nvme_ctrlr.c revision 328691
1/*-
2 * Copyright (C) 2012-2016 Intel Corporation
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/11/sys/dev/nvme/nvme_ctrlr.c 328691 2018-02-01 16:52:03Z mav $");
29
30#include "opt_cam.h"
31
32#include <sys/param.h>
33#include <sys/systm.h>
34#include <sys/buf.h>
35#include <sys/bus.h>
36#include <sys/conf.h>
37#include <sys/ioccom.h>
38#include <sys/proc.h>
39#include <sys/smp.h>
40#include <sys/uio.h>
41
42#include <dev/pci/pcireg.h>
43#include <dev/pci/pcivar.h>
44
45#include "nvme_private.h"
46
47static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
48						struct nvme_async_event_request *aer);
49static void nvme_ctrlr_setup_interrupts(struct nvme_controller *ctrlr);
50
51static int
52nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr)
53{
54
55	ctrlr->resource_id = PCIR_BAR(0);
56
57	ctrlr->resource = bus_alloc_resource_any(ctrlr->dev, SYS_RES_MEMORY,
58	    &ctrlr->resource_id, RF_ACTIVE);
59
60	if(ctrlr->resource == NULL) {
61		nvme_printf(ctrlr, "unable to allocate pci resource\n");
62		return (ENOMEM);
63	}
64
65	ctrlr->bus_tag = rman_get_bustag(ctrlr->resource);
66	ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource);
67	ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle;
68
69	/*
70	 * The NVMe spec allows for the MSI-X table to be placed behind
71	 *  BAR 4/5, separate from the control/doorbell registers.  Always
72	 *  try to map this bar, because it must be mapped prior to calling
73	 *  pci_alloc_msix().  If the table isn't behind BAR 4/5,
74	 *  bus_alloc_resource() will just return NULL which is OK.
75	 */
76	ctrlr->bar4_resource_id = PCIR_BAR(4);
77	ctrlr->bar4_resource = bus_alloc_resource_any(ctrlr->dev, SYS_RES_MEMORY,
78	    &ctrlr->bar4_resource_id, RF_ACTIVE);
79
80	return (0);
81}
82
83static int
84nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
85{
86	struct nvme_qpair	*qpair;
87	uint32_t		num_entries;
88	int			error;
89
90	qpair = &ctrlr->adminq;
91
92	num_entries = NVME_ADMIN_ENTRIES;
93	TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
94	/*
95	 * If admin_entries was overridden to an invalid value, revert it
96	 *  back to our default value.
97	 */
98	if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
99	    num_entries > NVME_MAX_ADMIN_ENTRIES) {
100		nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
101		    "specified\n", num_entries);
102		num_entries = NVME_ADMIN_ENTRIES;
103	}
104
105	/*
106	 * The admin queue's max xfer size is treated differently than the
107	 *  max I/O xfer size.  16KB is sufficient here - maybe even less?
108	 */
109	error = nvme_qpair_construct(qpair,
110				     0, /* qpair ID */
111				     0, /* vector */
112				     num_entries,
113				     NVME_ADMIN_TRACKERS,
114				     ctrlr);
115	return (error);
116}
117
118static int
119nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
120{
121	struct nvme_qpair	*qpair;
122	union cap_lo_register	cap_lo;
123	int			i, error, num_entries, num_trackers;
124
125	num_entries = NVME_IO_ENTRIES;
126	TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
127
128	/*
129	 * NVMe spec sets a hard limit of 64K max entries, but
130	 *  devices may specify a smaller limit, so we need to check
131	 *  the MQES field in the capabilities register.
132	 */
133	cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
134	num_entries = min(num_entries, cap_lo.bits.mqes+1);
135
136	num_trackers = NVME_IO_TRACKERS;
137	TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
138
139	num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
140	num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
141	/*
142	 * No need to have more trackers than entries in the submit queue.
143	 *  Note also that for a queue size of N, we can only have (N-1)
144	 *  commands outstanding, hence the "-1" here.
145	 */
146	num_trackers = min(num_trackers, (num_entries-1));
147
148	/*
149	 * Our best estimate for the maximum number of I/Os that we should
150	 * noramlly have in flight at one time. This should be viewed as a hint,
151	 * not a hard limit and will need to be revisitted when the upper layers
152	 * of the storage system grows multi-queue support.
153	 */
154	ctrlr->max_hw_pend_io = num_trackers * ctrlr->num_io_queues / 4;
155
156	/*
157	 * This was calculated previously when setting up interrupts, but
158	 *  a controller could theoretically support fewer I/O queues than
159	 *  MSI-X vectors.  So calculate again here just to be safe.
160	 */
161	ctrlr->num_cpus_per_ioq = howmany(mp_ncpus, ctrlr->num_io_queues);
162
163	ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
164	    M_NVME, M_ZERO | M_WAITOK);
165
166	for (i = 0; i < ctrlr->num_io_queues; i++) {
167		qpair = &ctrlr->ioq[i];
168
169		/*
170		 * Admin queue has ID=0. IO queues start at ID=1 -
171		 *  hence the 'i+1' here.
