pci.c revision 355359
1/*-
2 * Copyright (c) 1997, Stefan Esser <se@freebsd.org>
3 * Copyright (c) 2000, Michael Smith <msmith@freebsd.org>
4 * Copyright (c) 2000, BSDi
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice unmodified, this list of conditions, and the following
12 *    disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD: stable/11/sys/dev/pci/pci.c 355359 2019-12-03 22:01:45Z jhb $");
31
32#include "opt_bus.h"
33
34#include <sys/param.h>
35#include <sys/systm.h>
36#include <sys/malloc.h>
37#include <sys/module.h>
38#include <sys/limits.h>
39#include <sys/linker.h>
40#include <sys/fcntl.h>
41#include <sys/conf.h>
42#include <sys/kernel.h>
43#include <sys/queue.h>
44#include <sys/sysctl.h>
45#include <sys/endian.h>
46
47#include <vm/vm.h>
48#include <vm/pmap.h>
49#include <vm/vm_extern.h>
50
51#include <sys/bus.h>
52#include <machine/bus.h>
53#include <sys/rman.h>
54#include <machine/resource.h>
55#include <machine/stdarg.h>
56
57#if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
58#include <machine/intr_machdep.h>
59#endif
60
61#include <sys/pciio.h>
62#include <dev/pci/pcireg.h>
63#include <dev/pci/pcivar.h>
64#include <dev/pci/pci_private.h>
65
66#ifdef PCI_IOV
67#include <sys/nv.h>
68#include <dev/pci/pci_iov_private.h>
69#endif
70
71#include <dev/usb/controller/xhcireg.h>
72#include <dev/usb/controller/ehcireg.h>
73#include <dev/usb/controller/ohcireg.h>
74#include <dev/usb/controller/uhcireg.h>
75
76#include "pcib_if.h"
77#include "pci_if.h"
78
79#define	PCIR_IS_BIOS(cfg, reg)						\
80	(((cfg)->hdrtype == PCIM_HDRTYPE_NORMAL && reg == PCIR_BIOS) ||	\
81	 ((cfg)->hdrtype == PCIM_HDRTYPE_BRIDGE && reg == PCIR_BIOS_1))
82
83static int		pci_has_quirk(uint32_t devid, int quirk);
84static pci_addr_t	pci_mapbase(uint64_t mapreg);
85static const char	*pci_maptype(uint64_t mapreg);
86static int		pci_maprange(uint64_t mapreg);
87static pci_addr_t	pci_rombase(uint64_t mapreg);
88static int		pci_romsize(uint64_t testval);
89static void		pci_fixancient(pcicfgregs *cfg);
90static int		pci_printf(pcicfgregs *cfg, const char *fmt, ...);
91
92static int		pci_porten(device_t dev);
93static int		pci_memen(device_t dev);
94static void		pci_assign_interrupt(device_t bus, device_t dev,
95			    int force_route);
96static int		pci_add_map(device_t bus, device_t dev, int reg,
97			    struct resource_list *rl, int force, int prefetch);
98static int		pci_probe(device_t dev);
99static void		pci_load_vendor_data(void);
100static int		pci_describe_parse_line(char **ptr, int *vendor,
101			    int *device, char **desc);
102static char		*pci_describe_device(device_t dev);
103static int		pci_modevent(module_t mod, int what, void *arg);
104static void		pci_hdrtypedata(device_t pcib, int b, int s, int f,
105			    pcicfgregs *cfg);
106static void		pci_read_cap(device_t pcib, pcicfgregs *cfg);
107static int		pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg,
108			    int reg, uint32_t *data);
109#if 0
110static int		pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg,
111			    int reg, uint32_t data);
112#endif
113static void		pci_read_vpd(device_t pcib, pcicfgregs *cfg);
114static void		pci_mask_msix(device_t dev, u_int index);
115static void		pci_unmask_msix(device_t dev, u_int index);
116static int		pci_msi_blacklisted(void);
117static int		pci_msix_blacklisted(void);
118static void		pci_resume_msi(device_t dev);
119static void		pci_resume_msix(device_t dev);
120static int		pci_remap_intr_method(device_t bus, device_t dev,
121			    u_int irq);
122static int		pci_reset_post(device_t dev, device_t child);
123static int		pci_reset_prepare(device_t dev, device_t child);
124static int		pci_reset_child(device_t dev, device_t child,
125			    int flags);
126
127static int		pci_get_id_method(device_t dev, device_t child,
128			    enum pci_id_type type, uintptr_t *rid);
129
130static struct pci_devinfo * pci_fill_devinfo(device_t pcib, device_t bus, int d,
131    int b, int s, int f, uint16_t vid, uint16_t did);
132
133static device_method_t pci_methods[] = {
134	/* Device interface */
135	DEVMETHOD(device_probe,		pci_probe),
136	DEVMETHOD(device_attach,	pci_attach),
137	DEVMETHOD(device_detach,	pci_detach),
138	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
139	DEVMETHOD(device_suspend,	bus_generic_suspend),
140	DEVMETHOD(device_resume,	pci_resume),
141
142	/* Bus interface */
143	DEVMETHOD(bus_print_child,	pci_print_child),
144	DEVMETHOD(bus_probe_nomatch,	pci_probe_nomatch),
145	DEVMETHOD(bus_read_ivar,	pci_read_ivar),
146	DEVMETHOD(bus_write_ivar,	pci_write_ivar),
147	DEVMETHOD(bus_driver_added,	pci_driver_added),
148	DEVMETHOD(bus_setup_intr,	pci_setup_intr),
149	DEVMETHOD(bus_teardown_intr,	pci_teardown_intr),
150	DEVMETHOD(bus_reset_prepare,	pci_reset_prepare),
151	DEVMETHOD(bus_reset_post,	pci_reset_post),
152	DEVMETHOD(bus_reset_child,	pci_reset_child),
153
154	DEVMETHOD(bus_get_dma_tag,	pci_get_dma_tag),
155	DEVMETHOD(bus_get_resource_list,pci_get_resource_list),
156	DEVMETHOD(bus_set_resource,	bus_generic_rl_set_resource),
157	DEVMETHOD(bus_get_resource,	bus_generic_rl_get_resource),
158	DEVMETHOD(bus_delete_resource,	pci_delete_resource),
159	DEVMETHOD(bus_alloc_resource,	pci_alloc_resource),
160	DEVMETHOD(bus_adjust_resource,	bus_generic_adjust_resource),
161	DEVMETHOD(bus_release_resource,	pci_release_resource),
162	DEVMETHOD(bus_activate_resource, pci_activate_resource),
163	DEVMETHOD(bus_deactivate_resource, pci_deactivate_resource),
164	DEVMETHOD(bus_child_deleted,	pci_child_deleted),
165	DEVMETHOD(bus_child_detached,	pci_child_detached),
166	DEVMETHOD(bus_child_pnpinfo_str, pci_child_pnpinfo_str_method),
167	DEVMETHOD(bus_child_location_str, pci_child_location_str_method),
168	DEVMETHOD(bus_remap_intr,	pci_remap_intr_method),
169	DEVMETHOD(bus_suspend_child,	pci_suspend_child),
170	DEVMETHOD(bus_resume_child,	pci_resume_child),
171	DEVMETHOD(bus_rescan,		pci_rescan_method),
172
173	/* PCI interface */
174	DEVMETHOD(pci_read_config,	pci_read_config_method),
175	DEVMETHOD(pci_write_config,	pci_write_config_method),
176	DEVMETHOD(pci_enable_busmaster,	pci_enable_busmaster_method),
177	DEVMETHOD(pci_disable_busmaster, pci_disable_busmaster_method),
178	DEVMETHOD(pci_enable_io,	pci_enable_io_method),
179	DEVMETHOD(pci_disable_io,	pci_disable_io_method),
180	DEVMETHOD(pci_get_vpd_ident,	pci_get_vpd_ident_method),
181	DEVMETHOD(pci_get_vpd_readonly,	pci_get_vpd_readonly_method),
182	DEVMETHOD(pci_get_powerstate,	pci_get_powerstate_method),
183	DEVMETHOD(pci_set_powerstate,	pci_set_powerstate_method),
184	DEVMETHOD(pci_assign_interrupt,	pci_assign_interrupt_method),
185	DEVMETHOD(pci_find_cap,		pci_find_cap_method),
186	DEVMETHOD(pci_find_next_cap,	pci_find_next_cap_method),
187	DEVMETHOD(pci_find_extcap,	pci_find_extcap_method),
188	DEVMETHOD(pci_find_next_extcap,	pci_find_next_extcap_method),
189	DEVMETHOD(pci_find_htcap,	pci_find_htcap_method),
190	DEVMETHOD(pci_find_next_htcap,	pci_find_next_htcap_method),
191	DEVMETHOD(pci_alloc_msi,	pci_alloc_msi_method),
192	DEVMETHOD(pci_alloc_msix,	pci_alloc_msix_method),
193	DEVMETHOD(pci_enable_msi,	pci_enable_msi_method),
194	DEVMETHOD(pci_enable_msix,	pci_enable_msix_method),
195	DEVMETHOD(pci_disable_msi,	pci_disable_msi_method),
196	DEVMETHOD(pci_remap_msix,	pci_remap_msix_method),
197	DEVMETHOD(pci_release_msi,	pci_release_msi_method),
198	DEVMETHOD(pci_msi_count,	pci_msi_count_method),
199	DEVMETHOD(pci_msix_count,	pci_msix_count_method),
200	DEVMETHOD(pci_msix_pba_bar,	pci_msix_pba_bar_method),
201	DEVMETHOD(pci_msix_table_bar,	pci_msix_table_bar_method),
202	DEVMETHOD(pci_get_id,		pci_get_id_method),
203	DEVMETHOD(pci_alloc_devinfo,	pci_alloc_devinfo_method),
204	DEVMETHOD(pci_child_added,	pci_child_added_method),
205#ifdef PCI_IOV
206	DEVMETHOD(pci_iov_attach_name,	pci_iov_attach_method),
207	DEVMETHOD(pci_iov_detach,	pci_iov_detach_method),
208	DEVMETHOD(pci_create_iov_child,	pci_create_iov_child_method),
209#endif
210
211	DEVMETHOD_END
212};
213
214DEFINE_CLASS_0(pci, pci_driver, pci_methods, sizeof(struct pci_softc));
215
216static devclass_t pci_devclass;
217DRIVER_MODULE(pci, pcib, pci_driver, pci_devclass, pci_modevent, NULL);
218MODULE_VERSION(pci, 1);
219
220static char	*pci_vendordata;
221static size_t	pci_vendordata_size;
222
223struct pci_quirk {
224	uint32_t devid;	/* Vendor/device of the card */
225	int	type;
226#define	PCI_QUIRK_MAP_REG	1 /* PCI map register in weird place */
227#define	PCI_QUIRK_DISABLE_MSI	2 /* Neither MSI nor MSI-X work */
228#define	PCI_QUIRK_ENABLE_MSI_VM	3 /* Older chipset in VM where MSI works */
229#define	PCI_QUIRK_UNMAP_REG	4 /* Ignore PCI map register */
230#define	PCI_QUIRK_DISABLE_MSIX	5 /* MSI-X doesn't work */
231#define	PCI_QUIRK_MSI_INTX_BUG	6 /* PCIM_CMD_INTxDIS disables MSI */
232#define	PCI_QUIRK_REALLOC_BAR	7 /* Can't allocate memory at the default address */
233	int	arg1;
234	int	arg2;
235};
236
237static const struct pci_quirk pci_quirks[] = {
238	/* The Intel 82371AB and 82443MX have a map register at offset 0x90. */
239	{ 0x71138086, PCI_QUIRK_MAP_REG,	0x90,	 0 },
240	{ 0x719b8086, PCI_QUIRK_MAP_REG,	0x90,	 0 },
241	/* As does the Serverworks OSB4 (the SMBus mapping register) */
242	{ 0x02001166, PCI_QUIRK_MAP_REG,	0x90,	 0 },
243
244	/*
245	 * MSI doesn't work with the ServerWorks CNB20-HE Host Bridge
246	 * or the CMIC-SL (AKA ServerWorks GC_LE).
247	 */
248	{ 0x00141166, PCI_QUIRK_DISABLE_MSI,	0,	0 },
249	{ 0x00171166, PCI_QUIRK_DISABLE_MSI,	0,	0 },
250
251	/*
252	 * MSI doesn't work on earlier Intel chipsets including
253	 * E7500, E7501, E7505, 845, 865, 875/E7210, and 855.
254	 */
255	{ 0x25408086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
256	{ 0x254c8086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
257	{ 0x25508086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
258	{ 0x25608086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
259	{ 0x25708086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
260	{ 0x25788086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
261	{ 0x35808086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
262
263	/*
264	 * MSI doesn't work with devices behind the AMD 8131 HT-PCIX
265	 * bridge.
266	 */
267	{ 0x74501022, PCI_QUIRK_DISABLE_MSI,	0,	0 },
268
269	/*
270	 * MSI-X allocation doesn't work properly for devices passed through
271	 * by VMware up to at least ESXi 5.1.
272	 */
273	{ 0x079015ad, PCI_QUIRK_DISABLE_MSIX,	0,	0 }, /* PCI/PCI-X */
274	{ 0x07a015ad, PCI_QUIRK_DISABLE_MSIX,	0,	0 }, /* PCIe */
275
276	/*
277	 * Some virtualization environments emulate an older chipset
278	 * but support MSI just fine.  QEMU uses the Intel 82440.
279	 */
280	{ 0x12378086, PCI_QUIRK_ENABLE_MSI_VM,	0,	0 },
281
282	/*
283	 * HPET MMIO base address may appear in Bar1 for AMD SB600 SMBus
284	 * controller depending on SoftPciRst register (PM_IO 0x55 [7]).
285	 * It prevents us from attaching hpet(4) when the bit is unset.
286	 * Note this quirk only affects SB600 revision A13 and earlier.
287	 * For SB600 A21 and later, firmware must set the bit to hide it.
288	 * For SB700 and later, it is unused and hardcoded to zero.
289	 */
290	{ 0x43851002, PCI_QUIRK_UNMAP_REG,	0x14,	0 },
291
292	/*
293	 * Atheros AR8161/AR8162/E2200/E2400/E2500 Ethernet controllers have
294	 * a bug that MSI interrupt does not assert if PCIM_CMD_INTxDIS bit
295	 * of the command register is set.
296	 */
297	{ 0x10911969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
298	{ 0xE0911969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
299	{ 0xE0A11969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
300	{ 0xE0B11969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
301	{ 0x10901969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
302
303	/*
304	 * Broadcom BCM5714(S)/BCM5715(S)/BCM5780(S) Ethernet MACs don't
305	 * issue MSI interrupts with PCIM_CMD_INTxDIS set either.
306	 */
307	{ 0x166814e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5714 */
308	{ 0x166914e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5714S */
309	{ 0x166a14e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5780 */
310	{ 0x166b14e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5780S */
311	{ 0x167814e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5715 */
312	{ 0x167914e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5715S */
313
314	/*
315	 * HPE Gen 10 VGA has a memory range that can't be allocated in the
316	 * expected place.
317	 */
318	{ 0x98741002, PCI_QUIRK_REALLOC_BAR,	0, 	0 },
319
320	{ 0 }
321};
322
323/* map register information */
324#define	PCI_MAPMEM	0x01	/* memory map */
325#define	PCI_MAPMEMP	0x02	/* prefetchable memory map */
326#define	PCI_MAPPORT	0x04	/* port map */
327
328struct devlist pci_devq;
329uint32_t pci_generation;
330uint32_t pci_numdevs = 0;
331static int pcie_chipset, pcix_chipset;
332
333/* sysctl vars */
334SYSCTL_NODE(_hw, OID_AUTO, pci, CTLFLAG_RD, 0, "PCI bus tuning parameters");
335
336static int pci_enable_io_modes = 1;
337SYSCTL_INT(_hw_pci, OID_AUTO, enable_io_modes, CTLFLAG_RWTUN,
338    &pci_enable_io_modes, 1,
339    "Enable I/O and memory bits in the config register.  Some BIOSes do not"
340    " enable these bits correctly.  We'd like to do this all the time, but"
341    " there are some peripherals that this causes problems with.");
342
343static int pci_do_realloc_bars = 0;
344SYSCTL_INT(_hw_pci, OID_AUTO, realloc_bars, CTLFLAG_RWTUN,
345    &pci_do_realloc_bars, 0,
346    "Attempt to allocate a new range for any BARs whose original "
347    "firmware-assigned ranges fail to allocate during the initial device scan.");
348
349static int pci_do_power_nodriver = 0;
350SYSCTL_INT(_hw_pci, OID_AUTO, do_power_nodriver, CTLFLAG_RWTUN,
351    &pci_do_power_nodriver, 0,
352    "Place a function into D3 state when no driver attaches to it.  0 means"
353    " disable.  1 means conservatively place devices into D3 state.  2 means"
354    " aggressively place devices into D3 state.  3 means put absolutely"
355    " everything in D3 state.");
356
357int pci_do_power_resume = 1;
358SYSCTL_INT(_hw_pci, OID_AUTO, do_power_resume, CTLFLAG_RWTUN,
359    &pci_do_power_resume, 1,
360  "Transition from D3 -> D0 on resume.");
361
362int pci_do_power_suspend = 1;
363SYSCTL_INT(_hw_pci, OID_AUTO, do_power_suspend, CTLFLAG_RWTUN,
364    &pci_do_power_suspend, 1,
365  "Transition from D0 -> D3 on suspend.");
366
367static int pci_do_msi = 1;
368SYSCTL_INT(_hw_pci, OID_AUTO, enable_msi, CTLFLAG_RWTUN, &pci_do_msi, 1,
369    "Enable support for MSI interrupts");
370
371static int pci_do_msix = 1;
372SYSCTL_INT(_hw_pci, OID_AUTO, enable_msix, CTLFLAG_RWTUN, &pci_do_msix, 1,
373    "Enable support for MSI-X interrupts");
374
375static int pci_msix_rewrite_table = 0;
376SYSCTL_INT(_hw_pci, OID_AUTO, msix_rewrite_table, CTLFLAG_RWTUN,
377    &pci_msix_rewrite_table, 0,
378    "Rewrite entire MSI-X table when updating MSI-X entries");
379
380static int pci_honor_msi_blacklist = 1;
381SYSCTL_INT(_hw_pci, OID_AUTO, honor_msi_blacklist, CTLFLAG_RDTUN,
382    &pci_honor_msi_blacklist, 1, "Honor chipset blacklist for MSI/MSI-X");
383
384#if defined(__i386__) || defined(__amd64__)
385static int pci_usb_takeover = 1;
386#else
387static int pci_usb_takeover = 0;
388#endif
389SYSCTL_INT(_hw_pci, OID_AUTO, usb_early_takeover, CTLFLAG_RDTUN,
390    &pci_usb_takeover, 1,
391    "Enable early takeover of USB controllers. Disable this if you depend on"
392    " BIOS emulation of USB devices, that is you use USB devices (like"
393    " keyboard or mouse) but do not load USB drivers");
394
395static int pci_clear_bars;
396SYSCTL_INT(_hw_pci, OID_AUTO, clear_bars, CTLFLAG_RDTUN, &pci_clear_bars, 0,
397    "Ignore firmware-assigned resources for BARs.");
398
399#if defined(NEW_PCIB) && defined(PCI_RES_BUS)
400static int pci_clear_buses;
401SYSCTL_INT(_hw_pci, OID_AUTO, clear_buses, CTLFLAG_RDTUN, &pci_clear_buses, 0,
402    "Ignore firmware-assigned bus numbers.");
403#endif
404
405static int pci_enable_ari = 1;
406SYSCTL_INT(_hw_pci, OID_AUTO, enable_ari, CTLFLAG_RDTUN, &pci_enable_ari,
407    0, "Enable support for PCIe Alternative RID Interpretation");
408
409static int pci_clear_aer_on_attach = 0;
410SYSCTL_INT(_hw_pci, OID_AUTO, clear_aer_on_attach, CTLFLAG_RWTUN,
411    &pci_clear_aer_on_attach, 0,
412    "Clear port and device AER state on driver attach");
413
414static int
415pci_has_quirk(uint32_t devid, int quirk)
416{
417	const struct pci_quirk *q;
418
419	for (q = &pci_quirks[0]; q->devid; q++) {
420		if (q->devid == devid && q->type == quirk)
421			return (1);
422	}
423	return (0);
424}
425
426/* Find a device_t by bus/slot/function in domain 0 */
427
428device_t
429pci_find_bsf(uint8_t bus, uint8_t slot, uint8_t func)
430{
431
432	return (pci_find_dbsf(0, bus, slot, func));
433}
434
435/* Find a device_t by domain/bus/slot/function */
436
437device_t
438pci_find_dbsf(uint32_t domain, uint8_t bus, uint8_t slot, uint8_t func)
439{
440	struct pci_devinfo *dinfo;
441
442	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
443		if ((dinfo->cfg.domain == domain) &&
444		    (dinfo->cfg.bus == bus) &&
445		    (dinfo->cfg.slot == slot) &&
446		    (dinfo->cfg.func == func)) {
447			return (dinfo->cfg.dev);
448		}
449	}
450
451	return (NULL);
452}
453
454/* Find a device_t by vendor/device ID */
455
456device_t
457pci_find_device(uint16_t vendor, uint16_t device)
458{
459	struct pci_devinfo *dinfo;
460
461	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
462		if ((dinfo->cfg.vendor == vendor) &&
463		    (dinfo->cfg.device == device)) {
464			return (dinfo->cfg.dev);
465		}
466	}
467
468	return (NULL);
469}
470
471device_t
472pci_find_class(uint8_t class, uint8_t subclass)
473{
474	struct pci_devinfo *dinfo;
475
476	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
477		if (dinfo->cfg.baseclass == class &&
478		    dinfo->cfg.subclass == subclass) {
479			return (dinfo->cfg.dev);
480		}
481	}
482
483	return (NULL);
484}
485
486static int
487pci_printf(pcicfgregs *cfg, const char *fmt, ...)
488{
489	va_list ap;
490	int retval;
491
492	retval = printf("pci%d:%d:%d:%d: ", cfg->domain, cfg->bus, cfg->slot,
493	    cfg->func);
494	va_start(ap, fmt);
495	retval += vprintf(fmt, ap);
496	va_end(ap);
497	return (retval);
498}
499
500/* return base address of memory or port map */
501
502static pci_addr_t
503pci_mapbase(uint64_t mapreg)
504{
505
506	if (PCI_BAR_MEM(mapreg))
507		return (mapreg & PCIM_BAR_MEM_BASE);
508	else
509		return (mapreg & PCIM_BAR_IO_BASE);
510}
511
512/* return map type of memory or port map */
513
514static const char *
515pci_maptype(uint64_t mapreg)
516{
517
518	if (PCI_BAR_IO(mapreg))
519		return ("I/O Port");
520	if (mapreg & PCIM_BAR_MEM_PREFETCH)
521		return ("Prefetchable Memory");
522	return ("Memory");
523}
524
525/* return log2 of map size decoded for memory or port map */
526
527int
528pci_mapsize(uint64_t testval)
529{
530	int ln2size;
531
532	testval = pci_mapbase(testval);
533	ln2size = 0;
534	if (testval != 0) {
535		while ((testval & 1) == 0)
536		{
537			ln2size++;
538			testval >>= 1;
539		}
540	}
541	return (ln2size);
542}
543
544/* return base address of device ROM */
545
546static pci_addr_t
547pci_rombase(uint64_t mapreg)
548{
549
550	return (mapreg & PCIM_BIOS_ADDR_MASK);
551}
552
553/* return log2 of map size decided for device ROM */
554
555static int
556pci_romsize(uint64_t testval)
557{
558	int ln2size;
559
560	testval = pci_rombase(testval);
561	ln2size = 0;
562	if (testval != 0) {
563		while ((testval & 1) == 0)
564		{
565			ln2size++;
566			testval >>= 1;
567		}
568	}
569	return (ln2size);
570}
571
572/* return log2 of address range supported by map register */
573
574static int
575pci_maprange(uint64_t mapreg)
576{
577	int ln2range = 0;
578
579	if (PCI_BAR_IO(mapreg))
580		ln2range = 32;
581	else
582		switch (mapreg & PCIM_BAR_MEM_TYPE) {
583		case PCIM_BAR_MEM_32:
584			ln2range = 32;
585			break;
586		case PCIM_BAR_MEM_1MB:
587			ln2range = 20;
588			break;
589		case PCIM_BAR_MEM_64:
590			ln2range = 64;
591			break;
592		}
593	return (ln2range);
594}
595
596/* adjust some values from PCI 1.0 devices to match 2.0 standards ... */
597
598static void
599pci_fixancient(pcicfgregs *cfg)
600{
601	if ((cfg->hdrtype & PCIM_HDRTYPE) != PCIM_HDRTYPE_NORMAL)
602		return;
603
604	/* PCI to PCI bridges use header type 1 */
605	if (cfg->baseclass == PCIC_BRIDGE && cfg->subclass == PCIS_BRIDGE_PCI)
606		cfg->hdrtype = PCIM_HDRTYPE_BRIDGE;
607}
608
609/* extract header type specific config data */
610
611static void
612pci_hdrtypedata(device_t pcib, int b, int s, int f, pcicfgregs *cfg)
613{
614#define	REG(n, w)	PCIB_READ_CONFIG(pcib, b, s, f, n, w)
615	switch (cfg->hdrtype & PCIM_HDRTYPE) {
616	case PCIM_HDRTYPE_NORMAL:
617		cfg->subvendor      = REG(PCIR_SUBVEND_0, 2);
618		cfg->subdevice      = REG(PCIR_SUBDEV_0, 2);
619		cfg->mingnt         = REG(PCIR_MINGNT, 1);
620		cfg->maxlat         = REG(PCIR_MAXLAT, 1);
621		cfg->nummaps	    = PCI_MAXMAPS_0;
622		break;
623	case PCIM_HDRTYPE_BRIDGE:
624		cfg->bridge.br_seclat = REG(PCIR_SECLAT_1, 1);
625		cfg->bridge.br_subbus = REG(PCIR_SUBBUS_1, 1);
626		cfg->bridge.br_secbus = REG(PCIR_SECBUS_1, 1);
627		cfg->bridge.br_pribus = REG(PCIR_PRIBUS_1, 1);
628		cfg->bridge.br_control = REG(PCIR_BRIDGECTL_1, 2);
629		cfg->nummaps	    = PCI_MAXMAPS_1;
630		break;
631	case PCIM_HDRTYPE_CARDBUS:
632		cfg->bridge.br_seclat = REG(PCIR_SECLAT_2, 1);
633		cfg->bridge.br_subbus = REG(PCIR_SUBBUS_2, 1);
634		cfg->bridge.br_secbus = REG(PCIR_SECBUS_2, 1);
635		cfg->bridge.br_pribus = REG(PCIR_PRIBUS_2, 1);
636		cfg->bridge.br_control = REG(PCIR_BRIDGECTL_2, 2);
637		cfg->subvendor      = REG(PCIR_SUBVEND_2, 2);
638		cfg->subdevice      = REG(PCIR_SUBDEV_2, 2);
639		cfg->nummaps	    = PCI_MAXMAPS_2;
640		break;
641	}
642#undef REG
643}
644
645/* read configuration header into pcicfgregs structure */
646struct pci_devinfo *
647pci_read_device(device_t pcib, device_t bus, int d, int b, int s, int f)
648{
649#define	REG(n, w)	PCIB_READ_CONFIG(pcib, b, s, f, n, w)
650	uint16_t vid, did;
651
652	vid = REG(PCIR_VENDOR, 2);
653	did = REG(PCIR_DEVICE, 2);
654	if (vid != 0xffff)
655		return (pci_fill_devinfo(pcib, bus, d, b, s, f, vid, did));
656
657	return (NULL);
658}
659
660struct pci_devinfo *
661pci_alloc_devinfo_method(device_t dev)
662{
663
664	return (malloc(sizeof(struct pci_devinfo), M_DEVBUF,
665	    M_WAITOK | M_ZERO));
666}
667
668static struct pci_devinfo *
669pci_fill_devinfo(device_t pcib, device_t bus, int d, int b, int s, int f,
670    uint16_t vid, uint16_t did)
671{
672	struct pci_devinfo *devlist_entry;
673	pcicfgregs *cfg;
674
675	devlist_entry = PCI_ALLOC_DEVINFO(bus);
676
677	cfg = &devlist_entry->cfg;
678
679	cfg->domain		= d;
680	cfg->bus		= b;
681	cfg->slot		= s;
682	cfg->func		= f;
683	cfg->vendor		= vid;
684	cfg->device		= did;
685	cfg->cmdreg		= REG(PCIR_COMMAND, 2);
686	cfg->statreg		= REG(PCIR_STATUS, 2);
687	cfg->baseclass		= REG(PCIR_CLASS, 1);
688	cfg->subclass		= REG(PCIR_SUBCLASS, 1);
689	cfg->progif		= REG(PCIR_PROGIF, 1);
690	cfg->revid		= REG(PCIR_REVID, 1);
691	cfg->hdrtype		= REG(PCIR_HDRTYPE, 1);
692	cfg->cachelnsz		= REG(PCIR_CACHELNSZ, 1);
693	cfg->lattimer		= REG(PCIR_LATTIMER, 1);
694	cfg->intpin		= REG(PCIR_INTPIN, 1);
695	cfg->intline		= REG(PCIR_INTLINE, 1);
696
697	cfg->mfdev		= (cfg->hdrtype & PCIM_MFDEV) != 0;
698	cfg->hdrtype		&= ~PCIM_MFDEV;
699	STAILQ_INIT(&cfg->maps);
700
701	cfg->iov		= NULL;
702
703	pci_fixancient(cfg);
704	pci_hdrtypedata(pcib, b, s, f, cfg);
705
706	if (REG(PCIR_STATUS, 2) & PCIM_STATUS_CAPPRESENT)
707		pci_read_cap(pcib, cfg);
708
709	STAILQ_INSERT_TAIL(&pci_devq, devlist_entry, pci_links);
710
711	devlist_entry->conf.pc_sel.pc_domain = cfg->domain;
712	devlist_entry->conf.pc_sel.pc_bus = cfg->bus;
713	devlist_entry->conf.pc_sel.pc_dev = cfg->slot;
714	devlist_entry->conf.pc_sel.pc_func = cfg->func;
715	devlist_entry->conf.pc_hdr = cfg->hdrtype;
716
717	devlist_entry->conf.pc_subvendor = cfg->subvendor;
718	devlist_entry->conf.pc_subdevice = cfg->subdevice;
719	devlist_entry->conf.pc_vendor = cfg->vendor;
720	devlist_entry->conf.pc_device = cfg->device;
721
722	devlist_entry->conf.pc_class = cfg->baseclass;
723	devlist_entry->conf.pc_subclass = cfg->subclass;
724	devlist_entry->conf.pc_progif = cfg->progif;
725	devlist_entry->conf.pc_revid = cfg->revid;
726
727	pci_numdevs++;
728	pci_generation++;
729
730	return (devlist_entry);
731}
732#undef REG
733
734static void
735pci_ea_fill_info(device_t pcib, pcicfgregs *cfg)
736{
737#define	REG(n, w)	PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, \
738    cfg->ea.ea_location + (n), w)
739	int num_ent;
740	int ptr;
741	int a, b;
742	uint32_t val;
743	int ent_size;
744	uint32_t dw[4];
745	uint64_t base, max_offset;
746	struct pci_ea_entry *eae;
747
748	if (cfg->ea.ea_location == 0)
749		return;
750
751	STAILQ_INIT(&cfg->ea.ea_entries);
752
753	/* Determine the number of entries */
754	num_ent = REG(PCIR_EA_NUM_ENT, 2);
755	num_ent &= PCIM_EA_NUM_ENT_MASK;
756
757	/* Find the first entry to care of */
758	ptr = PCIR_EA_FIRST_ENT;
759
760	/* Skip DWORD 2 for type 1 functions */
761	if ((cfg->hdrtype & PCIM_HDRTYPE) == PCIM_HDRTYPE_BRIDGE)
762		ptr += 4;
763
764	for (a = 0; a < num_ent; a++) {
765
766		eae = malloc(sizeof(*eae), M_DEVBUF, M_WAITOK | M_ZERO);
767		eae->eae_cfg_offset = cfg->ea.ea_location + ptr;
768
769		/* Read a number of dwords in the entry */
770		val = REG(ptr, 4);
771		ptr += 4;
772		ent_size = (val & PCIM_EA_ES);
773
774		for (b = 0; b < ent_size; b++) {
775			dw[b] = REG(ptr, 4);
776			ptr += 4;
777		}
778
779		eae->eae_flags = val;
780		eae->eae_bei = (PCIM_EA_BEI & val) >> PCIM_EA_BEI_OFFSET;
781
782		base = dw[0] & PCIM_EA_FIELD_MASK;
783		max_offset = dw[1] | ~PCIM_EA_FIELD_MASK;
784		b = 2;
785		if (((dw[0] & PCIM_EA_IS_64) != 0) && (b < ent_size)) {
786			base |= (uint64_t)dw[b] << 32UL;
787			b++;
788		}
789		if (((dw[1] & PCIM_EA_IS_64) != 0)
790		    && (b < ent_size)) {
791			max_offset |= (uint64_t)dw[b] << 32UL;
792			b++;
793		}
794
795		eae->eae_base = base;
796		eae->eae_max_offset = max_offset;
797
798		STAILQ_INSERT_TAIL(&cfg->ea.ea_entries, eae, eae_link);
799
800		if (bootverbose) {
801			printf("PCI(EA) dev %04x:%04x, bei %d, flags #%x, base #%jx, max_offset #%jx\n",
802			    cfg->vendor, cfg->device, eae->eae_bei, eae->eae_flags,
803			    (uintmax_t)eae->eae_base, (uintmax_t)eae->eae_max_offset);
804		}
805	}
806}
807#undef REG
808
809static void
810pci_read_cap(device_t pcib, pcicfgregs *cfg)
811{
812#define	REG(n, w)	PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w)
813#define	WREG(n, v, w)	PCIB_WRITE_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, v, w)
814#if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
815	uint64_t addr;
816#endif
817	uint32_t val;
818	int	ptr, nextptr, ptrptr;
819
820	switch (cfg->hdrtype & PCIM_HDRTYPE) {
821	case PCIM_HDRTYPE_NORMAL:
822	case PCIM_HDRTYPE_BRIDGE:
823		ptrptr = PCIR_CAP_PTR;
824		break;
825	case PCIM_HDRTYPE_CARDBUS:
826		ptrptr = PCIR_CAP_PTR_2;	/* cardbus capabilities ptr */
827		break;
828	default:
829		return;		/* no extended capabilities support */
830	}
831	nextptr = REG(ptrptr, 1);	/* sanity check? */
832
833	/*
834	 * Read capability entries.
