ecore_cxt.c revision 320164
1/*
2 * Copyright (c) 2017-2018 Cavium, Inc.
3 * All rights reserved.
4 *
5 *  Redistribution and use in source and binary forms, with or without
6 *  modification, are permitted provided that the following conditions
7 *  are met:
8 *
9 *  1. Redistributions of source code must retain the above copyright
10 *     notice, this list of conditions and the following disclaimer.
11 *  2. Redistributions in binary form must reproduce the above copyright
12 *     notice, this list of conditions and the following disclaimer in the
13 *     documentation and/or other materials provided with the distribution.
14 *
15 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16 *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19 *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 *  POSSIBILITY OF SUCH DAMAGE.
26 */
27
28/*
29 * File : ecore_cxt.c
30 */
31#include <sys/cdefs.h>
32__FBSDID("$FreeBSD: stable/11/sys/dev/qlnx/qlnxe/ecore_cxt.c 320164 2017-06-20 19:16:06Z davidcs $");
33
34#include "bcm_osal.h"
35#include "reg_addr.h"
36#include "common_hsi.h"
37#include "ecore_hsi_common.h"
38#include "ecore_hsi_eth.h"
39#include "tcp_common.h"
40#include "ecore_hsi_iscsi.h"
41#include "ecore_hsi_fcoe.h"
42#include "ecore_hsi_roce.h"
43#include "ecore_hsi_iwarp.h"
44#include "ecore_rt_defs.h"
45#include "ecore_status.h"
46#include "ecore.h"
47#include "ecore_init_ops.h"
48#include "ecore_init_fw_funcs.h"
49#include "ecore_cxt.h"
50#include "ecore_hw.h"
51#include "ecore_dev_api.h"
52#include "ecore_sriov.h"
53#include "ecore_roce.h"
54#include "ecore_mcp.h"
55
56/* Max number of connection types in HW (DQ/CDU etc.) */
57#define MAX_CONN_TYPES		PROTOCOLID_COMMON
58#define NUM_TASK_TYPES		2
59#define NUM_TASK_PF_SEGMENTS	4
60#define NUM_TASK_VF_SEGMENTS	1
61
62/* Doorbell-Queue constants */
63#define DQ_RANGE_SHIFT	4
64#define DQ_RANGE_ALIGN	(1 << DQ_RANGE_SHIFT)
65
66/* Searcher constants */
67#define SRC_MIN_NUM_ELEMS 256
68
69/* Timers constants */
70#define TM_SHIFT	7
71#define TM_ALIGN	(1 << TM_SHIFT)
72#define TM_ELEM_SIZE	4
73
74/* ILT constants */
75#define ILT_DEFAULT_HW_P_SIZE	4
76
77#define ILT_PAGE_IN_BYTES(hw_p_size)	(1U << ((hw_p_size) + 12))
78#define ILT_CFG_REG(cli, reg)		PSWRQ2_REG_##cli##_##reg##_RT_OFFSET
79
80/* ILT entry structure */
81#define ILT_ENTRY_PHY_ADDR_MASK		0x000FFFFFFFFFFFULL
82#define ILT_ENTRY_PHY_ADDR_SHIFT	0
83#define ILT_ENTRY_VALID_MASK		0x1ULL
84#define ILT_ENTRY_VALID_SHIFT		52
85#define ILT_ENTRY_IN_REGS		2
86#define ILT_REG_SIZE_IN_BYTES		4
87
88/* connection context union */
89union conn_context {
90	struct e4_core_conn_context  core_ctx;
91	struct e4_eth_conn_context	  eth_ctx;
92	struct e4_iscsi_conn_context iscsi_ctx;
93	struct e4_fcoe_conn_context  fcoe_ctx;
94	struct e4_roce_conn_context  roce_ctx;
95};
96
97/* TYPE-0 task context - iSCSI, FCOE */
98union type0_task_context {
99	struct e4_iscsi_task_context iscsi_ctx;
100	struct e4_fcoe_task_context  fcoe_ctx;
101};
102
103/* TYPE-1 task context - ROCE */
104union type1_task_context {
105	struct e4_rdma_task_context roce_ctx;
106};
107
108struct src_ent {
109	u8  opaque[56];
110	u64 next;
111};
112
113#define CDUT_SEG_ALIGNMET 3 /* in 4k chunks */
114#define CDUT_SEG_ALIGNMET_IN_BYTES (1 << (CDUT_SEG_ALIGNMET + 12))
115
116#define CONN_CXT_SIZE(p_hwfn) \
117	ALIGNED_TYPE_SIZE(union conn_context, p_hwfn)
118
119#define SRQ_CXT_SIZE (sizeof(struct rdma_srq_context))
120
121#define TYPE0_TASK_CXT_SIZE(p_hwfn) \
122	ALIGNED_TYPE_SIZE(union type0_task_context, p_hwfn)
123
124/* Alignment is inherent to the type1_task_context structure */
125#define TYPE1_TASK_CXT_SIZE(p_hwfn) sizeof(union type1_task_context)
126
127/* PF per protocl configuration object */
128#define TASK_SEGMENTS   (NUM_TASK_PF_SEGMENTS + NUM_TASK_VF_SEGMENTS)
129#define TASK_SEGMENT_VF (NUM_TASK_PF_SEGMENTS)
130
131struct ecore_tid_seg {
132	u32	count;
133	u8	type;
134	bool	has_fl_mem;
135};
136
137struct ecore_conn_type_cfg {
138	u32			cid_count;
139	u32			cids_per_vf;
140	struct ecore_tid_seg	tid_seg[TASK_SEGMENTS];
141};
142
143/* ILT Client configuration,
144 * Per connection type (protocol) resources (cids, tis, vf cids etc.)
145 * 1 - for connection context (CDUC) and for each task context we need two
146 * values, for regular task context and for force load memory
147 */
148#define ILT_CLI_PF_BLOCKS	(1 + NUM_TASK_PF_SEGMENTS * 2)
149#define ILT_CLI_VF_BLOCKS	(1 + NUM_TASK_VF_SEGMENTS * 2)
150#define CDUC_BLK		(0)
151#define SRQ_BLK			(0)
152#define CDUT_SEG_BLK(n)		(1 + (u8)(n))
153#define CDUT_FL_SEG_BLK(n, X)	(1 + (n) + NUM_TASK_##X##_SEGMENTS)
154
155enum ilt_clients {
156	ILT_CLI_CDUC,
157	ILT_CLI_CDUT,
158	ILT_CLI_QM,
159	ILT_CLI_TM,
160	ILT_CLI_SRC,
161	ILT_CLI_TSDM,
162	ILT_CLI_MAX
163};
164
165struct ilt_cfg_pair {
166	u32 reg;
167	u32 val;
168};
169
170struct ecore_ilt_cli_blk {
171	u32 total_size; /* 0 means not active */
172	u32 real_size_in_page;
173	u32 start_line;
174	u32 dynamic_line_cnt;
175};
176
177struct ecore_ilt_client_cfg {
178	bool				active;
179
180	/* ILT boundaries */
181	struct ilt_cfg_pair		first;
182	struct ilt_cfg_pair		last;
183	struct ilt_cfg_pair		p_size;
184
185	/* ILT client blocks for PF */
186	struct ecore_ilt_cli_blk	pf_blks[ILT_CLI_PF_BLOCKS];
187	u32				pf_total_lines;
188
189	/* ILT client blocks for VFs */
190	struct ecore_ilt_cli_blk	vf_blks[ILT_CLI_VF_BLOCKS];
191	u32				vf_total_lines;
192};
193
194/* Per Path -
195 *      ILT shadow table
196 *      Protocol acquired CID lists
197 *      PF start line in ILT
198 */
199struct ecore_dma_mem {
200	dma_addr_t	p_phys;
201	void		*p_virt;
202	osal_size_t	size;
203};
204
205#define MAP_WORD_SIZE		sizeof(unsigned long)
206#define BITS_PER_MAP_WORD	(MAP_WORD_SIZE * 8)
207
208struct ecore_cid_acquired_map {
209	u32		start_cid;
210	u32		max_count;
211	unsigned long	*cid_map;
212};
213
214struct ecore_cxt_mngr {
215	/* Per protocl configuration */
216	struct ecore_conn_type_cfg	conn_cfg[MAX_CONN_TYPES];
217
218	/* computed ILT structure */
219	struct ecore_ilt_client_cfg	clients[ILT_CLI_MAX];
220
221	/* Task type sizes */
222	u32				task_type_size[NUM_TASK_TYPES];
223
224	/* total number of VFs for this hwfn -
225	 * ALL VFs are symmetric in terms of HW resources
226	 */
227	u32				vf_count;
228
229	/* Acquired CIDs */
230	struct ecore_cid_acquired_map acquired[MAX_CONN_TYPES];
231	/* TBD - do we want this allocated to reserve space? */
232	struct ecore_cid_acquired_map acquired_vf[MAX_CONN_TYPES][COMMON_MAX_NUM_VFS];
233
234	/* ILT shadow table */
235	struct ecore_dma_mem		*ilt_shadow;
236	u32				pf_start_line;
237
238	/* Mutex for a dynamic ILT allocation */
239	osal_mutex_t			mutex;
240
241	/* SRC T2 */
242	struct ecore_dma_mem		*t2;
243	u32				t2_num_pages;
244	u64				first_free;
245	u64				last_free;
246
247	/* The infrastructure originally was very generic and context/task
248	 * oriented - per connection-type we would set how many of those
249	 * are needed, and later when determining how much memory we're
250	 * needing for a given block we'd iterate over all the relevant
251	 * connection-types.
252	 * But since then we've had some additional resources, some of which
253	 * require memory which is indepent of the general context/task
254	 * scheme. We add those here explicitly per-feature.
255	 */
256
257	/* total number of SRQ's for this hwfn */
258	u32				srq_count;
259
260	/* Maximal number of L2 steering filters */
261	u32				arfs_count;
262
263	/* TODO - VF arfs filters ? */
264};
265
266/* check if resources/configuration is required according to protocol type */
267static bool src_proto(enum protocol_type type)
268{
269	return	type == PROTOCOLID_ISCSI	||
270		type == PROTOCOLID_FCOE		||
271		type == PROTOCOLID_IWARP;
272}
273
274static bool tm_cid_proto(enum protocol_type type)
275{
276	return type == PROTOCOLID_ISCSI ||
277	       type == PROTOCOLID_FCOE  ||
278	       type == PROTOCOLID_ROCE  ||
279	       type == PROTOCOLID_IWARP;
280}
281
282static bool tm_tid_proto(enum protocol_type type)
283{
284	return type == PROTOCOLID_FCOE;
285}
286
287/* counts the iids for the CDU/CDUC ILT client configuration */
288struct ecore_cdu_iids {
289	u32 pf_cids;
290	u32 per_vf_cids;
291};
292
293static void ecore_cxt_cdu_iids(struct ecore_cxt_mngr   *p_mngr,
294			       struct ecore_cdu_iids	*iids)
295{
296	u32 type;
297
298	for (type = 0; type < MAX_CONN_TYPES; type++) {
299		iids->pf_cids += p_mngr->conn_cfg[type].cid_count;
300		iids->per_vf_cids += p_mngr->conn_cfg[type].cids_per_vf;
301	}
302}
303
304/* counts the iids for the Searcher block configuration */
305struct ecore_src_iids {
306	u32			pf_cids;
307	u32			per_vf_cids;
308};
309
310static void ecore_cxt_src_iids(struct ecore_cxt_mngr *p_mngr,
311			       struct ecore_src_iids *iids)
312{
313	u32 i;
314
315	for (i = 0; i < MAX_CONN_TYPES; i++) {
316		if (!src_proto(i))
317			continue;
318
319		iids->pf_cids += p_mngr->conn_cfg[i].cid_count;
320		iids->per_vf_cids += p_mngr->conn_cfg[i].cids_per_vf;
321	}
322
323	/* Add L2 filtering filters in addition */
324	iids->pf_cids += p_mngr->arfs_count;
325}
326
327/* counts the iids for the Timers block configuration */
328struct ecore_tm_iids {
329	u32 pf_cids;
330	u32 pf_tids[NUM_TASK_PF_SEGMENTS]; /* per segment */
331	u32 pf_tids_total;
332	u32 per_vf_cids;
333	u32 per_vf_tids;
334};
335
336static void ecore_cxt_tm_iids(struct ecore_cxt_mngr *p_mngr,
337			      struct ecore_tm_iids *iids)
338{
339	bool tm_vf_required = false;
340	bool tm_required = false;
341	int i, j;
342
343	/* Timers is a special case -> we don't count how many cids require
344	 * timers but what's the max cid that will be used by the timer block.
345	 * therefore we traverse in reverse order, and once we hit a protocol
346	 * that requires the timers memory, we'll sum all the protocols up
347	 * to that one.
348	 */
349	for (i = MAX_CONN_TYPES - 1; i >= 0; i--) {
350		struct ecore_conn_type_cfg *p_cfg = &p_mngr->conn_cfg[i];
351
352		if (tm_cid_proto(i) || tm_required) {
353			if (p_cfg->cid_count)
354				tm_required = true;
355
356			iids->pf_cids += p_cfg->cid_count;
357		}
358
359		if (tm_cid_proto(i) || tm_vf_required) {
360			if (p_cfg->cids_per_vf)
361				tm_vf_required = true;
362
363			iids->per_vf_cids += p_cfg->cids_per_vf;
364		}
365
366		if (tm_tid_proto(i)) {
367			struct ecore_tid_seg *segs = p_cfg->tid_seg;
368
369			/* for each segment there is at most one
370			 * protocol for which count is not 0.
371			 */
372			for (j = 0; j < NUM_TASK_PF_SEGMENTS; j++)
373				iids->pf_tids[j] += segs[j].count;
374
375			/* The last array elelment is for the VFs. As for PF
376			 * segments there can be only one protocol for
377			 * which this value is not 0.
