mpr_user.c revision 322658
1/*-
2 * Copyright (c) 2008 Yahoo!, Inc.
3 * All rights reserved.
4 * Written by: John Baldwin <jhb@FreeBSD.org>
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. Neither the name of the author nor the names of any co-contributors
15 *    may be used to endorse or promote products derived from this software
16 *    without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD userland interface
31 */
32/*-
33 * Copyright (c) 2011-2015 LSI Corp.
34 * Copyright (c) 2013-2016 Avago Technologies
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 *    notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 *    notice, this list of conditions and the following disclaimer in the
44 *    documentation and/or other materials provided with the distribution.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 *
58 * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD
59 *
60 * $FreeBSD: stable/11/sys/dev/mpr/mpr_user.c 322658 2017-08-18 14:25:07Z ken $
61 */
62
63#include <sys/cdefs.h>
64__FBSDID("$FreeBSD: stable/11/sys/dev/mpr/mpr_user.c 322658 2017-08-18 14:25:07Z ken $");
65
66#include "opt_compat.h"
67
68/* TODO Move headers to mprvar */
69#include <sys/types.h>
70#include <sys/param.h>
71#include <sys/systm.h>
72#include <sys/kernel.h>
73#include <sys/selinfo.h>
74#include <sys/module.h>
75#include <sys/bus.h>
76#include <sys/conf.h>
77#include <sys/bio.h>
78#include <sys/malloc.h>
79#include <sys/uio.h>
80#include <sys/sysctl.h>
81#include <sys/ioccom.h>
82#include <sys/endian.h>
83#include <sys/queue.h>
84#include <sys/kthread.h>
85#include <sys/taskqueue.h>
86#include <sys/proc.h>
87#include <sys/sysent.h>
88
89#include <machine/bus.h>
90#include <machine/resource.h>
91#include <sys/rman.h>
92
93#include <cam/cam.h>
94#include <cam/cam_ccb.h>
95
96#include <dev/mpr/mpi/mpi2_type.h>
97#include <dev/mpr/mpi/mpi2.h>
98#include <dev/mpr/mpi/mpi2_ioc.h>
99#include <dev/mpr/mpi/mpi2_cnfg.h>
100#include <dev/mpr/mpi/mpi2_init.h>
101#include <dev/mpr/mpi/mpi2_tool.h>
102#include <dev/mpr/mpi/mpi2_pci.h>
103#include <dev/mpr/mpr_ioctl.h>
104#include <dev/mpr/mprvar.h>
105#include <dev/mpr/mpr_table.h>
106#include <dev/mpr/mpr_sas.h>
107#include <dev/pci/pcivar.h>
108#include <dev/pci/pcireg.h>
109
110static d_open_t		mpr_open;
111static d_close_t	mpr_close;
112static d_ioctl_t	mpr_ioctl_devsw;
113
114static struct cdevsw mpr_cdevsw = {
115	.d_version =	D_VERSION,
116	.d_flags =	0,
117	.d_open =	mpr_open,
118	.d_close =	mpr_close,
119	.d_ioctl =	mpr_ioctl_devsw,
120	.d_name =	"mpr",
121};
122
123typedef int (mpr_user_f)(struct mpr_command *, struct mpr_usr_command *);
124static mpr_user_f	mpi_pre_ioc_facts;
125static mpr_user_f	mpi_pre_port_facts;
126static mpr_user_f	mpi_pre_fw_download;
127static mpr_user_f	mpi_pre_fw_upload;
128static mpr_user_f	mpi_pre_sata_passthrough;
129static mpr_user_f	mpi_pre_smp_passthrough;
130static mpr_user_f	mpi_pre_config;
131static mpr_user_f	mpi_pre_sas_io_unit_control;
132
133static int mpr_user_read_cfg_header(struct mpr_softc *,
134    struct mpr_cfg_page_req *);
135static int mpr_user_read_cfg_page(struct mpr_softc *,
136    struct mpr_cfg_page_req *, void *);
137static int mpr_user_read_extcfg_header(struct mpr_softc *,
138    struct mpr_ext_cfg_page_req *);
139static int mpr_user_read_extcfg_page(struct mpr_softc *,
140    struct mpr_ext_cfg_page_req *, void *);
141static int mpr_user_write_cfg_page(struct mpr_softc *,
142    struct mpr_cfg_page_req *, void *);
143static int mpr_user_setup_request(struct mpr_command *,
144    struct mpr_usr_command *);
145static int mpr_user_command(struct mpr_softc *, struct mpr_usr_command *);
146
147static int mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data);
148static void mpr_user_get_adapter_data(struct mpr_softc *sc,
149    mpr_adapter_data_t *data);
150static void mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data);
151static uint8_t mpr_get_fw_diag_buffer_number(struct mpr_softc *sc,
152    uint32_t unique_id);
153static int mpr_post_fw_diag_buffer(struct mpr_softc *sc,
154    mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code);
155static int mpr_release_fw_diag_buffer(struct mpr_softc *sc,
156    mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code,
157    uint32_t diag_type);
158static int mpr_diag_register(struct mpr_softc *sc,
159    mpr_fw_diag_register_t *diag_register, uint32_t *return_code);
160static int mpr_diag_unregister(struct mpr_softc *sc,
161    mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code);
162static int mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query,
163    uint32_t *return_code);
164static int mpr_diag_read_buffer(struct mpr_softc *sc,
165    mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf,
166    uint32_t *return_code);
167static int mpr_diag_release(struct mpr_softc *sc,
168    mpr_fw_diag_release_t *diag_release, uint32_t *return_code);
169static int mpr_do_diag_action(struct mpr_softc *sc, uint32_t action,
170    uint8_t *diag_action, uint32_t length, uint32_t *return_code);
171static int mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data);
172static void mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data);
173static void mpr_user_event_enable(struct mpr_softc *sc,
174    mpr_event_enable_t *data);
175static int mpr_user_event_report(struct mpr_softc *sc,
176    mpr_event_report_t *data);
177static int mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data);
178static int mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data);
179
180static MALLOC_DEFINE(M_MPRUSER, "mpr_user", "Buffers for mpr(4) ioctls");
181
182/* Macros from compat/freebsd32/freebsd32.h */
183#define	PTRIN(v)	(void *)(uintptr_t)(v)
184#define	PTROUT(v)	(uint32_t)(uintptr_t)(v)
185
186#define	CP(src,dst,fld) do { (dst).fld = (src).fld; } while (0)
187#define	PTRIN_CP(src,dst,fld)				\
188	do { (dst).fld = PTRIN((src).fld); } while (0)
189#define	PTROUT_CP(src,dst,fld) \
190	do { (dst).fld = PTROUT((src).fld); } while (0)
191
192/*
193 * MPI functions that support IEEE SGLs for SAS3.
