netmap_kern.h revision 331722
1/*
2 * Copyright (C) 2011-2014 Matteo Landi, Luigi Rizzo. All rights reserved.
3 * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *   1. Redistributions of source code must retain the above copyright
9 *      notice, this list of conditions and the following disclaimer.
10 *   2. Redistributions in binary form must reproduce the above copyright
11 *      notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27/*
28 * $FreeBSD: stable/11/sys/dev/netmap/netmap_kern.h 331722 2018-03-29 02:50:57Z eadler $
29 *
30 * The header contains the definitions of constants and function
31 * prototypes used only in kernelspace.
32 */
33
34#ifndef _NET_NETMAP_KERN_H_
35#define _NET_NETMAP_KERN_H_
36
37#if defined(linux)
38
39#if  defined(CONFIG_NETMAP_VALE)
40#define WITH_VALE
41#endif
42#if defined(CONFIG_NETMAP_PIPE)
43#define WITH_PIPES
44#endif
45#if defined(CONFIG_NETMAP_MONITOR)
46#define WITH_MONITOR
47#endif
48#if defined(CONFIG_NETMAP_GENERIC)
49#define WITH_GENERIC
50#endif
51#if defined(CONFIG_NETMAP_V1000)
52#define WITH_V1000
53#endif
54
55#else /* not linux */
56
57#define WITH_VALE	// comment out to disable VALE support
58#define WITH_PIPES
59#define WITH_MONITOR
60#define WITH_GENERIC
61
62#endif
63
64#if defined(__FreeBSD__)
65
66#define likely(x)	__builtin_expect((long)!!(x), 1L)
67#define unlikely(x)	__builtin_expect((long)!!(x), 0L)
68
69#define	NM_LOCK_T	struct mtx	/* low level spinlock, used to protect queues */
70
71#define NM_MTX_T	struct sx	/* OS-specific mutex (sleepable) */
72#define NM_MTX_INIT(m)		sx_init(&(m), #m)
73#define NM_MTX_DESTROY(m)	sx_destroy(&(m))
74#define NM_MTX_LOCK(m)		sx_xlock(&(m))
75#define NM_MTX_UNLOCK(m)	sx_xunlock(&(m))
76#define NM_MTX_ASSERT(m)	sx_assert(&(m), SA_XLOCKED)
77
78#define	NM_SELINFO_T	struct nm_selinfo
79#define	MBUF_LEN(m)	((m)->m_pkthdr.len)
80#define	MBUF_IFP(m)	((m)->m_pkthdr.rcvif)
81#define	NM_SEND_UP(ifp, m)	((NA(ifp))->if_input)(ifp, m)
82
83#define NM_ATOMIC_T	volatile int	// XXX ?
84/* atomic operations */
85#include <machine/atomic.h>
86#define NM_ATOMIC_TEST_AND_SET(p)       (!atomic_cmpset_acq_int((p), 0, 1))
87#define NM_ATOMIC_CLEAR(p)              atomic_store_rel_int((p), 0)
88
89#if __FreeBSD_version >= 1100030
90#define	WNA(_ifp)	(_ifp)->if_netmap
91#else /* older FreeBSD */
92#define	WNA(_ifp)	(_ifp)->if_pspare[0]
93#endif /* older FreeBSD */
94
95#if __FreeBSD_version >= 1100005
96struct netmap_adapter *netmap_getna(if_t ifp);
97#endif
98
99#if __FreeBSD_version >= 1100027
100#define MBUF_REFCNT(m)		((m)->m_ext.ext_count)
101#define SET_MBUF_REFCNT(m, x)   (m)->m_ext.ext_count = x
102#else
103#define MBUF_REFCNT(m)		((m)->m_ext.ref_cnt ? *((m)->m_ext.ref_cnt) : -1)
104#define SET_MBUF_REFCNT(m, x)   *((m)->m_ext.ref_cnt) = x
105#endif
106
107MALLOC_DECLARE(M_NETMAP);
108
109struct nm_selinfo {
110	struct selinfo si;
111	struct mtx m;
112};
113
114void freebsd_selwakeup(struct nm_selinfo *si, int pri);
115
116// XXX linux struct, not used in FreeBSD
117struct net_device_ops {
118};
119struct ethtool_ops {
120};
121struct hrtimer {
122};
123#define NM_BNS_GET(b)
124#define NM_BNS_PUT(b)
125
126#elif defined (linux)
127
128#define	NM_LOCK_T	safe_spinlock_t	// see bsd_glue.h
129#define	NM_SELINFO_T	wait_queue_head_t
130#define	MBUF_LEN(m)	((m)->len)
131#define	MBUF_IFP(m)	((m)->dev)
132#define	NM_SEND_UP(ifp, m)  \
133                        do { \
134                            m->priority = NM_MAGIC_PRIORITY_RX; \
135                            netif_rx(m); \
136                        } while (0)
137
138#define NM_ATOMIC_T	volatile long unsigned int
139
140#define NM_MTX_T	struct mutex	/* OS-specific sleepable lock */
141#define NM_MTX_INIT(m)	mutex_init(&(m))
142#define NM_MTX_DESTROY(m)	do { (void)(m); } while (0)
143#define NM_MTX_LOCK(m)		mutex_lock(&(m))
144#define NM_MTX_UNLOCK(m)	mutex_unlock(&(m))
145#define NM_MTX_ASSERT(m)	mutex_is_locked(&(m))
146
147#ifndef DEV_NETMAP
148#define DEV_NETMAP
149#endif /* DEV_NETMAP */
150
151#elif defined (__APPLE__)
152
153#warning apple support is incomplete.
154#define likely(x)	__builtin_expect(!!(x), 1)
155#define unlikely(x)	__builtin_expect(!!(x), 0)
156#define	NM_LOCK_T	IOLock *
157#define	NM_SELINFO_T	struct selinfo
158#define	MBUF_LEN(m)	((m)->m_pkthdr.len)
159#define	NM_SEND_UP(ifp, m)	((ifp)->if_input)(ifp, m)
160
161#else
162
163#error unsupported platform
164
165#endif /* end - platform-specific code */
166
167#define	NMG_LOCK_T		NM_MTX_T
168#define	NMG_LOCK_INIT()		NM_MTX_INIT(netmap_global_lock)
169#define	NMG_LOCK_DESTROY()	NM_MTX_DESTROY(netmap_global_lock)
170#define	NMG_LOCK()		NM_MTX_LOCK(netmap_global_lock)
171#define	NMG_UNLOCK()		NM_MTX_UNLOCK(netmap_global_lock)
172#define	NMG_LOCK_ASSERT()	NM_MTX_ASSERT(netmap_global_lock)
173
174#define ND(format, ...)
175#define D(format, ...)						\
176	do {							\
177		struct timeval __xxts;				\
178		microtime(&__xxts);				\
179		printf("%03d.%06d [%4d] %-25s " format "\n",	\
180		(int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec,	\
181		__LINE__, __FUNCTION__, ##__VA_ARGS__);		\
182	} while (0)
183
184/* rate limited, lps indicates how many per second */
185#define RD(lps, format, ...)					\
186	do {							\
187		static int t0, __cnt;				\
188		if (t0 != time_second) {			\
189			t0 = time_second;			\
190			__cnt = 0;				\
191		}						\
192		if (__cnt++ < lps)				\
193			D(format, ##__VA_ARGS__);		\
194	} while (0)
195
196struct netmap_adapter;
197struct nm_bdg_fwd;
198struct nm_bridge;
199struct netmap_priv_d;
200
201const char *nm_dump_buf(char *p, int len, int lim, char *dst);
202
203#include "netmap_mbq.h"
204
205extern NMG_LOCK_T	netmap_global_lock;
206
207enum txrx { NR_RX = 0, NR_TX = 1, NR_TXRX };
208
209static __inline const char*
210nm_txrx2str(enum txrx t)
211{
212	return (t== NR_RX ? "RX" : "TX");
213}
214
215static __inline enum txrx
216nm_txrx_swap(enum txrx t)
217{
218	return (t== NR_RX ? NR_TX : NR_RX);
219}
220
221#define for_rx_tx(t)	for ((t) = 0; (t) < NR_TXRX; (t)++)
222
223
224/*
225 * private, kernel view of a ring. Keeps track of the status of
226 * a ring across system calls.
227 *
228 *	nr_hwcur	index of the next buffer to refill.