378			 */
379			iids->per_vf_tids += segs[NUM_TASK_PF_SEGMENTS].count;
380		}
381	}
382
383	iids->pf_cids = ROUNDUP(iids->pf_cids, TM_ALIGN);
384	iids->per_vf_cids = ROUNDUP(iids->per_vf_cids, TM_ALIGN);
385	iids->per_vf_tids = ROUNDUP(iids->per_vf_tids, TM_ALIGN);
386
387	for (iids->pf_tids_total = 0, j = 0; j < NUM_TASK_PF_SEGMENTS; j++) {
388		iids->pf_tids[j] = ROUNDUP(iids->pf_tids[j], TM_ALIGN);
389		iids->pf_tids_total += iids->pf_tids[j];
390	}
391}
392
393static void ecore_cxt_qm_iids(struct ecore_hwfn *p_hwfn,
394			      struct ecore_qm_iids *iids)
395{
396	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
397	struct ecore_tid_seg *segs;
398	u32 vf_cids = 0, type, j;
399	u32 vf_tids = 0;
400
401	for (type = 0; type < MAX_CONN_TYPES; type++) {
402		iids->cids += p_mngr->conn_cfg[type].cid_count;
403		vf_cids += p_mngr->conn_cfg[type].cids_per_vf;
404
405		segs = p_mngr->conn_cfg[type].tid_seg;
406		/* for each segment there is at most one
407		 * protocol for which count is not 0.
408		 */
409		for (j = 0; j < NUM_TASK_PF_SEGMENTS; j++)
410			iids->tids += segs[j].count;
411
412		/* The last array elelment is for the VFs. As for PF
413		 * segments there can be only one protocol for
414		 * which this value is not 0.
415		 */
416		vf_tids += segs[NUM_TASK_PF_SEGMENTS].count;
417	}
418
419	iids->vf_cids += vf_cids * p_mngr->vf_count;
420	iids->tids += vf_tids * p_mngr->vf_count;
421
422	DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
423		   "iids: CIDS %08x vf_cids %08x tids %08x vf_tids %08x\n",
424		   iids->cids, iids->vf_cids, iids->tids, vf_tids);
425}
426
427static struct ecore_tid_seg *ecore_cxt_tid_seg_info(struct ecore_hwfn   *p_hwfn,
428						    u32			seg)
429{
430	struct ecore_cxt_mngr *p_cfg = p_hwfn->p_cxt_mngr;
431	u32 i;
432
433	/* Find the protocol with tid count > 0 for this segment.
434	   Note: there can only be one and this is already validated.
435	 */
436	for (i = 0; i < MAX_CONN_TYPES; i++) {
437		if (p_cfg->conn_cfg[i].tid_seg[seg].count)
438			return &p_cfg->conn_cfg[i].tid_seg[seg];
439	}
440	return OSAL_NULL;
441}
442
443static void ecore_cxt_set_srq_count(struct ecore_hwfn *p_hwfn, u32 num_srqs)
444{
445	struct ecore_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr;
446
447	p_mgr->srq_count = num_srqs;
448}
449
450u32 ecore_cxt_get_srq_count(struct ecore_hwfn *p_hwfn)
451{
452	struct ecore_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr;
453
454	return p_mgr->srq_count;
455}
456
457/* set the iids (cid/tid) count per protocol */
458static void ecore_cxt_set_proto_cid_count(struct ecore_hwfn *p_hwfn,
459					  enum protocol_type type,
460					  u32 cid_count, u32 vf_cid_cnt)
461{
462	struct ecore_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr;
463	struct ecore_conn_type_cfg *p_conn = &p_mgr->conn_cfg[type];
464
465	p_conn->cid_count = ROUNDUP(cid_count, DQ_RANGE_ALIGN);
466	p_conn->cids_per_vf = ROUNDUP(vf_cid_cnt, DQ_RANGE_ALIGN);
467
468	if (type == PROTOCOLID_ROCE) {
469		u32 page_sz = p_mgr->clients[ILT_CLI_CDUC].p_size.val;
470		u32 cxt_size = CONN_CXT_SIZE(p_hwfn);
471		u32 elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size;
472		u32 align = elems_per_page * DQ_RANGE_ALIGN;
473
474		p_conn->cid_count = ROUNDUP(p_conn->cid_count, align);
475	}
476}
477
478u32 ecore_cxt_get_proto_cid_count(struct ecore_hwfn	*p_hwfn,
479				  enum protocol_type	type,
480				  u32			*vf_cid)
481{
482	if (vf_cid)
483		*vf_cid = p_hwfn->p_cxt_mngr->conn_cfg[type].cids_per_vf;
484
485	return p_hwfn->p_cxt_mngr->conn_cfg[type].cid_count;
486}
487
488u32 ecore_cxt_get_proto_cid_start(struct ecore_hwfn	*p_hwfn,
489				  enum protocol_type	type)
490{
491	return p_hwfn->p_cxt_mngr->acquired[type].start_cid;
492}
493
494u32 ecore_cxt_get_proto_tid_count(struct ecore_hwfn *p_hwfn,
495				  enum protocol_type type)
496{
497	u32 cnt = 0;
498	int i;
499
500	for (i = 0; i < TASK_SEGMENTS; i++)
501		cnt += p_hwfn->p_cxt_mngr->conn_cfg[type].tid_seg[i].count;
502
503	return cnt;
504}
505
506static void ecore_cxt_set_proto_tid_count(struct ecore_hwfn *p_hwfn,
507					  enum protocol_type proto,
508					  u8 seg,
509					  u8 seg_type,
510					  u32 count,
511					  bool has_fl)
512{
513	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
514	struct ecore_tid_seg *p_seg = &p_mngr->conn_cfg[proto].tid_seg[seg];
515
516	p_seg->count = count;
517	p_seg->has_fl_mem = has_fl;
518	p_seg->type = seg_type;
519}
520
521/* the *p_line parameter must be either 0 for the first invocation or the
522   value returned in the previous invocation.
523 */
524static void ecore_ilt_cli_blk_fill(struct ecore_ilt_client_cfg	*p_cli,
525				   struct ecore_ilt_cli_blk	*p_blk,
526				   u32				start_line,
527				   u32				total_size,
528				   u32				elem_size)
529{
530	u32 ilt_size = ILT_PAGE_IN_BYTES(p_cli->p_size.val);
531
532	/* verify that it's called once for each block */
533	if (p_blk->total_size)
534		return;
535
536	p_blk->total_size = total_size;
537	p_blk->real_size_in_page = 0;
538	if (elem_size)
539		p_blk->real_size_in_page = (ilt_size / elem_size) * elem_size;
540	p_blk->start_line = start_line;
541}
542
543static void ecore_ilt_cli_adv_line(struct ecore_hwfn		*p_hwfn,
544				    struct ecore_ilt_client_cfg	*p_cli,
545				    struct ecore_ilt_cli_blk	*p_blk,
546				    u32				*p_line,
547				    enum ilt_clients		client_id)
548{
549	if (!p_blk->total_size)
550		return;
551
552	if (!p_cli->active)
553		p_cli->first.val = *p_line;
554
555	p_cli->active = true;
556	*p_line += DIV_ROUND_UP(p_blk->total_size, p_blk->real_size_in_page);
557	p_cli->last.val = *p_line-1;
558
559	DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
560		   "ILT[Client %d] - Lines: [%08x - %08x]. Block - Size %08x [Real %08x] Start line %d\n",
561		   client_id, p_cli->first.val, p_cli->last.val,
562		   p_blk->total_size, p_blk->real_size_in_page,
563		   p_blk->start_line);
564}
565
566static u32 ecore_ilt_get_dynamic_line_cnt(struct ecore_hwfn *p_hwfn,
567					  enum ilt_clients ilt_client)
568{
569	u32 cid_count = p_hwfn->p_cxt_mngr->conn_cfg[PROTOCOLID_ROCE].cid_count;
570	struct ecore_ilt_client_cfg *p_cli;
571	u32 lines_to_skip = 0;
572	u32 cxts_per_p;
573
574	/* TBD MK: ILT code should be simplified once PROTO enum is changed */
575
576	if (ilt_client == ILT_CLI_CDUC) {
577		p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
578
579		cxts_per_p = ILT_PAGE_IN_BYTES(p_cli->p_size.val) /
580			     (u32)CONN_CXT_SIZE(p_hwfn);
581
582		lines_to_skip = cid_count / cxts_per_p;
583	}
584
585	return lines_to_skip;
586}
587
588static struct ecore_ilt_client_cfg *
589ecore_cxt_set_cli(struct ecore_ilt_client_cfg *p_cli)
590{
591	p_cli->active = false;
592	p_cli->first.val = 0;
593	p_cli->last.val = 0;
594	return p_cli;
595}
596
597static struct ecore_ilt_cli_blk *
598ecore_cxt_set_blk(struct ecore_ilt_cli_blk *p_blk)
599{
600	p_blk->total_size = 0;
601	return p_blk;
602}
603
604enum _ecore_status_t ecore_cxt_cfg_ilt_compute(struct ecore_hwfn *p_hwfn,
605					       u32 *line_count)
606{
607	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
608	u32 curr_line, total, i, task_size, line;
609	struct ecore_ilt_client_cfg *p_cli;
610	struct ecore_ilt_cli_blk *p_blk;
611	struct ecore_cdu_iids cdu_iids;
612	struct ecore_src_iids src_iids;
613	struct ecore_qm_iids qm_iids;
614	struct ecore_tm_iids tm_iids;
615	struct ecore_tid_seg *p_seg;
616
617	OSAL_MEM_ZERO(&qm_iids, sizeof(qm_iids));
618	OSAL_MEM_ZERO(&cdu_iids, sizeof(cdu_iids));
619	OSAL_MEM_ZERO(&src_iids, sizeof(src_iids));
620	OSAL_MEM_ZERO(&tm_iids, sizeof(tm_iids));
621
622	p_mngr->pf_start_line = RESC_START(p_hwfn, ECORE_ILT);
623
624	DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
625		   "hwfn [%d] - Set context manager starting line to be 0x%08x\n",
626		   p_hwfn->my_id, p_hwfn->p_cxt_mngr->pf_start_line);
627
628	/* CDUC */
629	p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_CDUC]);
630
631	curr_line = p_mngr->pf_start_line;
632
633	/* CDUC PF */
634	p_cli->pf_total_lines = 0;
635
636	/* get the counters for the CDUC,CDUC and QM clients  */
637	ecore_cxt_cdu_iids(p_mngr, &cdu_iids);
638
639	p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[CDUC_BLK]);
640
641	total = cdu_iids.pf_cids * CONN_CXT_SIZE(p_hwfn);
642
643	ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
644			       total, CONN_CXT_SIZE(p_hwfn));
645
646	ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_CDUC);
647	p_cli->pf_total_lines = curr_line - p_blk->start_line;
648
649	p_blk->dynamic_line_cnt = ecore_ilt_get_dynamic_line_cnt(p_hwfn,
650								 ILT_CLI_CDUC);
651
652	/* CDUC VF */
653	p_blk = ecore_cxt_set_blk(&p_cli->vf_blks[CDUC_BLK]);
654	total = cdu_iids.per_vf_cids * CONN_CXT_SIZE(p_hwfn);
655
656	ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
657			       total, CONN_CXT_SIZE(p_hwfn));
658
659	ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_CDUC);
660	p_cli->vf_total_lines = curr_line - p_blk->start_line;
661
662	for (i = 1; i < p_mngr->vf_count; i++)
663		ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
664				       ILT_CLI_CDUC);
665
666	/* CDUT PF */
667	p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_CDUT]);
668	p_cli->first.val = curr_line;
669
670	/* first the 'working' task memory */
671	for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
672		p_seg = ecore_cxt_tid_seg_info(p_hwfn, i);
673		if (!p_seg || p_seg->count == 0)
674			continue;
675
676		p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[CDUT_SEG_BLK(i)]);
677		total = p_seg->count * p_mngr->task_type_size[p_seg->type];
678		ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, total,
679				       p_mngr->task_type_size[p_seg->type]);
680
681		ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
682				       ILT_CLI_CDUT);
683	}
684
685	/* next the 'init' task memory (forced load memory) */
686	for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
687		p_seg = ecore_cxt_tid_seg_info(p_hwfn, i);
688		if (!p_seg || p_seg->count == 0)
689			continue;
690
691		p_blk = ecore_cxt_set_blk(
692				&p_cli->pf_blks[CDUT_FL_SEG_BLK(i, PF)]);
693
694		if (!p_seg->has_fl_mem) {
695			/* The segment is active (total size pf 'working'
696			 * memory is > 0) but has no FL (forced-load, Init)
697			 * memory. Thus:
698			 *
699			 * 1.   The total-size in the corrsponding FL block of
700			 *      the ILT client is set to 0 - No ILT line are
701			 *      provisioned and no ILT memory allocated.
702			 *
703			 * 2.   The start-line of said block is set to the
704			 *      start line of the matching working memory
705			 *      block in the ILT client. This is later used to
706			 *      configure the CDU segment offset registers and
707			 *      results in an FL command for TIDs of this
708			 *      segement behaves as regular load commands
709			 *      (loading TIDs from the working memory).
