus_size_t off)
200{
201	struct fsl_sdhci_softc *sc = device_get_softc(dev);
202	uint32_t val32, wrk32;
203
204	/*
205	 * Most of the things in the standard host control register are in the
206	 * hardware's wider protocol control register, but some of the bits are
207	 * moved around.
208	 */
209	if (off == SDHCI_HOST_CONTROL) {
210		wrk32 = RD4(sc, SDHC_PROT_CTRL);
211		val32 = wrk32 & (SDHCI_CTRL_LED | SDHCI_CTRL_CARD_DET |
212		    SDHCI_CTRL_FORCE_CARD);
213		switch (wrk32 & SDHC_PROT_WIDTH_MASK) {
214		case SDHC_PROT_WIDTH_1BIT:
215			/* Value is already 0. */
216			break;
217		case SDHC_PROT_WIDTH_4BIT:
218			val32 |= SDHCI_CTRL_4BITBUS;
219			break;
220		case SDHC_PROT_WIDTH_8BIT:
221			val32 |= SDHCI_CTRL_8BITBUS;
222			break;
223		}
224		switch (wrk32 & SDHC_PROT_DMA_MASK) {
225		case SDHC_PROT_SDMA:
226			/* Value is already 0. */
227			break;
228		case SDHC_PROT_ADMA1:
229			/* This value is deprecated, should never appear. */
230			break;
231		case SDHC_PROT_ADMA2:
232			val32 |= SDHCI_CTRL_ADMA2;
233			break;
234		case SDHC_PROT_ADMA264:
235			val32 |= SDHCI_CTRL_ADMA264;
236			break;
237		}
238		return val32;
239	}
240
241	/*
242	 * XXX can't find the bus power on/off knob.  For now we have to say the
243	 * power is always on and always set to the same voltage.
244	 */
245	if (off == SDHCI_POWER_CONTROL) {
246		return (SDHCI_POWER_ON | SDHCI_POWER_300);
247	}
248
249
250	return ((RD4(sc, off & ~3) >> (off & 3) * 8) & 0xff);
251}
252
253static uint16_t
254fsl_sdhci_read_2(device_t dev, struct sdhci_slot *slot, bus_size_t off)
255{
256	struct fsl_sdhci_softc *sc = device_get_softc(dev);
257	uint32_t val32;
258
259	if (sc->hwtype == HWTYPE_USDHC) {
260		/*
261		 * The USDHC hardware has nothing in the version register, but
262		 * it's v3 compatible with all our translation code.
263		 */
264		if (off == SDHCI_HOST_VERSION) {
265			return (SDHCI_SPEC_300 << SDHCI_SPEC_VER_SHIFT);
266		}
267		/*
268		 * The USDHC hardware moved the transfer mode bits to the mixed
269		 * control register, fetch them from there.
270		 */
271		if (off == SDHCI_TRANSFER_MODE)
272			return (RD4(sc, USDHC_MIX_CONTROL) & 0x37);
273
274	} else if (sc->hwtype == HWTYPE_ESDHC) {
275
276		/*
277		 * The ESDHC hardware has the typical 32-bit combined "command
278		 * and mode" register that we have to cache so that command
279		 * isn't written until after mode.  On a read, just retrieve the
280		 * cached values last written.
281		 */
282		if (off == SDHCI_TRANSFER_MODE) {
283			return (sc->cmd_and_mode & 0x0000ffff);
284		} else if (off == SDHCI_COMMAND_FLAGS) {
285			return (sc->cmd_and_mode >> 16);
286		}
287	}
288
289	/*
290	 * This hardware only manages one slot.  Synthesize a slot interrupt
291	 * status register... if there are any enabled interrupts active they
292	 * must be coming from our one and only slot.
293	 */
294	if (off == SDHCI_SLOT_INT_STATUS) {
295		val32  = RD4(sc, SDHCI_INT_STATUS);
296		val32 &= RD4(sc, SDHCI_SIGNAL_ENABLE);
297		return (val32 ? 1 : 0);
298	}
299
300	/*
301	 * Clock bits are scattered into various registers which differ by
302	 * hardware type, complex enough to have their own function.
