ntb_hw_intel.c revision 289208
1/*-
2 * Copyright (C) 2013 Intel Corporation
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/dev/ntb/ntb_hw/ntb_hw.c 289208 2015-10-13 03:12:11Z cem $");
29
30#include <sys/param.h>
31#include <sys/kernel.h>
32#include <sys/systm.h>
33#include <sys/bus.h>
34#include <sys/malloc.h>
35#include <sys/module.h>
36#include <sys/queue.h>
37#include <sys/rman.h>
38#include <sys/sysctl.h>
39#include <vm/vm.h>
40#include <vm/pmap.h>
41#include <machine/bus.h>
42#include <machine/pmap.h>
43#include <machine/resource.h>
44#include <dev/pci/pcireg.h>
45#include <dev/pci/pcivar.h>
46
47#include "ntb_regs.h"
48#include "ntb_hw.h"
49
50/*
51 * The Non-Transparent Bridge (NTB) is a device on some Intel processors that
52 * allows you to connect two systems using a PCI-e link.
53 *
54 * This module contains the hardware abstraction layer for the NTB. It allows
55 * you to send and recieve interrupts, map the memory windows and send and
56 * receive messages in the scratch-pad registers.
57 *
58 * NOTE: Much of the code in this module is shared with Linux. Any patches may
59 * be picked up and redistributed in Linux with a dual GPL/BSD license.
60 */
61
62#define NTB_CONFIG_BAR	0
63#define NTB_B2B_BAR_1	1
64#define NTB_B2B_BAR_2	2
65#define NTB_MAX_BARS	3
66#define NTB_MW_TO_BAR(mw) ((mw) + 1)
67
68#define MAX_MSIX_INTERRUPTS MAX(XEON_MAX_DB_BITS, SOC_MAX_DB_BITS)
69
70#define NTB_HB_TIMEOUT	1 /* second */
71#define SOC_LINK_RECOVERY_TIME	500
72
73#define DEVICE2SOFTC(dev) ((struct ntb_softc *) device_get_softc(dev))
74
75enum ntb_device_type {
76	NTB_XEON,
77	NTB_SOC
78};
79
80/* Device features and workarounds */
81#define HAS_FEATURE(feature)	\
82	((ntb->features & (feature)) != 0)
83
84struct ntb_hw_info {
85	uint32_t		device_id;
86	const char		*desc;
87	enum ntb_device_type	type;
88	uint64_t		features;
89};
90
91struct ntb_pci_bar_info {
92	bus_space_tag_t		pci_bus_tag;
93	bus_space_handle_t	pci_bus_handle;
94	int			pci_resource_id;
95	struct resource		*pci_resource;
96	vm_paddr_t		pbase;
97	void			*vbase;
98	u_long			size;
99};
100
101struct ntb_int_info {
102	struct resource	*res;
103	int		rid;
104	void		*tag;
105};
106
107struct ntb_db_cb {
108	ntb_db_callback		callback;
109	unsigned int		db_num;
110	void			*data;
111	struct ntb_softc	*ntb;
112};
113
114struct ntb_softc {
115	device_t		device;
116	enum ntb_device_type	type;
117	uint64_t		features;
118
119	struct ntb_pci_bar_info	bar_info[NTB_MAX_BARS];
120	struct ntb_int_info	int_info[MAX_MSIX_INTERRUPTS];
121	uint32_t		allocated_interrupts;
122
123	struct callout		heartbeat_timer;
124	struct callout		lr_timer;
125
126	void			*ntb_transport;
127	ntb_event_callback	event_cb;
128	struct ntb_db_cb 	*db_cb;
129
130	struct {
131		uint8_t max_spads;
132		uint8_t max_db_bits;
133		uint8_t msix_cnt;
134	} limits;
135	struct {
136		uint32_t pdb;
137		uint32_t pdb_mask;
138		uint32_t sdb;
139		uint32_t sbar2_xlat;
140		uint32_t sbar4_xlat;
141		uint32_t spad_remote;
142		uint32_t spad_local;
143		uint32_t lnk_cntl;
144		uint32_t lnk_stat;
145		uint32_t spci_cmd;
146	} reg_ofs;
147	uint8_t conn_type;
148	uint8_t dev_type;
149	uint8_t bits_per_vector;
150	uint8_t link_status;
151	uint8_t link_width;
152	uint8_t link_speed;
153};
154
155#define ntb_bar_read(SIZE, bar, offset) \
156	    bus_space_read_ ## SIZE (ntb->bar_info[(bar)].pci_bus_tag, \
157	    ntb->bar_info[(bar)].pci_bus_handle, (offset))
158#define ntb_bar_write(SIZE, bar, offset, val) \
159	    bus_space_write_ ## SIZE (ntb->bar_info[(bar)].pci_bus_tag, \
160	    ntb->bar_info[(bar)].pci_bus_handle, (offset), (val))
161#define ntb_reg_read(SIZE, offset) ntb_bar_read(SIZE, NTB_CONFIG_BAR, offset)
162#define ntb_reg_write(SIZE, offset, val) \
163	    ntb_bar_write(SIZE, NTB_CONFIG_BAR, offset, val)
164#define ntb_mw_read(SIZE, offset) ntb_bar_read(SIZE, NTB_B2B_BAR_2, offset)
165#define ntb_mw_write(SIZE, offset, val) \
166	    ntb_bar_write(SIZE, NTB_B2B_BAR_2, offset, val)
167
168typedef int (*bar_map_strategy)(struct ntb_softc *ntb,
169    struct ntb_pci_bar_info *bar);
170
171static int ntb_probe(device_t device);
172static int ntb_attach(device_t device);
173static int ntb_detach(device_t device);
174static int ntb_map_pci_bars(struct ntb_softc *ntb);
175static int map_pci_bar(struct ntb_softc *ntb, bar_map_strategy strategy,
176    struct ntb_pci_bar_info *bar);
177static int map_mmr_bar(struct ntb_softc *ntb, struct ntb_pci_bar_info *bar);
178static int map_memory_window_bar(struct ntb_softc *ntb,
179    struct ntb_pci_bar_info *bar);
180static void ntb_unmap_pci_bar(struct ntb_softc *ntb);
181static int ntb_setup_interrupts(struct ntb_softc *ntb);
182static void ntb_teardown_interrupts(struct ntb_softc *ntb);
183static void handle_soc_irq(void *arg);
184static void handle_xeon_irq(void *arg);
185static void handle_xeon_event_irq(void *arg);
186static void ntb_handle_legacy_interrupt(void *arg);
187static int ntb_create_callbacks(struct ntb_softc *ntb, int num_vectors);
188static void ntb_free_callbacks(struct ntb_softc *ntb);
189static struct ntb_hw_info *ntb_get_device_info(uint32_t device_id);
190static int ntb_initialize_hw(struct ntb_softc *ntb);
191static int ntb_setup_xeon(struct ntb_softc *ntb);
192static int ntb_setup_soc(struct ntb_softc *ntb);
193static void configure_soc_secondary_side_bars(struct ntb_softc *ntb);
194static void configure_xeon_secondary_side_bars(struct ntb_softc *ntb);
