ntb_hw_intel.c revision 300100
1/*-
2 * Copyright (C) 2013 Intel Corporation
3 * Copyright (C) 2015 EMC Corporation
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: head/sys/dev/ntb/ntb_hw/ntb_hw.c 300100 2016-05-18 02:10:05Z cem $");
30
31#include <sys/param.h>
32#include <sys/kernel.h>
33#include <sys/systm.h>
34#include <sys/bus.h>
35#include <sys/endian.h>
36#include <sys/malloc.h>
37#include <sys/module.h>
38#include <sys/mutex.h>
39#include <sys/pciio.h>
40#include <sys/queue.h>
41#include <sys/rman.h>
42#include <sys/sbuf.h>
43#include <sys/sysctl.h>
44#include <vm/vm.h>
45#include <vm/pmap.h>
46#include <machine/bus.h>
47#include <machine/intr_machdep.h>
48#include <machine/resource.h>
49#include <dev/pci/pcireg.h>
50#include <dev/pci/pcivar.h>
51
52#include "ntb_regs.h"
53#include "ntb_hw.h"
54
55/*
56 * The Non-Transparent Bridge (NTB) is a device on some Intel processors that
57 * allows you to connect two systems using a PCI-e link.
58 *
59 * This module contains the hardware abstraction layer for the NTB. It allows
60 * you to send and receive interrupts, map the memory windows and send and
61 * receive messages in the scratch-pad registers.
62 *
63 * NOTE: Much of the code in this module is shared with Linux. Any patches may
64 * be picked up and redistributed in Linux with a dual GPL/BSD license.
65 */
66
67#define MAX_MSIX_INTERRUPTS MAX(XEON_DB_COUNT, ATOM_DB_COUNT)
68
69#define NTB_HB_TIMEOUT		1 /* second */
70#define ATOM_LINK_RECOVERY_TIME	500 /* ms */
71#define BAR_HIGH_MASK		(~((1ull << 12) - 1))
72
73#define DEVICE2SOFTC(dev) ((struct ntb_softc *) device_get_softc(dev))
74
75#define	NTB_MSIX_VER_GUARD	0xaabbccdd
76#define	NTB_MSIX_RECEIVED	0xe0f0e0f0
77#define	ONE_MB			(1024u * 1024)
78
79/*
80 * PCI constants could be somewhere more generic, but aren't defined/used in
81 * pci.c.
82 */
83#define	PCI_MSIX_ENTRY_SIZE		16
84#define	PCI_MSIX_ENTRY_LOWER_ADDR	0
85#define	PCI_MSIX_ENTRY_UPPER_ADDR	4
86#define	PCI_MSIX_ENTRY_DATA		8
87
88enum ntb_device_type {
89	NTB_XEON,
90	NTB_ATOM
91};
92
93/* ntb_conn_type are hardware numbers, cannot change. */
94enum ntb_conn_type {
95	NTB_CONN_TRANSPARENT = 0,
96	NTB_CONN_B2B = 1,
97	NTB_CONN_RP = 2,
98};
99
100enum ntb_b2b_direction {
101	NTB_DEV_USD = 0,
102	NTB_DEV_DSD = 1,
103};
104
105enum ntb_bar {
106	NTB_CONFIG_BAR = 0,
107	NTB_B2B_BAR_1,
108	NTB_B2B_BAR_2,
109	NTB_B2B_BAR_3,
110	NTB_MAX_BARS
111};
112
113enum {
114	NTB_MSIX_GUARD = 0,
115	NTB_MSIX_DATA0,
116	NTB_MSIX_DATA1,
117	NTB_MSIX_DATA2,
118	NTB_MSIX_OFS0,
119	NTB_MSIX_OFS1,
120	NTB_MSIX_OFS2,
121	NTB_MSIX_DONE,
122	NTB_MAX_MSIX_SPAD
123};
124
125/* Device features and workarounds */
126#define HAS_FEATURE(feature)	\
127	((ntb->features & (feature)) != 0)
128
129struct ntb_hw_info {
130	uint32_t		device_id;
131	const char		*desc;
132	enum ntb_device_type	type;
133	uint32_t		features;
134};
135
136struct ntb_pci_bar_info {
137	bus_space_tag_t		pci_bus_tag;
138	bus_space_handle_t	pci_bus_handle;
139	int			pci_resource_id;
140	struct resource		*pci_resource;
141	vm_paddr_t		pbase;
142	caddr_t			vbase;
143	vm_size_t		size;
144	vm_memattr_t		map_mode;
145
146	/* Configuration register offsets */
147	uint32_t		psz_off;
148	uint32_t		ssz_off;
149	uint32_t		pbarxlat_off;
150};
151
152struct ntb_int_info {
153	struct resource	*res;
154	int		rid;
155	void		*tag;
156};
157
158struct ntb_vec {
159	struct ntb_softc	*ntb;
160	uint32_t		num;
161	unsigned		masked;
162};
163
164struct ntb_reg {
165	uint32_t	ntb_ctl;
166	uint32_t	lnk_sta;
167	uint8_t		db_size;
168	unsigned	mw_bar[NTB_MAX_BARS];
169};
170
171struct ntb_alt_reg {
172	uint32_t	db_bell;
173	uint32_t	db_mask;
174	uint32_t	spad;
175};
176
177struct ntb_xlat_reg {
178	uint32_t	bar0_base;
179	uint32_t	bar2_base;
180	uint32_t	bar4_base;
181	uint32_t	bar5_base;
182
183	uint32_t	bar2_xlat;
184	uint32_t	bar4_xlat;
185	uint32_t	bar5_xlat;
186
187	uint32_t	bar2_limit;
188	uint32_t	bar4_limit;
189	uint32_t	bar5_limit;
190};
191
192struct ntb_b2b_addr {
193	uint64_t	bar0_addr;
194	uint64_t	bar2_addr64;
195	uint64_t	bar4_addr64;
196	uint64_t	bar4_addr32;
197	uint64_t	bar5_addr32;
198};
199
200struct ntb_msix_data {
201	uint32_t	nmd_ofs;
202	uint32_t	nmd_data;
203};
204
205struct ntb_softc {
206	device_t		device;
207	enum ntb_device_type	type;
208	uint32_t		features;
209
210	struct ntb_pci_bar_info	bar_info[NTB_MAX_BARS];
211	struct ntb_int_info	int_info[MAX_MSIX_INTERRUPTS];
212	uint32_t		allocated_interrupts;
213
214	struct ntb_msix_data	peer_msix_data[XEON_NONLINK_DB_MSIX_BITS];
215	struct ntb_msix_data	msix_data[XEON_NONLINK_DB_MSIX_BITS];
216	bool			peer_msix_good;
217	bool			peer_msix_done;
218	struct ntb_pci_bar_info	*peer_lapic_bar;
219	struct callout		peer_msix_work;
220
221	struct callout		heartbeat_timer;
222	struct callout		lr_timer;
223
224	void			*ntb_ctx;
225	const struct ntb_ctx_ops *ctx_ops;
226	struct ntb_vec		*msix_vec;
227#define CTX_LOCK(sc)		mtx_lock(&(sc)->ctx_lock)
228#define CTX_UNLOCK(sc)		mtx_unlock(&(sc)->ctx_lock)
229#define CTX_ASSERT(sc,f)	mtx_assert(&(sc)->ctx_lock, (f))
230	struct mtx		ctx_lock;
231
232	uint32_t		ppd;
233	enum ntb_conn_type	conn_type;
234	enum ntb_b2b_direction	dev_type;
235
236	/* Offset of peer bar0 in B2B BAR */
237	uint64_t			b2b_off;
238	/* Memory window used to access peer bar0 */
239#define B2B_MW_DISABLED			UINT8_MAX
240	uint8_t				b2b_mw_idx;
241	uint8_t				msix_mw_idx;
242
243	uint8_t				mw_count;
244	uint8_t				spad_count;
245	uint8_t				db_count;
246	uint8_t				db_vec_count;
247	uint8_t				db_vec_shift;
248
249	/* Protects local db_mask. */
250#define DB_MASK_LOCK(sc)	mtx_lock_spin(&(sc)->db_mask_lock)
251#define DB_MASK_UNLOCK(sc)	mtx_unlock_spin(&(sc)->db_mask_lock)
252#define DB_MASK_ASSERT(sc,f)	mtx_assert(&(sc)->db_mask_lock, (f))
253	struct mtx			db_mask_lock;
254
255	volatile uint32_t		ntb_ctl;
256	volatile uint32_t		lnk_sta;
257
258	uint64_t			db_valid_mask;
259	uint64_t			db_link_mask;
260	uint64_t			db_mask;
261
262	int				last_ts;	/* ticks @ last irq */
263
264	const struct ntb_reg		*reg;
265	const struct ntb_alt_reg	*self_reg;
266	const struct ntb_alt_reg	*peer_reg;
267	const struct ntb_xlat_reg	*xlat_reg;
268};
269
270#ifdef __i386__
271static __inline uint64_t
272bus_space_read_8(bus_space_tag_t tag, bus_space_handle_t handle,
273    bus_size_t offset)
274{
275
276	return (bus_space_read_4(tag, handle, offset) |
277	    ((uint64_t)bus_space_read_4(tag, handle, offset + 4)) << 32);
278}
279
280static __inline void
281bus_space_write_8(bus_space_tag_t tag, bus_space_handle_t handle,
282    bus_size_t offset, uint64_t val)
283{
284
285	bus_space_write_4(tag, handle, offset, val);
286	bus_space_write_4(tag, handle, offset + 4, val >> 32);
287}
288#endif
289
290#define ntb_bar_read(SIZE, bar, offset) \
291	    bus_space_read_ ## SIZE (ntb->bar_info[(bar)].pci_bus_tag, \
292	    ntb->bar_info[(bar)].pci_bus_handle, (offset))
293#define ntb_bar_write(SIZE, bar, offset, val) \
294	    bus_space_write_ ## SIZE (ntb->bar_info[(bar)].pci_bus_tag, \
295	    ntb->bar_info[(bar)].pci_bus_handle, (offset), (val))
296#define ntb_reg_read(SIZE, offset) ntb_bar_read(SIZE, NTB_CONFIG_BAR, offset)
297#define ntb_reg_write(SIZE, offset, val) \
298	    ntb_bar_write(SIZE, NTB_CONFIG_BAR, offset, val)
299#define ntb_mw_read(SIZE, offset) \
300	    ntb_bar_read(SIZE, ntb_mw_to_bar(ntb, ntb->b2b_mw_idx), offset)
301#define ntb_mw_write(SIZE, offset, val) \
302	    ntb_bar_write(SIZE, ntb_mw_to_bar(ntb, ntb->b2b_mw_idx), \
303		offset, val)
304
305static int ntb_probe(device_t device);
306static int ntb_attach(device_t device);
307static int ntb_detach(device_t device);
308static unsigned ntb_user_mw_to_idx(struct ntb_softc *, unsigned uidx);
309static inline enum ntb_bar ntb_mw_to_bar(struct ntb_softc *, unsigned mw);
310static inline bool bar_is_64bit(struct ntb_softc *, enum ntb_bar);
311static inline void bar_get_xlat_params(struct ntb_softc *, enum ntb_bar,
312    uint32_t *base, uint32_t *xlat, uint32_t *lmt);
313static int ntb_map_pci_bars(struct ntb_softc *ntb);
314static int ntb_mw_set_wc_internal(struct ntb_softc *, unsigned idx,
315    vm_memattr_t);
316static void print_map_success(struct ntb_softc *, struct ntb_pci_bar_info *,
317    const char *);
318static int map_mmr_bar(struct ntb_softc *ntb, struct ntb_pci_bar_info *bar);
319static int map_memory_window_bar(struct ntb_softc *ntb,
320    struct ntb_pci_bar_info *bar);
321static void ntb_unmap_pci_bar(struct ntb_softc *ntb);
322static int ntb_remap_msix(device_t, uint32_t desired, uint32_t avail);
323static int ntb_init_isr(struct ntb_softc *ntb);
324static int ntb_setup_legacy_interrupt(struct ntb_softc *ntb);
325static int ntb_setup_msix(struct ntb_softc *ntb, uint32_t num_vectors);
326static void ntb_teardown_interrupts(struct ntb_softc *ntb);
327static inline uint64_t ntb_vec_mask(struct ntb_softc *, uint64_t db_vector);
328static void ntb_interrupt(struct ntb_softc *, uint32_t vec);
329static void ndev_vec_isr(void *arg);
330static void ndev_irq_isr(void *arg);
331static inline uint64_t db_ioread(struct ntb_softc *, uint64_t regoff);
332static inline void db_iowrite(struct ntb_softc *, uint64_t regoff, uint64_t);
333static inline void db_iowrite_raw(struct ntb_softc *, uint64_t regoff, uint64_t);
334static int ntb_create_msix_vec(struct ntb_softc *ntb, uint32_t num_vectors);
335static void ntb_free_msix_vec(struct ntb_softc *ntb);
336static void ntb_get_msix_info(struct ntb_softc *ntb, uint32_t num_vectors);
337static void ntb_exchange_msix(void *);
338static struct ntb_hw_info *ntb_get_device_info(uint32_t device_id);
339static void ntb_detect_max_mw(struct ntb_softc *ntb);
340static int ntb_detect_xeon(struct ntb_softc *ntb);
341static int ntb_detect_atom(struct ntb_softc *ntb);
342static int ntb_xeon_init_dev(struct ntb_softc *ntb);
343static int ntb_atom_init_dev(struct ntb_softc *ntb);
344static void ntb_teardown_xeon(struct ntb_softc *ntb);
345static void configure_atom_secondary_side_bars(struct ntb_softc *ntb);
346static void xeon_reset_sbar_size(struct ntb_softc *, enum ntb_bar idx,
347    enum ntb_bar regbar);
348static void xeon_set_sbar_base_and_limit(struct ntb_softc *,
349    uint64_t base_addr, enum ntb_bar idx, enum ntb_bar regbar);
350static void xeon_set_pbar_xlat(struct ntb_softc *, uint64_t base_addr,
351    enum ntb_bar idx);
352static int xeon_setup_b2b_mw(struct ntb_softc *,
353    const struct ntb_b2b_addr *addr, const struct ntb_b2b_addr *peer_addr);
354static int xeon_setup_msix_bar(struct ntb_softc *);
355static inline bool link_is_up(struct ntb_softc *ntb);
356static inline bool _xeon_link_is_up(struct ntb_softc *ntb);
357static inline bool atom_link_is_err(struct ntb_softc *ntb);
358static inline enum ntb_speed ntb_link_sta_speed(struct ntb_softc *);
359static inline enum ntb_width ntb_link_sta_width(struct ntb_softc *);
360static void atom_link_hb(void *arg);
361static void ntb_db_event(struct ntb_softc *ntb, uint32_t vec);
362static void recover_atom_link(void *arg);
363static bool ntb_poll_link(struct ntb_softc *ntb);
364static void save_bar_parameters(struct ntb_pci_bar_info *bar);
365static void ntb_sysctl_init(struct ntb_softc *);
366static int sysctl_handle_features(SYSCTL_HANDLER_ARGS);
367static int sysctl_handle_link_admin(SYSCTL_HANDLER_ARGS);
368static int sysctl_handle_link_status_human(SYSCTL_HANDLER_ARGS);
369static int sysctl_handle_link_status(SYSCTL_HANDLER_ARGS);
370static int sysctl_handle_register(SYSCTL_HANDLER_ARGS);
371
372static unsigned g_ntb_hw_debug_level;
373SYSCTL_UINT(_hw_ntb, OID_AUTO, debug_level, CTLFLAG_RWTUN,
374    &g_ntb_hw_debug_level, 0, "ntb_hw log level -- higher is more verbose");
375#define ntb_printf(lvl, ...) do {				\
376	if ((lvl) <= g_ntb_hw_debug_level) {			\
377		device_printf(ntb->device, __VA_ARGS__);	\
378	}							\
379} while (0)
380
381#define	_NTB_PAT_UC	0
382#define	_NTB_PAT_WC	1
383#define	_NTB_PAT_WT	4
384#define	_NTB_PAT_WP	5
385#define	_NTB_PAT_WB	6
386#define	_NTB_PAT_UCM	7
387static unsigned g_ntb_mw_pat = _NTB_PAT_UC;
388SYSCTL_UINT(_hw_ntb, OID_AUTO, default_mw_pat, CTLFLAG_RDTUN,
389    &g_ntb_mw_pat, 0, "Configure the default memory window cache flags (PAT): "
390    "UC: "  __XSTRING(_NTB_PAT_UC) ", "
391    "WC: "  __XSTRING(_NTB_PAT_WC) ", "
392    "WT: "  __XSTRING(_NTB_PAT_WT) ", "
393    "WP: "  __XSTRING(_NTB_PAT_WP) ", "
394    "WB: "  __XSTRING(_NTB_PAT_WB) ", "
395    "UC-: " __XSTRING(_NTB_PAT_UCM));
396
397static inline vm_memattr_t
398ntb_pat_flags(void)
399{
400
401	switch (g_ntb_mw_pat) {
402	case _NTB_PAT_WC:
403		return (VM_MEMATTR_WRITE_COMBINING);
404	case _NTB_PAT_WT:
405		return (VM_MEMATTR_WRITE_THROUGH);
406	case _NTB_PAT_WP:
407		return (VM_MEMATTR_WRITE_PROTECTED);
408	case _NTB_PAT_WB:
409		return (VM_MEMATTR_WRITE_BACK);
410	case _NTB_PAT_UCM:
411		return (VM_MEMATTR_WEAK_UNCACHEABLE);
412	case _NTB_PAT_UC:
413		/* FALLTHROUGH */
414	default:
415		return (VM_MEMATTR_UNCACHEABLE);
416	}
417}
418
419/*
420 * Well, this obviously doesn't belong here, but it doesn't seem to exist
421 * anywhere better yet.