303	 */
304	if (off == SDHCI_CLOCK_CONTROL) {
305		return (fsl_sdhc_get_clock(sc));
306	}
307
308	return ((RD4(sc, off & ~3) >> (off & 3) * 8) & 0xffff);
309}
310
311static uint32_t
312fsl_sdhci_read_4(device_t dev, struct sdhci_slot *slot, bus_size_t off)
313{
314	struct fsl_sdhci_softc *sc = device_get_softc(dev);
315	uint32_t val32, wrk32;
316
317	val32 = RD4(sc, off);
318
319	/*
320	 * The hardware leaves the base clock frequency out of the capabilities
321	 * register, but we filled it in by setting slot->max_clk at attach time
322	 * rather than here, because we can't represent frequencies above 63MHz
323	 * in an sdhci 2.0 capabliities register.  The timeout clock is the same
324	 * as the active output sdclock; we indicate that with a quirk setting
325	 * so don't populate the timeout frequency bits.
326	 *
327	 * XXX Turn off (for now) features the hardware can do but this driver
328	 * doesn't yet handle (1.8v, suspend/resume, etc).
329	 */
330	if (off == SDHCI_CAPABILITIES) {
331		val32 &= ~SDHCI_CAN_VDD_180;
332		val32 &= ~SDHCI_CAN_DO_SUSPEND;
333		val32 |= SDHCI_CAN_DO_8BITBUS;
334		return (val32);
335	}
336
337	/*
338	 * The hardware moves bits around in the present state register to make
339	 * room for all 8 data line state bits.  To translate, mask out all the
340	 * bits which are not in the same position in both registers (this also
341	 * masks out some Freescale-specific bits in locations defined as
342	 * reserved by sdhci), then shift the data line and retune request bits
343	 * down to their standard locations.
344	 */
345	if (off == SDHCI_PRESENT_STATE) {
346		wrk32 = val32;
347		val32 &= 0x000F0F07;
348		val32 |= (wrk32 >> 4) & SDHCI_STATE_DAT_MASK;
349		val32 |= (wrk32 >> 9) & SDHCI_RETUNE_REQUEST;
350		return (val32);
351	}
352
353	/*
354	 * fsl_sdhci_intr() can synthesize a DATA_END interrupt following a
355	 * command with an R1B response, mix it into the hardware status.
356	 */
357	if (off == SDHCI_INT_STATUS) {
358		return (val32 | sc->r1bfix_intmask);
359	}
360
361	return val32;
362}
363
364static void
365fsl_sdhci_read_multi_4(device_t dev, struct sdhci_slot *slot, bus_size_t off,
366    uint32_t *data, bus_size_t count)
367{
368	struct fsl_sdhci_softc *sc = device_get_softc(dev);
369
370	bus_read_multi_4(sc->mem_res, off, data, count);
371}
372
373static void
374fsl_sdhci_write_1(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint8_t val)
375{
376	struct fsl_sdhci_softc *sc = device_get_softc(dev);
377	uint32_t val32;
378
379	/*
380	 * Most of the things in the standard host control register are in the
381	 * hardware's wider protocol control register, but some of the bits are
382	 * moved around.
383	 */
384	if (off == SDHCI_HOST_CONTROL) {
385		val32 = RD4(sc, SDHC_PROT_CTRL);
386		val32 &= ~(SDHC_PROT_LED | SDHC_PROT_DMA_MASK |
387		    SDHC_PROT_WIDTH_MASK | SDHC_PROT_CDTL | SDHC_PROT_CDSS);
388		val32 |= (val & SDHCI_CTRL_LED);
389		if (val & SDHCI_CTRL_8BITBUS)
390			val32 |= SDHC_PROT_WIDTH_8BIT;
391		else
392			val32 |= (val & SDHCI_CTRL_4BITBUS);
393		val32 |= (val & (SDHCI_CTRL_SDMA | SDHCI_CTRL_ADMA2)) << 4;
394		val32 |= (val & (SDHCI_CTRL_CARD_DET | SDHCI_CTRL_FORCE_CARD));
395		WR4(sc, SDHC_PROT_CTRL, val32);
396		return;
397	}
398
399	/* XXX I can't find the bus power on/off knob; do nothing. */
400	if (off == SDHCI_POWER_CONTROL) {
401		return;
402	}
403#ifdef __powerpc__
404	/* XXX Reset doesn't seem to work as expected.  Do nothing for now. */
405	if (off == SDHCI_SOFTWARE_RESET)
406		return;
407#endif
408
409	val32 = RD4(sc, off & ~3);
410	val32 &= ~(0xff << (off & 3) * 8);
411	val32 |= (val << (off & 3) * 8);
412
413	WR4(sc, off & ~3, val32);
414}
415
416static void
417fsl_sdhci_write_2(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint16_t val)
418{
419	struct fsl_sdhci_softc *sc = device_get_softc(dev);
420	uint32_t val32;
421
422	/*
423	 * The clock control stuff is complex enough to have its own function
424	 * that can handle the ESDHC versus USDHC differences.
