nvme_ctrlr.c revision 367145
1/*-
2 * Copyright (C) 2012-2016 Intel Corporation
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/11/sys/dev/nvme/nvme_ctrlr.c 367145 2020-10-29 22:00:15Z brooks $");
29
30#include "opt_cam.h"
31
32#include <sys/param.h>
33#include <sys/systm.h>
34#include <sys/buf.h>
35#include <sys/bus.h>
36#include <sys/conf.h>
37#include <sys/ioccom.h>
38#include <sys/proc.h>
39#include <sys/smp.h>
40#include <sys/uio.h>
41
42#include <dev/pci/pcireg.h>
43#include <dev/pci/pcivar.h>
44
45#include "nvme_private.h"
46
47#define B4_CHK_RDY_DELAY_MS	2300		/* work arond controller bug */
48
49static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
50						struct nvme_async_event_request *aer);
51static void nvme_ctrlr_setup_interrupts(struct nvme_controller *ctrlr);
52
53static int
54nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr)
55{
56
57	ctrlr->resource_id = PCIR_BAR(0);
58
59	ctrlr->resource = bus_alloc_resource_any(ctrlr->dev, SYS_RES_MEMORY,
60	    &ctrlr->resource_id, RF_ACTIVE);
61
62	if(ctrlr->resource == NULL) {
63		nvme_printf(ctrlr, "unable to allocate pci resource\n");
64		return (ENOMEM);
65	}
66
67	ctrlr->bus_tag = rman_get_bustag(ctrlr->resource);
68	ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource);
69	ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle;
70
71	/*
72	 * The NVMe spec allows for the MSI-X table to be placed behind
73	 *  BAR 4/5, separate from the control/doorbell registers.  Always
74	 *  try to map this bar, because it must be mapped prior to calling
75	 *  pci_alloc_msix().  If the table isn't behind BAR 4/5,
76	 *  bus_alloc_resource() will just return NULL which is OK.
77	 */
78	ctrlr->bar4_resource_id = PCIR_BAR(4);
79	ctrlr->bar4_resource = bus_alloc_resource_any(ctrlr->dev, SYS_RES_MEMORY,
80	    &ctrlr->bar4_resource_id, RF_ACTIVE);
81
82	return (0);
83}
84
85static int
86nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
87{
88	struct nvme_qpair	*qpair;
89	uint32_t		num_entries;
90	int			error;
91
92	qpair = &ctrlr->adminq;
93
94	num_entries = NVME_ADMIN_ENTRIES;
95	TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
96	/*
97	 * If admin_entries was overridden to an invalid value, revert it
98	 *  back to our default value.
99	 */
100	if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
101	    num_entries > NVME_MAX_ADMIN_ENTRIES) {
102		nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
103		    "specified\n", num_entries);
104		num_entries = NVME_ADMIN_ENTRIES;
105	}
106
107	/*
108	 * The admin queue's max xfer size is treated differently than the
109	 *  max I/O xfer size.  16KB is sufficient here - maybe even less?
110	 */
111	error = nvme_qpair_construct(qpair,
112				     0, /* qpair ID */
113				     0, /* vector */
114				     num_entries,
115				     NVME_ADMIN_TRACKERS,
116				     ctrlr);
117	return (error);
118}
119
120static int
121nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
122{
123	struct nvme_qpair	*qpair;
124	union cap_lo_register	cap_lo;
125	int			i, error, num_entries, num_trackers;
126
127	num_entries = NVME_IO_ENTRIES;
128	TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
129
130	/*
131	 * NVMe spec sets a hard limit of 64K max entries, but
132	 *  devices may specify a smaller limit, so we need to check
133	 *  the MQES field in the capabilities register.
134	 */
135	cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
136	num_entries = min(num_entries, cap_lo.bits.mqes+1);
137
138	num_trackers = NVME_IO_TRACKERS;
139	TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
140
141	num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
142	num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
143	/*
144	 * No need to have more trackers than entries in the submit queue.
145	 *  Note also that for a queue size of N, we can only have (N-1)
146	 *  commands outstanding, hence the "-1" here.
147	 */
148	num_trackers = min(num_trackers, (num_entries-1));
149
150	/*
151	 * Our best estimate for the maximum number of I/Os that we should
152	 * noramlly have in flight at one time. This should be viewed as a hint,
153	 * not a hard limit and will need to be revisitted when the upper layers
154	 * of the storage system grows multi-queue support.
155	 */
156	ctrlr->max_hw_pend_io = num_trackers * ctrlr->num_io_queues * 3 / 4;
157
158	/*
159	 * This was calculated previously when setting up interrupts, but
160	 *  a controller could theoretically support fewer I/O queues than
161	 *  MSI-X vectors.  So calculate again here just to be safe.
162	 */
163	ctrlr->num_cpus_per_ioq = howmany(mp_ncpus, ctrlr->num_io_queues);
164
165	ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
166	    M_NVME, M_ZERO | M_WAITOK);
167
168	for (i = 0; i < ctrlr->num_io_queues; i++) {
169		qpair = &ctrlr->ioq[i];
170
171		/*
172		 * Admin queue has ID=0. IO queues start at ID=1 -
173		 *  hence the 'i+1' here.
174		 *
175		 * For I/O queues, use the controller-wide max_xfer_size
176		 *  calculated in nvme_attach().