710			 */
711			line = p_cli->pf_blks[CDUT_SEG_BLK(i)].start_line;
712
713			ecore_ilt_cli_blk_fill(p_cli, p_blk, line, 0, 0);
714			continue;
715		}
716		total = p_seg->count * p_mngr->task_type_size[p_seg->type];
717
718		ecore_ilt_cli_blk_fill(p_cli, p_blk,
719				       curr_line, total,
720				       p_mngr->task_type_size[p_seg->type]);
721
722		ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
723				       ILT_CLI_CDUT);
724	}
725	p_cli->pf_total_lines = curr_line - p_cli->pf_blks[0].start_line;
726
727	/* CDUT VF */
728	p_seg = ecore_cxt_tid_seg_info(p_hwfn, TASK_SEGMENT_VF);
729	if (p_seg && p_seg->count) {
730		/* Stricly speaking we need to iterate over all VF
731		 * task segment types, but a VF has only 1 segment
732		 */
733
734		/* 'working' memory */
735		total = p_seg->count * p_mngr->task_type_size[p_seg->type];
736
737		p_blk = ecore_cxt_set_blk(&p_cli->vf_blks[CDUT_SEG_BLK(0)]);
738		ecore_ilt_cli_blk_fill(p_cli, p_blk,
739				       curr_line, total,
740				       p_mngr->task_type_size[p_seg->type]);
741
742		ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
743				       ILT_CLI_CDUT);
744
745		/* 'init' memory */
746		p_blk = ecore_cxt_set_blk(
747				&p_cli->vf_blks[CDUT_FL_SEG_BLK(0, VF)]);
748		if (!p_seg->has_fl_mem) {
749			/* see comment above */
750			line = p_cli->vf_blks[CDUT_SEG_BLK(0)].start_line;
751			ecore_ilt_cli_blk_fill(p_cli, p_blk, line, 0, 0);
752		} else {
753			task_size = p_mngr->task_type_size[p_seg->type];
754			ecore_ilt_cli_blk_fill(p_cli, p_blk,
755					       curr_line, total,
756					       task_size);
757			ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
758					       ILT_CLI_CDUT);
759		}
760		p_cli->vf_total_lines = curr_line -
761					p_cli->vf_blks[0].start_line;
762
763		/* Now for the rest of the VFs */
764		for (i = 1; i < p_mngr->vf_count; i++) {
765			/* don't set p_blk i.e. don't clear total_size */
766			p_blk = &p_cli->vf_blks[CDUT_SEG_BLK(0)];
767			ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
768					       ILT_CLI_CDUT);
769
770			/* don't set p_blk i.e. don't clear total_size */
771			p_blk = &p_cli->vf_blks[CDUT_FL_SEG_BLK(0, VF)];
772			ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
773					       ILT_CLI_CDUT);
774		}
775	}
776
777	/* QM */
778	p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_QM]);
779	p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[0]);
780
781	ecore_cxt_qm_iids(p_hwfn, &qm_iids);
782	total = ecore_qm_pf_mem_size(qm_iids.cids,
783				     qm_iids.vf_cids, qm_iids.tids,
784				     p_hwfn->qm_info.num_pqs,
785				     p_hwfn->qm_info.num_vf_pqs);
786
787	DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
788		   "QM ILT Info, (cids=%d, vf_cids=%d, tids=%d, num_pqs=%d, num_vf_pqs=%d, memory_size=%d)\n",
789		   qm_iids.cids, qm_iids.vf_cids, qm_iids.tids,
790		   p_hwfn->qm_info.num_pqs, p_hwfn->qm_info.num_vf_pqs, total);
791
792	ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, total * 0x1000,
793			       QM_PQ_ELEMENT_SIZE);
794
795	ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_QM);
796	p_cli->pf_total_lines = curr_line - p_blk->start_line;
797
798	/* SRC */
799	p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_SRC]);
800	ecore_cxt_src_iids(p_mngr, &src_iids);
801
802	/* Both the PF and VFs searcher connections are stored in the per PF
803	 * database. Thus sum the PF searcher cids and all the VFs searcher
804	 * cids.
805	 */
806	total = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count;
807	if (total) {
808		u32 local_max = OSAL_MAX_T(u32, total,
809					   SRC_MIN_NUM_ELEMS);
810
811		total = OSAL_ROUNDUP_POW_OF_TWO(local_max);
812
813		p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[0]);
814		ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
815				       total * sizeof(struct src_ent),
816				       sizeof(struct src_ent));
817
818		ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
819				       ILT_CLI_SRC);
820		p_cli->pf_total_lines = curr_line - p_blk->start_line;
821	}
822
823	/* TM PF */
824	p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_TM]);
825	ecore_cxt_tm_iids(p_mngr, &tm_iids);
826	total = tm_iids.pf_cids + tm_iids.pf_tids_total;
827	if (total) {
828		p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[0]);
829		ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
830				       total * TM_ELEM_SIZE,
831				       TM_ELEM_SIZE);
832
833		ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
834				       ILT_CLI_TM);
835		p_cli->pf_total_lines = curr_line - p_blk->start_line;
836	}
837
838	/* TM VF */
839	total = tm_iids.per_vf_cids + tm_iids.per_vf_tids;
840	if (total) {
841		p_blk = ecore_cxt_set_blk(&p_cli->vf_blks[0]);
842		ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
843				       total * TM_ELEM_SIZE,
844				       TM_ELEM_SIZE);
845
846		ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
847				       ILT_CLI_TM);
848
849		p_cli->vf_total_lines = curr_line - p_blk->start_line;
850		for (i = 1; i < p_mngr->vf_count; i++) {
851			ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
852					       ILT_CLI_TM);
853		}
854	}
855
856	/* TSDM (SRQ CONTEXT) */
857	total = ecore_cxt_get_srq_count(p_hwfn);
858
859	if (total) {
860		p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_TSDM]);
861		p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[SRQ_BLK]);
862		ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
863				       total * SRQ_CXT_SIZE, SRQ_CXT_SIZE);
864
865		ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
866				       ILT_CLI_TSDM);
867		p_cli->pf_total_lines = curr_line - p_blk->start_line;
868	}
869
870	*line_count = curr_line - p_hwfn->p_cxt_mngr->pf_start_line;
871
872	if (curr_line - p_hwfn->p_cxt_mngr->pf_start_line >
873	    RESC_NUM(p_hwfn, ECORE_ILT)) {
874		return ECORE_INVAL;
875	}
876
877	return ECORE_SUCCESS;
878}
879
880u32 ecore_cxt_cfg_ilt_compute_excess(struct ecore_hwfn *p_hwfn, u32 used_lines)
881{
882	struct ecore_ilt_client_cfg *p_cli;
883	u32 excess_lines, available_lines;
884	struct ecore_cxt_mngr *p_mngr;
885	u32 ilt_page_size, elem_size;
886	struct ecore_tid_seg *p_seg;
887	int i;
888
889	available_lines = RESC_NUM(p_hwfn, ECORE_ILT);
890	excess_lines = used_lines - available_lines;
891
892	if (!excess_lines)
893		return 0;
894
895	if (!ECORE_IS_RDMA_PERSONALITY(p_hwfn))
896		return 0;
897
898	p_mngr = p_hwfn->p_cxt_mngr;
899	p_cli = &p_mngr->clients[ILT_CLI_CDUT];
900	ilt_page_size = ILT_PAGE_IN_BYTES(p_cli->p_size.val);
901
902	for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
903		p_seg = ecore_cxt_tid_seg_info(p_hwfn, i);
904		if (!p_seg || p_seg->count == 0)
905			continue;
906
907		elem_size = p_mngr->task_type_size[p_seg->type];
908		if (!elem_size)
909			continue;
910
911		return (ilt_page_size / elem_size) * excess_lines;
912	}
913
914	DP_ERR(p_hwfn, "failed computing excess ILT lines\n");
915	return 0;
916}
917
918static void ecore_cxt_src_t2_free(struct ecore_hwfn *p_hwfn)
919{
920	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
921	u32 i;
922
923	if (!p_mngr->t2)
924		return;
925
926	for (i = 0; i < p_mngr->t2_num_pages; i++)
927		if (p_mngr->t2[i].p_virt)
928			OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
929					       p_mngr->t2[i].p_virt,
930					       p_mngr->t2[i].p_phys,
931					       p_mngr->t2[i].size);
932
933	OSAL_FREE(p_hwfn->p_dev, p_mngr->t2);
934	p_mngr->t2 = OSAL_NULL;
935}
936
937static enum _ecore_status_t ecore_cxt_src_t2_alloc(struct ecore_hwfn *p_hwfn)
938{
939	struct ecore_cxt_mngr *p_mngr  = p_hwfn->p_cxt_mngr;
940	u32 conn_num, total_size, ent_per_page, psz, i;
941	struct ecore_ilt_client_cfg *p_src;
942	struct ecore_src_iids src_iids;
943	struct ecore_dma_mem *p_t2;
944	enum _ecore_status_t rc;
945
946	OSAL_MEM_ZERO(&src_iids, sizeof(src_iids));
947
948	/* if the SRC ILT client is inactive - there are no connection
949	 * requiring the searcer, leave.
950	 */
951	p_src = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_SRC];
952	if (!p_src->active)
953		return ECORE_SUCCESS;
954
955	ecore_cxt_src_iids(p_mngr, &src_iids);
956	conn_num = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count;
957	total_size = conn_num * sizeof(struct src_ent);
958
959	/* use the same page size as the SRC ILT client */
960	psz = ILT_PAGE_IN_BYTES(p_src->p_size.val);
961	p_mngr->t2_num_pages = DIV_ROUND_UP(total_size, psz);
962
963	/* allocate t2 */
964	p_mngr->t2 = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
965				 p_mngr->t2_num_pages *
966				 sizeof(struct ecore_dma_mem));
967	if (!p_mngr->t2) {
968		DP_NOTICE(p_hwfn, true, "Failed to allocate t2 table\n");
969		rc = ECORE_NOMEM;
970		goto t2_fail;
971	}
972
973	/* allocate t2 pages */
974	for (i = 0; i < p_mngr->t2_num_pages; i++) {
975		u32 size = OSAL_MIN_T(u32, total_size, psz);
976		void **p_virt = &p_mngr->t2[i].p_virt;
977
978		*p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
979						  &p_mngr->t2[i].p_phys,
980						  size);
981		if (!p_mngr->t2[i].p_virt) {
982			rc = ECORE_NOMEM;
983			goto t2_fail;
984		}
985		OSAL_MEM_ZERO(*p_virt, size);
986		p_mngr->t2[i].size = size;
987		total_size -= size;
988	}
989
990	/* Set the t2 pointers */
991
992	/* entries per page - must be a power of two */
993	ent_per_page = psz / sizeof(struct src_ent);
994
995	p_mngr->first_free = (u64)p_mngr->t2[0].p_phys;
996
997	p_t2 = &p_mngr->t2[(conn_num - 1) / ent_per_page];
998	p_mngr->last_free = (u64)p_t2->p_phys +
999				 ((conn_num - 1) & (ent_per_page - 1)) *
1000				 sizeof(struct src_ent);
1001
1002	for (i = 0; i < p_mngr->t2_num_pages; i++) {
1003		u32 ent_num = OSAL_MIN_T(u32, ent_per_page, conn_num);
1004		struct src_ent *entries = p_mngr->t2[i].p_virt;
1005		u64 p_ent_phys = (u64)p_mngr->t2[i].p_phys, val;
1006		u32 j;
1007
1008		for (j = 0; j < ent_num - 1; j++) {
1009			val = p_ent_phys +
1010			      (j + 1) * sizeof(struct src_ent);
1011			entries[j].next = OSAL_CPU_TO_BE64(val);
1012		}
1013
1014		if (i < p_mngr->t2_num_pages - 1)
1015			val = (u64)p_mngr->t2[i + 1].p_phys;
1016		else
1017			val = 0;
1018		entries[j].next = OSAL_CPU_TO_BE64(val);
1019
1020		conn_num -= ent_num;
1021	}
1022
1023	return ECORE_SUCCESS;
1024
1025t2_fail:
1026	ecore_cxt_src_t2_free(p_hwfn);
1027	return rc;
1028}
1029
1030#define for_each_ilt_valid_client(pos, clients)	\
1031	for (pos = 0; pos < ILT_CLI_MAX; pos++)	\
1032		if (!clients[pos].active) {	\
1033			continue;		\
1034		} else				\
1035
1036
1037/* Total number of ILT lines used by this PF */
1038static u32 ecore_cxt_ilt_shadow_size(struct ecore_ilt_client_cfg *ilt_clients)