195static void ntb_handle_heartbeat(void *arg);
196static void ntb_handle_link_event(struct ntb_softc *ntb, int link_state);
197static void recover_soc_link(void *arg);
198static int ntb_check_link_status(struct ntb_softc *ntb);
199static void save_bar_parameters(struct ntb_pci_bar_info *bar);
200
201static struct ntb_hw_info pci_ids[] = {
202	{ 0x3C0D8086, "Xeon E5/Core i7 Non-Transparent Bridge B2B", NTB_XEON,
203	    NTB_REGS_THRU_MW },
204	{ 0x0C4E8086, "Atom Processor S1200 NTB Primary B2B", NTB_SOC, 0 },
205	{ 0x0E0D8086, "Xeon E5 V2 Non-Transparent Bridge B2B", NTB_XEON,
206	    NTB_REGS_THRU_MW | NTB_BAR_SIZE_4K },
207	{ 0x00000000, NULL, NTB_SOC, 0 }
208};
209
210/*
211 * OS <-> Driver interface structures
212 */
213MALLOC_DEFINE(M_NTB, "ntb_hw", "ntb_hw driver memory allocations");
214
215static device_method_t ntb_pci_methods[] = {
216	/* Device interface */
217	DEVMETHOD(device_probe,     ntb_probe),
218	DEVMETHOD(device_attach,    ntb_attach),
219	DEVMETHOD(device_detach,    ntb_detach),
220	DEVMETHOD_END
221};
222
223static driver_t ntb_pci_driver = {
224	"ntb_hw",
225	ntb_pci_methods,
226	sizeof(struct ntb_softc),
227};
228
229static devclass_t ntb_devclass;
230DRIVER_MODULE(ntb_hw, pci, ntb_pci_driver, ntb_devclass, NULL, NULL);
231MODULE_VERSION(ntb_hw, 1);
232
233SYSCTL_NODE(_hw, OID_AUTO, ntb, CTLFLAG_RW, 0, "NTB sysctls");
234
235/*
236 * OS <-> Driver linkage functions
237 */
238static int
239ntb_probe(device_t device)
240{
241	struct ntb_hw_info *p = ntb_get_device_info(pci_get_devid(device));
242
243	if (p != NULL) {
244		device_set_desc(device, p->desc);
245		return (0);
246	} else
247		return (ENXIO);
248}
249
250#define DETACH_ON_ERROR(func)           \
251	error = func;		        \
252	if (error < 0) {		\
253		ntb_detach(device);	\
254		return (error);		\
255	}
256
257static int
258ntb_attach(device_t device)
259{
260	struct ntb_softc *ntb = DEVICE2SOFTC(device);
261	struct ntb_hw_info *p = ntb_get_device_info(pci_get_devid(device));
262	int error;
263
264	ntb->device = device;
265	ntb->type = p->type;
266	ntb->features = p->features;
267
268	/* Heartbeat timer for NTB_SOC since there is no link interrupt */
269	callout_init(&ntb->heartbeat_timer, 1);
270	callout_init(&ntb->lr_timer, 1);
271
272	DETACH_ON_ERROR(ntb_map_pci_bars(ntb));
273	DETACH_ON_ERROR(ntb_initialize_hw(ntb));
274	DETACH_ON_ERROR(ntb_setup_interrupts(ntb));
275
276	pci_enable_busmaster(ntb->device);
277
278	return (error);
279}
280
281static int
282ntb_detach(device_t device)
283{
284	struct ntb_softc *ntb = DEVICE2SOFTC(device);
285
286	callout_drain(&ntb->heartbeat_timer);
287	callout_drain(&ntb->lr_timer);
288	ntb_teardown_interrupts(ntb);
289	ntb_unmap_pci_bar(ntb);
290
291	return (0);
292}
293
294static int
295ntb_map_pci_bars(struct ntb_softc *ntb)
296{
297	int rc;
298
299	ntb->bar_info[NTB_CONFIG_BAR].pci_resource_id = PCIR_BAR(0);
300	rc = map_pci_bar(ntb, map_mmr_bar, &ntb->bar_info[NTB_CONFIG_BAR]);
301	if (rc != 0)
302		return rc;
303
304	ntb->bar_info[NTB_B2B_BAR_1].pci_resource_id  = PCIR_BAR(2);
305	rc = map_pci_bar(ntb, map_memory_window_bar,
306	    &ntb->bar_info[NTB_B2B_BAR_1]);
307	if (rc != 0)
308		return rc;
309
310	ntb->bar_info[NTB_B2B_BAR_2].pci_resource_id  = PCIR_BAR(4);
311	if (HAS_FEATURE(NTB_REGS_THRU_MW))
312		rc = map_pci_bar(ntb, map_mmr_bar,
313		    &ntb->bar_info[NTB_B2B_BAR_2]);
314	else
315		rc = map_pci_bar(ntb, map_memory_window_bar,
316		    &ntb->bar_info[NTB_B2B_BAR_2]);
317	if (rc != 0)
318		return rc;
319
320	return (0);
321}
322
323static int
324map_pci_bar(struct ntb_softc *ntb, bar_map_strategy strategy,
325    struct ntb_pci_bar_info *bar)
326{
327	int rc;
328
329	rc = strategy(ntb, bar);
330	if (rc != 0) {
331		device_printf(ntb->device,
332		    "unable to allocate pci resource\n");
333	} else {
334		device_printf(ntb->device,
335		    "Bar size = %lx, v %p, p %p\n",
336		    bar->size, bar->vbase,
337		    (void *)(bar->pbase));
338	}
339	return (rc);
340}
341
342static int
343map_mmr_bar(struct ntb_softc *ntb, struct ntb_pci_bar_info *bar)
344{
345
346	bar->pci_resource = bus_alloc_resource_any(ntb->device, SYS_RES_MEMORY,
347		&bar->pci_resource_id, RF_ACTIVE);
348
349	if (bar->pci_resource == NULL)
350		return (ENXIO);
351	else {
352		save_bar_parameters(bar);
353		return (0);
354	}
355}
356
357static int
358map_memory_window_bar(struct ntb_softc *ntb, struct ntb_pci_bar_info *bar)
359{
360	int rc;
361	uint8_t bar_size_bits = 0;
362
363	bar->pci_resource = bus_alloc_resource_any(ntb->device,
364	    SYS_RES_MEMORY, &bar->pci_resource_id, RF_ACTIVE);
365
366	if (bar->pci_resource == NULL)
367		return (ENXIO);
368	else {
369		save_bar_parameters(bar);
370		/*
371		 * Ivytown NTB BAR sizes are misreported by the hardware due to
372		 * a hardware issue. To work around this, query the size it
373		 * should be configured to by the device and modify the resource
374		 * to correspond to this new size. The BIOS on systems with this
375		 * problem is required to provide enough address space to allow
376		 * the driver to make this change safely.
377		 *
378		 * Ideally I could have just specified the size when I allocated
379		 * the resource like:
380		 *  bus_alloc_resource(ntb->device,
381		 *	SYS_RES_MEMORY, &bar->pci_resource_id, 0ul, ~0ul,
382		 *	1ul << bar_size_bits, RF_ACTIVE);
383		 * but the PCI driver does not honor the size in this call, so
384		 * we have to modify it after the fact.