229 *			It corresponds to ring->head
230 *			at the time the system call returns.
231 *
232 *	nr_hwtail	index of the first buffer owned by the kernel.
233 *			On RX, hwcur->hwtail are receive buffers
234 *			not yet released. hwcur is advanced following
235 *			ring->head, hwtail is advanced on incoming packets,
236 *			and a wakeup is generated when hwtail passes ring->cur
237 *			    On TX, hwcur->rcur have been filled by the sender
238 *			but not sent yet to the NIC; rcur->hwtail are available
239 *			for new transmissions, and hwtail->hwcur-1 are pending
240 *			transmissions not yet acknowledged.
241 *
242 * The indexes in the NIC and netmap rings are offset by nkr_hwofs slots.
243 * This is so that, on a reset, buffers owned by userspace are not
244 * modified by the kernel. In particular:
245 * RX rings: the next empty buffer (hwtail + hwofs) coincides with
246 * 	the next empty buffer as known by the hardware (next_to_check or so).
247 * TX rings: hwcur + hwofs coincides with next_to_send
248 *
249 * For received packets, slot->flags is set to nkr_slot_flags
250 * so we can provide a proper initial value (e.g. set NS_FORWARD
251 * when operating in 'transparent' mode).
252 *
253 * The following fields are used to implement lock-free copy of packets
254 * from input to output ports in VALE switch:
255 *	nkr_hwlease	buffer after the last one being copied.
256 *			A writer in nm_bdg_flush reserves N buffers
257 *			from nr_hwlease, advances it, then does the
258 *			copy outside the lock.
259 *			In RX rings (used for VALE ports),
260 *			nkr_hwtail <= nkr_hwlease < nkr_hwcur+N-1
261 *			In TX rings (used for NIC or host stack ports)
262 *			nkr_hwcur <= nkr_hwlease < nkr_hwtail
263 *	nkr_leases	array of nkr_num_slots where writers can report
264 *			completion of their block. NR_NOSLOT (~0) indicates
265 *			that the writer has not finished yet
266 *	nkr_lease_idx	index of next free slot in nr_leases, to be assigned
267 *
268 * The kring is manipulated by txsync/rxsync and generic netmap function.
269 *
270 * Concurrent rxsync or txsync on the same ring are prevented through
271 * by nm_kr_(try)lock() which in turn uses nr_busy. This is all we need
272 * for NIC rings, and for TX rings attached to the host stack.
273 *
274 * RX rings attached to the host stack use an mbq (rx_queue) on both
275 * rxsync_from_host() and netmap_transmit(). The mbq is protected
276 * by its internal lock.
277 *
278 * RX rings attached to the VALE switch are accessed by both senders
279 * and receiver. They are protected through the q_lock on the RX ring.
280 */
281struct netmap_kring {
282	struct netmap_ring	*ring;
283
284	uint32_t	nr_hwcur;
285	uint32_t	nr_hwtail;
286
287	/*
288	 * Copies of values in user rings, so we do not need to look
289	 * at the ring (which could be modified). These are set in the
290	 * *sync_prologue()/finalize() routines.
291	 */
292	uint32_t	rhead;
293	uint32_t	rcur;
294	uint32_t	rtail;
295
296	uint32_t	nr_kflags;	/* private driver flags */
297#define NKR_PENDINTR	0x1		// Pending interrupt.
298#define NKR_EXCLUSIVE	0x2		/* exclusive binding */
299	uint32_t	nkr_num_slots;
300
301	/*
302	 * On a NIC reset, the NIC ring indexes may be reset but the
303	 * indexes in the netmap rings remain the same. nkr_hwofs
304	 * keeps track of the offset between the two.
305	 */
306	int32_t		nkr_hwofs;
307
308	uint16_t	nkr_slot_flags;	/* initial value for flags */
309
310	/* last_reclaim is opaque marker to help reduce the frequency
311	 * of operations such as reclaiming tx buffers. A possible use
312	 * is set it to ticks and do the reclaim only once per tick.
313	 */
314	uint64_t	last_reclaim;
315
316
317	NM_SELINFO_T	si;		/* poll/select wait queue */
318	NM_LOCK_T	q_lock;		/* protects kring and ring. */
319	NM_ATOMIC_T	nr_busy;	/* prevent concurrent syscalls */
320
321	struct netmap_adapter *na;
322
323	/* The following fields are for VALE switch support */
324	struct nm_bdg_fwd *nkr_ft;
325	uint32_t	*nkr_leases;
326#define NR_NOSLOT	((uint32_t)~0)	/* used in nkr_*lease* */
327	uint32_t	nkr_hwlease;
328	uint32_t	nkr_lease_idx;
329
330	/* while nkr_stopped is set, no new [tr]xsync operations can
331	 * be started on this kring.
332	 * This is used by netmap_disable_all_rings()
333	 * to find a synchronization point where critical data
334	 * structures pointed to by the kring can be added or removed
335	 */
336	volatile int nkr_stopped;
337
338	/* Support for adapters without native netmap support.
339	 * On tx rings we preallocate an array of tx buffers
340	 * (same size as the netmap ring), on rx rings we
341	 * store incoming mbufs in a queue that is drained by
342	 * a rxsync.
343	 */
344	struct mbuf **tx_pool;
345	// u_int nr_ntc;		/* Emulation of a next-to-clean RX ring pointer. */
346	struct mbq rx_queue;            /* intercepted rx mbufs. */
347
348	uint32_t	users;		/* existing bindings for this ring */
349
350	uint32_t	ring_id;	/* debugging */
351	enum txrx	tx;		/* kind of ring (tx or rx) */
352	char name[64];			/* diagnostic */
353
354	/* [tx]sync callback for this kring.
355	 * The default nm_kring_create callback (netmap_krings_create)
356	 * sets the nm_sync callback of each hardware tx(rx) kring to
357	 * the corresponding nm_txsync(nm_rxsync) taken from the
358	 * netmap_adapter; moreover, it sets the sync callback
359	 * of the host tx(rx) ring to netmap_txsync_to_host
360	 * (netmap_rxsync_from_host).
361	 *
362	 * Overrides: the above configuration is not changed by
363	 * any of the nm_krings_create callbacks.
364	 */
365	int (*nm_sync)(struct netmap_kring *kring, int flags);
366	int (*nm_notify)(struct netmap_kring *kring, int flags);
367
368#ifdef WITH_PIPES
369	struct netmap_kring *pipe;	/* if this is a pipe ring,
370					 * pointer to the other end
371					 */
372	struct netmap_ring *save_ring;	/* pointer to hidden rings
373       					 * (see netmap_pipe.c for details)
374					 */
375#endif /* WITH_PIPES */
376
377#ifdef WITH_VALE
378	int (*save_notify)(struct netmap_kring *kring, int flags);
379#endif
380
381#ifdef WITH_MONITOR
382	/* array of krings that are monitoring this kring */
383	struct netmap_kring **monitors;
384	uint32_t max_monitors; /* current size of the monitors array */
385	uint32_t n_monitors;	/* next unused entry in the monitor array */
386	/*
387	 * Monitors work by intercepting the sync and notify callbacks of the
388	 * monitored krings. This is implemented by replacing the pointers
389	 * above and saving the previous ones in mon_* pointers below
390	 */
391	int (*mon_sync)(struct netmap_kring *kring, int flags);
392	int (*mon_notify)(struct netmap_kring *kring, int flags);
393
394	uint32_t mon_tail;  /* last seen slot on rx */
395	uint32_t mon_pos;   /* index of this ring in the monitored ring array */
396#endif
397} __attribute__((__aligned__(64)));
398
399
400/* return the next index, with wraparound */
401static inline uint32_t
402nm_next(uint32_t i, uint32_t lim)
403{
404	return unlikely (i == lim) ? 0 : i + 1;
405}
406
407
408/* return the previous index, with wraparound */
409static inline uint32_t
410nm_prev(uint32_t i, uint32_t lim)
411{
412	return unlikely (i == 0) ? lim : i - 1;
413}
414
415
416/*
417 *
418 * Here is the layout for the Rx and Tx rings.