172		 *
173		 * For I/O queues, use the controller-wide max_xfer_size
174		 *  calculated in nvme_attach().
175		 */
176		error = nvme_qpair_construct(qpair,
177				     i+1, /* qpair ID */
178				     ctrlr->msix_enabled ? i+1 : 0, /* vector */
179				     num_entries,
180				     num_trackers,
181				     ctrlr);
182		if (error)
183			return (error);
184
185		/*
186		 * Do not bother binding interrupts if we only have one I/O
187		 *  interrupt thread for this controller.
188		 */
189		if (ctrlr->num_io_queues > 1)
190			bus_bind_intr(ctrlr->dev, qpair->res,
191			    i * ctrlr->num_cpus_per_ioq);
192	}
193
194	return (0);
195}
196
197static void
198nvme_ctrlr_fail(struct nvme_controller *ctrlr)
199{
200	int i;
201
202	ctrlr->is_failed = TRUE;
203	nvme_qpair_fail(&ctrlr->adminq);
204	if (ctrlr->ioq != NULL) {
205		for (i = 0; i < ctrlr->num_io_queues; i++)
206			nvme_qpair_fail(&ctrlr->ioq[i]);
207	}
208	nvme_notify_fail_consumers(ctrlr);
209}
210
211void
212nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
213    struct nvme_request *req)
214{
215
216	mtx_lock(&ctrlr->lock);
217	STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq);
218	mtx_unlock(&ctrlr->lock);
219	taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task);
220}
221
222static void
223nvme_ctrlr_fail_req_task(void *arg, int pending)
224{
225	struct nvme_controller	*ctrlr = arg;
226	struct nvme_request	*req;
227
228	mtx_lock(&ctrlr->lock);
229	while (!STAILQ_EMPTY(&ctrlr->fail_req)) {
230		req = STAILQ_FIRST(&ctrlr->fail_req);
231		STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq);
232		nvme_qpair_manual_complete_request(req->qpair, req,
233		    NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, TRUE);
234	}
235	mtx_unlock(&ctrlr->lock);
236}
237
238static int
239nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val)
240{
241	int ms_waited;
242	union cc_register cc;
243	union csts_register csts;
244
245	cc.raw = nvme_mmio_read_4(ctrlr, cc);
246	csts.raw = nvme_mmio_read_4(ctrlr, csts);
247
248	if (cc.bits.en != desired_val) {
249		nvme_printf(ctrlr, "%s called with desired_val = %d "
250		    "but cc.en = %d\n", __func__, desired_val, cc.bits.en);
251		return (ENXIO);
252	}
253
254	ms_waited = 0;
255
256	while (csts.bits.rdy != desired_val) {
257		DELAY(1000);
258		if (ms_waited++ > ctrlr->ready_timeout_in_ms) {
259			nvme_printf(ctrlr, "controller ready did not become %d "
260			    "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms);
261			return (ENXIO);
262		}
263		csts.raw = nvme_mmio_read_4(ctrlr, csts);
264	}
265
266	return (0);
267}
268
269static void
270nvme_ctrlr_disable(struct nvme_controller *ctrlr)
271{
272	union cc_register cc;
273	union csts_register csts;
274
275	cc.raw = nvme_mmio_read_4(ctrlr, cc);
276	csts.raw = nvme_mmio_read_4(ctrlr, csts);
277
278	if (cc.bits.en == 1 && csts.bits.rdy == 0)
279		nvme_ctrlr_wait_for_ready(ctrlr, 1);
280
281	cc.bits.en = 0;
282	nvme_mmio_write_4(ctrlr, cc, cc.raw);
283	DELAY(5000);
284	nvme_ctrlr_wait_for_ready(ctrlr, 0);
285}
286
287static int
288nvme_ctrlr_enable(struct nvme_controller *ctrlr)
289{
290	union cc_register	cc;
291	union csts_register	csts;
292	union aqa_register	aqa;
293
294	cc.raw = nvme_mmio_read_4(ctrlr, cc);
295	csts.raw = nvme_mmio_read_4(ctrlr, csts);
296
297	if (cc.bits.en == 1) {
298		if (csts.bits.rdy == 1)
299			return (0);
300		else
301			return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
302	}
303
304	nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
305	DELAY(5000);
306	nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
307	DELAY(5000);
308
309	aqa.raw = 0;
310	/* acqs and asqs are 0-based. */
311	aqa.bits.acqs = ctrlr->adminq.num_entries-1;
312	aqa.bits.asqs = ctrlr->adminq.num_entries-1;
313	nvme_mmio_write_4(ctrlr, aqa, aqa.raw);
314	DELAY(5000);
315
316	cc.bits.en = 1;
317	cc.bits.css = 0;
318	cc.bits.ams = 0;
319	cc.bits.shn = 0;
320	cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
321	cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
322
323	/* This evaluates to 0, which is according to spec. */
324	cc.bits.mps = (PAGE_SIZE >> 13);
325
326	nvme_mmio_write_4(ctrlr, cc, cc.raw);
327	DELAY(5000);
328
329	return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
330}
331
332int
333nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
334{
335	int i;
336
337	nvme_admin_qpair_disable(&ctrlr->adminq);
338	/*
339	 * I/O queues are not allocated before the initial HW
340	 *  reset, so do not try to disable them.  Use is_initialized
341	 *  to determine if this is the initial HW reset.