1039{
1040	u32 size = 0;
1041	u32 i;
1042
1043	for_each_ilt_valid_client(i, ilt_clients)
1044		size += (ilt_clients[i].last.val -
1045			 ilt_clients[i].first.val + 1);
1046
1047	return size;
1048}
1049
1050static void ecore_ilt_shadow_free(struct ecore_hwfn *p_hwfn)
1051{
1052	struct ecore_ilt_client_cfg *p_cli = p_hwfn->p_cxt_mngr->clients;
1053	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1054	u32 ilt_size, i;
1055
1056	ilt_size = ecore_cxt_ilt_shadow_size(p_cli);
1057
1058	for (i = 0; p_mngr->ilt_shadow && i < ilt_size; i++) {
1059		struct ecore_dma_mem *p_dma = &p_mngr->ilt_shadow[i];
1060
1061		if (p_dma->p_virt)
1062			OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
1063					       p_dma->p_virt,
1064					       p_dma->p_phys,
1065					       p_dma->size);
1066		p_dma->p_virt = OSAL_NULL;
1067	}
1068	OSAL_FREE(p_hwfn->p_dev, p_mngr->ilt_shadow);
1069}
1070
1071static enum _ecore_status_t ecore_ilt_blk_alloc(struct ecore_hwfn *p_hwfn,
1072						struct ecore_ilt_cli_blk *p_blk,
1073						enum ilt_clients ilt_client,
1074						u32 start_line_offset)
1075{
1076	struct ecore_dma_mem *ilt_shadow = p_hwfn->p_cxt_mngr->ilt_shadow;
1077	u32 lines, line, sz_left, lines_to_skip = 0;
1078
1079	/* Special handling for RoCE that supports dynamic allocation */
1080	if (ECORE_IS_RDMA_PERSONALITY(p_hwfn) &&
1081	    ((ilt_client == ILT_CLI_CDUT) || ilt_client == ILT_CLI_TSDM))
1082		return ECORE_SUCCESS;
1083
1084	lines_to_skip = p_blk->dynamic_line_cnt;
1085
1086	if (!p_blk->total_size)
1087		return ECORE_SUCCESS;
1088
1089	sz_left = p_blk->total_size;
1090	lines = DIV_ROUND_UP(sz_left, p_blk->real_size_in_page) -
1091		lines_to_skip;
1092	line = p_blk->start_line + start_line_offset -
1093	       p_hwfn->p_cxt_mngr->pf_start_line + lines_to_skip;
1094
1095	for (; lines; lines--) {
1096		dma_addr_t p_phys;
1097		void *p_virt;
1098		u32 size;
1099
1100		size = OSAL_MIN_T(u32, sz_left, p_blk->real_size_in_page);
1101		p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
1102						 &p_phys, size);
1103		if (!p_virt)
1104			return ECORE_NOMEM;
1105		OSAL_MEM_ZERO(p_virt, size);
1106
1107		ilt_shadow[line].p_phys = p_phys;
1108		ilt_shadow[line].p_virt = p_virt;
1109		ilt_shadow[line].size = size;
1110
1111		DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
1112			   "ILT shadow: Line [%d] Physical 0x%llx Virtual %p Size %d\n",
1113			   line, (unsigned long long)p_phys, p_virt, size);
1114
1115		sz_left -= size;
1116		line++;
1117	}
1118
1119	return ECORE_SUCCESS;
1120}
1121
1122static enum _ecore_status_t ecore_ilt_shadow_alloc(struct ecore_hwfn *p_hwfn)
1123{
1124	struct ecore_cxt_mngr *p_mngr  = p_hwfn->p_cxt_mngr;
1125	struct ecore_ilt_client_cfg *clients = p_mngr->clients;
1126	struct ecore_ilt_cli_blk *p_blk;
1127	u32 size, i, j, k;
1128	enum _ecore_status_t rc;
1129
1130	size = ecore_cxt_ilt_shadow_size(clients);
1131	p_mngr->ilt_shadow = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
1132					 size * sizeof(struct ecore_dma_mem));
1133
1134	if (!p_mngr->ilt_shadow) {
1135		DP_NOTICE(p_hwfn, true, "Failed to allocate ilt shadow table\n");
1136		rc = ECORE_NOMEM;
1137		goto ilt_shadow_fail;
1138	}
1139
1140	DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
1141		   "Allocated 0x%x bytes for ilt shadow\n",
1142		   (u32)(size * sizeof(struct ecore_dma_mem)));
1143
1144	for_each_ilt_valid_client(i, clients) {
1145		for (j = 0; j < ILT_CLI_PF_BLOCKS; j++) {
1146			p_blk = &clients[i].pf_blks[j];
1147			rc = ecore_ilt_blk_alloc(p_hwfn, p_blk, i, 0);
1148			if (rc != ECORE_SUCCESS)
1149				goto ilt_shadow_fail;
1150		}
1151		for (k = 0; k < p_mngr->vf_count; k++) {
1152			for (j = 0; j < ILT_CLI_VF_BLOCKS; j++) {
1153				u32 lines = clients[i].vf_total_lines * k;
1154
1155				p_blk = &clients[i].vf_blks[j];
1156				rc = ecore_ilt_blk_alloc(p_hwfn, p_blk,
1157							 i, lines);
1158				if (rc != ECORE_SUCCESS)
1159					goto ilt_shadow_fail;
1160			}
1161		}
1162	}
1163
1164	return ECORE_SUCCESS;
1165
1166ilt_shadow_fail:
1167	ecore_ilt_shadow_free(p_hwfn);
1168	return rc;
1169}
1170
1171static void ecore_cid_map_free(struct ecore_hwfn *p_hwfn)
1172{
1173	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1174	u32 type, vf;
1175
1176	for (type = 0; type < MAX_CONN_TYPES; type++) {
1177		OSAL_FREE(p_hwfn->p_dev, p_mngr->acquired[type].cid_map);
1178		p_mngr->acquired[type].max_count = 0;
1179		p_mngr->acquired[type].start_cid = 0;
1180
1181		for (vf = 0; vf < COMMON_MAX_NUM_VFS; vf++) {
1182			OSAL_FREE(p_hwfn->p_dev,
1183				  p_mngr->acquired_vf[type][vf].cid_map);
1184			p_mngr->acquired_vf[type][vf].max_count = 0;
1185			p_mngr->acquired_vf[type][vf].start_cid = 0;
1186		}
1187	}
1188}
1189
1190static enum _ecore_status_t
1191ecore_cid_map_alloc_single(struct ecore_hwfn *p_hwfn, u32 type,
1192			   u32 cid_start, u32 cid_count,
1193			   struct ecore_cid_acquired_map *p_map)
1194{
1195	u32 size;
1196
1197	if (!cid_count)
1198		return ECORE_SUCCESS;
1199
1200	size = MAP_WORD_SIZE * DIV_ROUND_UP(cid_count, BITS_PER_MAP_WORD);
1201	p_map->cid_map = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, size);
1202	if (p_map->cid_map == OSAL_NULL)
1203		return ECORE_NOMEM;
1204
1205	p_map->max_count = cid_count;
1206	p_map->start_cid = cid_start;
1207
1208	DP_VERBOSE(p_hwfn, ECORE_MSG_CXT,
1209		   "Type %08x start: %08x count %08x\n",
1210		   type, p_map->start_cid, p_map->max_count);
1211
1212	return ECORE_SUCCESS;
1213}
1214
1215static enum _ecore_status_t ecore_cid_map_alloc(struct ecore_hwfn *p_hwfn)
1216{
1217	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1218	u32 start_cid = 0, vf_start_cid = 0;
1219	u32 type, vf;
1220
1221	for (type = 0; type < MAX_CONN_TYPES; type++) {
1222		struct ecore_conn_type_cfg *p_cfg = &p_mngr->conn_cfg[type];
1223		struct ecore_cid_acquired_map *p_map;
1224
1225		/* Handle PF maps */
1226		p_map = &p_mngr->acquired[type];
1227		if (ecore_cid_map_alloc_single(p_hwfn, type, start_cid,
1228					       p_cfg->cid_count, p_map))
1229			goto cid_map_fail;
1230
1231		/* Handle VF maps */
1232		for (vf = 0; vf < COMMON_MAX_NUM_VFS; vf++) {
1233			p_map = &p_mngr->acquired_vf[type][vf];
1234			if (ecore_cid_map_alloc_single(p_hwfn, type,
1235						       vf_start_cid,
1236						       p_cfg->cids_per_vf,
1237						       p_map))
1238				goto cid_map_fail;
1239		}
1240
1241		start_cid += p_cfg->cid_count;
1242		vf_start_cid += p_cfg->cids_per_vf;
1243	}
1244
1245	return ECORE_SUCCESS;
1246
1247cid_map_fail:
1248	ecore_cid_map_free(p_hwfn);
1249	return ECORE_NOMEM;
1250}
1251
1252enum _ecore_status_t ecore_cxt_mngr_alloc(struct ecore_hwfn *p_hwfn)
1253{
1254	struct ecore_ilt_client_cfg *clients;
1255	struct ecore_cxt_mngr *p_mngr;
1256	u32 i;
1257
1258	p_mngr = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, sizeof(*p_mngr));
1259	if (!p_mngr) {
1260		DP_NOTICE(p_hwfn, true, "Failed to allocate `struct ecore_cxt_mngr'\n");
1261		return ECORE_NOMEM;
1262	}
1263
1264	/* Initialize ILT client registers */
1265	clients = p_mngr->clients;
1266	clients[ILT_CLI_CDUC].first.reg = ILT_CFG_REG(CDUC, FIRST_ILT);
1267	clients[ILT_CLI_CDUC].last.reg  = ILT_CFG_REG(CDUC, LAST_ILT);
1268	clients[ILT_CLI_CDUC].p_size.reg = ILT_CFG_REG(CDUC, P_SIZE);
1269
1270	clients[ILT_CLI_QM].first.reg   = ILT_CFG_REG(QM, FIRST_ILT);
1271	clients[ILT_CLI_QM].last.reg    = ILT_CFG_REG(QM, LAST_ILT);
1272	clients[ILT_CLI_QM].p_size.reg  = ILT_CFG_REG(QM, P_SIZE);
1273
1274	clients[ILT_CLI_TM].first.reg   = ILT_CFG_REG(TM, FIRST_ILT);
1275	clients[ILT_CLI_TM].last.reg    = ILT_CFG_REG(TM, LAST_ILT);
1276	clients[ILT_CLI_TM].p_size.reg  = ILT_CFG_REG(TM, P_SIZE);
1277
1278	clients[ILT_CLI_SRC].first.reg  = ILT_CFG_REG(SRC, FIRST_ILT);
1279	clients[ILT_CLI_SRC].last.reg   = ILT_CFG_REG(SRC, LAST_ILT);
1280	clients[ILT_CLI_SRC].p_size.reg = ILT_CFG_REG(SRC, P_SIZE);
1281
1282	clients[ILT_CLI_CDUT].first.reg = ILT_CFG_REG(CDUT, FIRST_ILT);
1283	clients[ILT_CLI_CDUT].last.reg  = ILT_CFG_REG(CDUT, LAST_ILT);
1284	clients[ILT_CLI_CDUT].p_size.reg = ILT_CFG_REG(CDUT, P_SIZE);
1285
1286	clients[ILT_CLI_TSDM].first.reg = ILT_CFG_REG(TSDM, FIRST_ILT);
1287	clients[ILT_CLI_TSDM].last.reg  = ILT_CFG_REG(TSDM, LAST_ILT);
1288	clients[ILT_CLI_TSDM].p_size.reg = ILT_CFG_REG(TSDM, P_SIZE);
1289
1290	/* default ILT page size for all clients is 64K */
1291	for (i = 0; i < ILT_CLI_MAX; i++)
1292		p_mngr->clients[i].p_size.val = ILT_DEFAULT_HW_P_SIZE;
1293
1294	/* Initialize task sizes */
1295	p_mngr->task_type_size[0] = TYPE0_TASK_CXT_SIZE(p_hwfn);
1296	p_mngr->task_type_size[1] = TYPE1_TASK_CXT_SIZE(p_hwfn);
1297
1298	if (p_hwfn->p_dev->p_iov_info)
1299		p_mngr->vf_count = p_hwfn->p_dev->p_iov_info->total_vfs;
1300
1301	/* Initialize the dynamic ILT allocation mutex */
1302#ifdef CONFIG_ECORE_LOCK_ALLOC
1303	OSAL_MUTEX_ALLOC(p_hwfn, &p_mngr->mutex);
1304#endif
1305	OSAL_MUTEX_INIT(&p_mngr->mutex);
1306
1307	/* Set the cxt mangr pointer priori to further allocations */
1308	p_hwfn->p_cxt_mngr = p_mngr;
1309
1310	return ECORE_SUCCESS;
1311}
1312
1313enum _ecore_status_t ecore_cxt_tables_alloc(struct ecore_hwfn *p_hwfn)
1314{
1315	enum _ecore_status_t    rc;
1316
1317	/* Allocate the ILT shadow table */
1318	rc = ecore_ilt_shadow_alloc(p_hwfn);
1319	if (rc) {
1320		DP_NOTICE(p_hwfn, true, "Failed to allocate ilt memory\n");
1321		goto tables_alloc_fail;
1322	}
1323
1324	/* Allocate the T2  table */
1325	rc = ecore_cxt_src_t2_alloc(p_hwfn);
1326	if (rc) {
1327		DP_NOTICE(p_hwfn, true, "Failed to allocate T2 memory\n");
1328		goto tables_alloc_fail;
1329	}
1330
1331	/* Allocate and initialize the acquired cids bitmaps */
1332	rc = ecore_cid_map_alloc(p_hwfn);
1333	if (rc) {
1334		DP_NOTICE(p_hwfn, true, "Failed to allocate cid maps\n");
1335		goto tables_alloc_fail;
1336	}
1337
1338	return ECORE_SUCCESS;
1339
1340tables_alloc_fail:
1341	ecore_cxt_mngr_free(p_hwfn);
1342	return rc;
1343}
1344void ecore_cxt_mngr_free(struct ecore_hwfn *p_hwfn)
1345{
1346	if (!p_hwfn->p_cxt_mngr)
1347		return;
1348
1349	ecore_cid_map_free(p_hwfn);
1350	ecore_cxt_src_t2_free(p_hwfn);
1351	ecore_ilt_shadow_free(p_hwfn);
1352#ifdef CONFIG_ECORE_LOCK_ALLOC
1353	OSAL_MUTEX_DEALLOC(&p_hwfn->p_cxt_mngr->mutex);
1354#endif
1355	OSAL_FREE(p_hwfn->p_dev, p_hwfn->p_cxt_mngr);
1356
1357	p_hwfn->p_cxt_mngr = OSAL_NULL;
1358}
1359
1360void ecore_cxt_mngr_setup(struct ecore_hwfn *p_hwfn)
1361{
1362	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1363	struct ecore_cid_acquired_map *p_map;
1364	struct ecore_conn_type_cfg *p_cfg;
1365	int type;
1366	u32 len;