194 */
195static uint8_t ieee_sgl_func_list[] = {
196	MPI2_FUNCTION_SCSI_IO_REQUEST,
197	MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH,
198	MPI2_FUNCTION_SMP_PASSTHROUGH,
199	MPI2_FUNCTION_SATA_PASSTHROUGH,
200	MPI2_FUNCTION_FW_UPLOAD,
201	MPI2_FUNCTION_FW_DOWNLOAD,
202	MPI2_FUNCTION_TARGET_ASSIST,
203	MPI2_FUNCTION_TARGET_STATUS_SEND,
204	MPI2_FUNCTION_TOOLBOX
205};
206
207int
208mpr_attach_user(struct mpr_softc *sc)
209{
210	int unit;
211
212	unit = device_get_unit(sc->mpr_dev);
213	sc->mpr_cdev = make_dev(&mpr_cdevsw, unit, UID_ROOT, GID_OPERATOR, 0640,
214	    "mpr%d", unit);
215
216	if (sc->mpr_cdev == NULL)
217		return (ENOMEM);
218
219	sc->mpr_cdev->si_drv1 = sc;
220	return (0);
221}
222
223void
224mpr_detach_user(struct mpr_softc *sc)
225{
226
227	/* XXX: do a purge of pending requests? */
228	if (sc->mpr_cdev != NULL)
229		destroy_dev(sc->mpr_cdev);
230}
231
232static int
233mpr_open(struct cdev *dev, int flags, int fmt, struct thread *td)
234{
235
236	return (0);
237}
238
239static int
240mpr_close(struct cdev *dev, int flags, int fmt, struct thread *td)
241{
242
243	return (0);
244}
245
246static int
247mpr_user_read_cfg_header(struct mpr_softc *sc,
248    struct mpr_cfg_page_req *page_req)
249{
250	MPI2_CONFIG_PAGE_HEADER *hdr;
251	struct mpr_config_params params;
252	int	    error;
253
254	hdr = &params.hdr.Struct;
255	params.action = MPI2_CONFIG_ACTION_PAGE_HEADER;
256	params.page_address = le32toh(page_req->page_address);
257	hdr->PageVersion = 0;
258	hdr->PageLength = 0;
259	hdr->PageNumber = page_req->header.PageNumber;
260	hdr->PageType = page_req->header.PageType;
261	params.buffer = NULL;
262	params.length = 0;
263	params.callback = NULL;
264
265	if ((error = mpr_read_config_page(sc, &params)) != 0) {
266		/*
267		 * Leave the request. Without resetting the chip, it's
268		 * still owned by it and we'll just get into trouble
269		 * freeing it now. Mark it as abandoned so that if it
270		 * shows up later it can be freed.
271		 */
272		mpr_printf(sc, "read_cfg_header timed out\n");
273		return (ETIMEDOUT);
274	}
275
276	page_req->ioc_status = htole16(params.status);
277	if ((page_req->ioc_status & MPI2_IOCSTATUS_MASK) ==
278	    MPI2_IOCSTATUS_SUCCESS) {
279		bcopy(hdr, &page_req->header, sizeof(page_req->header));
280	}
281
282	return (0);
283}
284
285static int
286mpr_user_read_cfg_page(struct mpr_softc *sc, struct mpr_cfg_page_req *page_req,
287    void *buf)
288{
289	MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr;
290	struct mpr_config_params params;
291	int	      error;
292
293	reqhdr = buf;
294	hdr = &params.hdr.Struct;
295	hdr->PageVersion = reqhdr->PageVersion;
296	hdr->PageLength = reqhdr->PageLength;
297	hdr->PageNumber = reqhdr->PageNumber;
298	hdr->PageType = reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK;
299	params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT;
300	params.page_address = le32toh(page_req->page_address);
301	params.buffer = buf;
302	params.length = le32toh(page_req->len);
303	params.callback = NULL;
304
305	if ((error = mpr_read_config_page(sc, &params)) != 0) {
306		mpr_printf(sc, "mpr_user_read_cfg_page timed out\n");
307		return (ETIMEDOUT);
308	}
309
310	page_req->ioc_status = htole16(params.status);
311	return (0);
312}
313
314static int
315mpr_user_read_extcfg_header(struct mpr_softc *sc,
316    struct mpr_ext_cfg_page_req *ext_page_req)
317{
318	MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
319	struct mpr_config_params params;
320	int	    error;
321
322	hdr = &params.hdr.Ext;
323	params.action = MPI2_CONFIG_ACTION_PAGE_HEADER;
324	hdr->PageVersion = ext_page_req->header.PageVersion;
325	hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
326	hdr->ExtPageLength = 0;
327	hdr->PageNumber = ext_page_req->header.PageNumber;
328	hdr->ExtPageType = ext_page_req->header.ExtPageType;
329	params.page_address = le32toh(ext_page_req->page_address);
330	params.buffer = NULL;
331	params.length = 0;
332	params.callback = NULL;
333
334	if ((error = mpr_read_config_page(sc, &params)) != 0) {
335		/*
336		 * Leave the request. Without resetting the chip, it's
337		 * still owned by it and we'll just get into trouble
338		 * freeing it now. Mark it as abandoned so that if it
339		 * shows up later it can be freed.
340		 */
341		mpr_printf(sc, "mpr_user_read_extcfg_header timed out\n");
342		return (ETIMEDOUT);
343	}
344
345	ext_page_req->ioc_status = htole16(params.status);
346	if ((ext_page_req->ioc_status & MPI2_IOCSTATUS_MASK) ==
347	    MPI2_IOCSTATUS_SUCCESS) {
348		ext_page_req->header.PageVersion = hdr->PageVersion;
349		ext_page_req->header.PageNumber = hdr->PageNumber;
350		ext_page_req->header.PageType = hdr->PageType;
351		ext_page_req->header.ExtPageLength = hdr->ExtPageLength;
352		ext_page_req->header.ExtPageType = hdr->ExtPageType;
353	}
354
355	return (0);
356}
357
358static int
359mpr_user_read_extcfg_page(struct mpr_softc *sc,
360    struct mpr_ext_cfg_page_req *ext_page_req, void *buf)
361{
362	MPI2_CONFIG_EXTENDED_PAGE_HEADER *reqhdr, *hdr;
363	struct mpr_config_params params;
364	int error;
365
366	reqhdr = buf;
367	hdr = &params.hdr.Ext;
368	params.action = MPI2_CONFIG_ACTION_PAGE_READ_CURRENT;
369	params.page_address = le32toh(ext_page_req->page_address);
370	hdr->PageVersion = reqhdr->PageVersion;
371	hdr->PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
372	hdr->PageNumber = reqhdr->PageNumber;
373	hdr->ExtPageType = reqhdr->ExtPageType;
374	hdr->ExtPageLength = reqhdr->ExtPageLength;
375	params.buffer = buf;
376	params.length = le32toh(ext_page_req->len);
377	params.callback = NULL;
378
379	if ((error = mpr_read_config_page(sc, &params)) != 0) {
380		mpr_printf(sc, "mpr_user_read_extcfg_page timed out\n");
381		return (ETIMEDOUT);
382	}
383
384	ext_page_req->ioc_status = htole16(params.status);
385	return (0);
386}
387
388static int
389mpr_user_write_cfg_page(struct mpr_softc *sc,
390    struct mpr_cfg_page_req *page_req, void *buf)
391{
392	MPI2_CONFIG_PAGE_HEADER *reqhdr, *hdr;
393	struct mpr_config_params params;
394	u_int	      hdr_attr;
395	int	      error;
396
397	reqhdr = buf;
398	hdr = &params.hdr.Struct;
399	hdr_attr = reqhdr->PageType & MPI2_CONFIG_PAGEATTR_MASK;
400	if (hdr_attr != MPI2_CONFIG_PAGEATTR_CHANGEABLE &&
401	    hdr_attr != MPI2_CONFIG_PAGEATTR_PERSISTENT) {
402		mpr_printf(sc, "page type 0x%x not changeable\n",
403			reqhdr->PageType & MPI2_CONFIG_PAGETYPE_MASK);
404		return (EINVAL);
405	}
406
407	/*
408	 * There isn't any point in restoring stripped out attributes
409	 * if you then mask them going down to issue the request.