419
420       RxRING                            TxRING
421
422      +-----------------+            +-----------------+
423      |                 |            |                 |
424      |XXX free slot XXX|            |XXX free slot XXX|
425      +-----------------+            +-----------------+
426head->| owned by user   |<-hwcur     | not sent to nic |<-hwcur
427      |                 |            | yet             |
428      +-----------------+            |                 |
429 cur->| available to    |            |                 |
430      | user, not read  |            +-----------------+
431      | yet             |       cur->| (being          |
432      |                 |            |  prepared)      |
433      |                 |            |                 |
434      +-----------------+            +     ------      +
435tail->|                 |<-hwtail    |                 |<-hwlease
436      | (being          | ...        |                 | ...
437      |  prepared)      | ...        |                 | ...
438      +-----------------+ ...        |                 | ...
439      |                 |<-hwlease   +-----------------+
440      |                 |      tail->|                 |<-hwtail
441      |                 |            |                 |
442      |                 |            |                 |
443      |                 |            |                 |
444      +-----------------+            +-----------------+
445
446 * The cur/tail (user view) and hwcur/hwtail (kernel view)
447 * are used in the normal operation of the card.
448 *
449 * When a ring is the output of a switch port (Rx ring for
450 * a VALE port, Tx ring for the host stack or NIC), slots
451 * are reserved in blocks through 'hwlease' which points
452 * to the next unused slot.
453 * On an Rx ring, hwlease is always after hwtail,
454 * and completions cause hwtail to advance.
455 * On a Tx ring, hwlease is always between cur and hwtail,
456 * and completions cause cur to advance.
457 *
458 * nm_kr_space() returns the maximum number of slots that
459 * can be assigned.
460 * nm_kr_lease() reserves the required number of buffers,
461 *    advances nkr_hwlease and also returns an entry in
462 *    a circular array where completions should be reported.
463 */
464
465
466struct netmap_lut {
467	struct lut_entry *lut;
468	uint32_t objtotal;	/* max buffer index */
469	uint32_t objsize;	/* buffer size */
470};
471
472struct netmap_vp_adapter; // forward
473
474/*
475 * The "struct netmap_adapter" extends the "struct adapter"
476 * (or equivalent) device descriptor.
477 * It contains all base fields needed to support netmap operation.
478 * There are in fact different types of netmap adapters
479 * (native, generic, VALE switch...) so a netmap_adapter is
480 * just the first field in the derived type.
481 */
482struct netmap_adapter {
483	/*
484	 * On linux we do not have a good way to tell if an interface
485	 * is netmap-capable. So we always use the following trick:
486	 * NA(ifp) points here, and the first entry (which hopefully
487	 * always exists and is at least 32 bits) contains a magic
488	 * value which we can use to detect that the interface is good.
489	 */
490	uint32_t magic;
491	uint32_t na_flags;	/* enabled, and other flags */
492#define NAF_SKIP_INTR	1	/* use the regular interrupt handler.
493				 * useful during initialization
494				 */
495#define NAF_SW_ONLY	2	/* forward packets only to sw adapter */
496#define NAF_BDG_MAYSLEEP 4	/* the bridge is allowed to sleep when
497				 * forwarding packets coming from this
498				 * interface
499				 */
500#define NAF_MEM_OWNER	8	/* the adapter uses its own memory area
501				 * that cannot be changed
502				 */
503#define NAF_NATIVE      16      /* the adapter is native.
504				 * Virtual ports (non persistent vale ports,
505				 * pipes, monitors...) should never use
506				 * this flag.
507				 */
508#define	NAF_NETMAP_ON	32	/* netmap is active (either native or
509				 * emulated). Where possible (e.g. FreeBSD)
510				 * IFCAP_NETMAP also mirrors this flag.
511				 */
512#define NAF_HOST_RINGS  64	/* the adapter supports the host rings */
513#define NAF_FORCE_NATIVE 128	/* the adapter is always NATIVE */
514#define	NAF_BUSY	(1U<<31) /* the adapter is used internally and
515				  * cannot be registered from userspace
516				  */
517	int active_fds; /* number of user-space descriptors using this
518			 interface, which is equal to the number of
519			 struct netmap_if objs in the mapped region. */
520
521	u_int num_rx_rings; /* number of adapter receive rings */
522	u_int num_tx_rings; /* number of adapter transmit rings */
523
524	u_int num_tx_desc;  /* number of descriptor in each queue */
525	u_int num_rx_desc;
526
527	/* tx_rings and rx_rings are private but allocated
528	 * as a contiguous chunk of memory. Each array has
529	 * N+1 entries, for the adapter queues and for the host queue.
530	 */
531	struct netmap_kring *tx_rings; /* array of TX rings. */
532	struct netmap_kring *rx_rings; /* array of RX rings. */
533
534	void *tailroom;		       /* space below the rings array */
535				       /* (used for leases) */
536
537
538	NM_SELINFO_T si[NR_TXRX];	/* global wait queues */
539
540	/* count users of the global wait queues */
541	int si_users[NR_TXRX];
542
543	void *pdev; /* used to store pci device */
544
545	/* copy of if_qflush and if_transmit pointers, to intercept
546	 * packets from the network stack when netmap is active.
547	 */
548	int     (*if_transmit)(struct ifnet *, struct mbuf *);
549
550	/* copy of if_input for netmap_send_up() */
551	void     (*if_input)(struct ifnet *, struct mbuf *);
552
553	/* references to the ifnet and device routines, used by
554	 * the generic netmap functions.
555	 */
556	struct ifnet *ifp; /* adapter is ifp->if_softc */
557
558	/*---- callbacks for this netmap adapter -----*/
559	/*
560	 * nm_dtor() is the cleanup routine called when destroying
561	 *	the adapter.
562	 *	Called with NMG_LOCK held.
563	 *
564	 * nm_register() is called on NIOCREGIF and close() to enter
565	 *	or exit netmap mode on the NIC
566	 *	Called with NNG_LOCK held.
567	 *
568	 * nm_txsync() pushes packets to the underlying hw/switch
569	 *
570	 * nm_rxsync() collects packets from the underlying hw/switch
571	 *
572	 * nm_config() returns configuration information from the OS
573	 *	Called with NMG_LOCK held.
574	 *
575	 * nm_krings_create() create and init the tx_rings and
576	 * 	rx_rings arrays of kring structures. In particular,
577	 * 	set the nm_sync callbacks for each ring.
578	 * 	There is no need to also allocate the corresponding
579	 * 	netmap_rings, since netmap_mem_rings_create() will always
580	 * 	be called to provide the missing ones.
581	 *	Called with NNG_LOCK held.
582	 *
583	 * nm_krings_delete() cleanup and delete the tx_rings and rx_rings
584	 * 	arrays
585	 *	Called with NMG_LOCK held.
586	 *
587	 * nm_notify() is used to act after data have become available
588	 * 	(or the stopped state of the ring has changed)
589	 *	For hw devices this is typically a selwakeup(),
590	 *	but for NIC/host ports attached to a switch (or vice-versa)
591	 *	we also need to invoke the 'txsync' code downstream.
592	 */
593	void (*nm_dtor)(struct netmap_adapter *);
594
595	int (*nm_register)(struct netmap_adapter *, int onoff);
596
597	int (*nm_txsync)(struct netmap_kring *kring, int flags);
598	int (*nm_rxsync)(struct netmap_kring *kring, int flags);
599	int (*nm_notify)(struct netmap_kring *kring, int flags);
600#define NAF_FORCE_READ    1
601#define NAF_FORCE_RECLAIM 2
602	/* return configuration information */
603	int (*nm_config)(struct netmap_adapter *,
604		u_int *txr, u_int *txd, u_int *rxr, u_int *rxd);
605	int (*nm_krings_create)(struct netmap_adapter *);
606	void (*nm_krings_delete)(struct netmap_adapter *);
607#ifdef WITH_VALE
608	/*
609	 * nm_bdg_attach() initializes the na_vp field to point
610	 *      to an adapter that can be attached to a VALE switch. If the
611	 *      current adapter is already a VALE port, na_vp is simply a cast;
612	 *      otherwise, na_vp points to a netmap_bwrap_adapter.
613	 *      If applicable, this callback also initializes na_hostvp,
614	 *      that can be used to connect the adapter host rings to the
615	 *      switch.
616	 *      Called with NMG_LOCK held.
617	 *
618	 * nm_bdg_ctl() is called on the actual attach/detach to/from
619	 *      to/from the switch, to perform adapter-specific
620	 *      initializations
621	 *      Called with NMG_LOCK held.