835	 */
836	while (nextptr != 0) {
837		/* Sanity check */
838		if (nextptr > 255) {
839			printf("illegal PCI extended capability offset %d\n",
840			    nextptr);
841			return;
842		}
843		/* Find the next entry */
844		ptr = nextptr;
845		nextptr = REG(ptr + PCICAP_NEXTPTR, 1);
846
847		/* Process this entry */
848		switch (REG(ptr + PCICAP_ID, 1)) {
849		case PCIY_PMG:		/* PCI power management */
850			if (cfg->pp.pp_cap == 0) {
851				cfg->pp.pp_cap = REG(ptr + PCIR_POWER_CAP, 2);
852				cfg->pp.pp_status = ptr + PCIR_POWER_STATUS;
853				cfg->pp.pp_bse = ptr + PCIR_POWER_BSE;
854				if ((nextptr - ptr) > PCIR_POWER_DATA)
855					cfg->pp.pp_data = ptr + PCIR_POWER_DATA;
856			}
857			break;
858		case PCIY_HT:		/* HyperTransport */
859			/* Determine HT-specific capability type. */
860			val = REG(ptr + PCIR_HT_COMMAND, 2);
861
862			if ((val & 0xe000) == PCIM_HTCAP_SLAVE)
863				cfg->ht.ht_slave = ptr;
864
865#if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
866			switch (val & PCIM_HTCMD_CAP_MASK) {
867			case PCIM_HTCAP_MSI_MAPPING:
868				if (!(val & PCIM_HTCMD_MSI_FIXED)) {
869					/* Sanity check the mapping window. */
870					addr = REG(ptr + PCIR_HTMSI_ADDRESS_HI,
871					    4);
872					addr <<= 32;
873					addr |= REG(ptr + PCIR_HTMSI_ADDRESS_LO,
874					    4);
875					if (addr != MSI_INTEL_ADDR_BASE)
876						device_printf(pcib,
877	    "HT device at pci%d:%d:%d:%d has non-default MSI window 0x%llx\n",
878						    cfg->domain, cfg->bus,
879						    cfg->slot, cfg->func,
880						    (long long)addr);
881				} else
882					addr = MSI_INTEL_ADDR_BASE;
883
884				cfg->ht.ht_msimap = ptr;
885				cfg->ht.ht_msictrl = val;
886				cfg->ht.ht_msiaddr = addr;
887				break;
888			}
889#endif
890			break;
891		case PCIY_MSI:		/* PCI MSI */
892			cfg->msi.msi_location = ptr;
893			cfg->msi.msi_ctrl = REG(ptr + PCIR_MSI_CTRL, 2);
894			cfg->msi.msi_msgnum = 1 << ((cfg->msi.msi_ctrl &
895						     PCIM_MSICTRL_MMC_MASK)>>1);
896			break;
897		case PCIY_MSIX:		/* PCI MSI-X */
898			cfg->msix.msix_location = ptr;
899			cfg->msix.msix_ctrl = REG(ptr + PCIR_MSIX_CTRL, 2);
900			cfg->msix.msix_msgnum = (cfg->msix.msix_ctrl &
901			    PCIM_MSIXCTRL_TABLE_SIZE) + 1;
902			val = REG(ptr + PCIR_MSIX_TABLE, 4);
903			cfg->msix.msix_table_bar = PCIR_BAR(val &
904			    PCIM_MSIX_BIR_MASK);
905			cfg->msix.msix_table_offset = val & ~PCIM_MSIX_BIR_MASK;
906			val = REG(ptr + PCIR_MSIX_PBA, 4);
907			cfg->msix.msix_pba_bar = PCIR_BAR(val &
908			    PCIM_MSIX_BIR_MASK);
909			cfg->msix.msix_pba_offset = val & ~PCIM_MSIX_BIR_MASK;
910			break;
911		case PCIY_VPD:		/* PCI Vital Product Data */
912			cfg->vpd.vpd_reg = ptr;
913			break;
914		case PCIY_SUBVENDOR:
915			/* Should always be true. */
916			if ((cfg->hdrtype & PCIM_HDRTYPE) ==
917			    PCIM_HDRTYPE_BRIDGE) {
918				val = REG(ptr + PCIR_SUBVENDCAP_ID, 4);
919				cfg->subvendor = val & 0xffff;
920				cfg->subdevice = val >> 16;
921			}
922			break;
923		case PCIY_PCIX:		/* PCI-X */
924			/*
925			 * Assume we have a PCI-X chipset if we have
926			 * at least one PCI-PCI bridge with a PCI-X
927			 * capability.  Note that some systems with
928			 * PCI-express or HT chipsets might match on
929			 * this check as well.
930			 */
931			if ((cfg->hdrtype & PCIM_HDRTYPE) ==
932			    PCIM_HDRTYPE_BRIDGE)
933				pcix_chipset = 1;
934			cfg->pcix.pcix_location = ptr;
935			break;
936		case PCIY_EXPRESS:	/* PCI-express */
937			/*
938			 * Assume we have a PCI-express chipset if we have
939			 * at least one PCI-express device.
940			 */
941			pcie_chipset = 1;
942			cfg->pcie.pcie_location = ptr;
943			val = REG(ptr + PCIER_FLAGS, 2);
944			cfg->pcie.pcie_type = val & PCIEM_FLAGS_TYPE;
945			break;
946		case PCIY_EA:		/* Enhanced Allocation */
947			cfg->ea.ea_location = ptr;
948			pci_ea_fill_info(pcib, cfg);
949			break;
950		default:
951			break;
952		}
953	}
954
955#if defined(__powerpc__)
956	/*
957	 * Enable the MSI mapping window for all HyperTransport
958	 * slaves.  PCI-PCI bridges have their windows enabled via
959	 * PCIB_MAP_MSI().
960	 */
961	if (cfg->ht.ht_slave != 0 && cfg->ht.ht_msimap != 0 &&
962	    !(cfg->ht.ht_msictrl & PCIM_HTCMD_MSI_ENABLE)) {
963		device_printf(pcib,
964	    "Enabling MSI window for HyperTransport slave at pci%d:%d:%d:%d\n",
965		    cfg->domain, cfg->bus, cfg->slot, cfg->func);
966		 cfg->ht.ht_msictrl |= PCIM_HTCMD_MSI_ENABLE;
967		 WREG(cfg->ht.ht_msimap + PCIR_HT_COMMAND, cfg->ht.ht_msictrl,
968		     2);
969	}
970#endif
971/* REG and WREG use carry through to next functions */
972}
973
974/*
975 * PCI Vital Product Data
976 */
977
978#define	PCI_VPD_TIMEOUT		1000000
979
980static int
981pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t *data)
982{
983	int count = PCI_VPD_TIMEOUT;
984
985	KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned"));
986
987	WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg, 2);
988
989	while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) != 0x8000) {
990		if (--count < 0)
991			return (ENXIO);
992		DELAY(1);	/* limit looping */
993	}
994	*data = (REG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, 4));
995
996	return (0);
997}
998
999#if 0
1000static int
1001pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t data)
1002{
1003	int count = PCI_VPD_TIMEOUT;
1004
1005	KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned"));
1006
1007	WREG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, data, 4);
1008	WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg | 0x8000, 2);
1009	while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) == 0x8000) {
1010		if (--count < 0)
1011			return (ENXIO);
1012		DELAY(1);	/* limit looping */
1013	}
1014
1015	return (0);
1016}
1017#endif
1018
1019#undef PCI_VPD_TIMEOUT
1020
1021struct vpd_readstate {
1022	device_t	pcib;
1023	pcicfgregs	*cfg;
1024	uint32_t	val;
1025	int		bytesinval;
1026	int		off;
1027	uint8_t		cksum;
1028};
1029
1030static int
1031vpd_nextbyte(struct vpd_readstate *vrs, uint8_t *data)
1032{
1033	uint32_t reg;
1034	uint8_t byte;
1035
1036	if (vrs->bytesinval == 0) {
1037		if (pci_read_vpd_reg(vrs->pcib, vrs->cfg, vrs->off, &reg))
1038			return (ENXIO);
1039		vrs->val = le32toh(reg);
1040		vrs->off += 4;
1041		byte = vrs->val & 0xff;
1042		vrs->bytesinval = 3;
1043	} else {
1044		vrs->val = vrs->val >> 8;
1045		byte = vrs->val & 0xff;
1046		vrs->bytesinval--;
1047	}
1048
1049	vrs->cksum += byte;
1050	*data = byte;
1051	return (0);
1052}
1053
1054static void
1055pci_read_vpd(device_t pcib, pcicfgregs *cfg)
1056{
1057	struct vpd_readstate vrs;
1058	int state;
1059	int name;
1060	int remain;
1061	int i;
1062	int alloc, off;		/* alloc/off for RO/W arrays */
1063	int cksumvalid;
1064	int dflen;
1065	uint8_t byte;
1066	uint8_t byte2;
1067
1068	/* init vpd reader */
1069	vrs.bytesinval = 0;
1070	vrs.off = 0;
1071	vrs.pcib = pcib;
1072	vrs.cfg = cfg;
1073	vrs.cksum = 0;
1074
1075	state = 0;
1076	name = remain = i = 0;	/* shut up stupid gcc */
1077	alloc = off = 0;	/* shut up stupid gcc */
1078	dflen = 0;		/* shut up stupid gcc */
1079	cksumvalid = -1;
1080	while (state >= 0) {
1081		if (vpd_nextbyte(&vrs, &byte)) {
1082			state = -2;
1083			break;
1084		}
1085#if 0
1086		printf("vpd: val: %#x, off: %d, bytesinval: %d, byte: %#hhx, " \
1087		    "state: %d, remain: %d, name: %#x, i: %d\n", vrs.val,
1088		    vrs.off, vrs.bytesinval, byte, state, remain, name, i);
1089#endif
1090		switch (state) {
1091		case 0:		/* item name */
1092			if (byte & 0x80) {
1093				if (vpd_nextbyte(&vrs, &byte2)) {
1094					state = -2;
1095					break;
1096				}
1097				remain = byte2;
1098				if (vpd_nextbyte(&vrs, &byte2)) {
1099					state = -2;
1100					break;
1101				}
1102				remain |= byte2 << 8;
1103				if (remain > (0x7f*4 - vrs.off)) {
1104					state = -1;
1105					pci_printf(cfg,
1106					    "invalid VPD data, remain %#x\n",
1107					    remain);
1108				}
1109				name = byte & 0x7f;
1110			} else {
1111				remain = byte & 0x7;
1112				name = (byte >> 3) & 0xf;
1113			}
1114			switch (name) {
1115			case 0x2:	/* String */
1116				cfg->vpd.vpd_ident = malloc(remain + 1,
1117				    M_DEVBUF, M_WAITOK);
1118				i = 0;
1119				state = 1;
1120				break;
1121			case 0xf:	/* End */
1122				state = -1;
1123				break;
1124			case 0x10:	/* VPD-R */
1125				alloc = 8;
1126				off = 0;
1127				cfg->vpd.vpd_ros = malloc(alloc *
1128				    sizeof(*cfg->vpd.vpd_ros), M_DEVBUF,
1129				    M_WAITOK | M_ZERO);
1130				state = 2;
1131				break;
1132			case 0x11:	/* VPD-W */
1133				alloc = 8;
1134				off = 0;
1135				cfg->vpd.vpd_w = malloc(alloc *
1136				    sizeof(*cfg->vpd.vpd_w), M_DEVBUF,
1137				    M_WAITOK | M_ZERO);
1138				state = 5;
1139				break;
1140			default:	/* Invalid data, abort */
1141				state = -1;
1142				break;
1143			}
1144			break;
1145
1146		case 1:	/* Identifier String */
1147			cfg->vpd.vpd_ident[i++] = byte;
1148			remain--;
1149			if (remain == 0)  {
1150				cfg->vpd.vpd_ident[i] = '\0';
1151				state = 0;
1152			}
1153			break;
1154
1155		case 2:	/* VPD-R Keyword Header */
1156			if (off == alloc) {
1157				cfg->vpd.vpd_ros = reallocf(cfg->vpd.vpd_ros,
1158				    (alloc *= 2) * sizeof(*cfg->vpd.vpd_ros),
1159				    M_DEVBUF, M_WAITOK | M_ZERO);
1160			}
1161			cfg->vpd.vpd_ros[off].keyword[0] = byte;
1162			if (vpd_nextbyte(&vrs, &byte2)) {
1163				state = -2;
1164				break;
1165			}
1166			cfg->vpd.vpd_ros[off].keyword[1] = byte2;
1167			if (vpd_nextbyte(&vrs, &byte2)) {
1168				state = -2;
1169				break;
1170			}
1171			cfg->vpd.vpd_ros[off].len = dflen = byte2;
1172			if (dflen == 0 &&
1173			    strncmp(cfg->vpd.vpd_ros[off].keyword, "RV",
1174			    2) == 0) {
1175				/*
1176				 * if this happens, we can't trust the rest
1177				 * of the VPD.
1178				 */
1179				pci_printf(cfg, "bad keyword length: %d\n",
1180				    dflen);
1181				cksumvalid = 0;
1182				state = -1;
1183				break;
1184			} else if (dflen == 0) {
1185				cfg->vpd.vpd_ros[off].value = malloc(1 *
1186				    sizeof(*cfg->vpd.vpd_ros[off].value),
1187				    M_DEVBUF, M_WAITOK);
1188				cfg->vpd.vpd_ros[off].value[0] = '\x00';
1189			} else
1190				cfg->vpd.vpd_ros[off].value = malloc(
1191				    (dflen + 1) *
1192				    sizeof(*cfg->vpd.vpd_ros[off].value),
1193				    M_DEVBUF, M_WAITOK);
1194			remain -= 3;
1195			i = 0;
1196			/* keep in sync w/ state 3's transistions */
1197			if (dflen == 0 && remain == 0)
1198				state = 0;
1199			else if (dflen == 0)
1200				state = 2;
1201			else
1202				state = 3;
1203			break;
1204
1205		case 3:	/* VPD-R Keyword Value */
1206			cfg->vpd.vpd_ros[off].value[i++] = byte;
1207			if (strncmp(cfg->vpd.vpd_ros[off].keyword,
1208			    "RV", 2) == 0 && cksumvalid == -1) {
1209				if (vrs.cksum == 0)
1210					cksumvalid = 1;
1211				else {
1212					if (bootverbose)
1213						pci_printf(cfg,
1214					    "bad VPD cksum, remain %hhu\n",
1215						    vrs.cksum);
1216					cksumvalid = 0;
1217					state = -1;
1218					break;
1219				}
1220			}
1221			dflen--;
1222			remain--;
1223			/* keep in sync w/ state 2's transistions */
1224			if (dflen == 0)
1225				cfg->vpd.vpd_ros[off++].value[i++] = '\0';
1226			if (dflen == 0 && remain == 0) {
1227				cfg->vpd.vpd_rocnt = off;
1228				cfg->vpd.vpd_ros = reallocf(cfg->vpd.vpd_ros,
1229				    off * sizeof(*cfg->vpd.vpd_ros),
1230				    M_DEVBUF, M_WAITOK | M_ZERO);
1231				state = 0;
1232			} else if (dflen == 0)
1233				state = 2;
1234			break;
1235
1236		case 4:
1237			remain--;
1238			if (remain == 0)
1239				state = 0;
1240			break;
1241
1242		case 5:	/* VPD-W Keyword Header */
1243			if (off == alloc) {
1244				cfg->vpd.vpd_w = reallocf(cfg->vpd.vpd_w,
1245				    (alloc *= 2) * sizeof(*cfg->vpd.vpd_w),
1246				    M_DEVBUF, M_WAITOK | M_ZERO);
1247			}
1248			cfg->vpd.vpd_w[off].keyword[0] = byte;
1249			if (vpd_nextbyte(&vrs, &byte2)) {
1250				state = -2;
1251				break;
1252			}
1253			cfg->vpd.vpd_w[off].keyword[1] = byte2;
1254			if (vpd_nextbyte(&vrs, &byte2)) {
1255				state = -2;
1256				break;
1257			}
1258			cfg->vpd.vpd_w[off].len = dflen = byte2;
1259			cfg->vpd.vpd_w[off].start = vrs.off - vrs.bytesinval;
1260			cfg->vpd.vpd_w[off].value = malloc((dflen + 1) *
1261			    sizeof(*cfg->vpd.vpd_w[off].value),
1262			    M_DEVBUF, M_WAITOK);
1263			remain -= 3;
1264			i = 0;
1265			/* keep in sync w/ state 6's transistions */
1266			if (dflen == 0 && remain == 0)
1267				state = 0;
1268			else if (dflen == 0)
1269				state = 5;
1270			else
1271				state = 6;
1272			break;
1273
1274		case 6:	/* VPD-W Keyword Value */
1275			cfg->vpd.vpd_w[off].value[i++] = byte;
1276			dflen--;
1277			remain--;
1278			/* keep in sync w/ state 5's transistions */
1279			if (dflen == 0)
1280				cfg->vpd.vpd_w[off++].value[i++] = '\0';
1281			if (dflen == 0 && remain == 0) {
1282				cfg->vpd.vpd_wcnt = off;
1283				cfg->vpd.vpd_w = reallocf(cfg->vpd.vpd_w,
1284				    off * sizeof(*cfg->vpd.vpd_w),
1285				    M_DEVBUF, M_WAITOK | M_ZERO);
1286				state = 0;
1287			} else if (dflen == 0)
1288				state = 5;
1289			break;
1290
1291		default:
1292			pci_printf(cfg, "invalid state: %d\n", state);
1293			state = -1;
1294			break;
1295		}
1296	}
1297
1298	if (cksumvalid == 0 || state < -1) {
1299		/* read-only data bad, clean up */
1300		if (cfg->vpd.vpd_ros != NULL) {
1301			for (off = 0; cfg->vpd.vpd_ros[off].value; off++)
1302				free(cfg->vpd.vpd_ros[off].value, M_DEVBUF);
1303			free(cfg->vpd.vpd_ros, M_DEVBUF);
1304			cfg->vpd.vpd_ros = NULL;
1305		}
1306	}
1307	if (state < -1) {
1308		/* I/O error, clean up */
1309		pci_printf(cfg, "failed to read VPD data.\n");
1310		if (cfg->vpd.vpd_ident != NULL) {
1311			free(cfg->vpd.vpd_ident, M_DEVBUF);
1312			cfg->vpd.vpd_ident = NULL;
1313		}
1314		if (cfg->vpd.vpd_w != NULL) {
1315			for (off = 0; cfg->vpd.vpd_w[off].value; off++)
1316				free(cfg->vpd.vpd_w[off].value, M_DEVBUF);
1317			free(cfg->vpd.vpd_w, M_DEVBUF);
1318			cfg->vpd.vpd_w = NULL;
1319		}
1320	}
1321	cfg->vpd.vpd_cached = 1;
1322#undef REG
1323#undef WREG
1324}
1325
1326int
1327pci_get_vpd_ident_method(device_t dev, device_t child, const char **identptr)
1328{
1329	struct pci_devinfo *dinfo = device_get_ivars(child);
1330	pcicfgregs *cfg = &dinfo->cfg;
1331
1332	if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
1333		pci_read_vpd(device_get_parent(dev), cfg);
1334
1335	*identptr = cfg->vpd.vpd_ident;
1336
1337	if (*identptr == NULL)
1338		return (ENXIO);
1339
1340	return (0);
1341}
1342
1343int
1344pci_get_vpd_readonly_method(device_t dev, device_t child, const char *kw,
1345	const char **vptr)
1346{
1347	struct pci_devinfo *dinfo = device_get_ivars(child);
1348	pcicfgregs *cfg = &dinfo->cfg;
1349	int i;
1350
1351	if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
1352		pci_read_vpd(device_get_parent(dev), cfg);
1353
1354	for (i = 0; i < cfg->vpd.vpd_rocnt; i++)
1355		if (memcmp(kw, cfg->vpd.vpd_ros[i].keyword,
1356		    sizeof(cfg->vpd.vpd_ros[i].keyword)) == 0) {
1357			*vptr = cfg->vpd.vpd_ros[i].value;
1358			return (0);
1359		}
1360
1361	*vptr = NULL;
1362	return (ENXIO);
1363}
1364
1365struct pcicfg_vpd *
1366pci_fetch_vpd_list(device_t dev)
1367{
1368	struct pci_devinfo *dinfo = device_get_ivars(dev);
1369	pcicfgregs *cfg = &dinfo->cfg;
1370
1371	if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
1372		pci_read_vpd(device_get_parent(device_get_parent(dev)), cfg);
1373	return (&cfg->vpd);
1374}
1375
1376/*
1377 * Find the requested HyperTransport capability and return the offset
1378 * in configuration space via the pointer provided.  The function
1379 * returns 0 on success and an error code otherwise.
1380 */
1381int
1382pci_find_htcap_method(device_t dev, device_t child, int capability, int *capreg)
1383{
1384	int ptr, error;
1385	uint16_t val;
1386
1387	error = pci_find_cap(child, PCIY_HT, &ptr);
1388	if (error)
1389		return (error);
1390
1391	/*
1392	 * Traverse the capabilities list checking each HT capability
1393	 * to see if it matches the requested HT capability.
1394	 */
1395	for (;;) {
1396		val = pci_read_config(child, ptr + PCIR_HT_COMMAND, 2);
1397		if (capability == PCIM_HTCAP_SLAVE ||
1398		    capability == PCIM_HTCAP_HOST)
1399			val &= 0xe000;
1400		else
1401			val &= PCIM_HTCMD_CAP_MASK;
1402		if (val == capability) {
1403			if (capreg != NULL)
1404				*capreg = ptr;
1405			return (0);
1406		}
1407
1408		/* Skip to the next HT capability. */
1409		if (pci_find_next_cap(child, PCIY_HT, ptr, &ptr) != 0)
1410			break;
1411	}
1412
1413	return (ENOENT);
1414}
1415
1416/*
1417 * Find the next requested HyperTransport capability after start and return
1418 * the offset in configuration space via the pointer provided.  The function
1419 * returns 0 on success and an error code otherwise.
1420 */
1421int
1422pci_find_next_htcap_method(device_t dev, device_t child, int capability,
1423    int start, int *capreg)
1424{
1425	int ptr;
1426	uint16_t val;
1427
1428	KASSERT(pci_read_config(child, start + PCICAP_ID, 1) == PCIY_HT,
1429	    ("start capability is not HyperTransport capability"));
1430	ptr = start;
1431
1432	/*
1433	 * Traverse the capabilities list checking each HT capability
1434	 * to see if it matches the requested HT capability.
1435	 */
1436	for (;;) {
1437		/* Skip to the next HT capability. */
1438		if (pci_find_next_cap(child, PCIY_HT, ptr, &ptr) != 0)
1439			break;
1440
1441		val = pci_read_config(child, ptr + PCIR_HT_COMMAND, 2);
1442		if (capability == PCIM_HTCAP_SLAVE ||
1443		    capability == PCIM_HTCAP_HOST)
1444			val &= 0xe000;
1445		else
1446			val &= PCIM_HTCMD_CAP_MASK;
1447		if (val == capability) {
1448			if (capreg != NULL)
1449				*capreg = ptr;
1450			return (0);
1451		}
1452	}
1453
1454	return (ENOENT);
1455}
1456
1457/*
1458 * Find the requested capability and return the offset in
1459 * configuration space via the pointer provided.  The function returns
1460 * 0 on success and an error code otherwise.
1461 */
1462int
1463pci_find_cap_method(device_t dev, device_t child, int capability,
1464    int *capreg)
1465{
1466	struct pci_devinfo *dinfo = device_get_ivars(child);
1467	pcicfgregs *cfg = &dinfo->cfg;
1468	uint32_t status;
1469	uint8_t ptr;
1470
1471	/*
1472	 * Check the CAP_LIST bit of the PCI status register first.
1473	 */
1474	status = pci_read_config(child, PCIR_STATUS, 2);
1475	if (!(status & PCIM_STATUS_CAPPRESENT))
1476		return (ENXIO);
1477
1478	/*
1479	 * Determine the start pointer of the capabilities list.
1480	 */
1481	switch (cfg->hdrtype & PCIM_HDRTYPE) {
1482	case PCIM_HDRTYPE_NORMAL:
1483	case PCIM_HDRTYPE_BRIDGE:
1484		ptr = PCIR_CAP_PTR;
1485		break;
1486	case PCIM_HDRTYPE_CARDBUS:
1487		ptr = PCIR_CAP_PTR_2;
1488		break;
1489	default:
1490		/* XXX: panic? */
1491		return (ENXIO);		/* no extended capabilities support */
1492	}
1493	ptr = pci_read_config(child, ptr, 1);
1494
1495	/*
1496	 * Traverse the capabilities list.
1497	 */
1498	while (ptr != 0) {
1499		if (pci_read_config(child, ptr + PCICAP_ID, 1) == capability) {
1500			if (capreg != NULL)
1501				*capreg = ptr;
1502			return (0);
1503		}
1504		ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1);
1505	}
1506
1507	return (ENOENT);
1508}
1509
1510/*
1511 * Find the next requested capability after start and return the offset in
1512 * configuration space via the pointer provided.  The function returns
1513 * 0 on success and an error code otherwise.
1514 */
1515int
1516pci_find_next_cap_method(device_t dev, device_t child, int capability,
1517    int start, int *capreg)
1518{
1519	uint8_t ptr;
1520
1521	KASSERT(pci_read_config(child, start + PCICAP_ID, 1) == capability,
1522	    ("start capability is not expected capability"));
1523
1524	ptr = pci_read_config(child, start + PCICAP_NEXTPTR, 1);
1525	while (ptr != 0) {
1526		if (pci_read_config(child, ptr + PCICAP_ID, 1) == capability) {
1527			if (capreg != NULL)
1528				*capreg = ptr;
1529			return (0);
1530		}
1531		ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1);
1532	}
1533
1534	return (ENOENT);
1535}
1536
1537/*
1538 * Find the requested extended capability and return the offset in
1539 * configuration space via the pointer provided.  The function returns
1540 * 0 on success and an error code otherwise.
1541 */
1542int
1543pci_find_extcap_method(device_t dev, device_t child, int capability,
1544    int *capreg)
1545{
1546	struct pci_devinfo *dinfo = device_get_ivars(child);
1547	pcicfgregs *cfg = &dinfo->cfg;
1548	uint32_t ecap;
1549	uint16_t ptr;
1550
1551	/* Only supported for PCI-express devices. */
1552	if (cfg->pcie.pcie_location == 0)
1553		return (ENXIO);
1554
1555	ptr = PCIR_EXTCAP;
1556	ecap = pci_read_config(child, ptr, 4);
1557	if (ecap == 0xffffffff || ecap == 0)
1558		return (ENOENT);
1559	for (;;) {
1560		if (PCI_EXTCAP_ID(ecap) == capability) {
1561			if (capreg != NULL)
1562				*capreg = ptr;
1563			return (0);
1564		}
1565		ptr = PCI_EXTCAP_NEXTPTR(ecap);
1566		if (ptr == 0)
1567			break;
1568		ecap = pci_read_config(child, ptr, 4);
1569	}
1570
1571	return (ENOENT);
1572}
1573
1574/*
1575 * Find the next requested extended capability after start and return the
1576 * offset in configuration space via the pointer provided.  The function
1577 * returns 0 on success and an error code otherwise.
1578 */
1579int
1580pci_find_next_extcap_method(device_t dev, device_t child, int capability,
1581    int start, int *capreg)
1582{
1583	struct pci_devinfo *dinfo = device_get_ivars(child);
1584	pcicfgregs *cfg = &dinfo->cfg;
1585	uint32_t ecap;
1586	uint16_t ptr;
1587
1588	/* Only supported for PCI-express devices. */
1589	if (cfg->pcie.pcie_location == 0)
1590		return (ENXIO);
1591
1592	ecap = pci_read_config(child, start, 4);
1593	KASSERT(PCI_EXTCAP_ID(ecap) == capability,
1594	    ("start extended capability is not expected capability"));
1595	ptr = PCI_EXTCAP_NEXTPTR(ecap);
1596	while (ptr != 0) {
1597		ecap = pci_read_config(child, ptr, 4);
1598		if (PCI_EXTCAP_ID(ecap) == capability) {
1599			if (capreg != NULL)
1600				*capreg = ptr;
1601			return (0);
1602		}
1603		ptr = PCI_EXTCAP_NEXTPTR(ecap);
1604	}
1605
1606	return (ENOENT);
1607}
1608
1609/*
1610 * Support for MSI-X message interrupts.
1611 */
1612static void
1613pci_write_msix_entry(device_t dev, u_int index, uint64_t address, uint32_t data)
1614{
1615	struct pci_devinfo *dinfo = device_get_ivars(dev);
1616	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1617	uint32_t offset;
1618
1619	KASSERT(msix->msix_table_len > index, ("bogus index"));
1620	offset = msix->msix_table_offset + index * 16;
1621	bus_write_4(msix->msix_table_res, offset, address & 0xffffffff);
1622	bus_write_4(msix->msix_table_res, offset + 4, address >> 32);
1623	bus_write_4(msix->msix_table_res, offset + 8, data);
1624}
1625
1626void
1627pci_enable_msix_method(device_t dev, device_t child, u_int index,
1628    uint64_t address, uint32_t data)
1629{
1630
1631	if (pci_msix_rewrite_table) {
1632		struct pci_devinfo *dinfo = device_get_ivars(child);
1633		struct pcicfg_msix *msix = &dinfo->cfg.msix;
1634
1635		/*
1636		 * Some VM hosts require MSIX to be disabled in the
1637		 * control register before updating the MSIX table
1638		 * entries are allowed. It is not enough to only
1639		 * disable MSIX while updating a single entry. MSIX
1640		 * must be disabled while updating all entries in the
1641		 * table.