385		 */
386		if (HAS_FEATURE(NTB_BAR_SIZE_4K)) {
387			if (bar->pci_resource_id == PCIR_BAR(2))
388				bar_size_bits = pci_read_config(ntb->device,
389				    XEON_PBAR23SZ_OFFSET, 1);
390			else
391				bar_size_bits = pci_read_config(ntb->device,
392				    XEON_PBAR45SZ_OFFSET, 1);
393			rc = bus_adjust_resource(ntb->device, SYS_RES_MEMORY,
394			    bar->pci_resource, bar->pbase,
395			    bar->pbase + (1ul << bar_size_bits) - 1);
396			if (rc != 0 ) {
397				device_printf(ntb->device,
398				    "unable to resize bar\n");
399				return (rc);
400			} else
401				save_bar_parameters(bar);
402		}
403
404		/* Mark bar region as write combining to improve performance. */
405		rc = pmap_change_attr((vm_offset_t)bar->vbase, bar->size,
406		    VM_MEMATTR_WRITE_COMBINING);
407		if (rc != 0) {
408			device_printf(ntb->device, "unable to mark bar as"
409			    " WRITE_COMBINING\n");
410			return (rc);
411		}
412	}
413	return (0);
414}
415
416static void
417ntb_unmap_pci_bar(struct ntb_softc *ntb)
418{
419	struct ntb_pci_bar_info *current_bar;
420	int i;
421
422	for (i = 0; i< NTB_MAX_BARS; i++) {
423		current_bar = &ntb->bar_info[i];
424		if (current_bar->pci_resource != NULL)
425			bus_release_resource(ntb->device, SYS_RES_MEMORY,
426			    current_bar->pci_resource_id,
427			    current_bar->pci_resource);
428	}
429}
430
431static int
432ntb_setup_interrupts(struct ntb_softc *ntb)
433{
434	void (*interrupt_handler)(void *);
435	void *int_arg;
436	bool use_msix = 0;
437	uint32_t num_vectors;
438	int i;
439
440	ntb->allocated_interrupts = 0;
441	/*
442	 * On SOC, disable all interrupts.  On XEON, disable all but Link
443	 * Interrupt.  The rest will be unmasked as callbacks are registered.
444	 */
445	if (ntb->type == NTB_SOC)
446		ntb_reg_write(8, ntb->reg_ofs.pdb_mask, ~0);
447	else
448		ntb_reg_write(2, ntb->reg_ofs.pdb_mask,
449		    ~(1 << ntb->limits.max_db_bits));
450
451	num_vectors = MIN(pci_msix_count(ntb->device),
452	    ntb->limits.max_db_bits);
453	if (num_vectors >= 1) {
454		pci_alloc_msix(ntb->device, &num_vectors);
455		if (num_vectors >= 4)
456			use_msix = TRUE;
457	}
458
459	ntb_create_callbacks(ntb, num_vectors);
460	if (use_msix == TRUE) {
461		for (i = 0; i < num_vectors; i++) {
462			ntb->int_info[i].rid = i + 1;
463			ntb->int_info[i].res = bus_alloc_resource_any(
464			    ntb->device, SYS_RES_IRQ, &ntb->int_info[i].rid,
465			    RF_ACTIVE);
466			if (ntb->int_info[i].res == NULL) {
467				device_printf(ntb->device,
468				    "bus_alloc_resource failed\n");
469				return (-1);
470			}
471			ntb->int_info[i].tag = NULL;
472			ntb->allocated_interrupts++;
473			if (ntb->type == NTB_SOC) {
474				interrupt_handler = handle_soc_irq;
475				int_arg = &ntb->db_cb[i];
476			} else {
477				if (i == num_vectors - 1) {
478					interrupt_handler =
479					    handle_xeon_event_irq;
480					int_arg = ntb;
481				} else {
482					interrupt_handler =
483					    handle_xeon_irq;
484					int_arg = &ntb->db_cb[i];
485				}
486			}
487			if (bus_setup_intr(ntb->device, ntb->int_info[i].res,
488			    INTR_MPSAFE | INTR_TYPE_MISC, NULL,
489			    interrupt_handler, int_arg,
490			    &ntb->int_info[i].tag) != 0) {
491				device_printf(ntb->device,
492				    "bus_setup_intr failed\n");
493				return (ENXIO);
494			}
495		}
496	}
497	else {
498		ntb->int_info[0].rid = 0;
499		ntb->int_info[0].res = bus_alloc_resource_any(ntb->device,
500		    SYS_RES_IRQ, &ntb->int_info[0].rid, RF_SHAREABLE|RF_ACTIVE);
501		interrupt_handler = ntb_handle_legacy_interrupt;
502		if (ntb->int_info[0].res == NULL) {
503			device_printf(ntb->device,
504			    "bus_alloc_resource failed\n");
505			return (-1);
506		}
507		ntb->int_info[0].tag = NULL;
508		ntb->allocated_interrupts = 1;
509
510		if (bus_setup_intr(ntb->device, ntb->int_info[0].res,
511			INTR_MPSAFE | INTR_TYPE_MISC, NULL,
512			interrupt_handler, ntb, &ntb->int_info[0].tag) != 0) {
513
514			device_printf(ntb->device, "bus_setup_intr failed\n");
515			return (ENXIO);
516		}
517	}
518
519	return (0);
520}
521
522static void
523ntb_teardown_interrupts(struct ntb_softc *ntb)
524{
525	struct ntb_int_info *current_int;
526	int i;
527
528	for (i=0; i<ntb->allocated_interrupts; i++) {
529		current_int = &ntb->int_info[i];
530		if (current_int->tag != NULL)
531			bus_teardown_intr(ntb->device, current_int->res,
532			    current_int->tag);
533
534		if (current_int->res != NULL)
535			bus_release_resource(ntb->device, SYS_RES_IRQ,
536			    rman_get_rid(current_int->res), current_int->res);
537	}
538
539	ntb_free_callbacks(ntb);
540	pci_release_msi(ntb->device);
541}
542
543static void
544handle_soc_irq(void *arg)
545{
546	struct ntb_db_cb *db_cb = arg;
547	struct ntb_softc *ntb = db_cb->ntb;
548
549	ntb_reg_write(8, ntb->reg_ofs.pdb, (uint64_t) 1 << db_cb->db_num);
550
551	if (db_cb->callback != NULL)
552		db_cb->callback(db_cb->data, db_cb->db_num);
553}
554
555static void
556handle_xeon_irq(void *arg)
557{
558	struct ntb_db_cb *db_cb = arg;
559	struct ntb_softc *ntb = db_cb->ntb;
560
561	/*
562	 * On Xeon, there are 16 bits in the interrupt register
563	 * but only 4 vectors.  So, 5 bits are assigned to the first 3
564	 * vectors, with the 4th having a single bit for link
565	 * interrupts.