177		 */
178		error = nvme_qpair_construct(qpair,
179				     i+1, /* qpair ID */
180				     ctrlr->msix_enabled ? i+1 : 0, /* vector */
181				     num_entries,
182				     num_trackers,
183				     ctrlr);
184		if (error)
185			return (error);
186
187		/*
188		 * Do not bother binding interrupts if we only have one I/O
189		 *  interrupt thread for this controller.
190		 */
191		if (ctrlr->num_io_queues > 1)
192			bus_bind_intr(ctrlr->dev, qpair->res,
193			    i * ctrlr->num_cpus_per_ioq);
194	}
195
196	return (0);
197}
198
199static void
200nvme_ctrlr_fail(struct nvme_controller *ctrlr)
201{
202	int i;
203
204	ctrlr->is_failed = TRUE;
205	nvme_admin_qpair_disable(&ctrlr->adminq);
206	nvme_qpair_fail(&ctrlr->adminq);
207	if (ctrlr->ioq != NULL) {
208		for (i = 0; i < ctrlr->num_io_queues; i++) {
209			nvme_io_qpair_disable(&ctrlr->ioq[i]);
210			nvme_qpair_fail(&ctrlr->ioq[i]);
211		}
212	}
213	nvme_notify_fail_consumers(ctrlr);
214}
215
216void
217nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
218    struct nvme_request *req)
219{
220
221	mtx_lock(&ctrlr->lock);
222	STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq);
223	mtx_unlock(&ctrlr->lock);
224	taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task);
225}
226
227static void
228nvme_ctrlr_fail_req_task(void *arg, int pending)
229{
230	struct nvme_controller	*ctrlr = arg;
231	struct nvme_request	*req;
232
233	mtx_lock(&ctrlr->lock);
234	while ((req = STAILQ_FIRST(&ctrlr->fail_req)) != NULL) {
235		STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq);
236		mtx_unlock(&ctrlr->lock);
237		nvme_qpair_manual_complete_request(req->qpair, req,
238		    NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST);
239		mtx_lock(&ctrlr->lock);
240	}
241	mtx_unlock(&ctrlr->lock);
242}
243
244static int
245nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val)
246{
247	int ms_waited;
248	union csts_register csts;
249
250	ms_waited = 0;
251	while (1) {
252		csts.raw = nvme_mmio_read_4(ctrlr, csts);
253		if (csts.raw == 0xffffffff)		/* Hot unplug. */
254			return (ENXIO);
255		if (csts.bits.rdy == desired_val)
256			break;
257		if (ms_waited++ > ctrlr->ready_timeout_in_ms) {
258			nvme_printf(ctrlr, "controller ready did not become %d "
259			    "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms);
260			return (ENXIO);
261		}
262		DELAY(1000);
263	}
264
265	return (0);
266}
267
268static int
269nvme_ctrlr_disable(struct nvme_controller *ctrlr)
270{
271	union cc_register cc;
272	union csts_register csts;
273	int err;
274
275	cc.raw = nvme_mmio_read_4(ctrlr, cc);
276	csts.raw = nvme_mmio_read_4(ctrlr, csts);
277
278	/*
279	 * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
280	 * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
281	 * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
282	 * isn't the desired value. Short circuit if we're already disabled.
283	 */
284	if (cc.bits.en == 1) {
285		if (csts.bits.rdy == 0) {
286			/* EN == 1, wait for  RDY == 1 or fail */
287			err = nvme_ctrlr_wait_for_ready(ctrlr, 1);
288			if (err != 0)
289				return (err);
290		}
291	} else {
292		/* EN == 0 already wait for RDY == 0 */
293		if (csts.bits.rdy == 0)
294			return (0);
295		else
296			return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
297	}
298
299	cc.bits.en = 0;
300	nvme_mmio_write_4(ctrlr, cc, cc.raw);
301	/*
302	 * Some drives have issues with accessing the mmio after we
303	 * disable, so delay for a bit after we write the bit to
304	 * cope with these issues.
305	 */
306	if (ctrlr->quirks & QUIRK_DELAY_B4_CHK_RDY)
307		pause("nvmeR", B4_CHK_RDY_DELAY_MS * hz / 1000);
308	return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
309}
310
311static int
312nvme_ctrlr_enable(struct nvme_controller *ctrlr)
313{
314	union cc_register	cc;
315	union csts_register	csts;
316	union aqa_register	aqa;
317	int			err;
318
319	cc.raw = nvme_mmio_read_4(ctrlr, cc);
320	csts.raw = nvme_mmio_read_4(ctrlr, csts);
321
322	/*
323	 * See note in nvme_ctrlr_disable. Short circuit if we're already enabled.
324	 */
325	if (cc.bits.en == 1) {
326		if (csts.bits.rdy == 1)
327			return (0);
328		else
329			return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
330	} else {
331		/* EN == 0 already wait for RDY == 0 or fail */
332		err = nvme_ctrlr_wait_for_ready(ctrlr, 0);
333		if (err != 0)
334			return (err);
335	}
336
337	nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
338	DELAY(5000);
339	nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
340	DELAY(5000);
341
342	aqa.raw = 0;
343	/* acqs and asqs are 0-based. */
344	aqa.bits.acqs = ctrlr->adminq.num_entries-1;
345	aqa.bits.asqs = ctrlr->adminq.num_entries-1;
346	nvme_mmio_write_4(ctrlr, aqa, aqa.raw);
347	DELAY(5000);
348
349	cc.bits.en = 1;
350	cc.bits.css = 0;
351	cc.bits.ams = 0;
352	cc.bits.shn = 0;
353	cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
354	cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
355
356	/* This evaluates to 0, which is according to spec. */
357	cc.bits.mps = (PAGE_SIZE >> 13);
358
359	nvme_mmio_write_4(ctrlr, cc, cc.raw);
360
361	return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
362}
363
364int
365nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
366{
367	int i, err;
368
369	nvme_admin_qpair_disable(&ctrlr->adminq);
370	/*
371	 * I/O queues are not allocated before the initial HW
372	 *  reset, so do not try to disable them.  Use is_initialized
373	 *  to determine if this is the initial HW reset.