622	 */
623	int (*nm_bdg_attach)(const char *bdg_name, struct netmap_adapter *);
624	int (*nm_bdg_ctl)(struct netmap_adapter *, struct nmreq *, int);
625
626	/* adapter used to attach this adapter to a VALE switch (if any) */
627	struct netmap_vp_adapter *na_vp;
628	/* adapter used to attach the host rings of this adapter
629	 * to a VALE switch (if any) */
630	struct netmap_vp_adapter *na_hostvp;
631#endif
632
633	/* standard refcount to control the lifetime of the adapter
634	 * (it should be equal to the lifetime of the corresponding ifp)
635	 */
636	int na_refcount;
637
638	/* memory allocator (opaque)
639	 * We also cache a pointer to the lut_entry for translating
640	 * buffer addresses, and the total number of buffers.
641	 */
642 	struct netmap_mem_d *nm_mem;
643	struct netmap_lut na_lut;
644
645	/* additional information attached to this adapter
646	 * by other netmap subsystems. Currently used by
647	 * bwrap and LINUX/v1000.
648	 */
649	void *na_private;
650
651	/* array of pipes that have this adapter as a parent */
652	struct netmap_pipe_adapter **na_pipes;
653	int na_next_pipe;	/* next free slot in the array */
654	int na_max_pipes;	/* size of the array */
655
656	char name[64];
657};
658
659static __inline u_int
660nma_get_ndesc(struct netmap_adapter *na, enum txrx t)
661{
662	return (t == NR_TX ? na->num_tx_desc : na->num_rx_desc);
663}
664
665static __inline void
666nma_set_ndesc(struct netmap_adapter *na, enum txrx t, u_int v)
667{
668	if (t == NR_TX)
669		na->num_tx_desc = v;
670	else
671		na->num_rx_desc = v;
672}
673
674static __inline u_int
675nma_get_nrings(struct netmap_adapter *na, enum txrx t)
676{
677	return (t == NR_TX ? na->num_tx_rings : na->num_rx_rings);
678}
679
680static __inline void
681nma_set_nrings(struct netmap_adapter *na, enum txrx t, u_int v)
682{
683	if (t == NR_TX)
684		na->num_tx_rings = v;
685	else
686		na->num_rx_rings = v;
687}
688
689static __inline struct netmap_kring*
690NMR(struct netmap_adapter *na, enum txrx t)
691{
692	return (t == NR_TX ? na->tx_rings : na->rx_rings);
693}
694
695/*
696 * If the NIC is owned by the kernel
697 * (i.e., bridge), neither another bridge nor user can use it;
698 * if the NIC is owned by a user, only users can share it.
699 * Evaluation must be done under NMG_LOCK().
700 */
701#define NETMAP_OWNED_BY_KERN(na)	((na)->na_flags & NAF_BUSY)
702#define NETMAP_OWNED_BY_ANY(na) \
703	(NETMAP_OWNED_BY_KERN(na) || ((na)->active_fds > 0))
704
705/*
706 * derived netmap adapters for various types of ports
707 */
708struct netmap_vp_adapter {	/* VALE software port */
709	struct netmap_adapter up;
710
711	/*
712	 * Bridge support:
713	 *
714	 * bdg_port is the port number used in the bridge;
715	 * na_bdg points to the bridge this NA is attached to.
716	 */
717	int bdg_port;
718	struct nm_bridge *na_bdg;
719	int retry;
720
721	/* Offset of ethernet header for each packet. */
722	u_int virt_hdr_len;
723	/* Maximum Frame Size, used in bdg_mismatch_datapath() */
724	u_int mfs;
725	/* Last source MAC on this port */
726	uint64_t last_smac;
727};
728
729
730struct netmap_hw_adapter {	/* physical device */
731	struct netmap_adapter up;
732
733	struct net_device_ops nm_ndo;	// XXX linux only
734	struct ethtool_ops    nm_eto;	// XXX linux only
735	const struct ethtool_ops*   save_ethtool;
736
737	int (*nm_hw_register)(struct netmap_adapter *, int onoff);
738};
739
740#ifdef WITH_GENERIC
741/* Mitigation support. */
742struct nm_generic_mit {
743	struct hrtimer mit_timer;
744	int mit_pending;
745	int mit_ring_idx;  /* index of the ring being mitigated */
746	struct netmap_adapter *mit_na;  /* backpointer */
747};
748
749struct netmap_generic_adapter {	/* emulated device */
750	struct netmap_hw_adapter up;
751
752	/* Pointer to a previously used netmap adapter. */
753	struct netmap_adapter *prev;
754
755	/* generic netmap adapters support:
756	 * a net_device_ops struct overrides ndo_select_queue(),
757	 * save_if_input saves the if_input hook (FreeBSD),
758	 * mit implements rx interrupt mitigation,
759	 */
760	struct net_device_ops generic_ndo;
761	void (*save_if_input)(struct ifnet *, struct mbuf *);
762
763	struct nm_generic_mit *mit;
764#ifdef linux
765        netdev_tx_t (*save_start_xmit)(struct mbuf *, struct ifnet *);
766#endif
767};
768#endif  /* WITH_GENERIC */
769
770static __inline int
771netmap_real_rings(struct netmap_adapter *na, enum txrx t)
772{
773	return nma_get_nrings(na, t) + !!(na->na_flags & NAF_HOST_RINGS);
774}
775
776#ifdef WITH_VALE
777
778/*
779 * Bridge wrapper for non VALE ports attached to a VALE switch.
780 *
781 * The real device must already have its own netmap adapter (hwna).
782 * The bridge wrapper and the hwna adapter share the same set of
783 * netmap rings and buffers, but they have two separate sets of
784 * krings descriptors, with tx/rx meanings swapped:
785 *
786 *                                  netmap
787 *           bwrap     krings       rings      krings      hwna
788 *         +------+   +------+     +-----+    +------+   +------+
789 *         |tx_rings->|      |\   /|     |----|      |<-tx_rings|
790 *         |      |   +------+ \ / +-----+    +------+   |      |
791 *         |      |             X                        |      |
792 *         |      |            / \                       |      |
793 *         |      |   +------+/   \+-----+    +------+   |      |
794 *         |rx_rings->|      |     |     |----|      |<-rx_rings|
795 *         |      |   +------+     +-----+    +------+   |      |
796 *         +------+                                      +------+
797 *
798 * - packets coming from the bridge go to the brwap rx rings,
799 *   which are also the hwna tx rings.  The bwrap notify callback
800 *   will then complete the hwna tx (see netmap_bwrap_notify).
801 *
802 * - packets coming from the outside go to the hwna rx rings,
803 *   which are also the bwrap tx rings.  The (overwritten) hwna
804 *   notify method will then complete the bridge tx
805 *   (see netmap_bwrap_intr_notify).
806 *
807 *   The bridge wrapper may optionally connect the hwna 'host' rings
808 *   to the bridge. This is done by using a second port in the
809 *   bridge and connecting it to the 'host' netmap_vp_adapter
810 *   contained in the netmap_bwrap_adapter. The brwap host adapter
811 *   cross-links the hwna host rings in the same way as shown above.
812 *
813 * - packets coming from the bridge and directed to the host stack
814 *   are handled by the bwrap host notify callback
815 *   (see netmap_bwrap_host_notify)
816 *
817 * - packets coming from the host stack are still handled by the
818 *   overwritten hwna notify callback (netmap_bwrap_intr_notify),
819 *   but are diverted to the host adapter depending on the ring number.
820 *
821 */
822struct netmap_bwrap_adapter {
823	struct netmap_vp_adapter up;
824	struct netmap_vp_adapter host;  /* for host rings */
825	struct netmap_adapter *hwna;	/* the underlying device */
826
827	/* backup of the hwna memory allocator */
828	struct netmap_mem_d *save_nmd;
829
830	/*
831	 * When we attach a physical interface to the bridge, we
832	 * allow the controlling process to terminate, so we need
833	 * a place to store the n_detmap_priv_d data structure.
834	 * This is only done when physical interfaces
835	 * are attached to a bridge.