342	 */
343	if (ctrlr->is_initialized) {
344		for (i = 0; i < ctrlr->num_io_queues; i++)
345			nvme_io_qpair_disable(&ctrlr->ioq[i]);
346	}
347
348	DELAY(100*1000);
349
350	nvme_ctrlr_disable(ctrlr);
351	return (nvme_ctrlr_enable(ctrlr));
352}
353
354void
355nvme_ctrlr_reset(struct nvme_controller *ctrlr)
356{
357	int cmpset;
358
359	cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
360
361	if (cmpset == 0 || ctrlr->is_failed)
362		/*
363		 * Controller is already resetting or has failed.  Return
364		 *  immediately since there is no need to kick off another
365		 *  reset in these cases.
366		 */
367		return;
368
369	taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
370}
371
372static int
373nvme_ctrlr_identify(struct nvme_controller *ctrlr)
374{
375	struct nvme_completion_poll_status	status;
376
377	status.done = FALSE;
378	nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
379	    nvme_completion_poll_cb, &status);
380	while (status.done == FALSE)
381		pause("nvme", 1);
382	if (nvme_completion_is_error(&status.cpl)) {
383		nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
384		return (ENXIO);
385	}
386
387	/*
388	 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
389	 *  controller supports.
390	 */
391	if (ctrlr->cdata.mdts > 0)
392		ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
393		    ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts)));
394
395	return (0);
396}
397
398static int
399nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
400{
401	struct nvme_completion_poll_status	status;
402	int					cq_allocated, sq_allocated;
403
404	status.done = FALSE;
405	nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
406	    nvme_completion_poll_cb, &status);
407	while (status.done == FALSE)
408		pause("nvme", 1);
409	if (nvme_completion_is_error(&status.cpl)) {
410		nvme_printf(ctrlr, "nvme_ctrlr_set_num_qpairs failed!\n");
411		return (ENXIO);
412	}
413
414	/*
415	 * Data in cdw0 is 0-based.
416	 * Lower 16-bits indicate number of submission queues allocated.
417	 * Upper 16-bits indicate number of completion queues allocated.
418	 */
419	sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
420	cq_allocated = (status.cpl.cdw0 >> 16) + 1;
421
422	/*
423	 * Controller may allocate more queues than we requested,
424	 *  so use the minimum of the number requested and what was
425	 *  actually allocated.
426	 */
427	ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated);
428	ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated);
429
430	return (0);
431}
432
433static int
434nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
435{
436	struct nvme_completion_poll_status	status;
437	struct nvme_qpair			*qpair;
438	int					i;
439
440	for (i = 0; i < ctrlr->num_io_queues; i++) {
441		qpair = &ctrlr->ioq[i];
442
443		status.done = FALSE;
444		nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector,
445		    nvme_completion_poll_cb, &status);
446		while (status.done == FALSE)
447			pause("nvme", 1);
448		if (nvme_completion_is_error(&status.cpl)) {
449			nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
450			return (ENXIO);
451		}
452
453		status.done = FALSE;
454		nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair,
455		    nvme_completion_poll_cb, &status);
456		while (status.done == FALSE)
457			pause("nvme", 1);
458		if (nvme_completion_is_error(&status.cpl)) {
459			nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
460			return (ENXIO);
461		}
462	}
463
464	return (0);
465}
466
467static int
468nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
469{
470	struct nvme_namespace	*ns;
471	uint32_t 		i;
472
473	for (i = 0; i < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); i++) {
474		ns = &ctrlr->ns[i];
475		nvme_ns_construct(ns, i+1, ctrlr);
476	}
477
478	return (0);
479}
480
481static boolean_t
482is_log_page_id_valid(uint8_t page_id)
483{
484
485	switch (page_id) {
486	case NVME_LOG_ERROR:
487	case NVME_LOG_HEALTH_INFORMATION:
488	case NVME_LOG_FIRMWARE_SLOT:
489		return (TRUE);
490	}
491
492	return (FALSE);
493}
494
495static uint32_t
496nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
497{
498	uint32_t	log_page_size;
499
500	switch (page_id) {
501	case NVME_LOG_ERROR:
502		log_page_size = min(
503		    sizeof(struct nvme_error_information_entry) *
504		    ctrlr->cdata.elpe,
505		    NVME_MAX_AER_LOG_SIZE);
506		break;
507	case NVME_LOG_HEALTH_INFORMATION:
508		log_page_size = sizeof(struct nvme_health_information_page);
509		break;
510	case NVME_LOG_FIRMWARE_SLOT:
511		log_page_size = sizeof(struct nvme_firmware_page);
512		break;
513	default:
514		log_page_size = 0;
515		break;
516	}
517
518	return (log_page_size);
519}
520
521static void
522nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr,
523    union nvme_critical_warning_state state)
524{
525
526	if (state.bits.available_spare == 1)
527		nvme_printf(ctrlr, "available spare space below threshold\n");
528
529	if (state.bits.temperature == 1)
530		nvme_printf(ctrlr, "temperature above threshold\n");
531
532	if (state.bits.device_reliability == 1)
533		nvme_printf(ctrlr, "device reliability degraded\n");
534
535	if (state.bits.read_only == 1)
536		nvme_printf(ctrlr, "media placed in read only mode\n");
537
538	if (state.bits.volatile_memory_backup == 1)
539		nvme_printf(ctrlr, "volatile memory backup device failed\n");
540
541	if (state.bits.reserved != 0)
542		nvme_printf(ctrlr,
543		    "unknown critical warning(s): state = 0x%02x\n", state.raw);
544}
545
546static void
547nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
548{
549	struct nvme_async_event_request		*aer = arg;
550	struct nvme_health_information_page	*health_info;
551
552	/*
553	 * If the log page fetch for some reason completed with an error,
554	 *  don't pass log page data to the consumers.  In practice, this case
555	 *  should never happen.