410	 */
411
412	hdr->PageVersion = reqhdr->PageVersion;
413	hdr->PageLength = reqhdr->PageLength;
414	hdr->PageNumber = reqhdr->PageNumber;
415	hdr->PageType = reqhdr->PageType;
416	params.action = MPI2_CONFIG_ACTION_PAGE_WRITE_CURRENT;
417	params.page_address = le32toh(page_req->page_address);
418	params.buffer = buf;
419	params.length = le32toh(page_req->len);
420	params.callback = NULL;
421
422	if ((error = mpr_write_config_page(sc, &params)) != 0) {
423		mpr_printf(sc, "mpr_write_cfg_page timed out\n");
424		return (ETIMEDOUT);
425	}
426
427	page_req->ioc_status = htole16(params.status);
428	return (0);
429}
430
431void
432mpr_init_sge(struct mpr_command *cm, void *req, void *sge)
433{
434	int off, space;
435
436	space = (int)cm->cm_sc->facts->IOCRequestFrameSize * 4;
437	off = (uintptr_t)sge - (uintptr_t)req;
438
439	KASSERT(off < space, ("bad pointers %p %p, off %d, space %d",
440            req, sge, off, space));
441
442	cm->cm_sge = sge;
443	cm->cm_sglsize = space - off;
444}
445
446/*
447 * Prepare the mpr_command for an IOC_FACTS request.
448 */
449static int
450mpi_pre_ioc_facts(struct mpr_command *cm, struct mpr_usr_command *cmd)
451{
452	MPI2_IOC_FACTS_REQUEST *req = (void *)cm->cm_req;
453	MPI2_IOC_FACTS_REPLY *rpl;
454
455	if (cmd->req_len != sizeof *req)
456		return (EINVAL);
457	if (cmd->rpl_len != sizeof *rpl)
458		return (EINVAL);
459
460	cm->cm_sge = NULL;
461	cm->cm_sglsize = 0;
462	return (0);
463}
464
465/*
466 * Prepare the mpr_command for a PORT_FACTS request.
467 */
468static int
469mpi_pre_port_facts(struct mpr_command *cm, struct mpr_usr_command *cmd)
470{
471	MPI2_PORT_FACTS_REQUEST *req = (void *)cm->cm_req;
472	MPI2_PORT_FACTS_REPLY *rpl;
473
474	if (cmd->req_len != sizeof *req)
475		return (EINVAL);
476	if (cmd->rpl_len != sizeof *rpl)
477		return (EINVAL);
478
479	cm->cm_sge = NULL;
480	cm->cm_sglsize = 0;
481	return (0);
482}
483
484/*
485 * Prepare the mpr_command for a FW_DOWNLOAD request.
486 */
487static int
488mpi_pre_fw_download(struct mpr_command *cm, struct mpr_usr_command *cmd)
489{
490	MPI25_FW_DOWNLOAD_REQUEST *req = (void *)cm->cm_req;
491	MPI2_FW_DOWNLOAD_REPLY *rpl;
492	int error;
493
494	if (cmd->req_len != sizeof *req)
495		return (EINVAL);
496	if (cmd->rpl_len != sizeof *rpl)
497		return (EINVAL);
498
499	if (cmd->len == 0)
500		return (EINVAL);
501
502	error = copyin(cmd->buf, cm->cm_data, cmd->len);
503	if (error != 0)
504		return (error);
505
506	mpr_init_sge(cm, req, &req->SGL);
507
508	/*
509	 * For now, the F/W image must be provided in a single request.
510	 */
511	if ((req->MsgFlags & MPI2_FW_DOWNLOAD_MSGFLGS_LAST_SEGMENT) == 0)
512		return (EINVAL);
513	if (req->TotalImageSize != cmd->len)
514		return (EINVAL);
515
516	req->ImageOffset = 0;
517	req->ImageSize = cmd->len;
518
519	cm->cm_flags |= MPR_CM_FLAGS_DATAOUT;
520
521	return (mpr_push_ieee_sge(cm, &req->SGL, 0));
522}
523
524/*
525 * Prepare the mpr_command for a FW_UPLOAD request.
526 */
527static int
528mpi_pre_fw_upload(struct mpr_command *cm, struct mpr_usr_command *cmd)
529{
530	MPI25_FW_UPLOAD_REQUEST *req = (void *)cm->cm_req;
531	MPI2_FW_UPLOAD_REPLY *rpl;
532
533	if (cmd->req_len != sizeof *req)
534		return (EINVAL);
535	if (cmd->rpl_len != sizeof *rpl)
536		return (EINVAL);
537
538	mpr_init_sge(cm, req, &req->SGL);
539	if (cmd->len == 0) {
540		/* Perhaps just asking what the size of the fw is? */
541		return (0);
542	}
543
544	req->ImageOffset = 0;
545	req->ImageSize = cmd->len;
546
547	cm->cm_flags |= MPR_CM_FLAGS_DATAIN;
548
549	return (mpr_push_ieee_sge(cm, &req->SGL, 0));
550}
551
552/*
553 * Prepare the mpr_command for a SATA_PASSTHROUGH request.
554 */
555static int
556mpi_pre_sata_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd)
557{
558	MPI2_SATA_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req;
559	MPI2_SATA_PASSTHROUGH_REPLY *rpl;
560
561	if (cmd->req_len != sizeof *req)
562		return (EINVAL);
563	if (cmd->rpl_len != sizeof *rpl)
564		return (EINVAL);
565
566	mpr_init_sge(cm, req, &req->SGL);
567	return (0);
568}
569
570/*
571 * Prepare the mpr_command for a SMP_PASSTHROUGH request.