1367
1368	/* Reset acquired cids */
1369	for (type = 0; type < MAX_CONN_TYPES; type++) {
1370		u32 vf;
1371
1372		p_cfg = &p_mngr->conn_cfg[type];
1373		if (p_cfg->cid_count) {
1374			p_map = &p_mngr->acquired[type];
1375			len = DIV_ROUND_UP(p_map->max_count,
1376					   BITS_PER_MAP_WORD) *
1377			      MAP_WORD_SIZE;
1378			OSAL_MEM_ZERO(p_map->cid_map, len);
1379		}
1380
1381		if (!p_cfg->cids_per_vf)
1382			continue;
1383
1384		for (vf = 0; vf < COMMON_MAX_NUM_VFS; vf++) {
1385			p_map = &p_mngr->acquired_vf[type][vf];
1386			len = DIV_ROUND_UP(p_map->max_count,
1387					   BITS_PER_MAP_WORD) *
1388			      MAP_WORD_SIZE;
1389			OSAL_MEM_ZERO(p_map->cid_map, len);
1390		}
1391	}
1392}
1393
1394/* HW initialization helper (per Block, per phase) */
1395
1396/* CDU Common */
1397#define CDUC_CXT_SIZE_SHIFT						\
1398	CDU_REG_CID_ADDR_PARAMS_CONTEXT_SIZE_SHIFT
1399
1400#define CDUC_CXT_SIZE_MASK						\
1401	(CDU_REG_CID_ADDR_PARAMS_CONTEXT_SIZE >> CDUC_CXT_SIZE_SHIFT)
1402
1403#define CDUC_BLOCK_WASTE_SHIFT						\
1404	CDU_REG_CID_ADDR_PARAMS_BLOCK_WASTE_SHIFT
1405
1406#define CDUC_BLOCK_WASTE_MASK						\
1407	(CDU_REG_CID_ADDR_PARAMS_BLOCK_WASTE >> CDUC_BLOCK_WASTE_SHIFT)
1408
1409#define CDUC_NCIB_SHIFT							\
1410	CDU_REG_CID_ADDR_PARAMS_NCIB_SHIFT
1411
1412#define CDUC_NCIB_MASK							\
1413	(CDU_REG_CID_ADDR_PARAMS_NCIB >> CDUC_NCIB_SHIFT)
1414
1415#define CDUT_TYPE0_CXT_SIZE_SHIFT					\
1416	CDU_REG_SEGMENT0_PARAMS_T0_TID_SIZE_SHIFT
1417
1418#define CDUT_TYPE0_CXT_SIZE_MASK					\
1419	(CDU_REG_SEGMENT0_PARAMS_T0_TID_SIZE >>				\
1420	CDUT_TYPE0_CXT_SIZE_SHIFT)
1421
1422#define CDUT_TYPE0_BLOCK_WASTE_SHIFT					\
1423	CDU_REG_SEGMENT0_PARAMS_T0_TID_BLOCK_WASTE_SHIFT
1424
1425#define CDUT_TYPE0_BLOCK_WASTE_MASK					\
1426	(CDU_REG_SEGMENT0_PARAMS_T0_TID_BLOCK_WASTE >>			\
1427	CDUT_TYPE0_BLOCK_WASTE_SHIFT)
1428
1429#define CDUT_TYPE0_NCIB_SHIFT						\
1430	CDU_REG_SEGMENT0_PARAMS_T0_NUM_TIDS_IN_BLOCK_SHIFT
1431
1432#define CDUT_TYPE0_NCIB_MASK						\
1433	(CDU_REG_SEGMENT0_PARAMS_T0_NUM_TIDS_IN_BLOCK >>		\
1434	CDUT_TYPE0_NCIB_SHIFT)
1435
1436#define CDUT_TYPE1_CXT_SIZE_SHIFT					\
1437	CDU_REG_SEGMENT1_PARAMS_T1_TID_SIZE_SHIFT
1438
1439#define CDUT_TYPE1_CXT_SIZE_MASK					\
1440	(CDU_REG_SEGMENT1_PARAMS_T1_TID_SIZE >>				\
1441	CDUT_TYPE1_CXT_SIZE_SHIFT)
1442
1443#define CDUT_TYPE1_BLOCK_WASTE_SHIFT					\
1444	CDU_REG_SEGMENT1_PARAMS_T1_TID_BLOCK_WASTE_SHIFT
1445
1446#define CDUT_TYPE1_BLOCK_WASTE_MASK					\
1447	(CDU_REG_SEGMENT1_PARAMS_T1_TID_BLOCK_WASTE >>			\
1448	CDUT_TYPE1_BLOCK_WASTE_SHIFT)
1449
1450#define CDUT_TYPE1_NCIB_SHIFT						\
1451	CDU_REG_SEGMENT1_PARAMS_T1_NUM_TIDS_IN_BLOCK_SHIFT
1452
1453#define CDUT_TYPE1_NCIB_MASK						\
1454	(CDU_REG_SEGMENT1_PARAMS_T1_NUM_TIDS_IN_BLOCK >>		\
1455	CDUT_TYPE1_NCIB_SHIFT)
1456
1457static void ecore_cdu_init_common(struct ecore_hwfn *p_hwfn)
1458{
1459	u32 page_sz, elems_per_page, block_waste,  cxt_size, cdu_params = 0;
1460
1461	/* CDUC - connection configuration */
1462	page_sz = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC].p_size.val;
1463	cxt_size = CONN_CXT_SIZE(p_hwfn);
1464	elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size;
1465	block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size;
1466
1467	SET_FIELD(cdu_params, CDUC_CXT_SIZE, cxt_size);
1468	SET_FIELD(cdu_params, CDUC_BLOCK_WASTE, block_waste);
1469	SET_FIELD(cdu_params, (u32)CDUC_NCIB, elems_per_page);
1470	STORE_RT_REG(p_hwfn, CDU_REG_CID_ADDR_PARAMS_RT_OFFSET, cdu_params);
1471
1472	/* CDUT - type-0 tasks configuration */
1473	page_sz = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT].p_size.val;
1474	cxt_size = p_hwfn->p_cxt_mngr->task_type_size[0];
1475	elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size;
1476	block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size;
1477
1478	/* cxt size and block-waste are multipes of 8 */
1479	cdu_params = 0;
1480	SET_FIELD(cdu_params, (u32)CDUT_TYPE0_CXT_SIZE, (cxt_size >> 3));
1481	SET_FIELD(cdu_params, CDUT_TYPE0_BLOCK_WASTE, (block_waste >> 3));
1482	SET_FIELD(cdu_params, CDUT_TYPE0_NCIB, elems_per_page);
1483	STORE_RT_REG(p_hwfn, CDU_REG_SEGMENT0_PARAMS_RT_OFFSET, cdu_params);
1484
1485	/* CDUT - type-1 tasks configuration */
1486	cxt_size = p_hwfn->p_cxt_mngr->task_type_size[1];
1487	elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size;
1488	block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size;
1489
1490	/* cxt size and block-waste are multipes of 8 */
1491	cdu_params = 0;
1492	SET_FIELD(cdu_params, (u32)CDUT_TYPE1_CXT_SIZE, (cxt_size >> 3));
1493	SET_FIELD(cdu_params, CDUT_TYPE1_BLOCK_WASTE, (block_waste >> 3));
1494	SET_FIELD(cdu_params, CDUT_TYPE1_NCIB, elems_per_page);
1495	STORE_RT_REG(p_hwfn, CDU_REG_SEGMENT1_PARAMS_RT_OFFSET, cdu_params);
1496}
1497
1498/* CDU PF */
1499#define CDU_SEG_REG_TYPE_SHIFT		CDU_SEG_TYPE_OFFSET_REG_TYPE_SHIFT
1500#define CDU_SEG_REG_TYPE_MASK		0x1
1501#define CDU_SEG_REG_OFFSET_SHIFT	0
1502#define CDU_SEG_REG_OFFSET_MASK		CDU_SEG_TYPE_OFFSET_REG_OFFSET_MASK
1503
1504static void ecore_cdu_init_pf(struct ecore_hwfn *p_hwfn)
1505{
1506	struct ecore_ilt_client_cfg *p_cli;
1507	struct ecore_tid_seg *p_seg;
1508	u32 cdu_seg_params, offset;
1509	int i;
1510
1511	static const u32 rt_type_offset_arr[] = {
1512		CDU_REG_PF_SEG0_TYPE_OFFSET_RT_OFFSET,
1513		CDU_REG_PF_SEG1_TYPE_OFFSET_RT_OFFSET,
1514		CDU_REG_PF_SEG2_TYPE_OFFSET_RT_OFFSET,
1515		CDU_REG_PF_SEG3_TYPE_OFFSET_RT_OFFSET
1516	};
1517
1518	static const u32 rt_type_offset_fl_arr[] = {
1519		CDU_REG_PF_FL_SEG0_TYPE_OFFSET_RT_OFFSET,
1520		CDU_REG_PF_FL_SEG1_TYPE_OFFSET_RT_OFFSET,
1521		CDU_REG_PF_FL_SEG2_TYPE_OFFSET_RT_OFFSET,
1522		CDU_REG_PF_FL_SEG3_TYPE_OFFSET_RT_OFFSET
1523	};
1524
1525	p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
1526
1527	/* There are initializations only for CDUT during pf Phase */
1528	for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
1529		/* Segment 0*/
1530		p_seg = ecore_cxt_tid_seg_info(p_hwfn, i);
1531		if (!p_seg)
1532			continue;
1533
1534		/* Note: start_line is already adjusted for the CDU
1535		 * segment register granularity, so we just need to
1536		 * divide. Adjustment is implicit as we assume ILT
1537		 * Page size is larger than 32K!
1538		 */
1539		offset = (ILT_PAGE_IN_BYTES(p_cli->p_size.val) *
1540			 (p_cli->pf_blks[CDUT_SEG_BLK(i)].start_line -
1541			  p_cli->first.val)) / CDUT_SEG_ALIGNMET_IN_BYTES;
1542
1543		cdu_seg_params = 0;
1544		SET_FIELD(cdu_seg_params, CDU_SEG_REG_TYPE, p_seg->type);
1545		SET_FIELD(cdu_seg_params, CDU_SEG_REG_OFFSET, offset);
1546		STORE_RT_REG(p_hwfn, rt_type_offset_arr[i],
1547			     cdu_seg_params);
1548
1549		offset = (ILT_PAGE_IN_BYTES(p_cli->p_size.val) *
1550			 (p_cli->pf_blks[CDUT_FL_SEG_BLK(i, PF)].start_line -
1551			  p_cli->first.val)) / CDUT_SEG_ALIGNMET_IN_BYTES;
1552
1553		cdu_seg_params = 0;
1554		SET_FIELD(cdu_seg_params, CDU_SEG_REG_TYPE, p_seg->type);
1555		SET_FIELD(cdu_seg_params, CDU_SEG_REG_OFFSET, offset);
1556		STORE_RT_REG(p_hwfn, rt_type_offset_fl_arr[i],
1557			     cdu_seg_params);
1558
1559	}
1560}
1561
1562void ecore_qm_init_pf(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
1563{
1564	struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1565	struct ecore_qm_iids iids;
1566
1567	OSAL_MEM_ZERO(&iids, sizeof(iids));
1568	ecore_cxt_qm_iids(p_hwfn, &iids);
1569
1570	ecore_qm_pf_rt_init(p_hwfn, p_ptt, p_hwfn->port_id,
1571			    p_hwfn->rel_pf_id, qm_info->max_phys_tcs_per_port,
1572			    iids.cids, iids.vf_cids, iids.tids,
1573			    qm_info->start_pq,
1574			    qm_info->num_pqs - qm_info->num_vf_pqs,
1575			    qm_info->num_vf_pqs,
1576			    qm_info->start_vport,
1577			    qm_info->num_vports, qm_info->pf_wfq, qm_info->pf_rl,
1578			    p_hwfn->qm_info.qm_pq_params,
1579			    p_hwfn->qm_info.qm_vport_params);
1580}
1581
1582/* CM PF */
1583static void ecore_cm_init_pf(struct ecore_hwfn *p_hwfn)
1584{
1585	STORE_RT_REG(p_hwfn, XCM_REG_CON_PHY_Q3_RT_OFFSET, ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_LB));
1586}
1587
1588/* DQ PF */
1589static void ecore_dq_init_pf(struct ecore_hwfn *p_hwfn)
1590{
1591	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1592	u32 dq_pf_max_cid = 0, dq_vf_max_cid = 0;
1593
1594	dq_pf_max_cid += (p_mngr->conn_cfg[0].cid_count >> DQ_RANGE_SHIFT);
1595	STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_0_RT_OFFSET, dq_pf_max_cid);
1596
1597	dq_vf_max_cid += (p_mngr->conn_cfg[0].cids_per_vf >> DQ_RANGE_SHIFT);
1598	STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_0_RT_OFFSET, dq_vf_max_cid);
1599
1600	dq_pf_max_cid += (p_mngr->conn_cfg[1].cid_count >> DQ_RANGE_SHIFT);
1601	STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_1_RT_OFFSET, dq_pf_max_cid);
1602
1603	dq_vf_max_cid += (p_mngr->conn_cfg[1].cids_per_vf >> DQ_RANGE_SHIFT);
1604	STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_1_RT_OFFSET, dq_vf_max_cid);
1605
1606	dq_pf_max_cid += (p_mngr->conn_cfg[2].cid_count >> DQ_RANGE_SHIFT);
1607	STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_2_RT_OFFSET, dq_pf_max_cid);
1608
1609	dq_vf_max_cid += (p_mngr->conn_cfg[2].cids_per_vf >> DQ_RANGE_SHIFT);
1610	STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_2_RT_OFFSET, dq_vf_max_cid);
1611
1612	dq_pf_max_cid += (p_mngr->conn_cfg[3].cid_count >> DQ_RANGE_SHIFT);
1613	STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_3_RT_OFFSET, dq_pf_max_cid);
1614
1615	dq_vf_max_cid += (p_mngr->conn_cfg[3].cids_per_vf >> DQ_RANGE_SHIFT);
1616	STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_3_RT_OFFSET, dq_vf_max_cid);
1617
1618	dq_pf_max_cid += (p_mngr->conn_cfg[4].cid_count >> DQ_RANGE_SHIFT);
1619	STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_4_RT_OFFSET, dq_pf_max_cid);
1620
1621	dq_vf_max_cid += (p_mngr->conn_cfg[4].cids_per_vf >> DQ_RANGE_SHIFT);
1622	STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_4_RT_OFFSET, dq_vf_max_cid);
1623
1624	dq_pf_max_cid += (p_mngr->conn_cfg[5].cid_count >> DQ_RANGE_SHIFT);
1625	STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_5_RT_OFFSET, dq_pf_max_cid);
1626
1627	dq_vf_max_cid += (p_mngr->conn_cfg[5].cids_per_vf >> DQ_RANGE_SHIFT);
1628	STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_5_RT_OFFSET, dq_vf_max_cid);
1629
1630	/* Connection types 6 & 7 are not in use, yet they must be configured
1631	 * as the highest possible connection. Not configuring them means the
1632	 * defaults will be  used, and with a large number of cids a bug may
1633	 * occur, if the defaults will be smaller than dq_pf_max_cid /
1634	 * dq_vf_max_cid.