374	 */
375	if (ctrlr->is_initialized) {
376		for (i = 0; i < ctrlr->num_io_queues; i++)
377			nvme_io_qpair_disable(&ctrlr->ioq[i]);
378	}
379
380	DELAY(100*1000);
381
382	err = nvme_ctrlr_disable(ctrlr);
383	if (err != 0)
384		return err;
385	return (nvme_ctrlr_enable(ctrlr));
386}
387
388void
389nvme_ctrlr_reset(struct nvme_controller *ctrlr)
390{
391	int cmpset;
392
393	cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
394
395	if (cmpset == 0 || ctrlr->is_failed)
396		/*
397		 * Controller is already resetting or has failed.  Return
398		 *  immediately since there is no need to kick off another
399		 *  reset in these cases.
400		 */
401		return;
402
403	taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
404}
405
406static int
407nvme_ctrlr_identify(struct nvme_controller *ctrlr)
408{
409	struct nvme_completion_poll_status	status;
410
411	status.done = 0;
412	nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
413	    nvme_completion_poll_cb, &status);
414	while (!atomic_load_acq_int(&status.done))
415		pause("nvme", 1);
416	if (nvme_completion_is_error(&status.cpl)) {
417		nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
418		return (ENXIO);
419	}
420
421	/*
422	 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
423	 *  controller supports.
424	 */
425	if (ctrlr->cdata.mdts > 0)
426		ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
427		    ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts)));
428
429	return (0);
430}
431
432static int
433nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
434{
435	struct nvme_completion_poll_status	status;
436	int					cq_allocated, sq_allocated;
437
438	status.done = 0;
439	nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
440	    nvme_completion_poll_cb, &status);
441	while (!atomic_load_acq_int(&status.done))
442		pause("nvme", 1);
443	if (nvme_completion_is_error(&status.cpl)) {
444		nvme_printf(ctrlr, "nvme_ctrlr_set_num_qpairs failed!\n");
445		return (ENXIO);
446	}
447
448	/*
449	 * Data in cdw0 is 0-based.
450	 * Lower 16-bits indicate number of submission queues allocated.
451	 * Upper 16-bits indicate number of completion queues allocated.
452	 */
453	sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
454	cq_allocated = (status.cpl.cdw0 >> 16) + 1;
455
456	/*
457	 * Controller may allocate more queues than we requested,
458	 *  so use the minimum of the number requested and what was
459	 *  actually allocated.
460	 */
461	ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated);
462	ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated);
463
464	return (0);
465}
466
467static int
468nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
469{
470	struct nvme_completion_poll_status	status;
471	struct nvme_qpair			*qpair;
472	int					i;
473
474	for (i = 0; i < ctrlr->num_io_queues; i++) {
475		qpair = &ctrlr->ioq[i];
476
477		status.done = 0;
478		nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector,
479		    nvme_completion_poll_cb, &status);
480		while (!atomic_load_acq_int(&status.done))
481			pause("nvme", 1);
482		if (nvme_completion_is_error(&status.cpl)) {
483			nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
484			return (ENXIO);
485		}
486
487		status.done = 0;
488		nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair,
489		    nvme_completion_poll_cb, &status);
490		while (!atomic_load_acq_int(&status.done))
491			pause("nvme", 1);
492		if (nvme_completion_is_error(&status.cpl)) {
493			nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
494			return (ENXIO);
495		}
496	}
497
498	return (0);
499}
500
501static int
502nvme_ctrlr_destroy_qpair(struct nvme_controller *ctrlr, struct nvme_qpair *qpair)
503{
504	struct nvme_completion_poll_status	status;
505
506	status.done = 0;
507	nvme_ctrlr_cmd_delete_io_sq(ctrlr, qpair,
508	    nvme_completion_poll_cb, &status);
509	while (!atomic_load_acq_int(&status.done))
510		pause("nvme", 1);
511	if (nvme_completion_is_error(&status.cpl)) {
512		nvme_printf(ctrlr, "nvme_destroy_io_sq failed!\n");
513		return (ENXIO);
514	}
515
516	status.done = 0;
517	nvme_ctrlr_cmd_delete_io_cq(ctrlr, qpair,
518	    nvme_completion_poll_cb, &status);
519	while (!atomic_load_acq_int(&status.done))
520		pause("nvme", 1);
521	if (nvme_completion_is_error(&status.cpl)) {
522		nvme_printf(ctrlr, "nvme_destroy_io_cq failed!\n");
523		return (ENXIO);
524	}
525
526	return (0);
527}
528
529static int
530nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
531{
532	struct nvme_namespace	*ns;
533	uint32_t 		i;
534
535	for (i = 0; i < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); i++) {
536		ns = &ctrlr->ns[i];
537		nvme_ns_construct(ns, i+1, ctrlr);
538	}
539
540	return (0);
541}
542
543static boolean_t
544is_log_page_id_valid(uint8_t page_id)
545{
546
547	switch (page_id) {
548	case NVME_LOG_ERROR:
549	case NVME_LOG_HEALTH_INFORMATION:
550	case NVME_LOG_FIRMWARE_SLOT:
551		return (TRUE);
552	}
553