566	 */
567	ntb_reg_write(2, ntb->reg_ofs.pdb,
568	    ((1 << ntb->bits_per_vector) - 1) <<
569	    (db_cb->db_num * ntb->bits_per_vector));
570
571	if (db_cb->callback != NULL)
572		db_cb->callback(db_cb->data, db_cb->db_num);
573}
574
575/* Since we do not have a HW doorbell in SOC, this is only used in JF/JT */
576static void
577handle_xeon_event_irq(void *arg)
578{
579	struct ntb_softc *ntb = arg;
580	int rc;
581
582	rc = ntb_check_link_status(ntb);
583	if (rc != 0)
584		device_printf(ntb->device, "Error determining link status\n");
585
586	/* bit 15 is always the link bit */
587	ntb_reg_write(2, ntb->reg_ofs.pdb, 1 << ntb->limits.max_db_bits);
588}
589
590static void
591ntb_handle_legacy_interrupt(void *arg)
592{
593	struct ntb_softc *ntb = arg;
594	unsigned int i = 0;
595	uint64_t pdb64;
596	uint16_t pdb16;
597
598	if (ntb->type == NTB_SOC) {
599		pdb64 = ntb_reg_read(8, ntb->reg_ofs.pdb);
600
601		while (pdb64) {
602			i = ffs(pdb64);
603			pdb64 &= pdb64 - 1;
604			handle_soc_irq(&ntb->db_cb[i]);
605		}
606	} else {
607		pdb16 = ntb_reg_read(2, ntb->reg_ofs.pdb);
608
609		if ((pdb16 & XEON_DB_HW_LINK) != 0) {
610			handle_xeon_event_irq(ntb);
611			pdb16 &= ~XEON_DB_HW_LINK;
612		}
613
614		while (pdb16 != 0) {
615			i = ffs(pdb16);
616			pdb16 &= pdb16 - 1;
617			handle_xeon_irq(&ntb->db_cb[i]);
618		}
619	}
620
621}
622
623static int
624ntb_create_callbacks(struct ntb_softc *ntb, int num_vectors)
625{
626	int i;
627
628	ntb->db_cb = malloc(num_vectors * sizeof(struct ntb_db_cb), M_NTB,
629	    M_ZERO | M_WAITOK);
630	for (i = 0; i < num_vectors; i++) {
631		ntb->db_cb[i].db_num = i;
632		ntb->db_cb[i].ntb = ntb;
633	}
634
635	return (0);
636}
637
638static void
639ntb_free_callbacks(struct ntb_softc *ntb)
640{
641	int i;
642
643	for (i = 0; i < ntb->limits.max_db_bits; i++)
644		ntb_unregister_db_callback(ntb, i);
645
646	free(ntb->db_cb, M_NTB);
647}
648
649static struct ntb_hw_info *
650ntb_get_device_info(uint32_t device_id)
651{
652	struct ntb_hw_info *ep = pci_ids;
653
654	while (ep->device_id) {
655		if (ep->device_id == device_id)
656			return (ep);
657		++ep;
658	}
659	return (NULL);
660}
661
662static int
663ntb_initialize_hw(struct ntb_softc *ntb)
664{
665
666	if (ntb->type == NTB_SOC)
667		return (ntb_setup_soc(ntb));
668	else
669		return (ntb_setup_xeon(ntb));
670}
671
672static int
673ntb_setup_xeon(struct ntb_softc *ntb)
674{
675	uint8_t val, connection_type;
676
677	val = pci_read_config(ntb->device, NTB_PPD_OFFSET, 1);
678
679	connection_type = val & XEON_PPD_CONN_TYPE;
680	switch (connection_type) {
681	case NTB_CONN_B2B:
682		ntb->conn_type = NTB_CONN_B2B;
683		break;
684	case NTB_CONN_CLASSIC:
685	case NTB_CONN_RP:
686	default:
687		device_printf(ntb->device, "Connection type %d not supported\n",
688		    connection_type);
689		return (ENXIO);
690	}
691
692	if ((val & XEON_PPD_DEV_TYPE) != 0)
693		ntb->dev_type = NTB_DEV_USD;
694	else
695		ntb->dev_type = NTB_DEV_DSD;
696
697	ntb->reg_ofs.pdb	= XEON_PDOORBELL_OFFSET;
698	ntb->reg_ofs.pdb_mask	= XEON_PDBMSK_OFFSET;
699	ntb->reg_ofs.sbar2_xlat = XEON_SBAR2XLAT_OFFSET;
700	ntb->reg_ofs.sbar4_xlat = XEON_SBAR4XLAT_OFFSET;
701	ntb->reg_ofs.lnk_cntl	= XEON_NTBCNTL_OFFSET;
702	ntb->reg_ofs.lnk_stat	= XEON_LINK_STATUS_OFFSET;
703	ntb->reg_ofs.spad_local	= XEON_SPAD_OFFSET;
704	ntb->reg_ofs.spci_cmd	= XEON_PCICMD_OFFSET;
705
706	/*
707	 * There is a Xeon hardware errata related to writes to SDOORBELL or
708	 * B2BDOORBELL in conjunction with inbound access to NTB MMIO space,
709	 * which may hang the system.  To workaround this use the second memory
710	 * window to access the interrupt and scratch pad registers on the
711	 * remote system.
712	 */
713	if (HAS_FEATURE(NTB_REGS_THRU_MW))
714		/*
715		 * Set the Limit register to 4k, the minimum size, to prevent
716		 * an illegal access.
717		 */
718		ntb_reg_write(8, XEON_PBAR4LMT_OFFSET,
719		    ntb_get_mw_size(ntb, 1) + 0x1000);
720	else
721		/*
722		 * Disable the limit register, just in case it is set to
723		 * something silly.