836	 */
837	struct netmap_priv_d *na_kpriv;
838};
839int netmap_bwrap_attach(const char *name, struct netmap_adapter *);
840
841
842#endif /* WITH_VALE */
843
844#ifdef WITH_PIPES
845
846#define NM_MAXPIPES 	64	/* max number of pipes per adapter */
847
848struct netmap_pipe_adapter {
849	struct netmap_adapter up;
850
851	u_int id; 	/* pipe identifier */
852	int role;	/* either NR_REG_PIPE_MASTER or NR_REG_PIPE_SLAVE */
853
854	struct netmap_adapter *parent; /* adapter that owns the memory */
855	struct netmap_pipe_adapter *peer; /* the other end of the pipe */
856	int peer_ref;		/* 1 iff we are holding a ref to the peer */
857
858	u_int parent_slot; /* index in the parent pipe array */
859};
860
861#endif /* WITH_PIPES */
862
863
864/* return slots reserved to rx clients; used in drivers */
865static inline uint32_t
866nm_kr_rxspace(struct netmap_kring *k)
867{
868	int space = k->nr_hwtail - k->nr_hwcur;
869	if (space < 0)
870		space += k->nkr_num_slots;
871	ND("preserving %d rx slots %d -> %d", space, k->nr_hwcur, k->nr_hwtail);
872
873	return space;
874}
875
876
877/* True if no space in the tx ring. only valid after txsync_prologue */
878static inline int
879nm_kr_txempty(struct netmap_kring *kring)
880{
881	return kring->rcur == kring->nr_hwtail;
882}
883
884
885/*
886 * protect against multiple threads using the same ring.
887 * also check that the ring has not been stopped.
888 * We only care for 0 or !=0 as a return code.
889 */
890#define NM_KR_BUSY	1
891#define NM_KR_STOPPED	2
892
893
894static __inline void nm_kr_put(struct netmap_kring *kr)
895{
896	NM_ATOMIC_CLEAR(&kr->nr_busy);
897}
898
899
900static __inline int nm_kr_tryget(struct netmap_kring *kr)
901{
902	/* check a first time without taking the lock
903	 * to avoid starvation for nm_kr_get()
904	 */
905	if (unlikely(kr->nkr_stopped)) {
906		ND("ring %p stopped (%d)", kr, kr->nkr_stopped);
907		return NM_KR_STOPPED;
908	}
909	if (unlikely(NM_ATOMIC_TEST_AND_SET(&kr->nr_busy)))
910		return NM_KR_BUSY;
911	/* check a second time with lock held */
912	if (unlikely(kr->nkr_stopped)) {
913		ND("ring %p stopped (%d)", kr, kr->nkr_stopped);
914		nm_kr_put(kr);
915		return NM_KR_STOPPED;
916	}
917	return 0;
918}
919
920static __inline void nm_kr_get(struct netmap_kring *kr)
921{
922	while (NM_ATOMIC_TEST_AND_SET(&kr->nr_busy))
923		tsleep(kr, 0, "NM_KR_GET", 4);
924}
925
926
927/*
928 * The following functions are used by individual drivers to
929 * support netmap operation.
930 *
931 * netmap_attach() initializes a struct netmap_adapter, allocating the
932 * 	struct netmap_ring's and the struct selinfo.
933 *
934 * netmap_detach() frees the memory allocated by netmap_attach().
935 *
936 * netmap_transmit() replaces the if_transmit routine of the interface,
937 *	and is used to intercept packets coming from the stack.
938 *
939 * netmap_load_map/netmap_reload_map are helper routines to set/reset
940 *	the dmamap for a packet buffer
941 *
942 * netmap_reset() is a helper routine to be called in the hw driver
943 *	when reinitializing a ring. It should not be called by
944 *	virtual ports (vale, pipes, monitor)
945 */
946int netmap_attach(struct netmap_adapter *);
947void netmap_detach(struct ifnet *);
948int netmap_transmit(struct ifnet *, struct mbuf *);
949struct netmap_slot *netmap_reset(struct netmap_adapter *na,
950	enum txrx tx, u_int n, u_int new_cur);
951int netmap_ring_reinit(struct netmap_kring *);
952
953/* default functions to handle rx/tx interrupts */
954int netmap_rx_irq(struct ifnet *, u_int, u_int *);
955#define netmap_tx_irq(_n, _q) netmap_rx_irq(_n, _q, NULL)
956void netmap_common_irq(struct ifnet *, u_int, u_int *work_done);
957
958
959#ifdef WITH_VALE
960/* functions used by external modules to interface with VALE */
961#define netmap_vp_to_ifp(_vp)	((_vp)->up.ifp)
962#define netmap_ifp_to_vp(_ifp)	(NA(_ifp)->na_vp)
963#define netmap_ifp_to_host_vp(_ifp) (NA(_ifp)->na_hostvp)
964#define netmap_bdg_idx(_vp)	((_vp)->bdg_port)
965const char *netmap_bdg_name(struct netmap_vp_adapter *);
966#else /* !WITH_VALE */
967#define netmap_vp_to_ifp(_vp)	NULL
968#define netmap_ifp_to_vp(_ifp)	NULL
969#define netmap_ifp_to_host_vp(_ifp) NULL
970#define netmap_bdg_idx(_vp)	-1
971#define netmap_bdg_name(_vp)	NULL
972#endif /* WITH_VALE */
973
974static inline int
975nm_netmap_on(struct netmap_adapter *na)
976{
977	return na && na->na_flags & NAF_NETMAP_ON;
978}
979
980static inline int
981nm_native_on(struct netmap_adapter *na)
982{
983	return nm_netmap_on(na) && (na->na_flags & NAF_NATIVE);
984}
985
986/* set/clear native flags and if_transmit/netdev_ops */
987static inline void
988nm_set_native_flags(struct netmap_adapter *na)
989{
990	struct ifnet *ifp = na->ifp;
991
992	na->na_flags |= NAF_NETMAP_ON;
993#ifdef IFCAP_NETMAP /* or FreeBSD ? */
994	ifp->if_capenable |= IFCAP_NETMAP;
995#endif
996#ifdef __FreeBSD__
997	na->if_transmit = ifp->if_transmit;
998	ifp->if_transmit = netmap_transmit;
999#else
1000	na->if_transmit = (void *)ifp->netdev_ops;
1001	ifp->netdev_ops = &((struct netmap_hw_adapter *)na)->nm_ndo;
1002	((struct netmap_hw_adapter *)na)->save_ethtool = ifp->ethtool_ops;
1003	ifp->ethtool_ops = &((struct netmap_hw_adapter*)na)->nm_eto;
1004#endif
1005}
1006
1007
1008static inline void
1009nm_clear_native_flags(struct netmap_adapter *na)
1010{
1011	struct ifnet *ifp = na->ifp;
1012
1013#ifdef __FreeBSD__
1014	ifp->if_transmit = na->if_transmit;
1015#else
1016	ifp->netdev_ops = (void *)na->if_transmit;
1017	ifp->ethtool_ops = ((struct netmap_hw_adapter*)na)->save_ethtool;
1018#endif
1019	na->na_flags &= ~NAF_NETMAP_ON;
1020#ifdef IFCAP_NETMAP /* or FreeBSD ? */
1021	ifp->if_capenable &= ~IFCAP_NETMAP;
1022#endif
1023}
1024
1025
1026/* check/fix address and len in tx rings */
1027#if 1 /* debug version */
1028#define	NM_CHECK_ADDR_LEN(_na, _a, _l)	do {				\
1029	if (_a == NETMAP_BUF_BASE(_na) || _l > NETMAP_BUF_SIZE(_na)) {	\
1030		RD(5, "bad addr/len ring %d slot %d idx %d len %d",	\
1031			kring->ring_id, nm_i, slot->buf_idx, len);	\
1032		if (_l > NETMAP_BUF_SIZE(_na))				\
1033			_l = NETMAP_BUF_SIZE(_na);			\
1034	} } while (0)
1035#else /* no debug version */
1036#define	NM_CHECK_ADDR_LEN(_na, _a, _l)	do {				\
1037		if (_l > NETMAP_BUF_SIZE(_na))				\
1038			_l = NETMAP_BUF_SIZE(_na);			\
1039	} while (0)
1040#endif
1041
1042
1043/*---------------------------------------------------------------*/
1044/*
1045 * Support routines used by netmap subsystems
1046 * (native drivers, VALE, generic, pipes, monitors, ...)
1047 */
1048
1049
1050/* common routine for all functions that create a netmap adapter. It performs
1051 * two main tasks:
1052 * - if the na points to an ifp, mark the ifp as netmap capable
1053 *   using na as its native adapter;
1054 * - provide defaults for the setup callbacks and the memory allocator
1055 */
1056int netmap_attach_common(struct netmap_adapter *);
1057/* common actions to be performed on netmap adapter destruction */
1058void netmap_detach_common(struct netmap_adapter *);
1059/* fill priv->np_[tr]xq{first,last} using the ringid and flags information
1060 * coming from a struct nmreq
1061 */
1062int netmap_interp_ringid(struct netmap_priv_d *priv, uint16_t ringid, uint32_t flags);
1063/* update the ring parameters (number and size of tx and rx rings).