1642		 */
1643		pci_write_config(child,
1644		    msix->msix_location + PCIR_MSIX_CTRL,
1645		    msix->msix_ctrl & ~PCIM_MSIXCTRL_MSIX_ENABLE, 2);
1646		pci_resume_msix(child);
1647	} else
1648		pci_write_msix_entry(child, index, address, data);
1649
1650	/* Enable MSI -> HT mapping. */
1651	pci_ht_map_msi(child, address);
1652}
1653
1654void
1655pci_mask_msix(device_t dev, u_int index)
1656{
1657	struct pci_devinfo *dinfo = device_get_ivars(dev);
1658	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1659	uint32_t offset, val;
1660
1661	KASSERT(msix->msix_msgnum > index, ("bogus index"));
1662	offset = msix->msix_table_offset + index * 16 + 12;
1663	val = bus_read_4(msix->msix_table_res, offset);
1664	val |= PCIM_MSIX_VCTRL_MASK;
1665
1666	/*
1667	 * Some devices (e.g. Samsung PM961) do not support reads of this
1668	 * register, so always write the new value.
1669	 */
1670	bus_write_4(msix->msix_table_res, offset, val);
1671}
1672
1673void
1674pci_unmask_msix(device_t dev, u_int index)
1675{
1676	struct pci_devinfo *dinfo = device_get_ivars(dev);
1677	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1678	uint32_t offset, val;
1679
1680	KASSERT(msix->msix_table_len > index, ("bogus index"));
1681	offset = msix->msix_table_offset + index * 16 + 12;
1682	val = bus_read_4(msix->msix_table_res, offset);
1683	val &= ~PCIM_MSIX_VCTRL_MASK;
1684
1685	/*
1686	 * Some devices (e.g. Samsung PM961) do not support reads of this
1687	 * register, so always write the new value.
1688	 */
1689	bus_write_4(msix->msix_table_res, offset, val);
1690}
1691
1692int
1693pci_pending_msix(device_t dev, u_int index)
1694{
1695	struct pci_devinfo *dinfo = device_get_ivars(dev);
1696	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1697	uint32_t offset, bit;
1698
1699	KASSERT(msix->msix_table_len > index, ("bogus index"));
1700	offset = msix->msix_pba_offset + (index / 32) * 4;
1701	bit = 1 << index % 32;
1702	return (bus_read_4(msix->msix_pba_res, offset) & bit);
1703}
1704
1705/*
1706 * Restore MSI-X registers and table during resume.  If MSI-X is
1707 * enabled then walk the virtual table to restore the actual MSI-X
1708 * table.
1709 */
1710static void
1711pci_resume_msix(device_t dev)
1712{
1713	struct pci_devinfo *dinfo = device_get_ivars(dev);
1714	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1715	struct msix_table_entry *mte;
1716	struct msix_vector *mv;
1717	int i;
1718
1719	if (msix->msix_alloc > 0) {
1720		/* First, mask all vectors. */
1721		for (i = 0; i < msix->msix_msgnum; i++)
1722			pci_mask_msix(dev, i);
1723
1724		/* Second, program any messages with at least one handler. */
1725		for (i = 0; i < msix->msix_table_len; i++) {
1726			mte = &msix->msix_table[i];
1727			if (mte->mte_vector == 0 || mte->mte_handlers == 0)
1728				continue;
1729			mv = &msix->msix_vectors[mte->mte_vector - 1];
1730			pci_write_msix_entry(dev, i, mv->mv_address,
1731			    mv->mv_data);
1732			pci_unmask_msix(dev, i);
1733		}
1734	}
1735	pci_write_config(dev, msix->msix_location + PCIR_MSIX_CTRL,
1736	    msix->msix_ctrl, 2);
1737}
1738
1739/*
1740 * Attempt to allocate *count MSI-X messages.  The actual number allocated is
1741 * returned in *count.  After this function returns, each message will be
1742 * available to the driver as SYS_RES_IRQ resources starting at rid 1.
1743 */
1744int
1745pci_alloc_msix_method(device_t dev, device_t child, int *count)
1746{
1747	struct pci_devinfo *dinfo = device_get_ivars(child);
1748	pcicfgregs *cfg = &dinfo->cfg;
1749	struct resource_list_entry *rle;
1750	int actual, error, i, irq, max;
1751
1752	/* Don't let count == 0 get us into trouble. */
1753	if (*count == 0)
1754		return (EINVAL);
1755
1756	/* If rid 0 is allocated, then fail. */
1757	rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
1758	if (rle != NULL && rle->res != NULL)
1759		return (ENXIO);
1760
1761	/* Already have allocated messages? */
1762	if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0)
1763		return (ENXIO);
1764
1765	/* If MSI-X is blacklisted for this system, fail. */
1766	if (pci_msix_blacklisted())
1767		return (ENXIO);
1768
1769	/* MSI-X capability present? */
1770	if (cfg->msix.msix_location == 0 || !pci_do_msix)
1771		return (ENODEV);
1772
1773	/* Make sure the appropriate BARs are mapped. */
1774	rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY,
1775	    cfg->msix.msix_table_bar);
1776	if (rle == NULL || rle->res == NULL ||
1777	    !(rman_get_flags(rle->res) & RF_ACTIVE))
1778		return (ENXIO);
1779	cfg->msix.msix_table_res = rle->res;
1780	if (cfg->msix.msix_pba_bar != cfg->msix.msix_table_bar) {
1781		rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY,
1782		    cfg->msix.msix_pba_bar);
1783		if (rle == NULL || rle->res == NULL ||
1784		    !(rman_get_flags(rle->res) & RF_ACTIVE))
1785			return (ENXIO);
1786	}
1787	cfg->msix.msix_pba_res = rle->res;
1788
1789	if (bootverbose)
1790		device_printf(child,
1791		    "attempting to allocate %d MSI-X vectors (%d supported)\n",
1792		    *count, cfg->msix.msix_msgnum);
1793	max = min(*count, cfg->msix.msix_msgnum);
1794	for (i = 0; i < max; i++) {
1795		/* Allocate a message. */
1796		error = PCIB_ALLOC_MSIX(device_get_parent(dev), child, &irq);
1797		if (error) {
1798			if (i == 0)
1799				return (error);
1800			break;
1801		}
1802		resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq,
1803		    irq, 1);
1804	}
1805	actual = i;
1806
1807	if (bootverbose) {
1808		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 1);
1809		if (actual == 1)
1810			device_printf(child, "using IRQ %ju for MSI-X\n",
1811			    rle->start);
1812		else {
1813			int run;
1814
1815			/*
1816			 * Be fancy and try to print contiguous runs of
1817			 * IRQ values as ranges.  'irq' is the previous IRQ.
1818			 * 'run' is true if we are in a range.
1819			 */
1820			device_printf(child, "using IRQs %ju", rle->start);
1821			irq = rle->start;
1822			run = 0;
1823			for (i = 1; i < actual; i++) {
1824				rle = resource_list_find(&dinfo->resources,
1825				    SYS_RES_IRQ, i + 1);
1826
1827				/* Still in a run? */
1828				if (rle->start == irq + 1) {
1829					run = 1;
1830					irq++;
1831					continue;
1832				}
1833
1834				/* Finish previous range. */
1835				if (run) {
1836					printf("-%d", irq);
1837					run = 0;
1838				}
1839
1840				/* Start new range. */
1841				printf(",%ju", rle->start);
1842				irq = rle->start;
1843			}
1844
1845			/* Unfinished range? */
1846			if (run)
1847				printf("-%d", irq);
1848			printf(" for MSI-X\n");
1849		}
1850	}
1851
1852	/* Mask all vectors. */
1853	for (i = 0; i < cfg->msix.msix_msgnum; i++)
1854		pci_mask_msix(child, i);
1855
1856	/* Allocate and initialize vector data and virtual table. */
1857	cfg->msix.msix_vectors = malloc(sizeof(struct msix_vector) * actual,
1858	    M_DEVBUF, M_WAITOK | M_ZERO);
1859	cfg->msix.msix_table = malloc(sizeof(struct msix_table_entry) * actual,
1860	    M_DEVBUF, M_WAITOK | M_ZERO);
1861	for (i = 0; i < actual; i++) {
1862		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
1863		cfg->msix.msix_vectors[i].mv_irq = rle->start;
1864		cfg->msix.msix_table[i].mte_vector = i + 1;
1865	}
1866
1867	/* Update control register to enable MSI-X. */
1868	cfg->msix.msix_ctrl |= PCIM_MSIXCTRL_MSIX_ENABLE;
1869	pci_write_config(child, cfg->msix.msix_location + PCIR_MSIX_CTRL,
1870	    cfg->msix.msix_ctrl, 2);
1871
1872	/* Update counts of alloc'd messages. */
1873	cfg->msix.msix_alloc = actual;
1874	cfg->msix.msix_table_len = actual;
1875	*count = actual;
1876	return (0);
1877}
1878
1879/*
1880 * By default, pci_alloc_msix() will assign the allocated IRQ
1881 * resources consecutively to the first N messages in the MSI-X table.
1882 * However, device drivers may want to use different layouts if they
1883 * either receive fewer messages than they asked for, or they wish to
1884 * populate the MSI-X table sparsely.  This method allows the driver
1885 * to specify what layout it wants.  It must be called after a
1886 * successful pci_alloc_msix() but before any of the associated
1887 * SYS_RES_IRQ resources are allocated via bus_alloc_resource().
1888 *
1889 * The 'vectors' array contains 'count' message vectors.  The array
1890 * maps directly to the MSI-X table in that index 0 in the array
1891 * specifies the vector for the first message in the MSI-X table, etc.
1892 * The vector value in each array index can either be 0 to indicate
1893 * that no vector should be assigned to a message slot, or it can be a
1894 * number from 1 to N (where N is the count returned from a
1895 * succcessful call to pci_alloc_msix()) to indicate which message
1896 * vector (IRQ) to be used for the corresponding message.
1897 *
1898 * On successful return, each message with a non-zero vector will have
1899 * an associated SYS_RES_IRQ whose rid is equal to the array index +
1900 * 1.  Additionally, if any of the IRQs allocated via the previous
1901 * call to pci_alloc_msix() are not used in the mapping, those IRQs
1902 * will be freed back to the system automatically.
1903 *
1904 * For example, suppose a driver has a MSI-X table with 6 messages and
1905 * asks for 6 messages, but pci_alloc_msix() only returns a count of
1906 * 3.  Call the three vectors allocated by pci_alloc_msix() A, B, and
1907 * C.  After the call to pci_alloc_msix(), the device will be setup to
1908 * have an MSI-X table of ABC--- (where - means no vector assigned).
1909 * If the driver then passes a vector array of { 1, 0, 1, 2, 0, 2 },
1910 * then the MSI-X table will look like A-AB-B, and the 'C' vector will
1911 * be freed back to the system.  This device will also have valid
1912 * SYS_RES_IRQ rids of 1, 3, 4, and 6.
1913 *
1914 * In any case, the SYS_RES_IRQ rid X will always map to the message
1915 * at MSI-X table index X - 1 and will only be valid if a vector is
1916 * assigned to that table entry.
1917 */
1918int
1919pci_remap_msix_method(device_t dev, device_t child, int count,
1920    const u_int *vectors)
1921{
1922	struct pci_devinfo *dinfo = device_get_ivars(child);
1923	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1924	struct resource_list_entry *rle;
1925	int i, irq, j, *used;
1926
1927	/*
1928	 * Have to have at least one message in the table but the
1929	 * table can't be bigger than the actual MSI-X table in the
1930	 * device.
1931	 */
1932	if (count == 0 || count > msix->msix_msgnum)
1933		return (EINVAL);
1934
1935	/* Sanity check the vectors. */
1936	for (i = 0; i < count; i++)
1937		if (vectors[i] > msix->msix_alloc)
1938			return (EINVAL);
1939
1940	/*
1941	 * Make sure there aren't any holes in the vectors to be used.
1942	 * It's a big pain to support it, and it doesn't really make
1943	 * sense anyway.  Also, at least one vector must be used.
1944	 */
1945	used = malloc(sizeof(int) * msix->msix_alloc, M_DEVBUF, M_WAITOK |
1946	    M_ZERO);
1947	for (i = 0; i < count; i++)
1948		if (vectors[i] != 0)
1949			used[vectors[i] - 1] = 1;
1950	for (i = 0; i < msix->msix_alloc - 1; i++)
1951		if (used[i] == 0 && used[i + 1] == 1) {
1952			free(used, M_DEVBUF);
1953			return (EINVAL);
1954		}
1955	if (used[0] != 1) {
1956		free(used, M_DEVBUF);
1957		return (EINVAL);
1958	}
1959
1960	/* Make sure none of the resources are allocated. */
1961	for (i = 0; i < msix->msix_table_len; i++) {
1962		if (msix->msix_table[i].mte_vector == 0)
1963			continue;
1964		if (msix->msix_table[i].mte_handlers > 0) {
1965			free(used, M_DEVBUF);
1966			return (EBUSY);
1967		}
1968		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
1969		KASSERT(rle != NULL, ("missing resource"));
1970		if (rle->res != NULL) {
1971			free(used, M_DEVBUF);
1972			return (EBUSY);
1973		}
1974	}
1975
1976	/* Free the existing resource list entries. */
1977	for (i = 0; i < msix->msix_table_len; i++) {
1978		if (msix->msix_table[i].mte_vector == 0)
1979			continue;
1980		resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
1981	}
1982
1983	/*
1984	 * Build the new virtual table keeping track of which vectors are
1985	 * used.
1986	 */
1987	free(msix->msix_table, M_DEVBUF);
1988	msix->msix_table = malloc(sizeof(struct msix_table_entry) * count,
1989	    M_DEVBUF, M_WAITOK | M_ZERO);
1990	for (i = 0; i < count; i++)
1991		msix->msix_table[i].mte_vector = vectors[i];
1992	msix->msix_table_len = count;
1993
1994	/* Free any unused IRQs and resize the vectors array if necessary. */
1995	j = msix->msix_alloc - 1;
1996	if (used[j] == 0) {
1997		struct msix_vector *vec;
1998
1999		while (used[j] == 0) {
2000			PCIB_RELEASE_MSIX(device_get_parent(dev), child,
2001			    msix->msix_vectors[j].mv_irq);
2002			j--;
2003		}
2004		vec = malloc(sizeof(struct msix_vector) * (j + 1), M_DEVBUF,
2005		    M_WAITOK);
2006		bcopy(msix->msix_vectors, vec, sizeof(struct msix_vector) *
2007		    (j + 1));
2008		free(msix->msix_vectors, M_DEVBUF);
2009		msix->msix_vectors = vec;
2010		msix->msix_alloc = j + 1;
2011	}
2012	free(used, M_DEVBUF);
2013
2014	/* Map the IRQs onto the rids. */
2015	for (i = 0; i < count; i++) {
2016		if (vectors[i] == 0)
2017			continue;
2018		irq = msix->msix_vectors[vectors[i] - 1].mv_irq;
2019		resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq,
2020		    irq, 1);
2021	}
2022
2023	if (bootverbose) {
2024		device_printf(child, "Remapped MSI-X IRQs as: ");
2025		for (i = 0; i < count; i++) {
2026			if (i != 0)
2027				printf(", ");
2028			if (vectors[i] == 0)
2029				printf("---");
2030			else
2031				printf("%d",
2032				    msix->msix_vectors[vectors[i] - 1].mv_irq);
2033		}
2034		printf("\n");
2035	}
2036
2037	return (0);
2038}
2039
2040static int
2041pci_release_msix(device_t dev, device_t child)
2042{
2043	struct pci_devinfo *dinfo = device_get_ivars(child);
2044	struct pcicfg_msix *msix = &dinfo->cfg.msix;
2045	struct resource_list_entry *rle;
2046	int i;
2047
2048	/* Do we have any messages to release? */
2049	if (msix->msix_alloc == 0)
2050		return (ENODEV);
2051
2052	/* Make sure none of the resources are allocated. */
2053	for (i = 0; i < msix->msix_table_len; i++) {
2054		if (msix->msix_table[i].mte_vector == 0)
2055			continue;
2056		if (msix->msix_table[i].mte_handlers > 0)
2057			return (EBUSY);
2058		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
2059		KASSERT(rle != NULL, ("missing resource"));
2060		if (rle->res != NULL)
2061			return (EBUSY);
2062	}
2063
2064	/* Update control register to disable MSI-X. */
2065	msix->msix_ctrl &= ~PCIM_MSIXCTRL_MSIX_ENABLE;
2066	pci_write_config(child, msix->msix_location + PCIR_MSIX_CTRL,
2067	    msix->msix_ctrl, 2);
2068
2069	/* Free the resource list entries. */
2070	for (i = 0; i < msix->msix_table_len; i++) {
2071		if (msix->msix_table[i].mte_vector == 0)
2072			continue;
2073		resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
2074	}
2075	free(msix->msix_table, M_DEVBUF);
2076	msix->msix_table_len = 0;
2077
2078	/* Release the IRQs. */
2079	for (i = 0; i < msix->msix_alloc; i++)
2080		PCIB_RELEASE_MSIX(device_get_parent(dev), child,
2081		    msix->msix_vectors[i].mv_irq);
2082	free(msix->msix_vectors, M_DEVBUF);
2083	msix->msix_alloc = 0;
2084	return (0);
2085}
2086
2087/*
2088 * Return the max supported MSI-X messages this device supports.
2089 * Basically, assuming the MD code can alloc messages, this function
2090 * should return the maximum value that pci_alloc_msix() can return.
2091 * Thus, it is subject to the tunables, etc.
2092 */
2093int
2094pci_msix_count_method(device_t dev, device_t child)
2095{
2096	struct pci_devinfo *dinfo = device_get_ivars(child);
2097	struct pcicfg_msix *msix = &dinfo->cfg.msix;
2098
2099	if (pci_do_msix && msix->msix_location != 0)
2100		return (msix->msix_msgnum);
2101	return (0);
2102}
2103
2104int
2105pci_msix_pba_bar_method(device_t dev, device_t child)
2106{
2107	struct pci_devinfo *dinfo = device_get_ivars(child);
2108	struct pcicfg_msix *msix = &dinfo->cfg.msix;
2109
2110	if (pci_do_msix && msix->msix_location != 0)
2111		return (msix->msix_pba_bar);
2112	return (-1);
2113}
2114
2115int
2116pci_msix_table_bar_method(device_t dev, device_t child)
2117{
2118	struct pci_devinfo *dinfo = device_get_ivars(child);
2119	struct pcicfg_msix *msix = &dinfo->cfg.msix;
2120
2121	if (pci_do_msix && msix->msix_location != 0)
2122		return (msix->msix_table_bar);
2123	return (-1);
2124}
2125
2126/*
2127 * HyperTransport MSI mapping control
2128 */
2129void
2130pci_ht_map_msi(device_t dev, uint64_t addr)
2131{
2132	struct pci_devinfo *dinfo = device_get_ivars(dev);
2133	struct pcicfg_ht *ht = &dinfo->cfg.ht;
2134
2135	if (!ht->ht_msimap)
2136		return;
2137
2138	if (addr && !(ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) &&
2139	    ht->ht_msiaddr >> 20 == addr >> 20) {
2140		/* Enable MSI -> HT mapping. */
2141		ht->ht_msictrl |= PCIM_HTCMD_MSI_ENABLE;
2142		pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND,
2143		    ht->ht_msictrl, 2);
2144	}
2145
2146	if (!addr && ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) {
2147		/* Disable MSI -> HT mapping. */
2148		ht->ht_msictrl &= ~PCIM_HTCMD_MSI_ENABLE;
2149		pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND,
2150		    ht->ht_msictrl, 2);
2151	}
2152}
2153
2154int
2155pci_get_max_payload(device_t dev)
2156{
2157	struct pci_devinfo *dinfo = device_get_ivars(dev);
2158	int cap;
2159	uint16_t val;
2160
2161	cap = dinfo->cfg.pcie.pcie_location;
2162	if (cap == 0)
2163		return (0);
2164	val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
2165	val &= PCIEM_CTL_MAX_PAYLOAD;
2166	val >>= 5;
2167	return (1 << (val + 7));
2168}
2169
2170int
2171pci_get_max_read_req(device_t dev)
2172{
2173	struct pci_devinfo *dinfo = device_get_ivars(dev);
2174	int cap;
2175	uint16_t val;
2176
2177	cap = dinfo->cfg.pcie.pcie_location;
2178	if (cap == 0)
2179		return (0);
2180	val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
2181	val &= PCIEM_CTL_MAX_READ_REQUEST;
2182	val >>= 12;
2183	return (1 << (val + 7));
2184}
2185
2186int
2187pci_set_max_read_req(device_t dev, int size)
2188{
2189	struct pci_devinfo *dinfo = device_get_ivars(dev);
2190	int cap;
2191	uint16_t val;
2192
2193	cap = dinfo->cfg.pcie.pcie_location;
2194	if (cap == 0)
2195		return (0);
2196	if (size < 128)
2197		size = 128;
2198	if (size > 4096)
2199		size = 4096;
2200	size = (1 << (fls(size) - 1));
2201	val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
2202	val &= ~PCIEM_CTL_MAX_READ_REQUEST;
2203	val |= (fls(size) - 8) << 12;
2204	pci_write_config(dev, cap + PCIER_DEVICE_CTL, val, 2);
2205	return (size);
2206}
2207
2208uint32_t
2209pcie_read_config(device_t dev, int reg, int width)
2210{
2211	struct pci_devinfo *dinfo = device_get_ivars(dev);
2212	int cap;
2213
2214	cap = dinfo->cfg.pcie.pcie_location;
2215	if (cap == 0) {
2216		if (width == 2)
2217			return (0xffff);
2218		return (0xffffffff);
2219	}
2220
2221	return (pci_read_config(dev, cap + reg, width));
2222}
2223
2224void
2225pcie_write_config(device_t dev, int reg, uint32_t value, int width)
2226{
2227	struct pci_devinfo *dinfo = device_get_ivars(dev);
2228	int cap;
2229
2230	cap = dinfo->cfg.pcie.pcie_location;
2231	if (cap == 0)
2232		return;
2233	pci_write_config(dev, cap + reg, value, width);
2234}
2235
2236/*
2237 * Adjusts a PCI-e capability register by clearing the bits in mask
2238 * and setting the bits in (value & mask).  Bits not set in mask are
2239 * not adjusted.
2240 *
2241 * Returns the old value on success or all ones on failure.
2242 */
2243uint32_t
2244pcie_adjust_config(device_t dev, int reg, uint32_t mask, uint32_t value,
2245    int width)
2246{
2247	struct pci_devinfo *dinfo = device_get_ivars(dev);
2248	uint32_t old, new;
2249	int cap;
2250
2251	cap = dinfo->cfg.pcie.pcie_location;
2252	if (cap == 0) {
2253		if (width == 2)
2254			return (0xffff);
2255		return (0xffffffff);
2256	}
2257
2258	old = pci_read_config(dev, cap + reg, width);
2259	new = old & ~mask;
2260	new |= (value & mask);
2261	pci_write_config(dev, cap + reg, new, width);
2262	return (old);
2263}
2264
2265/*
2266 * Support for MSI message signalled interrupts.
2267 */
2268void
2269pci_enable_msi_method(device_t dev, device_t child, uint64_t address,
2270    uint16_t data)
2271{
2272	struct pci_devinfo *dinfo = device_get_ivars(child);
2273	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2274
2275	/* Write data and address values. */
2276	pci_write_config(child, msi->msi_location + PCIR_MSI_ADDR,
2277	    address & 0xffffffff, 4);
2278	if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) {
2279		pci_write_config(child, msi->msi_location + PCIR_MSI_ADDR_HIGH,
2280		    address >> 32, 4);
2281		pci_write_config(child, msi->msi_location + PCIR_MSI_DATA_64BIT,
2282		    data, 2);
2283	} else
2284		pci_write_config(child, msi->msi_location + PCIR_MSI_DATA, data,
2285		    2);
2286
2287	/* Enable MSI in the control register. */
2288	msi->msi_ctrl |= PCIM_MSICTRL_MSI_ENABLE;
2289	pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL,
2290	    msi->msi_ctrl, 2);
2291
2292	/* Enable MSI -> HT mapping. */
2293	pci_ht_map_msi(child, address);
2294}
2295
2296void
2297pci_disable_msi_method(device_t dev, device_t child)
2298{
2299	struct pci_devinfo *dinfo = device_get_ivars(child);
2300	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2301
2302	/* Disable MSI -> HT mapping. */
2303	pci_ht_map_msi(child, 0);
2304
2305	/* Disable MSI in the control register. */
2306	msi->msi_ctrl &= ~PCIM_MSICTRL_MSI_ENABLE;
2307	pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL,
2308	    msi->msi_ctrl, 2);
2309}
2310
2311/*
2312 * Restore MSI registers during resume.  If MSI is enabled then
2313 * restore the data and address registers in addition to the control
2314 * register.
2315 */
2316static void
2317pci_resume_msi(device_t dev)
2318{
2319	struct pci_devinfo *dinfo = device_get_ivars(dev);
2320	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2321	uint64_t address;
2322	uint16_t data;
2323
2324	if (msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE) {
2325		address = msi->msi_addr;
2326		data = msi->msi_data;
2327		pci_write_config(dev, msi->msi_location + PCIR_MSI_ADDR,
2328		    address & 0xffffffff, 4);
2329		if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) {
2330			pci_write_config(dev, msi->msi_location +
2331			    PCIR_MSI_ADDR_HIGH, address >> 32, 4);
2332			pci_write_config(dev, msi->msi_location +
2333			    PCIR_MSI_DATA_64BIT, data, 2);
2334		} else
2335			pci_write_config(dev, msi->msi_location + PCIR_MSI_DATA,
2336			    data, 2);
2337	}
2338	pci_write_config(dev, msi->msi_location + PCIR_MSI_CTRL, msi->msi_ctrl,
2339	    2);
2340}
2341
2342static int
2343pci_remap_intr_method(device_t bus, device_t dev, u_int irq)
2344{
2345	struct pci_devinfo *dinfo = device_get_ivars(dev);
2346	pcicfgregs *cfg = &dinfo->cfg;
2347	struct resource_list_entry *rle;
2348	struct msix_table_entry *mte;
2349	struct msix_vector *mv;
2350	uint64_t addr;
2351	uint32_t data;
2352	int error, i, j;
2353
2354	/*
2355	 * Handle MSI first.  We try to find this IRQ among our list
2356	 * of MSI IRQs.  If we find it, we request updated address and
2357	 * data registers and apply the results.
2358	 */
2359	if (cfg->msi.msi_alloc > 0) {
2360
2361		/* If we don't have any active handlers, nothing to do. */
2362		if (cfg->msi.msi_handlers == 0)
2363			return (0);
2364		for (i = 0; i < cfg->msi.msi_alloc; i++) {
2365			rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ,
2366			    i + 1);
2367			if (rle->start == irq) {
2368				error = PCIB_MAP_MSI(device_get_parent(bus),
2369				    dev, irq, &addr, &data);
2370				if (error)
2371					return (error);
2372				pci_disable_msi(dev);
2373				dinfo->cfg.msi.msi_addr = addr;
2374				dinfo->cfg.msi.msi_data = data;
2375				pci_enable_msi(dev, addr, data);
2376				return (0);
2377			}
2378		}
2379		return (ENOENT);
2380	}
2381
2382	/*
2383	 * For MSI-X, we check to see if we have this IRQ.  If we do,
2384	 * we request the updated mapping info.  If that works, we go
2385	 * through all the slots that use this IRQ and update them.
2386	 */
2387	if (cfg->msix.msix_alloc > 0) {
2388		for (i = 0; i < cfg->msix.msix_alloc; i++) {
2389			mv = &cfg->msix.msix_vectors[i];
2390			if (mv->mv_irq == irq) {
2391				error = PCIB_MAP_MSI(device_get_parent(bus),
2392				    dev, irq, &addr, &data);
2393				if (error)
2394					return (error);
2395				mv->mv_address = addr;
2396				mv->mv_data = data;
2397				for (j = 0; j < cfg->msix.msix_table_len; j++) {
2398					mte = &cfg->msix.msix_table[j];
2399					if (mte->mte_vector != i + 1)
2400						continue;
2401					if (mte->mte_handlers == 0)
2402						continue;
2403					pci_mask_msix(dev, j);
2404					pci_enable_msix(dev, j, addr, data);
2405					pci_unmask_msix(dev, j);
2406				}
2407			}
2408		}
2409		return (ENOENT);
2410	}
2411
2412	return (ENOENT);
2413}
2414
2415/*
2416 * Returns true if the specified device is blacklisted because MSI
2417 * doesn't work.
2418 */
2419int
2420pci_msi_device_blacklisted(device_t dev)
2421{
2422
2423	if (!pci_honor_msi_blacklist)
2424		return (0);
2425
2426	return (pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_DISABLE_MSI));
2427}
2428
2429/*
2430 * Determine if MSI is blacklisted globally on this system.  Currently,
2431 * we just check for blacklisted chipsets as represented by the
2432 * host-PCI bridge at device 0:0:0.  In the future, it may become
2433 * necessary to check other system attributes, such as the kenv values
2434 * that give the motherboard manufacturer and model number.
2435 */
2436static int
2437pci_msi_blacklisted(void)
2438{
2439	device_t dev;
2440
2441	if (!pci_honor_msi_blacklist)
2442		return (0);
2443
2444	/* Blacklist all non-PCI-express and non-PCI-X chipsets. */
2445	if (!(pcie_chipset || pcix_chipset)) {
2446		if (vm_guest != VM_GUEST_NO) {
2447			/*
2448			 * Whitelist older chipsets in virtual
2449			 * machines known to support MSI.
2450			 */
2451			dev = pci_find_bsf(0, 0, 0);
2452			if (dev != NULL)
2453				return (!pci_has_quirk(pci_get_devid(dev),
2454					PCI_QUIRK_ENABLE_MSI_VM));
2455		}
2456		return (1);
2457	}
2458
2459	dev = pci_find_bsf(0, 0, 0);
2460	if (dev != NULL)
2461		return (pci_msi_device_blacklisted(dev));
2462	return (0);
2463}
2464
2465/*
2466 * Returns true if the specified device is blacklisted because MSI-X
2467 * doesn't work.  Note that this assumes that if MSI doesn't work,
2468 * MSI-X doesn't either.
2469 */
2470int
2471pci_msix_device_blacklisted(device_t dev)
2472{
2473
2474	if (!pci_honor_msi_blacklist)
2475		return (0);
2476
2477	if (pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_DISABLE_MSIX))
2478		return (1);
2479
2480	return (pci_msi_device_blacklisted(dev));
2481}
2482
2483/*
2484 * Determine if MSI-X is blacklisted globally on this system.  If MSI
2485 * is blacklisted, assume that MSI-X is as well.  Check for additional
2486 * chipsets where MSI works but MSI-X does not.
2487 */
2488static int
2489pci_msix_blacklisted(void)
2490{
2491	device_t dev;
2492
2493	if (!pci_honor_msi_blacklist)
2494		return (0);
2495
2496	dev = pci_find_bsf(0, 0, 0);
2497	if (dev != NULL && pci_has_quirk(pci_get_devid(dev),
2498	    PCI_QUIRK_DISABLE_MSIX))
2499		return (1);
2500
2501	return (pci_msi_blacklisted());
2502}
2503
2504/*
2505 * Attempt to allocate *count MSI messages.  The actual number allocated is
2506 * returned in *count.  After this function returns, each message will be
2507 * available to the driver as SYS_RES_IRQ resources starting at a rid 1.