556	 */
557	if (nvme_completion_is_error(cpl))
558		nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
559		    aer->log_page_id, NULL, 0);
560	else {
561		if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) {
562			health_info = (struct nvme_health_information_page *)
563			    aer->log_page_buffer;
564			nvme_ctrlr_log_critical_warnings(aer->ctrlr,
565			    health_info->critical_warning);
566			/*
567			 * Critical warnings reported through the
568			 *  SMART/health log page are persistent, so
569			 *  clear the associated bits in the async event
570			 *  config so that we do not receive repeated
571			 *  notifications for the same event.
572			 */
573			aer->ctrlr->async_event_config.raw &=
574			    ~health_info->critical_warning.raw;
575			nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr,
576			    aer->ctrlr->async_event_config, NULL, NULL);
577		}
578
579
580		/*
581		 * Pass the cpl data from the original async event completion,
582		 *  not the log page fetch.
583		 */
584		nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
585		    aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
586	}
587
588	/*
589	 * Repost another asynchronous event request to replace the one
590	 *  that just completed.
591	 */
592	nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
593}
594
595static void
596nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
597{
598	struct nvme_async_event_request	*aer = arg;
599
600	if (nvme_completion_is_error(cpl)) {
601		/*
602		 *  Do not retry failed async event requests.  This avoids
603		 *  infinite loops where a new async event request is submitted
604		 *  to replace the one just failed, only to fail again and
605		 *  perpetuate the loop.
606		 */
607		return;
608	}
609
610	/* Associated log page is in bits 23:16 of completion entry dw0. */
611	aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
612
613	nvme_printf(aer->ctrlr, "async event occurred (log page id=0x%x)\n",
614	    aer->log_page_id);
615
616	if (is_log_page_id_valid(aer->log_page_id)) {
617		aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
618		    aer->log_page_id);
619		memcpy(&aer->cpl, cpl, sizeof(*cpl));
620		nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
621		    NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
622		    aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
623		    aer);
624		/* Wait to notify consumers until after log page is fetched. */
625	} else {
626		nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
627		    NULL, 0);
628
629		/*
630		 * Repost another asynchronous event request to replace the one
631		 *  that just completed.
632		 */
633		nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
634	}
635}
636
637static void
638nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
639    struct nvme_async_event_request *aer)
640{
641	struct nvme_request *req;
642
643	aer->ctrlr = ctrlr;
644	req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
645	aer->req = req;
646
647	/*
648	 * Disable timeout here, since asynchronous event requests should by
649	 *  nature never be timed out.