422 */
423static inline const char *
424ntb_vm_memattr_to_str(vm_memattr_t pat)
425{
426
427	switch (pat) {
428	case VM_MEMATTR_WRITE_COMBINING:
429		return ("WRITE_COMBINING");
430	case VM_MEMATTR_WRITE_THROUGH:
431		return ("WRITE_THROUGH");
432	case VM_MEMATTR_WRITE_PROTECTED:
433		return ("WRITE_PROTECTED");
434	case VM_MEMATTR_WRITE_BACK:
435		return ("WRITE_BACK");
436	case VM_MEMATTR_WEAK_UNCACHEABLE:
437		return ("UNCACHED");
438	case VM_MEMATTR_UNCACHEABLE:
439		return ("UNCACHEABLE");
440	default:
441		return ("UNKNOWN");
442	}
443}
444
445static int g_ntb_msix_idx = 0;
446SYSCTL_INT(_hw_ntb, OID_AUTO, msix_mw_idx, CTLFLAG_RDTUN, &g_ntb_msix_idx,
447    0, "Use this memory window to access the peer MSIX message complex on "
448    "certain Xeon-based NTB systems, as a workaround for a hardware errata.  "
449    "Like b2b_mw_idx, negative values index from the last available memory "
450    "window.  (Applies on Xeon platforms with SB01BASE_LOCKUP errata.)");
451
452static int g_ntb_mw_idx = -1;
453SYSCTL_INT(_hw_ntb, OID_AUTO, b2b_mw_idx, CTLFLAG_RDTUN, &g_ntb_mw_idx,
454    0, "Use this memory window to access the peer NTB registers.  A "
455    "non-negative value starts from the first MW index; a negative value "
456    "starts from the last MW index.  The default is -1, i.e., the last "
457    "available memory window.  Both sides of the NTB MUST set the same "
458    "value here!  (Applies on Xeon platforms with SDOORBELL_LOCKUP errata.)");
459
460static struct ntb_hw_info pci_ids[] = {
461	/* XXX: PS/SS IDs left out until they are supported. */
462	{ 0x0C4E8086, "BWD Atom Processor S1200 Non-Transparent Bridge B2B",
463		NTB_ATOM, 0 },
464
465	{ 0x37258086, "JSF Xeon C35xx/C55xx Non-Transparent Bridge B2B",
466		NTB_XEON, NTB_SDOORBELL_LOCKUP | NTB_B2BDOORBELL_BIT14 },
467	{ 0x3C0D8086, "SNB Xeon E5/Core i7 Non-Transparent Bridge B2B",
468		NTB_XEON, NTB_SDOORBELL_LOCKUP | NTB_B2BDOORBELL_BIT14 },
469	{ 0x0E0D8086, "IVT Xeon E5 V2 Non-Transparent Bridge B2B", NTB_XEON,
470		NTB_SDOORBELL_LOCKUP | NTB_B2BDOORBELL_BIT14 |
471		    NTB_SB01BASE_LOCKUP | NTB_BAR_SIZE_4K },
472	{ 0x2F0D8086, "HSX Xeon E5 V3 Non-Transparent Bridge B2B", NTB_XEON,
473		NTB_SDOORBELL_LOCKUP | NTB_B2BDOORBELL_BIT14 |
474		    NTB_SB01BASE_LOCKUP },
475	{ 0x6F0D8086, "BDX Xeon E5 V4 Non-Transparent Bridge B2B", NTB_XEON,
476		NTB_SDOORBELL_LOCKUP | NTB_B2BDOORBELL_BIT14 |
477		    NTB_SB01BASE_LOCKUP },
478
479	{ 0x00000000, NULL, NTB_ATOM, 0 }
480};
481
482static const struct ntb_reg atom_reg = {
483	.ntb_ctl = ATOM_NTBCNTL_OFFSET,
484	.lnk_sta = ATOM_LINK_STATUS_OFFSET,
485	.db_size = sizeof(uint64_t),
486	.mw_bar = { NTB_B2B_BAR_1, NTB_B2B_BAR_2 },
487};
488
489static const struct ntb_alt_reg atom_pri_reg = {
490	.db_bell = ATOM_PDOORBELL_OFFSET,
491	.db_mask = ATOM_PDBMSK_OFFSET,
492	.spad = ATOM_SPAD_OFFSET,
493};
494
495static const struct ntb_alt_reg atom_b2b_reg = {
496	.db_bell = ATOM_B2B_DOORBELL_OFFSET,
497	.spad = ATOM_B2B_SPAD_OFFSET,
498};
499
500static const struct ntb_xlat_reg atom_sec_xlat = {
501#if 0
502	/* "FIXME" says the Linux driver. */
503	.bar0_base = ATOM_SBAR0BASE_OFFSET,
504	.bar2_base = ATOM_SBAR2BASE_OFFSET,
505	.bar4_base = ATOM_SBAR4BASE_OFFSET,
506
507	.bar2_limit = ATOM_SBAR2LMT_OFFSET,
508	.bar4_limit = ATOM_SBAR4LMT_OFFSET,
509#endif
510
511	.bar2_xlat = ATOM_SBAR2XLAT_OFFSET,
512	.bar4_xlat = ATOM_SBAR4XLAT_OFFSET,
513};
514
515static const struct ntb_reg xeon_reg = {
516	.ntb_ctl = XEON_NTBCNTL_OFFSET,
517	.lnk_sta = XEON_LINK_STATUS_OFFSET,
518	.db_size = sizeof(uint16_t),
519	.mw_bar = { NTB_B2B_BAR_1, NTB_B2B_BAR_2, NTB_B2B_BAR_3 },
520};
521
522static const struct ntb_alt_reg xeon_pri_reg = {
523	.db_bell = XEON_PDOORBELL_OFFSET,
524	.db_mask = XEON_PDBMSK_OFFSET,
525	.spad = XEON_SPAD_OFFSET,
526};
527
528static const struct ntb_alt_reg xeon_b2b_reg = {
529	.db_bell = XEON_B2B_DOORBELL_OFFSET,
530	.spad = XEON_B2B_SPAD_OFFSET,
531};
532
533static const struct ntb_xlat_reg xeon_sec_xlat = {
534	.bar0_base = XEON_SBAR0BASE_OFFSET,
535	.bar2_base = XEON_SBAR2BASE_OFFSET,
536	.bar4_base = XEON_SBAR4BASE_OFFSET,
537	.bar5_base = XEON_SBAR5BASE_OFFSET,
538
539	.bar2_limit = XEON_SBAR2LMT_OFFSET,
540	.bar4_limit = XEON_SBAR4LMT_OFFSET,
541	.bar5_limit = XEON_SBAR5LMT_OFFSET,
542
543	.bar2_xlat = XEON_SBAR2XLAT_OFFSET,
544	.bar4_xlat = XEON_SBAR4XLAT_OFFSET,
545	.bar5_xlat = XEON_SBAR5XLAT_OFFSET,
546};
547
548static struct ntb_b2b_addr xeon_b2b_usd_addr = {
549	.bar0_addr = XEON_B2B_BAR0_ADDR,
550	.bar2_addr64 = XEON_B2B_BAR2_ADDR64,
551	.bar4_addr64 = XEON_B2B_BAR4_ADDR64,
552	.bar4_addr32 = XEON_B2B_BAR4_ADDR32,
553	.bar5_addr32 = XEON_B2B_BAR5_ADDR32,
554};
555
556static struct ntb_b2b_addr xeon_b2b_dsd_addr = {
557	.bar0_addr = XEON_B2B_BAR0_ADDR,
558	.bar2_addr64 = XEON_B2B_BAR2_ADDR64,
559	.bar4_addr64 = XEON_B2B_BAR4_ADDR64,
560	.bar4_addr32 = XEON_B2B_BAR4_ADDR32,
561	.bar5_addr32 = XEON_B2B_BAR5_ADDR32,
562};
563
564SYSCTL_NODE(_hw_ntb, OID_AUTO, xeon_b2b, CTLFLAG_RW, 0,
565    "B2B MW segment overrides -- MUST be the same on both sides");
566
567SYSCTL_UQUAD(_hw_ntb_xeon_b2b, OID_AUTO, usd_bar2_addr64, CTLFLAG_RDTUN,
568    &xeon_b2b_usd_addr.bar2_addr64, 0, "If using B2B topology on Xeon "
569    "hardware, use this 64-bit address on the bus between the NTB devices for "
570    "the window at BAR2, on the upstream side of the link.  MUST be the same "
571    "address on both sides.");
572SYSCTL_UQUAD(_hw_ntb_xeon_b2b, OID_AUTO, usd_bar4_addr64, CTLFLAG_RDTUN,
573    &xeon_b2b_usd_addr.bar4_addr64, 0, "See usd_bar2_addr64, but BAR4.");
574SYSCTL_UQUAD(_hw_ntb_xeon_b2b, OID_AUTO, usd_bar4_addr32, CTLFLAG_RDTUN,
575    &xeon_b2b_usd_addr.bar4_addr32, 0, "See usd_bar2_addr64, but BAR4 "
576    "(split-BAR mode).");
577SYSCTL_UQUAD(_hw_ntb_xeon_b2b, OID_AUTO, usd_bar5_addr32, CTLFLAG_RDTUN,
578    &xeon_b2b_usd_addr.bar5_addr32, 0, "See usd_bar2_addr64, but BAR5 "
579    "(split-BAR mode).");
580
581SYSCTL_UQUAD(_hw_ntb_xeon_b2b, OID_AUTO, dsd_bar2_addr64, CTLFLAG_RDTUN,
582    &xeon_b2b_dsd_addr.bar2_addr64, 0, "If using B2B topology on Xeon "
583    "hardware, use this 64-bit address on the bus between the NTB devices for "
584    "the window at BAR2, on the downstream side of the link.  MUST be the same"
585    " address on both sides.");
586SYSCTL_UQUAD(_hw_ntb_xeon_b2b, OID_AUTO, dsd_bar4_addr64, CTLFLAG_RDTUN,
587    &xeon_b2b_dsd_addr.bar4_addr64, 0, "See dsd_bar2_addr64, but BAR4.");
588SYSCTL_UQUAD(_hw_ntb_xeon_b2b, OID_AUTO, dsd_bar4_addr32, CTLFLAG_RDTUN,
589    &xeon_b2b_dsd_addr.bar4_addr32, 0, "See dsd_bar2_addr64, but BAR4 "
590    "(split-BAR mode).");
591SYSCTL_UQUAD(_hw_ntb_xeon_b2b, OID_AUTO, dsd_bar5_addr32, CTLFLAG_RDTUN,
592    &xeon_b2b_dsd_addr.bar5_addr32, 0, "See dsd_bar2_addr64, but BAR5 "
593    "(split-BAR mode).");
594
595/*
596 * OS <-> Driver interface structures
597 */
598MALLOC_DEFINE(M_NTB, "ntb_hw", "ntb_hw driver memory allocations");
599
600static device_method_t ntb_pci_methods[] = {
601	/* Device interface */
602	DEVMETHOD(device_probe,     ntb_probe),
603	DEVMETHOD(device_attach,    ntb_attach),
604	DEVMETHOD(device_detach,    ntb_detach),
605	DEVMETHOD_END
606};
607
608static driver_t ntb_pci_driver = {
609	"ntb_hw",
610	ntb_pci_methods,
611	sizeof(struct ntb_softc),
612};
613
614static devclass_t ntb_devclass;
615DRIVER_MODULE(ntb_hw, pci, ntb_pci_driver, ntb_devclass, NULL, NULL);
616MODULE_VERSION(ntb_hw, 1);
617
618SYSCTL_NODE(_hw, OID_AUTO, ntb, CTLFLAG_RW, 0, "NTB sysctls");
619
620/*
621 * OS <-> Driver linkage functions
622 */
623static int
624ntb_probe(device_t device)
625{
626	struct ntb_hw_info *p;
627
628	p = ntb_get_device_info(pci_get_devid(device));
629	if (p == NULL)
630		return (ENXIO);
631
632	device_set_desc(device, p->desc);
633	return (0);
634}
635
636static int
637ntb_attach(device_t device)
638{
639	struct ntb_softc *ntb;
640	struct ntb_hw_info *p;
641	int error;
642
643	ntb = DEVICE2SOFTC(device);
644	p = ntb_get_device_info(pci_get_devid(device));
645
646	ntb->device = device;
647	ntb->type = p->type;
648	ntb->features = p->features;
649	ntb->b2b_mw_idx = B2B_MW_DISABLED;
650	ntb->msix_mw_idx = B2B_MW_DISABLED;
651
652	/* Heartbeat timer for NTB_ATOM since there is no link interrupt */
653	callout_init(&ntb->heartbeat_timer, 1);
654	callout_init(&ntb->lr_timer, 1);
655	callout_init(&ntb->peer_msix_work, 1);
656	mtx_init(&ntb->db_mask_lock, "ntb hw bits", NULL, MTX_SPIN);
657	mtx_init(&ntb->ctx_lock, "ntb ctx", NULL, MTX_DEF);
658
659	if (ntb->type == NTB_ATOM)
660		error = ntb_detect_atom(ntb);
661	else
662		error = ntb_detect_xeon(ntb);
663	if (error != 0)
664		goto out;
665
666	ntb_detect_max_mw(ntb);
667
668	pci_enable_busmaster(ntb->device);
669
670	error = ntb_map_pci_bars(ntb);
671	if (error != 0)
672		goto out;
673	if (ntb->type == NTB_ATOM)
674		error = ntb_atom_init_dev(ntb);
675	else
676		error = ntb_xeon_init_dev(ntb);
677	if (error != 0)
678		goto out;
679
680	ntb_spad_clear(ntb);
681
682	ntb_poll_link(ntb);
683
684	ntb_sysctl_init(ntb);
685
686out:
687	if (error != 0)
688		ntb_detach(device);
689	return (error);
690}
691
692static int
693ntb_detach(device_t device)
694{
695	struct ntb_softc *ntb;
696
697	ntb = DEVICE2SOFTC(device);
698
699	if (ntb->self_reg != NULL) {
700		DB_MASK_LOCK(ntb);
701		db_iowrite(ntb, ntb->self_reg->db_mask, ntb->db_valid_mask);
702		DB_MASK_UNLOCK(ntb);
703	}
704	callout_drain(&ntb->heartbeat_timer);
705	callout_drain(&ntb->lr_timer);
706	callout_drain(&ntb->peer_msix_work);
707	pci_disable_busmaster(ntb->device);
708	if (ntb->type == NTB_XEON)
709		ntb_teardown_xeon(ntb);
710	ntb_teardown_interrupts(ntb);
711
712	mtx_destroy(&ntb->db_mask_lock);
713	mtx_destroy(&ntb->ctx_lock);
714
715	ntb_unmap_pci_bar(ntb);
716
717	return (0);
718}
719
720/*
721 * Driver internal routines
722 */
723static inline enum ntb_bar
724ntb_mw_to_bar(struct ntb_softc *ntb, unsigned mw)
725{
726
727	KASSERT(mw < ntb->mw_count,
728	    ("%s: mw:%u > count:%u", __func__, mw, (unsigned)ntb->mw_count));
729	KASSERT(ntb->reg->mw_bar[mw] != 0, ("invalid mw"));
730
731	return (ntb->reg->mw_bar[mw]);
732}
733
734static inline bool
735bar_is_64bit(struct ntb_softc *ntb, enum ntb_bar bar)
736{
737	/* XXX This assertion could be stronger. */
738	KASSERT(bar < NTB_MAX_BARS, ("bogus bar"));
739	return (bar < NTB_B2B_BAR_2 || !HAS_FEATURE(NTB_SPLIT_BAR));
740}
741
742static inline void
743bar_get_xlat_params(struct ntb_softc *ntb, enum ntb_bar bar, uint32_t *base,
744    uint32_t *xlat, uint32_t *lmt)
745{
746	uint32_t basev, lmtv, xlatv;
747
748	switch (bar) {
749	case NTB_B2B_BAR_1:
750		basev = ntb->xlat_reg->bar2_base;
751		lmtv = ntb->xlat_reg->bar2_limit;
752		xlatv = ntb->xlat_reg->bar2_xlat;
753		break;
754	case NTB_B2B_BAR_2:
755		basev = ntb->xlat_reg->bar4_base;
756		lmtv = ntb->xlat_reg->bar4_limit;
757		xlatv = ntb->xlat_reg->bar4_xlat;
758		break;
759	case NTB_B2B_BAR_3:
760		basev = ntb->xlat_reg->bar5_base;
761		lmtv = ntb->xlat_reg->bar5_limit;
762		xlatv = ntb->xlat_reg->bar5_xlat;
763		break;
764	default:
765		KASSERT(bar >= NTB_B2B_BAR_1 && bar < NTB_MAX_BARS,
766		    ("bad bar"));
767		basev = lmtv = xlatv = 0;
768		break;
769	}
770
771	if (base != NULL)
772		*base = basev;
773	if (xlat != NULL)
774		*xlat = xlatv;
775	if (lmt != NULL)
776		*lmt = lmtv;
777}
778
779static int
780ntb_map_pci_bars(struct ntb_softc *ntb)
781{
782	int rc;
783
784	ntb->bar_info[NTB_CONFIG_BAR].pci_resource_id = PCIR_BAR(0);
785	rc = map_mmr_bar(ntb, &ntb->bar_info[NTB_CONFIG_BAR]);
786	if (rc != 0)
787		goto out;
788
789	ntb->bar_info[NTB_B2B_BAR_1].pci_resource_id = PCIR_BAR(2);
790	rc = map_memory_window_bar(ntb, &ntb->bar_info[NTB_B2B_BAR_1]);
791	if (rc != 0)
792		goto out;
793	ntb->bar_info[NTB_B2B_BAR_1].psz_off = XEON_PBAR23SZ_OFFSET;
794	ntb->bar_info[NTB_B2B_BAR_1].ssz_off = XEON_SBAR23SZ_OFFSET;
795	ntb->bar_info[NTB_B2B_BAR_1].pbarxlat_off = XEON_PBAR2XLAT_OFFSET;
796
797	ntb->bar_info[NTB_B2B_BAR_2].pci_resource_id = PCIR_BAR(4);
798	rc = map_memory_window_bar(ntb, &ntb->bar_info[NTB_B2B_BAR_2]);
799	if (rc != 0)
800		goto out;
801	ntb->bar_info[NTB_B2B_BAR_2].psz_off = XEON_PBAR4SZ_OFFSET;
802	ntb->bar_info[NTB_B2B_BAR_2].ssz_off = XEON_SBAR4SZ_OFFSET;
803	ntb->bar_info[NTB_B2B_BAR_2].pbarxlat_off = XEON_PBAR4XLAT_OFFSET;
804
805	if (!HAS_FEATURE(NTB_SPLIT_BAR))
806		goto out;
807
808	ntb->bar_info[NTB_B2B_BAR_3].pci_resource_id = PCIR_BAR(5);
809	rc = map_memory_window_bar(ntb, &ntb->bar_info[NTB_B2B_BAR_3]);
810	ntb->bar_info[NTB_B2B_BAR_3].psz_off = XEON_PBAR5SZ_OFFSET;
811	ntb->bar_info[NTB_B2B_BAR_3].ssz_off = XEON_SBAR5SZ_OFFSET;
812	ntb->bar_info[NTB_B2B_BAR_3].pbarxlat_off = XEON_PBAR5XLAT_OFFSET;
813
814out:
815	if (rc != 0)
816		device_printf(ntb->device,
817		    "unable to allocate pci resource\n");
818	return (rc);
819}
820
821static void
822print_map_success(struct ntb_softc *ntb, struct ntb_pci_bar_info *bar,
823    const char *kind)
824{
825
826	device_printf(ntb->device,
827	    "Mapped BAR%d v:[%p-%p] p:[%p-%p] (0x%jx bytes) (%s)\n",
828	    PCI_RID2BAR(bar->pci_resource_id), bar->vbase,
829	    (char *)bar->vbase + bar->size - 1,
830	    (void *)bar->pbase, (void *)(bar->pbase + bar->size - 1),
831	    (uintmax_t)bar->size, kind);
832}
833
834static int
835map_mmr_bar(struct ntb_softc *ntb, struct ntb_pci_bar_info *bar)
836{
837
838	bar->pci_resource = bus_alloc_resource_any(ntb->device, SYS_RES_MEMORY,
839	    &bar->pci_resource_id, RF_ACTIVE);
840	if (bar->pci_resource == NULL)
841		return (ENXIO);
842
843	save_bar_parameters(bar);
844	bar->map_mode = VM_MEMATTR_UNCACHEABLE;
845	print_map_success(ntb, bar, "mmr");
846	return (0);
847}
848
849static int
850map_memory_window_bar(struct ntb_softc *ntb, struct ntb_pci_bar_info *bar)
851{
852	int rc;
853	vm_memattr_t mapmode;
854	uint8_t bar_size_bits = 0;
855
856	bar->pci_resource = bus_alloc_resource_any(ntb->device, SYS_RES_MEMORY,
857	    &bar->pci_resource_id, RF_ACTIVE);
858
859	if (bar->pci_resource == NULL)
860		return (ENXIO);
861
862	save_bar_parameters(bar);
863	/*
864	 * Ivytown NTB BAR sizes are misreported by the hardware due to a
865	 * hardware issue. To work around this, query the size it should be
866	 * configured to by the device and modify the resource to correspond to
867	 * this new size. The BIOS on systems with this problem is required to
868	 * provide enough address space to allow the driver to make this change
869	 * safely.