1064 * It calls the nm_config callback, if available.
1065 */
1066int netmap_update_config(struct netmap_adapter *na);
1067/* create and initialize the common fields of the krings array.
1068 * using the information that must be already available in the na.
1069 * tailroom can be used to request the allocation of additional
1070 * tailroom bytes after the krings array. This is used by
1071 * netmap_vp_adapter's (i.e., VALE ports) to make room for
1072 * leasing-related data structures
1073 */
1074int netmap_krings_create(struct netmap_adapter *na, u_int tailroom);
1075/* deletes the kring array of the adapter. The array must have
1076 * been created using netmap_krings_create
1077 */
1078void netmap_krings_delete(struct netmap_adapter *na);
1079
1080/* set the stopped/enabled status of ring
1081 * When stopping, they also wait for all current activity on the ring to
1082 * terminate. The status change is then notified using the na nm_notify
1083 * callback.
1084 */
1085void netmap_set_ring(struct netmap_adapter *, u_int ring_id, enum txrx, int stopped);
1086/* set the stopped/enabled status of all rings of the adapter. */
1087void netmap_set_all_rings(struct netmap_adapter *, int stopped);
1088/* convenience wrappers for netmap_set_all_rings, used in drivers */
1089void netmap_disable_all_rings(struct ifnet *);
1090void netmap_enable_all_rings(struct ifnet *);
1091
1092int netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na,
1093	uint16_t ringid, uint32_t flags);
1094
1095
1096u_int nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg);
1097int netmap_get_na(struct nmreq *nmr, struct netmap_adapter **na, int create);
1098int netmap_get_hw_na(struct ifnet *ifp, struct netmap_adapter **na);
1099
1100
1101#ifdef WITH_VALE
1102/*
1103 * The following bridge-related functions are used by other
1104 * kernel modules.
1105 *
1106 * VALE only supports unicast or broadcast. The lookup
1107 * function can return 0 .. NM_BDG_MAXPORTS-1 for regular ports,
1108 * NM_BDG_MAXPORTS for broadcast, NM_BDG_MAXPORTS+1 for unknown.
1109 * XXX in practice "unknown" might be handled same as broadcast.
1110 */
1111typedef u_int (*bdg_lookup_fn_t)(struct nm_bdg_fwd *ft, uint8_t *ring_nr,
1112		struct netmap_vp_adapter *);
1113typedef int (*bdg_config_fn_t)(struct nm_ifreq *);
1114typedef void (*bdg_dtor_fn_t)(const struct netmap_vp_adapter *);
1115struct netmap_bdg_ops {
1116	bdg_lookup_fn_t lookup;
1117	bdg_config_fn_t config;
1118	bdg_dtor_fn_t	dtor;
1119};
1120
1121u_int netmap_bdg_learning(struct nm_bdg_fwd *ft, uint8_t *dst_ring,
1122		struct netmap_vp_adapter *);
1123
1124#define	NM_BDG_MAXPORTS		254	/* up to 254 */
1125#define	NM_BDG_BROADCAST	NM_BDG_MAXPORTS
1126#define	NM_BDG_NOPORT		(NM_BDG_MAXPORTS+1)
1127
1128#define	NM_NAME			"vale"	/* prefix for bridge port name */
1129
1130/* these are redefined in case of no VALE support */
1131int netmap_get_bdg_na(struct nmreq *nmr, struct netmap_adapter **na, int create);
1132struct nm_bridge *netmap_init_bridges2(u_int);
1133void netmap_uninit_bridges2(struct nm_bridge *, u_int);
1134int netmap_init_bridges(void);
1135void netmap_uninit_bridges(void);
1136int netmap_bdg_ctl(struct nmreq *nmr, struct netmap_bdg_ops *bdg_ops);
1137int netmap_bdg_config(struct nmreq *nmr);
1138
1139#else /* !WITH_VALE */
1140#define	netmap_get_bdg_na(_1, _2, _3)	0
1141#define netmap_init_bridges(_1) 0
1142#define netmap_uninit_bridges()
1143#define	netmap_bdg_ctl(_1, _2)	EINVAL
1144#endif /* !WITH_VALE */
1145
1146#ifdef WITH_PIPES
1147/* max number of pipes per device */
1148#define NM_MAXPIPES	64	/* XXX how many? */
1149void netmap_pipe_dealloc(struct netmap_adapter *);
1150int netmap_get_pipe_na(struct nmreq *nmr, struct netmap_adapter **na, int create);
1151#else /* !WITH_PIPES */
1152#define NM_MAXPIPES	0
1153#define netmap_pipe_alloc(_1, _2) 	0
1154#define netmap_pipe_dealloc(_1)
1155#define netmap_get_pipe_na(nmr, _2, _3)	\
1156	({ int role__ = (nmr)->nr_flags & NR_REG_MASK; \
1157	   (role__ == NR_REG_PIPE_MASTER || 	       \
1158	    role__ == NR_REG_PIPE_SLAVE) ? EOPNOTSUPP : 0; })
1159#endif
1160
1161#ifdef WITH_MONITOR
1162int netmap_get_monitor_na(struct nmreq *nmr, struct netmap_adapter **na, int create);
1163void netmap_monitor_stop(struct netmap_adapter *na);
1164#else
1165#define netmap_get_monitor_na(nmr, _2, _3) \
1166	((nmr)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0)
1167#endif
1168
1169#ifdef CONFIG_NET_NS
1170struct net *netmap_bns_get(void);
1171void netmap_bns_put(struct net *);
1172void netmap_bns_getbridges(struct nm_bridge **, u_int *);
1173#else
1174#define netmap_bns_get()
1175#define netmap_bns_put(_1)
1176#define netmap_bns_getbridges(b, n) \
1177	do { *b = nm_bridges; *n = NM_BRIDGES; } while (0)
1178#endif
1179
1180/* Various prototypes */
1181int netmap_poll(struct cdev *dev, int events, struct thread *td);
1182int netmap_init(void);
1183void netmap_fini(void);
1184int netmap_get_memory(struct netmap_priv_d* p);
1185void netmap_dtor(void *data);
1186int netmap_dtor_locked(struct netmap_priv_d *priv);
1187
1188int netmap_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td);
1189
1190/* netmap_adapter creation/destruction */
1191
1192// #define NM_DEBUG_PUTGET 1
1193
1194#ifdef NM_DEBUG_PUTGET
1195
1196#define NM_DBG(f) __##f
1197
1198void __netmap_adapter_get(struct netmap_adapter *na);
1199
1200#define netmap_adapter_get(na) 				\
1201	do {						\
1202		struct netmap_adapter *__na = na;	\
1203		D("getting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount);	\
1204		__netmap_adapter_get(__na);		\
1205	} while (0)
1206
1207int __netmap_adapter_put(struct netmap_adapter *na);
1208
1209#define netmap_adapter_put(na)				\
1210	({						\
1211		struct netmap_adapter *__na = na;	\
1212		D("putting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount);	\
1213		__netmap_adapter_put(__na);		\
1214	})
1215
1216#else /* !NM_DEBUG_PUTGET */
1217
1218#define NM_DBG(f) f
1219void netmap_adapter_get(struct netmap_adapter *na);
1220int netmap_adapter_put(struct netmap_adapter *na);
1221
1222#endif /* !NM_DEBUG_PUTGET */
1223
1224
1225/*
1226 * module variables
1227 */
1228#define NETMAP_BUF_BASE(na)	((na)->na_lut.lut[0].vaddr)
1229#define NETMAP_BUF_SIZE(na)	((na)->na_lut.objsize)
1230extern int netmap_mitigate;	// XXX not really used
1231extern int netmap_no_pendintr;
1232extern int netmap_verbose;	// XXX debugging
1233enum {                                  /* verbose flags */
1234	NM_VERB_ON = 1,                 /* generic verbose */
1235	NM_VERB_HOST = 0x2,             /* verbose host stack */
1236	NM_VERB_RXSYNC = 0x10,          /* verbose on rxsync/txsync */
1237	NM_VERB_TXSYNC = 0x20,
1238	NM_VERB_RXINTR = 0x100,         /* verbose on rx/tx intr (driver) */
1239	NM_VERB_TXINTR = 0x200,
1240	NM_VERB_NIC_RXSYNC = 0x1000,    /* verbose on rx/tx intr (driver) */
1241	NM_VERB_NIC_TXSYNC = 0x2000,
1242};
1243
1244extern int netmap_txsync_retry;
1245extern int netmap_generic_mit;
1246extern int netmap_generic_ringsize;
1247extern int netmap_generic_rings;
1248extern int netmap_use_count;
1249
1250/*
1251 * NA returns a pointer to the struct netmap adapter from the ifp,
1252 * WNA is used to write it.