572 */
573static int
574mpi_pre_smp_passthrough(struct mpr_command *cm, struct mpr_usr_command *cmd)
575{
576	MPI2_SMP_PASSTHROUGH_REQUEST *req = (void *)cm->cm_req;
577	MPI2_SMP_PASSTHROUGH_REPLY *rpl;
578
579	if (cmd->req_len != sizeof *req)
580		return (EINVAL);
581	if (cmd->rpl_len != sizeof *rpl)
582		return (EINVAL);
583
584	mpr_init_sge(cm, req, &req->SGL);
585	return (0);
586}
587
588/*
589 * Prepare the mpr_command for a CONFIG request.
590 */
591static int
592mpi_pre_config(struct mpr_command *cm, struct mpr_usr_command *cmd)
593{
594	MPI2_CONFIG_REQUEST *req = (void *)cm->cm_req;
595	MPI2_CONFIG_REPLY *rpl;
596
597	if (cmd->req_len != sizeof *req)
598		return (EINVAL);
599	if (cmd->rpl_len != sizeof *rpl)
600		return (EINVAL);
601
602	mpr_init_sge(cm, req, &req->PageBufferSGE);
603	return (0);
604}
605
606/*
607 * Prepare the mpr_command for a SAS_IO_UNIT_CONTROL request.
608 */
609static int
610mpi_pre_sas_io_unit_control(struct mpr_command *cm,
611			     struct mpr_usr_command *cmd)
612{
613
614	cm->cm_sge = NULL;
615	cm->cm_sglsize = 0;
616	return (0);
617}
618
619/*
620 * A set of functions to prepare an mpr_command for the various
621 * supported requests.
622 */
623struct mpr_user_func {
624	U8		Function;
625	mpr_user_f	*f_pre;
626} mpr_user_func_list[] = {
627	{ MPI2_FUNCTION_IOC_FACTS,		mpi_pre_ioc_facts },
628	{ MPI2_FUNCTION_PORT_FACTS,		mpi_pre_port_facts },
629	{ MPI2_FUNCTION_FW_DOWNLOAD, 		mpi_pre_fw_download },
630	{ MPI2_FUNCTION_FW_UPLOAD,		mpi_pre_fw_upload },
631	{ MPI2_FUNCTION_SATA_PASSTHROUGH,	mpi_pre_sata_passthrough },
632	{ MPI2_FUNCTION_SMP_PASSTHROUGH,	mpi_pre_smp_passthrough},
633	{ MPI2_FUNCTION_CONFIG,			mpi_pre_config},
634	{ MPI2_FUNCTION_SAS_IO_UNIT_CONTROL,	mpi_pre_sas_io_unit_control },
635	{ 0xFF,					NULL } /* list end */
636};
637
638static int
639mpr_user_setup_request(struct mpr_command *cm, struct mpr_usr_command *cmd)
640{
641	MPI2_REQUEST_HEADER *hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
642	struct mpr_user_func *f;
643
644	for (f = mpr_user_func_list; f->f_pre != NULL; f++) {
645		if (hdr->Function == f->Function)
646			return (f->f_pre(cm, cmd));
647	}
648	return (EINVAL);
649}
650
651static int
652mpr_user_command(struct mpr_softc *sc, struct mpr_usr_command *cmd)
653{
654	MPI2_REQUEST_HEADER *hdr;
655	MPI2_DEFAULT_REPLY *rpl = NULL;
656	void *buf = NULL;
657	struct mpr_command *cm = NULL;
658	int err = 0;
659	int sz;
660
661	mpr_lock(sc);
662	cm = mpr_alloc_command(sc);
663
664	if (cm == NULL) {
665		mpr_printf(sc, "%s: no mpr requests\n", __func__);
666		err = ENOMEM;
667		goto RetFree;
668	}
669	mpr_unlock(sc);
670
671	hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
672
673	mpr_dprint(sc, MPR_USER, "%s: req %p %d  rpl %p %d\n", __func__,
674	    cmd->req, cmd->req_len, cmd->rpl, cmd->rpl_len);
675
676	if (cmd->req_len > (int)sc->facts->IOCRequestFrameSize * 4) {
677		err = EINVAL;
678		goto RetFreeUnlocked;
679	}
680	err = copyin(cmd->req, hdr, cmd->req_len);
681	if (err != 0)
682		goto RetFreeUnlocked;
683
684	mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__,
685	    hdr->Function, hdr->MsgFlags);
686
687	if (cmd->len > 0) {
688		buf = malloc(cmd->len, M_MPRUSER, M_WAITOK|M_ZERO);
689		cm->cm_data = buf;
690		cm->cm_length = cmd->len;
691	} else {
692		cm->cm_data = NULL;
693		cm->cm_length = 0;
694	}
695
696	cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE;
697	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
698
699	err = mpr_user_setup_request(cm, cmd);
700	if (err == EINVAL) {
701		mpr_printf(sc, "%s: unsupported parameter or unsupported "
702		    "function in request (function = 0x%X)\n", __func__,
703		    hdr->Function);
704	}
705	if (err != 0)
706		goto RetFreeUnlocked;
707
708	mpr_lock(sc);
709	err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
710
711	if (err || (cm == NULL)) {
712		mpr_printf(sc, "%s: invalid request: error %d\n",
713		    __func__, err);
714		goto RetFree;
715	}
716
717	if (cm != NULL)
718		rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
719	if (rpl != NULL)
720		sz = rpl->MsgLength * 4;
721	else
722		sz = 0;
723
724	if (sz > cmd->rpl_len) {
725		mpr_printf(sc, "%s: user reply buffer (%d) smaller than "
726		    "returned buffer (%d)\n", __func__, cmd->rpl_len, sz);
727		sz = cmd->rpl_len;
728	}
729
730	mpr_unlock(sc);
731	copyout(rpl, cmd->rpl, sz);
732	if (buf != NULL)
733		copyout(buf, cmd->buf, cmd->len);
734	mpr_dprint(sc, MPR_USER, "%s: reply size %d\n", __func__, sz);
735
736RetFreeUnlocked:
737	mpr_lock(sc);
738RetFree:
739	if (cm != NULL)
740		mpr_free_command(sc, cm);
741	mpr_unlock(sc);
742	if (buf != NULL)
743		free(buf, M_MPRUSER);
744	return (err);
745}
746
747static int
748mpr_user_pass_thru(struct mpr_softc *sc, mpr_pass_thru_t *data)
749{
750	MPI2_REQUEST_HEADER	*hdr, tmphdr;
751	MPI2_DEFAULT_REPLY	*rpl;
752	Mpi26NVMeEncapsulatedErrorReply_t *nvme_error_reply = NULL;
753	Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request = NULL;
754	struct mpr_command	*cm = NULL;
755	int			i, err = 0, dir = 0, sz;
756	uint8_t			tool, function = 0;
757	u_int			sense_len;
758	struct mprsas_target	*targ = NULL;
759
760	/*
761	 * Only allow one passthru command at a time.  Use the MPR_FLAGS_BUSY
762	 * bit to denote that a passthru is being processed.