870	 *
871	 * Ideally I could have just specified the size when I allocated the
872	 * resource like:
873	 *  bus_alloc_resource(ntb->device,
874	 *	SYS_RES_MEMORY, &bar->pci_resource_id, 0ul, ~0ul,
875	 *	1ul << bar_size_bits, RF_ACTIVE);
876	 * but the PCI driver does not honor the size in this call, so we have
877	 * to modify it after the fact.
878	 */
879	if (HAS_FEATURE(NTB_BAR_SIZE_4K)) {
880		if (bar->pci_resource_id == PCIR_BAR(2))
881			bar_size_bits = pci_read_config(ntb->device,
882			    XEON_PBAR23SZ_OFFSET, 1);
883		else
884			bar_size_bits = pci_read_config(ntb->device,
885			    XEON_PBAR45SZ_OFFSET, 1);
886
887		rc = bus_adjust_resource(ntb->device, SYS_RES_MEMORY,
888		    bar->pci_resource, bar->pbase,
889		    bar->pbase + (1ul << bar_size_bits) - 1);
890		if (rc != 0) {
891			device_printf(ntb->device,
892			    "unable to resize bar\n");
893			return (rc);
894		}
895
896		save_bar_parameters(bar);
897	}
898
899	bar->map_mode = VM_MEMATTR_UNCACHEABLE;
900	print_map_success(ntb, bar, "mw");
901
902	/*
903	 * Optionally, mark MW BARs as anything other than UC to improve
904	 * performance.
905	 */
906	mapmode = ntb_pat_flags();
907	if (mapmode == bar->map_mode)
908		return (0);
909
910	rc = pmap_change_attr((vm_offset_t)bar->vbase, bar->size, mapmode);
911	if (rc == 0) {
912		bar->map_mode = mapmode;
913		device_printf(ntb->device,
914		    "Marked BAR%d v:[%p-%p] p:[%p-%p] as "
915		    "%s.\n",
916		    PCI_RID2BAR(bar->pci_resource_id), bar->vbase,
917		    (char *)bar->vbase + bar->size - 1,
918		    (void *)bar->pbase, (void *)(bar->pbase + bar->size - 1),
919		    ntb_vm_memattr_to_str(mapmode));
920	} else
921		device_printf(ntb->device,
922		    "Unable to mark BAR%d v:[%p-%p] p:[%p-%p] as "
923		    "%s: %d\n",
924		    PCI_RID2BAR(bar->pci_resource_id), bar->vbase,
925		    (char *)bar->vbase + bar->size - 1,
926		    (void *)bar->pbase, (void *)(bar->pbase + bar->size - 1),
927		    ntb_vm_memattr_to_str(mapmode), rc);
928		/* Proceed anyway */
929	return (0);
930}
931
932static void
933ntb_unmap_pci_bar(struct ntb_softc *ntb)
934{
935	struct ntb_pci_bar_info *current_bar;
936	int i;
937
938	for (i = 0; i < NTB_MAX_BARS; i++) {
939		current_bar = &ntb->bar_info[i];
940		if (current_bar->pci_resource != NULL)
941			bus_release_resource(ntb->device, SYS_RES_MEMORY,
942			    current_bar->pci_resource_id,
943			    current_bar->pci_resource);
944	}
945}
946
947static int
948ntb_setup_msix(struct ntb_softc *ntb, uint32_t num_vectors)
949{
950	uint32_t i;
951	int rc;
952
953	for (i = 0; i < num_vectors; i++) {
954		ntb->int_info[i].rid = i + 1;
955		ntb->int_info[i].res = bus_alloc_resource_any(ntb->device,
956		    SYS_RES_IRQ, &ntb->int_info[i].rid, RF_ACTIVE);
957		if (ntb->int_info[i].res == NULL) {
958			device_printf(ntb->device,
959			    "bus_alloc_resource failed\n");
960			return (ENOMEM);
961		}
962		ntb->int_info[i].tag = NULL;
963		ntb->allocated_interrupts++;
964		rc = bus_setup_intr(ntb->device, ntb->int_info[i].res,
965		    INTR_MPSAFE | INTR_TYPE_MISC, NULL, ndev_vec_isr,
966		    &ntb->msix_vec[i], &ntb->int_info[i].tag);
967		if (rc != 0) {
968			device_printf(ntb->device, "bus_setup_intr failed\n");
969			return (ENXIO);
970		}
971	}
972	return (0);
973}
974
975/*
976 * The Linux NTB driver drops from MSI-X to legacy INTx if a unique vector
977 * cannot be allocated for each MSI-X message.  JHB seems to think remapping
978 * should be okay.  This tunable should enable us to test that hypothesis
979 * when someone gets their hands on some Xeon hardware.
980 */
981static int ntb_force_remap_mode;
982SYSCTL_INT(_hw_ntb, OID_AUTO, force_remap_mode, CTLFLAG_RDTUN,
983    &ntb_force_remap_mode, 0, "If enabled, force MSI-X messages to be remapped"
984    " to a smaller number of ithreads, even if the desired number are "
985    "available");
986
987/*
988 * In case it is NOT ok, give consumers an abort button.
989 */
990static int ntb_prefer_intx;
991SYSCTL_INT(_hw_ntb, OID_AUTO, prefer_intx_to_remap, CTLFLAG_RDTUN,
992    &ntb_prefer_intx, 0, "If enabled, prefer to use legacy INTx mode rather "
993    "than remapping MSI-X messages over available slots (match Linux driver "
994    "behavior)");
995
996/*
997 * Remap the desired number of MSI-X messages to available ithreads in a simple
998 * round-robin fashion.
999 */
1000static int
1001ntb_remap_msix(device_t dev, uint32_t desired, uint32_t avail)
1002{
1003	u_int *vectors;
1004	uint32_t i;
1005	int rc;
1006
1007	if (ntb_prefer_intx != 0)
1008		return (ENXIO);
1009
1010	vectors = malloc(desired * sizeof(*vectors), M_NTB, M_ZERO | M_WAITOK);
1011
1012	for (i = 0; i < desired; i++)
1013		vectors[i] = (i % avail) + 1;
1014
1015	rc = pci_remap_msix(dev, desired, vectors);
1016	free(vectors, M_NTB);
1017	return (rc);
1018}
1019
1020static int
1021ntb_init_isr(struct ntb_softc *ntb)
1022{
1023	uint32_t desired_vectors, num_vectors;
1024	int rc;
1025
1026	ntb->allocated_interrupts = 0;
1027	ntb->last_ts = ticks;
1028
1029	/*
1030	 * Mask all doorbell interrupts.  (Except link events!)
1031	 */
1032	DB_MASK_LOCK(ntb);
1033	ntb->db_mask = ntb->db_valid_mask;
1034	db_iowrite(ntb, ntb->self_reg->db_mask, ntb->db_mask);
1035	DB_MASK_UNLOCK(ntb);
1036
1037	num_vectors = desired_vectors = MIN(pci_msix_count(ntb->device),
1038	    ntb->db_count);
1039	if (desired_vectors >= 1) {
1040		rc = pci_alloc_msix(ntb->device, &num_vectors);
1041
1042		if (ntb_force_remap_mode != 0 && rc == 0 &&
1043		    num_vectors == desired_vectors)
1044			num_vectors--;
1045
1046		if (rc == 0 && num_vectors < desired_vectors) {
1047			rc = ntb_remap_msix(ntb->device, desired_vectors,
1048			    num_vectors);
1049			if (rc == 0)
1050				num_vectors = desired_vectors;
1051			else
1052				pci_release_msi(ntb->device);
1053		}
1054		if (rc != 0)
1055			num_vectors = 1;
1056	} else
1057		num_vectors = 1;
1058
1059	if (ntb->type == NTB_XEON && num_vectors < ntb->db_vec_count) {
1060		if (HAS_FEATURE(NTB_SB01BASE_LOCKUP)) {
1061			device_printf(ntb->device,
1062			    "Errata workaround does not support MSI or INTX\n");
1063			return (EINVAL);
1064		}
1065
1066		ntb->db_vec_count = 1;
1067		ntb->db_vec_shift = XEON_DB_TOTAL_SHIFT;
1068		rc = ntb_setup_legacy_interrupt(ntb);
1069	} else {
1070		ntb_create_msix_vec(ntb, num_vectors);
1071		rc = ntb_setup_msix(ntb, num_vectors);
1072		if (rc == 0 && HAS_FEATURE(NTB_SB01BASE_LOCKUP))
1073			ntb_get_msix_info(ntb, num_vectors);
1074	}
1075	if (rc != 0) {
1076		device_printf(ntb->device,
1077		    "Error allocating interrupts: %d\n", rc);
1078		ntb_free_msix_vec(ntb);
1079	}
1080
1081	return (rc);
1082}
1083
1084static int
1085ntb_setup_legacy_interrupt(struct ntb_softc *ntb)
1086{
1087	int rc;
1088
1089	ntb->int_info[0].rid = 0;
1090	ntb->int_info[0].res = bus_alloc_resource_any(ntb->device, SYS_RES_IRQ,
1091	    &ntb->int_info[0].rid, RF_SHAREABLE|RF_ACTIVE);
1092	if (ntb->int_info[0].res == NULL) {
1093		device_printf(ntb->device, "bus_alloc_resource failed\n");
1094		return (ENOMEM);
1095	}
1096
1097	ntb->int_info[0].tag = NULL;
1098	ntb->allocated_interrupts = 1;
1099
1100	rc = bus_setup_intr(ntb->device, ntb->int_info[0].res,
1101	    INTR_MPSAFE | INTR_TYPE_MISC, NULL, ndev_irq_isr,
1102	    ntb, &ntb->int_info[0].tag);
1103	if (rc != 0) {
1104		device_printf(ntb->device, "bus_setup_intr failed\n");
1105		return (ENXIO);
1106	}
1107
1108	return (0);
1109}
1110
1111static void
1112ntb_teardown_interrupts(struct ntb_softc *ntb)
1113{
1114	struct ntb_int_info *current_int;
1115	int i;
1116
1117	for (i = 0; i < ntb->allocated_interrupts; i++) {
1118		current_int = &ntb->int_info[i];
1119		if (current_int->tag != NULL)
1120			bus_teardown_intr(ntb->device, current_int->res,
1121			    current_int->tag);
1122
1123		if (current_int->res != NULL)
1124			bus_release_resource(ntb->device, SYS_RES_IRQ,
1125			    rman_get_rid(current_int->res), current_int->res);
1126	}
1127
1128	ntb_free_msix_vec(ntb);
1129	pci_release_msi(ntb->device);
1130}
1131
1132/*
1133 * Doorbell register and mask are 64-bit on Atom, 16-bit on Xeon.  Abstract it
1134 * out to make code clearer.
1135 */
1136static inline uint64_t
1137db_ioread(struct ntb_softc *ntb, uint64_t regoff)
1138{
1139
1140	if (ntb->type == NTB_ATOM)
1141		return (ntb_reg_read(8, regoff));
1142
1143	KASSERT(ntb->type == NTB_XEON, ("bad ntb type"));
1144
1145	return (ntb_reg_read(2, regoff));
1146}
1147
1148static inline void
1149db_iowrite(struct ntb_softc *ntb, uint64_t regoff, uint64_t val)
1150{
1151
1152	KASSERT((val & ~ntb->db_valid_mask) == 0,
1153	    ("%s: Invalid bits 0x%jx (valid: 0x%jx)", __func__,
1154	     (uintmax_t)(val & ~ntb->db_valid_mask),
1155	     (uintmax_t)ntb->db_valid_mask));
1156
1157	if (regoff == ntb->self_reg->db_mask)
1158		DB_MASK_ASSERT(ntb, MA_OWNED);
1159	db_iowrite_raw(ntb, regoff, val);
1160}
1161
1162static inline void
1163db_iowrite_raw(struct ntb_softc *ntb, uint64_t regoff, uint64_t val)
1164{
1165
1166	if (ntb->type == NTB_ATOM) {
1167		ntb_reg_write(8, regoff, val);
1168		return;
1169	}
1170
1171	KASSERT(ntb->type == NTB_XEON, ("bad ntb type"));
1172	ntb_reg_write(2, regoff, (uint16_t)val);
1173}
1174
1175void
1176ntb_db_set_mask(struct ntb_softc *ntb, uint64_t bits)
1177{
1178
1179	if (HAS_FEATURE(NTB_SB01BASE_LOCKUP))
1180		return;
1181
1182	DB_MASK_LOCK(ntb);
1183	ntb->db_mask |= bits;
1184	db_iowrite(ntb, ntb->self_reg->db_mask, ntb->db_mask);
1185	DB_MASK_UNLOCK(ntb);
1186}
1187
1188void
1189ntb_db_clear_mask(struct ntb_softc *ntb, uint64_t bits)
1190{
1191
1192	KASSERT((bits & ~ntb->db_valid_mask) == 0,
1193	    ("%s: Invalid bits 0x%jx (valid: 0x%jx)", __func__,
1194	     (uintmax_t)(bits & ~ntb->db_valid_mask),
1195	     (uintmax_t)ntb->db_valid_mask));
1196
1197	if (HAS_FEATURE(NTB_SB01BASE_LOCKUP))
1198		return;
1199
1200	DB_MASK_LOCK(ntb);
1201	ntb->db_mask &= ~bits;
1202	db_iowrite(ntb, ntb->self_reg->db_mask, ntb->db_mask);
1203	DB_MASK_UNLOCK(ntb);
1204}
1205
1206uint64_t
1207ntb_db_read(struct ntb_softc *ntb)
1208{
1209
1210	if (HAS_FEATURE(NTB_SB01BASE_LOCKUP)) {
1211		uint64_t res;
1212		unsigned i;
1213
1214		res = 0;
1215		for (i = 0; i < XEON_NONLINK_DB_MSIX_BITS; i++) {
1216			if (ntb->msix_vec[i].masked != 0)
1217				res |= ntb_db_vector_mask(ntb, i);
1218		}
1219		return (res);
1220	}
1221
1222	return (db_ioread(ntb, ntb->self_reg->db_bell));
1223}
1224
1225void
1226ntb_db_clear(struct ntb_softc *ntb, uint64_t bits)
1227{
1228
1229	KASSERT((bits & ~ntb->db_valid_mask) == 0,
1230	    ("%s: Invalid bits 0x%jx (valid: 0x%jx)", __func__,
1231	     (uintmax_t)(bits & ~ntb->db_valid_mask),
1232	     (uintmax_t)ntb->db_valid_mask));
1233
1234	if (HAS_FEATURE(NTB_SB01BASE_LOCKUP)) {
1235		unsigned i;
1236
1237		for (i = 0; i < XEON_NONLINK_DB_MSIX_BITS; i++) {
1238			if ((bits & ntb_db_vector_mask(ntb, i)) != 0) {
1239				DB_MASK_LOCK(ntb);
1240				if (ntb->msix_vec[i].masked != 0) {
1241					/* XXX These need a public API. */
1242#if 0
1243					pci_unmask_msix(ntb->device, i);
1244#endif
1245					ntb->msix_vec[i].masked = 0;
1246				}
1247				DB_MASK_UNLOCK(ntb);
1248			}
1249		}
1250		return;
1251	}
1252
1253	db_iowrite(ntb, ntb->self_reg->db_bell, bits);
1254}
1255
1256static inline uint64_t
1257ntb_vec_mask(struct ntb_softc *ntb, uint64_t db_vector)
1258{
1259	uint64_t shift, mask;
1260
1261	shift = ntb->db_vec_shift;
1262	mask = (1ull << shift) - 1;
1263	return (mask << (shift * db_vector));
1264}
1265
1266static void
1267ntb_interrupt(struct ntb_softc *ntb, uint32_t vec)
1268{
1269	uint64_t vec_mask;
1270
1271	ntb->last_ts = ticks;
1272	vec_mask = ntb_vec_mask(ntb, vec);
1273
1274	if ((vec_mask & ntb->db_link_mask) != 0) {
1275		if (ntb_poll_link(ntb))
1276			ntb_link_event(ntb);
1277	}
1278
1279	if (HAS_FEATURE(NTB_SB01BASE_LOCKUP) &&
1280	    (vec_mask & ntb->db_link_mask) == 0) {
1281		DB_MASK_LOCK(ntb);
1282		if (ntb->msix_vec[vec].masked == 0) {
1283			/* XXX These need a public API. */
1284#if 0
1285			pci_mask_msix(ntb->device, vec);
1286#endif
1287			ntb->msix_vec[vec].masked = 1;
1288		}
1289		DB_MASK_UNLOCK(ntb);
1290	}
1291
1292	if ((vec_mask & ntb->db_valid_mask) != 0)
1293		ntb_db_event(ntb, vec);
1294}
1295
1296static void
1297ndev_vec_isr(void *arg)
1298{
1299	struct ntb_vec *nvec = arg;
1300
1301	ntb_interrupt(nvec->ntb, nvec->num);
1302}
1303
1304static void
1305ndev_irq_isr(void *arg)
1306{
1307	/* If we couldn't set up MSI-X, we only have the one vector. */
1308	ntb_interrupt(arg, 0);
1309}
1310
1311static int
1312ntb_create_msix_vec(struct ntb_softc *ntb, uint32_t num_vectors)
1313{
1314	uint32_t i;
1315
1316	ntb->msix_vec = malloc(num_vectors * sizeof(*ntb->msix_vec), M_NTB,
1317	    M_ZERO | M_WAITOK);
1318	for (i = 0; i < num_vectors; i++) {
1319		ntb->msix_vec[i].num = i;
1320		ntb->msix_vec[i].ntb = ntb;
1321	}
1322
1323	return (0);
1324}
1325
1326static void
1327ntb_free_msix_vec(struct ntb_softc *ntb)
1328{
1329
1330	if (ntb->msix_vec == NULL)
1331		return;
1332
1333	free(ntb->msix_vec, M_NTB);
1334	ntb->msix_vec = NULL;
1335}
1336
1337static void
1338ntb_get_msix_info(struct ntb_softc *ntb, uint32_t num_vectors)
1339{
1340	struct pci_devinfo *dinfo;
1341	struct pcicfg_msix *msix;
1342	uint32_t laddr, data, i, offset;
1343
1344	dinfo = device_get_ivars(ntb->device);
1345	msix = &dinfo->cfg.msix;
1346
1347	laddr = data = 0;
1348
1349	for (i = 0; i < num_vectors; i++) {
1350		offset = msix->msix_table_offset + i * PCI_MSIX_ENTRY_SIZE;
1351
1352		laddr = bus_read_4(msix->msix_table_res, offset +
1353		    PCI_MSIX_ENTRY_LOWER_ADDR);
1354		ntb_printf(2, "local lower MSIX addr(%u): 0x%x\n", i, laddr);
1355
1356		KASSERT((laddr & MSI_INTEL_ADDR_BASE) == MSI_INTEL_ADDR_BASE,
1357		    ("local MSIX addr 0x%x not in MSI base 0x%x", laddr,
1358		     MSI_INTEL_ADDR_BASE));
1359		ntb->msix_data[i].nmd_ofs = laddr & ~MSI_INTEL_ADDR_BASE;
1360
1361		data = bus_read_4(msix->msix_table_res, offset +
1362		    PCI_MSIX_ENTRY_DATA);
1363		ntb_printf(2, "local MSIX data(%u): 0x%x\n", i, data);
1364
1365		ntb->msix_data[i].nmd_data = data;
1366	}
1367}
1368
1369static struct ntb_hw_info *
1370ntb_get_device_info(uint32_t device_id)
1371{
1372	struct ntb_hw_info *ep = pci_ids;
1373
1374	while (ep->device_id) {
1375		if (ep->device_id == device_id)
1376			return (ep);
1377		++ep;
1378	}
1379	return (NULL);
1380}
1381
1382static void
1383ntb_teardown_xeon(struct ntb_softc *ntb)
1384{
1385
1386	if (ntb->reg != NULL)
1387		ntb_link_disable(ntb);
1388}
1389
1390static void
1391ntb_detect_max_mw(struct ntb_softc *ntb)
1392{
1393
1394	if (ntb->type == NTB_ATOM) {
1395		ntb->mw_count = ATOM_MW_COUNT;
1396		return;
1397	}
1398
1399	if (HAS_FEATURE(NTB_SPLIT_BAR))
1400		ntb->mw_count = XEON_HSX_SPLIT_MW_COUNT;
1401	else
1402		ntb->mw_count = XEON_SNB_MW_COUNT;
1403}
1404
1405static int
1406ntb_detect_xeon(struct ntb_softc *ntb)
1407{
1408	uint8_t ppd, conn_type;
1409
1410	ppd = pci_read_config(ntb->device, NTB_PPD_OFFSET, 1);
1411	ntb->ppd = ppd;
1412
1413	if ((ppd & XEON_PPD_DEV_TYPE) != 0)
1414		ntb->dev_type = NTB_DEV_DSD;
1415	else
1416		ntb->dev_type = NTB_DEV_USD;
1417
1418	if ((ppd & XEON_PPD_SPLIT_BAR) != 0)
1419		ntb->features |= NTB_SPLIT_BAR;
1420
1421	/*
1422	 * SDOORBELL errata workaround gets in the way of SB01BASE_LOCKUP
1423	 * errata workaround; only do one at a time.