650	 */
651	req->timeout = FALSE;
652	req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
653	nvme_ctrlr_submit_admin_request(ctrlr, req);
654}
655
656static void
657nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
658{
659	struct nvme_completion_poll_status	status;
660	struct nvme_async_event_request		*aer;
661	uint32_t				i;
662
663	ctrlr->async_event_config.raw = 0xFF;
664	ctrlr->async_event_config.bits.reserved = 0;
665
666	status.done = FALSE;
667	nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD,
668	    0, NULL, 0, nvme_completion_poll_cb, &status);
669	while (status.done == FALSE)
670		pause("nvme", 1);
671	if (nvme_completion_is_error(&status.cpl) ||
672	    (status.cpl.cdw0 & 0xFFFF) == 0xFFFF ||
673	    (status.cpl.cdw0 & 0xFFFF) == 0x0000) {
674		nvme_printf(ctrlr, "temperature threshold not supported\n");
675		ctrlr->async_event_config.bits.temperature = 0;
676	}
677
678	nvme_ctrlr_cmd_set_async_event_config(ctrlr,
679	    ctrlr->async_event_config, NULL, NULL);
680
681	/* aerl is a zero-based value, so we need to add 1 here. */
682	ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
683
684	for (i = 0; i < ctrlr->num_aers; i++) {
685		aer = &ctrlr->aer[i];
686		nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
687	}
688}
689
690static void
691nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
692{
693
694	ctrlr->int_coal_time = 0;
695	TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
696	    &ctrlr->int_coal_time);
697
698	ctrlr->int_coal_threshold = 0;
699	TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
700	    &ctrlr->int_coal_threshold);
701
702	nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
703	    ctrlr->int_coal_threshold, NULL, NULL);
704}
705
706static void
707nvme_ctrlr_start(void *ctrlr_arg)
708{
709	struct nvme_controller *ctrlr = ctrlr_arg;
710	uint32_t old_num_io_queues;
711	int i;
712
713	/*
714	 * Only reset adminq here when we are restarting the
715	 *  controller after a reset.  During initialization,
716	 *  we have already submitted admin commands to get
717	 *  the number of I/O queues supported, so cannot reset
718	 *  the adminq again here.
719	 */
720	if (ctrlr->is_resetting) {
721		nvme_qpair_reset(&ctrlr->adminq);
722	}
723
724	for (i = 0; i < ctrlr->num_io_queues; i++)
725		nvme_qpair_reset(&ctrlr->ioq[i]);
726
727	nvme_admin_qpair_enable(&ctrlr->adminq);
728
729	if (nvme_ctrlr_identify(ctrlr) != 0) {
730		nvme_ctrlr_fail(ctrlr);
731		return;
732	}
733
734	/*
735	 * The number of qpairs are determined during controller initialization,
736	 *  including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the
737	 *  HW limit.  We call SET_FEATURES again here so that it gets called
738	 *  after any reset for controllers that depend on the driver to
739	 *  explicit specify how many queues it will use.  This value should
740	 *  never change between resets, so panic if somehow that does happen.
741	 */
742	if (ctrlr->is_resetting) {
743		old_num_io_queues = ctrlr->num_io_queues;
744		if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
745			nvme_ctrlr_fail(ctrlr);
746			return;
747		}
748
749		if (old_num_io_queues != ctrlr->num_io_queues) {
750			panic("num_io_queues changed from %u to %u",
751			      old_num_io_queues, ctrlr->num_io_queues);
752		}
753	}
754
755	if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
756		nvme_ctrlr_fail(ctrlr);
757		return;
758	}
759
760	if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
761		nvme_ctrlr_fail(ctrlr);
762		return;
763	}
764
765	nvme_ctrlr_configure_aer(ctrlr);
766	nvme_ctrlr_configure_int_coalescing(ctrlr);
767
768	for (i = 0; i < ctrlr->num_io_queues; i++)
769		nvme_io_qpair_enable(&ctrlr->ioq[i]);
770}
771
772void
773nvme_ctrlr_start_config_hook(void *arg)
774{
775	struct nvme_controller *ctrlr = arg;
776
777	nvme_qpair_reset(&ctrlr->adminq);
778	nvme_admin_qpair_enable(&ctrlr->adminq);
779
780	if (nvme_ctrlr_set_num_qpairs(ctrlr) == 0 &&
781	    nvme_ctrlr_construct_io_qpairs(ctrlr) == 0)
782		nvme_ctrlr_start(ctrlr);
783	else
784		nvme_ctrlr_fail(ctrlr);
785
786	nvme_sysctl_initialize_ctrlr(ctrlr);
787	config_intrhook_disestablish(&ctrlr->config_hook);
788
789	ctrlr->is_initialized = 1;
790	nvme_notify_new_controller(ctrlr);
791}
792
793static void
794nvme_ctrlr_reset_task(void *arg, int pending)
795{
796	struct nvme_controller	*ctrlr = arg;
797	int			status;
798
799	nvme_printf(ctrlr, "resetting controller\n");
800	status = nvme_ctrlr_hw_reset(ctrlr);
801	/*
802	 * Use pause instead of DELAY, so that we yield to any nvme interrupt
803	 *  handlers on this CPU that were blocked on a qpair lock. We want
804	 *  all nvme interrupts completed before proceeding with restarting the
805	 *  controller.
806	 *
807	 * XXX - any way to guarantee the interrupt handlers have quiesced?