1635	 */
1636	STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_6_RT_OFFSET, dq_pf_max_cid);
1637	STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_6_RT_OFFSET, dq_vf_max_cid);
1638
1639	STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_7_RT_OFFSET, dq_pf_max_cid);
1640	STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_7_RT_OFFSET, dq_vf_max_cid);
1641}
1642
1643static void ecore_ilt_bounds_init(struct ecore_hwfn *p_hwfn)
1644{
1645	struct ecore_ilt_client_cfg *ilt_clients;
1646	int i;
1647
1648	ilt_clients = p_hwfn->p_cxt_mngr->clients;
1649	for_each_ilt_valid_client(i, ilt_clients) {
1650		STORE_RT_REG(p_hwfn,
1651			     ilt_clients[i].first.reg,
1652			     ilt_clients[i].first.val);
1653		STORE_RT_REG(p_hwfn,
1654			     ilt_clients[i].last.reg,
1655			     ilt_clients[i].last.val);
1656		STORE_RT_REG(p_hwfn,
1657			     ilt_clients[i].p_size.reg,
1658			     ilt_clients[i].p_size.val);
1659	}
1660}
1661
1662static void ecore_ilt_vf_bounds_init(struct ecore_hwfn *p_hwfn)
1663{
1664	struct ecore_ilt_client_cfg *p_cli;
1665	u32 blk_factor;
1666
1667	/* For simplicty  we set the 'block' to be an ILT page */
1668	if (p_hwfn->p_dev->p_iov_info) {
1669		struct ecore_hw_sriov_info *p_iov = p_hwfn->p_dev->p_iov_info;
1670
1671		STORE_RT_REG(p_hwfn,
1672			     PSWRQ2_REG_VF_BASE_RT_OFFSET,
1673			     p_iov->first_vf_in_pf);
1674		STORE_RT_REG(p_hwfn,
1675			     PSWRQ2_REG_VF_LAST_ILT_RT_OFFSET,
1676			     p_iov->first_vf_in_pf + p_iov->total_vfs);
1677	}
1678
1679	p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
1680	blk_factor = OSAL_LOG2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10);
1681	if (p_cli->active) {
1682		STORE_RT_REG(p_hwfn,
1683			     PSWRQ2_REG_CDUC_BLOCKS_FACTOR_RT_OFFSET,
1684			     blk_factor);
1685		STORE_RT_REG(p_hwfn,
1686			     PSWRQ2_REG_CDUC_NUMBER_OF_PF_BLOCKS_RT_OFFSET,
1687			     p_cli->pf_total_lines);
1688		STORE_RT_REG(p_hwfn,
1689			     PSWRQ2_REG_CDUC_VF_BLOCKS_RT_OFFSET,
1690			     p_cli->vf_total_lines);
1691	}
1692
1693	p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
1694	blk_factor = OSAL_LOG2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10);
1695	if (p_cli->active) {
1696		STORE_RT_REG(p_hwfn,
1697			     PSWRQ2_REG_CDUT_BLOCKS_FACTOR_RT_OFFSET,
1698			     blk_factor);
1699		STORE_RT_REG(p_hwfn,
1700			     PSWRQ2_REG_CDUT_NUMBER_OF_PF_BLOCKS_RT_OFFSET,
1701			     p_cli->pf_total_lines);
1702		STORE_RT_REG(p_hwfn,
1703			     PSWRQ2_REG_CDUT_VF_BLOCKS_RT_OFFSET,
1704			     p_cli->vf_total_lines);
1705	}
1706
1707	p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TM];
1708	blk_factor = OSAL_LOG2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10);
1709	if (p_cli->active) {
1710		STORE_RT_REG(p_hwfn,
1711			     PSWRQ2_REG_TM_BLOCKS_FACTOR_RT_OFFSET,
1712			     blk_factor);
1713		STORE_RT_REG(p_hwfn,
1714			     PSWRQ2_REG_TM_NUMBER_OF_PF_BLOCKS_RT_OFFSET,
1715			     p_cli->pf_total_lines);
1716		STORE_RT_REG(p_hwfn,
1717			     PSWRQ2_REG_TM_VF_BLOCKS_RT_OFFSET,
1718			     p_cli->vf_total_lines);
1719	}
1720}
1721
1722/* ILT (PSWRQ2) PF */
1723static void ecore_ilt_init_pf(struct ecore_hwfn *p_hwfn)
1724{
1725	struct ecore_ilt_client_cfg *clients;
1726	struct ecore_cxt_mngr *p_mngr;
1727	struct ecore_dma_mem *p_shdw;
1728	u32 line, rt_offst, i;
1729
1730	ecore_ilt_bounds_init(p_hwfn);
1731	ecore_ilt_vf_bounds_init(p_hwfn);
1732
1733	p_mngr  = p_hwfn->p_cxt_mngr;
1734	p_shdw  = p_mngr->ilt_shadow;
1735	clients = p_hwfn->p_cxt_mngr->clients;
1736
1737	for_each_ilt_valid_client(i, clients) {
1738		/* Client's 1st val and RT array are absolute, ILT shadows'
1739		 * lines are relative.
1740		 */
1741		line = clients[i].first.val - p_mngr->pf_start_line;
1742		rt_offst = PSWRQ2_REG_ILT_MEMORY_RT_OFFSET +
1743			   clients[i].first.val * ILT_ENTRY_IN_REGS;
1744
1745		for (; line <= clients[i].last.val - p_mngr->pf_start_line;
1746		     line++, rt_offst += ILT_ENTRY_IN_REGS) {
1747			u64 ilt_hw_entry = 0;
1748
1749			/** p_virt could be OSAL_NULL incase of dynamic
1750			 *  allocation
1751			 */
1752			if (p_shdw[line].p_virt != OSAL_NULL) {
1753				SET_FIELD(ilt_hw_entry, ILT_ENTRY_VALID, 1ULL);
1754				SET_FIELD(ilt_hw_entry, ILT_ENTRY_PHY_ADDR,
1755					 (unsigned long long)(p_shdw[line].p_phys >> 12));
1756
1757				DP_VERBOSE(
1758					p_hwfn, ECORE_MSG_ILT,
1759					"Setting RT[0x%08x] from ILT[0x%08x] [Client is %d] to Physical addr: 0x%llx\n",
1760					rt_offst, line, i,
1761					(unsigned long long)(p_shdw[line].p_phys >> 12));
1762			}
1763
1764			STORE_RT_REG_AGG(p_hwfn, rt_offst, ilt_hw_entry);
1765		}
1766	}
1767}
1768
1769/* SRC (Searcher) PF */
1770static void ecore_src_init_pf(struct ecore_hwfn *p_hwfn)
1771{
1772	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1773	u32 rounded_conn_num, conn_num, conn_max;
1774	struct ecore_src_iids src_iids;
1775
1776	OSAL_MEM_ZERO(&src_iids, sizeof(src_iids));
1777	ecore_cxt_src_iids(p_mngr, &src_iids);
1778	conn_num = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count;
1779	if (!conn_num)
1780		return;
1781
1782	conn_max = OSAL_MAX_T(u32, conn_num, SRC_MIN_NUM_ELEMS);
1783	rounded_conn_num = OSAL_ROUNDUP_POW_OF_TWO(conn_max);
1784
1785	STORE_RT_REG(p_hwfn, SRC_REG_COUNTFREE_RT_OFFSET, conn_num);
1786	STORE_RT_REG(p_hwfn, SRC_REG_NUMBER_HASH_BITS_RT_OFFSET,
1787		     OSAL_LOG2(rounded_conn_num));
1788
1789	STORE_RT_REG_AGG(p_hwfn, SRC_REG_FIRSTFREE_RT_OFFSET,
1790			 p_hwfn->p_cxt_mngr->first_free);
1791	STORE_RT_REG_AGG(p_hwfn, SRC_REG_LASTFREE_RT_OFFSET,
1792			 p_hwfn->p_cxt_mngr->last_free);
1793	DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
1794		   "Configured SEARCHER for 0x%08x connections\n",
1795		   conn_num);
1796}
1797
1798/* Timers PF */
1799#define TM_CFG_NUM_IDS_SHIFT		0
1800#define TM_CFG_NUM_IDS_MASK		0xFFFFULL
1801#define TM_CFG_PRE_SCAN_OFFSET_SHIFT	16
1802#define TM_CFG_PRE_SCAN_OFFSET_MASK	0x1FFULL
1803#define TM_CFG_PARENT_PF_SHIFT		25
1804#define TM_CFG_PARENT_PF_MASK		0x7ULL
1805
1806#define TM_CFG_CID_PRE_SCAN_ROWS_SHIFT	30
1807#define TM_CFG_CID_PRE_SCAN_ROWS_MASK	0x1FFULL
1808
1809#define TM_CFG_TID_OFFSET_SHIFT		30
1810#define TM_CFG_TID_OFFSET_MASK		0x7FFFFULL
1811#define TM_CFG_TID_PRE_SCAN_ROWS_SHIFT	49
1812#define TM_CFG_TID_PRE_SCAN_ROWS_MASK	0x1FFULL
1813
1814static void ecore_tm_init_pf(struct ecore_hwfn *p_hwfn)
1815{
1816	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1817	u32 active_seg_mask = 0, tm_offset, rt_reg;
1818	struct ecore_tm_iids tm_iids;
1819	u64 cfg_word;
1820	u8 i;
1821
1822	OSAL_MEM_ZERO(&tm_iids, sizeof(tm_iids));
1823	ecore_cxt_tm_iids(p_mngr, &tm_iids);
1824
1825	/* @@@TBD No pre-scan for now */
1826
1827	/* Note: We assume consecutive VFs for a PF */
1828	for (i = 0; i < p_mngr->vf_count; i++) {
1829		cfg_word = 0;
1830		SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.per_vf_cids);
1831		SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
1832		SET_FIELD(cfg_word, TM_CFG_PARENT_PF, p_hwfn->rel_pf_id);
1833		SET_FIELD(cfg_word, TM_CFG_CID_PRE_SCAN_ROWS, 0); /* scan all */
1834
1835		rt_reg = TM_REG_CONFIG_CONN_MEM_RT_OFFSET +
1836			 (sizeof(cfg_word) / sizeof(u32)) *
1837			 (p_hwfn->p_dev->p_iov_info->first_vf_in_pf + i);
1838		STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
1839	}
1840
1841	cfg_word = 0;
1842	SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.pf_cids);
1843	SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
1844	SET_FIELD(cfg_word, TM_CFG_PARENT_PF, 0);	  /* n/a for PF */
1845	SET_FIELD(cfg_word, TM_CFG_CID_PRE_SCAN_ROWS, 0); /* scan all   */
1846
1847	rt_reg = TM_REG_CONFIG_CONN_MEM_RT_OFFSET +
1848		 (sizeof(cfg_word) / sizeof(u32)) *
1849		 (NUM_OF_VFS(p_hwfn->p_dev) + p_hwfn->rel_pf_id);
1850	STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
1851
1852	/* enale scan */
1853	STORE_RT_REG(p_hwfn, TM_REG_PF_ENABLE_CONN_RT_OFFSET,
1854		     tm_iids.pf_cids  ? 0x1 : 0x0);
1855
1856	/* @@@TBD how to enable the scan for the VFs */
1857
1858	tm_offset = tm_iids.per_vf_cids;
1859
1860	/* Note: We assume consecutive VFs for a PF */
1861	for (i = 0; i < p_mngr->vf_count; i++) {
1862		cfg_word = 0;
1863		SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.per_vf_tids);
1864		SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
1865		SET_FIELD(cfg_word, TM_CFG_PARENT_PF, p_hwfn->rel_pf_id);
1866		SET_FIELD(cfg_word, TM_CFG_TID_OFFSET, tm_offset);
1867		SET_FIELD(cfg_word, TM_CFG_TID_PRE_SCAN_ROWS, (u64)0);
1868
1869		rt_reg = TM_REG_CONFIG_TASK_MEM_RT_OFFSET +
1870			 (sizeof(cfg_word) / sizeof(u32)) *
1871			 (p_hwfn->p_dev->p_iov_info->first_vf_in_pf + i);
1872
1873		STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
1874	}
1875
1876	tm_offset = tm_iids.pf_cids;
1877	for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
1878		cfg_word = 0;
1879		SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.pf_tids[i]);
1880		SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
1881		SET_FIELD(cfg_word, TM_CFG_PARENT_PF, 0);
1882		SET_FIELD(cfg_word, TM_CFG_TID_OFFSET, tm_offset);
1883		SET_FIELD(cfg_word, TM_CFG_TID_PRE_SCAN_ROWS, (u64)0);
1884
1885		rt_reg = TM_REG_CONFIG_TASK_MEM_RT_OFFSET +
1886			 (sizeof(cfg_word) / sizeof(u32)) *
1887			 (NUM_OF_VFS(p_hwfn->p_dev) +
1888			 p_hwfn->rel_pf_id * NUM_TASK_PF_SEGMENTS + i);
1889
1890		STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
1891		active_seg_mask |= (tm_iids.pf_tids[i] ? (1 << i) : 0);
1892
1893		tm_offset += tm_iids.pf_tids[i];
1894	}
1895
1896	if (ECORE_IS_RDMA_PERSONALITY(p_hwfn))
1897		active_seg_mask = 0;
1898
1899	STORE_RT_REG(p_hwfn, TM_REG_PF_ENABLE_TASK_RT_OFFSET, active_seg_mask);
1900
1901	/* @@@TBD how to enable the scan for the VFs */
1902}
1903
1904static void ecore_prs_init_common(struct ecore_hwfn *p_hwfn)
1905{
1906	if ((p_hwfn->hw_info.personality == ECORE_PCI_FCOE) &&
1907	    p_hwfn->pf_params.fcoe_pf_params.is_target)
1908		STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_RESP_INITIATOR_TYPE_RT_OFFSET, 0);
1909}
1910
1911static void ecore_prs_init_pf(struct ecore_hwfn *p_hwfn)
1912{
1913	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1914	struct ecore_conn_type_cfg *p_fcoe;
1915	struct ecore_tid_seg *p_tid;
1916
1917	p_fcoe = &p_mngr->conn_cfg[PROTOCOLID_FCOE];
1918
1919	/* If FCoE is active set the MAX OX_ID (tid) in the Parser */
1920	if (!p_fcoe->cid_count)
1921		return;
1922
1923	p_tid = &p_fcoe->tid_seg[ECORE_CXT_FCOE_TID_SEG];
1924	if (p_hwfn->pf_params.fcoe_pf_params.is_target) {
1925		STORE_RT_REG_AGG(p_hwfn,
1926				 PRS_REG_TASK_ID_MAX_TARGET_PF_RT_OFFSET,
1927				 p_tid->count);
1928	} else {
1929		STORE_RT_REG_AGG(p_hwfn,
1930				PRS_REG_TASK_ID_MAX_INITIATOR_PF_RT_OFFSET,
1931				p_tid->count);
1932	}
1933}
1934
1935void ecore_cxt_hw_init_common(struct ecore_hwfn *p_hwfn)
1936{
1937	/* CDU configuration */
1938	ecore_cdu_init_common(p_hwfn);
1939	ecore_prs_init_common(p_hwfn);
1940}
1941
1942void ecore_cxt_hw_init_pf(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
1943{
1944	ecore_qm_init_pf(p_hwfn, p_ptt);
1945	ecore_cm_init_pf(p_hwfn);
1946	ecore_dq_init_pf(p_hwfn);
1947	ecore_cdu_init_pf(p_hwfn);
1948	ecore_ilt_init_pf(p_hwfn);
1949	ecore_src_init_pf(p_hwfn);
1950	ecore_tm_init_pf(p_hwfn);
1951	ecore_prs_init_pf(p_hwfn);
1952}
1953
1954enum _ecore_status_t _ecore_cxt_acquire_cid(struct ecore_hwfn *p_hwfn,
1955					    enum protocol_type type,
1956					    u32 *p_cid, u8 vfid)
1957{
1958	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1959	struct ecore_cid_acquired_map *p_map;
1960	u32 rel_cid;
1961
1962	if (type >= MAX_CONN_TYPES) {
1963		DP_NOTICE(p_hwfn, true, "Invalid protocol type %d", type);
1964		return ECORE_INVAL;
1965	}
1966
1967	if (vfid >= COMMON_MAX_NUM_VFS && vfid != ECORE_CXT_PF_CID) {
1968		DP_NOTICE(p_hwfn, true, "VF [%02x] is out of range\n", vfid);
1969		return ECORE_INVAL;
1970	}
1971
1972	/* Determine the right map to take this CID from */
1973	if (vfid == ECORE_CXT_PF_CID)
1974		p_map = &p_mngr->acquired[type];
1975	else
1976		p_map = &p_mngr->acquired_vf[type][vfid];
1977
1978	if (p_map->cid_map == OSAL_NULL) {
1979		DP_NOTICE(p_hwfn, true, "Invalid protocol type %d", type);
1980		return ECORE_INVAL;
1981	}
1982
1983	rel_cid = OSAL_FIND_FIRST_ZERO_BIT(p_map->cid_map,
1984					   p_map->max_count);
1985
1986	if (rel_cid >= p_map->max_count) {
1987		DP_NOTICE(p_hwfn, false, "no CID available for protocol %d\n",
1988			  type);
1989		return ECORE_NORESOURCES;
1990	}
1991
1992	OSAL_SET_BIT(rel_cid, p_map->cid_map);
1993
1994	*p_cid = rel_cid + p_map->start_cid;
1995
1996	DP_VERBOSE(p_hwfn, ECORE_MSG_CXT,