425	 */
426	if (off == SDHCI_CLOCK_CONTROL) {
427		fsl_sdhc_set_clock(sc, val);
428		return;
429	}
430
431	/*
432	 * Figure out whether we need to check the DAT0 line for busy status at
433	 * interrupt time.  The controller should be doing this, but for some
434	 * reason it doesn't.  There are two cases:
435	 *  - R1B response with no data transfer should generate a DATA_END (aka
436	 *    TRANSFER_COMPLETE) interrupt after waiting for busy, but if
437	 *    there's no data transfer there's no DATA_END interrupt.  This is
438	 *    documented; they seem to think it's a feature.
439	 *  - R1B response after Auto-CMD12 appears to not work, even though
440	 *    there's a control bit for it (bit 3) in the vendor register.
441	 * When we're starting a command that needs a manual DAT0 line check at
442	 * interrupt time, we leave ourselves a note in r1bfix_type so that we
443	 * can do the extra work in fsl_sdhci_intr().
444	 */
445	if (off == SDHCI_COMMAND_FLAGS) {
446		if (val & SDHCI_CMD_DATA) {
447			const uint32_t MBAUTOCMD = SDHCI_TRNS_ACMD12 | SDHCI_TRNS_MULTI;
448			val32 = RD4(sc, USDHC_MIX_CONTROL);
449			if ((val32 & MBAUTOCMD) == MBAUTOCMD)
450				sc->r1bfix_type = R1BFIX_AC12;
451		} else {
452			if ((val & SDHCI_CMD_RESP_MASK) == SDHCI_CMD_RESP_SHORT_BUSY) {
453				WR4(sc, SDHCI_INT_ENABLE, slot->intmask | SDHCI_INT_RESPONSE);
454				WR4(sc, SDHCI_SIGNAL_ENABLE, slot->intmask | SDHCI_INT_RESPONSE);
455				sc->r1bfix_type = R1BFIX_NODATA;
456			}
457		}
458	}
459
460	/*
461	 * The USDHC hardware moved the transfer mode bits to mixed control; we
462	 * just write them there and we're done.  The ESDHC hardware has the
463	 * typical combined cmd-and-mode register that allows only 32-bit
464	 * access, so when writing the mode bits just save them, then later when
465	 * writing the command bits, add in the saved mode bits.