1253 */
1254#define	NA(_ifp)	((struct netmap_adapter *)WNA(_ifp))
1255
1256/*
1257 * Macros to determine if an interface is netmap capable or netmap enabled.
1258 * See the magic field in struct netmap_adapter.
1259 */
1260#ifdef __FreeBSD__
1261/*
1262 * on FreeBSD just use if_capabilities and if_capenable.
1263 */
1264#define NETMAP_CAPABLE(ifp)	(NA(ifp) &&		\
1265	(ifp)->if_capabilities & IFCAP_NETMAP )
1266
1267#define	NETMAP_SET_CAPABLE(ifp)				\
1268	(ifp)->if_capabilities |= IFCAP_NETMAP
1269
1270#else	/* linux */
1271
1272/*
1273 * on linux:
1274 * we check if NA(ifp) is set and its first element has a related
1275 * magic value. The capenable is within the struct netmap_adapter.
1276 */
1277#define	NETMAP_MAGIC	0x52697a7a
1278
1279#define NETMAP_CAPABLE(ifp)	(NA(ifp) &&		\
1280	((uint32_t)(uintptr_t)NA(ifp) ^ NA(ifp)->magic) == NETMAP_MAGIC )
1281
1282#define	NETMAP_SET_CAPABLE(ifp)				\
1283	NA(ifp)->magic = ((uint32_t)(uintptr_t)NA(ifp)) ^ NETMAP_MAGIC
1284
1285#endif	/* linux */
1286
1287#ifdef __FreeBSD__
1288
1289/* Assigns the device IOMMU domain to an allocator.
1290 * Returns -ENOMEM in case the domain is different */
1291#define nm_iommu_group_id(dev) (0)
1292
1293/* Callback invoked by the dma machinery after a successful dmamap_load */
1294static void netmap_dmamap_cb(__unused void *arg,
1295    __unused bus_dma_segment_t * segs, __unused int nseg, __unused int error)
1296{
1297}
1298
1299/* bus_dmamap_load wrapper: call aforementioned function if map != NULL.
1300 * XXX can we do it without a callback ?
1301 */
1302static inline void
1303netmap_load_map(struct netmap_adapter *na,
1304	bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1305{
1306	if (map)
1307		bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na),
1308		    netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT);
1309}
1310
1311static inline void
1312netmap_unload_map(struct netmap_adapter *na,
1313        bus_dma_tag_t tag, bus_dmamap_t map)
1314{
1315	if (map)
1316		bus_dmamap_unload(tag, map);
1317}
1318
1319/* update the map when a buffer changes. */
1320static inline void
1321netmap_reload_map(struct netmap_adapter *na,
1322	bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1323{
1324	if (map) {
1325		bus_dmamap_unload(tag, map);
1326		bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na),
1327		    netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT);
1328	}
1329}
1330
1331#else /* linux */
1332
1333int nm_iommu_group_id(bus_dma_tag_t dev);
1334#include <linux/dma-mapping.h>
1335
1336static inline void
1337netmap_load_map(struct netmap_adapter *na,
1338	bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1339{
1340	if (0 && map) {
1341		*map = dma_map_single(na->pdev, buf, na->na_lut.objsize,
1342				DMA_BIDIRECTIONAL);
1343	}
1344}
1345
1346static inline void
1347netmap_unload_map(struct netmap_adapter *na,
1348	bus_dma_tag_t tag, bus_dmamap_t map)
1349{
1350	u_int sz = na->na_lut.objsize;
1351
1352	if (*map) {
1353		dma_unmap_single(na->pdev, *map, sz,
1354				DMA_BIDIRECTIONAL);
1355	}
1356}
1357
1358static inline void
1359netmap_reload_map(struct netmap_adapter *na,
1360	bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1361{
1362	u_int sz = na->na_lut.objsize;
1363
1364	if (*map) {
1365		dma_unmap_single(na->pdev, *map, sz,
1366				DMA_BIDIRECTIONAL);
1367	}
1368
1369	*map = dma_map_single(na->pdev, buf, sz,
1370				DMA_BIDIRECTIONAL);
1371}
1372
1373/*
1374 * XXX How do we redefine these functions:
1375 *
1376 * on linux we need
1377 *	dma_map_single(&pdev->dev, virt_addr, len, direction)
1378 *	dma_unmap_single(&adapter->pdev->dev, phys_addr, len, direction
1379 * The len can be implicit (on netmap it is NETMAP_BUF_SIZE)
1380 * unfortunately the direction is not, so we need to change
1381 * something to have a cross API
1382 */
1383
1384#if 0
1385	struct e1000_buffer *buffer_info =  &tx_ring->buffer_info[l];
1386	/* set time_stamp *before* dma to help avoid a possible race */
1387	buffer_info->time_stamp = jiffies;
1388	buffer_info->mapped_as_page = false;
1389	buffer_info->length = len;
1390	//buffer_info->next_to_watch = l;
1391	/* reload dma map */
1392	dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1393			NETMAP_BUF_SIZE, DMA_TO_DEVICE);
1394	buffer_info->dma = dma_map_single(&adapter->pdev->dev,
1395			addr, NETMAP_BUF_SIZE, DMA_TO_DEVICE);
1396
1397	if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) {
1398		D("dma mapping error");
1399		/* goto dma_error; See e1000_put_txbuf() */
1400		/* XXX reset */
1401	}
1402	tx_desc->buffer_addr = htole64(buffer_info->dma); //XXX
1403
1404#endif
1405
1406/*
1407 * The bus_dmamap_sync() can be one of wmb() or rmb() depending on direction.
1408 */
1409#define bus_dmamap_sync(_a, _b, _c)
1410
1411#endif /* linux */
1412
1413
1414/*
1415 * functions to map NIC to KRING indexes (n2k) and vice versa (k2n)
1416 */
1417static inline int
1418netmap_idx_n2k(struct netmap_kring *kr, int idx)
1419{
1420	int n = kr->nkr_num_slots;
1421	idx += kr->nkr_hwofs;
1422	if (idx < 0)
1423		return idx + n;
1424	else if (idx < n)
1425		return idx;
1426	else
1427		return idx - n;
1428}
1429
1430
1431static inline int
1432netmap_idx_k2n(struct netmap_kring *kr, int idx)
1433{
1434	int n = kr->nkr_num_slots;
1435	idx -= kr->nkr_hwofs;
1436	if (idx < 0)
1437		return idx + n;
1438	else if (idx < n)
1439		return idx;
1440	else
1441		return idx - n;
1442}
1443
1444
1445/* Entries of the look-up table. */
1446struct lut_entry {
1447	void *vaddr;		/* virtual address. */
1448	vm_paddr_t paddr;	/* physical address. */
1449};
1450
1451struct netmap_obj_pool;
1452
1453/*
1454 * NMB return the virtual address of a buffer (buffer 0 on bad index)
1455 * PNMB also fills the physical address
1456 */
1457static inline void *
1458NMB(struct netmap_adapter *na, struct netmap_slot *slot)
1459{
1460	struct lut_entry *lut = na->na_lut.lut;
1461	uint32_t i = slot->buf_idx;
1462	return (unlikely(i >= na->na_lut.objtotal)) ?
1463		lut[0].vaddr : lut[i].vaddr;
1464}
1465
1466static inline void *
1467PNMB(struct netmap_adapter *na, struct netmap_slot *slot, uint64_t *pp)
1468{
1469	uint32_t i = slot->buf_idx;
1470	struct lut_entry *lut = na->na_lut.lut;
1471	void *ret = (i >= na->na_lut.objtotal) ? lut[0].vaddr : lut[i].vaddr;
1472
1473	*pp = (i >= na->na_lut.objtotal) ? lut[0].paddr : lut[i].paddr;
1474	return ret;
1475}
1476
1477
1478/*
1479 * Structure associated to each netmap file descriptor.