2508 */
2509int
2510pci_alloc_msi_method(device_t dev, device_t child, int *count)
2511{
2512	struct pci_devinfo *dinfo = device_get_ivars(child);
2513	pcicfgregs *cfg = &dinfo->cfg;
2514	struct resource_list_entry *rle;
2515	int actual, error, i, irqs[32];
2516	uint16_t ctrl;
2517
2518	/* Don't let count == 0 get us into trouble. */
2519	if (*count == 0)
2520		return (EINVAL);
2521
2522	/* If rid 0 is allocated, then fail. */
2523	rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
2524	if (rle != NULL && rle->res != NULL)
2525		return (ENXIO);
2526
2527	/* Already have allocated messages? */
2528	if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0)
2529		return (ENXIO);
2530
2531	/* If MSI is blacklisted for this system, fail. */
2532	if (pci_msi_blacklisted())
2533		return (ENXIO);
2534
2535	/* MSI capability present? */
2536	if (cfg->msi.msi_location == 0 || !pci_do_msi)
2537		return (ENODEV);
2538
2539	if (bootverbose)
2540		device_printf(child,
2541		    "attempting to allocate %d MSI vectors (%d supported)\n",
2542		    *count, cfg->msi.msi_msgnum);
2543
2544	/* Don't ask for more than the device supports. */
2545	actual = min(*count, cfg->msi.msi_msgnum);
2546
2547	/* Don't ask for more than 32 messages. */
2548	actual = min(actual, 32);
2549
2550	/* MSI requires power of 2 number of messages. */
2551	if (!powerof2(actual))
2552		return (EINVAL);
2553
2554	for (;;) {
2555		/* Try to allocate N messages. */
2556		error = PCIB_ALLOC_MSI(device_get_parent(dev), child, actual,
2557		    actual, irqs);
2558		if (error == 0)
2559			break;
2560		if (actual == 1)
2561			return (error);
2562
2563		/* Try N / 2. */
2564		actual >>= 1;
2565	}
2566
2567	/*
2568	 * We now have N actual messages mapped onto SYS_RES_IRQ
2569	 * resources in the irqs[] array, so add new resources
2570	 * starting at rid 1.
2571	 */
2572	for (i = 0; i < actual; i++)
2573		resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1,
2574		    irqs[i], irqs[i], 1);
2575
2576	if (bootverbose) {
2577		if (actual == 1)
2578			device_printf(child, "using IRQ %d for MSI\n", irqs[0]);
2579		else {
2580			int run;
2581
2582			/*
2583			 * Be fancy and try to print contiguous runs
2584			 * of IRQ values as ranges.  'run' is true if
2585			 * we are in a range.
2586			 */
2587			device_printf(child, "using IRQs %d", irqs[0]);
2588			run = 0;
2589			for (i = 1; i < actual; i++) {
2590
2591				/* Still in a run? */
2592				if (irqs[i] == irqs[i - 1] + 1) {
2593					run = 1;
2594					continue;
2595				}
2596
2597				/* Finish previous range. */
2598				if (run) {
2599					printf("-%d", irqs[i - 1]);
2600					run = 0;
2601				}
2602
2603				/* Start new range. */
2604				printf(",%d", irqs[i]);
2605			}
2606
2607			/* Unfinished range? */
2608			if (run)
2609				printf("-%d", irqs[actual - 1]);
2610			printf(" for MSI\n");
2611		}
2612	}
2613
2614	/* Update control register with actual count. */
2615	ctrl = cfg->msi.msi_ctrl;
2616	ctrl &= ~PCIM_MSICTRL_MME_MASK;
2617	ctrl |= (ffs(actual) - 1) << 4;
2618	cfg->msi.msi_ctrl = ctrl;
2619	pci_write_config(child, cfg->msi.msi_location + PCIR_MSI_CTRL, ctrl, 2);
2620
2621	/* Update counts of alloc'd messages. */
2622	cfg->msi.msi_alloc = actual;
2623	cfg->msi.msi_handlers = 0;
2624	*count = actual;
2625	return (0);
2626}
2627
2628/* Release the MSI messages associated with this device. */
2629int
2630pci_release_msi_method(device_t dev, device_t child)
2631{
2632	struct pci_devinfo *dinfo = device_get_ivars(child);
2633	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2634	struct resource_list_entry *rle;
2635	int error, i, irqs[32];
2636
2637	/* Try MSI-X first. */
2638	error = pci_release_msix(dev, child);
2639	if (error != ENODEV)
2640		return (error);
2641
2642	/* Do we have any messages to release? */
2643	if (msi->msi_alloc == 0)
2644		return (ENODEV);
2645	KASSERT(msi->msi_alloc <= 32, ("more than 32 alloc'd messages"));
2646
2647	/* Make sure none of the resources are allocated. */
2648	if (msi->msi_handlers > 0)
2649		return (EBUSY);
2650	for (i = 0; i < msi->msi_alloc; i++) {
2651		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
2652		KASSERT(rle != NULL, ("missing MSI resource"));
2653		if (rle->res != NULL)
2654			return (EBUSY);
2655		irqs[i] = rle->start;
2656	}
2657
2658	/* Update control register with 0 count. */
2659	KASSERT(!(msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE),
2660	    ("%s: MSI still enabled", __func__));
2661	msi->msi_ctrl &= ~PCIM_MSICTRL_MME_MASK;
2662	pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL,
2663	    msi->msi_ctrl, 2);
2664
2665	/* Release the messages. */
2666	PCIB_RELEASE_MSI(device_get_parent(dev), child, msi->msi_alloc, irqs);
2667	for (i = 0; i < msi->msi_alloc; i++)
2668		resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
2669
2670	/* Update alloc count. */
2671	msi->msi_alloc = 0;
2672	msi->msi_addr = 0;
2673	msi->msi_data = 0;
2674	return (0);
2675}
2676
2677/*
2678 * Return the max supported MSI messages this device supports.
2679 * Basically, assuming the MD code can alloc messages, this function
2680 * should return the maximum value that pci_alloc_msi() can return.
2681 * Thus, it is subject to the tunables, etc.
2682 */
2683int
2684pci_msi_count_method(device_t dev, device_t child)
2685{
2686	struct pci_devinfo *dinfo = device_get_ivars(child);
2687	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2688
2689	if (pci_do_msi && msi->msi_location != 0)
2690		return (msi->msi_msgnum);
2691	return (0);
2692}
2693
2694/* free pcicfgregs structure and all depending data structures */
2695
2696int
2697pci_freecfg(struct pci_devinfo *dinfo)
2698{
2699	struct devlist *devlist_head;
2700	struct pci_map *pm, *next;
2701	int i;
2702
2703	devlist_head = &pci_devq;
2704
2705	if (dinfo->cfg.vpd.vpd_reg) {
2706		free(dinfo->cfg.vpd.vpd_ident, M_DEVBUF);
2707		for (i = 0; i < dinfo->cfg.vpd.vpd_rocnt; i++)
2708			free(dinfo->cfg.vpd.vpd_ros[i].value, M_DEVBUF);
2709		free(dinfo->cfg.vpd.vpd_ros, M_DEVBUF);
2710		for (i = 0; i < dinfo->cfg.vpd.vpd_wcnt; i++)
2711			free(dinfo->cfg.vpd.vpd_w[i].value, M_DEVBUF);
2712		free(dinfo->cfg.vpd.vpd_w, M_DEVBUF);
2713	}
2714	STAILQ_FOREACH_SAFE(pm, &dinfo->cfg.maps, pm_link, next) {
2715		free(pm, M_DEVBUF);
2716	}
2717	STAILQ_REMOVE(devlist_head, dinfo, pci_devinfo, pci_links);
2718	free(dinfo, M_DEVBUF);
2719
2720	/* increment the generation count */
2721	pci_generation++;
2722
2723	/* we're losing one device */
2724	pci_numdevs--;
2725	return (0);
2726}
2727
2728/*
2729 * PCI power manangement
2730 */
2731int
2732pci_set_powerstate_method(device_t dev, device_t child, int state)
2733{
2734	struct pci_devinfo *dinfo = device_get_ivars(child);
2735	pcicfgregs *cfg = &dinfo->cfg;
2736	uint16_t status;
2737	int oldstate, highest, delay;
2738
2739	if (cfg->pp.pp_cap == 0)
2740		return (EOPNOTSUPP);
2741
2742	/*
2743	 * Optimize a no state change request away.  While it would be OK to
2744	 * write to the hardware in theory, some devices have shown odd
2745	 * behavior when going from D3 -> D3.
2746	 */
2747	oldstate = pci_get_powerstate(child);
2748	if (oldstate == state)
2749		return (0);
2750
2751	/*
2752	 * The PCI power management specification states that after a state
2753	 * transition between PCI power states, system software must
2754	 * guarantee a minimal delay before the function accesses the device.
2755	 * Compute the worst case delay that we need to guarantee before we
2756	 * access the device.  Many devices will be responsive much more
2757	 * quickly than this delay, but there are some that don't respond
2758	 * instantly to state changes.  Transitions to/from D3 state require
2759	 * 10ms, while D2 requires 200us, and D0/1 require none.  The delay
2760	 * is done below with DELAY rather than a sleeper function because
2761	 * this function can be called from contexts where we cannot sleep.
2762	 */
2763	highest = (oldstate > state) ? oldstate : state;
2764	if (highest == PCI_POWERSTATE_D3)
2765	    delay = 10000;
2766	else if (highest == PCI_POWERSTATE_D2)
2767	    delay = 200;
2768	else
2769	    delay = 0;
2770	status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_status, 2)
2771	    & ~PCIM_PSTAT_DMASK;
2772	switch (state) {
2773	case PCI_POWERSTATE_D0:
2774		status |= PCIM_PSTAT_D0;
2775		break;
2776	case PCI_POWERSTATE_D1:
2777		if ((cfg->pp.pp_cap & PCIM_PCAP_D1SUPP) == 0)
2778			return (EOPNOTSUPP);
2779		status |= PCIM_PSTAT_D1;
2780		break;
2781	case PCI_POWERSTATE_D2:
2782		if ((cfg->pp.pp_cap & PCIM_PCAP_D2SUPP) == 0)
2783			return (EOPNOTSUPP);
2784		status |= PCIM_PSTAT_D2;
2785		break;
2786	case PCI_POWERSTATE_D3:
2787		status |= PCIM_PSTAT_D3;
2788		break;
2789	default:
2790		return (EINVAL);
2791	}
2792
2793	if (bootverbose)
2794		pci_printf(cfg, "Transition from D%d to D%d\n", oldstate,
2795		    state);
2796
2797	PCI_WRITE_CONFIG(dev, child, cfg->pp.pp_status, status, 2);
2798	if (delay)
2799		DELAY(delay);
2800	return (0);
2801}
2802
2803int
2804pci_get_powerstate_method(device_t dev, device_t child)
2805{
2806	struct pci_devinfo *dinfo = device_get_ivars(child);
2807	pcicfgregs *cfg = &dinfo->cfg;
2808	uint16_t status;
2809	int result;
2810
2811	if (cfg->pp.pp_cap != 0) {
2812		status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_status, 2);
2813		switch (status & PCIM_PSTAT_DMASK) {
2814		case PCIM_PSTAT_D0:
2815			result = PCI_POWERSTATE_D0;
2816			break;
2817		case PCIM_PSTAT_D1:
2818			result = PCI_POWERSTATE_D1;
2819			break;
2820		case PCIM_PSTAT_D2:
2821			result = PCI_POWERSTATE_D2;
2822			break;
2823		case PCIM_PSTAT_D3:
2824			result = PCI_POWERSTATE_D3;
2825			break;
2826		default:
2827			result = PCI_POWERSTATE_UNKNOWN;
2828			break;
2829		}
2830	} else {
2831		/* No support, device is always at D0 */
2832		result = PCI_POWERSTATE_D0;
2833	}
2834	return (result);
2835}
2836
2837/*
2838 * Some convenience functions for PCI device drivers.
2839 */
2840
2841static __inline void
2842pci_set_command_bit(device_t dev, device_t child, uint16_t bit)
2843{
2844	uint16_t	command;
2845
2846	command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
2847	command |= bit;
2848	PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
2849}
2850
2851static __inline void
2852pci_clear_command_bit(device_t dev, device_t child, uint16_t bit)
2853{
2854	uint16_t	command;
2855
2856	command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
2857	command &= ~bit;
2858	PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
2859}
2860
2861int
2862pci_enable_busmaster_method(device_t dev, device_t child)
2863{
2864	pci_set_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
2865	return (0);
2866}
2867
2868int
2869pci_disable_busmaster_method(device_t dev, device_t child)
2870{
2871	pci_clear_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
2872	return (0);
2873}
2874
2875int
2876pci_enable_io_method(device_t dev, device_t child, int space)
2877{
2878	uint16_t bit;
2879
2880	switch(space) {
2881	case SYS_RES_IOPORT:
2882		bit = PCIM_CMD_PORTEN;
2883		break;
2884	case SYS_RES_MEMORY:
2885		bit = PCIM_CMD_MEMEN;
2886		break;
2887	default:
2888		return (EINVAL);
2889	}
2890	pci_set_command_bit(dev, child, bit);
2891	return (0);
2892}
2893
2894int
2895pci_disable_io_method(device_t dev, device_t child, int space)
2896{
2897	uint16_t bit;
2898
2899	switch(space) {
2900	case SYS_RES_IOPORT:
2901		bit = PCIM_CMD_PORTEN;
2902		break;
2903	case SYS_RES_MEMORY:
2904		bit = PCIM_CMD_MEMEN;
2905		break;
2906	default:
2907		return (EINVAL);
2908	}
2909	pci_clear_command_bit(dev, child, bit);
2910	return (0);
2911}
2912
2913/*
2914 * New style pci driver.  Parent device is either a pci-host-bridge or a
2915 * pci-pci-bridge.  Both kinds are represented by instances of pcib.
2916 */
2917
2918void
2919pci_print_verbose(struct pci_devinfo *dinfo)
2920{
2921
2922	if (bootverbose) {
2923		pcicfgregs *cfg = &dinfo->cfg;
2924
2925		printf("found->\tvendor=0x%04x, dev=0x%04x, revid=0x%02x\n",
2926		    cfg->vendor, cfg->device, cfg->revid);
2927		printf("\tdomain=%d, bus=%d, slot=%d, func=%d\n",
2928		    cfg->domain, cfg->bus, cfg->slot, cfg->func);
2929		printf("\tclass=%02x-%02x-%02x, hdrtype=0x%02x, mfdev=%d\n",
2930		    cfg->baseclass, cfg->subclass, cfg->progif, cfg->hdrtype,
2931		    cfg->mfdev);
2932		printf("\tcmdreg=0x%04x, statreg=0x%04x, cachelnsz=%d (dwords)\n",
2933		    cfg->cmdreg, cfg->statreg, cfg->cachelnsz);
2934		printf("\tlattimer=0x%02x (%d ns), mingnt=0x%02x (%d ns), maxlat=0x%02x (%d ns)\n",
2935		    cfg->lattimer, cfg->lattimer * 30, cfg->mingnt,
2936		    cfg->mingnt * 250, cfg->maxlat, cfg->maxlat * 250);
2937		if (cfg->intpin > 0)
2938			printf("\tintpin=%c, irq=%d\n",
2939			    cfg->intpin +'a' -1, cfg->intline);
2940		if (cfg->pp.pp_cap) {
2941			uint16_t status;
2942
2943			status = pci_read_config(cfg->dev, cfg->pp.pp_status, 2);
2944			printf("\tpowerspec %d  supports D0%s%s D3  current D%d\n",
2945			    cfg->pp.pp_cap & PCIM_PCAP_SPEC,
2946			    cfg->pp.pp_cap & PCIM_PCAP_D1SUPP ? " D1" : "",
2947			    cfg->pp.pp_cap & PCIM_PCAP_D2SUPP ? " D2" : "",
2948			    status & PCIM_PSTAT_DMASK);
2949		}
2950		if (cfg->msi.msi_location) {
2951			int ctrl;
2952
2953			ctrl = cfg->msi.msi_ctrl;
2954			printf("\tMSI supports %d message%s%s%s\n",
2955			    cfg->msi.msi_msgnum,
2956			    (cfg->msi.msi_msgnum == 1) ? "" : "s",
2957			    (ctrl & PCIM_MSICTRL_64BIT) ? ", 64 bit" : "",
2958			    (ctrl & PCIM_MSICTRL_VECTOR) ? ", vector masks":"");
2959		}
2960		if (cfg->msix.msix_location) {
2961			printf("\tMSI-X supports %d message%s ",
2962			    cfg->msix.msix_msgnum,
2963			    (cfg->msix.msix_msgnum == 1) ? "" : "s");
2964			if (cfg->msix.msix_table_bar == cfg->msix.msix_pba_bar)
2965				printf("in map 0x%x\n",
2966				    cfg->msix.msix_table_bar);
2967			else
2968				printf("in maps 0x%x and 0x%x\n",
2969				    cfg->msix.msix_table_bar,
2970				    cfg->msix.msix_pba_bar);
2971		}
2972	}
2973}
2974
2975static int
2976pci_porten(device_t dev)
2977{
2978	return (pci_read_config(dev, PCIR_COMMAND, 2) & PCIM_CMD_PORTEN) != 0;
2979}
2980
2981static int
2982pci_memen(device_t dev)
2983{
2984	return (pci_read_config(dev, PCIR_COMMAND, 2) & PCIM_CMD_MEMEN) != 0;
2985}
2986
2987void
2988pci_read_bar(device_t dev, int reg, pci_addr_t *mapp, pci_addr_t *testvalp,
2989    int *bar64)
2990{
2991	struct pci_devinfo *dinfo;
2992	pci_addr_t map, testval;
2993	int ln2range;
2994	uint16_t cmd;
2995
2996	/*
2997	 * The device ROM BAR is special.  It is always a 32-bit
2998	 * memory BAR.  Bit 0 is special and should not be set when
2999	 * sizing the BAR.
3000	 */
3001	dinfo = device_get_ivars(dev);
3002	if (PCIR_IS_BIOS(&dinfo->cfg, reg)) {
3003		map = pci_read_config(dev, reg, 4);
3004		pci_write_config(dev, reg, 0xfffffffe, 4);
3005		testval = pci_read_config(dev, reg, 4);
3006		pci_write_config(dev, reg, map, 4);
3007		*mapp = map;
3008		*testvalp = testval;
3009		if (bar64 != NULL)
3010			*bar64 = 0;
3011		return;
3012	}
3013
3014	map = pci_read_config(dev, reg, 4);
3015	ln2range = pci_maprange(map);
3016	if (ln2range == 64)
3017		map |= (pci_addr_t)pci_read_config(dev, reg + 4, 4) << 32;
3018
3019	/*
3020	 * Disable decoding via the command register before
3021	 * determining the BAR's length since we will be placing it in
3022	 * a weird state.
3023	 */
3024	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
3025	pci_write_config(dev, PCIR_COMMAND,
3026	    cmd & ~(PCI_BAR_MEM(map) ? PCIM_CMD_MEMEN : PCIM_CMD_PORTEN), 2);
3027
3028	/*
3029	 * Determine the BAR's length by writing all 1's.  The bottom
3030	 * log_2(size) bits of the BAR will stick as 0 when we read
3031	 * the value back.
3032	 */
3033	pci_write_config(dev, reg, 0xffffffff, 4);
3034	testval = pci_read_config(dev, reg, 4);
3035	if (ln2range == 64) {
3036		pci_write_config(dev, reg + 4, 0xffffffff, 4);
3037		testval |= (pci_addr_t)pci_read_config(dev, reg + 4, 4) << 32;
3038	}
3039
3040	/*
3041	 * Restore the original value of the BAR.  We may have reprogrammed
3042	 * the BAR of the low-level console device and when booting verbose,
3043	 * we need the console device addressable.
3044	 */
3045	pci_write_config(dev, reg, map, 4);
3046	if (ln2range == 64)
3047		pci_write_config(dev, reg + 4, map >> 32, 4);
3048	pci_write_config(dev, PCIR_COMMAND, cmd, 2);
3049
3050	*mapp = map;
3051	*testvalp = testval;
3052	if (bar64 != NULL)
3053		*bar64 = (ln2range == 64);
3054}
3055
3056static void
3057pci_write_bar(device_t dev, struct pci_map *pm, pci_addr_t base)
3058{
3059	struct pci_devinfo *dinfo;
3060	int ln2range;
3061
3062	/* The device ROM BAR is always a 32-bit memory BAR. */
3063	dinfo = device_get_ivars(dev);
3064	if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg))
3065		ln2range = 32;
3066	else
3067		ln2range = pci_maprange(pm->pm_value);
3068	pci_write_config(dev, pm->pm_reg, base, 4);
3069	if (ln2range == 64)
3070		pci_write_config(dev, pm->pm_reg + 4, base >> 32, 4);
3071	pm->pm_value = pci_read_config(dev, pm->pm_reg, 4);
3072	if (ln2range == 64)
3073		pm->pm_value |= (pci_addr_t)pci_read_config(dev,
3074		    pm->pm_reg + 4, 4) << 32;
3075}
3076
3077struct pci_map *
3078pci_find_bar(device_t dev, int reg)
3079{
3080	struct pci_devinfo *dinfo;
3081	struct pci_map *pm;
3082
3083	dinfo = device_get_ivars(dev);
3084	STAILQ_FOREACH(pm, &dinfo->cfg.maps, pm_link) {
3085		if (pm->pm_reg == reg)
3086			return (pm);
3087	}
3088	return (NULL);
3089}
3090
3091int
3092pci_bar_enabled(device_t dev, struct pci_map *pm)
3093{
3094	struct pci_devinfo *dinfo;
3095	uint16_t cmd;
3096
3097	dinfo = device_get_ivars(dev);
3098	if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg) &&
3099	    !(pm->pm_value & PCIM_BIOS_ENABLE))
3100		return (0);
3101	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
3102	if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg) || PCI_BAR_MEM(pm->pm_value))
3103		return ((cmd & PCIM_CMD_MEMEN) != 0);
3104	else
3105		return ((cmd & PCIM_CMD_PORTEN) != 0);
3106}
3107
3108struct pci_map *
3109pci_add_bar(device_t dev, int reg, pci_addr_t value, pci_addr_t size)
3110{
3111	struct pci_devinfo *dinfo;
3112	struct pci_map *pm, *prev;
3113
3114	dinfo = device_get_ivars(dev);
3115	pm = malloc(sizeof(*pm), M_DEVBUF, M_WAITOK | M_ZERO);
3116	pm->pm_reg = reg;
3117	pm->pm_value = value;
3118	pm->pm_size = size;
3119	STAILQ_FOREACH(prev, &dinfo->cfg.maps, pm_link) {
3120		KASSERT(prev->pm_reg != pm->pm_reg, ("duplicate map %02x",
3121		    reg));
3122		if (STAILQ_NEXT(prev, pm_link) == NULL ||
3123		    STAILQ_NEXT(prev, pm_link)->pm_reg > pm->pm_reg)
3124			break;
3125	}
3126	if (prev != NULL)
3127		STAILQ_INSERT_AFTER(&dinfo->cfg.maps, prev, pm, pm_link);
3128	else
3129		STAILQ_INSERT_TAIL(&dinfo->cfg.maps, pm, pm_link);
3130	return (pm);
3131}
3132
3133static void
3134pci_restore_bars(device_t dev)
3135{
3136	struct pci_devinfo *dinfo;
3137	struct pci_map *pm;
3138	int ln2range;
3139
3140	dinfo = device_get_ivars(dev);
3141	STAILQ_FOREACH(pm, &dinfo->cfg.maps, pm_link) {
3142		if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg))
3143			ln2range = 32;
3144		else
3145			ln2range = pci_maprange(pm->pm_value);
3146		pci_write_config(dev, pm->pm_reg, pm->pm_value, 4);
3147		if (ln2range == 64)
3148			pci_write_config(dev, pm->pm_reg + 4,
3149			    pm->pm_value >> 32, 4);
3150	}
3151}
3152
3153/*
3154 * Add a resource based on a pci map register. Return 1 if the map
3155 * register is a 32bit map register or 2 if it is a 64bit register.
3156 */
3157static int
3158pci_add_map(device_t bus, device_t dev, int reg, struct resource_list *rl,
3159    int force, int prefetch)
3160{
3161	struct pci_map *pm;
3162	pci_addr_t base, map, testval;
3163	pci_addr_t start, end, count;
3164	int barlen, basezero, flags, maprange, mapsize, type;
3165	uint16_t cmd;
3166	struct resource *res;
3167
3168	/*
3169	 * The BAR may already exist if the device is a CardBus card
3170	 * whose CIS is stored in this BAR.
3171	 */
3172	pm = pci_find_bar(dev, reg);
3173	if (pm != NULL) {
3174		maprange = pci_maprange(pm->pm_value);
3175		barlen = maprange == 64 ? 2 : 1;
3176		return (barlen);
3177	}
3178
3179	pci_read_bar(dev, reg, &map, &testval, NULL);
3180	if (PCI_BAR_MEM(map)) {
3181		type = SYS_RES_MEMORY;
3182		if (map & PCIM_BAR_MEM_PREFETCH)
3183			prefetch = 1;
3184	} else
3185		type = SYS_RES_IOPORT;
3186	mapsize = pci_mapsize(testval);
3187	base = pci_mapbase(map);
3188#ifdef __PCI_BAR_ZERO_VALID
3189	basezero = 0;
3190#else
3191	basezero = base == 0;
3192#endif
3193	maprange = pci_maprange(map);
3194	barlen = maprange == 64 ? 2 : 1;
3195
3196	/*
3197	 * For I/O registers, if bottom bit is set, and the next bit up
3198	 * isn't clear, we know we have a BAR that doesn't conform to the
3199	 * spec, so ignore it.  Also, sanity check the size of the data
3200	 * areas to the type of memory involved.  Memory must be at least
3201	 * 16 bytes in size, while I/O ranges must be at least 4.
3202	 */
3203	if (PCI_BAR_IO(testval) && (testval & PCIM_BAR_IO_RESERVED) != 0)
3204		return (barlen);
3205	if ((type == SYS_RES_MEMORY && mapsize < 4) ||
3206	    (type == SYS_RES_IOPORT && mapsize < 2))
3207		return (barlen);
3208
3209	/* Save a record of this BAR. */
3210	pm = pci_add_bar(dev, reg, map, mapsize);
3211	if (bootverbose) {
3212		printf("\tmap[%02x]: type %s, range %2d, base %#jx, size %2d",
3213		    reg, pci_maptype(map), maprange, (uintmax_t)base, mapsize);
3214		if (type == SYS_RES_IOPORT && !pci_porten(dev))
3215			printf(", port disabled\n");
3216		else if (type == SYS_RES_MEMORY && !pci_memen(dev))
3217			printf(", memory disabled\n");
3218		else
3219			printf(", enabled\n");
3220	}
3221
3222	/*
3223	 * If base is 0, then we have problems if this architecture does
3224	 * not allow that.  It is best to ignore such entries for the
3225	 * moment.  These will be allocated later if the driver specifically
3226	 * requests them.  However, some removable busses look better when
3227	 * all resources are allocated, so allow '0' to be overriden.
3228	 *
3229	 * Similarly treat maps whose values is the same as the test value
3230	 * read back.  These maps have had all f's written to them by the
3231	 * BIOS in an attempt to disable the resources.
3232	 */
3233	if (!force && (basezero || map == testval))
3234		return (barlen);
3235	if ((u_long)base != base) {
3236		device_printf(bus,
3237		    "pci%d:%d:%d:%d bar %#x too many address bits",
3238		    pci_get_domain(dev), pci_get_bus(dev), pci_get_slot(dev),
3239		    pci_get_function(dev), reg);
3240		return (barlen);
3241	}
3242
3243	/*
3244	 * This code theoretically does the right thing, but has
3245	 * undesirable side effects in some cases where peripherals
3246	 * respond oddly to having these bits enabled.  Let the user
3247	 * be able to turn them off (since pci_enable_io_modes is 1 by
3248	 * default).
3249	 */
3250	if (pci_enable_io_modes) {
3251		/* Turn on resources that have been left off by a lazy BIOS */
3252		if (type == SYS_RES_IOPORT && !pci_porten(dev)) {
3253			cmd = pci_read_config(dev, PCIR_COMMAND, 2);
3254			cmd |= PCIM_CMD_PORTEN;
3255			pci_write_config(dev, PCIR_COMMAND, cmd, 2);
3256		}
3257		if (type == SYS_RES_MEMORY && !pci_memen(dev)) {
3258			cmd = pci_read_config(dev, PCIR_COMMAND, 2);
3259			cmd |= PCIM_CMD_MEMEN;
3260			pci_write_config(dev, PCIR_COMMAND, cmd, 2);
3261		}
3262	} else {
3263		if (type == SYS_RES_IOPORT && !pci_porten(dev))
3264			return (barlen);
3265		if (type == SYS_RES_MEMORY && !pci_memen(dev))
3266			return (barlen);
3267	}
3268
3269	count = (pci_addr_t)1 << mapsize;
3270	flags = RF_ALIGNMENT_LOG2(mapsize);
3271	if (prefetch)
3272		flags |= RF_PREFETCHABLE;
3273	if (basezero || base == pci_mapbase(testval) || pci_clear_bars) {
3274		start = 0;	/* Let the parent decide. */
3275		end = ~0;
3276	} else {
3277		start = base;
3278		end = base + count - 1;
3279	}
3280	resource_list_add(rl, type, reg, start, end, count);
3281
3282	/*
3283	 * Try to allocate the resource for this BAR from our parent
3284	 * so that this resource range is already reserved.  The
3285	 * driver for this device will later inherit this resource in
3286	 * pci_alloc_resource().
3287	 */
3288	res = resource_list_reserve(rl, bus, dev, type, &reg, start, end, count,
3289	    flags);
3290	if ((pci_do_realloc_bars
3291		|| pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_REALLOC_BAR))
3292	    && res == NULL && (start != 0 || end != ~0)) {
3293		/*
3294		 * If the allocation fails, try to allocate a resource for
3295		 * this BAR using any available range.  The firmware felt
3296		 * it was important enough to assign a resource, so don't
3297		 * disable decoding if we can help it.
3298		 */
3299		resource_list_delete(rl, type, reg);
3300		resource_list_add(rl, type, reg, 0, ~0, count);
3301		res = resource_list_reserve(rl, bus, dev, type, &reg, 0, ~0,
3302		    count, flags);
3303	}
3304	if (res == NULL) {
3305		/*
3306		 * If the allocation fails, delete the resource list entry
3307		 * and disable decoding for this device.
3308		 *
3309		 * If the driver requests this resource in the future,
3310		 * pci_reserve_map() will try to allocate a fresh
3311		 * resource range.
3312		 */
3313		resource_list_delete(rl, type, reg);
3314		pci_disable_io(dev, type);
3315		if (bootverbose)
3316			device_printf(bus,
3317			    "pci%d:%d:%d:%d bar %#x failed to allocate\n",
3318			    pci_get_domain(dev), pci_get_bus(dev),
3319			    pci_get_slot(dev), pci_get_function(dev), reg);
3320	} else {
3321		start = rman_get_start(res);
3322		pci_write_bar(dev, pm, start);
3323	}
3324	return (barlen);
3325}
3326
3327/*
3328 * For ATA devices we need to decide early what addressing mode to use.
3329 * Legacy demands that the primary and secondary ATA ports sits on the
3330 * same addresses that old ISA hardware did. This dictates that we use
3331 * those addresses and ignore the BAR's if we cannot set PCI native
3332 * addressing mode.