1424	 */
1425	if (HAS_FEATURE(NTB_SB01BASE_LOCKUP))
1426		ntb->features &= ~NTB_SDOORBELL_LOCKUP;
1427
1428	conn_type = ppd & XEON_PPD_CONN_TYPE;
1429	switch (conn_type) {
1430	case NTB_CONN_B2B:
1431		ntb->conn_type = conn_type;
1432		break;
1433	case NTB_CONN_RP:
1434	case NTB_CONN_TRANSPARENT:
1435	default:
1436		device_printf(ntb->device, "Unsupported connection type: %u\n",
1437		    (unsigned)conn_type);
1438		return (ENXIO);
1439	}
1440	return (0);
1441}
1442
1443static int
1444ntb_detect_atom(struct ntb_softc *ntb)
1445{
1446	uint32_t ppd, conn_type;
1447
1448	ppd = pci_read_config(ntb->device, NTB_PPD_OFFSET, 4);
1449	ntb->ppd = ppd;
1450
1451	if ((ppd & ATOM_PPD_DEV_TYPE) != 0)
1452		ntb->dev_type = NTB_DEV_DSD;
1453	else
1454		ntb->dev_type = NTB_DEV_USD;
1455
1456	conn_type = (ppd & ATOM_PPD_CONN_TYPE) >> 8;
1457	switch (conn_type) {
1458	case NTB_CONN_B2B:
1459		ntb->conn_type = conn_type;
1460		break;
1461	default:
1462		device_printf(ntb->device, "Unsupported NTB configuration\n");
1463		return (ENXIO);
1464	}
1465	return (0);
1466}
1467
1468static int
1469ntb_xeon_init_dev(struct ntb_softc *ntb)
1470{
1471	int rc;
1472
1473	ntb->spad_count		= XEON_SPAD_COUNT;
1474	ntb->db_count		= XEON_DB_COUNT;
1475	ntb->db_link_mask	= XEON_DB_LINK_BIT;
1476	ntb->db_vec_count	= XEON_DB_MSIX_VECTOR_COUNT;
1477	ntb->db_vec_shift	= XEON_DB_MSIX_VECTOR_SHIFT;
1478
1479	if (ntb->conn_type != NTB_CONN_B2B) {
1480		device_printf(ntb->device, "Connection type %d not supported\n",
1481		    ntb->conn_type);
1482		return (ENXIO);
1483	}
1484
1485	ntb->reg = &xeon_reg;
1486	ntb->self_reg = &xeon_pri_reg;
1487	ntb->peer_reg = &xeon_b2b_reg;
1488	ntb->xlat_reg = &xeon_sec_xlat;
1489
1490	if (HAS_FEATURE(NTB_SB01BASE_LOCKUP)) {
1491		ntb->msix_mw_idx = (ntb->mw_count + g_ntb_msix_idx) %
1492		    ntb->mw_count;
1493		ntb_printf(2, "Setting up MSIX mw idx %d means %u\n",
1494		    g_ntb_msix_idx, ntb->msix_mw_idx);
1495		rc = ntb_mw_set_wc_internal(ntb, ntb->msix_mw_idx,
1496		    VM_MEMATTR_UNCACHEABLE);
1497		KASSERT(rc == 0, ("shouldn't fail"));
1498	} else if (HAS_FEATURE(NTB_SDOORBELL_LOCKUP)) {
1499		/*
1500		 * There is a Xeon hardware errata related to writes to SDOORBELL or
1501		 * B2BDOORBELL in conjunction with inbound access to NTB MMIO space,
1502		 * which may hang the system.  To workaround this, use a memory
1503		 * window to access the interrupt and scratch pad registers on the
1504		 * remote system.
1505		 */
1506		ntb->b2b_mw_idx = (ntb->mw_count + g_ntb_mw_idx) %
1507		    ntb->mw_count;
1508		ntb_printf(2, "Setting up b2b mw idx %d means %u\n",
1509		    g_ntb_mw_idx, ntb->b2b_mw_idx);
1510		rc = ntb_mw_set_wc_internal(ntb, ntb->b2b_mw_idx,
1511		    VM_MEMATTR_UNCACHEABLE);
1512		KASSERT(rc == 0, ("shouldn't fail"));
1513	} else if (HAS_FEATURE(NTB_B2BDOORBELL_BIT14))
1514		/*
1515		 * HW Errata on bit 14 of b2bdoorbell register.  Writes will not be
1516		 * mirrored to the remote system.  Shrink the number of bits by one,
1517		 * since bit 14 is the last bit.
1518		 *
1519		 * On REGS_THRU_MW errata mode, we don't use the b2bdoorbell register
1520		 * anyway.  Nor for non-B2B connection types.
1521		 */
1522		ntb->db_count = XEON_DB_COUNT - 1;
1523
1524	ntb->db_valid_mask = (1ull << ntb->db_count) - 1;
1525
1526	if (ntb->dev_type == NTB_DEV_USD)
1527		rc = xeon_setup_b2b_mw(ntb, &xeon_b2b_dsd_addr,
1528		    &xeon_b2b_usd_addr);
1529	else
1530		rc = xeon_setup_b2b_mw(ntb, &xeon_b2b_usd_addr,
1531		    &xeon_b2b_dsd_addr);
1532	if (rc != 0)
1533		return (rc);
1534
1535	/* Enable Bus Master and Memory Space on the secondary side */
1536	ntb_reg_write(2, XEON_SPCICMD_OFFSET,
1537	    PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
1538
1539	/*
1540	 * Mask all doorbell interrupts.
1541	 */
1542	DB_MASK_LOCK(ntb);
1543	ntb->db_mask = ntb->db_valid_mask;
1544	db_iowrite(ntb, ntb->self_reg->db_mask, ntb->db_mask);
1545	DB_MASK_UNLOCK(ntb);
1546
1547	rc = xeon_setup_msix_bar(ntb);
1548	if (rc != 0)
1549		return (rc);
1550
1551	rc = ntb_init_isr(ntb);
1552	return (rc);
1553}
1554
1555static int
1556ntb_atom_init_dev(struct ntb_softc *ntb)
1557{
1558	int error;
1559
1560	KASSERT(ntb->conn_type == NTB_CONN_B2B,
1561	    ("Unsupported NTB configuration (%d)\n", ntb->conn_type));
1562
1563	ntb->spad_count		 = ATOM_SPAD_COUNT;
1564	ntb->db_count		 = ATOM_DB_COUNT;
1565	ntb->db_vec_count	 = ATOM_DB_MSIX_VECTOR_COUNT;
1566	ntb->db_vec_shift	 = ATOM_DB_MSIX_VECTOR_SHIFT;
1567	ntb->db_valid_mask	 = (1ull << ntb->db_count) - 1;
1568
1569	ntb->reg = &atom_reg;
1570	ntb->self_reg = &atom_pri_reg;
1571	ntb->peer_reg = &atom_b2b_reg;
1572	ntb->xlat_reg = &atom_sec_xlat;
1573
1574	/*
1575	 * FIXME - MSI-X bug on early Atom HW, remove once internal issue is
1576	 * resolved.  Mask transaction layer internal parity errors.
1577	 */
1578	pci_write_config(ntb->device, 0xFC, 0x4, 4);
1579
1580	configure_atom_secondary_side_bars(ntb);
1581
1582	/* Enable Bus Master and Memory Space on the secondary side */
1583	ntb_reg_write(2, ATOM_SPCICMD_OFFSET,
1584	    PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
1585
1586	error = ntb_init_isr(ntb);
1587	if (error != 0)
1588		return (error);
1589
1590	/* Initiate PCI-E link training */
1591	ntb_link_enable(ntb, NTB_SPEED_AUTO, NTB_WIDTH_AUTO);
1592
1593	callout_reset(&ntb->heartbeat_timer, 0, atom_link_hb, ntb);
1594
1595	return (0);
1596}
1597
1598/* XXX: Linux driver doesn't seem to do any of this for Atom. */
1599static void
1600configure_atom_secondary_side_bars(struct ntb_softc *ntb)
1601{
1602
1603	if (ntb->dev_type == NTB_DEV_USD) {
1604		ntb_reg_write(8, ATOM_PBAR2XLAT_OFFSET,
1605		    XEON_B2B_BAR2_ADDR64);
1606		ntb_reg_write(8, ATOM_PBAR4XLAT_OFFSET,
1607		    XEON_B2B_BAR4_ADDR64);
1608		ntb_reg_write(8, ATOM_MBAR23_OFFSET, XEON_B2B_BAR2_ADDR64);
1609		ntb_reg_write(8, ATOM_MBAR45_OFFSET, XEON_B2B_BAR4_ADDR64);
1610	} else {
1611		ntb_reg_write(8, ATOM_PBAR2XLAT_OFFSET,
1612		    XEON_B2B_BAR2_ADDR64);
1613		ntb_reg_write(8, ATOM_PBAR4XLAT_OFFSET,
1614		    XEON_B2B_BAR4_ADDR64);
1615		ntb_reg_write(8, ATOM_MBAR23_OFFSET, XEON_B2B_BAR2_ADDR64);
1616		ntb_reg_write(8, ATOM_MBAR45_OFFSET, XEON_B2B_BAR4_ADDR64);
1617	}
1618}
1619
1620
1621/*
1622 * When working around Xeon SDOORBELL errata by remapping remote registers in a
1623 * MW, limit the B2B MW to half a MW.  By sharing a MW, half the shared MW
1624 * remains for use by a higher layer.
1625 *
1626 * Will only be used if working around SDOORBELL errata and the BIOS-configured
1627 * MW size is sufficiently large.
1628 */
1629static unsigned int ntb_b2b_mw_share;
1630SYSCTL_UINT(_hw_ntb, OID_AUTO, b2b_mw_share, CTLFLAG_RDTUN, &ntb_b2b_mw_share,
1631    0, "If enabled (non-zero), prefer to share half of the B2B peer register "
1632    "MW with higher level consumers.  Both sides of the NTB MUST set the same "
1633    "value here.");
1634
1635static void
1636xeon_reset_sbar_size(struct ntb_softc *ntb, enum ntb_bar idx,
1637    enum ntb_bar regbar)
1638{
1639	struct ntb_pci_bar_info *bar;
1640	uint8_t bar_sz;
1641
1642	if (!HAS_FEATURE(NTB_SPLIT_BAR) && idx >= NTB_B2B_BAR_3)
1643		return;
1644
1645	bar = &ntb->bar_info[idx];
1646	bar_sz = pci_read_config(ntb->device, bar->psz_off, 1);
1647	if (idx == regbar) {
1648		if (ntb->b2b_off != 0)
1649			bar_sz--;
1650		else
1651			bar_sz = 0;
1652	} else if (HAS_FEATURE(NTB_SB01BASE_LOCKUP) &&
1653	    ntb_mw_to_bar(ntb, ntb->msix_mw_idx) == idx) {
1654		/* Restrict LAPIC BAR to 1MB */
1655		pci_write_config(ntb->device, bar->psz_off, 20, 1);
1656		pci_write_config(ntb->device, bar->ssz_off, 20, 1);
1657		bar_sz = pci_read_config(ntb->device, bar->psz_off, 1);
1658		bar_sz = pci_read_config(ntb->device, bar->ssz_off, 1);
1659		(void)bar_sz;
1660		return;
1661	}
1662	pci_write_config(ntb->device, bar->ssz_off, bar_sz, 1);
1663	bar_sz = pci_read_config(ntb->device, bar->ssz_off, 1);
1664	(void)bar_sz;
1665}
1666
1667static void
1668xeon_set_sbar_base_and_limit(struct ntb_softc *ntb, uint64_t bar_addr,
1669    enum ntb_bar idx, enum ntb_bar regbar)
1670{
1671	uint64_t reg_val, lmt_addr;
1672	uint32_t base_reg, lmt_reg;
1673
1674	bar_get_xlat_params(ntb, idx, &base_reg, NULL, &lmt_reg);
1675	if (idx == regbar)
1676		bar_addr += ntb->b2b_off;
1677	lmt_addr = bar_addr;
1678
1679	if (HAS_FEATURE(NTB_SB01BASE_LOCKUP) &&
1680	    ntb_mw_to_bar(ntb, ntb->msix_mw_idx) == idx)
1681		lmt_addr += ONE_MB;
1682
1683	/*
1684	 * Set limit registers first to avoid an errata where setting the base
1685	 * registers locks the limit registers.