808	 */
809	pause("nvmereset", hz / 10);
810	if (status == 0)
811		nvme_ctrlr_start(ctrlr);
812	else
813		nvme_ctrlr_fail(ctrlr);
814
815	atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
816}
817
818void
819nvme_ctrlr_intx_handler(void *arg)
820{
821	struct nvme_controller *ctrlr = arg;
822
823	nvme_mmio_write_4(ctrlr, intms, 1);
824
825	nvme_qpair_process_completions(&ctrlr->adminq);
826
827	if (ctrlr->ioq && ctrlr->ioq[0].cpl)
828		nvme_qpair_process_completions(&ctrlr->ioq[0]);
829
830	nvme_mmio_write_4(ctrlr, intmc, 1);
831}
832
833static int
834nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr)
835{
836
837	ctrlr->msix_enabled = 0;
838	ctrlr->num_io_queues = 1;
839	ctrlr->num_cpus_per_ioq = mp_ncpus;
840	ctrlr->rid = 0;
841	ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
842	    &ctrlr->rid, RF_SHAREABLE | RF_ACTIVE);
843
844	if (ctrlr->res == NULL) {
845		nvme_printf(ctrlr, "unable to allocate shared IRQ\n");
846		return (ENOMEM);
847	}
848
849	bus_setup_intr(ctrlr->dev, ctrlr->res,
850	    INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler,
851	    ctrlr, &ctrlr->tag);
852
853	if (ctrlr->tag == NULL) {
854		nvme_printf(ctrlr, "unable to setup intx handler\n");
855		return (ENOMEM);
856	}
857
858	return (0);
859}
860
861static void
862nvme_pt_done(void *arg, const struct nvme_completion *cpl)
863{
864	struct nvme_pt_command *pt = arg;
865
866	bzero(&pt->cpl, sizeof(pt->cpl));
867	pt->cpl.cdw0 = cpl->cdw0;
868	pt->cpl.status = cpl->status;
869	pt->cpl.status.p = 0;
870
871	mtx_lock(pt->driver_lock);
872	wakeup(pt);
873	mtx_unlock(pt->driver_lock);
874}
875
876int
877nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
878    struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
879    int is_admin_cmd)
880{
881	struct nvme_request	*req;
882	struct mtx		*mtx;
883	struct buf		*buf = NULL;
884	int			ret = 0;
885	vm_offset_t		addr, end;
886
887	if (pt->len > 0) {
888		/*
889		 * vmapbuf calls vm_fault_quick_hold_pages which only maps full
890		 * pages. Ensure this request has fewer than MAXPHYS bytes when
891		 * extended to full pages.
892		 */
893		addr = (vm_offset_t)pt->buf;
894		end = round_page(addr + pt->len);
895		addr = trunc_page(addr);
896		if (end - addr > MAXPHYS)
897			return EIO;
898
899		if (pt->len > ctrlr->max_xfer_size) {
900			nvme_printf(ctrlr, "pt->len (%d) "
901			    "exceeds max_xfer_size (%d)\n", pt->len,
902			    ctrlr->max_xfer_size);
903			return EIO;
904		}
905		if (is_user_buffer) {
906			/*
907			 * Ensure the user buffer is wired for the duration of
908			 *  this passthrough command.
909			 */
910			PHOLD(curproc);
911			buf = getpbuf(NULL);
912			buf->b_data = pt->buf;
913			buf->b_bufsize = pt->len;
914			buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
915#ifdef NVME_UNMAPPED_BIO_SUPPORT
916			if (vmapbuf(buf, 1) < 0) {
917#else
918			if (vmapbuf(buf) < 0) {
919#endif
920				ret = EFAULT;
921				goto err;
922			}
923			req = nvme_allocate_request_vaddr(buf->b_data, pt->len,
924			    nvme_pt_done, pt);
925		} else
926			req = nvme_allocate_request_vaddr(pt->buf, pt->len,
927			    nvme_pt_done, pt);
928	} else
929		req = nvme_allocate_request_null(nvme_pt_done, pt);
930
931	req->cmd.opc	= pt->cmd.opc;
932	req->cmd.cdw10	= pt->cmd.cdw10;
933	req->cmd.cdw11	= pt->cmd.cdw11;
934	req->cmd.cdw12	= pt->cmd.cdw12;
935	req->cmd.cdw13	= pt->cmd.cdw13;
936	req->cmd.cdw14	= pt->cmd.cdw14;
937	req->cmd.cdw15	= pt->cmd.cdw15;
938
939	req->cmd.nsid = nsid;
940
941	if (is_admin_cmd)
942		mtx = &ctrlr->lock;
943	else
944		mtx = &ctrlr->ns[nsid-1].lock;
945
946	mtx_lock(mtx);
947	pt->driver_lock = mtx;
948
949	if (is_admin_cmd)
950		nvme_ctrlr_submit_admin_request(ctrlr, req);
951	else
952		nvme_ctrlr_submit_io_request(ctrlr, req);
953
954	mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
955	mtx_unlock(mtx);
956
957	pt->driver_lock = NULL;
958
959err:
960	if (buf != NULL) {
961		relpbuf(buf, NULL);
962		PRELE(curproc);
963	}
964
965	return (ret);
966}