763	 */
764	mpr_lock(sc);
765	if (sc->mpr_flags & MPR_FLAGS_BUSY) {
766		mpr_dprint(sc, MPR_USER, "%s: Only one passthru command "
767		    "allowed at a single time.", __func__);
768		mpr_unlock(sc);
769		return (EBUSY);
770	}
771	sc->mpr_flags |= MPR_FLAGS_BUSY;
772	mpr_unlock(sc);
773
774	/*
775	 * Do some validation on data direction.  Valid cases are:
776	 *    1) DataSize is 0 and direction is NONE
777	 *    2) DataSize is non-zero and one of:
778	 *        a) direction is READ or
779	 *        b) direction is WRITE or
780	 *        c) direction is BOTH and DataOutSize is non-zero
781	 * If valid and the direction is BOTH, change the direction to READ.
782	 * if valid and the direction is not BOTH, make sure DataOutSize is 0.
783	 */
784	if (((data->DataSize == 0) &&
785	    (data->DataDirection == MPR_PASS_THRU_DIRECTION_NONE)) ||
786	    ((data->DataSize != 0) &&
787	    ((data->DataDirection == MPR_PASS_THRU_DIRECTION_READ) ||
788	    (data->DataDirection == MPR_PASS_THRU_DIRECTION_WRITE) ||
789	    ((data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH) &&
790	    (data->DataOutSize != 0))))) {
791		if (data->DataDirection == MPR_PASS_THRU_DIRECTION_BOTH)
792			data->DataDirection = MPR_PASS_THRU_DIRECTION_READ;
793		else
794			data->DataOutSize = 0;
795	} else
796		return (EINVAL);
797
798	mpr_dprint(sc, MPR_USER, "%s: req 0x%jx %d  rpl 0x%jx %d "
799	    "data in 0x%jx %d data out 0x%jx %d data dir %d\n", __func__,
800	    data->PtrRequest, data->RequestSize, data->PtrReply,
801	    data->ReplySize, data->PtrData, data->DataSize,
802	    data->PtrDataOut, data->DataOutSize, data->DataDirection);
803
804	/*
805	 * copy in the header so we know what we're dealing with before we
806	 * commit to allocating a command for it.
807	 */
808	err = copyin(PTRIN(data->PtrRequest), &tmphdr, data->RequestSize);
809	if (err != 0)
810		goto RetFreeUnlocked;
811
812	if (data->RequestSize > (int)sc->facts->IOCRequestFrameSize * 4) {
813		err = EINVAL;
814		goto RetFreeUnlocked;
815	}
816
817	function = tmphdr.Function;
818	mpr_dprint(sc, MPR_USER, "%s: Function %02X MsgFlags %02X\n", __func__,
819	    function, tmphdr.MsgFlags);
820
821	/*
822	 * Handle a passthru TM request.
823	 */
824	if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) {
825		MPI2_SCSI_TASK_MANAGE_REQUEST	*task;
826
827		mpr_lock(sc);
828		cm = mprsas_alloc_tm(sc);
829		if (cm == NULL) {
830			err = EINVAL;
831			goto Ret;
832		}
833
834		/* Copy the header in.  Only a small fixup is needed. */
835		task = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req;
836		bcopy(&tmphdr, task, data->RequestSize);
837		task->TaskMID = cm->cm_desc.Default.SMID;
838
839		cm->cm_data = NULL;
840		cm->cm_desc.HighPriority.RequestFlags =
841		    MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
842		cm->cm_complete = NULL;
843		cm->cm_complete_data = NULL;
844
845		targ = mprsas_find_target_by_handle(sc->sassc, 0,
846		    task->DevHandle);
847		if (targ == NULL) {
848			mpr_dprint(sc, MPR_INFO,
849			   "%s %d : invalid handle for requested TM 0x%x \n",
850			   __func__, __LINE__, task->DevHandle);
851			err = 1;
852		} else {
853			mprsas_prepare_for_tm(sc, cm, targ, CAM_LUN_WILDCARD);
854			err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
855		}
856
857		if (err != 0) {
858			err = EIO;
859			mpr_dprint(sc, MPR_FAULT, "%s: task management failed",
860			    __func__);
861		}
862		/*
863		 * Copy the reply data and sense data to user space.
864		 */
865		if ((cm != NULL) && (cm->cm_reply != NULL)) {
866			rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
867			sz = rpl->MsgLength * 4;
868
869			if (sz > data->ReplySize) {
870				mpr_printf(sc, "%s: user reply buffer (%d) "
871				    "smaller than returned buffer (%d)\n",
872				    __func__, data->ReplySize, sz);
873			}
874			mpr_unlock(sc);
875			copyout(cm->cm_reply, PTRIN(data->PtrReply),
876			    data->ReplySize);
877			mpr_lock(sc);
878		}
879		mprsas_free_tm(sc, cm);
880		goto Ret;
881	}
882
883	mpr_lock(sc);
884	cm = mpr_alloc_command(sc);
885
886	if (cm == NULL) {
887		mpr_printf(sc, "%s: no mpr requests\n", __func__);
888		err = ENOMEM;
889		goto Ret;
890	}
891	mpr_unlock(sc);
892
893	hdr = (MPI2_REQUEST_HEADER *)cm->cm_req;
894	bcopy(&tmphdr, hdr, data->RequestSize);
895
896	/*
897	 * Do some checking to make sure the IOCTL request contains a valid
898	 * request.  Then set the SGL info.
899	 */
900	mpr_init_sge(cm, hdr, (void *)((uint8_t *)hdr + data->RequestSize));
901
902	/*
903	 * Set up for read, write or both.  From check above, DataOutSize will
904	 * be 0 if direction is READ or WRITE, but it will have some non-zero
905	 * value if the direction is BOTH.  So, just use the biggest size to get
906	 * the cm_data buffer size.  If direction is BOTH, 2 SGLs need to be set
907	 * up; the first is for the request and the second will contain the
908	 * response data. cm_out_len needs to be set here and this will be used
909	 * when the SGLs are set up.
910	 */
911	cm->cm_data = NULL;
912	cm->cm_length = MAX(data->DataSize, data->DataOutSize);
913	cm->cm_out_len = data->DataOutSize;
914	cm->cm_flags = 0;
915	if (cm->cm_length != 0) {
916		cm->cm_data = malloc(cm->cm_length, M_MPRUSER, M_WAITOK |
917		    M_ZERO);
918		cm->cm_flags = MPR_CM_FLAGS_DATAIN;
919		if (data->DataOutSize) {
920			cm->cm_flags |= MPR_CM_FLAGS_DATAOUT;
921			err = copyin(PTRIN(data->PtrDataOut),
922			    cm->cm_data, data->DataOutSize);
923		} else if (data->DataDirection ==
924		    MPR_PASS_THRU_DIRECTION_WRITE) {
925			cm->cm_flags = MPR_CM_FLAGS_DATAOUT;
926			err = copyin(PTRIN(data->PtrData),
927			    cm->cm_data, data->DataSize);
928		}
929		if (err != 0)
930			mpr_dprint(sc, MPR_FAULT, "%s: failed to copy IOCTL "
931			    "data from user space\n", __func__);
932	}
933	/*
934	 * Set this flag only if processing a command that does not need an
935	 * IEEE SGL.  The CLI Tool within the Toolbox uses IEEE SGLs, so clear
936	 * the flag only for that tool if processing a Toolbox function.