724		 */
725		ntb_reg_write(8, XEON_PBAR4LMT_OFFSET, 0);
726
727
728	if (ntb->conn_type == NTB_CONN_B2B) {
729		ntb->reg_ofs.sdb	 = XEON_B2B_DOORBELL_OFFSET;
730		ntb->reg_ofs.spad_remote = XEON_B2B_SPAD_OFFSET;
731		ntb->limits.max_spads	 = XEON_MAX_SPADS;
732	} else {
733		ntb->reg_ofs.sdb	 = XEON_SDOORBELL_OFFSET;
734		ntb->reg_ofs.spad_remote = XEON_SPAD_OFFSET;
735		ntb->limits.max_spads	 = XEON_MAX_COMPAT_SPADS;
736	}
737
738	ntb->limits.max_db_bits  = XEON_MAX_DB_BITS;
739	ntb->limits.msix_cnt	 = XEON_MSIX_CNT;
740	ntb->bits_per_vector	 = XEON_DB_BITS_PER_VEC;
741
742	configure_xeon_secondary_side_bars(ntb);
743	/* Enable Bus Master and Memory Space on the secondary side */
744	ntb_reg_write(2, ntb->reg_ofs.spci_cmd,
745	    PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
746
747	/* Enable link training */
748	ntb_reg_write(4, ntb->reg_ofs.lnk_cntl,
749	    NTB_CNTL_BAR23_SNOOP | NTB_CNTL_BAR45_SNOOP);
750
751	return (0);
752}
753
754static int
755ntb_setup_soc(struct ntb_softc *ntb)
756{
757	uint32_t val, connection_type;
758
759	val = pci_read_config(ntb->device, NTB_PPD_OFFSET, 4);
760
761	connection_type = (val & SOC_PPD_CONN_TYPE) >> 8;
762	switch (connection_type) {
763	case NTB_CONN_B2B:
764		ntb->conn_type = NTB_CONN_B2B;
765		break;
766	case NTB_CONN_RP:
767	default:
768		device_printf(ntb->device, "Connection type %d not supported\n",
769		    connection_type);
770		return (ENXIO);
771	}
772
773	if ((val & SOC_PPD_DEV_TYPE) != 0)
774		ntb->dev_type = NTB_DEV_DSD;
775	else
776		ntb->dev_type = NTB_DEV_USD;
777
778	/* Initiate PCI-E link training */
779	pci_write_config(ntb->device, NTB_PPD_OFFSET, val | SOC_PPD_INIT_LINK,
780	    4);
781
782	ntb->reg_ofs.pdb	 = SOC_PDOORBELL_OFFSET;
783	ntb->reg_ofs.pdb_mask	 = SOC_PDBMSK_OFFSET;
784	ntb->reg_ofs.sbar2_xlat  = SOC_SBAR2XLAT_OFFSET;
785	ntb->reg_ofs.sbar4_xlat  = SOC_SBAR4XLAT_OFFSET;
786	ntb->reg_ofs.lnk_cntl	 = SOC_NTBCNTL_OFFSET;
787	ntb->reg_ofs.lnk_stat	 = SOC_LINK_STATUS_OFFSET;
788	ntb->reg_ofs.spad_local	 = SOC_SPAD_OFFSET;
789	ntb->reg_ofs.spci_cmd	 = SOC_PCICMD_OFFSET;
790
791	if (ntb->conn_type == NTB_CONN_B2B) {
792		ntb->reg_ofs.sdb	 = SOC_B2B_DOORBELL_OFFSET;
793		ntb->reg_ofs.spad_remote = SOC_B2B_SPAD_OFFSET;
794		ntb->limits.max_spads	 = SOC_MAX_SPADS;
795	} else {
796		ntb->reg_ofs.sdb	 = SOC_PDOORBELL_OFFSET;
797		ntb->reg_ofs.spad_remote = SOC_SPAD_OFFSET;
798		ntb->limits.max_spads	 = SOC_MAX_COMPAT_SPADS;
799	}
800
801	ntb->limits.max_db_bits  = SOC_MAX_DB_BITS;
802	ntb->limits.msix_cnt	 = SOC_MSIX_CNT;
803	ntb->bits_per_vector	 = SOC_DB_BITS_PER_VEC;
804
805	/*
806	 * FIXME - MSI-X bug on early SOC HW, remove once internal issue is
807	 * resolved.  Mask transaction layer internal parity errors.
808	 */
809	pci_write_config(ntb->device, 0xFC, 0x4, 4);
810
811	configure_soc_secondary_side_bars(ntb);
812
813	/* Enable Bus Master and Memory Space on the secondary side */
814	ntb_reg_write(2, ntb->reg_ofs.spci_cmd,
815	    PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
816	callout_reset(&ntb->heartbeat_timer, 0, ntb_handle_heartbeat, ntb);
817
818	return (0);
819}
820
821static void
822configure_soc_secondary_side_bars(struct ntb_softc *ntb)
823{
824
825	if (ntb->dev_type == NTB_DEV_USD) {
826		ntb_reg_write(8, SOC_PBAR2XLAT_OFFSET, PBAR2XLAT_USD_ADDR);
827		ntb_reg_write(8, SOC_PBAR4XLAT_OFFSET, PBAR4XLAT_USD_ADDR);
828		ntb_reg_write(8, SOC_MBAR23_OFFSET, MBAR23_USD_ADDR);
829		ntb_reg_write(8, SOC_MBAR45_OFFSET, MBAR45_USD_ADDR);
830	} else {
831		ntb_reg_write(8, SOC_PBAR2XLAT_OFFSET, PBAR2XLAT_DSD_ADDR);
832		ntb_reg_write(8, SOC_PBAR4XLAT_OFFSET, PBAR4XLAT_DSD_ADDR);
833		ntb_reg_write(8, SOC_MBAR23_OFFSET, MBAR23_DSD_ADDR);
834		ntb_reg_write(8, SOC_MBAR45_OFFSET, MBAR45_DSD_ADDR);
835	}
836}
837
838static void
839configure_xeon_secondary_side_bars(struct ntb_softc *ntb)
840{
841
842	if (ntb->dev_type == NTB_DEV_USD) {
843		ntb_reg_write(8, XEON_PBAR2XLAT_OFFSET, PBAR2XLAT_USD_ADDR);
844		if (HAS_FEATURE(NTB_REGS_THRU_MW))
845			ntb_reg_write(8, XEON_PBAR4XLAT_OFFSET,
846			    MBAR01_DSD_ADDR);
847		else {
848			ntb_reg_write(8, XEON_PBAR4XLAT_OFFSET,
849			    PBAR4XLAT_USD_ADDR);
850			/*
851			 * B2B_XLAT_OFFSET is a 64-bit register but can only be
852			 * written 32 bits at a time.
853			 */
854			ntb_reg_write(4, XEON_B2B_XLAT_OFFSETL,
855			    MBAR01_DSD_ADDR & 0xffffffff);
856			ntb_reg_write(4, XEON_B2B_XLAT_OFFSETU,
857			    MBAR01_DSD_ADDR >> 32);
858		}
859		ntb_reg_write(8, XEON_SBAR0BASE_OFFSET, MBAR01_USD_ADDR);
860		ntb_reg_write(8, XEON_SBAR2BASE_OFFSET, MBAR23_USD_ADDR);
861		ntb_reg_write(8, XEON_SBAR4BASE_OFFSET, MBAR45_USD_ADDR);
862	} else {
863		ntb_reg_write(8, XEON_PBAR2XLAT_OFFSET, PBAR2XLAT_DSD_ADDR);
864		if (HAS_FEATURE(NTB_REGS_THRU_MW))
865			ntb_reg_write(8, XEON_PBAR4XLAT_OFFSET,
866			    MBAR01_USD_ADDR);
867		else {
868			ntb_reg_write(8, XEON_PBAR4XLAT_OFFSET,
869			    PBAR4XLAT_DSD_ADDR);
870			/*
871			 * B2B_XLAT_OFFSET is a 64-bit register but can only be
872			 * written 32 bits at a time.