3333 */
3334static void
3335pci_ata_maps(device_t bus, device_t dev, struct resource_list *rl, int force,
3336    uint32_t prefetchmask)
3337{
3338	int rid, type, progif;
3339#if 0
3340	/* if this device supports PCI native addressing use it */
3341	progif = pci_read_config(dev, PCIR_PROGIF, 1);
3342	if ((progif & 0x8a) == 0x8a) {
3343		if (pci_mapbase(pci_read_config(dev, PCIR_BAR(0), 4)) &&
3344		    pci_mapbase(pci_read_config(dev, PCIR_BAR(2), 4))) {
3345			printf("Trying ATA native PCI addressing mode\n");
3346			pci_write_config(dev, PCIR_PROGIF, progif | 0x05, 1);
3347		}
3348	}
3349#endif
3350	progif = pci_read_config(dev, PCIR_PROGIF, 1);
3351	type = SYS_RES_IOPORT;
3352	if (progif & PCIP_STORAGE_IDE_MODEPRIM) {
3353		pci_add_map(bus, dev, PCIR_BAR(0), rl, force,
3354		    prefetchmask & (1 << 0));
3355		pci_add_map(bus, dev, PCIR_BAR(1), rl, force,
3356		    prefetchmask & (1 << 1));
3357	} else {
3358		rid = PCIR_BAR(0);
3359		resource_list_add(rl, type, rid, 0x1f0, 0x1f7, 8);
3360		(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x1f0,
3361		    0x1f7, 8, 0);
3362		rid = PCIR_BAR(1);
3363		resource_list_add(rl, type, rid, 0x3f6, 0x3f6, 1);
3364		(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x3f6,
3365		    0x3f6, 1, 0);
3366	}
3367	if (progif & PCIP_STORAGE_IDE_MODESEC) {
3368		pci_add_map(bus, dev, PCIR_BAR(2), rl, force,
3369		    prefetchmask & (1 << 2));
3370		pci_add_map(bus, dev, PCIR_BAR(3), rl, force,
3371		    prefetchmask & (1 << 3));
3372	} else {
3373		rid = PCIR_BAR(2);
3374		resource_list_add(rl, type, rid, 0x170, 0x177, 8);
3375		(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x170,
3376		    0x177, 8, 0);
3377		rid = PCIR_BAR(3);
3378		resource_list_add(rl, type, rid, 0x376, 0x376, 1);
3379		(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x376,
3380		    0x376, 1, 0);
3381	}
3382	pci_add_map(bus, dev, PCIR_BAR(4), rl, force,
3383	    prefetchmask & (1 << 4));
3384	pci_add_map(bus, dev, PCIR_BAR(5), rl, force,
3385	    prefetchmask & (1 << 5));
3386}
3387
3388static void
3389pci_assign_interrupt(device_t bus, device_t dev, int force_route)
3390{
3391	struct pci_devinfo *dinfo = device_get_ivars(dev);
3392	pcicfgregs *cfg = &dinfo->cfg;
3393	char tunable_name[64];
3394	int irq;
3395
3396	/* Has to have an intpin to have an interrupt. */
3397	if (cfg->intpin == 0)
3398		return;
3399
3400	/* Let the user override the IRQ with a tunable. */
3401	irq = PCI_INVALID_IRQ;
3402	snprintf(tunable_name, sizeof(tunable_name),
3403	    "hw.pci%d.%d.%d.INT%c.irq",
3404	    cfg->domain, cfg->bus, cfg->slot, cfg->intpin + 'A' - 1);
3405	if (TUNABLE_INT_FETCH(tunable_name, &irq) && (irq >= 255 || irq <= 0))
3406		irq = PCI_INVALID_IRQ;
3407
3408	/*
3409	 * If we didn't get an IRQ via the tunable, then we either use the
3410	 * IRQ value in the intline register or we ask the bus to route an
3411	 * interrupt for us.  If force_route is true, then we only use the
3412	 * value in the intline register if the bus was unable to assign an
3413	 * IRQ.
3414	 */
3415	if (!PCI_INTERRUPT_VALID(irq)) {
3416		if (!PCI_INTERRUPT_VALID(cfg->intline) || force_route)
3417			irq = PCI_ASSIGN_INTERRUPT(bus, dev);
3418		if (!PCI_INTERRUPT_VALID(irq))
3419			irq = cfg->intline;
3420	}
3421
3422	/* If after all that we don't have an IRQ, just bail. */
3423	if (!PCI_INTERRUPT_VALID(irq))
3424		return;
3425
3426	/* Update the config register if it changed. */
3427	if (irq != cfg->intline) {
3428		cfg->intline = irq;
3429		pci_write_config(dev, PCIR_INTLINE, irq, 1);
3430	}
3431
3432	/* Add this IRQ as rid 0 interrupt resource. */
3433	resource_list_add(&dinfo->resources, SYS_RES_IRQ, 0, irq, irq, 1);
3434}
3435
3436/* Perform early OHCI takeover from SMM. */
3437static void
3438ohci_early_takeover(device_t self)
3439{
3440	struct resource *res;
3441	uint32_t ctl;
3442	int rid;
3443	int i;
3444
3445	rid = PCIR_BAR(0);
3446	res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE);
3447	if (res == NULL)
3448		return;
3449
3450	ctl = bus_read_4(res, OHCI_CONTROL);
3451	if (ctl & OHCI_IR) {
3452		if (bootverbose)
3453			printf("ohci early: "
3454			    "SMM active, request owner change\n");
3455		bus_write_4(res, OHCI_COMMAND_STATUS, OHCI_OCR);
3456		for (i = 0; (i < 100) && (ctl & OHCI_IR); i++) {
3457			DELAY(1000);
3458			ctl = bus_read_4(res, OHCI_CONTROL);
3459		}
3460		if (ctl & OHCI_IR) {
3461			if (bootverbose)
3462				printf("ohci early: "
3463				    "SMM does not respond, resetting\n");
3464			bus_write_4(res, OHCI_CONTROL, OHCI_HCFS_RESET);
3465		}
3466		/* Disable interrupts */
3467		bus_write_4(res, OHCI_INTERRUPT_DISABLE, OHCI_ALL_INTRS);
3468	}
3469
3470	bus_release_resource(self, SYS_RES_MEMORY, rid, res);
3471}
3472
3473/* Perform early UHCI takeover from SMM. */
3474static void
3475uhci_early_takeover(device_t self)
3476{
3477	struct resource *res;
3478	int rid;
3479
3480	/*
3481	 * Set the PIRQD enable bit and switch off all the others. We don't
3482	 * want legacy support to interfere with us XXX Does this also mean
3483	 * that the BIOS won't touch the keyboard anymore if it is connected
3484	 * to the ports of the root hub?
3485	 */
3486	pci_write_config(self, PCI_LEGSUP, PCI_LEGSUP_USBPIRQDEN, 2);
3487
3488	/* Disable interrupts */
3489	rid = PCI_UHCI_BASE_REG;
3490	res = bus_alloc_resource_any(self, SYS_RES_IOPORT, &rid, RF_ACTIVE);
3491	if (res != NULL) {
3492		bus_write_2(res, UHCI_INTR, 0);
3493		bus_release_resource(self, SYS_RES_IOPORT, rid, res);
3494	}
3495}
3496
3497/* Perform early EHCI takeover from SMM. */
3498static void
3499ehci_early_takeover(device_t self)
3500{
3501	struct resource *res;
3502	uint32_t cparams;
3503	uint32_t eec;
3504	uint8_t eecp;
3505	uint8_t bios_sem;
3506	uint8_t offs;
3507	int rid;
3508	int i;
3509
3510	rid = PCIR_BAR(0);
3511	res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE);
3512	if (res == NULL)
3513		return;
3514
3515	cparams = bus_read_4(res, EHCI_HCCPARAMS);
3516
3517	/* Synchronise with the BIOS if it owns the controller. */
3518	for (eecp = EHCI_HCC_EECP(cparams); eecp != 0;
3519	    eecp = EHCI_EECP_NEXT(eec)) {
3520		eec = pci_read_config(self, eecp, 4);
3521		if (EHCI_EECP_ID(eec) != EHCI_EC_LEGSUP) {
3522			continue;
3523		}
3524		bios_sem = pci_read_config(self, eecp +
3525		    EHCI_LEGSUP_BIOS_SEM, 1);
3526		if (bios_sem == 0) {
3527			continue;
3528		}
3529		if (bootverbose)
3530			printf("ehci early: "
3531			    "SMM active, request owner change\n");
3532
3533		pci_write_config(self, eecp + EHCI_LEGSUP_OS_SEM, 1, 1);
3534
3535		for (i = 0; (i < 100) && (bios_sem != 0); i++) {
3536			DELAY(1000);
3537			bios_sem = pci_read_config(self, eecp +
3538			    EHCI_LEGSUP_BIOS_SEM, 1);
3539		}
3540
3541		if (bios_sem != 0) {
3542			if (bootverbose)
3543				printf("ehci early: "
3544				    "SMM does not respond\n");
3545		}
3546		/* Disable interrupts */
3547		offs = EHCI_CAPLENGTH(bus_read_4(res, EHCI_CAPLEN_HCIVERSION));
3548		bus_write_4(res, offs + EHCI_USBINTR, 0);
3549	}
3550	bus_release_resource(self, SYS_RES_MEMORY, rid, res);
3551}
3552
3553/* Perform early XHCI takeover from SMM. */
3554static void
3555xhci_early_takeover(device_t self)
3556{
3557	struct resource *res;
3558	uint32_t cparams;
3559	uint32_t eec;
3560	uint8_t eecp;
3561	uint8_t bios_sem;
3562	uint8_t offs;
3563	int rid;
3564	int i;
3565
3566	rid = PCIR_BAR(0);
3567	res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE);
3568	if (res == NULL)
3569		return;
3570
3571	cparams = bus_read_4(res, XHCI_HCSPARAMS0);
3572
3573	eec = -1;
3574
3575	/* Synchronise with the BIOS if it owns the controller. */
3576	for (eecp = XHCI_HCS0_XECP(cparams) << 2; eecp != 0 && XHCI_XECP_NEXT(eec);
3577	    eecp += XHCI_XECP_NEXT(eec) << 2) {
3578		eec = bus_read_4(res, eecp);
3579
3580		if (XHCI_XECP_ID(eec) != XHCI_ID_USB_LEGACY)
3581			continue;
3582
3583		bios_sem = bus_read_1(res, eecp + XHCI_XECP_BIOS_SEM);
3584		if (bios_sem == 0)
3585			continue;
3586
3587		if (bootverbose)
3588			printf("xhci early: "
3589			    "SMM active, request owner change\n");
3590
3591		bus_write_1(res, eecp + XHCI_XECP_OS_SEM, 1);
3592
3593		/* wait a maximum of 5 second */
3594
3595		for (i = 0; (i < 5000) && (bios_sem != 0); i++) {
3596			DELAY(1000);
3597			bios_sem = bus_read_1(res, eecp +
3598			    XHCI_XECP_BIOS_SEM);
3599		}
3600
3601		if (bios_sem != 0) {
3602			if (bootverbose)
3603				printf("xhci early: "
3604				    "SMM does not respond\n");
3605		}
3606
3607		/* Disable interrupts */
3608		offs = bus_read_1(res, XHCI_CAPLENGTH);
3609		bus_write_4(res, offs + XHCI_USBCMD, 0);
3610		bus_read_4(res, offs + XHCI_USBSTS);
3611	}
3612	bus_release_resource(self, SYS_RES_MEMORY, rid, res);
3613}
3614
3615#if defined(NEW_PCIB) && defined(PCI_RES_BUS)
3616static void
3617pci_reserve_secbus(device_t bus, device_t dev, pcicfgregs *cfg,
3618    struct resource_list *rl)
3619{
3620	struct resource *res;
3621	char *cp;
3622	rman_res_t start, end, count;
3623	int rid, sec_bus, sec_reg, sub_bus, sub_reg, sup_bus;
3624
3625	switch (cfg->hdrtype & PCIM_HDRTYPE) {
3626	case PCIM_HDRTYPE_BRIDGE:
3627		sec_reg = PCIR_SECBUS_1;
3628		sub_reg = PCIR_SUBBUS_1;
3629		break;
3630	case PCIM_HDRTYPE_CARDBUS:
3631		sec_reg = PCIR_SECBUS_2;
3632		sub_reg = PCIR_SUBBUS_2;
3633		break;
3634	default:
3635		return;
3636	}
3637
3638	/*
3639	 * If the existing bus range is valid, attempt to reserve it
3640	 * from our parent.  If this fails for any reason, clear the
3641	 * secbus and subbus registers.
3642	 *
3643	 * XXX: Should we reset sub_bus to sec_bus if it is < sec_bus?
3644	 * This would at least preserve the existing sec_bus if it is
3645	 * valid.
3646	 */
3647	sec_bus = PCI_READ_CONFIG(bus, dev, sec_reg, 1);
3648	sub_bus = PCI_READ_CONFIG(bus, dev, sub_reg, 1);
3649
3650	/* Quirk handling. */
3651	switch (pci_get_devid(dev)) {
3652	case 0x12258086:		/* Intel 82454KX/GX (Orion) */
3653		sup_bus = pci_read_config(dev, 0x41, 1);
3654		if (sup_bus != 0xff) {
3655			sec_bus = sup_bus + 1;
3656			sub_bus = sup_bus + 1;
3657			PCI_WRITE_CONFIG(bus, dev, sec_reg, sec_bus, 1);
3658			PCI_WRITE_CONFIG(bus, dev, sub_reg, sub_bus, 1);
3659		}
3660		break;
3661
3662	case 0x00dd10de:
3663		/* Compaq R3000 BIOS sets wrong subordinate bus number. */
3664		if ((cp = kern_getenv("smbios.planar.maker")) == NULL)
3665			break;
3666		if (strncmp(cp, "Compal", 6) != 0) {
3667			freeenv(cp);
3668			break;
3669		}
3670		freeenv(cp);
3671		if ((cp = kern_getenv("smbios.planar.product")) == NULL)
3672			break;
3673		if (strncmp(cp, "08A0", 4) != 0) {
3674			freeenv(cp);
3675			break;
3676		}
3677		freeenv(cp);
3678		if (sub_bus < 0xa) {
3679			sub_bus = 0xa;
3680			PCI_WRITE_CONFIG(bus, dev, sub_reg, sub_bus, 1);
3681		}
3682		break;
3683	}
3684
3685	if (bootverbose)
3686		printf("\tsecbus=%d, subbus=%d\n", sec_bus, sub_bus);
3687	if (sec_bus > 0 && sub_bus >= sec_bus) {
3688		start = sec_bus;
3689		end = sub_bus;
3690		count = end - start + 1;
3691
3692		resource_list_add(rl, PCI_RES_BUS, 0, 0, ~0, count);
3693
3694		/*
3695		 * If requested, clear secondary bus registers in
3696		 * bridge devices to force a complete renumbering
3697		 * rather than reserving the existing range.  However,
3698		 * preserve the existing size.
3699		 */
3700		if (pci_clear_buses)
3701			goto clear;
3702
3703		rid = 0;
3704		res = resource_list_reserve(rl, bus, dev, PCI_RES_BUS, &rid,
3705		    start, end, count, 0);
3706		if (res != NULL)
3707			return;
3708
3709		if (bootverbose)
3710			device_printf(bus,
3711			    "pci%d:%d:%d:%d secbus failed to allocate\n",
3712			    pci_get_domain(dev), pci_get_bus(dev),
3713			    pci_get_slot(dev), pci_get_function(dev));
3714	}
3715
3716clear:
3717	PCI_WRITE_CONFIG(bus, dev, sec_reg, 0, 1);
3718	PCI_WRITE_CONFIG(bus, dev, sub_reg, 0, 1);
3719}
3720
3721static struct resource *
3722pci_alloc_secbus(device_t dev, device_t child, int *rid, rman_res_t start,
3723    rman_res_t end, rman_res_t count, u_int flags)
3724{
3725	struct pci_devinfo *dinfo;
3726	pcicfgregs *cfg;
3727	struct resource_list *rl;
3728	struct resource *res;
3729	int sec_reg, sub_reg;
3730
3731	dinfo = device_get_ivars(child);
3732	cfg = &dinfo->cfg;
3733	rl = &dinfo->resources;
3734	switch (cfg->hdrtype & PCIM_HDRTYPE) {
3735	case PCIM_HDRTYPE_BRIDGE:
3736		sec_reg = PCIR_SECBUS_1;
3737		sub_reg = PCIR_SUBBUS_1;
3738		break;
3739	case PCIM_HDRTYPE_CARDBUS:
3740		sec_reg = PCIR_SECBUS_2;
3741		sub_reg = PCIR_SUBBUS_2;
3742		break;
3743	default:
3744		return (NULL);
3745	}
3746
3747	if (*rid != 0)
3748		return (NULL);
3749
3750	if (resource_list_find(rl, PCI_RES_BUS, *rid) == NULL)
3751		resource_list_add(rl, PCI_RES_BUS, *rid, start, end, count);
3752	if (!resource_list_reserved(rl, PCI_RES_BUS, *rid)) {
3753		res = resource_list_reserve(rl, dev, child, PCI_RES_BUS, rid,
3754		    start, end, count, flags & ~RF_ACTIVE);
3755		if (res == NULL) {
3756			resource_list_delete(rl, PCI_RES_BUS, *rid);
3757			device_printf(child, "allocating %ju bus%s failed\n",
3758			    count, count == 1 ? "" : "es");
3759			return (NULL);
3760		}
3761		if (bootverbose)
3762			device_printf(child,
3763			    "Lazy allocation of %ju bus%s at %ju\n", count,
3764			    count == 1 ? "" : "es", rman_get_start(res));
3765		PCI_WRITE_CONFIG(dev, child, sec_reg, rman_get_start(res), 1);
3766		PCI_WRITE_CONFIG(dev, child, sub_reg, rman_get_end(res), 1);
3767	}
3768	return (resource_list_alloc(rl, dev, child, PCI_RES_BUS, rid, start,
3769	    end, count, flags));
3770}
3771#endif
3772
3773static int
3774pci_ea_bei_to_rid(device_t dev, int bei)
3775{
3776#ifdef PCI_IOV
3777	struct pci_devinfo *dinfo;
3778	int iov_pos;
3779	struct pcicfg_iov *iov;
3780
3781	dinfo = device_get_ivars(dev);
3782	iov = dinfo->cfg.iov;
3783	if (iov != NULL)
3784		iov_pos = iov->iov_pos;
3785	else
3786		iov_pos = 0;
3787#endif
3788
3789	/* Check if matches BAR */
3790	if ((bei >= PCIM_EA_BEI_BAR_0) &&
3791	    (bei <= PCIM_EA_BEI_BAR_5))
3792		return (PCIR_BAR(bei));
3793
3794	/* Check ROM */
3795	if (bei == PCIM_EA_BEI_ROM)
3796		return (PCIR_BIOS);
3797
3798#ifdef PCI_IOV
3799	/* Check if matches VF_BAR */
3800	if ((iov != NULL) && (bei >= PCIM_EA_BEI_VF_BAR_0) &&
3801	    (bei <= PCIM_EA_BEI_VF_BAR_5))
3802		return (PCIR_SRIOV_BAR(bei - PCIM_EA_BEI_VF_BAR_0) +
3803		    iov_pos);
3804#endif
3805
3806	return (-1);
3807}
3808
3809int
3810pci_ea_is_enabled(device_t dev, int rid)
3811{
3812	struct pci_ea_entry *ea;
3813	struct pci_devinfo *dinfo;
3814
3815	dinfo = device_get_ivars(dev);
3816
3817	STAILQ_FOREACH(ea, &dinfo->cfg.ea.ea_entries, eae_link) {
3818		if (pci_ea_bei_to_rid(dev, ea->eae_bei) == rid)
3819			return ((ea->eae_flags & PCIM_EA_ENABLE) > 0);
3820	}
3821
3822	return (0);
3823}
3824
3825void
3826pci_add_resources_ea(device_t bus, device_t dev, int alloc_iov)
3827{
3828	struct pci_ea_entry *ea;
3829	struct pci_devinfo *dinfo;
3830	pci_addr_t start, end, count;
3831	struct resource_list *rl;
3832	int type, flags, rid;
3833	struct resource *res;
3834	uint32_t tmp;
3835#ifdef PCI_IOV
3836	struct pcicfg_iov *iov;
3837#endif
3838
3839	dinfo = device_get_ivars(dev);
3840	rl = &dinfo->resources;
3841	flags = 0;
3842
3843#ifdef PCI_IOV
3844	iov = dinfo->cfg.iov;
3845#endif
3846
3847	if (dinfo->cfg.ea.ea_location == 0)
3848		return;
3849
3850	STAILQ_FOREACH(ea, &dinfo->cfg.ea.ea_entries, eae_link) {
3851
3852		/*
3853		 * TODO: Ignore EA-BAR if is not enabled.
3854		 *   Currently the EA implementation supports
3855		 *   only situation, where EA structure contains
3856		 *   predefined entries. In case they are not enabled
3857		 *   leave them unallocated and proceed with
3858		 *   a legacy-BAR mechanism.
3859		 */
3860		if ((ea->eae_flags & PCIM_EA_ENABLE) == 0)
3861			continue;
3862
3863		switch ((ea->eae_flags & PCIM_EA_PP) >> PCIM_EA_PP_OFFSET) {
3864		case PCIM_EA_P_MEM_PREFETCH:
3865		case PCIM_EA_P_VF_MEM_PREFETCH:
3866			flags = RF_PREFETCHABLE;
3867			/* FALLTHROUGH */
3868		case PCIM_EA_P_VF_MEM:
3869		case PCIM_EA_P_MEM:
3870			type = SYS_RES_MEMORY;
3871			break;
3872		case PCIM_EA_P_IO:
3873			type = SYS_RES_IOPORT;
3874			break;
3875		default:
3876			continue;
3877		}
3878
3879		if (alloc_iov != 0) {
3880#ifdef PCI_IOV
3881			/* Allocating IOV, confirm BEI matches */
3882			if ((ea->eae_bei < PCIM_EA_BEI_VF_BAR_0) ||
3883			    (ea->eae_bei > PCIM_EA_BEI_VF_BAR_5))
3884				continue;
3885#else
3886			continue;
3887#endif
3888		} else {
3889			/* Allocating BAR, confirm BEI matches */
3890			if (((ea->eae_bei < PCIM_EA_BEI_BAR_0) ||
3891			    (ea->eae_bei > PCIM_EA_BEI_BAR_5)) &&
3892			    (ea->eae_bei != PCIM_EA_BEI_ROM))
3893				continue;
3894		}
3895
3896		rid = pci_ea_bei_to_rid(dev, ea->eae_bei);
3897		if (rid < 0)
3898			continue;
3899
3900		/* Skip resources already allocated by EA */
3901		if ((resource_list_find(rl, SYS_RES_MEMORY, rid) != NULL) ||
3902		    (resource_list_find(rl, SYS_RES_IOPORT, rid) != NULL))
3903			continue;
3904
3905		start = ea->eae_base;
3906		count = ea->eae_max_offset + 1;
3907#ifdef PCI_IOV
3908		if (iov != NULL)
3909			count = count * iov->iov_num_vfs;
3910#endif
3911		end = start + count - 1;
3912		if (count == 0)
3913			continue;
3914
3915		resource_list_add(rl, type, rid, start, end, count);
3916		res = resource_list_reserve(rl, bus, dev, type, &rid, start, end, count,
3917		    flags);
3918		if (res == NULL) {
3919			resource_list_delete(rl, type, rid);
3920
3921			/*
3922			 * Failed to allocate using EA, disable entry.
3923			 * Another attempt to allocation will be performed
3924			 * further, but this time using legacy BAR registers
3925			 */
3926			tmp = pci_read_config(dev, ea->eae_cfg_offset, 4);
3927			tmp &= ~PCIM_EA_ENABLE;
3928			pci_write_config(dev, ea->eae_cfg_offset, tmp, 4);
3929
3930			/*
3931			 * Disabling entry might fail in case it is hardwired.
3932			 * Read flags again to match current status.
3933			 */
3934			ea->eae_flags = pci_read_config(dev, ea->eae_cfg_offset, 4);
3935
3936			continue;
3937		}
3938
3939		/* As per specification, fill BAR with zeros */
3940		pci_write_config(dev, rid, 0, 4);
3941	}
3942}
3943
3944void
3945pci_add_resources(device_t bus, device_t dev, int force, uint32_t prefetchmask)
3946{
3947	struct pci_devinfo *dinfo;
3948	pcicfgregs *cfg;
3949	struct resource_list *rl;
3950	const struct pci_quirk *q;
3951	uint32_t devid;
3952	int i;
3953
3954	dinfo = device_get_ivars(dev);
3955	cfg = &dinfo->cfg;
3956	rl = &dinfo->resources;
3957	devid = (cfg->device << 16) | cfg->vendor;
3958
3959	/* Allocate resources using Enhanced Allocation */
3960	pci_add_resources_ea(bus, dev, 0);
3961
3962	/* ATA devices needs special map treatment */
3963	if ((pci_get_class(dev) == PCIC_STORAGE) &&
3964	    (pci_get_subclass(dev) == PCIS_STORAGE_IDE) &&
3965	    ((pci_get_progif(dev) & PCIP_STORAGE_IDE_MASTERDEV) ||
3966	     (!pci_read_config(dev, PCIR_BAR(0), 4) &&
3967	      !pci_read_config(dev, PCIR_BAR(2), 4))) )
3968		pci_ata_maps(bus, dev, rl, force, prefetchmask);
3969	else
3970		for (i = 0; i < cfg->nummaps;) {
3971			/* Skip resources already managed by EA */
3972			if ((resource_list_find(rl, SYS_RES_MEMORY, PCIR_BAR(i)) != NULL) ||
3973			    (resource_list_find(rl, SYS_RES_IOPORT, PCIR_BAR(i)) != NULL) ||
3974			    pci_ea_is_enabled(dev, PCIR_BAR(i))) {
3975				i++;
3976				continue;
3977			}
3978
3979			/*
3980			 * Skip quirked resources.
3981			 */
3982			for (q = &pci_quirks[0]; q->devid != 0; q++)
3983				if (q->devid == devid &&
3984				    q->type == PCI_QUIRK_UNMAP_REG &&
3985				    q->arg1 == PCIR_BAR(i))
3986					break;
3987			if (q->devid != 0) {
3988				i++;
3989				continue;
3990			}
3991			i += pci_add_map(bus, dev, PCIR_BAR(i), rl, force,
3992			    prefetchmask & (1 << i));
3993		}
3994
3995	/*
3996	 * Add additional, quirked resources.
3997	 */
3998	for (q = &pci_quirks[0]; q->devid != 0; q++)
3999		if (q->devid == devid && q->type == PCI_QUIRK_MAP_REG)
4000			pci_add_map(bus, dev, q->arg1, rl, force, 0);
4001
4002	if (cfg->intpin > 0 && PCI_INTERRUPT_VALID(cfg->intline)) {
4003#ifdef __PCI_REROUTE_INTERRUPT
4004		/*
4005		 * Try to re-route interrupts. Sometimes the BIOS or
4006		 * firmware may leave bogus values in these registers.
4007		 * If the re-route fails, then just stick with what we
4008		 * have.
4009		 */
4010		pci_assign_interrupt(bus, dev, 1);
4011#else
4012		pci_assign_interrupt(bus, dev, 0);
4013#endif
4014	}
4015
4016	if (pci_usb_takeover && pci_get_class(dev) == PCIC_SERIALBUS &&
4017	    pci_get_subclass(dev) == PCIS_SERIALBUS_USB) {
4018		if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_XHCI)
4019			xhci_early_takeover(dev);
4020		else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_EHCI)
4021			ehci_early_takeover(dev);
4022		else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_OHCI)
4023			ohci_early_takeover(dev);
4024		else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_UHCI)
4025			uhci_early_takeover(dev);
4026	}
4027
4028#if defined(NEW_PCIB) && defined(PCI_RES_BUS)
4029	/*
4030	 * Reserve resources for secondary bus ranges behind bridge
4031	 * devices.
4032	 */
4033	pci_reserve_secbus(bus, dev, cfg, rl);
4034#endif
4035}
4036
4037static struct pci_devinfo *
4038pci_identify_function(device_t pcib, device_t dev, int domain, int busno,
4039    int slot, int func)
4040{
4041	struct pci_devinfo *dinfo;
4042
4043	dinfo = pci_read_device(pcib, dev, domain, busno, slot, func);
4044	if (dinfo != NULL)
4045		pci_add_child(dev, dinfo);
4046
4047	return (dinfo);
4048}
4049
4050void
4051pci_add_children(device_t dev, int domain, int busno)
4052{
4053#define	REG(n, w)	PCIB_READ_CONFIG(pcib, busno, s, f, n, w)
4054	device_t pcib = device_get_parent(dev);
4055	struct pci_devinfo *dinfo;
4056	int maxslots;
4057	int s, f, pcifunchigh;
4058	uint8_t hdrtype;
4059	int first_func;
4060
4061	/*
4062	 * Try to detect a device at slot 0, function 0.  If it exists, try to
4063	 * enable ARI.  We must enable ARI before detecting the rest of the
4064	 * functions on this bus as ARI changes the set of slots and functions
4065	 * that are legal on this bus.
4066	 */
4067	dinfo = pci_identify_function(pcib, dev, domain, busno, 0, 0);
4068	if (dinfo != NULL && pci_enable_ari)
4069		PCIB_TRY_ENABLE_ARI(pcib, dinfo->cfg.dev);
4070
4071	/*
4072	 * Start looking for new devices on slot 0 at function 1 because we
4073	 * just identified the device at slot 0, function 0.
4074	 */
4075	first_func = 1;
4076
4077	maxslots = PCIB_MAXSLOTS(pcib);
4078	for (s = 0; s <= maxslots; s++, first_func = 0) {
4079		pcifunchigh = 0;
4080		f = 0;
4081		DELAY(1);
4082		hdrtype = REG(PCIR_HDRTYPE, 1);
4083		if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE)
4084			continue;
4085		if (hdrtype & PCIM_MFDEV)
4086			pcifunchigh = PCIB_MAXFUNCS(pcib);
4087		for (f = first_func; f <= pcifunchigh; f++)
4088			pci_identify_function(pcib, dev, domain, busno, s, f);
4089	}
4090#undef REG
4091}
4092
4093int
4094pci_rescan_method(device_t dev)
4095{
4096#define	REG(n, w)	PCIB_READ_CONFIG(pcib, busno, s, f, n, w)
4097	device_t pcib = device_get_parent(dev);
4098	struct pci_softc *sc;
4099	device_t child, *devlist, *unchanged;
4100	int devcount, error, i, j, maxslots, oldcount;
4101	int busno, domain, s, f, pcifunchigh;
4102	uint8_t hdrtype;
4103
4104	/* No need to check for ARI on a rescan. */
4105	error = device_get_children(dev, &devlist, &devcount);
4106	if (error)
4107		return (error);
4108	if (devcount != 0) {
4109		unchanged = malloc(devcount * sizeof(device_t), M_TEMP,
4110		    M_NOWAIT | M_ZERO);
4111		if (unchanged == NULL) {
4112			free(devlist, M_TEMP);
4113			return (ENOMEM);
4114		}
4115	} else
4116		unchanged = NULL;
4117
4118	sc = device_get_softc(dev);
4119	domain = pcib_get_domain(dev);
4120	busno = pcib_get_bus(dev);
4121	maxslots = PCIB_MAXSLOTS(pcib);
4122	for (s = 0; s <= maxslots; s++) {
4123		/* If function 0 is not present, skip to the next slot. */
4124		f = 0;
4125		if (REG(PCIR_VENDOR, 2) == 0xffff)
4126			continue;
4127		pcifunchigh = 0;
4128		hdrtype = REG(PCIR_HDRTYPE, 1);
4129		if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE)
4130			continue;
4131		if (hdrtype & PCIM_MFDEV)
4132			pcifunchigh = PCIB_MAXFUNCS(pcib);
4133		for (f = 0; f <= pcifunchigh; f++) {
4134			if (REG(PCIR_VENDOR, 2) == 0xffff)
4135				continue;
4136
4137			/*
4138			 * Found a valid function.  Check if a
4139			 * device_t for this device already exists.
