nvme_qpair.c revision 328696
1/*-
2 * Copyright (C) 2012-2014 Intel Corporation
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/11/sys/dev/nvme/nvme_qpair.c 328696 2018-02-01 18:57:10Z mav $");
29
30#include <sys/param.h>
31#include <sys/bus.h>
32
33#include <dev/pci/pcivar.h>
34
35#include "nvme_private.h"
36
37static void	_nvme_qpair_submit_request(struct nvme_qpair *qpair,
38					   struct nvme_request *req);
39static void	nvme_qpair_destroy(struct nvme_qpair *qpair);
40
41struct nvme_opcode_string {
42
43	uint16_t	opc;
44	const char *	str;
45};
46
47static struct nvme_opcode_string admin_opcode[] = {
48	{ NVME_OPC_DELETE_IO_SQ, "DELETE IO SQ" },
49	{ NVME_OPC_CREATE_IO_SQ, "CREATE IO SQ" },
50	{ NVME_OPC_GET_LOG_PAGE, "GET LOG PAGE" },
51	{ NVME_OPC_DELETE_IO_CQ, "DELETE IO CQ" },
52	{ NVME_OPC_CREATE_IO_CQ, "CREATE IO CQ" },
53	{ NVME_OPC_IDENTIFY, "IDENTIFY" },
54	{ NVME_OPC_ABORT, "ABORT" },
55	{ NVME_OPC_SET_FEATURES, "SET FEATURES" },
56	{ NVME_OPC_GET_FEATURES, "GET FEATURES" },
57	{ NVME_OPC_ASYNC_EVENT_REQUEST, "ASYNC EVENT REQUEST" },
58	{ NVME_OPC_FIRMWARE_ACTIVATE, "FIRMWARE ACTIVATE" },
59	{ NVME_OPC_FIRMWARE_IMAGE_DOWNLOAD, "FIRMWARE IMAGE DOWNLOAD" },
60	{ NVME_OPC_FORMAT_NVM, "FORMAT NVM" },
61	{ NVME_OPC_SECURITY_SEND, "SECURITY SEND" },
62	{ NVME_OPC_SECURITY_RECEIVE, "SECURITY RECEIVE" },
63	{ 0xFFFF, "ADMIN COMMAND" }
64};
65
66static struct nvme_opcode_string io_opcode[] = {
67	{ NVME_OPC_FLUSH, "FLUSH" },
68	{ NVME_OPC_WRITE, "WRITE" },
69	{ NVME_OPC_READ, "READ" },
70	{ NVME_OPC_WRITE_UNCORRECTABLE, "WRITE UNCORRECTABLE" },
71	{ NVME_OPC_COMPARE, "COMPARE" },
72	{ NVME_OPC_DATASET_MANAGEMENT, "DATASET MANAGEMENT" },
73	{ 0xFFFF, "IO COMMAND" }
74};
75
76static const char *
77get_admin_opcode_string(uint16_t opc)
78{
79	struct nvme_opcode_string *entry;
80
81	entry = admin_opcode;
82
83	while (entry->opc != 0xFFFF) {
84		if (entry->opc == opc)
85			return (entry->str);
86		entry++;
87	}
88	return (entry->str);
89}
90
91static const char *
92get_io_opcode_string(uint16_t opc)
93{
94	struct nvme_opcode_string *entry;
95
96	entry = io_opcode;
97
98	while (entry->opc != 0xFFFF) {
99		if (entry->opc == opc)
100			return (entry->str);
101		entry++;
102	}
103	return (entry->str);
104}
105
106
107static void
108nvme_admin_qpair_print_command(struct nvme_qpair *qpair,
109    struct nvme_command *cmd)
110{
111
112	nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%x "
113	    "cdw10:%08x cdw11:%08x\n",
114	    get_admin_opcode_string(cmd->opc), cmd->opc, qpair->id, cmd->cid,
115	    cmd->nsid, cmd->cdw10, cmd->cdw11);
116}
117
118static void
119nvme_io_qpair_print_command(struct nvme_qpair *qpair,
120    struct nvme_command *cmd)
121{
122
123	switch (cmd->opc) {
124	case NVME_OPC_WRITE:
125	case NVME_OPC_READ:
126	case NVME_OPC_WRITE_UNCORRECTABLE:
127	case NVME_OPC_COMPARE:
128		nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d "
129		    "lba:%llu len:%d\n",
130		    get_io_opcode_string(cmd->opc), qpair->id, cmd->cid,
131		    cmd->nsid,
132		    ((unsigned long long)cmd->cdw11 << 32) + cmd->cdw10,
133		    (cmd->cdw12 & 0xFFFF) + 1);
134		break;
135	case NVME_OPC_FLUSH:
136	case NVME_OPC_DATASET_MANAGEMENT:
137		nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d\n",
138		    get_io_opcode_string(cmd->opc), qpair->id, cmd->cid,
139		    cmd->nsid);
140		break;
141	default:
142		nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%d\n",
143		    get_io_opcode_string(cmd->opc), cmd->opc, qpair->id,
144		    cmd->cid, cmd->nsid);
145		break;
146	}
147}
148
149static void
150nvme_qpair_print_command(struct nvme_qpair *qpair, struct nvme_command *cmd)
151{
152	if (qpair->id == 0)
153		nvme_admin_qpair_print_command(qpair, cmd);
154	else
155		nvme_io_qpair_print_command(qpair, cmd);
156}
157
158struct nvme_status_string {
159
160	uint16_t	sc;
161	const char *	str;
162};
163