967
968static int
969nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
970    struct thread *td)
971{
972	struct nvme_controller			*ctrlr;
973	struct nvme_pt_command			*pt;
974
975	ctrlr = cdev->si_drv1;
976
977	switch (cmd) {
978	case NVME_RESET_CONTROLLER:
979		nvme_ctrlr_reset(ctrlr);
980		break;
981	case NVME_PASSTHROUGH_CMD:
982		pt = (struct nvme_pt_command *)arg;
983		return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, pt->cmd.nsid,
984		    1 /* is_user_buffer */, 1 /* is_admin_cmd */));
985	default:
986		return (ENOTTY);
987	}
988
989	return (0);
990}
991
992static struct cdevsw nvme_ctrlr_cdevsw = {
993	.d_version =	D_VERSION,
994	.d_flags =	0,
995	.d_ioctl =	nvme_ctrlr_ioctl
996};
997
998static void
999nvme_ctrlr_setup_interrupts(struct nvme_controller *ctrlr)
1000{
1001	device_t	dev;
1002	int		per_cpu_io_queues;
1003	int		min_cpus_per_ioq;
1004	int		num_vectors_requested, num_vectors_allocated;
1005	int		num_vectors_available;
1006
1007	dev = ctrlr->dev;
1008	min_cpus_per_ioq = 1;
1009	TUNABLE_INT_FETCH("hw.nvme.min_cpus_per_ioq", &min_cpus_per_ioq);
1010
1011	if (min_cpus_per_ioq < 1) {
1012		min_cpus_per_ioq = 1;
1013	} else if (min_cpus_per_ioq > mp_ncpus) {
1014		min_cpus_per_ioq = mp_ncpus;
1015	}
1016
1017	per_cpu_io_queues = 1;
1018	TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues);
1019
1020	if (per_cpu_io_queues == 0) {
1021		min_cpus_per_ioq = mp_ncpus;
1022	}
1023
1024	ctrlr->force_intx = 0;
1025	TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx);
1026
1027	/*
1028	 * FreeBSD currently cannot allocate more than about 190 vectors at
1029	 *  boot, meaning that systems with high core count and many devices
1030	 *  requesting per-CPU interrupt vectors will not get their full
1031	 *  allotment.  So first, try to allocate as many as we may need to
1032	 *  understand what is available, then immediately release them.
1033	 *  Then figure out how many of those we will actually use, based on
1034	 *  assigning an equal number of cores to each I/O queue.
1035	 */
1036
1037	/* One vector for per core I/O queue, plus one vector for admin queue. */
1038	num_vectors_available = min(pci_msix_count(dev), mp_ncpus + 1);
1039	if (pci_alloc_msix(dev, &num_vectors_available) != 0) {
1040		num_vectors_available = 0;
1041	}
1042	pci_release_msi(dev);
1043
1044	if (ctrlr->force_intx || num_vectors_available < 2) {
1045		nvme_ctrlr_configure_intx(ctrlr);
1046		return;
1047	}
1048
1049	/*
1050	 * Do not use all vectors for I/O queues - one must be saved for the
1051	 *  admin queue.
1052	 */
1053	ctrlr->num_cpus_per_ioq = max(min_cpus_per_ioq,
1054	    howmany(mp_ncpus, num_vectors_available - 1));
1055
1056	ctrlr->num_io_queues = howmany(mp_ncpus, ctrlr->num_cpus_per_ioq);
1057	num_vectors_requested = ctrlr->num_io_queues + 1;
1058	num_vectors_allocated = num_vectors_requested;
1059
1060	/*
1061	 * Now just allocate the number of vectors we need.  This should
1062	 *  succeed, since we previously called pci_alloc_msix()
1063	 *  successfully returning at least this many vectors, but just to
1064	 *  be safe, if something goes wrong just revert to INTx.
1065	 */
1066	if (pci_alloc_msix(dev, &num_vectors_allocated) != 0) {
1067		nvme_ctrlr_configure_intx(ctrlr);
1068		return;
1069	}
1070
1071	if (num_vectors_allocated < num_vectors_requested) {
1072		pci_release_msi(dev);
1073		nvme_ctrlr_configure_intx(ctrlr);
1074		return;
1075	}
1076
1077	ctrlr->msix_enabled = 1;
1078}
1079
1080int
1081nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
1082{
1083	union cap_lo_register	cap_lo;
1084	union cap_hi_register	cap_hi;
1085	int			status, timeout_period;
1086
1087	ctrlr->dev = dev;
1088
1089	mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);
1090
1091	status = nvme_ctrlr_allocate_bar(ctrlr);
1092
1093	if (status != 0)
1094		return (status);
1095
1096	/*
1097	 * Software emulators may set the doorbell stride to something
1098	 *  other than zero, but this driver is not set up to handle that.