4140			 */
4141			for (i = 0; i < devcount; i++) {
4142				child = devlist[i];
4143				if (child == NULL)
4144					continue;
4145				if (pci_get_slot(child) == s &&
4146				    pci_get_function(child) == f) {
4147					unchanged[i] = child;
4148					goto next_func;
4149				}
4150			}
4151
4152			pci_identify_function(pcib, dev, domain, busno, s, f);
4153		next_func:;
4154		}
4155	}
4156
4157	/* Remove devices that are no longer present. */
4158	for (i = 0; i < devcount; i++) {
4159		if (unchanged[i] != NULL)
4160			continue;
4161		device_delete_child(dev, devlist[i]);
4162	}
4163
4164	free(devlist, M_TEMP);
4165	oldcount = devcount;
4166
4167	/* Try to attach the devices just added. */
4168	error = device_get_children(dev, &devlist, &devcount);
4169	if (error) {
4170		free(unchanged, M_TEMP);
4171		return (error);
4172	}
4173
4174	for (i = 0; i < devcount; i++) {
4175		for (j = 0; j < oldcount; j++) {
4176			if (devlist[i] == unchanged[j])
4177				goto next_device;
4178		}
4179
4180		device_probe_and_attach(devlist[i]);
4181	next_device:;
4182	}
4183
4184	free(unchanged, M_TEMP);
4185	free(devlist, M_TEMP);
4186	return (0);
4187#undef REG
4188}
4189
4190#ifdef PCI_IOV
4191device_t
4192pci_add_iov_child(device_t bus, device_t pf, uint16_t rid, uint16_t vid,
4193    uint16_t did)
4194{
4195	struct pci_devinfo *pf_dinfo, *vf_dinfo;
4196	device_t pcib;
4197	int busno, slot, func;
4198
4199	pf_dinfo = device_get_ivars(pf);
4200
4201	pcib = device_get_parent(bus);
4202
4203	PCIB_DECODE_RID(pcib, rid, &busno, &slot, &func);
4204
4205	vf_dinfo = pci_fill_devinfo(pcib, bus, pci_get_domain(pcib), busno,
4206	    slot, func, vid, did);
4207
4208	vf_dinfo->cfg.flags |= PCICFG_VF;
4209	pci_add_child(bus, vf_dinfo);
4210
4211	return (vf_dinfo->cfg.dev);
4212}
4213
4214device_t
4215pci_create_iov_child_method(device_t bus, device_t pf, uint16_t rid,
4216    uint16_t vid, uint16_t did)
4217{
4218
4219	return (pci_add_iov_child(bus, pf, rid, vid, did));
4220}
4221#endif
4222
4223static void
4224pci_add_child_clear_aer(device_t dev, struct pci_devinfo *dinfo)
4225{
4226	int aer;
4227	uint32_t r;
4228	uint16_t r2;
4229
4230	if (dinfo->cfg.pcie.pcie_location != 0 &&
4231	    dinfo->cfg.pcie.pcie_type == PCIEM_TYPE_ROOT_PORT) {
4232		r2 = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
4233		    PCIER_ROOT_CTL, 2);
4234		r2 &= ~(PCIEM_ROOT_CTL_SERR_CORR |
4235		    PCIEM_ROOT_CTL_SERR_NONFATAL | PCIEM_ROOT_CTL_SERR_FATAL);
4236		pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
4237		    PCIER_ROOT_CTL, r2, 2);
4238	}
4239	if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) {
4240		r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
4241		pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4);
4242		if (r != 0 && bootverbose) {
4243			pci_printf(&dinfo->cfg,
4244			    "clearing AER UC 0x%08x -> 0x%08x\n",
4245			    r, pci_read_config(dev, aer + PCIR_AER_UC_STATUS,
4246			    4));
4247		}
4248
4249		r = pci_read_config(dev, aer + PCIR_AER_UC_MASK, 4);
4250		r &= ~(PCIM_AER_UC_TRAINING_ERROR |
4251		    PCIM_AER_UC_DL_PROTOCOL_ERROR |
4252		    PCIM_AER_UC_SURPRISE_LINK_DOWN |
4253		    PCIM_AER_UC_POISONED_TLP |
4254		    PCIM_AER_UC_FC_PROTOCOL_ERROR |
4255		    PCIM_AER_UC_COMPLETION_TIMEOUT |
4256		    PCIM_AER_UC_COMPLETER_ABORT |
4257		    PCIM_AER_UC_UNEXPECTED_COMPLETION |
4258		    PCIM_AER_UC_RECEIVER_OVERFLOW |
4259		    PCIM_AER_UC_MALFORMED_TLP |
4260		    PCIM_AER_UC_ECRC_ERROR |
4261		    PCIM_AER_UC_UNSUPPORTED_REQUEST |
4262		    PCIM_AER_UC_ACS_VIOLATION |
4263		    PCIM_AER_UC_INTERNAL_ERROR |
4264		    PCIM_AER_UC_MC_BLOCKED_TLP |
4265		    PCIM_AER_UC_ATOMIC_EGRESS_BLK |
4266		    PCIM_AER_UC_TLP_PREFIX_BLOCKED);
4267		pci_write_config(dev, aer + PCIR_AER_UC_MASK, r, 4);
4268
4269		r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
4270		pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4);
4271		if (r != 0 && bootverbose) {
4272			pci_printf(&dinfo->cfg,
4273			    "clearing AER COR 0x%08x -> 0x%08x\n",
4274			    r, pci_read_config(dev, aer + PCIR_AER_COR_STATUS,
4275			    4));
4276		}
4277
4278		r = pci_read_config(dev, aer + PCIR_AER_COR_MASK, 4);
4279		r &= ~(PCIM_AER_COR_RECEIVER_ERROR |
4280		    PCIM_AER_COR_BAD_TLP |
4281		    PCIM_AER_COR_BAD_DLLP |
4282		    PCIM_AER_COR_REPLAY_ROLLOVER |
4283		    PCIM_AER_COR_REPLAY_TIMEOUT |
4284		    PCIM_AER_COR_ADVISORY_NF_ERROR |
4285		    PCIM_AER_COR_INTERNAL_ERROR |
4286		    PCIM_AER_COR_HEADER_LOG_OVFLOW);
4287		pci_write_config(dev, aer + PCIR_AER_COR_MASK, r, 4);
4288
4289		r = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
4290		    PCIER_DEVICE_CTL, 2);
4291		r |=  PCIEM_CTL_COR_ENABLE | PCIEM_CTL_NFER_ENABLE |
4292		    PCIEM_CTL_FER_ENABLE | PCIEM_CTL_URR_ENABLE;
4293		pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
4294		    PCIER_DEVICE_CTL, r, 2);
4295	}
4296}
4297
4298void
4299pci_add_child(device_t bus, struct pci_devinfo *dinfo)
4300{
4301	device_t dev;
4302
4303	dinfo->cfg.dev = dev = device_add_child(bus, NULL, -1);
4304	device_set_ivars(dev, dinfo);
4305	resource_list_init(&dinfo->resources);
4306	pci_cfg_save(dev, dinfo, 0);
4307	pci_cfg_restore(dev, dinfo);
4308	pci_print_verbose(dinfo);
4309	pci_add_resources(bus, dev, 0, 0);
4310	pci_child_added(dinfo->cfg.dev);
4311
4312	if (pci_clear_aer_on_attach)
4313		pci_add_child_clear_aer(dev, dinfo);
4314
4315	EVENTHANDLER_INVOKE(pci_add_device, dinfo->cfg.dev);
4316}
4317
4318void
4319pci_child_added_method(device_t dev, device_t child)
4320{
4321
4322}
4323
4324static int
4325pci_probe(device_t dev)
4326{
4327
4328	device_set_desc(dev, "PCI bus");
4329
4330	/* Allow other subclasses to override this driver. */
4331	return (BUS_PROBE_GENERIC);
4332}
4333
4334int
4335pci_attach_common(device_t dev)
4336{
4337	struct pci_softc *sc;
4338	int busno, domain;
4339#ifdef PCI_DMA_BOUNDARY
4340	int error, tag_valid;
4341#endif
4342#ifdef PCI_RES_BUS
4343	int rid;
4344#endif
4345
4346	sc = device_get_softc(dev);
4347	domain = pcib_get_domain(dev);
4348	busno = pcib_get_bus(dev);
4349#ifdef PCI_RES_BUS
4350	rid = 0;
4351	sc->sc_bus = bus_alloc_resource(dev, PCI_RES_BUS, &rid, busno, busno,
4352	    1, 0);
4353	if (sc->sc_bus == NULL) {
4354		device_printf(dev, "failed to allocate bus number\n");
4355		return (ENXIO);
4356	}
4357#endif
4358	if (bootverbose)
4359		device_printf(dev, "domain=%d, physical bus=%d\n",
4360		    domain, busno);
4361#ifdef PCI_DMA_BOUNDARY
4362	tag_valid = 0;
4363	if (device_get_devclass(device_get_parent(device_get_parent(dev))) !=
4364	    devclass_find("pci")) {
4365		error = bus_dma_tag_create(bus_get_dma_tag(dev), 1,
4366		    PCI_DMA_BOUNDARY, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4367		    NULL, NULL, BUS_SPACE_MAXSIZE, BUS_SPACE_UNRESTRICTED,
4368		    BUS_SPACE_MAXSIZE, 0, NULL, NULL, &sc->sc_dma_tag);
4369		if (error)
4370			device_printf(dev, "Failed to create DMA tag: %d\n",
4371			    error);
4372		else
4373			tag_valid = 1;
4374	}
4375	if (!tag_valid)
4376#endif
4377		sc->sc_dma_tag = bus_get_dma_tag(dev);
4378	return (0);
4379}
4380
4381int
4382pci_attach(device_t dev)
4383{
4384	int busno, domain, error;
4385
4386	error = pci_attach_common(dev);
4387	if (error)
4388		return (error);
4389
4390	/*
4391	 * Since there can be multiple independently numbered PCI
4392	 * busses on systems with multiple PCI domains, we can't use
4393	 * the unit number to decide which bus we are probing. We ask
4394	 * the parent pcib what our domain and bus numbers are.
4395	 */
4396	domain = pcib_get_domain(dev);
4397	busno = pcib_get_bus(dev);
4398	pci_add_children(dev, domain, busno);
4399	return (bus_generic_attach(dev));
4400}
4401
4402int
4403pci_detach(device_t dev)
4404{
4405#ifdef PCI_RES_BUS
4406	struct pci_softc *sc;
4407#endif
4408	int error;
4409
4410	error = bus_generic_detach(dev);
4411	if (error)
4412		return (error);
4413#ifdef PCI_RES_BUS
4414	sc = device_get_softc(dev);
4415	error = bus_release_resource(dev, PCI_RES_BUS, 0, sc->sc_bus);
4416	if (error)
4417		return (error);
4418#endif
4419	return (device_delete_children(dev));
4420}
4421
4422static void
4423pci_set_power_child(device_t dev, device_t child, int state)
4424{
4425	device_t pcib;
4426	int dstate;
4427
4428	/*
4429	 * Set the device to the given state.  If the firmware suggests
4430	 * a different power state, use it instead.  If power management
4431	 * is not present, the firmware is responsible for managing
4432	 * device power.  Skip children who aren't attached since they
4433	 * are handled separately.
4434	 */
4435	pcib = device_get_parent(dev);
4436	dstate = state;
4437	if (device_is_attached(child) &&
4438	    PCIB_POWER_FOR_SLEEP(pcib, child, &dstate) == 0)
4439		pci_set_powerstate(child, dstate);
4440}
4441
4442int
4443pci_suspend_child(device_t dev, device_t child)
4444{
4445	struct pci_devinfo *dinfo;
4446	int error;
4447
4448	dinfo = device_get_ivars(child);
4449
4450	/*
4451	 * Save the PCI configuration space for the child and set the
4452	 * device in the appropriate power state for this sleep state.
4453	 */
4454	pci_cfg_save(child, dinfo, 0);
4455
4456	/* Suspend devices before potentially powering them down. */
4457	error = bus_generic_suspend_child(dev, child);
4458
4459	if (error)
4460		return (error);
4461
4462	if (pci_do_power_suspend)
4463		pci_set_power_child(dev, child, PCI_POWERSTATE_D3);
4464
4465	return (0);
4466}
4467
4468int
4469pci_resume_child(device_t dev, device_t child)
4470{
4471	struct pci_devinfo *dinfo;
4472
4473	if (pci_do_power_resume)
4474		pci_set_power_child(dev, child, PCI_POWERSTATE_D0);
4475
4476	dinfo = device_get_ivars(child);
4477	pci_cfg_restore(child, dinfo);
4478	if (!device_is_attached(child))
4479		pci_cfg_save(child, dinfo, 1);
4480
4481	bus_generic_resume_child(dev, child);
4482
4483	return (0);
4484}
4485
4486int
4487pci_resume(device_t dev)
4488{
4489	device_t child, *devlist;
4490	int error, i, numdevs;
4491
4492	if ((error = device_get_children(dev, &devlist, &numdevs)) != 0)
4493		return (error);
4494
4495	/*
4496	 * Resume critical devices first, then everything else later.
4497	 */
4498	for (i = 0; i < numdevs; i++) {
4499		child = devlist[i];
4500		switch (pci_get_class(child)) {
4501		case PCIC_DISPLAY:
4502		case PCIC_MEMORY:
4503		case PCIC_BRIDGE:
4504		case PCIC_BASEPERIPH:
4505			BUS_RESUME_CHILD(dev, child);
4506			break;
4507		}
4508	}
4509	for (i = 0; i < numdevs; i++) {
4510		child = devlist[i];
4511		switch (pci_get_class(child)) {
4512		case PCIC_DISPLAY:
4513		case PCIC_MEMORY:
4514		case PCIC_BRIDGE:
4515		case PCIC_BASEPERIPH:
4516			break;
4517		default:
4518			BUS_RESUME_CHILD(dev, child);
4519		}
4520	}
4521	free(devlist, M_TEMP);
4522	return (0);
4523}
4524
4525static void
4526pci_load_vendor_data(void)
4527{
4528	caddr_t data;
4529	void *ptr;
4530	size_t sz;
4531
4532	data = preload_search_by_type("pci_vendor_data");
4533	if (data != NULL) {
4534		ptr = preload_fetch_addr(data);
4535		sz = preload_fetch_size(data);
4536		if (ptr != NULL && sz != 0) {
4537			pci_vendordata = ptr;
4538			pci_vendordata_size = sz;
4539			/* terminate the database */
4540			pci_vendordata[pci_vendordata_size] = '\n';
4541		}
4542	}
4543}
4544
4545void
4546pci_driver_added(device_t dev, driver_t *driver)
4547{
4548	int numdevs;
4549	device_t *devlist;
4550	device_t child;
4551	struct pci_devinfo *dinfo;
4552	int i;
4553
4554	if (bootverbose)
4555		device_printf(dev, "driver added\n");
4556	DEVICE_IDENTIFY(driver, dev);
4557	if (device_get_children(dev, &devlist, &numdevs) != 0)
4558		return;
4559	for (i = 0; i < numdevs; i++) {
4560		child = devlist[i];
4561		if (device_get_state(child) != DS_NOTPRESENT)
4562			continue;
4563		dinfo = device_get_ivars(child);
4564		pci_print_verbose(dinfo);
4565		if (bootverbose)
4566			pci_printf(&dinfo->cfg, "reprobing on driver added\n");
4567		pci_cfg_restore(child, dinfo);
4568		if (device_probe_and_attach(child) != 0)
4569			pci_child_detached(dev, child);
4570	}
4571	free(devlist, M_TEMP);
4572}
4573
4574int
4575pci_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4576    driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4577{
4578	struct pci_devinfo *dinfo;
4579	struct msix_table_entry *mte;
4580	struct msix_vector *mv;
4581	uint64_t addr;
4582	uint32_t data;
4583	void *cookie;
4584	int error, rid;
4585
4586	error = bus_generic_setup_intr(dev, child, irq, flags, filter, intr,
4587	    arg, &cookie);
4588	if (error)
4589		return (error);
4590
4591	/* If this is not a direct child, just bail out. */
4592	if (device_get_parent(child) != dev) {
4593		*cookiep = cookie;
4594		return(0);
4595	}
4596
4597	rid = rman_get_rid(irq);
4598	if (rid == 0) {
4599		/* Make sure that INTx is enabled */
4600		pci_clear_command_bit(dev, child, PCIM_CMD_INTxDIS);
4601	} else {
4602		/*
4603		 * Check to see if the interrupt is MSI or MSI-X.
4604		 * Ask our parent to map the MSI and give
4605		 * us the address and data register values.
4606		 * If we fail for some reason, teardown the
4607		 * interrupt handler.
4608		 */
4609		dinfo = device_get_ivars(child);
4610		if (dinfo->cfg.msi.msi_alloc > 0) {
4611			if (dinfo->cfg.msi.msi_addr == 0) {
4612				KASSERT(dinfo->cfg.msi.msi_handlers == 0,
4613			    ("MSI has handlers, but vectors not mapped"));
4614				error = PCIB_MAP_MSI(device_get_parent(dev),
4615				    child, rman_get_start(irq), &addr, &data);
4616				if (error)
4617					goto bad;
4618				dinfo->cfg.msi.msi_addr = addr;
4619				dinfo->cfg.msi.msi_data = data;
4620			}
4621			if (dinfo->cfg.msi.msi_handlers == 0)
4622				pci_enable_msi(child, dinfo->cfg.msi.msi_addr,
4623				    dinfo->cfg.msi.msi_data);
4624			dinfo->cfg.msi.msi_handlers++;
4625		} else {
4626			KASSERT(dinfo->cfg.msix.msix_alloc > 0,
4627			    ("No MSI or MSI-X interrupts allocated"));
4628			KASSERT(rid <= dinfo->cfg.msix.msix_table_len,
4629			    ("MSI-X index too high"));
4630			mte = &dinfo->cfg.msix.msix_table[rid - 1];
4631			KASSERT(mte->mte_vector != 0, ("no message vector"));
4632			mv = &dinfo->cfg.msix.msix_vectors[mte->mte_vector - 1];
4633			KASSERT(mv->mv_irq == rman_get_start(irq),
4634			    ("IRQ mismatch"));
4635			if (mv->mv_address == 0) {
4636				KASSERT(mte->mte_handlers == 0,
4637		    ("MSI-X table entry has handlers, but vector not mapped"));
4638				error = PCIB_MAP_MSI(device_get_parent(dev),
4639				    child, rman_get_start(irq), &addr, &data);
4640				if (error)
4641					goto bad;
4642				mv->mv_address = addr;
4643				mv->mv_data = data;
4644			}
4645
4646			/*
4647			 * The MSIX table entry must be made valid by
4648			 * incrementing the mte_handlers before
4649			 * calling pci_enable_msix() and
4650			 * pci_resume_msix(). Else the MSIX rewrite
4651			 * table quirk will not work as expected.
4652			 */
4653			mte->mte_handlers++;
4654			if (mte->mte_handlers == 1) {
4655				pci_enable_msix(child, rid - 1, mv->mv_address,
4656				    mv->mv_data);
4657				pci_unmask_msix(child, rid - 1);
4658			}
4659		}
4660
4661		/*
4662		 * Make sure that INTx is disabled if we are using MSI/MSI-X,
4663		 * unless the device is affected by PCI_QUIRK_MSI_INTX_BUG,
4664		 * in which case we "enable" INTx so MSI/MSI-X actually works.
4665		 */
4666		if (!pci_has_quirk(pci_get_devid(child),
4667		    PCI_QUIRK_MSI_INTX_BUG))
4668			pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS);
4669		else
4670			pci_clear_command_bit(dev, child, PCIM_CMD_INTxDIS);
4671	bad:
4672		if (error) {
4673			(void)bus_generic_teardown_intr(dev, child, irq,
4674			    cookie);
4675			return (error);
4676		}
4677	}
4678	*cookiep = cookie;
4679	return (0);
4680}
4681
4682int
4683pci_teardown_intr(device_t dev, device_t child, struct resource *irq,
4684    void *cookie)
4685{
4686	struct msix_table_entry *mte;
4687	struct resource_list_entry *rle;
4688	struct pci_devinfo *dinfo;
4689	int error, rid;
4690
4691	if (irq == NULL || !(rman_get_flags(irq) & RF_ACTIVE))
4692		return (EINVAL);
4693
4694	/* If this isn't a direct child, just bail out */
4695	if (device_get_parent(child) != dev)
4696		return(bus_generic_teardown_intr(dev, child, irq, cookie));
4697
4698	rid = rman_get_rid(irq);
4699	if (rid == 0) {
4700		/* Mask INTx */
4701		pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS);
4702	} else {
4703		/*
4704		 * Check to see if the interrupt is MSI or MSI-X.  If so,
4705		 * decrement the appropriate handlers count and mask the
4706		 * MSI-X message, or disable MSI messages if the count
4707		 * drops to 0.
4708		 */
4709		dinfo = device_get_ivars(child);
4710		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, rid);
4711		if (rle->res != irq)
4712			return (EINVAL);
4713		if (dinfo->cfg.msi.msi_alloc > 0) {
4714			KASSERT(rid <= dinfo->cfg.msi.msi_alloc,
4715			    ("MSI-X index too high"));
4716			if (dinfo->cfg.msi.msi_handlers == 0)
4717				return (EINVAL);
4718			dinfo->cfg.msi.msi_handlers--;
4719			if (dinfo->cfg.msi.msi_handlers == 0)
4720				pci_disable_msi(child);
4721		} else {
4722			KASSERT(dinfo->cfg.msix.msix_alloc > 0,
4723			    ("No MSI or MSI-X interrupts allocated"));
4724			KASSERT(rid <= dinfo->cfg.msix.msix_table_len,
4725			    ("MSI-X index too high"));
4726			mte = &dinfo->cfg.msix.msix_table[rid - 1];
4727			if (mte->mte_handlers == 0)
4728				return (EINVAL);
4729			mte->mte_handlers--;
4730			if (mte->mte_handlers == 0)
4731				pci_mask_msix(child, rid - 1);
4732		}
4733	}
4734	error = bus_generic_teardown_intr(dev, child, irq, cookie);
4735	if (rid > 0)
4736		KASSERT(error == 0,
4737		    ("%s: generic teardown failed for MSI/MSI-X", __func__));
4738	return (error);
4739}
4740
4741int
4742pci_print_child(device_t dev, device_t child)
4743{
4744	struct pci_devinfo *dinfo;
4745	struct resource_list *rl;
4746	int retval = 0;
4747
4748	dinfo = device_get_ivars(child);
4749	rl = &dinfo->resources;
4750
4751	retval += bus_print_child_header(dev, child);
4752
4753	retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#jx");
4754	retval += resource_list_print_type(rl, "mem", SYS_RES_MEMORY, "%#jx");
4755	retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%jd");
4756	if (device_get_flags(dev))
4757		retval += printf(" flags %#x", device_get_flags(dev));
4758
4759	retval += printf(" at device %d.%d", pci_get_slot(child),
4760	    pci_get_function(child));
4761
4762	retval += bus_print_child_domain(dev, child);
4763	retval += bus_print_child_footer(dev, child);
4764
4765	return (retval);
4766}
4767
4768static const struct
4769{
4770	int		class;
4771	int		subclass;
4772	int		report; /* 0 = bootverbose, 1 = always */
4773	const char	*desc;
4774} pci_nomatch_tab[] = {
4775	{PCIC_OLD,		-1,			1, "old"},
4776	{PCIC_OLD,		PCIS_OLD_NONVGA,	1, "non-VGA display device"},
4777	{PCIC_OLD,		PCIS_OLD_VGA,		1, "VGA-compatible display device"},
4778	{PCIC_STORAGE,		-1,			1, "mass storage"},
4779	{PCIC_STORAGE,		PCIS_STORAGE_SCSI,	1, "SCSI"},
4780	{PCIC_STORAGE,		PCIS_STORAGE_IDE,	1, "ATA"},
4781	{PCIC_STORAGE,		PCIS_STORAGE_FLOPPY,	1, "floppy disk"},
4782	{PCIC_STORAGE,		PCIS_STORAGE_IPI,	1, "IPI"},
4783	{PCIC_STORAGE,		PCIS_STORAGE_RAID,	1, "RAID"},
4784	{PCIC_STORAGE,		PCIS_STORAGE_ATA_ADMA,	1, "ATA (ADMA)"},
4785	{PCIC_STORAGE,		PCIS_STORAGE_SATA,	1, "SATA"},
4786	{PCIC_STORAGE,		PCIS_STORAGE_SAS,	1, "SAS"},
4787	{PCIC_STORAGE,		PCIS_STORAGE_NVM,	1, "NVM"},
4788	{PCIC_NETWORK,		-1,			1, "network"},
4789	{PCIC_NETWORK,		PCIS_NETWORK_ETHERNET,	1, "ethernet"},
4790	{PCIC_NETWORK,		PCIS_NETWORK_TOKENRING,	1, "token ring"},
4791	{PCIC_NETWORK,		PCIS_NETWORK_FDDI,	1, "fddi"},
4792	{PCIC_NETWORK,		PCIS_NETWORK_ATM,	1, "ATM"},
4793	{PCIC_NETWORK,		PCIS_NETWORK_ISDN,	1, "ISDN"},
4794	{PCIC_DISPLAY,		-1,			1, "display"},
4795	{PCIC_DISPLAY,		PCIS_DISPLAY_VGA,	1, "VGA"},
4796	{PCIC_DISPLAY,		PCIS_DISPLAY_XGA,	1, "XGA"},
4797	{PCIC_DISPLAY,		PCIS_DISPLAY_3D,	1, "3D"},
4798	{PCIC_MULTIMEDIA,	-1,			1, "multimedia"},
4799	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_VIDEO,	1, "video"},
4800	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_AUDIO,	1, "audio"},
4801	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_TELE,	1, "telephony"},
4802	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_HDA,	1, "HDA"},
4803	{PCIC_MEMORY,		-1,			1, "memory"},
4804	{PCIC_MEMORY,		PCIS_MEMORY_RAM,	1, "RAM"},
4805	{PCIC_MEMORY,		PCIS_MEMORY_FLASH,	1, "flash"},
4806	{PCIC_BRIDGE,		-1,			1, "bridge"},
4807	{PCIC_BRIDGE,		PCIS_BRIDGE_HOST,	1, "HOST-PCI"},
4808	{PCIC_BRIDGE,		PCIS_BRIDGE_ISA,	1, "PCI-ISA"},
4809	{PCIC_BRIDGE,		PCIS_BRIDGE_EISA,	1, "PCI-EISA"},
4810	{PCIC_BRIDGE,		PCIS_BRIDGE_MCA,	1, "PCI-MCA"},
4811	{PCIC_BRIDGE,		PCIS_BRIDGE_PCI,	1, "PCI-PCI"},
4812	{PCIC_BRIDGE,		PCIS_BRIDGE_PCMCIA,	1, "PCI-PCMCIA"},
4813	{PCIC_BRIDGE,		PCIS_BRIDGE_NUBUS,	1, "PCI-NuBus"},
4814	{PCIC_BRIDGE,		PCIS_BRIDGE_CARDBUS,	1, "PCI-CardBus"},
4815	{PCIC_BRIDGE,		PCIS_BRIDGE_RACEWAY,	1, "PCI-RACEway"},
4816	{PCIC_SIMPLECOMM,	-1,			1, "simple comms"},
4817	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_UART,	1, "UART"},	/* could detect 16550 */
4818	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_PAR,	1, "parallel port"},
4819	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_MULSER,	1, "multiport serial"},
4820	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_MODEM,	1, "generic modem"},
4821	{PCIC_BASEPERIPH,	-1,			0, "base peripheral"},
4822	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_PIC,	1, "interrupt controller"},
4823	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_DMA,	1, "DMA controller"},
4824	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_TIMER,	1, "timer"},
4825	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_RTC,	1, "realtime clock"},
4826	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_PCIHOT,	1, "PCI hot-plug controller"},
4827	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_SDHC,	1, "SD host controller"},
4828	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_IOMMU,	1, "IOMMU"},
4829	{PCIC_INPUTDEV,		-1,			1, "input device"},
4830	{PCIC_INPUTDEV,		PCIS_INPUTDEV_KEYBOARD,	1, "keyboard"},
4831	{PCIC_INPUTDEV,		PCIS_INPUTDEV_DIGITIZER,1, "digitizer"},
4832	{PCIC_INPUTDEV,		PCIS_INPUTDEV_MOUSE,	1, "mouse"},
4833	{PCIC_INPUTDEV,		PCIS_INPUTDEV_SCANNER,	1, "scanner"},
4834	{PCIC_INPUTDEV,		PCIS_INPUTDEV_GAMEPORT,	1, "gameport"},
4835	{PCIC_DOCKING,		-1,			1, "docking station"},
4836	{PCIC_PROCESSOR,	-1,			1, "processor"},
4837	{PCIC_SERIALBUS,	-1,			1, "serial bus"},
4838	{PCIC_SERIALBUS,	PCIS_SERIALBUS_FW,	1, "FireWire"},
4839	{PCIC_SERIALBUS,	PCIS_SERIALBUS_ACCESS,	1, "AccessBus"},
4840	{PCIC_SERIALBUS,	PCIS_SERIALBUS_SSA,	1, "SSA"},
4841	{PCIC_SERIALBUS,	PCIS_SERIALBUS_USB,	1, "USB"},
4842	{PCIC_SERIALBUS,	PCIS_SERIALBUS_FC,	1, "Fibre Channel"},
4843	{PCIC_SERIALBUS,	PCIS_SERIALBUS_SMBUS,	0, "SMBus"},
4844	{PCIC_WIRELESS,		-1,			1, "wireless controller"},
4845	{PCIC_WIRELESS,		PCIS_WIRELESS_IRDA,	1, "iRDA"},
4846	{PCIC_WIRELESS,		PCIS_WIRELESS_IR,	1, "IR"},
4847	{PCIC_WIRELESS,		PCIS_WIRELESS_RF,	1, "RF"},
4848	{PCIC_INTELLIIO,	-1,			1, "intelligent I/O controller"},
4849	{PCIC_INTELLIIO,	PCIS_INTELLIIO_I2O,	1, "I2O"},
4850	{PCIC_SATCOM,		-1,			1, "satellite communication"},
4851	{PCIC_SATCOM,		PCIS_SATCOM_TV,		1, "sat TV"},
4852	{PCIC_SATCOM,		PCIS_SATCOM_AUDIO,	1, "sat audio"},
4853	{PCIC_SATCOM,		PCIS_SATCOM_VOICE,	1, "sat voice"},
4854	{PCIC_SATCOM,		PCIS_SATCOM_DATA,	1, "sat data"},
4855	{PCIC_CRYPTO,		-1,			1, "encrypt/decrypt"},
4856	{PCIC_CRYPTO,		PCIS_CRYPTO_NETCOMP,	1, "network/computer crypto"},
4857	{PCIC_CRYPTO,		PCIS_CRYPTO_ENTERTAIN,	1, "entertainment crypto"},
4858	{PCIC_DASP,		-1,			0, "dasp"},
4859	{PCIC_DASP,		PCIS_DASP_DPIO,		1, "DPIO module"},
4860	{PCIC_DASP,		PCIS_DASP_PERFCNTRS,	1, "performance counters"},
4861	{PCIC_DASP,		PCIS_DASP_COMM_SYNC,	1, "communication synchronizer"},
4862	{PCIC_DASP,		PCIS_DASP_MGMT_CARD,	1, "signal processing management"},
4863	{0, 0, 0,		NULL}
4864};
4865
4866void
4867pci_probe_nomatch(device_t dev, device_t child)
4868{
4869	int i, report;
4870	const char *cp, *scp;
4871	char *device;
4872
4873	/*
4874	 * Look for a listing for this device in a loaded device database.
4875	 */
4876	report = 1;
4877	if ((device = pci_describe_device(child)) != NULL) {
4878		device_printf(dev, "<%s>", device);
4879		free(device, M_DEVBUF);
4880	} else {
4881		/*
4882		 * Scan the class/subclass descriptions for a general
4883		 * description.