164static struct nvme_status_string generic_status[] = {
165	{ NVME_SC_SUCCESS, "SUCCESS" },
166	{ NVME_SC_INVALID_OPCODE, "INVALID OPCODE" },
167	{ NVME_SC_INVALID_FIELD, "INVALID_FIELD" },
168	{ NVME_SC_COMMAND_ID_CONFLICT, "COMMAND ID CONFLICT" },
169	{ NVME_SC_DATA_TRANSFER_ERROR, "DATA TRANSFER ERROR" },
170	{ NVME_SC_ABORTED_POWER_LOSS, "ABORTED - POWER LOSS" },
171	{ NVME_SC_INTERNAL_DEVICE_ERROR, "INTERNAL DEVICE ERROR" },
172	{ NVME_SC_ABORTED_BY_REQUEST, "ABORTED - BY REQUEST" },
173	{ NVME_SC_ABORTED_SQ_DELETION, "ABORTED - SQ DELETION" },
174	{ NVME_SC_ABORTED_FAILED_FUSED, "ABORTED - FAILED FUSED" },
175	{ NVME_SC_ABORTED_MISSING_FUSED, "ABORTED - MISSING FUSED" },
176	{ NVME_SC_INVALID_NAMESPACE_OR_FORMAT, "INVALID NAMESPACE OR FORMAT" },
177	{ NVME_SC_COMMAND_SEQUENCE_ERROR, "COMMAND SEQUENCE ERROR" },
178	{ NVME_SC_LBA_OUT_OF_RANGE, "LBA OUT OF RANGE" },
179	{ NVME_SC_CAPACITY_EXCEEDED, "CAPACITY EXCEEDED" },
180	{ NVME_SC_NAMESPACE_NOT_READY, "NAMESPACE NOT READY" },
181	{ 0xFFFF, "GENERIC" }
182};
183
184static struct nvme_status_string command_specific_status[] = {
185	{ NVME_SC_COMPLETION_QUEUE_INVALID, "INVALID COMPLETION QUEUE" },
186	{ NVME_SC_INVALID_QUEUE_IDENTIFIER, "INVALID QUEUE IDENTIFIER" },
187	{ NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED, "MAX QUEUE SIZE EXCEEDED" },
188	{ NVME_SC_ABORT_COMMAND_LIMIT_EXCEEDED, "ABORT CMD LIMIT EXCEEDED" },
189	{ NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED, "ASYNC LIMIT EXCEEDED" },
190	{ NVME_SC_INVALID_FIRMWARE_SLOT, "INVALID FIRMWARE SLOT" },
191	{ NVME_SC_INVALID_FIRMWARE_IMAGE, "INVALID FIRMWARE IMAGE" },
192	{ NVME_SC_INVALID_INTERRUPT_VECTOR, "INVALID INTERRUPT VECTOR" },
193	{ NVME_SC_INVALID_LOG_PAGE, "INVALID LOG PAGE" },
194	{ NVME_SC_INVALID_FORMAT, "INVALID FORMAT" },
195	{ NVME_SC_FIRMWARE_REQUIRES_RESET, "FIRMWARE REQUIRES RESET" },
196	{ NVME_SC_CONFLICTING_ATTRIBUTES, "CONFLICTING ATTRIBUTES" },
197	{ NVME_SC_INVALID_PROTECTION_INFO, "INVALID PROTECTION INFO" },
198	{ NVME_SC_ATTEMPTED_WRITE_TO_RO_PAGE, "WRITE TO RO PAGE" },
199	{ 0xFFFF, "COMMAND SPECIFIC" }
200};
201
202static struct nvme_status_string media_error_status[] = {
203	{ NVME_SC_WRITE_FAULTS, "WRITE FAULTS" },
204	{ NVME_SC_UNRECOVERED_READ_ERROR, "UNRECOVERED READ ERROR" },
205	{ NVME_SC_GUARD_CHECK_ERROR, "GUARD CHECK ERROR" },
206	{ NVME_SC_APPLICATION_TAG_CHECK_ERROR, "APPLICATION TAG CHECK ERROR" },
207	{ NVME_SC_REFERENCE_TAG_CHECK_ERROR, "REFERENCE TAG CHECK ERROR" },
208	{ NVME_SC_COMPARE_FAILURE, "COMPARE FAILURE" },
209	{ NVME_SC_ACCESS_DENIED, "ACCESS DENIED" },
210	{ 0xFFFF, "MEDIA ERROR" }
211};
212
213static const char *
214get_status_string(uint16_t sct, uint16_t sc)
215{
216	struct nvme_status_string *entry;
217
218	switch (sct) {
219	case NVME_SCT_GENERIC:
220		entry = generic_status;
221		break;
222	case NVME_SCT_COMMAND_SPECIFIC:
223		entry = command_specific_status;
224		break;
225	case NVME_SCT_MEDIA_ERROR:
226		entry = media_error_status;
227		break;
228	case NVME_SCT_VENDOR_SPECIFIC:
229		return ("VENDOR SPECIFIC");
230	default:
231		return ("RESERVED");
232	}
233
234	while (entry->sc != 0xFFFF) {
235		if (entry->sc == sc)
236			return (entry->str);
237		entry++;
238	}
239	return (entry->str);
240}
241
242static void
243nvme_qpair_print_completion(struct nvme_qpair *qpair,
244    struct nvme_completion *cpl)
245{
246	nvme_printf(qpair->ctrlr, "%s (%02x/%02x) sqid:%d cid:%d cdw0:%x\n",
247	    get_status_string(cpl->status.sct, cpl->status.sc),
248	    cpl->status.sct, cpl->status.sc, cpl->sqid, cpl->cid, cpl->cdw0);
249}
250
251static boolean_t
252nvme_completion_is_retry(const struct nvme_completion *cpl)
253{
254	/*
255	 * TODO: spec is not clear how commands that are aborted due
256	 *  to TLER will be marked.  So for now, it seems
257	 *  NAMESPACE_NOT_READY is the only case where we should
258	 *  look at the DNR bit.