466	 */
467	if (sc->hwtype == HWTYPE_USDHC) {
468		if (off == SDHCI_TRANSFER_MODE) {
469			val32 = RD4(sc, USDHC_MIX_CONTROL);
470			val32 &= ~0x3f;
471			val32 |= val & 0x37;
472			// XXX acmd23 not supported here (or by sdhci driver)
473			WR4(sc, USDHC_MIX_CONTROL, val32);
474			return;
475		}
476	} else if (sc->hwtype == HWTYPE_ESDHC) {
477		if (off == SDHCI_TRANSFER_MODE) {
478			sc->cmd_and_mode =
479			    (sc->cmd_and_mode & 0xffff0000) | val;
480			return;
481		} else if (off == SDHCI_COMMAND_FLAGS) {
482			sc->cmd_and_mode =
483			    (sc->cmd_and_mode & 0xffff) | (val << 16);
484			WR4(sc, SDHCI_TRANSFER_MODE, sc->cmd_and_mode);
485			return;
486		}
487	}
488
489	val32 = RD4(sc, off & ~3);
490	val32 &= ~(0xffff << (off & 3) * 8);
491	val32 |= ((val & 0xffff) << (off & 3) * 8);
492	WR4(sc, off & ~3, val32);
493}
494
495static void
496fsl_sdhci_write_4(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint32_t val)
497{
498	struct fsl_sdhci_softc *sc = device_get_softc(dev);
499
500	/* Clear synthesized interrupts, then pass the value to the hardware. */
501	if (off == SDHCI_INT_STATUS) {
502		sc->r1bfix_intmask &= ~val;
503	}
504
505	WR4(sc, off, val);
506}
507
508static void
509fsl_sdhci_write_multi_4(device_t dev, struct sdhci_slot *slot, bus_size_t off,
510    uint32_t *data, bus_size_t count)
511{
512	struct fsl_sdhci_softc *sc = device_get_softc(dev);
513
514	bus_write_multi_4(sc->mem_res, off, data, count);
515}
516
517static uint16_t
518fsl_sdhc_get_clock(struct fsl_sdhci_softc *sc)
519{
520	uint16_t val;
521
522	/*
523	 * Whenever the sdhci driver writes the clock register we save a
524	 * snapshot of just the frequency bits, so that we can play them back
525	 * here on a register read without recalculating the frequency from the
526	 * prescalar and divisor bits in the real register.  We'll start with
527	 * those bits, and mix in the clock status and enable bits that come
528	 * from different places depending on which hardware we've got.
529	 */
530	val = sc->sdclockreg_freq_bits;
531
532	/*
533	 * The internal clock is always enabled (actually, the hardware manages
534	 * it).  Whether the internal clock is stable yet after a frequency
535	 * change comes from the present-state register on both hardware types.
536	 */
537	val |= SDHCI_CLOCK_INT_EN;
538	if (RD4(sc, SDHC_PRES_STATE) & SDHC_PRES_SDSTB)
539	    val |= SDHCI_CLOCK_INT_STABLE;
540
541	/*
542	 * On i.MX ESDHC hardware the card bus clock enable is in the usual
543	 * sdhci register but it's a different bit, so transcribe it (note the
544	 * difference between standard SDHCI_ and Freescale SDHC_ prefixes
545	 * here). On USDHC and QorIQ ESDHC hardware there is a force-on bit, but
546	 * no force-off for the card bus clock (the hardware runs the clock when
547	 * transfers are active no matter what), so we always say the clock is
548	 * on.
549	 * XXX Maybe we should say it's in whatever state the sdhci driver last
550	 * set it to.
551	 */
552	if (sc->hwtype == HWTYPE_ESDHC) {
553#ifdef __arm__
554		if (RD4(sc, SDHC_SYS_CTRL) & SDHC_CLK_SDCLKEN)
555#endif
556			val |= SDHCI_CLOCK_CARD_EN;
557	} else {
558		val |= SDHCI_CLOCK_CARD_EN;
559	}
560
561	return (val);
562}
563
564static void
565fsl_sdhc_set_clock(struct fsl_sdhci_softc *sc, uint16_t val)
566{
567	uint32_t divisor, freq, prescale, val32;
568
569	val32 = RD4(sc, SDHCI_CLOCK_CONTROL);
570
571	/*
572	 * Save the frequency-setting bits in SDHCI format so that we can play
573	 * them back in get_clock without complex decoding of hardware regs,
574	 * then deal with the freqency part of the value based on hardware type.
575	 */
576	sc->sdclockreg_freq_bits = val & SDHCI_DIVIDERS_MASK;
577	if (sc->hwtype == HWTYPE_ESDHC) {
578		/*
579		 * The i.MX5 ESDHC hardware requires the driver to manually
580		 * start and stop the sd bus clock.  If the enable bit is not
581		 * set, turn off the clock in hardware and we're done, otherwise
582		 * decode the requested frequency.  ESDHC hardware is sdhci 2.0;
583		 * the sdhci driver will use the original 8-bit divisor field
584		 * and the "base / 2^N" divisor scheme.