554	return (FALSE);
555}
556
557static uint32_t
558nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
559{
560	uint32_t	log_page_size;
561
562	switch (page_id) {
563	case NVME_LOG_ERROR:
564		log_page_size = min(
565		    sizeof(struct nvme_error_information_entry) *
566		    ctrlr->cdata.elpe,
567		    NVME_MAX_AER_LOG_SIZE);
568		break;
569	case NVME_LOG_HEALTH_INFORMATION:
570		log_page_size = sizeof(struct nvme_health_information_page);
571		break;
572	case NVME_LOG_FIRMWARE_SLOT:
573		log_page_size = sizeof(struct nvme_firmware_page);
574		break;
575	default:
576		log_page_size = 0;
577		break;
578	}
579
580	return (log_page_size);
581}
582
583static void
584nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr,
585    union nvme_critical_warning_state state)
586{
587
588	if (state.bits.available_spare == 1)
589		nvme_printf(ctrlr, "available spare space below threshold\n");
590
591	if (state.bits.temperature == 1)
592		nvme_printf(ctrlr, "temperature above threshold\n");
593
594	if (state.bits.device_reliability == 1)
595		nvme_printf(ctrlr, "device reliability degraded\n");
596
597	if (state.bits.read_only == 1)
598		nvme_printf(ctrlr, "media placed in read only mode\n");
599
600	if (state.bits.volatile_memory_backup == 1)
601		nvme_printf(ctrlr, "volatile memory backup device failed\n");
602
603	if (state.bits.reserved != 0)
604		nvme_printf(ctrlr,
605		    "unknown critical warning(s): state = 0x%02x\n", state.raw);
606}
607
608static void
609nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
610{
611	struct nvme_async_event_request		*aer = arg;
612	struct nvme_health_information_page	*health_info;
613
614	/*
615	 * If the log page fetch for some reason completed with an error,
616	 *  don't pass log page data to the consumers.  In practice, this case
617	 *  should never happen.
618	 */
619	if (nvme_completion_is_error(cpl))
620		nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
621		    aer->log_page_id, NULL, 0);
622	else {
623		if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) {
624			health_info = (struct nvme_health_information_page *)
625			    aer->log_page_buffer;
626			nvme_ctrlr_log_critical_warnings(aer->ctrlr,
627			    health_info->critical_warning);
628			/*
629			 * Critical warnings reported through the
630			 *  SMART/health log page are persistent, so
631			 *  clear the associated bits in the async event
632			 *  config so that we do not receive repeated
633			 *  notifications for the same event.
634			 */
635			aer->ctrlr->async_event_config.raw &=
636			    ~health_info->critical_warning.raw;
637			nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr,
638			    aer->ctrlr->async_event_config, NULL, NULL);
639		}
640
641
642		/*
643		 * Pass the cpl data from the original async event completion,
644		 *  not the log page fetch.
645		 */
646		nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
647		    aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
648	}
649
650	/*
651	 * Repost another asynchronous event request to replace the one
652	 *  that just completed.
653	 */
654	nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
655}
656
657static void
658nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
659{
660	struct nvme_async_event_request	*aer = arg;
661
662	if (nvme_completion_is_error(cpl)) {
663		/*
664		 *  Do not retry failed async event requests.  This avoids
665		 *  infinite loops where a new async event request is submitted
666		 *  to replace the one just failed, only to fail again and
667		 *  perpetuate the loop.
668		 */
669		return;
670	}
671
672	/* Associated log page is in bits 23:16 of completion entry dw0. */
673	aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
674
675	nvme_printf(aer->ctrlr, "async event occurred (log page id=0x%x)\n",
676	    aer->log_page_id);
677
678	if (is_log_page_id_valid(aer->log_page_id)) {
679		aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
680		    aer->log_page_id);
681		memcpy(&aer->cpl, cpl, sizeof(*cpl));
682		nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
683		    NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
684		    aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
685		    aer);
686		/* Wait to notify consumers until after log page is fetched. */
687	} else {
688		nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
689		    NULL, 0);
690
691		/*
692		 * Repost another asynchronous event request to replace the one
693		 *  that just completed.
694		 */
695		nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
696	}
697}
698
699static void
700nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
701    struct nvme_async_event_request *aer)
702{
703	struct nvme_request *req;
704
705	aer->ctrlr = ctrlr;
706	req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
707	aer->req = req;
708
709	/*
710	 * Disable timeout here, since asynchronous event requests should by
711	 *  nature never be timed out.