259	 */
260	switch (cpl->status.sct) {
261	case NVME_SCT_GENERIC:
262		switch (cpl->status.sc) {
263		case NVME_SC_ABORTED_BY_REQUEST:
264		case NVME_SC_NAMESPACE_NOT_READY:
265			if (cpl->status.dnr)
266				return (0);
267			else
268				return (1);
269		case NVME_SC_INVALID_OPCODE:
270		case NVME_SC_INVALID_FIELD:
271		case NVME_SC_COMMAND_ID_CONFLICT:
272		case NVME_SC_DATA_TRANSFER_ERROR:
273		case NVME_SC_ABORTED_POWER_LOSS:
274		case NVME_SC_INTERNAL_DEVICE_ERROR:
275		case NVME_SC_ABORTED_SQ_DELETION:
276		case NVME_SC_ABORTED_FAILED_FUSED:
277		case NVME_SC_ABORTED_MISSING_FUSED:
278		case NVME_SC_INVALID_NAMESPACE_OR_FORMAT:
279		case NVME_SC_COMMAND_SEQUENCE_ERROR:
280		case NVME_SC_LBA_OUT_OF_RANGE:
281		case NVME_SC_CAPACITY_EXCEEDED:
282		default:
283			return (0);
284		}
285	case NVME_SCT_COMMAND_SPECIFIC:
286	case NVME_SCT_MEDIA_ERROR:
287	case NVME_SCT_VENDOR_SPECIFIC:
288	default:
289		return (0);
290	}
291}
292
293static void
294nvme_qpair_complete_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr,
295    struct nvme_completion *cpl, boolean_t print_on_error)
296{
297	struct nvme_request	*req;
298	boolean_t		retry, error;
299
300	req = tr->req;
301	error = nvme_completion_is_error(cpl);
302	retry = error && nvme_completion_is_retry(cpl) &&
303	   req->retries < nvme_retry_count;
304
305	if (error && print_on_error) {
306		nvme_qpair_print_command(qpair, &req->cmd);
307		nvme_qpair_print_completion(qpair, cpl);
308	}
309
310	qpair->act_tr[cpl->cid] = NULL;
311
312	KASSERT(cpl->cid == req->cmd.cid, ("cpl cid does not match cmd cid\n"));
313
314	if (req->cb_fn && !retry)
315		req->cb_fn(req->cb_arg, cpl);
316
317	mtx_lock(&qpair->lock);
318	callout_stop(&tr->timer);
319
320	if (retry) {
321		req->retries++;
322		nvme_qpair_submit_tracker(qpair, tr);
323	} else {
324		if (req->type != NVME_REQUEST_NULL)
325			bus_dmamap_unload(qpair->dma_tag_payload,
326			    tr->payload_dma_map);
327
328		nvme_free_request(req);
329		tr->req = NULL;
330
331		TAILQ_REMOVE(&qpair->outstanding_tr, tr, tailq);
332		TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
333
334		/*
335		 * If the controller is in the middle of resetting, don't
336		 *  try to submit queued requests here - let the reset logic
337		 *  handle that instead.