937	 */
938	cm->cm_flags |= MPR_CM_FLAGS_SGE_SIMPLE;
939	for (i = 0; i < sizeof (ieee_sgl_func_list); i++) {
940		if (function == ieee_sgl_func_list[i]) {
941			if (function == MPI2_FUNCTION_TOOLBOX)
942			{
943				tool = (uint8_t)hdr->FunctionDependent1;
944				if (tool != MPI2_TOOLBOX_DIAGNOSTIC_CLI_TOOL)
945					break;
946			}
947			cm->cm_flags &= ~MPR_CM_FLAGS_SGE_SIMPLE;
948			break;
949		}
950	}
951	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
952
953	if (function == MPI2_FUNCTION_NVME_ENCAPSULATED) {
954		nvme_encap_request =
955		    (Mpi26NVMeEncapsulatedRequest_t *)cm->cm_req;
956		cm->cm_desc.Default.RequestFlags =
957		    MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
958
959		/*
960		 * Get the Physical Address of the sense buffer.
961		 * Save the user's Error Response buffer address and use that
962		 *   field to hold the sense buffer address.
963		 * Clear the internal sense buffer, which will potentially hold
964		 *   the Completion Queue Entry on return, or 0 if no Entry.
965		 * Build the PRPs and set direction bits.
966		 * Send the request.
967		 */
968		cm->nvme_error_response =
969		    (uint64_t *)(uintptr_t)(((uint64_t)nvme_encap_request->
970		    ErrorResponseBaseAddress.High << 32) |
971		    (uint64_t)nvme_encap_request->
972		    ErrorResponseBaseAddress.Low);
973		nvme_encap_request->ErrorResponseBaseAddress.High =
974		    htole32((uint32_t)((uint64_t)cm->cm_sense_busaddr >> 32));
975		nvme_encap_request->ErrorResponseBaseAddress.Low =
976		    htole32(cm->cm_sense_busaddr);
977		memset(cm->cm_sense, 0, NVME_ERROR_RESPONSE_SIZE);
978		mpr_build_nvme_prp(sc, cm, nvme_encap_request, cm->cm_data,
979		    data->DataSize, data->DataOutSize);
980	}
981
982	/*
983	 * Set up Sense buffer and SGL offset for IO passthru.  SCSI IO request
984	 * uses SCSI IO or Fast Path SCSI IO descriptor.
985	 */
986	if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) ||
987	    (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) {
988		MPI2_SCSI_IO_REQUEST	*scsi_io_req;
989
990		scsi_io_req = (MPI2_SCSI_IO_REQUEST *)hdr;
991		/*
992		 * Put SGE for data and data_out buffer at the end of
993		 * scsi_io_request message header (64 bytes in total).
994		 * Following above SGEs, the residual space will be used by
995		 * sense data.
996		 */
997		scsi_io_req->SenseBufferLength = (uint8_t)(data->RequestSize -
998		    64);
999		scsi_io_req->SenseBufferLowAddress =
1000		    htole32(cm->cm_sense_busaddr);
1001
1002		/*
1003		 * Set SGLOffset0 value.  This is the number of dwords that SGL
1004		 * is offset from the beginning of MPI2_SCSI_IO_REQUEST struct.
1005		 */
1006		scsi_io_req->SGLOffset0 = 24;
1007
1008		/*
1009		 * Setup descriptor info.  RAID passthrough must use the
1010		 * default request descriptor which is already set, so if this
1011		 * is a SCSI IO request, change the descriptor to SCSI IO or
1012		 * Fast Path SCSI IO.  Also, if this is a SCSI IO request,
1013		 * handle the reply in the mprsas_scsio_complete function.
1014		 */
1015		if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
1016			targ = mprsas_find_target_by_handle(sc->sassc, 0,
1017			    scsi_io_req->DevHandle);
1018
1019			if (!targ) {
1020				printf("No Target found for handle %d\n",
1021				    scsi_io_req->DevHandle);
1022				err = EINVAL;
1023				goto RetFreeUnlocked;
1024			}
1025
1026			if (targ->scsi_req_desc_type ==
1027			    MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO) {
1028				cm->cm_desc.FastPathSCSIIO.RequestFlags =
1029				    MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
1030				if (!sc->atomic_desc_capable) {
1031					cm->cm_desc.FastPathSCSIIO.DevHandle =
1032					    scsi_io_req->DevHandle;
1033				}
1034				scsi_io_req->IoFlags |=
1035				    MPI25_SCSIIO_IOFLAGS_FAST_PATH;
1036			} else {
1037				cm->cm_desc.SCSIIO.RequestFlags =
1038				    MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
1039				if (!sc->atomic_desc_capable) {
1040					cm->cm_desc.SCSIIO.DevHandle =
1041					    scsi_io_req->DevHandle;
1042				}
1043			}
1044
1045			/*
1046			 * Make sure the DevHandle is not 0 because this is a
1047			 * likely error.
1048			 */
1049			if (scsi_io_req->DevHandle == 0) {
1050				err = EINVAL;
1051				goto RetFreeUnlocked;
1052			}
1053		}
1054	}
1055
1056	mpr_lock(sc);
1057
1058	err = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
1059
1060	if (err || (cm == NULL)) {
1061		mpr_printf(sc, "%s: invalid request: error %d\n", __func__,
1062		    err);
1063		goto RetFree;
1064	}
1065
1066	/*
1067	 * Sync the DMA data, if any.  Then copy the data to user space.
1068	 */
1069	if (cm->cm_data != NULL) {
1070		if (cm->cm_flags & MPR_CM_FLAGS_DATAIN)
1071			dir = BUS_DMASYNC_POSTREAD;
1072		else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT)
1073			dir = BUS_DMASYNC_POSTWRITE;
1074		bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
1075		bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
1076
1077		if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) {
1078			mpr_unlock(sc);
1079			err = copyout(cm->cm_data,
1080			    PTRIN(data->PtrData), data->DataSize);
1081			mpr_lock(sc);
1082			if (err != 0)
1083				mpr_dprint(sc, MPR_FAULT, "%s: failed to copy "
1084				    "IOCTL data to user space\n", __func__);
1085		}
1086	}
1087
1088	/*
1089	 * Copy the reply data and sense data to user space.