712	 */
713	req->timeout = FALSE;
714	req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
715	nvme_ctrlr_submit_admin_request(ctrlr, req);
716}
717
718static void
719nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
720{
721	struct nvme_completion_poll_status	status;
722	struct nvme_async_event_request		*aer;
723	uint32_t				i;
724
725	ctrlr->async_event_config.raw = 0xFF;
726	ctrlr->async_event_config.bits.reserved = 0;
727
728	status.done = 0;
729	nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD,
730	    0, NULL, 0, nvme_completion_poll_cb, &status);
731	while (!atomic_load_acq_int(&status.done))
732		pause("nvme", 1);
733	if (nvme_completion_is_error(&status.cpl) ||
734	    (status.cpl.cdw0 & 0xFFFF) == 0xFFFF ||
735	    (status.cpl.cdw0 & 0xFFFF) == 0x0000) {
736		nvme_printf(ctrlr, "temperature threshold not supported\n");
737		ctrlr->async_event_config.bits.temperature = 0;
738	}
739
740	nvme_ctrlr_cmd_set_async_event_config(ctrlr,
741	    ctrlr->async_event_config, NULL, NULL);
742
743	/* aerl is a zero-based value, so we need to add 1 here. */
744	ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
745
746	for (i = 0; i < ctrlr->num_aers; i++) {
747		aer = &ctrlr->aer[i];
748		nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
749	}
750}
751
752static void
753nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
754{
755
756	ctrlr->int_coal_time = 0;
757	TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
758	    &ctrlr->int_coal_time);
759
760	ctrlr->int_coal_threshold = 0;
761	TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
762	    &ctrlr->int_coal_threshold);
763
764	nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
765	    ctrlr->int_coal_threshold, NULL, NULL);
766}
767
768static void
769nvme_ctrlr_start(void *ctrlr_arg)
770{
771	struct nvme_controller *ctrlr = ctrlr_arg;
772	uint32_t old_num_io_queues;
773	int i;
774
775	/*
776	 * Only reset adminq here when we are restarting the
777	 *  controller after a reset.  During initialization,
778	 *  we have already submitted admin commands to get
779	 *  the number of I/O queues supported, so cannot reset
780	 *  the adminq again here.
781	 */
782	if (ctrlr->is_resetting) {
783		nvme_qpair_reset(&ctrlr->adminq);
784	}
785
786	for (i = 0; i < ctrlr->num_io_queues; i++)
787		nvme_qpair_reset(&ctrlr->ioq[i]);
788
789	nvme_admin_qpair_enable(&ctrlr->adminq);
790
791	if (nvme_ctrlr_identify(ctrlr) != 0) {
792		nvme_ctrlr_fail(ctrlr);
793		return;
794	}
795
796	/*
797	 * The number of qpairs are determined during controller initialization,
798	 *  including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the
799	 *  HW limit.  We call SET_FEATURES again here so that it gets called
800	 *  after any reset for controllers that depend on the driver to
801	 *  explicit specify how many queues it will use.  This value should
802	 *  never change between resets, so panic if somehow that does happen.
803	 */
804	if (ctrlr->is_resetting) {
805		old_num_io_queues = ctrlr->num_io_queues;
806		if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
807			nvme_ctrlr_fail(ctrlr);
808			return;
809		}
810
811		if (old_num_io_queues != ctrlr->num_io_queues) {
812			panic("num_io_queues changed from %u to %u",
813			      old_num_io_queues, ctrlr->num_io_queues);
814		}
815	}
816
817	if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
818		nvme_ctrlr_fail(ctrlr);
819		return;
820	}
821
822	if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
823		nvme_ctrlr_fail(ctrlr);
824		return;
825	}
826
827	nvme_ctrlr_configure_aer(ctrlr);
828	nvme_ctrlr_configure_int_coalescing(ctrlr);
829
830	for (i = 0; i < ctrlr->num_io_queues; i++)
831		nvme_io_qpair_enable(&ctrlr->ioq[i]);
832}
833
834void
835nvme_ctrlr_start_config_hook(void *arg)
836{
837	struct nvme_controller *ctrlr = arg;
838
839	nvme_qpair_reset(&ctrlr->adminq);
840	nvme_admin_qpair_enable(&ctrlr->adminq);
841
842	if (nvme_ctrlr_set_num_qpairs(ctrlr) == 0 &&
843	    nvme_ctrlr_construct_io_qpairs(ctrlr) == 0)
844		nvme_ctrlr_start(ctrlr);
845	else
846		nvme_ctrlr_fail(ctrlr);
847
848	nvme_sysctl_initialize_ctrlr(ctrlr);
849	config_intrhook_disestablish(&ctrlr->config_hook);
850
851	ctrlr->is_initialized = 1;
852	nvme_notify_new_controller(ctrlr);
853}
854
855static void
856nvme_ctrlr_reset_task(void *arg, int pending)
857{
858	struct nvme_controller	*ctrlr = arg;
859	int			status;
860
861	nvme_printf(ctrlr, "resetting controller\n");
862	status = nvme_ctrlr_hw_reset(ctrlr);
863	/*
864	 * Use pause instead of DELAY, so that we yield to any nvme interrupt
865	 *  handlers on this CPU that were blocked on a qpair lock. We want
866	 *  all nvme interrupts completed before proceeding with restarting the
867	 *  controller.
868	 *
869	 * XXX - any way to guarantee the interrupt handlers have quiesced?
870	 */
871	pause("nvmereset", hz / 10);
872	if (status == 0)
873		nvme_ctrlr_start(ctrlr);
874	else
875		nvme_ctrlr_fail(ctrlr);
876
877	atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
878}
879
880/*
881 * Poll all the queues enabled on the device for completion.
882 */
883void
884nvme_ctrlr_poll(struct nvme_controller *ctrlr)
885{
886	int i;
887
888	nvme_qpair_process_completions(&ctrlr->adminq);
889
890	for (i = 0; i < ctrlr->num_io_queues; i++)
891		if (ctrlr->ioq && ctrlr->ioq[i].cpl)
892			nvme_qpair_process_completions(&ctrlr->ioq[i]);
893}
894
895/*
896 * Poll the single-vector intertrupt case: num_io_queues will be 1 and
897 * there's only a single vector. While we're polling, we mask further
898 * interrupts in the controller.