338		 */
339		if (!STAILQ_EMPTY(&qpair->queued_req) &&
340		    !qpair->ctrlr->is_resetting) {
341			req = STAILQ_FIRST(&qpair->queued_req);
342			STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
343			_nvme_qpair_submit_request(qpair, req);
344		}
345	}
346
347	mtx_unlock(&qpair->lock);
348}
349
350static void
351nvme_qpair_manual_complete_tracker(struct nvme_qpair *qpair,
352    struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
353    boolean_t print_on_error)
354{
355	struct nvme_completion	cpl;
356
357	memset(&cpl, 0, sizeof(cpl));
358	cpl.sqid = qpair->id;
359	cpl.cid = tr->cid;
360	cpl.status.sct = sct;
361	cpl.status.sc = sc;
362	cpl.status.dnr = dnr;
363	nvme_qpair_complete_tracker(qpair, tr, &cpl, print_on_error);
364}
365
366void
367nvme_qpair_manual_complete_request(struct nvme_qpair *qpair,
368    struct nvme_request *req, uint32_t sct, uint32_t sc,
369    boolean_t print_on_error)
370{
371	struct nvme_completion	cpl;
372	boolean_t		error;
373
374	memset(&cpl, 0, sizeof(cpl));
375	cpl.sqid = qpair->id;
376	cpl.status.sct = sct;
377	cpl.status.sc = sc;
378
379	error = nvme_completion_is_error(&cpl);
380
381	if (error && print_on_error) {
382		nvme_qpair_print_command(qpair, &req->cmd);
383		nvme_qpair_print_completion(qpair, &cpl);
384	}
385
386	if (req->cb_fn)
387		req->cb_fn(req->cb_arg, &cpl);
388
389	nvme_free_request(req);
390}
391
392void
393nvme_qpair_process_completions(struct nvme_qpair *qpair)
394{
395	struct nvme_tracker	*tr;
396	struct nvme_completion	*cpl;
397
398	qpair->num_intr_handler_calls++;
399
400	if (!qpair->is_enabled)
401		/*
402		 * qpair is not enabled, likely because a controller reset is
403		 *  is in progress.  Ignore the interrupt - any I/O that was
404		 *  associated with this interrupt will get retried when the
405		 *  reset is complete.
406		 */
407		return;
408
409	while (1) {
410		cpl = &qpair->cpl[qpair->cq_head];
411
412		if (cpl->status.p != qpair->phase)
413			break;
414
415		tr = qpair->act_tr[cpl->cid];
416
417		if (tr != NULL) {
418			nvme_qpair_complete_tracker(qpair, tr, cpl, TRUE);
419			qpair->sq_head = cpl->sqhd;
420		} else {
421			nvme_printf(qpair->ctrlr,
422			    "cpl does not map to outstanding cmd\n");
423			nvme_dump_completion(cpl);
424			KASSERT(0, ("received completion for unknown cmd\n"));
425		}
426
427		if (++qpair->cq_head == qpair->num_entries) {
428			qpair->cq_head = 0;
429			qpair->phase = !qpair->phase;
430		}
431
432		nvme_mmio_write_4(qpair->ctrlr, doorbell[qpair->id].cq_hdbl,
433		    qpair->cq_head);
434	}
435}
436
437static void
438nvme_qpair_msix_handler(void *arg)
439{
440	struct nvme_qpair *qpair = arg;
441
442	nvme_qpair_process_completions(qpair);
443}
444
445int
446nvme_qpair_construct(struct nvme_qpair *qpair, uint32_t id,
447    uint16_t vector, uint32_t num_entries, uint32_t num_trackers,
448    struct nvme_controller *ctrlr)
449{
450	struct nvme_tracker	*tr;
451	size_t			cmdsz, cplsz, prpsz, allocsz, prpmemsz;
452	uint64_t		queuemem_phys, prpmem_phys, list_phys;
453	uint8_t			*queuemem, *prpmem, *prp_list;
454	int			i, err;
455
456	qpair->id = id;
457	qpair->vector = vector;
458	qpair->num_entries = num_entries;
459	qpair->num_trackers = num_trackers;
460	qpair->ctrlr = ctrlr;
461
462	if (ctrlr->msix_enabled) {
463
464		/*
465		 * MSI-X vector resource IDs start at 1, so we add one to
466		 *  the queue's vector to get the corresponding rid to use.
467		 */
468		qpair->rid = vector + 1;
469
470		qpair->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
471		    &qpair->rid, RF_ACTIVE);
472		bus_setup_intr(ctrlr->dev, qpair->res,
473		    INTR_TYPE_MISC | INTR_MPSAFE, NULL,
474		    nvme_qpair_msix_handler, qpair, &qpair->tag);
475	}
476
477	mtx_init(&qpair->lock, "nvme qpair lock", NULL, MTX_DEF);
478
479	/* Note: NVMe PRP format is restricted to 4-byte alignment. */
480	err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
481	    4, PAGE_SIZE, BUS_SPACE_MAXADDR,
482	    BUS_SPACE_MAXADDR, NULL, NULL, NVME_MAX_XFER_SIZE,
483	    (NVME_MAX_XFER_SIZE/PAGE_SIZE)+1, PAGE_SIZE, 0,
484	    NULL, NULL, &qpair->dma_tag_payload);
485	if (err != 0) {
486		nvme_printf(ctrlr, "payload tag create failed %d\n", err);
487		goto out;
488	}
489
490	/*
491	 * Each component must be page aligned, and individual PRP lists
492	 * cannot cross a page boundary.