4884		 */
4885		cp = "unknown";
4886		scp = NULL;
4887		for (i = 0; pci_nomatch_tab[i].desc != NULL; i++) {
4888			if (pci_nomatch_tab[i].class == pci_get_class(child)) {
4889				if (pci_nomatch_tab[i].subclass == -1) {
4890					cp = pci_nomatch_tab[i].desc;
4891					report = pci_nomatch_tab[i].report;
4892				} else if (pci_nomatch_tab[i].subclass ==
4893				    pci_get_subclass(child)) {
4894					scp = pci_nomatch_tab[i].desc;
4895					report = pci_nomatch_tab[i].report;
4896				}
4897			}
4898		}
4899		if (report || bootverbose) {
4900			device_printf(dev, "<%s%s%s>",
4901			    cp ? cp : "",
4902			    ((cp != NULL) && (scp != NULL)) ? ", " : "",
4903			    scp ? scp : "");
4904		}
4905	}
4906	if (report || bootverbose) {
4907		printf(" at device %d.%d (no driver attached)\n",
4908		    pci_get_slot(child), pci_get_function(child));
4909	}
4910	pci_cfg_save(child, device_get_ivars(child), 1);
4911}
4912
4913void
4914pci_child_detached(device_t dev, device_t child)
4915{
4916	struct pci_devinfo *dinfo;
4917	struct resource_list *rl;
4918
4919	dinfo = device_get_ivars(child);
4920	rl = &dinfo->resources;
4921
4922	/*
4923	 * Have to deallocate IRQs before releasing any MSI messages and
4924	 * have to release MSI messages before deallocating any memory
4925	 * BARs.
4926	 */
4927	if (resource_list_release_active(rl, dev, child, SYS_RES_IRQ) != 0)
4928		pci_printf(&dinfo->cfg, "Device leaked IRQ resources\n");
4929	if (dinfo->cfg.msi.msi_alloc != 0 || dinfo->cfg.msix.msix_alloc != 0) {
4930		pci_printf(&dinfo->cfg, "Device leaked MSI vectors\n");
4931		(void)pci_release_msi(child);
4932	}
4933	if (resource_list_release_active(rl, dev, child, SYS_RES_MEMORY) != 0)
4934		pci_printf(&dinfo->cfg, "Device leaked memory resources\n");
4935	if (resource_list_release_active(rl, dev, child, SYS_RES_IOPORT) != 0)
4936		pci_printf(&dinfo->cfg, "Device leaked I/O resources\n");
4937#ifdef PCI_RES_BUS
4938	if (resource_list_release_active(rl, dev, child, PCI_RES_BUS) != 0)
4939		pci_printf(&dinfo->cfg, "Device leaked PCI bus numbers\n");
4940#endif
4941
4942	pci_cfg_save(child, dinfo, 1);
4943}
4944
4945/*
4946 * Parse the PCI device database, if loaded, and return a pointer to a
4947 * description of the device.
4948 *
4949 * The database is flat text formatted as follows:
4950 *
4951 * Any line not in a valid format is ignored.
4952 * Lines are terminated with newline '\n' characters.
4953 *
4954 * A VENDOR line consists of the 4 digit (hex) vendor code, a TAB, then
4955 * the vendor name.
4956 *
4957 * A DEVICE line is entered immediately below the corresponding VENDOR ID.
4958 * - devices cannot be listed without a corresponding VENDOR line.
4959 * A DEVICE line consists of a TAB, the 4 digit (hex) device code,
4960 * another TAB, then the device name.
4961 */
4962
4963/*
4964 * Assuming (ptr) points to the beginning of a line in the database,
4965 * return the vendor or device and description of the next entry.
4966 * The value of (vendor) or (device) inappropriate for the entry type
4967 * is set to -1.  Returns nonzero at the end of the database.
4968 *
4969 * Note that this is slightly unrobust in the face of corrupt data;
4970 * we attempt to safeguard against this by spamming the end of the
4971 * database with a newline when we initialise.
4972 */
4973static int
4974pci_describe_parse_line(char **ptr, int *vendor, int *device, char **desc)
4975{
4976	char	*cp = *ptr;
4977	int	left;
4978
4979	*device = -1;
4980	*vendor = -1;
4981	**desc = '\0';
4982	for (;;) {
4983		left = pci_vendordata_size - (cp - pci_vendordata);
4984		if (left <= 0) {
4985			*ptr = cp;
4986			return(1);
4987		}
4988
4989		/* vendor entry? */
4990		if (*cp != '\t' &&
4991		    sscanf(cp, "%x\t%80[^\n]", vendor, *desc) == 2)
4992			break;
4993		/* device entry? */
4994		if (*cp == '\t' &&
4995		    sscanf(cp, "%x\t%80[^\n]", device, *desc) == 2)
4996			break;
4997
4998		/* skip to next line */
4999		while (*cp != '\n' && left > 0) {
5000			cp++;
5001			left--;
5002		}
5003		if (*cp == '\n') {
5004			cp++;
5005			left--;
5006		}
5007	}
5008	/* skip to next line */
5009	while (*cp != '\n' && left > 0) {
5010		cp++;
5011		left--;
5012	}
5013	if (*cp == '\n' && left > 0)
5014		cp++;
5015	*ptr = cp;
5016	return(0);
5017}
5018
5019static char *
5020pci_describe_device(device_t dev)
5021{
5022	int	vendor, device;
5023	char	*desc, *vp, *dp, *line;
5024
5025	desc = vp = dp = NULL;
5026
5027	/*
5028	 * If we have no vendor data, we can't do anything.
5029	 */
5030	if (pci_vendordata == NULL)
5031		goto out;
5032
5033	/*
5034	 * Scan the vendor data looking for this device
5035	 */
5036	line = pci_vendordata;
5037	if ((vp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL)
5038		goto out;
5039	for (;;) {
5040		if (pci_describe_parse_line(&line, &vendor, &device, &vp))
5041			goto out;
5042		if (vendor == pci_get_vendor(dev))
5043			break;
5044	}
5045	if ((dp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL)
5046		goto out;
5047	for (;;) {
5048		if (pci_describe_parse_line(&line, &vendor, &device, &dp)) {
5049			*dp = 0;
5050			break;
5051		}
5052		if (vendor != -1) {
5053			*dp = 0;
5054			break;
5055		}
5056		if (device == pci_get_device(dev))
5057			break;
5058	}
5059	if (dp[0] == '\0')
5060		snprintf(dp, 80, "0x%x", pci_get_device(dev));
5061	if ((desc = malloc(strlen(vp) + strlen(dp) + 3, M_DEVBUF, M_NOWAIT)) !=
5062	    NULL)
5063		sprintf(desc, "%s, %s", vp, dp);
5064out:
5065	if (vp != NULL)
5066		free(vp, M_DEVBUF);
5067	if (dp != NULL)
5068		free(dp, M_DEVBUF);
5069	return(desc);
5070}
5071
5072int
5073pci_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
5074{
5075	struct pci_devinfo *dinfo;
5076	pcicfgregs *cfg;
5077
5078	dinfo = device_get_ivars(child);
5079	cfg = &dinfo->cfg;
5080
5081	switch (which) {
5082	case PCI_IVAR_ETHADDR:
5083		/*
5084		 * The generic accessor doesn't deal with failure, so
5085		 * we set the return value, then return an error.
5086		 */
5087		*((uint8_t **) result) = NULL;
5088		return (EINVAL);
5089	case PCI_IVAR_SUBVENDOR:
5090		*result = cfg->subvendor;
5091		break;
5092	case PCI_IVAR_SUBDEVICE:
5093		*result = cfg->subdevice;
5094		break;
5095	case PCI_IVAR_VENDOR:
5096		*result = cfg->vendor;
5097		break;
5098	case PCI_IVAR_DEVICE:
5099		*result = cfg->device;
5100		break;
5101	case PCI_IVAR_DEVID:
5102		*result = (cfg->device << 16) | cfg->vendor;
5103		break;
5104	case PCI_IVAR_CLASS:
5105		*result = cfg->baseclass;
5106		break;
5107	case PCI_IVAR_SUBCLASS:
5108		*result = cfg->subclass;
5109		break;
5110	case PCI_IVAR_PROGIF:
5111		*result = cfg->progif;
5112		break;
5113	case PCI_IVAR_REVID:
5114		*result = cfg->revid;
5115		break;
5116	case PCI_IVAR_INTPIN:
5117		*result = cfg->intpin;
5118		break;
5119	case PCI_IVAR_IRQ:
5120		*result = cfg->intline;
5121		break;
5122	case PCI_IVAR_DOMAIN:
5123		*result = cfg->domain;
5124		break;
5125	case PCI_IVAR_BUS:
5126		*result = cfg->bus;
5127		break;
5128	case PCI_IVAR_SLOT:
5129		*result = cfg->slot;
5130		break;
5131	case PCI_IVAR_FUNCTION:
5132		*result = cfg->func;
5133		break;
5134	case PCI_IVAR_CMDREG:
5135		*result = cfg->cmdreg;
5136		break;
5137	case PCI_IVAR_CACHELNSZ:
5138		*result = cfg->cachelnsz;
5139		break;
5140	case PCI_IVAR_MINGNT:
5141		if (cfg->hdrtype != PCIM_HDRTYPE_NORMAL) {
5142			*result = -1;
5143			return (EINVAL);
5144		}
5145		*result = cfg->mingnt;
5146		break;
5147	case PCI_IVAR_MAXLAT:
5148		if (cfg->hdrtype != PCIM_HDRTYPE_NORMAL) {
5149			*result = -1;
5150			return (EINVAL);
5151		}
5152		*result = cfg->maxlat;
5153		break;
5154	case PCI_IVAR_LATTIMER:
5155		*result = cfg->lattimer;
5156		break;
5157	default:
5158		return (ENOENT);
5159	}
5160	return (0);
5161}
5162
5163int
5164pci_write_ivar(device_t dev, device_t child, int which, uintptr_t value)
5165{
5166	struct pci_devinfo *dinfo;
5167
5168	dinfo = device_get_ivars(child);
5169
5170	switch (which) {
5171	case PCI_IVAR_INTPIN:
5172		dinfo->cfg.intpin = value;
5173		return (0);
5174	case PCI_IVAR_ETHADDR:
5175	case PCI_IVAR_SUBVENDOR:
5176	case PCI_IVAR_SUBDEVICE:
5177	case PCI_IVAR_VENDOR:
5178	case PCI_IVAR_DEVICE:
5179	case PCI_IVAR_DEVID:
5180	case PCI_IVAR_CLASS:
5181	case PCI_IVAR_SUBCLASS:
5182	case PCI_IVAR_PROGIF:
5183	case PCI_IVAR_REVID:
5184	case PCI_IVAR_IRQ:
5185	case PCI_IVAR_DOMAIN:
5186	case PCI_IVAR_BUS:
5187	case PCI_IVAR_SLOT:
5188	case PCI_IVAR_FUNCTION:
5189		return (EINVAL);	/* disallow for now */
5190
5191	default:
5192		return (ENOENT);
5193	}
5194}
5195
5196#include "opt_ddb.h"
5197#ifdef DDB
5198#include <ddb/ddb.h>
5199#include <sys/cons.h>
5200
5201/*
5202 * List resources based on pci map registers, used for within ddb
5203 */
5204
5205DB_SHOW_COMMAND(pciregs, db_pci_dump)
5206{
5207	struct pci_devinfo *dinfo;
5208	struct devlist *devlist_head;
5209	struct pci_conf *p;
5210	const char *name;
5211	int i, error, none_count;
5212
5213	none_count = 0;
5214	/* get the head of the device queue */
5215	devlist_head = &pci_devq;
5216
5217	/*
5218	 * Go through the list of devices and print out devices
5219	 */
5220	for (error = 0, i = 0,
5221	     dinfo = STAILQ_FIRST(devlist_head);
5222	     (dinfo != NULL) && (error == 0) && (i < pci_numdevs) && !db_pager_quit;
5223	     dinfo = STAILQ_NEXT(dinfo, pci_links), i++) {
5224
5225		/* Populate pd_name and pd_unit */
5226		name = NULL;
5227		if (dinfo->cfg.dev)
5228			name = device_get_name(dinfo->cfg.dev);
5229
5230		p = &dinfo->conf;
5231		db_printf("%s%d@pci%d:%d:%d:%d:\tclass=0x%06x card=0x%08x "
5232			"chip=0x%08x rev=0x%02x hdr=0x%02x\n",
5233			(name && *name) ? name : "none",
5234			(name && *name) ? (int)device_get_unit(dinfo->cfg.dev) :
5235			none_count++,
5236			p->pc_sel.pc_domain, p->pc_sel.pc_bus, p->pc_sel.pc_dev,
5237			p->pc_sel.pc_func, (p->pc_class << 16) |
5238			(p->pc_subclass << 8) | p->pc_progif,
5239			(p->pc_subdevice << 16) | p->pc_subvendor,
5240			(p->pc_device << 16) | p->pc_vendor,
5241			p->pc_revid, p->pc_hdr);
5242	}
5243}
5244#endif /* DDB */
5245
5246static struct resource *
5247pci_reserve_map(device_t dev, device_t child, int type, int *rid,
5248    rman_res_t start, rman_res_t end, rman_res_t count, u_int num,
5249    u_int flags)
5250{
5251	struct pci_devinfo *dinfo = device_get_ivars(child);
5252	struct resource_list *rl = &dinfo->resources;
5253	struct resource *res;
5254	struct pci_map *pm;
5255	uint16_t cmd;
5256	pci_addr_t map, testval;
5257	int mapsize;
5258
5259	res = NULL;
5260
5261	/* If rid is managed by EA, ignore it */
5262	if (pci_ea_is_enabled(child, *rid))
5263		goto out;
5264
5265	pm = pci_find_bar(child, *rid);
5266	if (pm != NULL) {
5267		/* This is a BAR that we failed to allocate earlier. */
5268		mapsize = pm->pm_size;
5269		map = pm->pm_value;
5270	} else {
5271		/*
5272		 * Weed out the bogons, and figure out how large the
5273		 * BAR/map is.  BARs that read back 0 here are bogus
5274		 * and unimplemented.  Note: atapci in legacy mode are
5275		 * special and handled elsewhere in the code.  If you
5276		 * have a atapci device in legacy mode and it fails
5277		 * here, that other code is broken.
5278		 */
5279		pci_read_bar(child, *rid, &map, &testval, NULL);
5280
5281		/*
5282		 * Determine the size of the BAR and ignore BARs with a size
5283		 * of 0.  Device ROM BARs use a different mask value.
5284		 */
5285		if (PCIR_IS_BIOS(&dinfo->cfg, *rid))
5286			mapsize = pci_romsize(testval);
5287		else
5288			mapsize = pci_mapsize(testval);
5289		if (mapsize == 0)
5290			goto out;
5291		pm = pci_add_bar(child, *rid, map, mapsize);
5292	}
5293
5294	if (PCI_BAR_MEM(map) || PCIR_IS_BIOS(&dinfo->cfg, *rid)) {
5295		if (type != SYS_RES_MEMORY) {
5296			if (bootverbose)
5297				device_printf(dev,
5298				    "child %s requested type %d for rid %#x,"
5299				    " but the BAR says it is an memio\n",
5300				    device_get_nameunit(child), type, *rid);
5301			goto out;
5302		}
5303	} else {
5304		if (type != SYS_RES_IOPORT) {
5305			if (bootverbose)
5306				device_printf(dev,
5307				    "child %s requested type %d for rid %#x,"
5308				    " but the BAR says it is an ioport\n",
5309				    device_get_nameunit(child), type, *rid);
5310			goto out;
5311		}
5312	}
5313
5314	/*
5315	 * For real BARs, we need to override the size that
5316	 * the driver requests, because that's what the BAR
5317	 * actually uses and we would otherwise have a
5318	 * situation where we might allocate the excess to
5319	 * another driver, which won't work.
5320	 */
5321	count = ((pci_addr_t)1 << mapsize) * num;
5322	if (RF_ALIGNMENT(flags) < mapsize)
5323		flags = (flags & ~RF_ALIGNMENT_MASK) | RF_ALIGNMENT_LOG2(mapsize);
5324	if (PCI_BAR_MEM(map) && (map & PCIM_BAR_MEM_PREFETCH))
5325		flags |= RF_PREFETCHABLE;
5326
5327	/*
5328	 * Allocate enough resource, and then write back the
5329	 * appropriate BAR for that resource.
5330	 */
5331	resource_list_add(rl, type, *rid, start, end, count);
5332	res = resource_list_reserve(rl, dev, child, type, rid, start, end,
5333	    count, flags & ~RF_ACTIVE);
5334	if (res == NULL) {
5335		resource_list_delete(rl, type, *rid);
5336		device_printf(child,
5337		    "%#jx bytes of rid %#x res %d failed (%#jx, %#jx).\n",
5338		    count, *rid, type, start, end);
5339		goto out;
5340	}
5341	if (bootverbose)
5342		device_printf(child,
5343		    "Lazy allocation of %#jx bytes rid %#x type %d at %#jx\n",
5344		    count, *rid, type, rman_get_start(res));
5345
5346	/* Disable decoding via the CMD register before updating the BAR */
5347	cmd = pci_read_config(child, PCIR_COMMAND, 2);
5348	pci_write_config(child, PCIR_COMMAND,
5349	    cmd & ~(PCI_BAR_MEM(map) ? PCIM_CMD_MEMEN : PCIM_CMD_PORTEN), 2);
5350
5351	map = rman_get_start(res);
5352	pci_write_bar(child, pm, map);
5353
5354	/* Restore the original value of the CMD register */
5355	pci_write_config(child, PCIR_COMMAND, cmd, 2);
5356out:
5357	return (res);
5358}
5359
5360struct resource *
5361pci_alloc_multi_resource(device_t dev, device_t child, int type, int *rid,
5362    rman_res_t start, rman_res_t end, rman_res_t count, u_long num,
5363    u_int flags)
5364{
5365	struct pci_devinfo *dinfo;
5366	struct resource_list *rl;
5367	struct resource_list_entry *rle;
5368	struct resource *res;
5369	pcicfgregs *cfg;
5370
5371	/*
5372	 * Perform lazy resource allocation
5373	 */
5374	dinfo = device_get_ivars(child);
5375	rl = &dinfo->resources;
5376	cfg = &dinfo->cfg;
5377	switch (type) {
5378#if defined(NEW_PCIB) && defined(PCI_RES_BUS)
5379	case PCI_RES_BUS:
5380		return (pci_alloc_secbus(dev, child, rid, start, end, count,
5381		    flags));
5382#endif
5383	case SYS_RES_IRQ:
5384		/*
5385		 * Can't alloc legacy interrupt once MSI messages have
5386		 * been allocated.
5387		 */
5388		if (*rid == 0 && (cfg->msi.msi_alloc > 0 ||
5389		    cfg->msix.msix_alloc > 0))
5390			return (NULL);
5391
5392		/*
5393		 * If the child device doesn't have an interrupt
5394		 * routed and is deserving of an interrupt, try to
5395		 * assign it one.
5396		 */
5397		if (*rid == 0 && !PCI_INTERRUPT_VALID(cfg->intline) &&
5398		    (cfg->intpin != 0))
5399			pci_assign_interrupt(dev, child, 0);
5400		break;
5401	case SYS_RES_IOPORT:
5402	case SYS_RES_MEMORY:
5403#ifdef NEW_PCIB
5404		/*
5405		 * PCI-PCI bridge I/O window resources are not BARs.
5406		 * For those allocations just pass the request up the
5407		 * tree.
5408		 */
5409		if (cfg->hdrtype == PCIM_HDRTYPE_BRIDGE) {
5410			switch (*rid) {
5411			case PCIR_IOBASEL_1:
5412			case PCIR_MEMBASE_1:
5413			case PCIR_PMBASEL_1:
5414				/*
5415				 * XXX: Should we bother creating a resource
5416				 * list entry?
5417				 */
5418				return (bus_generic_alloc_resource(dev, child,
5419				    type, rid, start, end, count, flags));
5420			}
5421		}
5422#endif
5423		/* Reserve resources for this BAR if needed. */
5424		rle = resource_list_find(rl, type, *rid);
5425		if (rle == NULL) {
5426			res = pci_reserve_map(dev, child, type, rid, start, end,
5427			    count, num, flags);
5428			if (res == NULL)
5429				return (NULL);
5430		}
5431	}
5432	return (resource_list_alloc(rl, dev, child, type, rid,
5433	    start, end, count, flags));
5434}
5435
5436struct resource *
5437pci_alloc_resource(device_t dev, device_t child, int type, int *rid,
5438    rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
5439{
5440#ifdef PCI_IOV
5441	struct pci_devinfo *dinfo;
5442#endif
5443
5444	if (device_get_parent(child) != dev)
5445		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
5446		    type, rid, start, end, count, flags));
5447
5448#ifdef PCI_IOV
5449	dinfo = device_get_ivars(child);
5450	if (dinfo->cfg.flags & PCICFG_VF) {
5451		switch (type) {
5452		/* VFs can't have I/O BARs. */
5453		case SYS_RES_IOPORT:
5454			return (NULL);
5455		case SYS_RES_MEMORY:
5456			return (pci_vf_alloc_mem_resource(dev, child, rid,
5457			    start, end, count, flags));
5458		}
5459
5460		/* Fall through for other types of resource allocations. */
5461	}
5462#endif
5463
5464	return (pci_alloc_multi_resource(dev, child, type, rid, start, end,
5465	    count, 1, flags));
5466}
5467
5468int
5469pci_release_resource(device_t dev, device_t child, int type, int rid,
5470    struct resource *r)
5471{
5472	struct pci_devinfo *dinfo;
5473	struct resource_list *rl;
5474	pcicfgregs *cfg;
5475
5476	if (device_get_parent(child) != dev)
5477		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
5478		    type, rid, r));
5479
5480	dinfo = device_get_ivars(child);
5481	cfg = &dinfo->cfg;
5482
5483#ifdef PCI_IOV
5484	if (dinfo->cfg.flags & PCICFG_VF) {
5485		switch (type) {
5486		/* VFs can't have I/O BARs. */
5487		case SYS_RES_IOPORT:
5488			return (EDOOFUS);
5489		case SYS_RES_MEMORY:
5490			return (pci_vf_release_mem_resource(dev, child, rid,
5491			    r));
5492		}
5493
5494		/* Fall through for other types of resource allocations. */
5495	}
5496#endif
5497
5498#ifdef NEW_PCIB
5499	/*
5500	 * PCI-PCI bridge I/O window resources are not BARs.  For
5501	 * those allocations just pass the request up the tree.
5502	 */
5503	if (cfg->hdrtype == PCIM_HDRTYPE_BRIDGE &&
5504	    (type == SYS_RES_IOPORT || type == SYS_RES_MEMORY)) {
5505		switch (rid) {
5506		case PCIR_IOBASEL_1:
5507		case PCIR_MEMBASE_1:
5508		case PCIR_PMBASEL_1:
5509			return (bus_generic_release_resource(dev, child, type,
5510			    rid, r));
5511		}
5512	}
5513#endif
5514
5515	rl = &dinfo->resources;
5516	return (resource_list_release(rl, dev, child, type, rid, r));
5517}
5518
5519int
5520pci_activate_resource(device_t dev, device_t child, int type, int rid,
5521    struct resource *r)
5522{
5523	struct pci_devinfo *dinfo;
5524	int error;
5525
5526	error = bus_generic_activate_resource(dev, child, type, rid, r);
5527	if (error)
5528		return (error);
5529
5530	/* Enable decoding in the command register when activating BARs. */
5531	if (device_get_parent(child) == dev) {
5532		/* Device ROMs need their decoding explicitly enabled. */
5533		dinfo = device_get_ivars(child);
5534		if (type == SYS_RES_MEMORY && PCIR_IS_BIOS(&dinfo->cfg, rid))
5535			pci_write_bar(child, pci_find_bar(child, rid),
5536			    rman_get_start(r) | PCIM_BIOS_ENABLE);
5537		switch (type) {
5538		case SYS_RES_IOPORT:
5539		case SYS_RES_MEMORY:
5540			error = PCI_ENABLE_IO(dev, child, type);
5541			break;
5542		}
5543	}
5544	return (error);
5545}
5546
5547int
5548pci_deactivate_resource(device_t dev, device_t child, int type,
5549    int rid, struct resource *r)
5550{
5551	struct pci_devinfo *dinfo;
5552	int error;
5553
5554	error = bus_generic_deactivate_resource(dev, child, type, rid, r);
5555	if (error)
5556		return (error);
5557
5558	/* Disable decoding for device ROMs. */
5559	if (device_get_parent(child) == dev) {
5560		dinfo = device_get_ivars(child);
5561		if (type == SYS_RES_MEMORY && PCIR_IS_BIOS(&dinfo->cfg, rid))
5562			pci_write_bar(child, pci_find_bar(child, rid),
5563			    rman_get_start(r));
5564	}
5565	return (0);
5566}
5567
5568void
5569pci_child_deleted(device_t dev, device_t child)
5570{
5571	struct resource_list_entry *rle;
5572	struct resource_list *rl;
5573	struct pci_devinfo *dinfo;
5574
5575	dinfo = device_get_ivars(child);
5576	rl = &dinfo->resources;
5577
5578	EVENTHANDLER_INVOKE(pci_delete_device, child);
5579
5580	/* Turn off access to resources we're about to free */
5581	if (bus_child_present(child) != 0) {
5582		pci_write_config(child, PCIR_COMMAND, pci_read_config(child,
5583		    PCIR_COMMAND, 2) & ~(PCIM_CMD_MEMEN | PCIM_CMD_PORTEN), 2);
5584
5585		pci_disable_busmaster(child);
5586	}
5587
5588	/* Free all allocated resources */
5589	STAILQ_FOREACH(rle, rl, link) {
5590		if (rle->res) {
5591			if (rman_get_flags(rle->res) & RF_ACTIVE ||
5592			    resource_list_busy(rl, rle->type, rle->rid)) {
5593				pci_printf(&dinfo->cfg,
5594				    "Resource still owned, oops. "
5595				    "(type=%d, rid=%d, addr=%lx)\n",
5596				    rle->type, rle->rid,
5597				    rman_get_start(rle->res));
5598				bus_release_resource(child, rle->type, rle->rid,
5599				    rle->res);
5600			}
5601			resource_list_unreserve(rl, dev, child, rle->type,
5602			    rle->rid);
5603		}
5604	}
5605	resource_list_free(rl);
5606
5607	pci_freecfg(dinfo);
5608}
5609
5610void
5611pci_delete_resource(device_t dev, device_t child, int type, int rid)
5612{
5613	struct pci_devinfo *dinfo;
5614	struct resource_list *rl;
5615	struct resource_list_entry *rle;
5616
5617	if (device_get_parent(child) != dev)
5618		return;
5619
5620	dinfo = device_get_ivars(child);
5621	rl = &dinfo->resources;
5622	rle = resource_list_find(rl, type, rid);
5623	if (rle == NULL)
5624		return;
5625
5626	if (rle->res) {
5627		if (rman_get_flags(rle->res) & RF_ACTIVE ||
5628		    resource_list_busy(rl, type, rid)) {
5629			device_printf(dev, "delete_resource: "
5630			    "Resource still owned by child, oops. "
5631			    "(type=%d, rid=%d, addr=%jx)\n",
5632			    type, rid, rman_get_start(rle->res));
5633			return;
5634		}
5635		resource_list_unreserve(rl, dev, child, type, rid);
5636	}
5637	resource_list_delete(rl, type, rid);
5638}
5639
5640struct resource_list *
5641pci_get_resource_list (device_t dev, device_t child)
5642{
5643	struct pci_devinfo *dinfo = device_get_ivars(child);
5644
5645	return (&dinfo->resources);
5646}
5647
5648bus_dma_tag_t
5649pci_get_dma_tag(device_t bus, device_t dev)
5650{
5651	struct pci_softc *sc = device_get_softc(bus);
5652
5653	return (sc->sc_dma_tag);
5654}
5655
5656uint32_t
5657pci_read_config_method(device_t dev, device_t child, int reg, int width)
5658{
5659	struct pci_devinfo *dinfo = device_get_ivars(child);
5660	pcicfgregs *cfg = &dinfo->cfg;
5661
5662#ifdef PCI_IOV
5663	/*
5664	 * SR-IOV VFs don't implement the VID or DID registers, so we have to
5665	 * emulate them here.
5666	 */
5667	if (cfg->flags & PCICFG_VF) {
5668		if (reg == PCIR_VENDOR) {
5669			switch (width) {
5670			case 4:
5671				return (cfg->device << 16 | cfg->vendor);
5672			case 2:
5673				return (cfg->vendor);
5674			case 1:
5675				return (cfg->vendor & 0xff);
5676			default:
5677				return (0xffffffff);
5678			}
5679		} else if (reg == PCIR_DEVICE) {
5680			switch (width) {
5681			/* Note that an unaligned 4-byte read is an error. */
5682			case 2:
5683				return (cfg->device);
5684			case 1:
5685				return (cfg->device & 0xff);
5686			default:
5687				return (0xffffffff);
5688			}
5689		}
5690	}
5691#endif
5692
5693	return (PCIB_READ_CONFIG(device_get_parent(dev),
5694	    cfg->bus, cfg->slot, cfg->func, reg, width));
5695}
5696
5697void
5698pci_write_config_method(device_t dev, device_t child, int reg,
5699    uint32_t val, int width)
5700{
5701	struct pci_devinfo *dinfo = device_get_ivars(child);
5702	pcicfgregs *cfg = &dinfo->cfg;
5703
5704	PCIB_WRITE_CONFIG(device_get_parent(dev),
5705	    cfg->bus, cfg->slot, cfg->func, reg, val, width);
5706}
5707
5708int
5709pci_child_location_str_method(device_t dev, device_t child, char *buf,
5710    size_t buflen)
5711{
5712
5713	snprintf(buf, buflen, "slot=%d function=%d dbsf=pci%d:%d:%d:%d",
5714	    pci_get_slot(child), pci_get_function(child), pci_get_domain(child),
5715	    pci_get_bus(child), pci_get_slot(child), pci_get_function(child));
5716	return (0);
5717}
5718
5719int
5720pci_child_pnpinfo_str_method(device_t dev, device_t child, char *buf,
5721    size_t buflen)
5722{
5723	struct pci_devinfo *dinfo;
5724	pcicfgregs *cfg;
5725
5726	dinfo = device_get_ivars(child);
5727	cfg = &dinfo->cfg;
5728	snprintf(buf, buflen, "vendor=0x%04x device=0x%04x subvendor=0x%04x "
5729	    "subdevice=0x%04x class=0x%02x%02x%02x", cfg->vendor, cfg->device,
5730	    cfg->subvendor, cfg->subdevice, cfg->baseclass, cfg->subclass,
5731	    cfg->progif);
5732	return (0);
5733}
5734
5735int
5736pci_assign_interrupt_method(device_t dev, device_t child)
5737{
5738	struct pci_devinfo *dinfo = device_get_ivars(child);
5739	pcicfgregs *cfg = &dinfo->cfg;
5740
5741	return (PCIB_ROUTE_INTERRUPT(device_get_parent(dev), child,
5742	    cfg->intpin));
5743}
5744
5745static void
5746pci_lookup(void *arg, const char *name, device_t *dev)
5747{
5748	long val;
5749	char *end;
5750	int domain, bus, slot, func;
5751
5752	if (*dev != NULL)
5753		return;
5754
5755	/*
5756	 * Accept pciconf-style selectors of either pciD:B:S:F or
5757	 * pciB:S:F.  In the latter case, the domain is assumed to
5758	 * be zero.