585		 */
586		if ((val & SDHCI_CLOCK_CARD_EN) == 0) {
587#ifdef __arm__
588			/* On QorIQ, this is a reserved bit. */
589			WR4(sc, SDHCI_CLOCK_CONTROL, val32 & ~SDHC_CLK_SDCLKEN);
590#endif
591			return;
592
593		}
594		divisor = (val >> SDHCI_DIVIDER_SHIFT) & SDHCI_DIVIDER_MASK;
595		freq = sc->baseclk_hz >> ffs(divisor);
596	} else {
597		/*
598		 * The USDHC hardware provides only "force always on" control
599		 * over the sd bus clock, but no way to turn it off.  (If a cmd
600		 * or data transfer is in progress the clock is on, otherwise it
601		 * is off.)  If the clock is being disabled, we can just return
602		 * now, otherwise we decode the requested frequency.  USDHC
603		 * hardware is sdhci 3.0; the sdhci driver will use a 10-bit
604		 * divisor using the "base / 2*N" divisor scheme.
605		 */
606		if ((val & SDHCI_CLOCK_CARD_EN) == 0)
607			return;
608		divisor = ((val >> SDHCI_DIVIDER_SHIFT) & SDHCI_DIVIDER_MASK) |
609		    ((val >> SDHCI_DIVIDER_HI_SHIFT) & SDHCI_DIVIDER_HI_MASK) <<
610		    SDHCI_DIVIDER_MASK_LEN;
611		if (divisor == 0)
612			freq = sc->baseclk_hz;
613		else
614			freq = sc->baseclk_hz / (2 * divisor);
615	}
616
617	/*
618	 * Get a prescaler and final divisor to achieve the desired frequency.
619	 */
620	for (prescale = 2; freq < sc->baseclk_hz / (prescale * 16);)
621		prescale <<= 1;
622
623	for (divisor = 1; freq < sc->baseclk_hz / (prescale * divisor);)
624		++divisor;
625
626#ifdef DEBUG
627	device_printf(sc->dev,
628	    "desired SD freq: %d, actual: %d; base %d prescale %d divisor %d\n",
629	    freq, sc->baseclk_hz / (prescale * divisor), sc->baseclk_hz,
630	    prescale, divisor);
631#endif
632
633	/*
634	 * Adjust to zero-based values, and store them to the hardware.
635	 */
636	prescale >>= 1;
637	divisor -= 1;
638
639	val32 &= ~(SDHC_CLK_DIVISOR_MASK | SDHC_CLK_PRESCALE_MASK);
640	val32 |= divisor << SDHC_CLK_DIVISOR_SHIFT;
641	val32 |= prescale << SDHC_CLK_PRESCALE_SHIFT;
642	val32 |= SDHC_CLK_IPGEN;
643	WR4(sc, SDHCI_CLOCK_CONTROL, val32);
644}
645
646static boolean_t
647fsl_sdhci_r1bfix_is_wait_done(struct fsl_sdhci_softc *sc)
648{
649	uint32_t inhibit;
650
651	mtx_assert(&sc->slot.mtx, MA_OWNED);
652
653	/*
654	 * Check the DAT0 line status using both the DLA (data line active) and
655	 * CDIHB (data inhibit) bits in the present state register.  In theory
656	 * just DLA should do the trick,  but in practice it takes both.  If the
657	 * DAT0 line is still being held and we're not yet beyond the timeout
658	 * point, just schedule another callout to check again later.
659	 */
660	inhibit = RD4(sc, SDHC_PRES_STATE) & (SDHC_PRES_DLA | SDHC_PRES_CDIHB);
661
662	if (inhibit && getsbinuptime() < sc->r1bfix_timeout_at) {
663		callout_reset_sbt(&sc->r1bfix_callout, SBT_1MS, 0,
664		    fsl_sdhci_r1bfix_func, sc, 0);
665		return (false);
666	}
667
668	/*
669	 * If we reach this point with the inhibit bits still set, we've got a
670	 * timeout, synthesize a DATA_TIMEOUT interrupt.  Otherwise the DAT0
671	 * line has been released, and we synthesize a DATA_END, and if the type
672	 * of fix needed was on a command-without-data we also now add in the
673	 * original INT_RESPONSE that we suppressed earlier.