493	 */
494	cmdsz = qpair->num_entries * sizeof(struct nvme_command);
495	cmdsz = roundup2(cmdsz, PAGE_SIZE);
496	cplsz = qpair->num_entries * sizeof(struct nvme_completion);
497	cplsz = roundup2(cplsz, PAGE_SIZE);
498	prpsz = sizeof(uint64_t) * NVME_MAX_PRP_LIST_ENTRIES;;
499	prpmemsz = qpair->num_trackers * prpsz;
500	allocsz = cmdsz + cplsz + prpmemsz;
501
502	err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
503	    PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
504	    allocsz, 1, allocsz, 0, NULL, NULL, &qpair->dma_tag);
505	if (err != 0) {
506		nvme_printf(ctrlr, "tag create failed %d\n", err);
507		goto out;
508	}
509
510	if (bus_dmamem_alloc(qpair->dma_tag, (void **)&queuemem,
511	    BUS_DMA_NOWAIT, &qpair->queuemem_map)) {
512		nvme_printf(ctrlr, "failed to alloc qpair memory\n");
513		goto out;
514	}
515
516	if (bus_dmamap_load(qpair->dma_tag, qpair->queuemem_map,
517	    queuemem, allocsz, nvme_single_map, &queuemem_phys, 0) != 0) {
518		nvme_printf(ctrlr, "failed to load qpair memory\n");
519		goto out;
520	}
521
522	qpair->num_cmds = 0;
523	qpair->num_intr_handler_calls = 0;
524	qpair->cmd = (struct nvme_command *)queuemem;
525	qpair->cpl = (struct nvme_completion *)(queuemem + cmdsz);
526	prpmem = (uint8_t *)(queuemem + cmdsz + cplsz);
527	qpair->cmd_bus_addr = queuemem_phys;
528	qpair->cpl_bus_addr = queuemem_phys + cmdsz;
529	prpmem_phys = queuemem_phys + cmdsz + cplsz;
530
531	qpair->sq_tdbl_off = nvme_mmio_offsetof(doorbell[id].sq_tdbl);
532	qpair->cq_hdbl_off = nvme_mmio_offsetof(doorbell[id].cq_hdbl);
533
534	TAILQ_INIT(&qpair->free_tr);
535	TAILQ_INIT(&qpair->outstanding_tr);
536	STAILQ_INIT(&qpair->queued_req);
537
538	list_phys = prpmem_phys;
539	prp_list = prpmem;
540	for (i = 0; i < qpair->num_trackers; i++) {
541
542		if (list_phys + prpsz > prpmem_phys + prpmemsz) {
543			qpair->num_trackers = i;
544			break;
545		}
546
547		/*
548		 * Make sure that the PRP list for this tracker doesn't
549		 * overflow to another page.
550		 */
551		if (trunc_page(list_phys) !=
552		    trunc_page(list_phys + prpsz - 1)) {
553			list_phys = roundup2(list_phys, PAGE_SIZE);
554			prp_list =
555			    (uint8_t *)roundup2((uintptr_t)prp_list, PAGE_SIZE);
556		}
557
558		tr = malloc(sizeof(*tr), M_NVME, M_ZERO | M_WAITOK);
559		bus_dmamap_create(qpair->dma_tag_payload, 0,
560		    &tr->payload_dma_map);
561		callout_init(&tr->timer, 1);
562		tr->cid = i;
563		tr->qpair = qpair;
564		tr->prp = (uint64_t *)prp_list;
565		tr->prp_bus_addr = list_phys;
566		TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
567		list_phys += prpsz;
568		prp_list += prpsz;
569	}
570
571	if (qpair->num_trackers == 0) {
572		nvme_printf(ctrlr, "failed to allocate enough trackers\n");
573		goto out;
574	}
575
576	qpair->act_tr = malloc(sizeof(struct nvme_tracker *) *
577	    qpair->num_entries, M_NVME, M_ZERO | M_WAITOK);
578	return (0);
579
580out:
581	nvme_qpair_destroy(qpair);
582	return (ENOMEM);
583}
584
585static void
586nvme_qpair_destroy(struct nvme_qpair *qpair)
587{
588	struct nvme_tracker	*tr;
589
590	if (qpair->tag)
591		bus_teardown_intr(qpair->ctrlr->dev, qpair->res, qpair->tag);
592
593	if (mtx_initialized(&qpair->lock))
594		mtx_destroy(&qpair->lock);
595
596	if (qpair->res)
597		bus_release_resource(qpair->ctrlr->dev, SYS_RES_IRQ,
598		    rman_get_rid(qpair->res), qpair->res);
599
600	if (qpair->cmd != NULL) {
601		bus_dmamap_unload(qpair->dma_tag, qpair->queuemem_map);
602		bus_dmamem_free(qpair->dma_tag, qpair->cmd,
603		    qpair->queuemem_map);
604	}
605
606	if (qpair->dma_tag)
607		bus_dma_tag_destroy(qpair->dma_tag);
608
609	if (qpair->dma_tag_payload)
610		bus_dma_tag_destroy(qpair->dma_tag_payload);
611
612	if (qpair->act_tr)
613		free(qpair->act_tr, M_NVME);
614
615	while (!TAILQ_EMPTY(&qpair->free_tr)) {
616		tr = TAILQ_FIRST(&qpair->free_tr);
617		TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
618		bus_dmamap_destroy(qpair->dma_tag, tr->payload_dma_map);