899 */
900void
901nvme_ctrlr_intx_handler(void *arg)
902{
903	struct nvme_controller *ctrlr = arg;
904
905	nvme_mmio_write_4(ctrlr, intms, 1);
906	nvme_ctrlr_poll(ctrlr);
907	nvme_mmio_write_4(ctrlr, intmc, 1);
908}
909
910static int
911nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr)
912{
913
914	ctrlr->msix_enabled = 0;
915	ctrlr->num_io_queues = 1;
916	ctrlr->num_cpus_per_ioq = mp_ncpus;
917	ctrlr->rid = 0;
918	ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
919	    &ctrlr->rid, RF_SHAREABLE | RF_ACTIVE);
920
921	if (ctrlr->res == NULL) {
922		nvme_printf(ctrlr, "unable to allocate shared IRQ\n");
923		return (ENOMEM);
924	}
925
926	bus_setup_intr(ctrlr->dev, ctrlr->res,
927	    INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler,
928	    ctrlr, &ctrlr->tag);
929
930	if (ctrlr->tag == NULL) {
931		nvme_printf(ctrlr, "unable to setup intx handler\n");
932		return (ENOMEM);
933	}
934
935	return (0);
936}
937
938static void
939nvme_pt_done(void *arg, const struct nvme_completion *cpl)
940{
941	struct nvme_pt_command *pt = arg;
942	struct mtx *mtx = pt->driver_lock;
943
944	bzero(&pt->cpl, sizeof(pt->cpl));
945	pt->cpl.cdw0 = cpl->cdw0;
946	pt->cpl.status = cpl->status;
947	pt->cpl.status.p = 0;
948
949	mtx_lock(mtx);
950	pt->driver_lock = NULL;
951	wakeup(pt);
952	mtx_unlock(mtx);
953}
954
955int
956nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
957    struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
958    int is_admin_cmd)
959{
960	struct nvme_request	*req;
961	struct mtx		*mtx;
962	struct buf		*buf = NULL;
963	int			ret = 0;
964	vm_offset_t		addr, end;
965
966	if (pt->len > 0) {
967		/*
968		 * vmapbuf calls vm_fault_quick_hold_pages which only maps full
969		 * pages. Ensure this request has fewer than MAXPHYS bytes when
970		 * extended to full pages.
971		 */
972		addr = (vm_offset_t)pt->buf;
973		end = round_page(addr + pt->len);
974		addr = trunc_page(addr);
975		if (end - addr > MAXPHYS)
976			return EIO;
977
978		if (pt->len > ctrlr->max_xfer_size) {
979			nvme_printf(ctrlr, "pt->len (%d) "
980			    "exceeds max_xfer_size (%d)\n", pt->len,
981			    ctrlr->max_xfer_size);
982			return EIO;
983		}
984		if (is_user_buffer) {
985			/*
986			 * Ensure the user buffer is wired for the duration of
987			 *  this passthrough command.
988			 */
989			PHOLD(curproc);
990			buf = getpbuf(NULL);
991			buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
992			if (vmapbuf(buf, pt->buf, pt->len, 1) < 0) {
993				ret = EFAULT;
994				goto err;
995			}
996			req = nvme_allocate_request_vaddr(buf->b_data, pt->len,
997			    nvme_pt_done, pt);
998		} else
999			req = nvme_allocate_request_vaddr(pt->buf, pt->len,
1000			    nvme_pt_done, pt);
1001	} else
1002		req = nvme_allocate_request_null(nvme_pt_done, pt);
1003
1004	req->cmd.opc	= pt->cmd.opc;
1005	req->cmd.rsvd2	= pt->cmd.rsvd2;
1006	req->cmd.rsvd3	= pt->cmd.rsvd3;
1007	req->cmd.cdw10	= pt->cmd.cdw10;
1008	req->cmd.cdw11	= pt->cmd.cdw11;
1009	req->cmd.cdw12	= pt->cmd.cdw12;
1010	req->cmd.cdw13	= pt->cmd.cdw13;
1011	req->cmd.cdw14	= pt->cmd.cdw14;
1012	req->cmd.cdw15	= pt->cmd.cdw15;
1013
1014	req->cmd.nsid = nsid;
1015
1016	mtx = mtx_pool_find(mtxpool_sleep, pt);
1017	pt->driver_lock = mtx;
1018
1019	if (is_admin_cmd)
1020		nvme_ctrlr_submit_admin_request(ctrlr, req);
1021	else
1022		nvme_ctrlr_submit_io_request(ctrlr, req);
1023
1024	mtx_lock(mtx);
1025	while (pt->driver_lock != NULL)
1026		mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
1027	mtx_unlock(mtx);
1028
1029err:
1030	if (buf != NULL) {
1031		relpbuf(buf, NULL);
1032		PRELE(curproc);
1033	}
1034
1035	return (ret);
1036}
1037
1038static int
1039nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
1040    struct thread *td)
1041{
1042	struct nvme_controller			*ctrlr;
1043	struct nvme_pt_command			*pt;
1044
1045	ctrlr = cdev->si_drv1;
1046
1047	switch (cmd) {
1048	case NVME_RESET_CONTROLLER:
1049		nvme_ctrlr_reset(ctrlr);
1050		break;