674	 */
675	if (inhibit)
676		sc->r1bfix_intmask |= SDHCI_INT_DATA_TIMEOUT;
677	else {
678		sc->r1bfix_intmask |= SDHCI_INT_DATA_END;
679		if (sc->r1bfix_type == R1BFIX_NODATA)
680			sc->r1bfix_intmask |= SDHCI_INT_RESPONSE;
681	}
682
683	sc->r1bfix_type = R1BFIX_NONE;
684	return (true);
685}
686
687static void
688fsl_sdhci_r1bfix_func(void * arg)
689{
690	struct fsl_sdhci_softc *sc = arg;
691	boolean_t r1bwait_done;
692
693	mtx_lock(&sc->slot.mtx);
694	r1bwait_done = fsl_sdhci_r1bfix_is_wait_done(sc);
695	mtx_unlock(&sc->slot.mtx);
696	if (r1bwait_done)
697		sdhci_generic_intr(&sc->slot);
698}
699
700static void
701fsl_sdhci_intr(void *arg)
702{
703	struct fsl_sdhci_softc *sc = arg;
704	uint32_t intmask;
705
706	mtx_lock(&sc->slot.mtx);
707
708	/*
709	 * Manually check the DAT0 line for R1B response types that the
710	 * controller fails to handle properly.  The controller asserts the done
711	 * interrupt while the card is still asserting busy with the DAT0 line.
712	 *
713	 * We check DAT0 immediately because most of the time, especially on a
714	 * read, the card will actually be done by time we get here.  If it's
715	 * not, then the wait_done routine will schedule a callout to re-check
716	 * periodically until it is done.  In that case we clear the interrupt
717	 * out of the hardware now so that we can present it later when the DAT0
718	 * line is released.
719	 *
720	 * If we need to wait for the DAT0 line to be released, we set up a
721	 * timeout point 250ms in the future.  This number comes from the SD
722	 * spec, which allows a command to take that long.  In the real world,
723	 * cards tend to take 10-20ms for a long-running command such as a write
724	 * or erase that spans two pages.
725	 */
726	switch (sc->r1bfix_type) {
727	case R1BFIX_NODATA:
728		intmask = RD4(sc, SDHCI_INT_STATUS) & SDHCI_INT_RESPONSE;
729		break;
730	case R1BFIX_AC12:
731		intmask = RD4(sc, SDHCI_INT_STATUS) & SDHCI_INT_DATA_END;
732		break;
733	default:
734		intmask = 0;
735		break;
736	}
737	if (intmask) {
738		sc->r1bfix_timeout_at = getsbinuptime() + 250 * SBT_1MS;
739		if (!fsl_sdhci_r1bfix_is_wait_done(sc)) {
740			WR4(sc, SDHCI_INT_STATUS, intmask);
741			bus_barrier(sc->mem_res, SDHCI_INT_STATUS, 4,
742			    BUS_SPACE_BARRIER_WRITE);
743		}
744	}
745
746	mtx_unlock(&sc->slot.mtx);
747	sdhci_generic_intr(&sc->slot);
748}
749
750static int
751fsl_sdhci_get_ro(device_t bus, device_t child)
752{
753	struct fsl_sdhci_softc *sc = device_get_softc(bus);
754
755	return (sdhci_fdt_gpio_get_readonly(sc->gpio));
756}
757
758static bool
759fsl_sdhci_get_card_present(device_t dev, struct sdhci_slot *slot)
760{
761	struct fsl_sdhci_softc *sc = device_get_softc(dev);
762
763	return (sdhci_fdt_gpio_get_present(sc->gpio));
764}
765
766#ifdef __powerpc__
767static uint32_t
768fsl_sdhci_get_platform_clock(device_t dev)
769{
770	device_t parent;
771	phandle_t node;
772	uint32_t clock;
773
774	node = ofw_bus_get_node(dev);
775
776	/* Get sdhci node properties */
777	if((OF_getprop(node, "clock-frequency", (void *)&clock,
778	    sizeof(clock)) <= 0) || (clock == 0)) {
779
780		/*
781		 * Trying to get clock from parent device (soc) if correct
782		 * clock cannot be acquired from sdhci node.