619		free(tr, M_NVME);
620	}
621}
622
623static void
624nvme_admin_qpair_abort_aers(struct nvme_qpair *qpair)
625{
626	struct nvme_tracker	*tr;
627
628	tr = TAILQ_FIRST(&qpair->outstanding_tr);
629	while (tr != NULL) {
630		if (tr->req->cmd.opc == NVME_OPC_ASYNC_EVENT_REQUEST) {
631			nvme_qpair_manual_complete_tracker(qpair, tr,
632			    NVME_SCT_GENERIC, NVME_SC_ABORTED_SQ_DELETION, 0,
633			    FALSE);
634			tr = TAILQ_FIRST(&qpair->outstanding_tr);
635		} else {
636			tr = TAILQ_NEXT(tr, tailq);
637		}
638	}
639}
640
641void
642nvme_admin_qpair_destroy(struct nvme_qpair *qpair)
643{
644
645	nvme_admin_qpair_abort_aers(qpair);
646	nvme_qpair_destroy(qpair);
647}
648
649void
650nvme_io_qpair_destroy(struct nvme_qpair *qpair)
651{
652
653	nvme_qpair_destroy(qpair);
654}
655
656static void
657nvme_abort_complete(void *arg, const struct nvme_completion *status)
658{
659	struct nvme_tracker	*tr = arg;
660
661	/*
662	 * If cdw0 == 1, the controller was not able to abort the command
663	 *  we requested.  We still need to check the active tracker array,
664	 *  to cover race where I/O timed out at same time controller was
665	 *  completing the I/O.
666	 */
667	if (status->cdw0 == 1 && tr->qpair->act_tr[tr->cid] != NULL) {
668		/*
669		 * An I/O has timed out, and the controller was unable to
670		 *  abort it for some reason.  Construct a fake completion
671		 *  status, and then complete the I/O's tracker manually.
672		 */
673		nvme_printf(tr->qpair->ctrlr,
674		    "abort command failed, aborting command manually\n");
675		nvme_qpair_manual_complete_tracker(tr->qpair, tr,
676		    NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, 0, TRUE);
677	}
678}
679
680static void
681nvme_timeout(void *arg)
682{
683	struct nvme_tracker	*tr = arg;
684	struct nvme_qpair	*qpair = tr->qpair;
685	struct nvme_controller	*ctrlr = qpair->ctrlr;
686	union csts_register	csts;
687
688	/* Read csts to get value of cfs - controller fatal status. */
689	csts.raw = nvme_mmio_read_4(ctrlr, csts);
690
691	if (ctrlr->enable_aborts && csts.bits.cfs == 0) {
692		/*
693		 * If aborts are enabled, only use them if the controller is
694		 *  not reporting fatal status.
695		 */
696		nvme_ctrlr_cmd_abort(ctrlr, tr->cid, qpair->id,
697		    nvme_abort_complete, tr);
698	} else
699		nvme_ctrlr_reset(ctrlr);
700}
701
702void
703nvme_qpair_submit_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr)
704{
705	struct nvme_request	*req;
706	struct nvme_controller	*ctrlr;
707
708	mtx_assert(&qpair->lock, MA_OWNED);
709
710	req = tr->req;
711	req->cmd.cid = tr->cid;
712	qpair->act_tr[tr->cid] = tr;
713	ctrlr = qpair->ctrlr;
714
715	if (req->timeout)
716#if __FreeBSD_version >= 800030
717		callout_reset_curcpu(&tr->timer, ctrlr->timeout_period * hz,
718		    nvme_timeout, tr);
719#else
720		callout_reset(&tr->timer, ctrlr->timeout_period * hz,
721		    nvme_timeout, tr);
722#endif
723
724	/* Copy the command from the tracker to the submission queue. */
725	memcpy(&qpair->cmd[qpair->sq_tail], &req->cmd, sizeof(req->cmd));
726
727	if (++qpair->sq_tail == qpair->num_entries)
728		qpair->sq_tail = 0;
729
730	wmb();
731	nvme_mmio_write_4(qpair->ctrlr, doorbell[qpair->id].sq_tdbl,
732	    qpair->sq_tail);
733
734	qpair->num_cmds++;
735}
736
737static void
738nvme_payload_map(void *arg, bus_dma_segment_t *seg, int nseg, int error)
739{
740	struct nvme_tracker 	*tr = arg;
741	uint32_t		cur_nseg;
742
743	/*
744	 * If the mapping operation failed, return immediately.  The caller
745	 *  is responsible for detecting the error status and failing the
746	 *  tracker manually.
747	 */
748	if (error != 0) {
749		nvme_printf(tr->qpair->ctrlr,
750		    "nvme_payload_map err %d\n", error);
751		return;
752	}
753
754	/*
755	 * Note that we specified PAGE_SIZE for alignment and max
756	 *  segment size when creating the bus dma tags.  So here
757	 *  we can safely just transfer each segment to its
758	 *  associated PRP entry.