5759	 */
5760	if (strncmp(name, "pci", 3) != 0)
5761		return;
5762	val = strtol(name + 3, &end, 10);
5763	if (val < 0 || val > INT_MAX || *end != ':')
5764		return;
5765	domain = val;
5766	val = strtol(end + 1, &end, 10);
5767	if (val < 0 || val > INT_MAX || *end != ':')
5768		return;
5769	bus = val;
5770	val = strtol(end + 1, &end, 10);
5771	if (val < 0 || val > INT_MAX)
5772		return;
5773	slot = val;
5774	if (*end == ':') {
5775		val = strtol(end + 1, &end, 10);
5776		if (val < 0 || val > INT_MAX || *end != '\0')
5777			return;
5778		func = val;
5779	} else if (*end == '\0') {
5780		func = slot;
5781		slot = bus;
5782		bus = domain;
5783		domain = 0;
5784	} else
5785		return;
5786
5787	if (domain > PCI_DOMAINMAX || bus > PCI_BUSMAX || slot > PCI_SLOTMAX ||
5788	    func > PCIE_ARI_FUNCMAX || (slot != 0 && func > PCI_FUNCMAX))
5789		return;
5790
5791	*dev = pci_find_dbsf(domain, bus, slot, func);
5792}
5793
5794static int
5795pci_modevent(module_t mod, int what, void *arg)
5796{
5797	static struct cdev *pci_cdev;
5798	static eventhandler_tag tag;
5799
5800	switch (what) {
5801	case MOD_LOAD:
5802		STAILQ_INIT(&pci_devq);
5803		pci_generation = 0;
5804		pci_cdev = make_dev(&pcicdev, 0, UID_ROOT, GID_WHEEL, 0644,
5805		    "pci");
5806		pci_load_vendor_data();
5807		tag = EVENTHANDLER_REGISTER(dev_lookup, pci_lookup, NULL,
5808		    1000);
5809		break;
5810
5811	case MOD_UNLOAD:
5812		if (tag != NULL)
5813			EVENTHANDLER_DEREGISTER(dev_lookup, tag);
5814		destroy_dev(pci_cdev);
5815		break;
5816	}
5817
5818	return (0);
5819}
5820
5821static void
5822pci_cfg_restore_pcie(device_t dev, struct pci_devinfo *dinfo)
5823{
5824#define	WREG(n, v)	pci_write_config(dev, pos + (n), (v), 2)
5825	struct pcicfg_pcie *cfg;
5826	int version, pos;
5827
5828	cfg = &dinfo->cfg.pcie;
5829	pos = cfg->pcie_location;
5830
5831	version = cfg->pcie_flags & PCIEM_FLAGS_VERSION;
5832
5833	WREG(PCIER_DEVICE_CTL, cfg->pcie_device_ctl);
5834
5835	if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
5836	    cfg->pcie_type == PCIEM_TYPE_ENDPOINT ||
5837	    cfg->pcie_type == PCIEM_TYPE_LEGACY_ENDPOINT)
5838		WREG(PCIER_LINK_CTL, cfg->pcie_link_ctl);
5839
5840	if (version > 1 || (cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
5841	    (cfg->pcie_type == PCIEM_TYPE_DOWNSTREAM_PORT &&
5842	     (cfg->pcie_flags & PCIEM_FLAGS_SLOT))))
5843		WREG(PCIER_SLOT_CTL, cfg->pcie_slot_ctl);
5844
5845	if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
5846	    cfg->pcie_type == PCIEM_TYPE_ROOT_EC)
5847		WREG(PCIER_ROOT_CTL, cfg->pcie_root_ctl);
5848
5849	if (version > 1) {
5850		WREG(PCIER_DEVICE_CTL2, cfg->pcie_device_ctl2);
5851		WREG(PCIER_LINK_CTL2, cfg->pcie_link_ctl2);
5852		WREG(PCIER_SLOT_CTL2, cfg->pcie_slot_ctl2);
5853	}
5854#undef WREG
5855}
5856
5857static void
5858pci_cfg_restore_pcix(device_t dev, struct pci_devinfo *dinfo)
5859{
5860	pci_write_config(dev, dinfo->cfg.pcix.pcix_location + PCIXR_COMMAND,
5861	    dinfo->cfg.pcix.pcix_command,  2);
5862}
5863
5864void
5865pci_cfg_restore(device_t dev, struct pci_devinfo *dinfo)
5866{
5867
5868	/*
5869	 * Restore the device to full power mode.  We must do this
5870	 * before we restore the registers because moving from D3 to
5871	 * D0 will cause the chip's BARs and some other registers to
5872	 * be reset to some unknown power on reset values.  Cut down
5873	 * the noise on boot by doing nothing if we are already in
5874	 * state D0.
5875	 */
5876	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0)
5877		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
5878	pci_write_config(dev, PCIR_COMMAND, dinfo->cfg.cmdreg, 2);
5879	pci_write_config(dev, PCIR_INTLINE, dinfo->cfg.intline, 1);
5880	pci_write_config(dev, PCIR_INTPIN, dinfo->cfg.intpin, 1);
5881	pci_write_config(dev, PCIR_CACHELNSZ, dinfo->cfg.cachelnsz, 1);
5882	pci_write_config(dev, PCIR_LATTIMER, dinfo->cfg.lattimer, 1);
5883	pci_write_config(dev, PCIR_PROGIF, dinfo->cfg.progif, 1);
5884	pci_write_config(dev, PCIR_REVID, dinfo->cfg.revid, 1);
5885	switch (dinfo->cfg.hdrtype & PCIM_HDRTYPE) {
5886	case PCIM_HDRTYPE_NORMAL:
5887		pci_write_config(dev, PCIR_MINGNT, dinfo->cfg.mingnt, 1);
5888		pci_write_config(dev, PCIR_MAXLAT, dinfo->cfg.maxlat, 1);
5889		break;
5890	case PCIM_HDRTYPE_BRIDGE:
5891		pci_write_config(dev, PCIR_SECLAT_1,
5892		    dinfo->cfg.bridge.br_seclat, 1);
5893		pci_write_config(dev, PCIR_SUBBUS_1,
5894		    dinfo->cfg.bridge.br_subbus, 1);
5895		pci_write_config(dev, PCIR_SECBUS_1,
5896		    dinfo->cfg.bridge.br_secbus, 1);
5897		pci_write_config(dev, PCIR_PRIBUS_1,
5898		    dinfo->cfg.bridge.br_pribus, 1);
5899		pci_write_config(dev, PCIR_BRIDGECTL_1,
5900		    dinfo->cfg.bridge.br_control, 2);
5901		break;
5902	case PCIM_HDRTYPE_CARDBUS:
5903		pci_write_config(dev, PCIR_SECLAT_2,
5904		    dinfo->cfg.bridge.br_seclat, 1);
5905		pci_write_config(dev, PCIR_SUBBUS_2,
5906		    dinfo->cfg.bridge.br_subbus, 1);
5907		pci_write_config(dev, PCIR_SECBUS_2,
5908		    dinfo->cfg.bridge.br_secbus, 1);
5909		pci_write_config(dev, PCIR_PRIBUS_2,
5910		    dinfo->cfg.bridge.br_pribus, 1);
5911		pci_write_config(dev, PCIR_BRIDGECTL_2,
5912		    dinfo->cfg.bridge.br_control, 2);
5913		break;
5914	}
5915	pci_restore_bars(dev);
5916
5917	/*
5918	 * Restore extended capabilities for PCI-Express and PCI-X
5919	 */
5920	if (dinfo->cfg.pcie.pcie_location != 0)
5921		pci_cfg_restore_pcie(dev, dinfo);
5922	if (dinfo->cfg.pcix.pcix_location != 0)
5923		pci_cfg_restore_pcix(dev, dinfo);
5924
5925	/* Restore MSI and MSI-X configurations if they are present. */
5926	if (dinfo->cfg.msi.msi_location != 0)
5927		pci_resume_msi(dev);
5928	if (dinfo->cfg.msix.msix_location != 0)
5929		pci_resume_msix(dev);
5930
5931#ifdef PCI_IOV
5932	if (dinfo->cfg.iov != NULL)
5933		pci_iov_cfg_restore(dev, dinfo);
5934#endif
5935}
5936
5937static void
5938pci_cfg_save_pcie(device_t dev, struct pci_devinfo *dinfo)
5939{
5940#define	RREG(n)	pci_read_config(dev, pos + (n), 2)
5941	struct pcicfg_pcie *cfg;
5942	int version, pos;
5943
5944	cfg = &dinfo->cfg.pcie;
5945	pos = cfg->pcie_location;
5946
5947	cfg->pcie_flags = RREG(PCIER_FLAGS);
5948
5949	version = cfg->pcie_flags & PCIEM_FLAGS_VERSION;
5950
5951	cfg->pcie_device_ctl = RREG(PCIER_DEVICE_CTL);
5952
5953	if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
5954	    cfg->pcie_type == PCIEM_TYPE_ENDPOINT ||
5955	    cfg->pcie_type == PCIEM_TYPE_LEGACY_ENDPOINT)
5956		cfg->pcie_link_ctl = RREG(PCIER_LINK_CTL);
5957
5958	if (version > 1 || (cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
5959	    (cfg->pcie_type == PCIEM_TYPE_DOWNSTREAM_PORT &&
5960	     (cfg->pcie_flags & PCIEM_FLAGS_SLOT))))
5961		cfg->pcie_slot_ctl = RREG(PCIER_SLOT_CTL);
5962
5963	if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
5964	    cfg->pcie_type == PCIEM_TYPE_ROOT_EC)
5965		cfg->pcie_root_ctl = RREG(PCIER_ROOT_CTL);
5966
5967	if (version > 1) {
5968		cfg->pcie_device_ctl2 = RREG(PCIER_DEVICE_CTL2);
5969		cfg->pcie_link_ctl2 = RREG(PCIER_LINK_CTL2);
5970		cfg->pcie_slot_ctl2 = RREG(PCIER_SLOT_CTL2);
5971	}
5972#undef RREG
5973}
5974
5975static void
5976pci_cfg_save_pcix(device_t dev, struct pci_devinfo *dinfo)
5977{
5978	dinfo->cfg.pcix.pcix_command = pci_read_config(dev,
5979	    dinfo->cfg.pcix.pcix_location + PCIXR_COMMAND, 2);
5980}
5981
5982void
5983pci_cfg_save(device_t dev, struct pci_devinfo *dinfo, int setstate)
5984{
5985	uint32_t cls;
5986	int ps;
5987
5988	/*
5989	 * Some drivers apparently write to these registers w/o updating our
5990	 * cached copy.  No harm happens if we update the copy, so do so here
5991	 * so we can restore them.  The COMMAND register is modified by the
5992	 * bus w/o updating the cache.  This should represent the normally
5993	 * writable portion of the 'defined' part of type 0/1/2 headers.
5994	 */
5995	dinfo->cfg.vendor = pci_read_config(dev, PCIR_VENDOR, 2);
5996	dinfo->cfg.device = pci_read_config(dev, PCIR_DEVICE, 2);
5997	dinfo->cfg.cmdreg = pci_read_config(dev, PCIR_COMMAND, 2);
5998	dinfo->cfg.intline = pci_read_config(dev, PCIR_INTLINE, 1);
5999	dinfo->cfg.intpin = pci_read_config(dev, PCIR_INTPIN, 1);
6000	dinfo->cfg.cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
6001	dinfo->cfg.lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
6002	dinfo->cfg.baseclass = pci_read_config(dev, PCIR_CLASS, 1);
6003	dinfo->cfg.subclass = pci_read_config(dev, PCIR_SUBCLASS, 1);
6004	dinfo->cfg.progif = pci_read_config(dev, PCIR_PROGIF, 1);
6005	dinfo->cfg.revid = pci_read_config(dev, PCIR_REVID, 1);
6006	switch (dinfo->cfg.hdrtype & PCIM_HDRTYPE) {
6007	case PCIM_HDRTYPE_NORMAL:
6008		dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_0, 2);
6009		dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_0, 2);
6010		dinfo->cfg.mingnt = pci_read_config(dev, PCIR_MINGNT, 1);
6011		dinfo->cfg.maxlat = pci_read_config(dev, PCIR_MAXLAT, 1);
6012		break;
6013	case PCIM_HDRTYPE_BRIDGE:
6014		dinfo->cfg.bridge.br_seclat = pci_read_config(dev,
6015		    PCIR_SECLAT_1, 1);
6016		dinfo->cfg.bridge.br_subbus = pci_read_config(dev,
6017		    PCIR_SUBBUS_1, 1);
6018		dinfo->cfg.bridge.br_secbus = pci_read_config(dev,
6019		    PCIR_SECBUS_1, 1);
6020		dinfo->cfg.bridge.br_pribus = pci_read_config(dev,
6021		    PCIR_PRIBUS_1, 1);
6022		dinfo->cfg.bridge.br_control = pci_read_config(dev,
6023		    PCIR_BRIDGECTL_1, 2);
6024		break;
6025	case PCIM_HDRTYPE_CARDBUS:
6026		dinfo->cfg.bridge.br_seclat = pci_read_config(dev,
6027		    PCIR_SECLAT_2, 1);
6028		dinfo->cfg.bridge.br_subbus = pci_read_config(dev,
6029		    PCIR_SUBBUS_2, 1);
6030		dinfo->cfg.bridge.br_secbus = pci_read_config(dev,
6031		    PCIR_SECBUS_2, 1);
6032		dinfo->cfg.bridge.br_pribus = pci_read_config(dev,
6033		    PCIR_PRIBUS_2, 1);
6034		dinfo->cfg.bridge.br_control = pci_read_config(dev,
6035		    PCIR_BRIDGECTL_2, 2);
6036		dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_2, 2);
6037		dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_2, 2);
6038		break;
6039	}
6040
6041	if (dinfo->cfg.pcie.pcie_location != 0)
6042		pci_cfg_save_pcie(dev, dinfo);
6043
6044	if (dinfo->cfg.pcix.pcix_location != 0)
6045		pci_cfg_save_pcix(dev, dinfo);
6046
6047#ifdef PCI_IOV
6048	if (dinfo->cfg.iov != NULL)
6049		pci_iov_cfg_save(dev, dinfo);
6050#endif
6051
6052	/*
6053	 * don't set the state for display devices, base peripherals and
6054	 * memory devices since bad things happen when they are powered down.
6055	 * We should (a) have drivers that can easily detach and (b) use
6056	 * generic drivers for these devices so that some device actually
6057	 * attaches.  We need to make sure that when we implement (a) we don't
6058	 * power the device down on a reattach.
6059	 */
6060	cls = pci_get_class(dev);
6061	if (!setstate)
6062		return;
6063	switch (pci_do_power_nodriver)
6064	{
6065		case 0:		/* NO powerdown at all */
6066			return;
6067		case 1:		/* Conservative about what to power down */
6068			if (cls == PCIC_STORAGE)
6069				return;
6070			/*FALLTHROUGH*/
6071		case 2:		/* Aggressive about what to power down */
6072			if (cls == PCIC_DISPLAY || cls == PCIC_MEMORY ||
6073			    cls == PCIC_BASEPERIPH)
6074				return;
6075			/*FALLTHROUGH*/
6076		case 3:		/* Power down everything */
6077			break;
6078	}
6079	/*
6080	 * PCI spec says we can only go into D3 state from D0 state.
6081	 * Transition from D[12] into D0 before going to D3 state.
6082	 */
6083	ps = pci_get_powerstate(dev);
6084	if (ps != PCI_POWERSTATE_D0 && ps != PCI_POWERSTATE_D3)
6085		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
6086	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D3)
6087		pci_set_powerstate(dev, PCI_POWERSTATE_D3);
6088}
6089
6090/* Wrapper APIs suitable for device driver use. */
6091void
6092pci_save_state(device_t dev)
6093{
6094	struct pci_devinfo *dinfo;
6095
6096	dinfo = device_get_ivars(dev);
6097	pci_cfg_save(dev, dinfo, 0);
6098}
6099
6100void
6101pci_restore_state(device_t dev)
6102{
6103	struct pci_devinfo *dinfo;
6104
6105	dinfo = device_get_ivars(dev);
6106	pci_cfg_restore(dev, dinfo);
6107}
6108
6109static int
6110pci_get_id_method(device_t dev, device_t child, enum pci_id_type type,
6111    uintptr_t *id)
6112{
6113
6114	return (PCIB_GET_ID(device_get_parent(dev), child, type, id));
6115}
6116
6117/* Find the upstream port of a given PCI device in a root complex. */
6118device_t
6119pci_find_pcie_root_port(device_t dev)
6120{
6121	struct pci_devinfo *dinfo;
6122	devclass_t pci_class;
6123	device_t pcib, bus;
6124
6125	pci_class = devclass_find("pci");
6126	KASSERT(device_get_devclass(device_get_parent(dev)) == pci_class,
6127	    ("%s: non-pci device %s", __func__, device_get_nameunit(dev)));
6128
6129	/*
6130	 * Walk the bridge hierarchy until we find a PCI-e root
6131	 * port or a non-PCI device.
6132	 */
6133	for (;;) {
6134		bus = device_get_parent(dev);
6135		KASSERT(bus != NULL, ("%s: null parent of %s", __func__,
6136		    device_get_nameunit(dev)));
6137
6138		pcib = device_get_parent(bus);
6139		KASSERT(pcib != NULL, ("%s: null bridge of %s", __func__,
6140		    device_get_nameunit(bus)));
6141
6142		/*
6143		 * pcib's parent must be a PCI bus for this to be a
6144		 * PCI-PCI bridge.
6145		 */
6146		if (device_get_devclass(device_get_parent(pcib)) != pci_class)
6147			return (NULL);
6148
6149		dinfo = device_get_ivars(pcib);
6150		if (dinfo->cfg.pcie.pcie_location != 0 &&
6151		    dinfo->cfg.pcie.pcie_type == PCIEM_TYPE_ROOT_PORT)
6152			return (pcib);
6153
6154		dev = pcib;
6155	}
6156}
6157
6158/*
6159 * Wait for pending transactions to complete on a PCI-express function.
6160 *
6161 * The maximum delay is specified in milliseconds in max_delay.  Note
6162 * that this function may sleep.
6163 *
6164 * Returns true if the function is idle and false if the timeout is
6165 * exceeded.  If dev is not a PCI-express function, this returns true.
6166 */
6167bool
6168pcie_wait_for_pending_transactions(device_t dev, u_int max_delay)
6169{
6170	struct pci_devinfo *dinfo = device_get_ivars(dev);
6171	uint16_t sta;
6172	int cap;
6173
6174	cap = dinfo->cfg.pcie.pcie_location;
6175	if (cap == 0)
6176		return (true);
6177
6178	sta = pci_read_config(dev, cap + PCIER_DEVICE_STA, 2);
6179	while (sta & PCIEM_STA_TRANSACTION_PND) {
6180		if (max_delay == 0)
6181			return (false);
6182
6183		/* Poll once every 100 milliseconds up to the timeout. */
6184		if (max_delay > 100) {
6185			pause_sbt("pcietp", 100 * SBT_1MS, 0, C_HARDCLOCK);
6186			max_delay -= 100;
6187		} else {
6188			pause_sbt("pcietp", max_delay * SBT_1MS, 0,
6189			    C_HARDCLOCK);
6190			max_delay = 0;
6191		}
6192		sta = pci_read_config(dev, cap + PCIER_DEVICE_STA, 2);
6193	}
6194
6195	return (true);
6196}
6197
6198/*
6199 * Determine the maximum Completion Timeout in microseconds.
6200 *
6201 * For non-PCI-express functions this returns 0.
6202 */
6203int
6204pcie_get_max_completion_timeout(device_t dev)
6205{
6206	struct pci_devinfo *dinfo = device_get_ivars(dev);
6207	int cap;
6208
6209	cap = dinfo->cfg.pcie.pcie_location;
6210	if (cap == 0)
6211		return (0);
6212
6213	/*
6214	 * Functions using the 1.x spec use the default timeout range of
6215	 * 50 microseconds to 50 milliseconds.  Functions that do not
6216	 * support programmable timeouts also use this range.
6217	 */
6218	if ((dinfo->cfg.pcie.pcie_flags & PCIEM_FLAGS_VERSION) < 2 ||
6219	    (pci_read_config(dev, cap + PCIER_DEVICE_CAP2, 4) &
6220	    PCIEM_CAP2_COMP_TIMO_RANGES) == 0)
6221		return (50 * 1000);
6222
6223	switch (pci_read_config(dev, cap + PCIER_DEVICE_CTL2, 2) &
6224	    PCIEM_CTL2_COMP_TIMO_VAL) {
6225	case PCIEM_CTL2_COMP_TIMO_100US:
6226		return (100);
6227	case PCIEM_CTL2_COMP_TIMO_10MS:
6228		return (10 * 1000);
6229	case PCIEM_CTL2_COMP_TIMO_55MS:
6230		return (55 * 1000);
6231	case PCIEM_CTL2_COMP_TIMO_210MS:
6232		return (210 * 1000);
6233	case PCIEM_CTL2_COMP_TIMO_900MS:
6234		return (900 * 1000);
6235	case PCIEM_CTL2_COMP_TIMO_3500MS:
6236		return (3500 * 1000);
6237	case PCIEM_CTL2_COMP_TIMO_13S:
6238		return (13 * 1000 * 1000);
6239	case PCIEM_CTL2_COMP_TIMO_64S:
6240		return (64 * 1000 * 1000);
6241	default:
6242		return (50 * 1000);
6243	}
6244}
6245
6246/*
6247 * Perform a Function Level Reset (FLR) on a device.
6248 *
6249 * This function first waits for any pending transactions to complete
6250 * within the timeout specified by max_delay.  If transactions are
6251 * still pending, the function will return false without attempting a
6252 * reset.
6253 *
6254 * If dev is not a PCI-express function or does not support FLR, this
6255 * function returns false.
6256 *
6257 * Note that no registers are saved or restored.  The caller is
6258 * responsible for saving and restoring any registers including
6259 * PCI-standard registers via pci_save_state() and
6260 * pci_restore_state().
6261 */
6262bool
6263pcie_flr(device_t dev, u_int max_delay, bool force)
6264{
6265	struct pci_devinfo *dinfo = device_get_ivars(dev);
6266	uint16_t cmd, ctl;
6267	int compl_delay;
6268	int cap;
6269
6270	cap = dinfo->cfg.pcie.pcie_location;
6271	if (cap == 0)
6272		return (false);
6273
6274	if (!(pci_read_config(dev, cap + PCIER_DEVICE_CAP, 4) & PCIEM_CAP_FLR))
6275		return (false);
6276
6277	/*
6278	 * Disable busmastering to prevent generation of new
6279	 * transactions while waiting for the device to go idle.  If
6280	 * the idle timeout fails, the command register is restored
6281	 * which will re-enable busmastering.
6282	 */
6283	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
6284	pci_write_config(dev, PCIR_COMMAND, cmd & ~(PCIM_CMD_BUSMASTEREN), 2);
6285	if (!pcie_wait_for_pending_transactions(dev, max_delay)) {
6286		if (!force) {
6287			pci_write_config(dev, PCIR_COMMAND, cmd, 2);
6288			return (false);
6289		}
6290		pci_printf(&dinfo->cfg,
6291		    "Resetting with transactions pending after %d ms\n",
6292		    max_delay);
6293
6294		/*
6295		 * Extend the post-FLR delay to cover the maximum
6296		 * Completion Timeout delay of anything in flight
6297		 * during the FLR delay.  Enforce a minimum delay of
6298		 * at least 10ms.
6299		 */
6300		compl_delay = pcie_get_max_completion_timeout(dev) / 1000;
6301		if (compl_delay < 10)
6302			compl_delay = 10;
6303	} else
6304		compl_delay = 0;
6305
6306	/* Initiate the reset. */
6307	ctl = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
6308	pci_write_config(dev, cap + PCIER_DEVICE_CTL, ctl |
6309	    PCIEM_CTL_INITIATE_FLR, 2);
6310
6311	/* Wait for 100ms. */
6312	pause_sbt("pcieflr", (100 + compl_delay) * SBT_1MS, 0, C_HARDCLOCK);
6313
6314	if (pci_read_config(dev, cap + PCIER_DEVICE_STA, 2) &
6315	    PCIEM_STA_TRANSACTION_PND)
6316		pci_printf(&dinfo->cfg, "Transactions pending after FLR!\n");
6317	return (true);
6318}
6319
6320/*
6321 * Attempt a power-management reset by cycling the device in/out of D3
6322 * state.  PCI spec says we can only go into D3 state from D0 state.
6323 * Transition from D[12] into D0 before going to D3 state.
6324 */
6325int
6326pci_power_reset(device_t dev)
6327{
6328	int ps;
6329
6330	ps = pci_get_powerstate(dev);
6331	if (ps != PCI_POWERSTATE_D0 && ps != PCI_POWERSTATE_D3)
6332		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
6333	pci_set_powerstate(dev, PCI_POWERSTATE_D3);
6334	pci_set_powerstate(dev, ps);
6335	return (0);
6336}
6337
6338/*
6339 * Try link drop and retrain of the downstream port of upstream
6340 * switch, for PCIe.  According to the PCIe 3.0 spec 6.6.1, this must
6341 * cause Conventional Hot reset of the device in the slot.
6342 * Alternative, for PCIe, could be the secondary bus reset initiatied
6343 * on the upstream switch PCIR_BRIDGECTL_1, bit 6.
6344 */
6345int
6346pcie_link_reset(device_t port, int pcie_location)
6347{
6348	uint16_t v;
6349
6350	v = pci_read_config(port, pcie_location + PCIER_LINK_CTL, 2);
6351	v |= PCIEM_LINK_CTL_LINK_DIS;
6352	pci_write_config(port, pcie_location + PCIER_LINK_CTL, v, 2);
6353	pause_sbt("pcier1", mstosbt(20), 0, 0);
6354	v &= ~PCIEM_LINK_CTL_LINK_DIS;
6355	v |= PCIEM_LINK_CTL_RETRAIN_LINK;
6356	pci_write_config(port, pcie_location + PCIER_LINK_CTL, v, 2);
6357	pause_sbt("pcier2", mstosbt(100), 0, 0); /* 100 ms */
6358	v = pci_read_config(port, pcie_location + PCIER_LINK_STA, 2);
6359	return ((v & PCIEM_LINK_STA_TRAINING) != 0 ? ETIMEDOUT : 0);
6360}
6361
6362static int
6363pci_reset_post(device_t dev, device_t child)
6364{
6365
6366	if (dev == device_get_parent(child))
6367		pci_restore_state(child);
6368	return (0);
6369}
6370
6371static int
6372pci_reset_prepare(device_t dev, device_t child)
6373{
6374
6375	if (dev == device_get_parent(child))
6376		pci_save_state(child);
6377	return (0);
6378}
6379
6380static int
6381pci_reset_child(device_t dev, device_t child, int flags)
6382{
6383	int error;
6384
6385	if (dev == NULL || device_get_parent(child) != dev)
6386		return (0);
6387	if ((flags & DEVF_RESET_DETACH) != 0) {
6388		error = device_get_state(child) == DS_ATTACHED ?
6389		    device_detach(child) : 0;
6390	} else {
6391		error = BUS_SUSPEND_CHILD(dev, child);
6392	}
6393	if (error == 0) {
6394		if (!pcie_flr(child, 1000, false)) {
6395			error = BUS_RESET_PREPARE(dev, child);
6396			if (error == 0)
6397				pci_power_reset(child);
6398			BUS_RESET_POST(dev, child);
6399		}
6400		if ((flags & DEVF_RESET_DETACH) != 0)
6401			device_probe_and_attach(child);
6402		else
6403			BUS_RESUME_CHILD(dev, child);
6404	}
6405	return (error);
6406}
6407
6408static void
6409pci_print_faulted_dev_name(const struct pci_devinfo *dinfo)
6410{
6411	const char *dev_name;
6412	device_t dev;
6413
6414	dev = dinfo->cfg.dev;
6415	printf("pci%d:%d:%d:%d", dinfo->cfg.domain, dinfo->cfg.bus,
6416	    dinfo->cfg.slot, dinfo->cfg.func);
6417	dev_name = device_get_name(dev);
6418	if (dev_name != NULL)
6419		printf(" (%s%d)", dev_name, device_get_unit(dev));
6420}
6421
6422void
6423pci_print_faulted_dev(void)
6424{
6425	struct pci_devinfo *dinfo;
6426	device_t dev;
6427	int aer, i;
6428	uint32_t r1, r2;
6429	uint16_t status;
6430
6431	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
6432		dev = dinfo->cfg.dev;
6433		status = pci_read_config(dev, PCIR_STATUS, 2);
6434		status &= PCIM_STATUS_MDPERR | PCIM_STATUS_STABORT |
6435		    PCIM_STATUS_RTABORT | PCIM_STATUS_RMABORT |
6436		    PCIM_STATUS_SERR | PCIM_STATUS_PERR;
6437		if (status != 0) {
6438			pci_print_faulted_dev_name(dinfo);
6439			printf(" error 0x%04x\n", status);
6440		}
6441		if (dinfo->cfg.pcie.pcie_location != 0) {
6442			status = pci_read_config(dev,
6443			    dinfo->cfg.pcie.pcie_location +
6444			    PCIER_DEVICE_STA, 2);
6445			if ((status & (PCIEM_STA_CORRECTABLE_ERROR |
6446			    PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
6447			    PCIEM_STA_UNSUPPORTED_REQ)) != 0) {
6448				pci_print_faulted_dev_name(dinfo);
6449				printf(" PCIe DEVCTL 0x%04x DEVSTA 0x%04x\n",
6450				    pci_read_config(dev,
6451				    dinfo->cfg.pcie.pcie_location +
6452				    PCIER_DEVICE_CTL, 2),
6453				    status);
6454			}
6455		}
6456		if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) {
6457			r1 = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
6458			r2 = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
6459			if (r1 != 0 || r2 != 0) {
6460				pci_print_faulted_dev_name(dinfo);
6461				printf(" AER UC 0x%08x Mask 0x%08x Svr 0x%08x\n"
6462				    "  COR 0x%08x Mask 0x%08x Ctl 0x%08x\n",
6463				    r1, pci_read_config(dev, aer +
6464				    PCIR_AER_UC_MASK, 4),
6465				    pci_read_config(dev, aer +
6466				    PCIR_AER_UC_SEVERITY, 4),
6467				    r2, pci_read_config(dev, aer +
6468				    PCIR_AER_COR_MASK, 4),
6469				    pci_read_config(dev, aer +
6470				    PCIR_AER_CAP_CONTROL, 4));
6471				for (i = 0; i < 4; i++) {
6472					r1 = pci_read_config(dev, aer +
6473					    PCIR_AER_HEADER_LOG + i * 4, 4);
6474					printf("    HL%d: 0x%08x\n", i, r1);
6475				}
6476			}
6477		}
6478	}
6479}
6480
6481#ifdef DDB
6482DB_SHOW_COMMAND(pcierr, pci_print_faulted_dev_db)
6483{
6484
6485	pci_print_faulted_dev();
6486}
6487
6488static void
6489db_clear_pcie_errors(const struct pci_devinfo *dinfo)
6490{
6491	device_t dev;
6492	int aer;
6493	uint32_t r;
6494
6495	dev = dinfo->cfg.dev;
6496	r = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
6497	    PCIER_DEVICE_STA, 2);
6498	pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
6499	    PCIER_DEVICE_STA, r, 2);
6500
6501	if (pci_find_extcap(dev, PCIZ_AER, &aer) != 0)
6502		return;
6503	r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
6504	if (r != 0)
6505		pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4);
6506	r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
6507	if (r != 0)
6508		pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4);
6509}
6510
6511DB_COMMAND(pci_clearerr, db_pci_clearerr)
6512{
6513	struct pci_devinfo *dinfo;
6514	device_t dev;
6515	uint16_t status, status1;
6516
6517	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
6518		dev = dinfo->cfg.dev;
6519		status1 = status = pci_read_config(dev, PCIR_STATUS, 2);
6520		status1 &= PCIM_STATUS_MDPERR | PCIM_STATUS_STABORT |
6521		    PCIM_STATUS_RTABORT | PCIM_STATUS_RMABORT |
6522		    PCIM_STATUS_SERR | PCIM_STATUS_PERR;
6523		if (status1 != 0) {
6524			status &= ~status1;
6525			pci_write_config(dev, PCIR_STATUS, status, 2);
6526		}
6527		if (dinfo->cfg.pcie.pcie_location != 0)
6528			db_clear_pcie_errors(dinfo);
6529	}
6530}
6531#endif
6532