783		 */
784		parent = device_get_parent(dev);
785		node = ofw_bus_get_node(parent);
786
787		/* Get soc properties */
788		if ((OF_getprop(node, "bus-frequency", (void *)&clock,
789		    sizeof(clock)) <= 0) || (clock == 0)) {
790			device_printf(dev,"Cannot acquire correct sdhci "
791			    "frequency from DTS.\n");
792
793			return (0);
794		}
795		/* eSDHC clock is 1/2 platform clock. */
796		clock /= 2;
797	}
798
799	if (bootverbose)
800		device_printf(dev, "Acquired clock: %d from DTS\n", clock);
801
802	return (clock);
803}
804#endif
805
806
807static int
808fsl_sdhci_detach(device_t dev)
809{
810
811	/* sdhci_fdt_gpio_teardown(sc->gpio); */
812	return (EBUSY);
813}
814
815static int
816fsl_sdhci_attach(device_t dev)
817{
818	struct fsl_sdhci_softc *sc = device_get_softc(dev);
819	int rid, err;
820#ifdef __powerpc__
821	phandle_t node;
822	uint32_t protctl;
823#endif
824
825	sc->dev = dev;
826
827	sc->hwtype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
828	if (sc->hwtype == HWTYPE_NONE)
829		panic("Impossible: not compatible in fsl_sdhci_attach()");
830
831	rid = 0;
832	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
833	    RF_ACTIVE);
834	if (!sc->mem_res) {
835		device_printf(dev, "cannot allocate memory window\n");
836		err = ENXIO;
837		goto fail;
838	}
839
840	rid = 0;
841	sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
842	    RF_ACTIVE);
843	if (!sc->irq_res) {
844		device_printf(dev, "cannot allocate interrupt\n");
845		err = ENXIO;
846		goto fail;
847	}
848
849	if (bus_setup_intr(dev, sc->irq_res, INTR_TYPE_BIO | INTR_MPSAFE,
850	    NULL, fsl_sdhci_intr, sc, &sc->intr_cookie)) {
851		device_printf(dev, "cannot setup interrupt handler\n");
852		err = ENXIO;
853		goto fail;
854	}
855
856	sc->slot.quirks |= SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK;
857
858	/*
859	 * DMA is not really broken, I just haven't implemented it yet.
860	 */
861	sc->slot.quirks |= SDHCI_QUIRK_BROKEN_DMA;
862
863	/*
864	 * Set the buffer watermark level to 128 words (512 bytes) for both read
865	 * and write.  The hardware has a restriction that when the read or
866	 * write ready status is asserted, that means you can read exactly the
867	 * number of words set in the watermark register before you have to
868	 * re-check the status and potentially wait for more data.  The main
869	 * sdhci driver provides no hook for doing status checking on less than
870	 * a full block boundary, so we set the watermark level to be a full
871	 * block.  Reads and writes where the block size is less than the
872	 * watermark size will work correctly too, no need to change the
873	 * watermark for different size blocks.  However, 128 is the maximum
874	 * allowed for the watermark, so PIO is limitted to 512 byte blocks
875	 * (which works fine for SD cards, may be a problem for SDIO some day).
876	 *
877	 * XXX need named constants for this stuff.
878	 */
879	/* P1022 has the '*_BRST_LEN' fields as reserved, always reading 0x10 */
880	if (ofw_bus_is_compatible(dev, "fsl,p1022-esdhc"))
881		WR4(sc, SDHC_WTMK_LVL, 0x10801080);
882	else
883		WR4(sc, SDHC_WTMK_LVL, 0x08800880);
884
885	/*
886	 * We read in native byte order in the main driver, but the register
887	 * defaults to little endian.
888	 */
889#ifdef __powerpc__
890	sc->baseclk_hz = fsl_sdhci_get_platform_clock(dev);
891#else
892	sc->baseclk_hz = imx_ccm_sdhci_hz();
893#endif
894	sc->slot.max_clk = sc->baseclk_hz;
895
896	/*
897	 * Set up any gpio pin handling described in the FDT data. This cannot
898	 * fail; see comments in sdhci_fdt_gpio.h for details.