1997		   "Acquired cid 0x%08x [rel. %08x] vfid %02x type %d\n",
1998		   *p_cid, rel_cid, vfid, type);
1999
2000	return ECORE_SUCCESS;
2001}
2002
2003enum _ecore_status_t ecore_cxt_acquire_cid(struct ecore_hwfn *p_hwfn,
2004					   enum protocol_type type,
2005					   u32 *p_cid)
2006{
2007	return _ecore_cxt_acquire_cid(p_hwfn, type, p_cid, ECORE_CXT_PF_CID);
2008}
2009
2010static bool ecore_cxt_test_cid_acquired(struct ecore_hwfn *p_hwfn,
2011					u32 cid, u8 vfid,
2012					enum protocol_type *p_type,
2013					struct ecore_cid_acquired_map **pp_map)
2014{
2015	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
2016	u32 rel_cid;
2017
2018	/* Iterate over protocols and find matching cid range */
2019	for (*p_type = 0; *p_type < MAX_CONN_TYPES; (*p_type)++) {
2020		if (vfid == ECORE_CXT_PF_CID)
2021			*pp_map = &p_mngr->acquired[*p_type];
2022		else
2023			*pp_map = &p_mngr->acquired_vf[*p_type][vfid];
2024
2025		if (!((*pp_map)->cid_map))
2026			continue;
2027		if (cid >= (*pp_map)->start_cid &&
2028		    cid < (*pp_map)->start_cid + (*pp_map)->max_count) {
2029			break;
2030		}
2031	}
2032
2033	if (*p_type == MAX_CONN_TYPES) {
2034		DP_NOTICE(p_hwfn, true, "Invalid CID %d vfid %02x", cid, vfid);
2035		goto fail;
2036	}
2037
2038	rel_cid = cid - (*pp_map)->start_cid;
2039	if (!OSAL_TEST_BIT(rel_cid, (*pp_map)->cid_map)) {
2040		DP_NOTICE(p_hwfn, true,
2041			  "CID %d [vifd %02x] not acquired", cid, vfid);
2042		goto fail;
2043	}
2044
2045	return true;
2046fail:
2047	*p_type = MAX_CONN_TYPES;
2048	*pp_map = OSAL_NULL;
2049	return false;
2050}
2051
2052void _ecore_cxt_release_cid(struct ecore_hwfn *p_hwfn, u32 cid, u8 vfid)
2053{
2054	struct ecore_cid_acquired_map *p_map = OSAL_NULL;
2055	enum protocol_type type;
2056	bool b_acquired;
2057	u32 rel_cid;
2058
2059	if (vfid != ECORE_CXT_PF_CID && vfid > COMMON_MAX_NUM_VFS) {
2060		DP_NOTICE(p_hwfn, true,
2061			  "Trying to return incorrect CID belonging to VF %02x\n",
2062			  vfid);
2063		return;
2064	}
2065
2066	/* Test acquired and find matching per-protocol map */
2067	b_acquired = ecore_cxt_test_cid_acquired(p_hwfn, cid, vfid,
2068						 &type, &p_map);
2069
2070	if (!b_acquired)
2071		return;
2072
2073	rel_cid = cid - p_map->start_cid;
2074	OSAL_CLEAR_BIT(rel_cid, p_map->cid_map);
2075
2076	DP_VERBOSE(p_hwfn, ECORE_MSG_CXT,
2077		   "Released CID 0x%08x [rel. %08x] vfid %02x type %d\n",
2078		   cid, rel_cid, vfid, type);
2079}
2080
2081void ecore_cxt_release_cid(struct ecore_hwfn *p_hwfn, u32 cid)
2082{
2083	_ecore_cxt_release_cid(p_hwfn, cid, ECORE_CXT_PF_CID);
2084}
2085
2086enum _ecore_status_t ecore_cxt_get_cid_info(struct ecore_hwfn *p_hwfn,
2087					    struct ecore_cxt_info *p_info)
2088{
2089	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
2090	struct ecore_cid_acquired_map *p_map = OSAL_NULL;
2091	u32 conn_cxt_size, hw_p_size, cxts_per_p, line;
2092	enum protocol_type type;
2093	bool b_acquired;
2094
2095	/* Test acquired and find matching per-protocol map */
2096	b_acquired = ecore_cxt_test_cid_acquired(p_hwfn, p_info->iid,
2097						 ECORE_CXT_PF_CID,
2098						 &type, &p_map);
2099
2100	if (!b_acquired)
2101		return ECORE_INVAL;
2102
2103	/* set the protocl type */
2104	p_info->type = type;
2105
2106	/* compute context virtual pointer */
2107	hw_p_size = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC].p_size.val;
2108
2109	conn_cxt_size = CONN_CXT_SIZE(p_hwfn);
2110	cxts_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / conn_cxt_size;
2111	line = p_info->iid / cxts_per_p;
2112
2113	/* Make sure context is allocated (dynamic allocation) */
2114	if (!p_mngr->ilt_shadow[line].p_virt)
2115		return ECORE_INVAL;
2116
2117	p_info->p_cxt = (u8 *)p_mngr->ilt_shadow[line].p_virt +
2118			      p_info->iid % cxts_per_p * conn_cxt_size;
2119
2120	DP_VERBOSE(p_hwfn, (ECORE_MSG_ILT | ECORE_MSG_CXT),
2121		   "Accessing ILT shadow[%d]: CXT pointer is at %p (for iid %d)\n",
2122		   (p_info->iid / cxts_per_p), p_info->p_cxt, p_info->iid);
2123
2124	return ECORE_SUCCESS;
2125}
2126
2127static void ecore_rdma_set_pf_params(struct ecore_hwfn *p_hwfn,
2128				     struct ecore_rdma_pf_params *p_params,
2129				     u32 num_tasks)
2130{
2131	u32 num_cons, num_qps, num_srqs;
2132	enum protocol_type proto;
2133
2134	/* Override personality with rdma flavor */
2135	num_srqs = OSAL_MIN_T(u32, ECORE_RDMA_MAX_SRQS, p_params->num_srqs);
2136
2137	/* The only case RDMA personality can be overriden is if NVRAM is
2138	 * configured with ETH_RDMA or if no rdma protocol was requested
2139	 */
2140	switch (p_params->rdma_protocol) {
2141	case ECORE_RDMA_PROTOCOL_DEFAULT:
2142		if (p_hwfn->mcp_info->func_info.protocol ==
2143		    ECORE_PCI_ETH_RDMA) {
2144			DP_NOTICE(p_hwfn, false,
2145				  "Current day drivers don't support RoCE & iWARP. Default to RoCE-only\n");
2146			p_hwfn->hw_info.personality = ECORE_PCI_ETH_ROCE;
2147		}
2148		break;
2149	case ECORE_RDMA_PROTOCOL_NONE:
2150		p_hwfn->hw_info.personality = ECORE_PCI_ETH;
2151		return; /* intentional... nothing left to do... */
2152	case ECORE_RDMA_PROTOCOL_ROCE:
2153		if (p_hwfn->mcp_info->func_info.protocol == ECORE_PCI_ETH_RDMA)
2154			p_hwfn->hw_info.personality = ECORE_PCI_ETH_ROCE;
2155		break;
2156	case ECORE_RDMA_PROTOCOL_IWARP:
2157		if (p_hwfn->mcp_info->func_info.protocol == ECORE_PCI_ETH_RDMA)
2158			p_hwfn->hw_info.personality = ECORE_PCI_ETH_IWARP;
2159		break;
2160	}
2161
2162	switch (p_hwfn->hw_info.personality) {
2163	case ECORE_PCI_ETH_IWARP:
2164		/* Each QP requires one connection */
2165		num_cons = OSAL_MIN_T(u32, IWARP_MAX_QPS, p_params->num_qps);
2166#ifdef CONFIG_ECORE_IWARP /* required for the define */
2167		/* additional connections required for passive tcp handling */
2168		num_cons += ECORE_IWARP_PREALLOC_CNT;
2169#endif
2170		proto = PROTOCOLID_IWARP;
2171		p_params->roce_edpm_mode = false;
2172		break;
2173	case ECORE_PCI_ETH_ROCE:
2174		num_qps = OSAL_MIN_T(u32, ROCE_MAX_QPS, p_params->num_qps);
2175		num_cons = num_qps * 2; /* each QP requires two connections */
2176		proto = PROTOCOLID_ROCE;
2177		break;
2178	default:
2179		return;
2180	}
2181
2182	if (num_cons && num_tasks) {
2183		ecore_cxt_set_proto_cid_count(p_hwfn, proto,
2184					      num_cons, 0);
2185
2186		/* Deliberatly passing ROCE for tasks id. This is because
2187		 * iWARP / RoCE share the task id.
2188		 */
2189		ecore_cxt_set_proto_tid_count(p_hwfn, PROTOCOLID_ROCE,
2190					      ECORE_CXT_ROCE_TID_SEG,
2191					      1, /* RoCE segment type */
2192					      num_tasks,
2193					      false); /* !force load */
2194		ecore_cxt_set_srq_count(p_hwfn, num_srqs);
2195
2196	} else {
2197		DP_INFO(p_hwfn->p_dev,
2198			"RDMA personality used without setting params!\n");
2199	}
2200}
2201
2202enum _ecore_status_t ecore_cxt_set_pf_params(struct ecore_hwfn *p_hwfn,
2203					     u32 rdma_tasks)
2204{
2205	/* Set the number of required CORE connections */
2206	u32 core_cids = 1; /* SPQ */
2207
2208	if (p_hwfn->using_ll2)
2209		core_cids += 4; /* @@@TBD Use the proper #define */
2210
2211	ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_CORE, core_cids, 0);
2212
2213	switch (p_hwfn->hw_info.personality) {
2214	case ECORE_PCI_ETH_RDMA:
2215	case ECORE_PCI_ETH_IWARP:
2216	case ECORE_PCI_ETH_ROCE:
2217	{
2218		ecore_rdma_set_pf_params(p_hwfn,
2219					 &p_hwfn->pf_params.rdma_pf_params,
2220					 rdma_tasks);
2221
2222		/* no need for break since RoCE coexist with Ethernet */
2223	}
2224	case ECORE_PCI_ETH:
2225	{
2226		struct ecore_eth_pf_params *p_params =
2227					&p_hwfn->pf_params.eth_pf_params;
2228
2229		if (!p_params->num_vf_cons)
2230			p_params->num_vf_cons = ETH_PF_PARAMS_VF_CONS_DEFAULT;
2231		ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_ETH,
2232					      p_params->num_cons,
2233					      p_params->num_vf_cons);
2234		p_hwfn->p_cxt_mngr->arfs_count = p_params->num_arfs_filters;
2235
2236		break;
2237	}
2238	case ECORE_PCI_FCOE:
2239	{
2240		struct ecore_fcoe_pf_params *p_params;
2241
2242		p_params = &p_hwfn->pf_params.fcoe_pf_params;
2243
2244		if (p_params->num_cons && p_params->num_tasks) {
2245			ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_FCOE,
2246						      p_params->num_cons, 0);
2247
2248			ecore_cxt_set_proto_tid_count(p_hwfn, PROTOCOLID_FCOE,
2249						      ECORE_CXT_FCOE_TID_SEG,
2250						      0, /* segment type */
2251						      p_params->num_tasks,
2252						      true);
2253		} else {
2254			DP_INFO(p_hwfn->p_dev,
2255				"Fcoe personality used without setting params!\n");
2256		}
2257		break;
2258	}
2259	case ECORE_PCI_ISCSI:
2260	{
2261		struct ecore_iscsi_pf_params *p_params;
2262
2263		p_params = &p_hwfn->pf_params.iscsi_pf_params;
2264
2265		if (p_params->num_cons && p_params->num_tasks) {
2266			ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_ISCSI,
2267						      p_params->num_cons, 0);
2268
2269			ecore_cxt_set_proto_tid_count(p_hwfn, PROTOCOLID_ISCSI,
2270						      ECORE_CXT_ISCSI_TID_SEG,
2271						      0, /* segment type */
2272						      p_params->num_tasks,
2273						      true);
2274		} else {
2275			DP_INFO(p_hwfn->p_dev,
2276				"Iscsi personality used without setting params!\n");
2277		}
2278		break;
2279	}
2280	default:
2281		return ECORE_INVAL;
2282	}
2283
2284	return ECORE_SUCCESS;
2285}
2286
2287enum _ecore_status_t ecore_cxt_get_tid_mem_info(struct ecore_hwfn *p_hwfn,
2288						struct ecore_tid_mem *p_info)
2289{
2290	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
2291	u32 proto, seg, total_lines, i, shadow_line;
2292	struct ecore_ilt_client_cfg *p_cli;
2293	struct ecore_ilt_cli_blk *p_fl_seg;
2294	struct ecore_tid_seg *p_seg_info;
2295
2296	/* Verify the personality */
2297	switch (p_hwfn->hw_info.personality) {
2298	case ECORE_PCI_FCOE:
2299		proto = PROTOCOLID_FCOE;
2300		seg = ECORE_CXT_FCOE_TID_SEG;
2301		break;
2302	case ECORE_PCI_ISCSI:
2303		proto = PROTOCOLID_ISCSI;
2304		seg = ECORE_CXT_ISCSI_TID_SEG;
2305		break;
2306	default:
2307		return ECORE_INVAL;
2308	}
2309
2310	p_cli = &p_mngr->clients[ILT_CLI_CDUT];
2311	if (!p_cli->active) {
2312		return ECORE_INVAL;
2313	}
2314
2315	p_seg_info = &p_mngr->conn_cfg[proto].tid_seg[seg];
2316	if (!p_seg_info->has_fl_mem)
2317		return ECORE_INVAL;
2318
2319	p_fl_seg = &p_cli->pf_blks[CDUT_FL_SEG_BLK(seg, PF)];
2320	total_lines = DIV_ROUND_UP(p_fl_seg->total_size,
2321				   p_fl_seg->real_size_in_page);
2322
2323	for (i = 0; i < total_lines; i++) {
2324		shadow_line = i + p_fl_seg->start_line -
2325			      p_hwfn->p_cxt_mngr->pf_start_line;
2326		p_info->blocks[i] = p_mngr->ilt_shadow[shadow_line].p_virt;
2327	}
2328	p_info->waste = ILT_PAGE_IN_BYTES(p_cli->p_size.val) -
2329			p_fl_seg->real_size_in_page;
2330	p_info->tid_size = p_mngr->task_type_size[p_seg_info->type];
2331	p_info->num_tids_per_block = p_fl_seg->real_size_in_page /
2332				     p_info->tid_size;
2333
2334	return ECORE_SUCCESS;
2335}
2336
2337/* This function is very RoCE oriented, if another protocol in the future
2338 * will want this feature we'll need to modify the function to be more generic
2339 */
2340enum _ecore_status_t
2341ecore_cxt_dynamic_ilt_alloc(struct ecore_hwfn *p_hwfn,
2342			    enum ecore_cxt_elem_type elem_type,
2343			    u32 iid)
2344{
2345	u32 reg_offset, shadow_line, elem_size, hw_p_size, elems_per_p, line;
2346	struct ecore_ilt_client_cfg *p_cli;
2347	struct ecore_ilt_cli_blk *p_blk;
2348	struct ecore_ptt *p_ptt;
2349	dma_addr_t p_phys;
2350	u64 ilt_hw_entry;
2351	void *p_virt;
2352	enum _ecore_status_t rc = ECORE_SUCCESS;
2353
2354	switch (elem_type) {
2355	case ECORE_ELEM_CXT:
2356		p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
2357		elem_size = CONN_CXT_SIZE(p_hwfn);
2358		p_blk = &p_cli->pf_blks[CDUC_BLK];
2359		break;
2360	case ECORE_ELEM_SRQ:
2361		p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TSDM];
2362		elem_size = SRQ_CXT_SIZE;
2363		p_blk = &p_cli->pf_blks[SRQ_BLK];
2364		break;
2365	case ECORE_ELEM_TASK:
2366		p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
2367		elem_size = TYPE1_TASK_CXT_SIZE(p_hwfn);
2368		p_blk = &p_cli->pf_blks[CDUT_SEG_BLK(ECORE_CXT_ROCE_TID_SEG)];
2369		break;
2370	default:
2371		DP_NOTICE(p_hwfn, false,
2372			  "ECORE_INVALID elem type = %d", elem_type);
2373		return ECORE_INVAL;
2374	}
2375
2376	/* Calculate line in ilt */
2377	hw_p_size = p_cli->p_size.val;
2378	elems_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / elem_size;
2379	line = p_blk->start_line + (iid / elems_per_p);
2380	shadow_line = line - p_hwfn->p_cxt_mngr->pf_start_line;
2381
2382	/* If line is already allocated, do nothing, otherwise allocate it and
2383	 * write it to the PSWRQ2 registers.