873			 */
874			ntb_reg_write(4, XEON_B2B_XLAT_OFFSETL,
875			    MBAR01_USD_ADDR & 0xffffffff);
876			ntb_reg_write(4, XEON_B2B_XLAT_OFFSETU,
877			    MBAR01_USD_ADDR >> 32);
878		}
879		ntb_reg_write(8, XEON_SBAR0BASE_OFFSET, MBAR01_DSD_ADDR);
880		ntb_reg_write(8, XEON_SBAR2BASE_OFFSET, MBAR23_DSD_ADDR);
881		ntb_reg_write(8, XEON_SBAR4BASE_OFFSET, MBAR45_DSD_ADDR);
882	}
883}
884
885/* SOC does not have link status interrupt, poll on that platform */
886static void
887ntb_handle_heartbeat(void *arg)
888{
889	struct ntb_softc *ntb = arg;
890	uint32_t status32;
891	int rc = ntb_check_link_status(ntb);
892
893	if (rc != 0)
894		device_printf(ntb->device,
895		    "Error determining link status\n");
896	/* Check to see if a link error is the cause of the link down */
897	if (ntb->link_status == NTB_LINK_DOWN) {
898		status32 = ntb_reg_read(4, SOC_LTSSMSTATEJMP_OFFSET);
899		if ((status32 & SOC_LTSSMSTATEJMP_FORCEDETECT) != 0) {
900			callout_reset(&ntb->lr_timer, 0, recover_soc_link,
901			    ntb);
902			return;
903		}
904	}
905
906	callout_reset(&ntb->heartbeat_timer, NTB_HB_TIMEOUT * hz,
907	    ntb_handle_heartbeat, ntb);
908}
909
910static void
911soc_perform_link_restart(struct ntb_softc *ntb)
912{
913	uint32_t status;
914
915	/* Driver resets the NTB ModPhy lanes - magic! */
916	ntb_reg_write(1, SOC_MODPHY_PCSREG6, 0xe0);
917	ntb_reg_write(1, SOC_MODPHY_PCSREG4, 0x40);
918	ntb_reg_write(1, SOC_MODPHY_PCSREG4, 0x60);
919	ntb_reg_write(1, SOC_MODPHY_PCSREG6, 0x60);
920
921	/* Driver waits 100ms to allow the NTB ModPhy to settle */
922	pause("ModPhy", hz / 10);
923
924	/* Clear AER Errors, write to clear */
925	status = ntb_reg_read(4, SOC_ERRCORSTS_OFFSET);
926	status &= PCIM_AER_COR_REPLAY_ROLLOVER;
927	ntb_reg_write(4, SOC_ERRCORSTS_OFFSET, status);
928
929	/* Clear unexpected electrical idle event in LTSSM, write to clear */
930	status = ntb_reg_read(4, SOC_LTSSMERRSTS0_OFFSET);
931	status |= SOC_LTSSMERRSTS0_UNEXPECTEDEI;
932	ntb_reg_write(4, SOC_LTSSMERRSTS0_OFFSET, status);
933
934	/* Clear DeSkew Buffer error, write to clear */
935	status = ntb_reg_read(4, SOC_DESKEWSTS_OFFSET);
936	status |= SOC_DESKEWSTS_DBERR;
937	ntb_reg_write(4, SOC_DESKEWSTS_OFFSET, status);
938
939	status = ntb_reg_read(4, SOC_IBSTERRRCRVSTS0_OFFSET);
940	status &= SOC_IBIST_ERR_OFLOW;
941	ntb_reg_write(4, SOC_IBSTERRRCRVSTS0_OFFSET, status);
942
943	/* Releases the NTB state machine to allow the link to retrain */
944	status = ntb_reg_read(4, SOC_LTSSMSTATEJMP_OFFSET);
945	status &= ~SOC_LTSSMSTATEJMP_FORCEDETECT;
946	ntb_reg_write(4, SOC_LTSSMSTATEJMP_OFFSET, status);
947}
948
949static void
950ntb_handle_link_event(struct ntb_softc *ntb, int link_state)
951{
952	enum ntb_hw_event event;
953	uint16_t status;
954
955	if (ntb->link_status == link_state)
956		return;
957
958	if (link_state == NTB_LINK_UP) {
959		device_printf(ntb->device, "Link Up\n");
960		ntb->link_status = NTB_LINK_UP;
961		event = NTB_EVENT_HW_LINK_UP;
962
963		if (ntb->type == NTB_SOC)
964			status = ntb_reg_read(2, ntb->reg_ofs.lnk_stat);
965		else
966			status = pci_read_config(ntb->device,
967			    XEON_LINK_STATUS_OFFSET, 2);
968		ntb->link_width = (status & NTB_LINK_WIDTH_MASK) >> 4;
969		ntb->link_speed = (status & NTB_LINK_SPEED_MASK);
970		device_printf(ntb->device, "Link Width %d, Link Speed %d\n",
971		    ntb->link_width, ntb->link_speed);
972		callout_reset(&ntb->heartbeat_timer, NTB_HB_TIMEOUT * hz,
973		    ntb_handle_heartbeat, ntb);
974	} else {
975		device_printf(ntb->device, "Link Down\n");
976		ntb->link_status = NTB_LINK_DOWN;
977		event = NTB_EVENT_HW_LINK_DOWN;
978		/* Do not modify link width/speed, we need it in link recovery */
979	}
980
981	/* notify the upper layer if we have an event change */
982	if (ntb->event_cb != NULL)
983		ntb->event_cb(ntb->ntb_transport, event);
984}
985
986static void
987recover_soc_link(void *arg)
988{
989	struct ntb_softc *ntb = arg;
990	uint8_t speed, width;
991	uint32_t status32;
992	uint16_t status16;
993
994	soc_perform_link_restart(ntb);
995	pause("Link", SOC_LINK_RECOVERY_TIME * hz / 1000);
996
997	status32 = ntb_reg_read(4, SOC_LTSSMSTATEJMP_OFFSET);
998	if ((status32 & SOC_LTSSMSTATEJMP_FORCEDETECT) != 0)
999		goto retry;
1000
1001	status32 = ntb_reg_read(4, SOC_IBSTERRRCRVSTS0_OFFSET);
1002	if ((status32 & SOC_IBIST_ERR_OFLOW) != 0)
1003		goto retry;
1004
1005	status16 = ntb_reg_read(2, ntb->reg_ofs.lnk_stat);
1006	width = (status16 & NTB_LINK_WIDTH_MASK) >> 4;
1007	speed = (status16 & NTB_LINK_SPEED_MASK);
1008	if (ntb->link_width != width || ntb->link_speed != speed)
1009		goto retry;
1010
1011	callout_reset(&ntb->heartbeat_timer, NTB_HB_TIMEOUT * hz,
1012	    ntb_handle_heartbeat, ntb);
1013	return;
1014
1015retry:
1016	callout_reset(&ntb->lr_timer, NTB_HB_TIMEOUT * hz, recover_soc_link,
1017	    ntb);
1018}
1019
1020static int
1021ntb_check_link_status(struct ntb_softc *ntb)
1022{
1023	int link_state;
1024	uint32_t ntb_cntl;
1025	uint16_t status;
1026
1027	if (ntb->type == NTB_SOC) {
1028		ntb_cntl = ntb_reg_read(4, ntb->reg_ofs.lnk_cntl);
1029		if ((ntb_cntl & SOC_CNTL_LINK_DOWN) != 0)
1030			link_state = NTB_LINK_DOWN;
1031		else
1032			link_state = NTB_LINK_UP;
1033	} else {
1034		status = pci_read_config(ntb->device, XEON_LINK_STATUS_OFFSET,
1035		    2);
1036
1037		if ((status & NTB_LINK_STATUS_ACTIVE) != 0)
1038			link_state = NTB_LINK_UP;
1039		else
1040			link_state = NTB_LINK_DOWN;
1041	}
1042
1043	ntb_handle_link_event(ntb, link_state);
1044
1045	return (0);
1046}
1047
1048/**
1049 * ntb_register_event_callback() - register event callback
1050 * @ntb: pointer to ntb_softc instance
1051 * @func: callback function to register
1052 *
1053 * This function registers a callback for any HW driver events such as link
1054 * up/down, power management notices and etc.