759	 */
760	tr->req->cmd.prp1 = seg[0].ds_addr;
761
762	if (nseg == 2) {
763		tr->req->cmd.prp2 = seg[1].ds_addr;
764	} else if (nseg > 2) {
765		cur_nseg = 1;
766		tr->req->cmd.prp2 = (uint64_t)tr->prp_bus_addr;
767		while (cur_nseg < nseg) {
768			tr->prp[cur_nseg-1] =
769			    (uint64_t)seg[cur_nseg].ds_addr;
770			cur_nseg++;
771		}
772	} else {
773		/*
774		 * prp2 should not be used by the controller
775		 *  since there is only one segment, but set
776		 *  to 0 just to be safe.
777		 */
778		tr->req->cmd.prp2 = 0;
779	}
780
781	nvme_qpair_submit_tracker(tr->qpair, tr);
782}
783
784static void
785_nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
786{
787	struct nvme_tracker	*tr;
788	int			err = 0;
789
790	mtx_assert(&qpair->lock, MA_OWNED);
791
792	tr = TAILQ_FIRST(&qpair->free_tr);
793	req->qpair = qpair;
794
795	if (tr == NULL || !qpair->is_enabled) {
796		/*
797		 * No tracker is available, or the qpair is disabled due to
798		 *  an in-progress controller-level reset or controller
799		 *  failure.
800		 */
801
802		if (qpair->ctrlr->is_failed) {
803			/*
804			 * The controller has failed.  Post the request to a
805			 *  task where it will be aborted, so that we do not
806			 *  invoke the request's callback in the context
807			 *  of the submission.
808			 */
809			nvme_ctrlr_post_failed_request(qpair->ctrlr, req);
810		} else {
811			/*
812			 * Put the request on the qpair's request queue to be
813			 *  processed when a tracker frees up via a command
814			 *  completion or when the controller reset is
815			 *  completed.
816			 */
817			STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq);
818		}
819		return;
820	}
821
822	TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
823	TAILQ_INSERT_TAIL(&qpair->outstanding_tr, tr, tailq);
824	tr->req = req;
825
826	switch (req->type) {
827	case NVME_REQUEST_VADDR:
828		KASSERT(req->payload_size <= qpair->ctrlr->max_xfer_size,
829		    ("payload_size (%d) exceeds max_xfer_size (%d)\n",
830		    req->payload_size, qpair->ctrlr->max_xfer_size));
831		err = bus_dmamap_load(tr->qpair->dma_tag_payload,
832		    tr->payload_dma_map, req->u.payload, req->payload_size,
833		    nvme_payload_map, tr, 0);
834		if (err != 0)
835			nvme_printf(qpair->ctrlr,
836			    "bus_dmamap_load returned 0x%x!\n", err);
837		break;
838	case NVME_REQUEST_NULL:
839		nvme_qpair_submit_tracker(tr->qpair, tr);
840		break;
841#ifdef NVME_UNMAPPED_BIO_SUPPORT
842	case NVME_REQUEST_BIO:
843		KASSERT(req->u.bio->bio_bcount <= qpair->ctrlr->max_xfer_size,
844		    ("bio->bio_bcount (%jd) exceeds max_xfer_size (%d)\n",
845		    (intmax_t)req->u.bio->bio_bcount,
846		    qpair->ctrlr->max_xfer_size));
847		err = bus_dmamap_load_bio(tr->qpair->dma_tag_payload,
848		    tr->payload_dma_map, req->u.bio, nvme_payload_map, tr, 0);
849		if (err != 0)
850			nvme_printf(qpair->ctrlr,
851			    "bus_dmamap_load_bio returned 0x%x!\n", err);
852		break;
853#endif
854	case NVME_REQUEST_CCB:
855		err = bus_dmamap_load_ccb(tr->qpair->dma_tag_payload,
856		    tr->payload_dma_map, req->u.payload,
857		    nvme_payload_map, tr, 0);
858		if (err != 0)
859			nvme_printf(qpair->ctrlr,
860			    "bus_dmamap_load_ccb returned 0x%x!\n", err);
861		break;
862	default:
863		panic("unknown nvme request type 0x%x\n", req->type);
864		break;
865	}
866
867	if (err != 0) {
868		/*
869		 * The dmamap operation failed, so we manually fail the
870		 *  tracker here with DATA_TRANSFER_ERROR status.
871		 *
872		 * nvme_qpair_manual_complete_tracker must not be called
873		 *  with the qpair lock held.
874		 */
875		mtx_unlock(&qpair->lock);
876		nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
877		    NVME_SC_DATA_TRANSFER_ERROR, 1 /* do not retry */, TRUE);
878		mtx_lock(&qpair->lock);
879	}
880}
881
882void
883nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
884{
885
886	mtx_lock(&qpair->lock);
887	_nvme_qpair_submit_request(qpair, req);
888	mtx_unlock(&qpair->lock);
889}
890
891static void
892nvme_qpair_enable(struct nvme_qpair *qpair)
893{
894
895	qpair->is_enabled = TRUE;
896}
897
898void
899nvme_qpair_reset(struct nvme_qpair *qpair)
900{
901
902	qpair->sq_head = qpair->sq_tail = qpair->cq_head = 0;
903
904	/*
905	 * First time through the completion queue, HW will set phase
906	 *  bit on completions to 1.  So set this to 1 here, indicating
907	 *  we're looking for a 1 to know which entries have completed.