2384	 * This section can be run in parallel from different contexts and thus
2385	 * a mutex protection is needed.
2386	 */
2387
2388	OSAL_MUTEX_ACQUIRE(&p_hwfn->p_cxt_mngr->mutex);
2389
2390	if (p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_virt)
2391		goto out0;
2392
2393	p_ptt = ecore_ptt_acquire(p_hwfn);
2394	if (!p_ptt) {
2395		DP_NOTICE(p_hwfn, false,
2396			  "ECORE_TIME_OUT on ptt acquire - dynamic allocation");
2397		rc = ECORE_TIMEOUT;
2398		goto out0;
2399	}
2400
2401	p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
2402					 &p_phys,
2403					 p_blk->real_size_in_page);
2404	if (!p_virt) {
2405		rc = ECORE_NOMEM;
2406		goto out1;
2407	}
2408	OSAL_MEM_ZERO(p_virt, p_blk->real_size_in_page);
2409
2410	/* configuration of refTagMask to 0xF is required for RoCE DIF MR only,
2411	 * to compensate for a HW bug, but it is configured even if DIF is not
2412	 * enabled. This is harmless and allows us to avoid a dedicated API. We
2413	 * configure the field for all of the contexts on the newly allocated
2414	 * page.
2415	 */
2416	if (elem_type == ECORE_ELEM_TASK) {
2417		u32 elem_i;
2418		u8 *elem_start = (u8 *)p_virt;
2419		union type1_task_context *elem;
2420
2421		for (elem_i = 0; elem_i < elems_per_p; elem_i++) {
2422			elem = (union type1_task_context *)elem_start;
2423			SET_FIELD(elem->roce_ctx.tdif_context.flags1,
2424				  TDIF_TASK_CONTEXT_REFTAGMASK , 0xf);
2425			elem_start += TYPE1_TASK_CXT_SIZE(p_hwfn);
2426		}
2427	}
2428
2429	p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_virt = p_virt;
2430	p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_phys = p_phys;
2431	p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].size =
2432		p_blk->real_size_in_page;
2433
2434	/* compute absolute offset */
2435	reg_offset = PSWRQ2_REG_ILT_MEMORY +
2436		     (line * ILT_REG_SIZE_IN_BYTES * ILT_ENTRY_IN_REGS);
2437
2438	ilt_hw_entry = 0;
2439	SET_FIELD(ilt_hw_entry, ILT_ENTRY_VALID, 1ULL);
2440	SET_FIELD(ilt_hw_entry,
2441		  ILT_ENTRY_PHY_ADDR,
2442		  (p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_phys >> 12));
2443
2444	/* Write via DMAE since the PSWRQ2_REG_ILT_MEMORY line is a wide-bus */
2445	ecore_dmae_host2grc(p_hwfn, p_ptt, (u64)(osal_uintptr_t)&ilt_hw_entry,
2446			    reg_offset, sizeof(ilt_hw_entry) / sizeof(u32),
2447			    0 /* no flags */);
2448
2449	if (elem_type == ECORE_ELEM_CXT) {
2450		u32 last_cid_allocated = (1 + (iid / elems_per_p)) *
2451					 elems_per_p;
2452
2453		/* Update the relevant register in the parser */
2454		ecore_wr(p_hwfn, p_ptt, PRS_REG_ROCE_DEST_QP_MAX_PF,
2455			 last_cid_allocated - 1);
2456
2457		/* RoCE w/a -> we don't write to the prs search reg until first
2458		 * cid is allocated. This is because the prs checks
2459		 * last_cid-1 >=0 making 0 a valid value... this will cause
2460		 * the a context load to occur on a RoCE packet received with
2461		 * cid=0 even before context was initialized, can happen with a
2462		 * stray packet from switch or a packet with crc-error
2463		 */
2464
2465		if (!p_hwfn->b_rdma_enabled_in_prs) {
2466			/* Enable Rdma search */
2467			ecore_wr(p_hwfn, p_ptt, p_hwfn->rdma_prs_search_reg, 1);
2468			p_hwfn->b_rdma_enabled_in_prs = true;
2469		}
2470	}
2471
2472out1:
2473	ecore_ptt_release(p_hwfn, p_ptt);
2474out0:
2475	OSAL_MUTEX_RELEASE(&p_hwfn->p_cxt_mngr->mutex);
2476
2477	return rc;
2478}
2479
2480/* This function is very RoCE oriented, if another protocol in the future
2481 * will want this feature we'll need to modify the function to be more generic
2482 */
2483enum _ecore_status_t
2484ecore_cxt_free_ilt_range(struct ecore_hwfn *p_hwfn,
2485			 enum ecore_cxt_elem_type elem_type,
2486			 u32 start_iid, u32 count)
2487{
2488	u32 start_line, end_line, shadow_start_line, shadow_end_line;
2489	u32 reg_offset, elem_size, hw_p_size, elems_per_p;
2490	struct ecore_ilt_client_cfg *p_cli;
2491	struct ecore_ilt_cli_blk *p_blk;
2492	u32 end_iid = start_iid + count;
2493	struct ecore_ptt *p_ptt;
2494	u64 ilt_hw_entry = 0;
2495	u32 i;
2496
2497	switch (elem_type) {
2498	case ECORE_ELEM_CXT:
2499		p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
2500		elem_size = CONN_CXT_SIZE(p_hwfn);
2501		p_blk = &p_cli->pf_blks[CDUC_BLK];
2502		break;
2503	case ECORE_ELEM_SRQ:
2504		p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TSDM];
2505		elem_size = SRQ_CXT_SIZE;
2506		p_blk = &p_cli->pf_blks[SRQ_BLK];
2507		break;
2508	case ECORE_ELEM_TASK:
2509		p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
2510		elem_size = TYPE1_TASK_CXT_SIZE(p_hwfn);
2511		p_blk = &p_cli->pf_blks[CDUT_SEG_BLK(ECORE_CXT_ROCE_TID_SEG)];
2512		break;
2513	default:
2514		DP_NOTICE(p_hwfn, false,
2515			  "ECORE_INVALID elem type = %d", elem_type);
2516		return ECORE_INVAL;
2517	}
2518
2519	/* Calculate line in ilt */
2520	hw_p_size = p_cli->p_size.val;
2521	elems_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / elem_size;
2522	start_line = p_blk->start_line + (start_iid / elems_per_p);
2523	end_line = p_blk->start_line + (end_iid / elems_per_p);
2524	if (((end_iid + 1) / elems_per_p) != (end_iid / elems_per_p))
2525		end_line--;
2526
2527	shadow_start_line = start_line - p_hwfn->p_cxt_mngr->pf_start_line;
2528	shadow_end_line = end_line - p_hwfn->p_cxt_mngr->pf_start_line;
2529
2530	p_ptt = ecore_ptt_acquire(p_hwfn);
2531	if (!p_ptt) {
2532		DP_NOTICE(p_hwfn, false, "ECORE_TIME_OUT on ptt acquire - dynamic allocation");
2533		return ECORE_TIMEOUT;
2534	}
2535
2536	for (i = shadow_start_line; i < shadow_end_line; i++) {
2537		if (!p_hwfn->p_cxt_mngr->ilt_shadow[i].p_virt)
2538			continue;
2539
2540		OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
2541				       p_hwfn->p_cxt_mngr->ilt_shadow[i].p_virt,
2542				       p_hwfn->p_cxt_mngr->ilt_shadow[i].p_phys,
2543				       p_hwfn->p_cxt_mngr->ilt_shadow[i].size);
2544
2545		p_hwfn->p_cxt_mngr->ilt_shadow[i].p_virt = OSAL_NULL;
2546		p_hwfn->p_cxt_mngr->ilt_shadow[i].p_phys = 0;
2547		p_hwfn->p_cxt_mngr->ilt_shadow[i].size = 0;
2548
2549		/* compute absolute offset */
2550		reg_offset = PSWRQ2_REG_ILT_MEMORY +
2551			     ((start_line++) * ILT_REG_SIZE_IN_BYTES *
2552			      ILT_ENTRY_IN_REGS);
2553
2554		/* Write via DMAE since the PSWRQ2_REG_ILT_MEMORY line is a
2555		 * wide-bus.
2556		 */
2557		ecore_dmae_host2grc(p_hwfn, p_ptt,
2558				    (u64)(osal_uintptr_t)&ilt_hw_entry,
2559				    reg_offset,
2560				    sizeof(ilt_hw_entry) / sizeof(u32),
2561				    0 /* no flags */);
2562	}
2563
2564	ecore_ptt_release(p_hwfn, p_ptt);
2565
2566	return ECORE_SUCCESS;
2567}
2568
2569enum _ecore_status_t ecore_cxt_get_task_ctx(struct ecore_hwfn *p_hwfn,
2570					    u32 tid,
2571					    u8 ctx_type,
2572					    void **pp_task_ctx)
2573{
2574	struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
2575	struct ecore_ilt_client_cfg *p_cli;
2576	struct ecore_tid_seg *p_seg_info;
2577	struct ecore_ilt_cli_blk *p_seg;
2578	u32 num_tids_per_block;
2579	u32 tid_size, ilt_idx;
2580	u32 total_lines;
2581	u32 proto, seg;
2582
2583	/* Verify the personality */
2584	switch (p_hwfn->hw_info.personality) {
2585	case ECORE_PCI_FCOE:
2586		proto = PROTOCOLID_FCOE;
2587		seg = ECORE_CXT_FCOE_TID_SEG;
2588		break;
2589	case ECORE_PCI_ISCSI:
2590		proto = PROTOCOLID_ISCSI;
2591		seg = ECORE_CXT_ISCSI_TID_SEG;
2592		break;
2593	default:
2594		return ECORE_INVAL;
2595	}
2596
2597	p_cli = &p_mngr->clients[ILT_CLI_CDUT];
2598	if (!p_cli->active) {
2599		return ECORE_INVAL;
2600	}
2601
2602	p_seg_info = &p_mngr->conn_cfg[proto].tid_seg[seg];
2603
2604	if (ctx_type == ECORE_CTX_WORKING_MEM) {
2605		p_seg = &p_cli->pf_blks[CDUT_SEG_BLK(seg)];
2606	} else if (ctx_type == ECORE_CTX_FL_MEM) {
2607		if (!p_seg_info->has_fl_mem) {
2608			return ECORE_INVAL;
2609		}
2610		p_seg = &p_cli->pf_blks[CDUT_FL_SEG_BLK(seg, PF)];
2611	} else {
2612		return ECORE_INVAL;
2613	}
2614	total_lines = DIV_ROUND_UP(p_seg->total_size,
2615				   p_seg->real_size_in_page);
2616	tid_size = p_mngr->task_type_size[p_seg_info->type];
2617	num_tids_per_block = p_seg->real_size_in_page / tid_size;
2618
2619	if (total_lines < tid/num_tids_per_block)
2620		return ECORE_INVAL;
2621
2622	ilt_idx = tid / num_tids_per_block + p_seg->start_line -
2623		  p_mngr->pf_start_line;
2624	*pp_task_ctx = (u8 *)p_mngr->ilt_shadow[ilt_idx].p_virt +
2625			     (tid % num_tids_per_block) * tid_size;
2626
2627	return ECORE_SUCCESS;
2628}
2629