1055 *
1056 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1057 */
1058int
1059ntb_register_event_callback(struct ntb_softc *ntb, ntb_event_callback func)
1060{
1061
1062	if (ntb->event_cb != NULL)
1063		return (EINVAL);
1064
1065	ntb->event_cb = func;
1066
1067	return (0);
1068}
1069
1070/**
1071 * ntb_unregister_event_callback() - unregisters the event callback
1072 * @ntb: pointer to ntb_softc instance
1073 *
1074 * This function unregisters the existing callback from transport
1075 */
1076void
1077ntb_unregister_event_callback(struct ntb_softc *ntb)
1078{
1079
1080	ntb->event_cb = NULL;
1081}
1082
1083/**
1084 * ntb_register_db_callback() - register a callback for doorbell interrupt
1085 * @ntb: pointer to ntb_softc instance
1086 * @idx: doorbell index to register callback, zero based
1087 * @func: callback function to register
1088 *
1089 * This function registers a callback function for the doorbell interrupt
1090 * on the primary side. The function will unmask the doorbell as well to
1091 * allow interrupt.
1092 *
1093 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1094 */
1095int
1096ntb_register_db_callback(struct ntb_softc *ntb, unsigned int idx, void *data,
1097    ntb_db_callback func)
1098{
1099	uint16_t mask;
1100
1101	if (idx >= ntb->allocated_interrupts || ntb->db_cb[idx].callback) {
1102		device_printf(ntb->device, "Invalid Index.\n");
1103		return (EINVAL);
1104	}
1105
1106	ntb->db_cb[idx].callback = func;
1107	ntb->db_cb[idx].data = data;
1108
1109	/* unmask interrupt */
1110	mask = ntb_reg_read(2, ntb->reg_ofs.pdb_mask);
1111	mask &= ~(1 << (idx * ntb->bits_per_vector));
1112	ntb_reg_write(2, ntb->reg_ofs.pdb_mask, mask);
1113
1114	return (0);
1115}
1116
1117/**
1118 * ntb_unregister_db_callback() - unregister a callback for doorbell interrupt
1119 * @ntb: pointer to ntb_softc instance
1120 * @idx: doorbell index to register callback, zero based
1121 *
1122 * This function unregisters a callback function for the doorbell interrupt
1123 * on the primary side. The function will also mask the said doorbell.
1124 */
1125void
1126ntb_unregister_db_callback(struct ntb_softc *ntb, unsigned int idx)
1127{
1128	unsigned long mask;
1129
1130	if (idx >= ntb->allocated_interrupts || !ntb->db_cb[idx].callback)
1131		return;
1132
1133	mask = ntb_reg_read(2, ntb->reg_ofs.pdb_mask);
1134	mask |= 1 << (idx * ntb->bits_per_vector);
1135	ntb_reg_write(2, ntb->reg_ofs.pdb_mask, mask);
1136
1137	ntb->db_cb[idx].callback = NULL;
1138}
1139
1140/**
1141 * ntb_find_transport() - find the transport pointer
1142 * @transport: pointer to pci device
1143 *
1144 * Given the pci device pointer, return the transport pointer passed in when
1145 * the transport attached when it was inited.
1146 *
1147 * RETURNS: pointer to transport.
1148 */
1149void *
1150ntb_find_transport(struct ntb_softc *ntb)
1151{
1152
1153	return (ntb->ntb_transport);
1154}
1155
1156/**
1157 * ntb_register_transport() - Register NTB transport with NTB HW driver
1158 * @transport: transport identifier
1159 *
1160 * This function allows a transport to reserve the hardware driver for
1161 * NTB usage.
1162 *
1163 * RETURNS: pointer to ntb_softc, NULL on error.
1164 */
1165struct ntb_softc *
1166ntb_register_transport(struct ntb_softc *ntb, void *transport)
1167{
1168
1169	/*
1170	 * TODO: when we have more than one transport, we will need to rewrite
1171	 * this to prevent race conditions
1172	 */
1173	if (ntb->ntb_transport != NULL)
1174		return (NULL);
1175
1176	ntb->ntb_transport = transport;
1177	return (ntb);
1178}
1179
1180/**
1181 * ntb_unregister_transport() - Unregister the transport with the NTB HW driver
1182 * @ntb - ntb_softc of the transport to be freed
1183 *
1184 * This function unregisters the transport from the HW driver and performs any
1185 * necessary cleanups.
1186 */
1187void
1188ntb_unregister_transport(struct ntb_softc *ntb)
1189{
1190	int i;
1191
1192	if (ntb->ntb_transport == NULL)
1193		return;
1194
1195	for (i = 0; i < ntb->allocated_interrupts; i++)
1196		ntb_unregister_db_callback(ntb, i);
1197
1198	ntb_unregister_event_callback(ntb);
1199	ntb->ntb_transport = NULL;
1200}
1201
1202/**
1203 * ntb_get_max_spads() - get the total scratch regs usable
1204 * @ntb: pointer to ntb_softc instance
1205 *
1206 * This function returns the max 32bit scratchpad registers usable by the
1207 * upper layer.
1208 *
1209 * RETURNS: total number of scratch pad registers available
1210 */
1211uint8_t
1212ntb_get_max_spads(struct ntb_softc *ntb)
1213{
1214
1215	return (ntb->limits.max_spads);
1216}
1217
1218/**
1219 * ntb_write_local_spad() - write to the secondary scratchpad register
1220 * @ntb: pointer to ntb_softc instance
1221 * @idx: index to the scratchpad register, 0 based
1222 * @val: the data value to put into the register
1223 *
1224 * This function allows writing of a 32bit value to the indexed scratchpad
1225 * register. The register resides on the secondary (external) side.
1226 *
1227 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1228 */
1229int
1230ntb_write_local_spad(struct ntb_softc *ntb, unsigned int idx, uint32_t val)
1231{
1232
1233	if (idx >= ntb->limits.max_spads)
1234		return (EINVAL);
1235
1236	ntb_reg_write(4, ntb->reg_ofs.spad_local + idx * 4, val);
1237
1238	return (0);
1239}
1240
1241/**
1242 * ntb_read_local_spad() - read from the primary scratchpad register
1243 * @ntb: pointer to ntb_softc instance
1244 * @idx: index to scratchpad register, 0 based
1245 * @val: pointer to 32bit integer for storing the register value
1246 *
1247 * This function allows reading of the 32bit scratchpad register on
1248 * the primary (internal) side.