1090	 */
1091	if (cm->cm_reply != NULL) {
1092		rpl = (MPI2_DEFAULT_REPLY *)cm->cm_reply;
1093		sz = rpl->MsgLength * 4;
1094
1095		if (sz > data->ReplySize) {
1096			mpr_printf(sc, "%s: user reply buffer (%d) smaller "
1097			    "than returned buffer (%d)\n", __func__,
1098			    data->ReplySize, sz);
1099		}
1100		mpr_unlock(sc);
1101		copyout(cm->cm_reply, PTRIN(data->PtrReply), data->ReplySize);
1102		mpr_lock(sc);
1103
1104		if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) ||
1105		    (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) {
1106			if (((MPI2_SCSI_IO_REPLY *)rpl)->SCSIState &
1107			    MPI2_SCSI_STATE_AUTOSENSE_VALID) {
1108				sense_len =
1109				    MIN((le32toh(((MPI2_SCSI_IO_REPLY *)rpl)->
1110				    SenseCount)), sizeof(struct
1111				    scsi_sense_data));
1112				mpr_unlock(sc);
1113				copyout(cm->cm_sense, cm->cm_req + 64,
1114				    sense_len);
1115				mpr_lock(sc);
1116			}
1117		}
1118
1119		/*
1120		 * Copy out the NVMe Error Reponse to user. The Error Response
1121		 * buffer is given by the user, but a sense buffer is used to
1122		 * get that data from the IOC. The user's
1123		 * ErrorResponseBaseAddress is saved in the
1124		 * 'nvme_error_response' field before the command because that
1125		 * field is set to a sense buffer. When the command is
1126		 * complete, the Error Response data from the IOC is copied to
1127		 * that user address after it is checked for validity.
1128		 * Also note that 'sense' buffers are not defined for
1129		 * NVMe commands. Sense terminalogy is only used here so that
1130		 * the same IOCTL structure and sense buffers can be used for
1131		 * NVMe.
1132		 */
1133		if (function == MPI2_FUNCTION_NVME_ENCAPSULATED) {
1134			if (cm->nvme_error_response == NULL) {
1135				mpr_dprint(sc, MPR_INFO, "NVMe Error Response "
1136				    "buffer is NULL. Response data will not be "
1137				    "returned.\n");
1138				mpr_unlock(sc);
1139				goto RetFreeUnlocked;
1140			}
1141
1142			nvme_error_reply =
1143			    (Mpi26NVMeEncapsulatedErrorReply_t *)cm->cm_reply;
1144			sz = MIN(le32toh(nvme_error_reply->ErrorResponseCount),
1145			    NVME_ERROR_RESPONSE_SIZE);
1146			mpr_unlock(sc);
1147			copyout(cm->cm_sense, cm->nvme_error_response, sz);
1148			mpr_lock(sc);
1149		}
1150	}
1151	mpr_unlock(sc);
1152
1153RetFreeUnlocked:
1154	mpr_lock(sc);
1155
1156RetFree:
1157	if (cm != NULL) {
1158		if (cm->cm_data)
1159			free(cm->cm_data, M_MPRUSER);
1160		mpr_free_command(sc, cm);
1161	}
1162Ret:
1163	sc->mpr_flags &= ~MPR_FLAGS_BUSY;
1164	mpr_unlock(sc);
1165
1166	return (err);
1167}
1168
1169static void
1170mpr_user_get_adapter_data(struct mpr_softc *sc, mpr_adapter_data_t *data)
1171{
1172	Mpi2ConfigReply_t	mpi_reply;
1173	Mpi2BiosPage3_t		config_page;
1174
1175	/*
1176	 * Use the PCI interface functions to get the Bus, Device, and Function
1177	 * information.
1178	 */
1179	data->PciInformation.u.bits.BusNumber = pci_get_bus(sc->mpr_dev);
1180	data->PciInformation.u.bits.DeviceNumber = pci_get_slot(sc->mpr_dev);
1181	data->PciInformation.u.bits.FunctionNumber =
1182	    pci_get_function(sc->mpr_dev);
1183
1184	/*
1185	 * Get the FW version that should already be saved in IOC Facts.
1186	 */
1187	data->MpiFirmwareVersion = sc->facts->FWVersion.Word;
1188
1189	/*
1190	 * General device info.
1191	 */
1192	data->AdapterType = MPRIOCTL_ADAPTER_TYPE_SAS3;
1193	data->PCIDeviceHwId = pci_get_device(sc->mpr_dev);
1194	data->PCIDeviceHwRev = pci_read_config(sc->mpr_dev, PCIR_REVID, 1);
1195	data->SubSystemId = pci_get_subdevice(sc->mpr_dev);
1196	data->SubsystemVendorId = pci_get_subvendor(sc->mpr_dev);
1197
1198	/*
1199	 * Get the driver version.
1200	 */
1201	strcpy((char *)&data->DriverVersion[0], MPR_DRIVER_VERSION);
1202
1203	/*
1204	 * Need to get BIOS Config Page 3 for the BIOS Version.
1205	 */
1206	data->BiosVersion = 0;
1207	mpr_lock(sc);
1208	if (mpr_config_get_bios_pg3(sc, &mpi_reply, &config_page))
1209		printf("%s: Error while retrieving BIOS Version\n", __func__);
1210	else
1211		data->BiosVersion = config_page.BiosVersion;
1212	mpr_unlock(sc);
1213}
1214
1215static void
1216mpr_user_read_pci_info(struct mpr_softc *sc, mpr_pci_info_t *data)
1217{
1218	int	i;
1219
1220	/*
1221	 * Use the PCI interface functions to get the Bus, Device, and Function
1222	 * information.
1223	 */
1224	data->BusNumber = pci_get_bus(sc->mpr_dev);
1225	data->DeviceNumber = pci_get_slot(sc->mpr_dev);
1226	data->FunctionNumber = pci_get_function(sc->mpr_dev);
1227
1228	/*
1229	 * Now get the interrupt vector and the pci header.  The vector can
1230	 * only be 0 right now.  The header is the first 256 bytes of config
1231	 * space.
1232	 */
1233	data->InterruptVector = 0;
1234	for (i = 0; i < sizeof (data->PciHeader); i++) {
1235		data->PciHeader[i] = pci_read_config(sc->mpr_dev, i, 1);
1236	}
1237}
1238
1239static uint8_t
1240mpr_get_fw_diag_buffer_number(struct mpr_softc *sc, uint32_t unique_id)
1241{
1242	uint8_t	index;
1243
1244	for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) {
1245		if (sc->fw_diag_buffer_list[index].unique_id == unique_id) {
1246			return (index);
1247		}
1248	}
1249
1250	return (MPR_FW_DIAGNOSTIC_UID_NOT_FOUND);
1251}
1252
1253static int
1254mpr_post_fw_diag_buffer(struct mpr_softc *sc,
1255    mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code)
1256{
1257	MPI2_DIAG_BUFFER_POST_REQUEST	*req;
1258	MPI2_DIAG_BUFFER_POST_REPLY	*reply;
1259	struct mpr_command		*cm = NULL;
1260	int				i, status;
1261
1262	/*
1263	 * If buffer is not enabled, just leave.