1686	 */
1687	if (!bar_is_64bit(ntb, idx)) {
1688		ntb_reg_write(4, lmt_reg, lmt_addr);
1689		reg_val = ntb_reg_read(4, lmt_reg);
1690		(void)reg_val;
1691
1692		ntb_reg_write(4, base_reg, bar_addr);
1693		reg_val = ntb_reg_read(4, base_reg);
1694		(void)reg_val;
1695	} else {
1696		ntb_reg_write(8, lmt_reg, lmt_addr);
1697		reg_val = ntb_reg_read(8, lmt_reg);
1698		(void)reg_val;
1699
1700		ntb_reg_write(8, base_reg, bar_addr);
1701		reg_val = ntb_reg_read(8, base_reg);
1702		(void)reg_val;
1703	}
1704}
1705
1706static void
1707xeon_set_pbar_xlat(struct ntb_softc *ntb, uint64_t base_addr, enum ntb_bar idx)
1708{
1709	struct ntb_pci_bar_info *bar;
1710
1711	bar = &ntb->bar_info[idx];
1712	if (HAS_FEATURE(NTB_SPLIT_BAR) && idx >= NTB_B2B_BAR_2) {
1713		ntb_reg_write(4, bar->pbarxlat_off, base_addr);
1714		base_addr = ntb_reg_read(4, bar->pbarxlat_off);
1715	} else {
1716		ntb_reg_write(8, bar->pbarxlat_off, base_addr);
1717		base_addr = ntb_reg_read(8, bar->pbarxlat_off);
1718	}
1719	(void)base_addr;
1720}
1721
1722static int
1723xeon_setup_msix_bar(struct ntb_softc *ntb)
1724{
1725	struct ntb_pci_bar_info *lapic_bar;
1726	enum ntb_bar bar_num;
1727	int rc;
1728
1729	if (!HAS_FEATURE(NTB_SB01BASE_LOCKUP))
1730		return (0);
1731
1732	bar_num = ntb_mw_to_bar(ntb, ntb->msix_mw_idx);
1733	lapic_bar = &ntb->bar_info[bar_num];
1734
1735	/* Restrict LAPIC BAR to 1MB */
1736	if (lapic_bar->size > ONE_MB) {
1737		rc = bus_adjust_resource(ntb->device, SYS_RES_MEMORY,
1738		    lapic_bar->pci_resource, lapic_bar->pbase,
1739		    lapic_bar->pbase + ONE_MB - 1);
1740		if (rc == 0)
1741			lapic_bar->size = ONE_MB;
1742		else {
1743			ntb_printf(0, "Failed to shrink LAPIC BAR resource to "
1744			    "1 MB: %d\n", rc);
1745			/* Ignore error */
1746		}
1747	}
1748
1749	ntb->peer_lapic_bar = lapic_bar;
1750	return (0);
1751}
1752
1753static int
1754xeon_setup_b2b_mw(struct ntb_softc *ntb, const struct ntb_b2b_addr *addr,
1755    const struct ntb_b2b_addr *peer_addr)
1756{
1757	struct ntb_pci_bar_info *b2b_bar;
1758	vm_size_t bar_size;
1759	uint64_t bar_addr;
1760	enum ntb_bar b2b_bar_num, i;
1761
1762	if (ntb->b2b_mw_idx == B2B_MW_DISABLED) {
1763		b2b_bar = NULL;
1764		b2b_bar_num = NTB_CONFIG_BAR;
1765		ntb->b2b_off = 0;
1766	} else {
1767		b2b_bar_num = ntb_mw_to_bar(ntb, ntb->b2b_mw_idx);
1768		KASSERT(b2b_bar_num > 0 && b2b_bar_num < NTB_MAX_BARS,
1769		    ("invalid b2b mw bar"));
1770
1771		b2b_bar = &ntb->bar_info[b2b_bar_num];
1772		bar_size = b2b_bar->size;
1773
1774		if (ntb_b2b_mw_share != 0 &&
1775		    (bar_size >> 1) >= XEON_B2B_MIN_SIZE)
1776			ntb->b2b_off = bar_size >> 1;
1777		else if (bar_size >= XEON_B2B_MIN_SIZE) {
1778			ntb->b2b_off = 0;
1779		} else {
1780			device_printf(ntb->device,
1781			    "B2B bar size is too small!\n");
1782			return (EIO);
1783		}
1784	}
1785
1786	/*
1787	 * Reset the secondary bar sizes to match the primary bar sizes.
1788	 * (Except, disable or halve the size of the B2B secondary bar.)
1789	 */
1790	for (i = NTB_B2B_BAR_1; i < NTB_MAX_BARS; i++)
1791		xeon_reset_sbar_size(ntb, i, b2b_bar_num);
1792
1793	bar_addr = 0;
1794	if (b2b_bar_num == NTB_CONFIG_BAR)
1795		bar_addr = addr->bar0_addr;
1796	else if (b2b_bar_num == NTB_B2B_BAR_1)
1797		bar_addr = addr->bar2_addr64;
1798	else if (b2b_bar_num == NTB_B2B_BAR_2 && !HAS_FEATURE(NTB_SPLIT_BAR))
1799		bar_addr = addr->bar4_addr64;
1800	else if (b2b_bar_num == NTB_B2B_BAR_2)
1801		bar_addr = addr->bar4_addr32;
1802	else if (b2b_bar_num == NTB_B2B_BAR_3)
1803		bar_addr = addr->bar5_addr32;
1804	else
1805		KASSERT(false, ("invalid bar"));
1806
1807	ntb_reg_write(8, XEON_SBAR0BASE_OFFSET, bar_addr);
1808
1809	/*
1810	 * Other SBARs are normally hit by the PBAR xlat, except for the b2b
1811	 * register BAR.  The B2B BAR is either disabled above or configured
1812	 * half-size.  It starts at PBAR xlat + offset.
1813	 *
1814	 * Also set up incoming BAR limits == base (zero length window).
1815	 */
1816	xeon_set_sbar_base_and_limit(ntb, addr->bar2_addr64, NTB_B2B_BAR_1,
1817	    b2b_bar_num);
1818	if (HAS_FEATURE(NTB_SPLIT_BAR)) {
1819		xeon_set_sbar_base_and_limit(ntb, addr->bar4_addr32,
1820		    NTB_B2B_BAR_2, b2b_bar_num);
1821		xeon_set_sbar_base_and_limit(ntb, addr->bar5_addr32,
1822		    NTB_B2B_BAR_3, b2b_bar_num);
1823	} else
1824		xeon_set_sbar_base_and_limit(ntb, addr->bar4_addr64,
1825		    NTB_B2B_BAR_2, b2b_bar_num);
1826
1827	/* Zero incoming translation addrs */
1828	ntb_reg_write(8, XEON_SBAR2XLAT_OFFSET, 0);
1829	ntb_reg_write(8, XEON_SBAR4XLAT_OFFSET, 0);
1830
1831	if (HAS_FEATURE(NTB_SB01BASE_LOCKUP)) {
1832		size_t size, xlatoffset;
1833
1834		switch (ntb_mw_to_bar(ntb, ntb->msix_mw_idx)) {
1835		case NTB_B2B_BAR_1:
1836			size = 8;
1837			xlatoffset = XEON_SBAR2XLAT_OFFSET;
1838			break;
1839		case NTB_B2B_BAR_2:
1840			xlatoffset = XEON_SBAR4XLAT_OFFSET;
1841			if (HAS_FEATURE(NTB_SPLIT_BAR))
1842				size = 4;
1843			else
1844				size = 8;
1845			break;
1846		case NTB_B2B_BAR_3:
1847			xlatoffset = XEON_SBAR5XLAT_OFFSET;
1848			size = 4;
1849			break;
1850		default:
1851			KASSERT(false, ("Bogus msix mw idx: %u",
1852			    ntb->msix_mw_idx));
1853			return (EINVAL);
1854		}
1855
1856		/*
1857		 * We point the chosen MSIX MW BAR xlat to remote LAPIC for
1858		 * workaround
1859		 */
1860		if (size == 4)
1861			ntb_reg_write(4, xlatoffset, MSI_INTEL_ADDR_BASE);
1862		else
1863			ntb_reg_write(8, xlatoffset, MSI_INTEL_ADDR_BASE);
1864	}
1865	(void)ntb_reg_read(8, XEON_SBAR2XLAT_OFFSET);
1866	(void)ntb_reg_read(8, XEON_SBAR4XLAT_OFFSET);
1867
1868	/* Zero outgoing translation limits (whole bar size windows) */
1869	ntb_reg_write(8, XEON_PBAR2LMT_OFFSET, 0);
1870	ntb_reg_write(8, XEON_PBAR4LMT_OFFSET, 0);
1871
1872	/* Set outgoing translation offsets */
1873	xeon_set_pbar_xlat(ntb, peer_addr->bar2_addr64, NTB_B2B_BAR_1);
1874	if (HAS_FEATURE(NTB_SPLIT_BAR)) {
1875		xeon_set_pbar_xlat(ntb, peer_addr->bar4_addr32, NTB_B2B_BAR_2);
1876		xeon_set_pbar_xlat(ntb, peer_addr->bar5_addr32, NTB_B2B_BAR_3);
1877	} else
1878		xeon_set_pbar_xlat(ntb, peer_addr->bar4_addr64, NTB_B2B_BAR_2);
1879
1880	/* Set the translation offset for B2B registers */
1881	bar_addr = 0;
1882	if (b2b_bar_num == NTB_CONFIG_BAR)
1883		bar_addr = peer_addr->bar0_addr;
1884	else if (b2b_bar_num == NTB_B2B_BAR_1)
1885		bar_addr = peer_addr->bar2_addr64;
1886	else if (b2b_bar_num == NTB_B2B_BAR_2 && !HAS_FEATURE(NTB_SPLIT_BAR))
1887		bar_addr = peer_addr->bar4_addr64;
1888	else if (b2b_bar_num == NTB_B2B_BAR_2)
1889		bar_addr = peer_addr->bar4_addr32;
1890	else if (b2b_bar_num == NTB_B2B_BAR_3)
1891		bar_addr = peer_addr->bar5_addr32;
1892	else
1893		KASSERT(false, ("invalid bar"));
1894
1895	/*
1896	 * B2B_XLAT_OFFSET is a 64-bit register but can only be written 32 bits
1897	 * at a time.
1898	 */
1899	ntb_reg_write(4, XEON_B2B_XLAT_OFFSETL, bar_addr & 0xffffffff);
1900	ntb_reg_write(4, XEON_B2B_XLAT_OFFSETU, bar_addr >> 32);
1901	return (0);
1902}
1903
1904static inline bool
1905_xeon_link_is_up(struct ntb_softc *ntb)
1906{
1907
1908	if (ntb->conn_type == NTB_CONN_TRANSPARENT)
1909		return (true);
1910	return ((ntb->lnk_sta & NTB_LINK_STATUS_ACTIVE) != 0);
1911}
1912
1913static inline bool
1914link_is_up(struct ntb_softc *ntb)
1915{
1916
1917	if (ntb->type == NTB_XEON)
1918		return (_xeon_link_is_up(ntb) && (ntb->peer_msix_good ||
1919		    !HAS_FEATURE(NTB_SB01BASE_LOCKUP)));
1920
1921	KASSERT(ntb->type == NTB_ATOM, ("ntb type"));
1922	return ((ntb->ntb_ctl & ATOM_CNTL_LINK_DOWN) == 0);
1923}
1924
1925static inline bool
1926atom_link_is_err(struct ntb_softc *ntb)
1927{
1928	uint32_t status;
1929
1930	KASSERT(ntb->type == NTB_ATOM, ("ntb type"));
1931
1932	status = ntb_reg_read(4, ATOM_LTSSMSTATEJMP_OFFSET);
1933	if ((status & ATOM_LTSSMSTATEJMP_FORCEDETECT) != 0)
1934		return (true);
1935
1936	status = ntb_reg_read(4, ATOM_IBSTERRRCRVSTS0_OFFSET);
1937	return ((status & ATOM_IBIST_ERR_OFLOW) != 0);
1938}
1939
1940/* Atom does not have link status interrupt, poll on that platform */
1941static void
1942atom_link_hb(void *arg)
1943{
1944	struct ntb_softc *ntb = arg;
1945	sbintime_t timo, poll_ts;
1946
1947	timo = NTB_HB_TIMEOUT * hz;
1948	poll_ts = ntb->last_ts + timo;
1949
1950	/*
1951	 * Delay polling the link status if an interrupt was received, unless
1952	 * the cached link status says the link is down.
1953	 */
1954	if ((sbintime_t)ticks - poll_ts < 0 && link_is_up(ntb)) {
1955		timo = poll_ts - ticks;
1956		goto out;
1957	}
1958
1959	if (ntb_poll_link(ntb))
1960		ntb_link_event(ntb);
1961
1962	if (!link_is_up(ntb) && atom_link_is_err(ntb)) {
1963		/* Link is down with error, proceed with recovery */
1964		callout_reset(&ntb->lr_timer, 0, recover_atom_link, ntb);
1965		return;
1966	}
1967
1968out:
1969	callout_reset(&ntb->heartbeat_timer, timo, atom_link_hb, ntb);
1970}
1971
1972static void
1973atom_perform_link_restart(struct ntb_softc *ntb)
1974{
1975	uint32_t status;
1976
1977	/* Driver resets the NTB ModPhy lanes - magic! */
1978	ntb_reg_write(1, ATOM_MODPHY_PCSREG6, 0xe0);
1979	ntb_reg_write(1, ATOM_MODPHY_PCSREG4, 0x40);
1980	ntb_reg_write(1, ATOM_MODPHY_PCSREG4, 0x60);
1981	ntb_reg_write(1, ATOM_MODPHY_PCSREG6, 0x60);
1982
1983	/* Driver waits 100ms to allow the NTB ModPhy to settle */
1984	pause("ModPhy", hz / 10);
1985
1986	/* Clear AER Errors, write to clear */
1987	status = ntb_reg_read(4, ATOM_ERRCORSTS_OFFSET);
1988	status &= PCIM_AER_COR_REPLAY_ROLLOVER;
1989	ntb_reg_write(4, ATOM_ERRCORSTS_OFFSET, status);
1990
1991	/* Clear unexpected electrical idle event in LTSSM, write to clear */
1992	status = ntb_reg_read(4, ATOM_LTSSMERRSTS0_OFFSET);
1993	status |= ATOM_LTSSMERRSTS0_UNEXPECTEDEI;
1994	ntb_reg_write(4, ATOM_LTSSMERRSTS0_OFFSET, status);
1995
1996	/* Clear DeSkew Buffer error, write to clear */
1997	status = ntb_reg_read(4, ATOM_DESKEWSTS_OFFSET);
1998	status |= ATOM_DESKEWSTS_DBERR;
1999	ntb_reg_write(4, ATOM_DESKEWSTS_OFFSET, status);
2000
2001	status = ntb_reg_read(4, ATOM_IBSTERRRCRVSTS0_OFFSET);
2002	status &= ATOM_IBIST_ERR_OFLOW;
2003	ntb_reg_write(4, ATOM_IBSTERRRCRVSTS0_OFFSET, status);
2004
2005	/* Releases the NTB state machine to allow the link to retrain */
2006	status = ntb_reg_read(4, ATOM_LTSSMSTATEJMP_OFFSET);
2007	status &= ~ATOM_LTSSMSTATEJMP_FORCEDETECT;
2008	ntb_reg_write(4, ATOM_LTSSMSTATEJMP_OFFSET, status);
2009}
2010
2011/*
2012 * ntb_set_ctx() - associate a driver context with an ntb device
2013 * @ntb:        NTB device context
2014 * @ctx:        Driver context
2015 * @ctx_ops:    Driver context operations
2016 *
2017 * Associate a driver context and operations with a ntb device.  The context is
2018 * provided by the client driver, and the driver may associate a different
2019 * context with each ntb device.
2020 *
2021 * Return: Zero if the context is associated, otherwise an error number.
2022 */
2023int
2024ntb_set_ctx(struct ntb_softc *ntb, void *ctx, const struct ntb_ctx_ops *ops)
2025{
2026
2027	if (ctx == NULL || ops == NULL)
2028		return (EINVAL);
2029	if (ntb->ctx_ops != NULL)
2030		return (EINVAL);
2031
2032	CTX_LOCK(ntb);
2033	if (ntb->ctx_ops != NULL) {
2034		CTX_UNLOCK(ntb);
2035		return (EINVAL);
2036	}
2037	ntb->ntb_ctx = ctx;
2038	ntb->ctx_ops = ops;
2039	CTX_UNLOCK(ntb);
2040
2041	return (0);
2042}
2043
2044/*
2045 * It is expected that this will only be used from contexts where the ctx_lock
2046 * is not needed to protect ntb_ctx lifetime.
2047 */
2048void *
2049ntb_get_ctx(struct ntb_softc *ntb, const struct ntb_ctx_ops **ops)
2050{
2051
2052	KASSERT(ntb->ntb_ctx != NULL && ntb->ctx_ops != NULL, ("bogus"));
2053	if (ops != NULL)
2054		*ops = ntb->ctx_ops;
2055	return (ntb->ntb_ctx);
2056}
2057
2058/*
2059 * ntb_clear_ctx() - disassociate any driver context from an ntb device
2060 * @ntb:        NTB device context
2061 *
2062 * Clear any association that may exist between a driver context and the ntb
2063 * device.
2064 */
2065void
2066ntb_clear_ctx(struct ntb_softc *ntb)
2067{
2068
2069	CTX_LOCK(ntb);
2070	ntb->ntb_ctx = NULL;
2071	ntb->ctx_ops = NULL;
2072	CTX_UNLOCK(ntb);
2073}
2074
2075/*
2076 * ntb_link_event() - notify driver context of a change in link status
2077 * @ntb:        NTB device context
2078 *
2079 * Notify the driver context that the link status may have changed.  The driver
2080 * should call ntb_link_is_up() to get the current status.
2081 */
2082void
2083ntb_link_event(struct ntb_softc *ntb)
2084{
2085
2086	CTX_LOCK(ntb);
2087	if (ntb->ctx_ops != NULL && ntb->ctx_ops->link_event != NULL)
2088		ntb->ctx_ops->link_event(ntb->ntb_ctx);
2089	CTX_UNLOCK(ntb);
2090}
2091
2092/*
2093 * ntb_db_event() - notify driver context of a doorbell event
2094 * @ntb:        NTB device context
2095 * @vector:     Interrupt vector number
2096 *
2097 * Notify the driver context of a doorbell event.  If hardware supports
2098 * multiple interrupt vectors for doorbells, the vector number indicates which
2099 * vector received the interrupt.  The vector number is relative to the first
2100 * vector used for doorbells, starting at zero, and must be less than
2101 * ntb_db_vector_count().  The driver may call ntb_db_read() to check which
2102 * doorbell bits need service, and ntb_db_vector_mask() to determine which of
2103 * those bits are associated with the vector number.
2104 */
2105static void
2106ntb_db_event(struct ntb_softc *ntb, uint32_t vec)
2107{
2108
2109	CTX_LOCK(ntb);
2110	if (ntb->ctx_ops != NULL && ntb->ctx_ops->db_event != NULL)
2111		ntb->ctx_ops->db_event(ntb->ntb_ctx, vec);
2112	CTX_UNLOCK(ntb);
2113}
2114
2115/*
2116 * ntb_link_enable() - enable the link on the secondary side of the ntb
2117 * @ntb:        NTB device context
2118 * @max_speed:  The maximum link speed expressed as PCIe generation number[0]
2119 * @max_width:  The maximum link width expressed as the number of PCIe lanes[0]
2120 *
2121 * Enable the link on the secondary side of the ntb.  This can only be done
2122 * from the primary side of the ntb in primary or b2b topology.  The ntb device
2123 * should train the link to its maximum speed and width, or the requested speed
2124 * and width, whichever is smaller, if supported.
2125 *
2126 * Return: Zero on success, otherwise an error number.
2127 *
2128 * [0]: Only NTB_SPEED_AUTO and NTB_WIDTH_AUTO are valid inputs; other speed
2129 *      and width input will be ignored.