1051	case NVME_PASSTHROUGH_CMD:
1052		pt = (struct nvme_pt_command *)arg;
1053		return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, pt->cmd.nsid,
1054		    1 /* is_user_buffer */, 1 /* is_admin_cmd */));
1055	case NVME_GET_NSID:
1056	{
1057		struct nvme_get_nsid *gnsid = (struct nvme_get_nsid *)arg;
1058		strncpy(gnsid->cdev, device_get_nameunit(ctrlr->dev),
1059		    sizeof(gnsid->cdev));
1060		gnsid->nsid = 0;
1061		break;
1062	}
1063	default:
1064		return (ENOTTY);
1065	}
1066
1067	return (0);
1068}
1069
1070static struct cdevsw nvme_ctrlr_cdevsw = {
1071	.d_version =	D_VERSION,
1072	.d_flags =	0,
1073	.d_ioctl =	nvme_ctrlr_ioctl
1074};
1075
1076static void
1077nvme_ctrlr_setup_interrupts(struct nvme_controller *ctrlr)
1078{
1079	device_t	dev;
1080	int		per_cpu_io_queues;
1081	int		min_cpus_per_ioq;
1082	int		num_vectors_requested, num_vectors_allocated;
1083	int		num_vectors_available;
1084
1085	dev = ctrlr->dev;
1086	min_cpus_per_ioq = 1;
1087	TUNABLE_INT_FETCH("hw.nvme.min_cpus_per_ioq", &min_cpus_per_ioq);
1088
1089	if (min_cpus_per_ioq < 1) {
1090		min_cpus_per_ioq = 1;
1091	} else if (min_cpus_per_ioq > mp_ncpus) {
1092		min_cpus_per_ioq = mp_ncpus;
1093	}
1094
1095	per_cpu_io_queues = 1;
1096	TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues);
1097
1098	if (per_cpu_io_queues == 0) {
1099		min_cpus_per_ioq = mp_ncpus;
1100	}
1101
1102	ctrlr->force_intx = 0;
1103	TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx);
1104
1105	/*
1106	 * FreeBSD currently cannot allocate more than about 190 vectors at
1107	 *  boot, meaning that systems with high core count and many devices
1108	 *  requesting per-CPU interrupt vectors will not get their full
1109	 *  allotment.  So first, try to allocate as many as we may need to
1110	 *  understand what is available, then immediately release them.
1111	 *  Then figure out how many of those we will actually use, based on
1112	 *  assigning an equal number of cores to each I/O queue.
1113	 */
1114
1115	/* One vector for per core I/O queue, plus one vector for admin queue. */
1116	num_vectors_available = min(pci_msix_count(dev), mp_ncpus + 1);
1117	if (pci_alloc_msix(dev, &num_vectors_available) != 0) {
1118		num_vectors_available = 0;
1119	}
1120	pci_release_msi(dev);
1121
1122	if (ctrlr->force_intx || num_vectors_available < 2) {
1123		nvme_ctrlr_configure_intx(ctrlr);
1124		return;
1125	}
1126
1127	/*
1128	 * Do not use all vectors for I/O queues - one must be saved for the
1129	 *  admin queue.
1130	 */
1131	ctrlr->num_cpus_per_ioq = max(min_cpus_per_ioq,
1132	    howmany(mp_ncpus, num_vectors_available - 1));
1133
1134	ctrlr->num_io_queues = howmany(mp_ncpus, ctrlr->num_cpus_per_ioq);
1135	num_vectors_requested = ctrlr->num_io_queues + 1;
1136	num_vectors_allocated = num_vectors_requested;
1137
1138	/*
1139	 * Now just allocate the number of vectors we need.  This should
1140	 *  succeed, since we previously called pci_alloc_msix()
1141	 *  successfully returning at least this many vectors, but just to
1142	 *  be safe, if something goes wrong just revert to INTx.
1143	 */
1144	if (pci_alloc_msix(dev, &num_vectors_allocated) != 0) {
1145		nvme_ctrlr_configure_intx(ctrlr);
1146		return;
1147	}
1148
1149	if (num_vectors_allocated < num_vectors_requested) {
1150		pci_release_msi(dev);
1151		nvme_ctrlr_configure_intx(ctrlr);
1152		return;
1153	}
1154
1155	ctrlr->msix_enabled = 1;
1156}
1157
1158int
1159nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
1160{
1161	struct make_dev_args	md_args;
1162	union cap_lo_register	cap_lo;
1163	union cap_hi_register	cap_hi;
1164	int			status, timeout_period;
1165
1166	ctrlr->dev = dev;
1167
1168	mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);
1169
1170	status = nvme_ctrlr_allocate_bar(ctrlr);
1171
1172	if (status != 0)
1173		return (status);
1174
1175	/*
1176	 * Software emulators may set the doorbell stride to something
1177	 *  other than zero, but this driver is not set up to handle that.