899	 */
900	sc->gpio = sdhci_fdt_gpio_setup(dev, &sc->slot);
901
902#ifdef __powerpc__
903	node = ofw_bus_get_node(dev);
904	/* Default to big-endian on powerpc */
905	protctl = RD4(sc, SDHC_PROT_CTRL);
906	protctl &= ~SDHC_PROT_EMODE_MASK;
907	if (OF_hasprop(node, "little-endian"))
908		protctl |= SDHC_PROT_EMODE_LITTLE;
909	else
910		protctl |= SDHC_PROT_EMODE_BIG;
911	WR4(sc, SDHC_PROT_CTRL, protctl);
912#endif
913
914	callout_init(&sc->r1bfix_callout, 1);
915	sdhci_init_slot(dev, &sc->slot, 0);
916
917	bus_generic_probe(dev);
918	bus_generic_attach(dev);
919
920	sdhci_start_slot(&sc->slot);
921
922	return (0);
923
924fail:
925	if (sc->intr_cookie)
926		bus_teardown_intr(dev, sc->irq_res, sc->intr_cookie);
927	if (sc->irq_res)
928		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq_res);
929	if (sc->mem_res)
930		bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->mem_res);
931
932	return (err);
933}
934
935static int
936fsl_sdhci_probe(device_t dev)
937{
938
939        if (!ofw_bus_status_okay(dev))
940		return (ENXIO);
941
942	switch (ofw_bus_search_compatible(dev, compat_data)->ocd_data) {
943	case HWTYPE_ESDHC:
944		device_set_desc(dev, "Freescale eSDHC controller");
945		return (BUS_PROBE_DEFAULT);
946	case HWTYPE_USDHC:
947		device_set_desc(dev, "Freescale uSDHC controller");
948		return (BUS_PROBE_DEFAULT);
949	default:
950		break;
951	}
952	return (ENXIO);
953}
954
955static device_method_t fsl_sdhci_methods[] = {
956	/* Device interface */
957	DEVMETHOD(device_probe,		fsl_sdhci_probe),
958	DEVMETHOD(device_attach,	fsl_sdhci_attach),
959	DEVMETHOD(device_detach,	fsl_sdhci_detach),
960
961	/* Bus interface */
962	DEVMETHOD(bus_read_ivar,	sdhci_generic_read_ivar),
963	DEVMETHOD(bus_write_ivar,	sdhci_generic_write_ivar),
964
965	/* MMC bridge interface */
966	DEVMETHOD(mmcbr_update_ios,	sdhci_generic_update_ios),
967	DEVMETHOD(mmcbr_request,	sdhci_generic_request),
968	DEVMETHOD(mmcbr_get_ro,		fsl_sdhci_get_ro),
969	DEVMETHOD(mmcbr_acquire_host,	sdhci_generic_acquire_host),
970	DEVMETHOD(mmcbr_release_host,	sdhci_generic_release_host),
971
972	/* SDHCI accessors */
973	DEVMETHOD(sdhci_read_1,		fsl_sdhci_read_1),
974	DEVMETHOD(sdhci_read_2,		fsl_sdhci_read_2),
975	DEVMETHOD(sdhci_read_4,		fsl_sdhci_read_4),
976	DEVMETHOD(sdhci_read_multi_4,	fsl_sdhci_read_multi_4),
977	DEVMETHOD(sdhci_write_1,	fsl_sdhci_write_1),
978	DEVMETHOD(sdhci_write_2,	fsl_sdhci_write_2),
979	DEVMETHOD(sdhci_write_4,	fsl_sdhci_write_4),
980	DEVMETHOD(sdhci_write_multi_4,	fsl_sdhci_write_multi_4),
981	DEVMETHOD(sdhci_get_card_present,fsl_sdhci_get_card_present),
982
983	DEVMETHOD_END
984};
985
986static devclass_t fsl_sdhci_devclass;
987
988static driver_t fsl_sdhci_driver = {
989	"sdhci_fsl",
990	fsl_sdhci_methods,
991	sizeof(struct fsl_sdhci_softc),
992};
993
994DRIVER_MODULE(sdhci_fsl, simplebus, fsl_sdhci_driver, fsl_sdhci_devclass,
995    NULL, NULL);
996MODULE_DEPEND(sdhci_fsl, sdhci, 1, 1, 1);
997MMC_DECLARE_BRIDGE(sdhci_fsl);
998