908	 *  we'll toggle the bit each time when the completion queue
909	 *  rolls over.
910	 */
911	qpair->phase = 1;
912
913	memset(qpair->cmd, 0,
914	    qpair->num_entries * sizeof(struct nvme_command));
915	memset(qpair->cpl, 0,
916	    qpair->num_entries * sizeof(struct nvme_completion));
917}
918
919void
920nvme_admin_qpair_enable(struct nvme_qpair *qpair)
921{
922	struct nvme_tracker		*tr;
923	struct nvme_tracker		*tr_temp;
924
925	/*
926	 * Manually abort each outstanding admin command.  Do not retry
927	 *  admin commands found here, since they will be left over from
928	 *  a controller reset and its likely the context in which the
929	 *  command was issued no longer applies.
930	 */
931	TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
932		nvme_printf(qpair->ctrlr,
933		    "aborting outstanding admin command\n");
934		nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
935		    NVME_SC_ABORTED_BY_REQUEST, 1 /* do not retry */, TRUE);
936	}
937
938	nvme_qpair_enable(qpair);
939}
940
941void
942nvme_io_qpair_enable(struct nvme_qpair *qpair)
943{
944	STAILQ_HEAD(, nvme_request)	temp;
945	struct nvme_tracker		*tr;
946	struct nvme_tracker		*tr_temp;
947	struct nvme_request		*req;
948
949	/*
950	 * Manually abort each outstanding I/O.  This normally results in a
951	 *  retry, unless the retry count on the associated request has
952	 *  reached its limit.
953	 */
954	TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
955		nvme_printf(qpair->ctrlr, "aborting outstanding i/o\n");
956		nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
957		    NVME_SC_ABORTED_BY_REQUEST, 0, TRUE);
958	}
959
960	mtx_lock(&qpair->lock);
961
962	nvme_qpair_enable(qpair);
963
964	STAILQ_INIT(&temp);
965	STAILQ_SWAP(&qpair->queued_req, &temp, nvme_request);
966
967	while (!STAILQ_EMPTY(&temp)) {
968		req = STAILQ_FIRST(&temp);
969		STAILQ_REMOVE_HEAD(&temp, stailq);
970		nvme_printf(qpair->ctrlr, "resubmitting queued i/o\n");
971		nvme_qpair_print_command(qpair, &req->cmd);
972		_nvme_qpair_submit_request(qpair, req);
973	}
974
975	mtx_unlock(&qpair->lock);
976}
977
978static void
979nvme_qpair_disable(struct nvme_qpair *qpair)
980{
981	struct nvme_tracker *tr;
982
983	qpair->is_enabled = FALSE;
984	mtx_lock(&qpair->lock);
985	TAILQ_FOREACH(tr, &qpair->outstanding_tr, tailq)
986		callout_stop(&tr->timer);
987	mtx_unlock(&qpair->lock);
988}
989
990void
991nvme_admin_qpair_disable(struct nvme_qpair *qpair)
992{
993
994	nvme_qpair_disable(qpair);
995	nvme_admin_qpair_abort_aers(qpair);
996}
997
998void
999nvme_io_qpair_disable(struct nvme_qpair *qpair)
1000{
1001
1002	nvme_qpair_disable(qpair);
1003}
1004
1005void
1006nvme_qpair_fail(struct nvme_qpair *qpair)
1007{
1008	struct nvme_tracker		*tr;
1009	struct nvme_request		*req;
1010
1011	if (!mtx_initialized(&qpair->lock))
1012		return;
1013
1014	mtx_lock(&qpair->lock);
1015
1016	while (!STAILQ_EMPTY(&qpair->queued_req)) {
1017		req = STAILQ_FIRST(&qpair->queued_req);
1018		STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
1019		nvme_printf(qpair->ctrlr, "failing queued i/o\n");
1020		mtx_unlock(&qpair->lock);
1021		nvme_qpair_manual_complete_request(qpair, req, NVME_SCT_GENERIC,
1022		    NVME_SC_ABORTED_BY_REQUEST, TRUE);
1023		mtx_lock(&qpair->lock);
1024	}
1025
1026	/* Manually abort each outstanding I/O. */
1027	while (!TAILQ_EMPTY(&qpair->outstanding_tr)) {
1028		tr = TAILQ_FIRST(&qpair->outstanding_tr);
1029		/*
1030		 * Do not remove the tracker.  The abort_tracker path will
1031		 *  do that for us.
1032		 */
1033		nvme_printf(qpair->ctrlr, "failing outstanding i/o\n");
1034		mtx_unlock(&qpair->lock);
1035		nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
1036		    NVME_SC_ABORTED_BY_REQUEST, 1 /* do not retry */, TRUE);
1037		mtx_lock(&qpair->lock);
1038	}
1039
1040	mtx_unlock(&qpair->lock);
1041}
1042
1043