1178	 */
1179	cap_hi.raw = nvme_mmio_read_4(ctrlr, cap_hi);
1180	if (cap_hi.bits.dstrd != 0)
1181		return (ENXIO);
1182
1183	ctrlr->min_page_size = 1 << (12 + cap_hi.bits.mpsmin);
1184
1185	/* Get ready timeout value from controller, in units of 500ms. */
1186	cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
1187	ctrlr->ready_timeout_in_ms = cap_lo.bits.to * 500;
1188
1189	timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
1190	TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
1191	timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
1192	timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
1193	ctrlr->timeout_period = timeout_period;
1194
1195	nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
1196	TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
1197
1198	ctrlr->enable_aborts = 0;
1199	TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
1200
1201	nvme_ctrlr_setup_interrupts(ctrlr);
1202
1203	ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
1204	if (nvme_ctrlr_construct_admin_qpair(ctrlr) != 0)
1205		return (ENXIO);
1206
1207	ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
1208	    taskqueue_thread_enqueue, &ctrlr->taskqueue);
1209	taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq");
1210
1211	ctrlr->is_resetting = 0;
1212	ctrlr->is_initialized = 0;
1213	ctrlr->notification_sent = 0;
1214	TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
1215	TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr);
1216	STAILQ_INIT(&ctrlr->fail_req);
1217	ctrlr->is_failed = FALSE;
1218
1219	make_dev_args_init(&md_args);
1220	md_args.mda_devsw = &nvme_ctrlr_cdevsw;
1221	md_args.mda_uid = UID_ROOT;
1222	md_args.mda_gid = GID_WHEEL;
1223	md_args.mda_mode = 0600;
1224	md_args.mda_unit = device_get_unit(dev);
1225	md_args.mda_si_drv1 = (void *)ctrlr;
1226	status = make_dev_s(&md_args, &ctrlr->cdev, "nvme%d",
1227	    device_get_unit(dev));
1228	if (status != 0)
1229		return (ENXIO);
1230
1231	return (0);
1232}
1233
1234void
1235nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
1236{
1237	int	gone, i;
1238
1239	if (ctrlr->resource == NULL)
1240		goto nores;
1241
1242	/*
1243	 * Check whether it is a hot unplug or a clean driver detach.
1244	 * If device is not there any more, skip any shutdown commands.
1245	 */
1246	gone = (nvme_mmio_read_4(ctrlr, csts) == 0xffffffff);
1247	if (gone)
1248		nvme_ctrlr_fail(ctrlr);
1249	else
1250		nvme_notify_fail_consumers(ctrlr);
1251
1252	for (i = 0; i < NVME_MAX_NAMESPACES; i++)
1253		nvme_ns_destruct(&ctrlr->ns[i]);
1254
1255	if (ctrlr->cdev)
1256		destroy_dev(ctrlr->cdev);
1257
1258	for (i = 0; i < ctrlr->num_io_queues; i++) {
1259		if (!gone)
1260			nvme_ctrlr_destroy_qpair(ctrlr, &ctrlr->ioq[i]);
1261		nvme_io_qpair_destroy(&ctrlr->ioq[i]);
1262	}
1263	free(ctrlr->ioq, M_NVME);
1264	nvme_admin_qpair_destroy(&ctrlr->adminq);
1265
1266	/*
1267	 *  Notify the controller of a shutdown, even though this is due to
1268	 *   a driver unload, not a system shutdown (this path is not invoked
1269	 *   during shutdown).  This ensures the controller receives a
1270	 *   shutdown notification in case the system is shutdown before
1271	 *   reloading the driver.
1272	 */
1273	if (!gone)
1274		nvme_ctrlr_shutdown(ctrlr);
1275
1276	if (!gone)
1277		nvme_ctrlr_disable(ctrlr);
1278
1279	if (ctrlr->taskqueue)
1280		taskqueue_free(ctrlr->taskqueue);
1281
1282	if (ctrlr->tag)
1283		bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
1284
1285	if (ctrlr->res)
1286		bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
1287		    rman_get_rid(ctrlr->res), ctrlr->res);
1288
1289	if (ctrlr->msix_enabled)
1290		pci_release_msi(dev);
1291
1292	if (ctrlr->bar4_resource != NULL) {
1293		bus_release_resource(dev, SYS_RES_MEMORY,
1294		    ctrlr->bar4_resource_id, ctrlr->bar4_resource);
1295	}
1296
1297	bus_release_resource(dev, SYS_RES_MEMORY,
1298	    ctrlr->resource_id, ctrlr->resource);
1299
1300nores:
1301	mtx_destroy(&ctrlr->lock);
1302}
1303
1304void
1305nvme_ctrlr_shutdown(struct nvme_controller *ctrlr)
1306{
1307	union cc_register	cc;
1308	union csts_register	csts;
1309	int			ticks = 0;
1310
1311	cc.raw = nvme_mmio_read_4(ctrlr, cc);
1312	cc.bits.shn = NVME_SHN_NORMAL;
1313	nvme_mmio_write_4(ctrlr, cc, cc.raw);
1314	while (1) {
1315		csts.raw = nvme_mmio_read_4(ctrlr, csts);
1316		if (csts.raw == 0xffffffff)		/* Hot unplug. */
1317			break;
1318		if (csts.bits.shst == NVME_SHST_COMPLETE)
1319			break;
1320		if (ticks++ > 5*hz) {
1321			nvme_printf(ctrlr, "did not complete shutdown within"
1322			    " 5 seconds of notification\n");
1323			break;
1324		}
1325		pause("nvme shn", 1);
1326	}
1327}
1328
1329void
1330nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
1331    struct nvme_request *req)
1332{
1333
1334	nvme_qpair_submit_request(&ctrlr->adminq, req);
1335}
1336
1337void
1338nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
1339    struct nvme_request *req)
1340{
1341	struct nvme_qpair       *qpair;
1342
1343	qpair = &ctrlr->ioq[curcpu / ctrlr->num_cpus_per_ioq];
1344	nvme_qpair_submit_request(qpair, req);
1345}
1346
1347device_t
1348nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
1349{
1350
1351	return (ctrlr->dev);
1352}
1353
1354const struct nvme_controller_data *
1355nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
1356{
1357
1358	return (&ctrlr->cdata);
1359}
1360