1099	 */
1100	cap_hi.raw = nvme_mmio_read_4(ctrlr, cap_hi);
1101	if (cap_hi.bits.dstrd != 0)
1102		return (ENXIO);
1103
1104	ctrlr->min_page_size = 1 << (12 + cap_hi.bits.mpsmin);
1105
1106	/* Get ready timeout value from controller, in units of 500ms. */
1107	cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
1108	ctrlr->ready_timeout_in_ms = cap_lo.bits.to * 500;
1109
1110	timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
1111	TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
1112	timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
1113	timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
1114	ctrlr->timeout_period = timeout_period;
1115
1116	nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
1117	TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
1118
1119	ctrlr->enable_aborts = 0;
1120	TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
1121
1122	nvme_ctrlr_setup_interrupts(ctrlr);
1123
1124	ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
1125	if (nvme_ctrlr_construct_admin_qpair(ctrlr) != 0)
1126		return (ENXIO);
1127
1128	ctrlr->cdev = make_dev(&nvme_ctrlr_cdevsw, device_get_unit(dev),
1129	    UID_ROOT, GID_WHEEL, 0600, "nvme%d", device_get_unit(dev));
1130
1131	if (ctrlr->cdev == NULL)
1132		return (ENXIO);
1133
1134	ctrlr->cdev->si_drv1 = (void *)ctrlr;
1135
1136	ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
1137	    taskqueue_thread_enqueue, &ctrlr->taskqueue);
1138	taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq");
1139
1140	ctrlr->is_resetting = 0;
1141	ctrlr->is_initialized = 0;
1142	ctrlr->notification_sent = 0;
1143	TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
1144
1145	TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr);
1146	STAILQ_INIT(&ctrlr->fail_req);
1147	ctrlr->is_failed = FALSE;
1148
1149	return (0);
1150}
1151
1152void
1153nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
1154{
1155	int				i;
1156
1157	/*
1158	 *  Notify the controller of a shutdown, even though this is due to
1159	 *   a driver unload, not a system shutdown (this path is not invoked
1160	 *   during shutdown).  This ensures the controller receives a
1161	 *   shutdown notification in case the system is shutdown before
1162	 *   reloading the driver.
1163	 */
1164	nvme_ctrlr_shutdown(ctrlr);
1165
1166	nvme_ctrlr_disable(ctrlr);
1167	taskqueue_free(ctrlr->taskqueue);
1168
1169	for (i = 0; i < NVME_MAX_NAMESPACES; i++)
1170		nvme_ns_destruct(&ctrlr->ns[i]);
1171
1172	if (ctrlr->cdev)
1173		destroy_dev(ctrlr->cdev);
1174
1175	for (i = 0; i < ctrlr->num_io_queues; i++) {
1176		nvme_io_qpair_destroy(&ctrlr->ioq[i]);
1177	}
1178
1179	free(ctrlr->ioq, M_NVME);
1180
1181	nvme_admin_qpair_destroy(&ctrlr->adminq);
1182
1183	if (ctrlr->resource != NULL) {
1184		bus_release_resource(dev, SYS_RES_MEMORY,
1185		    ctrlr->resource_id, ctrlr->resource);
1186	}
1187
1188	if (ctrlr->bar4_resource != NULL) {
1189		bus_release_resource(dev, SYS_RES_MEMORY,
1190		    ctrlr->bar4_resource_id, ctrlr->bar4_resource);
1191	}
1192
1193	if (ctrlr->tag)
1194		bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
1195
1196	if (ctrlr->res)
1197		bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
1198		    rman_get_rid(ctrlr->res), ctrlr->res);
1199
1200	if (ctrlr->msix_enabled)
1201		pci_release_msi(dev);
1202}
1203
1204void
1205nvme_ctrlr_shutdown(struct nvme_controller *ctrlr)
1206{
1207	union cc_register	cc;
1208	union csts_register	csts;
1209	int			ticks = 0;
1210
1211	cc.raw = nvme_mmio_read_4(ctrlr, cc);
1212	cc.bits.shn = NVME_SHN_NORMAL;
1213	nvme_mmio_write_4(ctrlr, cc, cc.raw);
1214	csts.raw = nvme_mmio_read_4(ctrlr, csts);
1215	while ((csts.bits.shst != NVME_SHST_COMPLETE) && (ticks++ < 5*hz)) {
1216		pause("nvme shn", 1);
1217		csts.raw = nvme_mmio_read_4(ctrlr, csts);
1218	}
1219	if (csts.bits.shst != NVME_SHST_COMPLETE)
1220		nvme_printf(ctrlr, "did not complete shutdown within 5 seconds "
1221		    "of notification\n");
1222}
1223
1224void
1225nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
1226    struct nvme_request *req)
1227{
1228
1229	nvme_qpair_submit_request(&ctrlr->adminq, req);
1230}
1231
1232void
1233nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
1234    struct nvme_request *req)
1235{
1236	struct nvme_qpair       *qpair;
1237
1238	qpair = &ctrlr->ioq[curcpu / ctrlr->num_cpus_per_ioq];
1239	nvme_qpair_submit_request(qpair, req);
1240}
1241
1242device_t
1243nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
1244{
1245
1246	return (ctrlr->dev);
1247}
1248
1249const struct nvme_controller_data *
1250nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
1251{
1252
1253	return (&ctrlr->cdata);
1254}
1255