2130 */
2131int
2132ntb_link_enable(struct ntb_softc *ntb, enum ntb_speed s __unused,
2133    enum ntb_width w __unused)
2134{
2135	uint32_t cntl;
2136
2137	ntb_printf(2, "%s\n", __func__);
2138
2139	if (ntb->type == NTB_ATOM) {
2140		pci_write_config(ntb->device, NTB_PPD_OFFSET,
2141		    ntb->ppd | ATOM_PPD_INIT_LINK, 4);
2142		return (0);
2143	}
2144
2145	if (ntb->conn_type == NTB_CONN_TRANSPARENT) {
2146		ntb_link_event(ntb);
2147		return (0);
2148	}
2149
2150	cntl = ntb_reg_read(4, ntb->reg->ntb_ctl);
2151	cntl &= ~(NTB_CNTL_LINK_DISABLE | NTB_CNTL_CFG_LOCK);
2152	cntl |= NTB_CNTL_P2S_BAR23_SNOOP | NTB_CNTL_S2P_BAR23_SNOOP;
2153	cntl |= NTB_CNTL_P2S_BAR4_SNOOP | NTB_CNTL_S2P_BAR4_SNOOP;
2154	if (HAS_FEATURE(NTB_SPLIT_BAR))
2155		cntl |= NTB_CNTL_P2S_BAR5_SNOOP | NTB_CNTL_S2P_BAR5_SNOOP;
2156	ntb_reg_write(4, ntb->reg->ntb_ctl, cntl);
2157	return (0);
2158}
2159
2160/*
2161 * ntb_link_disable() - disable the link on the secondary side of the ntb
2162 * @ntb:        NTB device context
2163 *
2164 * Disable the link on the secondary side of the ntb.  This can only be done
2165 * from the primary side of the ntb in primary or b2b topology.  The ntb device
2166 * should disable the link.  Returning from this call must indicate that a
2167 * barrier has passed, though with no more writes may pass in either direction
2168 * across the link, except if this call returns an error number.
2169 *
2170 * Return: Zero on success, otherwise an error number.
2171 */
2172int
2173ntb_link_disable(struct ntb_softc *ntb)
2174{
2175	uint32_t cntl;
2176
2177	ntb_printf(2, "%s\n", __func__);
2178
2179	if (ntb->conn_type == NTB_CONN_TRANSPARENT) {
2180		ntb_link_event(ntb);
2181		return (0);
2182	}
2183
2184	cntl = ntb_reg_read(4, ntb->reg->ntb_ctl);
2185	cntl &= ~(NTB_CNTL_P2S_BAR23_SNOOP | NTB_CNTL_S2P_BAR23_SNOOP);
2186	cntl &= ~(NTB_CNTL_P2S_BAR4_SNOOP | NTB_CNTL_S2P_BAR4_SNOOP);
2187	if (HAS_FEATURE(NTB_SPLIT_BAR))
2188		cntl &= ~(NTB_CNTL_P2S_BAR5_SNOOP | NTB_CNTL_S2P_BAR5_SNOOP);
2189	cntl |= NTB_CNTL_LINK_DISABLE | NTB_CNTL_CFG_LOCK;
2190	ntb_reg_write(4, ntb->reg->ntb_ctl, cntl);
2191	return (0);
2192}
2193
2194bool
2195ntb_link_enabled(struct ntb_softc *ntb)
2196{
2197	uint32_t cntl;
2198
2199	if (ntb->type == NTB_ATOM) {
2200		cntl = pci_read_config(ntb->device, NTB_PPD_OFFSET, 4);
2201		return ((cntl & ATOM_PPD_INIT_LINK) != 0);
2202	}
2203
2204	if (ntb->conn_type == NTB_CONN_TRANSPARENT)
2205		return (true);
2206
2207	cntl = ntb_reg_read(4, ntb->reg->ntb_ctl);
2208	return ((cntl & NTB_CNTL_LINK_DISABLE) == 0);
2209}
2210
2211static void
2212recover_atom_link(void *arg)
2213{
2214	struct ntb_softc *ntb = arg;
2215	unsigned speed, width, oldspeed, oldwidth;
2216	uint32_t status32;
2217
2218	atom_perform_link_restart(ntb);
2219
2220	/*
2221	 * There is a potential race between the 2 NTB devices recovering at
2222	 * the same time.  If the times are the same, the link will not recover
2223	 * and the driver will be stuck in this loop forever.  Add a random
2224	 * interval to the recovery time to prevent this race.
2225	 */
2226	status32 = arc4random() % ATOM_LINK_RECOVERY_TIME;
2227	pause("Link", (ATOM_LINK_RECOVERY_TIME + status32) * hz / 1000);
2228
2229	if (atom_link_is_err(ntb))
2230		goto retry;
2231
2232	status32 = ntb_reg_read(4, ntb->reg->ntb_ctl);
2233	if ((status32 & ATOM_CNTL_LINK_DOWN) != 0)
2234		goto out;
2235
2236	status32 = ntb_reg_read(4, ntb->reg->lnk_sta);
2237	width = NTB_LNK_STA_WIDTH(status32);
2238	speed = status32 & NTB_LINK_SPEED_MASK;
2239
2240	oldwidth = NTB_LNK_STA_WIDTH(ntb->lnk_sta);
2241	oldspeed = ntb->lnk_sta & NTB_LINK_SPEED_MASK;
2242	if (oldwidth != width || oldspeed != speed)
2243		goto retry;
2244
2245out:
2246	callout_reset(&ntb->heartbeat_timer, NTB_HB_TIMEOUT * hz, atom_link_hb,
2247	    ntb);
2248	return;
2249
2250retry:
2251	callout_reset(&ntb->lr_timer, NTB_HB_TIMEOUT * hz, recover_atom_link,
2252	    ntb);
2253}
2254
2255/*
2256 * Polls the HW link status register(s); returns true if something has changed.
2257 */
2258static bool
2259ntb_poll_link(struct ntb_softc *ntb)
2260{
2261	uint32_t ntb_cntl;
2262	uint16_t reg_val;
2263
2264	if (ntb->type == NTB_ATOM) {
2265		ntb_cntl = ntb_reg_read(4, ntb->reg->ntb_ctl);
2266		if (ntb_cntl == ntb->ntb_ctl)
2267			return (false);
2268
2269		ntb->ntb_ctl = ntb_cntl;
2270		ntb->lnk_sta = ntb_reg_read(4, ntb->reg->lnk_sta);
2271	} else {
2272		db_iowrite_raw(ntb, ntb->self_reg->db_bell, ntb->db_link_mask);
2273
2274		reg_val = pci_read_config(ntb->device, ntb->reg->lnk_sta, 2);
2275		if (reg_val == ntb->lnk_sta)
2276			return (false);
2277
2278		ntb->lnk_sta = reg_val;
2279
2280		if (HAS_FEATURE(NTB_SB01BASE_LOCKUP)) {
2281			if (_xeon_link_is_up(ntb)) {
2282				if (!ntb->peer_msix_good) {
2283					callout_reset(&ntb->peer_msix_work, 0,
2284					    ntb_exchange_msix, ntb);
2285					return (false);
2286				}
2287			} else {
2288				ntb->peer_msix_good = false;
2289				ntb->peer_msix_done = false;
2290			}
2291		}
2292	}
2293	return (true);
2294}
2295
2296static inline enum ntb_speed
2297ntb_link_sta_speed(struct ntb_softc *ntb)
2298{
2299
2300	if (!link_is_up(ntb))
2301		return (NTB_SPEED_NONE);
2302	return (ntb->lnk_sta & NTB_LINK_SPEED_MASK);
2303}
2304
2305static inline enum ntb_width
2306ntb_link_sta_width(struct ntb_softc *ntb)
2307{
2308
2309	if (!link_is_up(ntb))
2310		return (NTB_WIDTH_NONE);
2311	return (NTB_LNK_STA_WIDTH(ntb->lnk_sta));
2312}
2313
2314SYSCTL_NODE(_hw_ntb, OID_AUTO, debug_info, CTLFLAG_RW, 0,
2315    "Driver state, statistics, and HW registers");
2316
2317#define NTB_REGSZ_MASK	(3ul << 30)
2318#define NTB_REG_64	(1ul << 30)
2319#define NTB_REG_32	(2ul << 30)
2320#define NTB_REG_16	(3ul << 30)
2321#define NTB_REG_8	(0ul << 30)
2322
2323#define NTB_DB_READ	(1ul << 29)
2324#define NTB_PCI_REG	(1ul << 28)
2325#define NTB_REGFLAGS_MASK	(NTB_REGSZ_MASK | NTB_DB_READ | NTB_PCI_REG)
2326
2327static void
2328ntb_sysctl_init(struct ntb_softc *ntb)
2329{
2330	struct sysctl_oid_list *globals, *tree_par, *regpar, *statpar, *errpar;
2331	struct sysctl_ctx_list *ctx;
2332	struct sysctl_oid *tree, *tmptree;
2333
2334	ctx = device_get_sysctl_ctx(ntb->device);
2335	globals = SYSCTL_CHILDREN(device_get_sysctl_tree(ntb->device));
2336
2337	SYSCTL_ADD_PROC(ctx, globals, OID_AUTO, "link_status",
2338	    CTLFLAG_RD | CTLTYPE_STRING, ntb, 0,
2339	    sysctl_handle_link_status_human, "A",
2340	    "Link status (human readable)");
2341	SYSCTL_ADD_PROC(ctx, globals, OID_AUTO, "active",
2342	    CTLFLAG_RD | CTLTYPE_UINT, ntb, 0, sysctl_handle_link_status,
2343	    "IU", "Link status (1=active, 0=inactive)");
2344	SYSCTL_ADD_PROC(ctx, globals, OID_AUTO, "admin_up",
2345	    CTLFLAG_RW | CTLTYPE_UINT, ntb, 0, sysctl_handle_link_admin,
2346	    "IU", "Set/get interface status (1=UP, 0=DOWN)");
2347
2348	tree = SYSCTL_ADD_NODE(ctx, globals, OID_AUTO, "debug_info",
2349	    CTLFLAG_RD, NULL, "Driver state, statistics, and HW registers");
2350	tree_par = SYSCTL_CHILDREN(tree);
2351
2352	SYSCTL_ADD_UINT(ctx, tree_par, OID_AUTO, "conn_type", CTLFLAG_RD,
2353	    &ntb->conn_type, 0, "0 - Transparent; 1 - B2B; 2 - Root Port");
2354	SYSCTL_ADD_UINT(ctx, tree_par, OID_AUTO, "dev_type", CTLFLAG_RD,
2355	    &ntb->dev_type, 0, "0 - USD; 1 - DSD");
2356	SYSCTL_ADD_UINT(ctx, tree_par, OID_AUTO, "ppd", CTLFLAG_RD,
2357	    &ntb->ppd, 0, "Raw PPD register (cached)");
2358
2359	if (ntb->b2b_mw_idx != B2B_MW_DISABLED) {
2360		SYSCTL_ADD_U8(ctx, tree_par, OID_AUTO, "b2b_idx", CTLFLAG_RD,
2361		    &ntb->b2b_mw_idx, 0,
2362		    "Index of the MW used for B2B remote register access");
2363		SYSCTL_ADD_UQUAD(ctx, tree_par, OID_AUTO, "b2b_off",
2364		    CTLFLAG_RD, &ntb->b2b_off,
2365		    "If non-zero, offset of B2B register region in shared MW");
2366	}
2367
2368	SYSCTL_ADD_PROC(ctx, tree_par, OID_AUTO, "features",
2369	    CTLFLAG_RD | CTLTYPE_STRING, ntb, 0, sysctl_handle_features, "A",
2370	    "Features/errata of this NTB device");
2371
2372	SYSCTL_ADD_UINT(ctx, tree_par, OID_AUTO, "ntb_ctl", CTLFLAG_RD,
2373	    __DEVOLATILE(uint32_t *, &ntb->ntb_ctl), 0,
2374	    "NTB CTL register (cached)");
2375	SYSCTL_ADD_UINT(ctx, tree_par, OID_AUTO, "lnk_sta", CTLFLAG_RD,
2376	    __DEVOLATILE(uint32_t *, &ntb->lnk_sta), 0,
2377	    "LNK STA register (cached)");
2378
2379	SYSCTL_ADD_U8(ctx, tree_par, OID_AUTO, "mw_count", CTLFLAG_RD,
2380	    &ntb->mw_count, 0, "MW count");
2381	SYSCTL_ADD_U8(ctx, tree_par, OID_AUTO, "spad_count", CTLFLAG_RD,
2382	    &ntb->spad_count, 0, "Scratchpad count");
2383	SYSCTL_ADD_U8(ctx, tree_par, OID_AUTO, "db_count", CTLFLAG_RD,
2384	    &ntb->db_count, 0, "Doorbell count");
2385	SYSCTL_ADD_U8(ctx, tree_par, OID_AUTO, "db_vec_count", CTLFLAG_RD,
2386	    &ntb->db_vec_count, 0, "Doorbell vector count");
2387	SYSCTL_ADD_U8(ctx, tree_par, OID_AUTO, "db_vec_shift", CTLFLAG_RD,
2388	    &ntb->db_vec_shift, 0, "Doorbell vector shift");
2389
2390	SYSCTL_ADD_UQUAD(ctx, tree_par, OID_AUTO, "db_valid_mask", CTLFLAG_RD,
2391	    &ntb->db_valid_mask, "Doorbell valid mask");
2392	SYSCTL_ADD_UQUAD(ctx, tree_par, OID_AUTO, "db_link_mask", CTLFLAG_RD,
2393	    &ntb->db_link_mask, "Doorbell link mask");
2394	SYSCTL_ADD_UQUAD(ctx, tree_par, OID_AUTO, "db_mask", CTLFLAG_RD,
2395	    &ntb->db_mask, "Doorbell mask (cached)");
2396
2397	tmptree = SYSCTL_ADD_NODE(ctx, tree_par, OID_AUTO, "registers",
2398	    CTLFLAG_RD, NULL, "Raw HW registers (big-endian)");
2399	regpar = SYSCTL_CHILDREN(tmptree);
2400
2401	SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "ntbcntl",
2402	    CTLFLAG_RD | CTLTYPE_OPAQUE, ntb, NTB_REG_32 |
2403	    ntb->reg->ntb_ctl, sysctl_handle_register, "IU",
2404	    "NTB Control register");
2405	SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "lnkcap",
2406	    CTLFLAG_RD | CTLTYPE_OPAQUE, ntb, NTB_REG_32 |
2407	    0x19c, sysctl_handle_register, "IU",
2408	    "NTB Link Capabilities");
2409	SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "lnkcon",
2410	    CTLFLAG_RD | CTLTYPE_OPAQUE, ntb, NTB_REG_32 |
2411	    0x1a0, sysctl_handle_register, "IU",
2412	    "NTB Link Control register");
2413
2414	SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "db_mask",
2415	    CTLFLAG_RD | CTLTYPE_OPAQUE, ntb,
2416	    NTB_REG_64 | NTB_DB_READ | ntb->self_reg->db_mask,
2417	    sysctl_handle_register, "QU", "Doorbell mask register");
2418	SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "db_bell",
2419	    CTLFLAG_RD | CTLTYPE_OPAQUE, ntb,
2420	    NTB_REG_64 | NTB_DB_READ | ntb->self_reg->db_bell,
2421	    sysctl_handle_register, "QU", "Doorbell register");
2422
2423	SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "incoming_xlat23",
2424	    CTLFLAG_RD | CTLTYPE_OPAQUE, ntb,
2425	    NTB_REG_64 | ntb->xlat_reg->bar2_xlat,
2426	    sysctl_handle_register, "QU", "Incoming XLAT23 register");
2427	if (HAS_FEATURE(NTB_SPLIT_BAR)) {
2428		SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "incoming_xlat4",
2429		    CTLFLAG_RD | CTLTYPE_OPAQUE, ntb,
2430		    NTB_REG_32 | ntb->xlat_reg->bar4_xlat,
2431		    sysctl_handle_register, "IU", "Incoming XLAT4 register");
2432		SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "incoming_xlat5",
2433		    CTLFLAG_RD | CTLTYPE_OPAQUE, ntb,
2434		    NTB_REG_32 | ntb->xlat_reg->bar5_xlat,
2435		    sysctl_handle_register, "IU", "Incoming XLAT5 register");
2436	} else {
2437		SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "incoming_xlat45",
2438		    CTLFLAG_RD | CTLTYPE_OPAQUE, ntb,
2439		    NTB_REG_64 | ntb->xlat_reg->bar4_xlat,
2440		    sysctl_handle_register, "QU", "Incoming XLAT45 register");
2441	}
2442
2443	SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "incoming_lmt23",
2444	    CTLFLAG_RD | CTLTYPE_OPAQUE, ntb,
2445	    NTB_REG_64 | ntb->xlat_reg->bar2_limit,
2446	    sysctl_handle_register, "QU", "Incoming LMT23 register");
2447	if (HAS_FEATURE(NTB_SPLIT_BAR)) {
2448		SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "incoming_lmt4",
2449		    CTLFLAG_RD | CTLTYPE_OPAQUE, ntb,
2450		    NTB_REG_32 | ntb->xlat_reg->bar4_limit,
2451		    sysctl_handle_register, "IU", "Incoming LMT4 register");
2452		SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "incoming_lmt5",
2453		    CTLFLAG_RD | CTLTYPE_OPAQUE, ntb,
2454		    NTB_REG_32 | ntb->xlat_reg->bar5_limit,
2455		    sysctl_handle_register, "IU", "Incoming LMT5 register");
2456	} else {
2457		SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "incoming_lmt45",
2458		    CTLFLAG_RD | CTLTYPE_OPAQUE, ntb,
2459		    NTB_REG_64 | ntb->xlat_reg->bar4_limit,
2460		    sysctl_handle_register, "QU", "Incoming LMT45 register");
2461	}
2462
2463	if (ntb->type == NTB_ATOM)
2464		return;
2465
2466	tmptree = SYSCTL_ADD_NODE(ctx, regpar, OID_AUTO, "xeon_stats",
2467	    CTLFLAG_RD, NULL, "Xeon HW statistics");
2468	statpar = SYSCTL_CHILDREN(tmptree);
2469	SYSCTL_ADD_PROC(ctx, statpar, OID_AUTO, "upstream_mem_miss",
2470	    CTLFLAG_RD | CTLTYPE_OPAQUE, ntb,
2471	    NTB_REG_16 | XEON_USMEMMISS_OFFSET,
2472	    sysctl_handle_register, "SU", "Upstream Memory Miss");
2473
2474	tmptree = SYSCTL_ADD_NODE(ctx, regpar, OID_AUTO, "xeon_hw_err",
2475	    CTLFLAG_RD, NULL, "Xeon HW errors");
2476	errpar = SYSCTL_CHILDREN(tmptree);
2477
2478	SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "ppd",
2479	    CTLFLAG_RD | CTLTYPE_OPAQUE, ntb,