1249 *
1250 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1251 */
1252int
1253ntb_read_local_spad(struct ntb_softc *ntb, unsigned int idx, uint32_t *val)
1254{
1255
1256	if (idx >= ntb->limits.max_spads)
1257		return (EINVAL);
1258
1259	*val = ntb_reg_read(4, ntb->reg_ofs.spad_local + idx * 4);
1260
1261	return (0);
1262}
1263
1264/**
1265 * ntb_write_remote_spad() - write to the secondary scratchpad register
1266 * @ntb: pointer to ntb_softc instance
1267 * @idx: index to the scratchpad register, 0 based
1268 * @val: the data value to put into the register
1269 *
1270 * This function allows writing of a 32bit value to the indexed scratchpad
1271 * register. The register resides on the secondary (external) side.
1272 *
1273 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1274 */
1275int
1276ntb_write_remote_spad(struct ntb_softc *ntb, unsigned int idx, uint32_t val)
1277{
1278
1279	if (idx >= ntb->limits.max_spads)
1280		return (EINVAL);
1281
1282	if (HAS_FEATURE(NTB_REGS_THRU_MW))
1283		ntb_mw_write(4, XEON_SHADOW_SPAD_OFFSET + idx * 4, val);
1284	else
1285		ntb_reg_write(4, ntb->reg_ofs.spad_remote + idx * 4, val);
1286
1287	return (0);
1288}
1289
1290/**
1291 * ntb_read_remote_spad() - read from the primary scratchpad register
1292 * @ntb: pointer to ntb_softc instance
1293 * @idx: index to scratchpad register, 0 based
1294 * @val: pointer to 32bit integer for storing the register value
1295 *
1296 * This function allows reading of the 32bit scratchpad register on
1297 * the primary (internal) side.
1298 *
1299 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1300 */
1301int
1302ntb_read_remote_spad(struct ntb_softc *ntb, unsigned int idx, uint32_t *val)
1303{
1304
1305	if (idx >= ntb->limits.max_spads)
1306		return (EINVAL);
1307
1308	if (HAS_FEATURE(NTB_REGS_THRU_MW))
1309		*val = ntb_mw_read(4, XEON_SHADOW_SPAD_OFFSET + idx * 4);
1310	else
1311		*val = ntb_reg_read(4, ntb->reg_ofs.spad_remote + idx * 4);
1312
1313	return (0);
1314}
1315
1316/**
1317 * ntb_get_mw_vbase() - get virtual addr for the NTB memory window
1318 * @ntb: pointer to ntb_softc instance
1319 * @mw: memory window number
1320 *
1321 * This function provides the base virtual address of the memory window
1322 * specified.
1323 *
1324 * RETURNS: pointer to virtual address, or NULL on error.
1325 */
1326void *
1327ntb_get_mw_vbase(struct ntb_softc *ntb, unsigned int mw)
1328{
1329
1330	if (mw >= NTB_NUM_MW)
1331		return (NULL);
1332
1333	return (ntb->bar_info[NTB_MW_TO_BAR(mw)].vbase);
1334}
1335
1336vm_paddr_t
1337ntb_get_mw_pbase(struct ntb_softc *ntb, unsigned int mw)
1338{
1339
1340	if (mw >= NTB_NUM_MW)
1341		return (0);
1342
1343	return (ntb->bar_info[NTB_MW_TO_BAR(mw)].pbase);
1344}
1345
1346/**
1347 * ntb_get_mw_size() - return size of NTB memory window
1348 * @ntb: pointer to ntb_softc instance
1349 * @mw: memory window number
1350 *
1351 * This function provides the physical size of the memory window specified
1352 *
1353 * RETURNS: the size of the memory window or zero on error
1354 */
1355u_long
1356ntb_get_mw_size(struct ntb_softc *ntb, unsigned int mw)
1357{
1358
1359	if (mw >= NTB_NUM_MW)
1360		return (0);
1361
1362	return (ntb->bar_info[NTB_MW_TO_BAR(mw)].size);
1363}
1364
1365/**
1366 * ntb_set_mw_addr - set the memory window address
1367 * @ntb: pointer to ntb_softc instance
1368 * @mw: memory window number
1369 * @addr: base address for data
1370 *
1371 * This function sets the base physical address of the memory window.  This
1372 * memory address is where data from the remote system will be transfered into
1373 * or out of depending on how the transport is configured.
1374 */
1375void
1376ntb_set_mw_addr(struct ntb_softc *ntb, unsigned int mw, uint64_t addr)
1377{
1378
1379	if (mw >= NTB_NUM_MW)
1380		return;
1381
1382	switch (NTB_MW_TO_BAR(mw)) {
1383	case NTB_B2B_BAR_1:
1384		ntb_reg_write(8, ntb->reg_ofs.sbar2_xlat, addr);
1385		break;
1386	case NTB_B2B_BAR_2:
1387		ntb_reg_write(8, ntb->reg_ofs.sbar4_xlat, addr);
1388		break;
1389	}
1390}
1391
1392/**
1393 * ntb_ring_sdb() - Set the doorbell on the secondary/external side
1394 * @ntb: pointer to ntb_softc instance
1395 * @db: doorbell to ring
1396 *
1397 * This function allows triggering of a doorbell on the secondary/external
1398 * side that will initiate an interrupt on the remote host
1399 *
1400 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1401 */
1402void
1403ntb_ring_sdb(struct ntb_softc *ntb, unsigned int db)
1404{
1405
1406	if (ntb->type == NTB_SOC)
1407		ntb_reg_write(8, ntb->reg_ofs.sdb, (uint64_t) 1 << db);
1408	else
1409		if (HAS_FEATURE(NTB_REGS_THRU_MW))
1410			ntb_mw_write(2, XEON_SHADOW_PDOORBELL_OFFSET,
1411			    ((1 << ntb->bits_per_vector) - 1) <<
1412			    (db * ntb->bits_per_vector));
1413		else
1414			ntb_reg_write(2, ntb->reg_ofs.sdb,
1415			    ((1 << ntb->bits_per_vector) - 1) <<
1416			    (db * ntb->bits_per_vector));
1417}
1418
1419/**
1420 * ntb_query_link_status() - return the hardware link status
1421 * @ndev: pointer to ntb_device instance
1422 *
1423 * Returns true if the hardware is connected to the remote system
1424 *
1425 * RETURNS: true or false based on the hardware link state
1426 */
1427bool
1428ntb_query_link_status(struct ntb_softc *ntb)
1429{
1430
1431	return (ntb->link_status == NTB_LINK_UP);
1432}
1433
1434static void
1435save_bar_parameters(struct ntb_pci_bar_info *bar)
1436{
1437	bar->pci_bus_tag =
1438	    rman_get_bustag(bar->pci_resource);
1439	bar->pci_bus_handle =
1440	    rman_get_bushandle(bar->pci_resource);
1441	bar->pbase =
1442	    rman_get_start(bar->pci_resource);
1443	bar->size =
1444	    rman_get_size(bar->pci_resource);
1445	bar->vbase =
1446	    rman_get_virtual(bar->pci_resource);
1447
1448}
1449
1450device_t ntb_get_device(struct ntb_softc *ntb)
1451{
1452
1453	return (ntb->device);
1454}
1455
1456/* Export HW-specific errata information. */
1457bool
1458ntb_has_feature(struct ntb_softc *ntb, uint64_t feature)
1459{
1460
1461	return (HAS_FEATURE(feature));
1462}
1463