1480 * It is created on open and left unbound (np_nifp == NULL).
1481 * A successful NIOCREGIF will set np_nifp and the first few fields;
1482 * this is protected by a global lock (NMG_LOCK) due to low contention.
1483 *
1484 * np_refs counts the number of references to the structure: one for the fd,
1485 * plus (on FreeBSD) one for each active mmap which we track ourselves
1486 * (linux automatically tracks them, but FreeBSD does not).
1487 * np_refs is protected by NMG_LOCK.
1488 *
1489 * Read access to the structure is lock free, because ni_nifp once set
1490 * can only go to 0 when nobody is using the entry anymore. Readers
1491 * must check that np_nifp != NULL before using the other fields.
1492 */
1493struct netmap_priv_d {
1494	struct netmap_if * volatile np_nifp;	/* netmap if descriptor. */
1495
1496	struct netmap_adapter	*np_na;
1497	uint32_t	np_flags;	/* from the ioctl */
1498	u_int		np_qfirst[NR_TXRX],
1499			np_qlast[NR_TXRX]; /* range of tx/rx rings to scan */
1500	uint16_t	np_txpoll;	/* XXX and also np_rxpoll ? */
1501
1502	int		np_refs;	/* use with NMG_LOCK held */
1503
1504	/* pointers to the selinfo to be used for selrecord.
1505	 * Either the local or the global one depending on the
1506	 * number of rings.
1507	 */
1508	NM_SELINFO_T *np_si[NR_TXRX];
1509	struct thread	*np_td;		/* kqueue, just debugging */
1510};
1511
1512#ifdef WITH_MONITOR
1513
1514struct netmap_monitor_adapter {
1515	struct netmap_adapter up;
1516
1517	struct netmap_priv_d priv;
1518	uint32_t flags;
1519};
1520
1521#endif /* WITH_MONITOR */
1522
1523
1524#ifdef WITH_GENERIC
1525/*
1526 * generic netmap emulation for devices that do not have
1527 * native netmap support.
1528 */
1529int generic_netmap_attach(struct ifnet *ifp);
1530
1531int netmap_catch_rx(struct netmap_generic_adapter *na, int intercept);
1532void generic_rx_handler(struct ifnet *ifp, struct mbuf *m);;
1533void netmap_catch_tx(struct netmap_generic_adapter *na, int enable);
1534int generic_xmit_frame(struct ifnet *ifp, struct mbuf *m, void *addr, u_int len, u_int ring_nr);
1535int generic_find_num_desc(struct ifnet *ifp, u_int *tx, u_int *rx);
1536void generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq);
1537static inline struct ifnet*
1538netmap_generic_getifp(struct netmap_generic_adapter *gna)
1539{
1540        if (gna->prev)
1541            return gna->prev->ifp;
1542
1543        return gna->up.up.ifp;
1544}
1545
1546//#define RATE_GENERIC  /* Enables communication statistics for generic. */
1547#ifdef RATE_GENERIC
1548void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi);
1549#else
1550#define generic_rate(txp, txs, txi, rxp, rxs, rxi)
1551#endif
1552
1553/*
1554 * netmap_mitigation API. This is used by the generic adapter
1555 * to reduce the number of interrupt requests/selwakeup
1556 * to clients on incoming packets.
1557 */
1558void netmap_mitigation_init(struct nm_generic_mit *mit, int idx,
1559                                struct netmap_adapter *na);
1560void netmap_mitigation_start(struct nm_generic_mit *mit);
1561void netmap_mitigation_restart(struct nm_generic_mit *mit);
1562int netmap_mitigation_active(struct nm_generic_mit *mit);
1563void netmap_mitigation_cleanup(struct nm_generic_mit *mit);
1564#endif /* WITH_GENERIC */
1565
1566
1567
1568/* Shared declarations for the VALE switch. */
1569
1570/*
1571 * Each transmit queue accumulates a batch of packets into
1572 * a structure before forwarding. Packets to the same
1573 * destination are put in a list using ft_next as a link field.
1574 * ft_frags and ft_next are valid only on the first fragment.
1575 */
1576struct nm_bdg_fwd {	/* forwarding entry for a bridge */
1577	void *ft_buf;		/* netmap or indirect buffer */
1578	uint8_t ft_frags;	/* how many fragments (only on 1st frag) */
1579	uint8_t _ft_port;	/* dst port (unused) */
1580	uint16_t ft_flags;	/* flags, e.g. indirect */
1581	uint16_t ft_len;	/* src fragment len */
1582	uint16_t ft_next;	/* next packet to same destination */
1583};
1584
1585/* struct 'virtio_net_hdr' from linux. */
1586struct nm_vnet_hdr {
1587#define VIRTIO_NET_HDR_F_NEEDS_CSUM     1	/* Use csum_start, csum_offset */
1588#define VIRTIO_NET_HDR_F_DATA_VALID    2	/* Csum is valid */
1589    uint8_t flags;
1590#define VIRTIO_NET_HDR_GSO_NONE         0       /* Not a GSO frame */
1591#define VIRTIO_NET_HDR_GSO_TCPV4        1       /* GSO frame, IPv4 TCP (TSO) */
1592#define VIRTIO_NET_HDR_GSO_UDP          3       /* GSO frame, IPv4 UDP (UFO) */
1593#define VIRTIO_NET_HDR_GSO_TCPV6        4       /* GSO frame, IPv6 TCP */
1594#define VIRTIO_NET_HDR_GSO_ECN          0x80    /* TCP has ECN set */
1595    uint8_t gso_type;
1596    uint16_t hdr_len;
1597    uint16_t gso_size;
1598    uint16_t csum_start;
1599    uint16_t csum_offset;
1600};
1601
1602#define WORST_CASE_GSO_HEADER	(14+40+60)  /* IPv6 + TCP */
1603
1604/* Private definitions for IPv4, IPv6, UDP and TCP headers. */
1605
1606struct nm_iphdr {
1607	uint8_t		version_ihl;
1608	uint8_t		tos;
1609	uint16_t	tot_len;
1610	uint16_t	id;
1611	uint16_t	frag_off;
1612	uint8_t		ttl;
1613	uint8_t		protocol;
1614	uint16_t	check;
1615	uint32_t	saddr;
1616	uint32_t	daddr;
1617	/*The options start here. */
1618};
1619
1620struct nm_tcphdr {
1621	uint16_t	source;
1622	uint16_t	dest;
1623	uint32_t	seq;
1624	uint32_t	ack_seq;
1625	uint8_t		doff;  /* Data offset + Reserved */
1626	uint8_t		flags;
1627	uint16_t	window;
1628	uint16_t	check;
1629	uint16_t	urg_ptr;
1630};
1631
1632struct nm_udphdr {
1633	uint16_t	source;
1634	uint16_t	dest;
1635	uint16_t	len;
1636	uint16_t	check;
1637};
1638
1639struct nm_ipv6hdr {
1640	uint8_t		priority_version;
1641	uint8_t		flow_lbl[3];
1642
1643	uint16_t	payload_len;
1644	uint8_t		nexthdr;
1645	uint8_t		hop_limit;
1646
1647	uint8_t		saddr[16];
1648	uint8_t		daddr[16];
1649};
1650
1651/* Type used to store a checksum (in host byte order) that hasn't been
1652 * folded yet.
1653 */
1654#define rawsum_t uint32_t
1655
1656rawsum_t nm_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum);
1657uint16_t nm_csum_ipv4(struct nm_iphdr *iph);
1658void nm_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data,
1659		      size_t datalen, uint16_t *check);
1660void nm_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data,
1661		      size_t datalen, uint16_t *check);
1662uint16_t nm_csum_fold(rawsum_t cur_sum);
1663
1664void bdg_mismatch_datapath(struct netmap_vp_adapter *na,
1665			   struct netmap_vp_adapter *dst_na,
1666			   struct nm_bdg_fwd *ft_p, struct netmap_ring *ring,
1667			   u_int *j, u_int lim, u_int *howmany);
1668
1669/* persistent virtual port routines */
1670int nm_vi_persist(const char *, struct ifnet **);
1671void nm_vi_detach(struct ifnet *);
1672void nm_vi_init_index(void);
1673
1674#endif /* _NET_NETMAP_KERN_H_ */
1675