2480	    NTB_REG_8 | NTB_PCI_REG | NTB_PPD_OFFSET,
2481	    sysctl_handle_register, "CU", "PPD");
2482
2483	SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "pbar23_sz",
2484	    CTLFLAG_RD | CTLTYPE_OPAQUE, ntb,
2485	    NTB_REG_8 | NTB_PCI_REG | XEON_PBAR23SZ_OFFSET,
2486	    sysctl_handle_register, "CU", "PBAR23 SZ (log2)");
2487	SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "pbar4_sz",
2488	    CTLFLAG_RD | CTLTYPE_OPAQUE, ntb,
2489	    NTB_REG_8 | NTB_PCI_REG | XEON_PBAR4SZ_OFFSET,
2490	    sysctl_handle_register, "CU", "PBAR4 SZ (log2)");
2491	SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "pbar5_sz",
2492	    CTLFLAG_RD | CTLTYPE_OPAQUE, ntb,
2493	    NTB_REG_8 | NTB_PCI_REG | XEON_PBAR5SZ_OFFSET,
2494	    sysctl_handle_register, "CU", "PBAR5 SZ (log2)");
2495
2496	SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "sbar23_sz",
2497	    CTLFLAG_RD | CTLTYPE_OPAQUE, ntb,
2498	    NTB_REG_8 | NTB_PCI_REG | XEON_SBAR23SZ_OFFSET,
2499	    sysctl_handle_register, "CU", "SBAR23 SZ (log2)");
2500	SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "sbar4_sz",
2501	    CTLFLAG_RD | CTLTYPE_OPAQUE, ntb,
2502	    NTB_REG_8 | NTB_PCI_REG | XEON_SBAR4SZ_OFFSET,
2503	    sysctl_handle_register, "CU", "SBAR4 SZ (log2)");
2504	SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "sbar5_sz",
2505	    CTLFLAG_RD | CTLTYPE_OPAQUE, ntb,
2506	    NTB_REG_8 | NTB_PCI_REG | XEON_SBAR5SZ_OFFSET,
2507	    sysctl_handle_register, "CU", "SBAR5 SZ (log2)");
2508
2509	SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "devsts",
2510	    CTLFLAG_RD | CTLTYPE_OPAQUE, ntb,
2511	    NTB_REG_16 | NTB_PCI_REG | XEON_DEVSTS_OFFSET,
2512	    sysctl_handle_register, "SU", "DEVSTS");
2513	SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "lnksts",
2514	    CTLFLAG_RD | CTLTYPE_OPAQUE, ntb,
2515	    NTB_REG_16 | NTB_PCI_REG | XEON_LINK_STATUS_OFFSET,
2516	    sysctl_handle_register, "SU", "LNKSTS");
2517	SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "slnksts",
2518	    CTLFLAG_RD | CTLTYPE_OPAQUE, ntb,
2519	    NTB_REG_16 | NTB_PCI_REG | XEON_SLINK_STATUS_OFFSET,
2520	    sysctl_handle_register, "SU", "SLNKSTS");
2521
2522	SYSCTL_ADD_PROC(ctx, errpar, OID_AUTO, "uncerrsts",
2523	    CTLFLAG_RD | CTLTYPE_OPAQUE, ntb,
2524	    NTB_REG_32 | NTB_PCI_REG | XEON_UNCERRSTS_OFFSET,
2525	    sysctl_handle_register, "IU", "UNCERRSTS");
2526	SYSCTL_ADD_PROC(ctx, errpar, OID_AUTO, "corerrsts",
2527	    CTLFLAG_RD | CTLTYPE_OPAQUE, ntb,
2528	    NTB_REG_32 | NTB_PCI_REG | XEON_CORERRSTS_OFFSET,
2529	    sysctl_handle_register, "IU", "CORERRSTS");
2530
2531	if (ntb->conn_type != NTB_CONN_B2B)
2532		return;
2533
2534	SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "outgoing_xlat23",
2535	    CTLFLAG_RD | CTLTYPE_OPAQUE, ntb,
2536	    NTB_REG_64 | ntb->bar_info[NTB_B2B_BAR_1].pbarxlat_off,
2537	    sysctl_handle_register, "QU", "Outgoing XLAT23 register");
2538	if (HAS_FEATURE(NTB_SPLIT_BAR)) {
2539		SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "outgoing_xlat4",
2540		    CTLFLAG_RD | CTLTYPE_OPAQUE, ntb,
2541		    NTB_REG_32 | ntb->bar_info[NTB_B2B_BAR_2].pbarxlat_off,
2542		    sysctl_handle_register, "IU", "Outgoing XLAT4 register");
2543		SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "outgoing_xlat5",
2544		    CTLFLAG_RD | CTLTYPE_OPAQUE, ntb,
2545		    NTB_REG_32 | ntb->bar_info[NTB_B2B_BAR_3].pbarxlat_off,
2546		    sysctl_handle_register, "IU", "Outgoing XLAT5 register");
2547	} else {
2548		SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "outgoing_xlat45",
2549		    CTLFLAG_RD | CTLTYPE_OPAQUE, ntb,
2550		    NTB_REG_64 | ntb->bar_info[NTB_B2B_BAR_2].pbarxlat_off,
2551		    sysctl_handle_register, "QU", "Outgoing XLAT45 register");
2552	}
2553
2554	SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "outgoing_lmt23",
2555	    CTLFLAG_RD | CTLTYPE_OPAQUE, ntb,
2556	    NTB_REG_64 | XEON_PBAR2LMT_OFFSET,
2557	    sysctl_handle_register, "QU", "Outgoing LMT23 register");
2558	if (HAS_FEATURE(NTB_SPLIT_BAR)) {
2559		SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "outgoing_lmt4",
2560		    CTLFLAG_RD | CTLTYPE_OPAQUE, ntb,
2561		    NTB_REG_32 | XEON_PBAR4LMT_OFFSET,
2562		    sysctl_handle_register, "IU", "Outgoing LMT4 register");
2563		SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "outgoing_lmt5",
2564		    CTLFLAG_RD | CTLTYPE_OPAQUE, ntb,
2565		    NTB_REG_32 | XEON_PBAR5LMT_OFFSET,
2566		    sysctl_handle_register, "IU", "Outgoing LMT5 register");
2567	} else {
2568		SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "outgoing_lmt45",
2569		    CTLFLAG_RD | CTLTYPE_OPAQUE, ntb,
2570		    NTB_REG_64 | XEON_PBAR4LMT_OFFSET,
2571		    sysctl_handle_register, "QU", "Outgoing LMT45 register");
2572	}
2573
2574	SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "sbar01_base",
2575	    CTLFLAG_RD | CTLTYPE_OPAQUE, ntb,
2576	    NTB_REG_64 | ntb->xlat_reg->bar0_base,
2577	    sysctl_handle_register, "QU", "Secondary BAR01 base register");
2578	SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "sbar23_base",
2579	    CTLFLAG_RD | CTLTYPE_OPAQUE, ntb,
2580	    NTB_REG_64 | ntb->xlat_reg->bar2_base,
2581	    sysctl_handle_register, "QU", "Secondary BAR23 base register");
2582	if (HAS_FEATURE(NTB_SPLIT_BAR)) {
2583		SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "sbar4_base",
2584		    CTLFLAG_RD | CTLTYPE_OPAQUE, ntb,
2585		    NTB_REG_32 | ntb->xlat_reg->bar4_base,
2586		    sysctl_handle_register, "IU",
2587		    "Secondary BAR4 base register");
2588		SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "sbar5_base",
2589		    CTLFLAG_RD | CTLTYPE_OPAQUE, ntb,
2590		    NTB_REG_32 | ntb->xlat_reg->bar5_base,
2591		    sysctl_handle_register, "IU",
2592		    "Secondary BAR5 base register");
2593	} else {
2594		SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "sbar45_base",
2595		    CTLFLAG_RD | CTLTYPE_OPAQUE, ntb,
2596		    NTB_REG_64 | ntb->xlat_reg->bar4_base,
2597		    sysctl_handle_register, "QU",
2598		    "Secondary BAR45 base register");
2599	}
2600}
2601
2602static int
2603sysctl_handle_features(SYSCTL_HANDLER_ARGS)
2604{
2605	struct ntb_softc *ntb;
2606	struct sbuf sb;
2607	int error;
2608
2609	error = 0;
2610	ntb = arg1;
2611
2612	sbuf_new_for_sysctl(&sb, NULL, 256, req);
2613
2614	sbuf_printf(&sb, "%b", ntb->features, NTB_FEATURES_STR);
2615	error = sbuf_finish(&sb);
2616	sbuf_delete(&sb);
2617
2618	if (error || !req->newptr)
2619		return (error);
2620	return (EINVAL);
2621}
2622
2623static int
2624sysctl_handle_link_admin(SYSCTL_HANDLER_ARGS)
2625{
2626	struct ntb_softc *ntb;
2627	unsigned old, new;
2628	int error;
2629
2630	error = 0;
2631	ntb = arg1;
2632
2633	old = ntb_link_enabled(ntb);
2634
2635	error = SYSCTL_OUT(req, &old, sizeof(old));
2636	if (error != 0 || req->newptr == NULL)
2637		return (error);
2638
2639	error = SYSCTL_IN(req, &new, sizeof(new));
2640	if (error != 0)
2641		return (error);
2642
2643	ntb_printf(0, "Admin set interface state to '%sabled'\n",
2644	    (new != 0)? "en" : "dis");
2645
2646	if (new != 0)
2647		error = ntb_link_enable(ntb, NTB_SPEED_AUTO, NTB_WIDTH_AUTO);
2648	else
2649		error = ntb_link_disable(ntb);
2650	return (error);
2651}
2652
2653static int
2654sysctl_handle_link_status_human(SYSCTL_HANDLER_ARGS)
2655{
2656	struct ntb_softc *ntb;
2657	struct sbuf sb;
2658	enum ntb_speed speed;
2659	enum ntb_width width;
2660	int error;
2661
2662	error = 0;
2663	ntb = arg1;
2664
2665	sbuf_new_for_sysctl(&sb, NULL, 32, req);
2666
2667	if (ntb_link_is_up(ntb, &speed, &width))
2668		sbuf_printf(&sb, "up / PCIe Gen %u / Width x%u",
2669		    (unsigned)speed, (unsigned)width);
2670	else
2671		sbuf_printf(&sb, "down");
2672
2673	error = sbuf_finish(&sb);
2674	sbuf_delete(&sb);
2675
2676	if (error || !req->newptr)
2677		return (error);
2678	return (EINVAL);
2679}
2680
2681static int
2682sysctl_handle_link_status(SYSCTL_HANDLER_ARGS)
2683{
2684	struct ntb_softc *ntb;
2685	unsigned res;
2686	int error;
2687
2688	error = 0;
2689	ntb = arg1;
2690
2691	res = ntb_link_is_up(ntb, NULL, NULL);
2692
2693	error = SYSCTL_OUT(req, &res, sizeof(res));
2694	if (error || !req->newptr)
2695		return (error);
2696	return (EINVAL);
2697}
2698
2699static int
2700sysctl_handle_register(SYSCTL_HANDLER_ARGS)
2701{
2702	struct ntb_softc *ntb;
2703	const void *outp;
2704	uintptr_t sz;
2705	uint64_t umv;
2706	char be[sizeof(umv)];
2707	size_t outsz;
2708	uint32_t reg;
2709	bool db, pci;
2710	int error;
2711
2712	ntb = arg1;
2713	reg = arg2 & ~NTB_REGFLAGS_MASK;
2714	sz = arg2 & NTB_REGSZ_MASK;
2715	db = (arg2 & NTB_DB_READ) != 0;
2716	pci = (arg2 & NTB_PCI_REG) != 0;
2717
2718	KASSERT(!(db && pci), ("bogus"));
2719
2720	if (db) {
2721		KASSERT(sz == NTB_REG_64, ("bogus"));
2722		umv = db_ioread(ntb, reg);
2723		outsz = sizeof(uint64_t);
2724	} else {
2725		switch (sz) {
2726		case NTB_REG_64:
2727			if (pci)
2728				umv = pci_read_config(ntb->device, reg, 8);
2729			else
2730				umv = ntb_reg_read(8, reg);
2731			outsz = sizeof(uint64_t);
2732			break;
2733		case NTB_REG_32:
2734			if (pci)
2735				umv = pci_read_config(ntb->device, reg, 4);
2736			else
2737				umv = ntb_reg_read(4, reg);
2738			outsz = sizeof(uint32_t);
2739			break;
2740		case NTB_REG_16:
2741			if (pci)
2742				umv = pci_read_config(ntb->device, reg, 2);
2743			else
2744				umv = ntb_reg_read(2, reg);
2745			outsz = sizeof(uint16_t);
2746			break;
2747		case NTB_REG_8:
2748			if (pci)
2749				umv = pci_read_config(ntb->device, reg, 1);
2750			else
2751				umv = ntb_reg_read(1, reg);
2752			outsz = sizeof(uint8_t);
2753			break;
2754		default:
2755			panic("bogus");
2756			break;
2757		}
2758	}
2759
2760	/* Encode bigendian so that sysctl -x is legible. */
2761	be64enc(be, umv);
2762	outp = ((char *)be) + sizeof(umv) - outsz;
2763
2764	error = SYSCTL_OUT(req, outp, outsz);
2765	if (error || !req->newptr)
2766		return (error);
2767	return (EINVAL);
2768}
2769
2770static unsigned
2771ntb_user_mw_to_idx(struct ntb_softc *ntb, unsigned uidx)
2772{
2773
2774	if ((ntb->b2b_mw_idx != B2B_MW_DISABLED && ntb->b2b_off == 0 &&
2775	    uidx >= ntb->b2b_mw_idx) ||
2776	    (ntb->msix_mw_idx != B2B_MW_DISABLED && uidx >= ntb->msix_mw_idx))
2777		uidx++;
2778	if ((ntb->b2b_mw_idx != B2B_MW_DISABLED && ntb->b2b_off == 0 &&
2779	    uidx >= ntb->b2b_mw_idx) &&
2780	    (ntb->msix_mw_idx != B2B_MW_DISABLED && uidx >= ntb->msix_mw_idx))
2781		uidx++;
2782	return (uidx);
2783}
2784
2785static void
2786ntb_exchange_msix(void *ctx)
2787{
2788	struct ntb_softc *ntb;
2789	uint32_t val;
2790	unsigned i;
2791
2792	ntb = ctx;
2793
2794	if (ntb->peer_msix_done)
2795		goto msix_done;
2796
2797	for (i = 0; i < XEON_NONLINK_DB_MSIX_BITS; i++) {
2798		ntb_peer_spad_write(ntb, NTB_MSIX_DATA0 + i,
2799		    ntb->msix_data[i].nmd_data);
2800		ntb_peer_spad_write(ntb, NTB_MSIX_OFS0 + i,
2801		    ntb->msix_data[i].nmd_ofs);
2802	}
2803	ntb_peer_spad_write(ntb, NTB_MSIX_GUARD, NTB_MSIX_VER_GUARD);
2804
2805	ntb_spad_read(ntb, NTB_MSIX_GUARD, &val);
2806	if (val != NTB_MSIX_VER_GUARD)
2807		goto reschedule;
2808
2809	for (i = 0; i < XEON_NONLINK_DB_MSIX_BITS; i++) {
2810		ntb_spad_read(ntb, NTB_MSIX_DATA0 + i, &val);
2811		ntb->peer_msix_data[i].nmd_data = val;
2812		ntb_spad_read(ntb, NTB_MSIX_OFS0 + i, &val);
2813		ntb->peer_msix_data[i].nmd_ofs = val;
2814	}
2815
2816	ntb->peer_msix_done = true;
2817
2818msix_done:
2819	ntb_peer_spad_write(ntb, NTB_MSIX_DONE, NTB_MSIX_RECEIVED);
2820	ntb_spad_read(ntb, NTB_MSIX_DONE, &val);
2821	if (val != NTB_MSIX_RECEIVED)
2822		goto reschedule;
2823
2824	ntb->peer_msix_good = true;
2825
2826	ntb_poll_link(ntb);
2827	ntb_link_event(ntb);
2828	return;
2829
2830reschedule:
2831	ntb->lnk_sta = pci_read_config(ntb->device, ntb->reg->lnk_sta, 2);
2832	if (_xeon_link_is_up(ntb))
2833		callout_reset(&ntb->peer_msix_work, hz / 100, ntb_exchange_msix, ntb);
2834	else
2835		ntb_spad_clear(ntb);
2836}
2837
2838/*
2839 * Public API to the rest of the OS
2840 */
2841
2842/**
2843 * ntb_get_max_spads() - get the total scratch regs usable
2844 * @ntb: pointer to ntb_softc instance
2845 *
2846 * This function returns the max 32bit scratchpad registers usable by the
2847 * upper layer.
2848 *
2849 * RETURNS: total number of scratch pad registers available
2850 */
2851uint8_t
2852ntb_get_max_spads(struct ntb_softc *ntb)
2853{
2854
2855	return (ntb->spad_count);
2856}
2857
2858/*
2859 * ntb_mw_count() - Get the number of memory windows available for KPI
2860 * consumers.
2861 *
2862 * (Excludes any MW wholly reserved for register access.)
2863 */
2864uint8_t
2865ntb_mw_count(struct ntb_softc *ntb)
2866{
2867	uint8_t res;
2868
2869	res = ntb->mw_count;
2870	if (ntb->b2b_mw_idx != B2B_MW_DISABLED && ntb->b2b_off == 0)
2871		res--;
2872	if (ntb->msix_mw_idx != B2B_MW_DISABLED)
2873		res--;
2874	return (res);
2875}
2876
2877/**
2878 * ntb_spad_write() - write to the secondary scratchpad register
2879 * @ntb: pointer to ntb_softc instance
2880 * @idx: index to the scratchpad register, 0 based
2881 * @val: the data value to put into the register
2882 *
2883 * This function allows writing of a 32bit value to the indexed scratchpad
2884 * register. The register resides on the secondary (external) side.
2885 *
2886 * RETURNS: An appropriate ERRNO error value on error, or zero for success.
2887 */
2888int
2889ntb_spad_write(struct ntb_softc *ntb, unsigned int idx, uint32_t val)
2890{
2891
2892	if (idx >= ntb->spad_count)
2893		return (EINVAL);
2894
2895	ntb_reg_write(4, ntb->self_reg->spad + idx * 4, val);
2896
2897	return (0);
2898}
2899
2900/*
2901 * Zeros the local scratchpad.
2902 */
2903void
2904ntb_spad_clear(struct ntb_softc *ntb)
2905{
2906	unsigned i;
2907
2908	for (i = 0; i < ntb->spad_count; i++)
2909		ntb_spad_write(ntb, i, 0);
2910}
2911
2912/**
2913 * ntb_spad_read() - read from the primary scratchpad register
2914 * @ntb: pointer to ntb_softc instance
2915 * @idx: index to scratchpad register, 0 based
2916 * @val: pointer to 32bit integer for storing the register value
2917 *
2918 * This function allows reading of the 32bit scratchpad register on
2919 * the primary (internal) side.
2920 *
2921 * RETURNS: An appropriate ERRNO error value on error, or zero for success.
2922 */
2923int
2924ntb_spad_read(struct ntb_softc *ntb, unsigned int idx, uint32_t *val)
2925{
2926
2927	if (idx >= ntb->spad_count)
2928		return (EINVAL);
2929
2930	*val = ntb_reg_read(4, ntb->self_reg->spad + idx * 4);
2931
2932	return (0);
2933}
2934
2935/**
2936 * ntb_peer_spad_write() - write to the secondary scratchpad register
2937 * @ntb: pointer to ntb_softc instance
2938 * @idx: index to the scratchpad register, 0 based
2939 * @val: the data value to put into the register
2940 *
2941 * This function allows writing of a 32bit value to the indexed scratchpad
2942 * register. The register resides on the secondary (external) side.
2943 *
2944 * RETURNS: An appropriate ERRNO error value on error, or zero for success.
2945 */
2946int
2947ntb_peer_spad_write(struct ntb_softc *ntb, unsigned int idx, uint32_t val)
2948{
2949
2950	if (idx >= ntb->spad_count)
2951		return (EINVAL);
2952
2953	if (HAS_FEATURE(NTB_SDOORBELL_LOCKUP))
2954		ntb_mw_write(4, XEON_SPAD_OFFSET + idx * 4, val);
2955	else
2956		ntb_reg_write(4, ntb->peer_reg->spad + idx * 4, val);
2957
2958	return (0);
2959}
2960
2961/**
2962 * ntb_peer_spad_read() - read from the primary scratchpad register
2963 * @ntb: pointer to ntb_softc instance
2964 * @idx: index to scratchpad register, 0 based
2965 * @val: pointer to 32bit integer for storing the register value
2966 *
2967 * This function allows reading of the 32bit scratchpad register on
2968 * the primary (internal) side.
2969 *
2970 * RETURNS: An appropriate ERRNO error value on error, or zero for success.
2971 */
2972int
2973ntb_peer_spad_read(struct ntb_softc *ntb, unsigned int idx, uint32_t *val)
2974{
2975
2976	if (idx >= ntb->spad_count)
2977		return (EINVAL);
2978
2979	if (HAS_FEATURE(NTB_SDOORBELL_LOCKUP))
2980		*val = ntb_mw_read(4, XEON_SPAD_OFFSET + idx * 4);
2981	else
2982		*val = ntb_reg_read(4, ntb->peer_reg->spad + idx * 4);
2983
2984	return (0);
2985}
2986
2987/*
2988 * ntb_mw_get_range() - get the range of a memory window
2989 * @ntb:        NTB device context
2990 * @idx:        Memory window number
2991 * @base:       OUT - the base address for mapping the memory window
2992 * @size:       OUT - the size for mapping the memory window
2993 * @align:      OUT - the base alignment for translating the memory window
2994 * @align_size: OUT - the size alignment for translating the memory window
2995 *
2996 * Get the range of a memory window.  NULL may be given for any output
2997 * parameter if the value is not needed.  The base and size may be used for
2998 * mapping the memory window, to access the peer memory.  The alignment and
2999 * size may be used for translating the memory window, for the peer to access
3000 * memory on the local system.
3001 *
3002 * Return: Zero on success, otherwise an error number.
3003 */
3004int
3005ntb_mw_get_range(struct ntb_softc *ntb, unsigned mw_idx, vm_paddr_t *base,
3006    caddr_t *vbase, size_t *size, size_t *align, size_t *align_size,
3007    bus_addr_t *plimit)
3008{
3009	struct ntb_pci_bar_info *bar;
3010	bus_addr_t limit;
3011	size_t bar_b2b_off;
3012	enum ntb_bar bar_num;
3013
3014	if (mw_idx >= ntb_mw_count(ntb))
3015		return (EINVAL);
3016	mw_idx = ntb_user_mw_to_idx(ntb, mw_idx);
3017
3018	bar_num = ntb_mw_to_bar(ntb, mw_idx);
3019	bar = &ntb->bar_info[bar_num];
3020	bar_b2b_off = 0;
3021	if (mw_idx == ntb->b2b_mw_idx) {
3022		KASSERT(ntb->b2b_off != 0,
3023		    ("user shouldn't get non-shared b2b mw"));
3024		bar_b2b_off = ntb->b2b_off;
3025	}
3026
3027	if (bar_is_64bit(ntb, bar_num))
3028		limit = BUS_SPACE_MAXADDR;
3029	else
3030		limit = BUS_SPACE_MAXADDR_32BIT;
3031
3032	if (base != NULL)
3033		*base = bar->pbase + bar_b2b_off;
3034	if (vbase != NULL)
3035		*vbase = bar->vbase + bar_b2b_off;
3036	if (size != NULL)
3037		*size = bar->size - bar_b2b_off;
3038	if (align != NULL)
3039		*align = bar->size;
3040	if (align_size != NULL)
3041		*align_size = 1;
3042	if (plimit != NULL)
3043		*plimit = limit;
3044	return (0);
3045}
3046
3047/*
3048 * ntb_mw_set_trans() - set the translation of a memory window
3049 * @ntb:        NTB device context
3050 * @idx:        Memory window number
3051 * @addr:       The dma address local memory to expose to the peer
3052 * @size:       The size of the local memory to expose to the peer
3053 *
3054 * Set the translation of a memory window.  The peer may access local memory
3055 * through the window starting at the address, up to the size.  The address
3056 * must be aligned to the alignment specified by ntb_mw_get_range().  The size
3057 * must be aligned to the size alignment specified by ntb_mw_get_range().  The
3058 * address must be below the plimit specified by ntb_mw_get_range() (i.e. for
3059 * 32-bit BARs).
3060 *
3061 * Return: Zero on success, otherwise an error number.
3062 */
3063int
3064ntb_mw_set_trans(struct ntb_softc *ntb, unsigned idx, bus_addr_t addr,
3065    size_t size)
3066{
3067	struct ntb_pci_bar_info *bar;
3068	uint64_t base, limit, reg_val;
3069	size_t bar_size, mw_size;
3070	uint32_t base_reg, xlat_reg, limit_reg;
3071	enum ntb_bar bar_num;
3072
3073	if (idx >= ntb_mw_count(ntb))
3074		return (EINVAL);
3075	idx = ntb_user_mw_to_idx(ntb, idx);
3076
3077	bar_num = ntb_mw_to_bar(ntb, idx);
3078	bar = &ntb->bar_info[bar_num];
3079
3080	bar_size = bar->size;
3081	if (idx == ntb->b2b_mw_idx)
3082		mw_size = bar_size - ntb->b2b_off;
3083	else
3084		mw_size = bar_size;
3085
3086	/* Hardware requires that addr is aligned to bar size */
3087	if ((addr & (bar_size - 1)) != 0)
3088		return (EINVAL);
3089
3090	if (size > mw_size)
3091		return (EINVAL);
3092
3093	bar_get_xlat_params(ntb, bar_num, &base_reg, &xlat_reg, &limit_reg);
3094
3095	limit = 0;
3096	if (bar_is_64bit(ntb, bar_num)) {
3097		base = ntb_reg_read(8, base_reg) & BAR_HIGH_MASK;
3098
3099		if (limit_reg != 0 && size != mw_size)
3100			limit = base + size;
3101
3102		/* Set and verify translation address */
3103		ntb_reg_write(8, xlat_reg, addr);
3104		reg_val = ntb_reg_read(8, xlat_reg) & BAR_HIGH_MASK;
3105		if (reg_val != addr) {
3106			ntb_reg_write(8, xlat_reg, 0);
3107			return (EIO);
3108		}
3109
3110		/* Set and verify the limit */
3111		ntb_reg_write(8, limit_reg, limit);
3112		reg_val = ntb_reg_read(8, limit_reg) & BAR_HIGH_MASK;
3113		if (reg_val != limit) {
3114			ntb_reg_write(8, limit_reg, base);
3115			ntb_reg_write(8, xlat_reg, 0);
3116			return (EIO);
3117		}
3118	} else {
3119		/* Configure 32-bit (split) BAR MW */
3120
3121		if ((addr & UINT32_MAX) != addr)
3122			return (ERANGE);
3123		if (((addr + size) & UINT32_MAX) != (addr + size))
3124			return (ERANGE);
3125
3126		base = ntb_reg_read(4, base_reg) & BAR_HIGH_MASK;
3127
3128		if (limit_reg != 0 && size != mw_size)
3129			limit = base + size;
3130
3131		/* Set and verify translation address */
3132		ntb_reg_write(4, xlat_reg, addr);
3133		reg_val = ntb_reg_read(4, xlat_reg) & BAR_HIGH_MASK;
3134		if (reg_val != addr) {
3135			ntb_reg_write(4, xlat_reg, 0);
3136			return (EIO);
3137		}
3138
3139		/* Set and verify the limit */
3140		ntb_reg_write(4, limit_reg, limit);
3141		reg_val = ntb_reg_read(4, limit_reg) & BAR_HIGH_MASK;
3142		if (reg_val != limit) {
3143			ntb_reg_write(4, limit_reg, base);
3144			ntb_reg_write(4, xlat_reg, 0);
3145			return (EIO);
3146		}
3147	}
3148	return (0);
3149}
3150
3151/*
3152 * ntb_mw_clear_trans() - clear the translation of a memory window
3153 * @ntb:	NTB device context
3154 * @idx:	Memory window number
3155 *
3156 * Clear the translation of a memory window.  The peer may no longer access
3157 * local memory through the window.
3158 *
3159 * Return: Zero on success, otherwise an error number.
3160 */
3161int
3162ntb_mw_clear_trans(struct ntb_softc *ntb, unsigned mw_idx)
3163{
3164
3165	return (ntb_mw_set_trans(ntb, mw_idx, 0, 0));
3166}
3167
3168/*
3169 * ntb_mw_get_wc - Get the write-combine status of a memory window
3170 *
3171 * Returns:  Zero on success, setting *wc; otherwise an error number (e.g. if
3172 * idx is an invalid memory window).
3173 *
3174 * Mode is a VM_MEMATTR_* type.
3175 */
3176int
3177ntb_mw_get_wc(struct ntb_softc *ntb, unsigned idx, vm_memattr_t *mode)
3178{
3179	struct ntb_pci_bar_info *bar;
3180
3181	if (idx >= ntb_mw_count(ntb))
3182		return (EINVAL);
3183	idx = ntb_user_mw_to_idx(ntb, idx);
3184
3185	bar = &ntb->bar_info[ntb_mw_to_bar(ntb, idx)];
3186	*mode = bar->map_mode;
3187	return (0);
3188}
3189
3190/*
3191 * ntb_mw_set_wc - Set the write-combine status of a memory window
3192 *
3193 * If 'mode' matches the current status, this does nothing and succeeds.  Mode
3194 * is a VM_MEMATTR_* type.
3195 *
3196 * Returns:  Zero on success, setting the caching attribute on the virtual
3197 * mapping of the BAR; otherwise an error number (e.g. if idx is an invalid
3198 * memory window, or if changing the caching attribute fails).
3199 */
3200int
3201ntb_mw_set_wc(struct ntb_softc *ntb, unsigned idx, vm_memattr_t mode)
3202{
3203
3204	if (idx >= ntb_mw_count(ntb))
3205		return (EINVAL);
3206
3207	idx = ntb_user_mw_to_idx(ntb, idx);
3208	return (ntb_mw_set_wc_internal(ntb, idx, mode));
3209}
3210
3211static int
3212ntb_mw_set_wc_internal(struct ntb_softc *ntb, unsigned idx, vm_memattr_t mode)
3213{
3214	struct ntb_pci_bar_info *bar;
3215	int rc;
3216
3217	bar = &ntb->bar_info[ntb_mw_to_bar(ntb, idx)];
3218	if (bar->map_mode == mode)
3219		return (0);
3220
3221	rc = pmap_change_attr((vm_offset_t)bar->vbase, bar->size, mode);
3222	if (rc == 0)
3223		bar->map_mode = mode;
3224
3225	return (rc);
3226}
3227
3228/**
3229 * ntb_peer_db_set() - Set the doorbell on the secondary/external side
3230 * @ntb: pointer to ntb_softc instance
3231 * @bit: doorbell bits to ring
3232 *
3233 * This function allows triggering of a doorbell on the secondary/external
3234 * side that will initiate an interrupt on the remote host
3235 */
3236void
3237ntb_peer_db_set(struct ntb_softc *ntb, uint64_t bit)
3238{
3239
3240	if (HAS_FEATURE(NTB_SB01BASE_LOCKUP)) {
3241		struct ntb_pci_bar_info *lapic;
3242		unsigned i;
3243
3244		lapic = ntb->peer_lapic_bar;
3245
3246		for (i = 0; i < XEON_NONLINK_DB_MSIX_BITS; i++) {
3247			if ((bit & ntb_db_vector_mask(ntb, i)) != 0)
3248				bus_space_write_4(lapic->pci_bus_tag,
3249				    lapic->pci_bus_handle,
3250				    ntb->peer_msix_data[i].nmd_ofs,
3251				    ntb->peer_msix_data[i].nmd_data);
3252		}
3253		return;
3254	}
3255
3256	if (HAS_FEATURE(NTB_SDOORBELL_LOCKUP)) {
3257		ntb_mw_write(2, XEON_PDOORBELL_OFFSET, bit);
3258		return;
3259	}
3260
3261	db_iowrite(ntb, ntb->peer_reg->db_bell, bit);
3262}
3263
3264/*
3265 * ntb_get_peer_db_addr() - Return the address of the remote doorbell register,
3266 * as well as the size of the register (via *sz_out).
3267 *
3268 * This function allows a caller using I/OAT DMA to chain the remote doorbell
3269 * ring to its memory window write.
3270 *
3271 * Note that writing the peer doorbell via a memory window will *not* generate
3272 * an interrupt on the remote host; that must be done separately.
3273 */
3274bus_addr_t
3275ntb_get_peer_db_addr(struct ntb_softc *ntb, vm_size_t *sz_out)
3276{
3277	struct ntb_pci_bar_info *bar;
3278	uint64_t regoff;
3279
3280	KASSERT(sz_out != NULL, ("must be non-NULL"));
3281
3282	if (!HAS_FEATURE(NTB_SDOORBELL_LOCKUP)) {
3283		bar = &ntb->bar_info[NTB_CONFIG_BAR];
3284		regoff = ntb->peer_reg->db_bell;
3285	} else {
3286		KASSERT(ntb->b2b_mw_idx != B2B_MW_DISABLED,
3287		    ("invalid b2b idx"));
3288
3289		bar = &ntb->bar_info[ntb_mw_to_bar(ntb, ntb->b2b_mw_idx)];
3290		regoff = XEON_PDOORBELL_OFFSET;
3291	}
3292	KASSERT(bar->pci_bus_tag != X86_BUS_SPACE_IO, ("uh oh"));
3293
3294	*sz_out = ntb->reg->db_size;
3295	/* HACK: Specific to current x86 bus implementation. */
3296	return ((uint64_t)bar->pci_bus_handle + regoff);
3297}
3298
3299/*
3300 * ntb_db_valid_mask() - get a mask of doorbell bits supported by the ntb
3301 * @ntb:	NTB device context
3302 *
3303 * Hardware may support different number or arrangement of doorbell bits.
3304 *
3305 * Return: A mask of doorbell bits supported by the ntb.
3306 */
3307uint64_t
3308ntb_db_valid_mask(struct ntb_softc *ntb)
3309{
3310
3311	return (ntb->db_valid_mask);
3312}
3313
3314/*
3315 * ntb_db_vector_mask() - get a mask of doorbell bits serviced by a vector
3316 * @ntb:	NTB device context
3317 * @vector:	Doorbell vector number
3318 *
3319 * Each interrupt vector may have a different number or arrangement of bits.
3320 *
3321 * Return: A mask of doorbell bits serviced by a vector.
3322 */
3323uint64_t
3324ntb_db_vector_mask(struct ntb_softc *ntb, uint32_t vector)
3325{
3326
3327	if (vector > ntb->db_vec_count)
3328		return (0);
3329	return (ntb->db_valid_mask & ntb_vec_mask(ntb, vector));
3330}
3331
3332/**
3333 * ntb_link_is_up() - get the current ntb link state
3334 * @ntb:        NTB device context
3335 * @speed:      OUT - The link speed expressed as PCIe generation number
3336 * @width:      OUT - The link width expressed as the number of PCIe lanes
3337 *
3338 * RETURNS: true or false based on the hardware link state
3339 */
3340bool
3341ntb_link_is_up(struct ntb_softc *ntb, enum ntb_speed *speed,
3342    enum ntb_width *width)
3343{
3344
3345	if (speed != NULL)
3346		*speed = ntb_link_sta_speed(ntb);
3347	if (width != NULL)
3348		*width = ntb_link_sta_width(ntb);
3349	return (link_is_up(ntb));
3350}
3351
3352static void
3353save_bar_parameters(struct ntb_pci_bar_info *bar)
3354{
3355
3356	bar->pci_bus_tag = rman_get_bustag(bar->pci_resource);
3357	bar->pci_bus_handle = rman_get_bushandle(bar->pci_resource);
3358	bar->pbase = rman_get_start(bar->pci_resource);
3359	bar->size = rman_get_size(bar->pci_resource);
3360	bar->vbase = rman_get_virtual(bar->pci_resource);
3361}
3362
3363device_t
3364ntb_get_device(struct ntb_softc *ntb)
3365{
3366
3367	return (ntb->device);
3368}
3369
3370/* Export HW-specific errata information. */
3371bool
3372ntb_has_feature(struct ntb_softc *ntb, uint32_t feature)
3373{
3374
3375	return (HAS_FEATURE(feature));
3376}
3377