1264	 */
1265	*return_code = MPR_FW_DIAG_ERROR_POST_FAILED;
1266	if (!pBuffer->enabled) {
1267		return (MPR_DIAG_FAILURE);
1268	}
1269
1270	/*
1271	 * Clear some flags initially.
1272	 */
1273	pBuffer->force_release = FALSE;
1274	pBuffer->valid_data = FALSE;
1275	pBuffer->owned_by_firmware = FALSE;
1276
1277	/*
1278	 * Get a command.
1279	 */
1280	cm = mpr_alloc_command(sc);
1281	if (cm == NULL) {
1282		mpr_printf(sc, "%s: no mpr requests\n", __func__);
1283		return (MPR_DIAG_FAILURE);
1284	}
1285
1286	/*
1287	 * Build the request for releasing the FW Diag Buffer and send it.
1288	 */
1289	req = (MPI2_DIAG_BUFFER_POST_REQUEST *)cm->cm_req;
1290	req->Function = MPI2_FUNCTION_DIAG_BUFFER_POST;
1291	req->BufferType = pBuffer->buffer_type;
1292	req->ExtendedType = pBuffer->extended_type;
1293	req->BufferLength = pBuffer->size;
1294	for (i = 0; i < (sizeof(req->ProductSpecific) / 4); i++)
1295		req->ProductSpecific[i] = pBuffer->product_specific[i];
1296	mpr_from_u64(sc->fw_diag_busaddr, &req->BufferAddress);
1297	cm->cm_data = NULL;
1298	cm->cm_length = 0;
1299	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
1300	cm->cm_complete_data = NULL;
1301
1302	/*
1303	 * Send command synchronously.
1304	 */
1305	status = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
1306	if (status || (cm == NULL)) {
1307		mpr_printf(sc, "%s: invalid request: error %d\n", __func__,
1308		    status);
1309		status = MPR_DIAG_FAILURE;
1310		goto done;
1311	}
1312
1313	/*
1314	 * Process POST reply.
1315	 */
1316	reply = (MPI2_DIAG_BUFFER_POST_REPLY *)cm->cm_reply;
1317	if ((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) !=
1318	    MPI2_IOCSTATUS_SUCCESS) {
1319		status = MPR_DIAG_FAILURE;
1320		mpr_dprint(sc, MPR_FAULT, "%s: post of FW  Diag Buffer failed "
1321		    "with IOCStatus = 0x%x, IOCLogInfo = 0x%x and "
1322		    "TransferLength = 0x%x\n", __func__,
1323		    le16toh(reply->IOCStatus), le32toh(reply->IOCLogInfo),
1324		    le32toh(reply->TransferLength));
1325		goto done;
1326	}
1327
1328	/*
1329	 * Post was successful.
1330	 */
1331	pBuffer->valid_data = TRUE;
1332	pBuffer->owned_by_firmware = TRUE;
1333	*return_code = MPR_FW_DIAG_ERROR_SUCCESS;
1334	status = MPR_DIAG_SUCCESS;
1335
1336done:
1337	if (cm != NULL)
1338		mpr_free_command(sc, cm);
1339	return (status);
1340}
1341
1342static int
1343mpr_release_fw_diag_buffer(struct mpr_softc *sc,
1344    mpr_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code,
1345    uint32_t diag_type)
1346{
1347	MPI2_DIAG_RELEASE_REQUEST	*req;
1348	MPI2_DIAG_RELEASE_REPLY		*reply;
1349	struct mpr_command		*cm = NULL;
1350	int				status;
1351
1352	/*
1353	 * If buffer is not enabled, just leave.
1354	 */
1355	*return_code = MPR_FW_DIAG_ERROR_RELEASE_FAILED;
1356	if (!pBuffer->enabled) {
1357		mpr_dprint(sc, MPR_USER, "%s: This buffer type is not "
1358		    "supported by the IOC", __func__);
1359		return (MPR_DIAG_FAILURE);
1360	}
1361
1362	/*
1363	 * Clear some flags initially.
1364	 */
1365	pBuffer->force_release = FALSE;
1366	pBuffer->valid_data = FALSE;
1367	pBuffer->owned_by_firmware = FALSE;
1368
1369	/*
1370	 * Get a command.
1371	 */
1372	cm = mpr_alloc_command(sc);
1373	if (cm == NULL) {
1374		mpr_printf(sc, "%s: no mpr requests\n", __func__);
1375		return (MPR_DIAG_FAILURE);
1376	}
1377
1378	/*
1379	 * Build the request for releasing the FW Diag Buffer and send it.
1380	 */
1381	req = (MPI2_DIAG_RELEASE_REQUEST *)cm->cm_req;
1382	req->Function = MPI2_FUNCTION_DIAG_RELEASE;
1383	req->BufferType = pBuffer->buffer_type;
1384	cm->cm_data = NULL;
1385	cm->cm_length = 0;
1386	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
1387	cm->cm_complete_data = NULL;
1388
1389	/*
1390	 * Send command synchronously.
1391	 */
1392	status = mpr_wait_command(sc, &cm, 30, CAN_SLEEP);
1393	if (status || (cm == NULL)) {
1394		mpr_printf(sc, "%s: invalid request: error %d\n", __func__,
1395		    status);
1396		status = MPR_DIAG_FAILURE;
1397		goto done;
1398	}
1399
1400	/*
1401	 * Process RELEASE reply.
1402	 */
1403	reply = (MPI2_DIAG_RELEASE_REPLY *)cm->cm_reply;
1404	if (((le16toh(reply->IOCStatus) & MPI2_IOCSTATUS_MASK) !=
1405	    MPI2_IOCSTATUS_SUCCESS) || pBuffer->owned_by_firmware) {
1406		status = MPR_DIAG_FAILURE;
1407		mpr_dprint(sc, MPR_FAULT, "%s: release of FW Diag Buffer "
1408		    "failed with IOCStatus = 0x%x and IOCLogInfo = 0x%x\n",
1409		    __func__, le16toh(reply->IOCStatus),
1410		    le32toh(reply->IOCLogInfo));
1411		goto done;
1412	}
1413
1414	/*
1415	 * Release was successful.
1416	 */
1417	*return_code = MPR_FW_DIAG_ERROR_SUCCESS;
1418	status = MPR_DIAG_SUCCESS;
1419
1420	/*
1421	 * If this was for an UNREGISTER diag type command, clear the unique ID.
1422	 */
1423	if (diag_type == MPR_FW_DIAG_TYPE_UNREGISTER) {
1424		pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID;
1425	}
1426
1427done:
1428	if (cm != NULL)
1429		mpr_free_command(sc, cm);
1430
1431	return (status);
1432}
1433
1434static int
1435mpr_diag_register(struct mpr_softc *sc, mpr_fw_diag_register_t *diag_register,
1436    uint32_t *return_code)
1437{
1438	mpr_fw_diagnostic_buffer_t	*pBuffer;
1439	uint8_t				extended_type, buffer_type, i;
1440	uint32_t			buffer_size;
1441	uint32_t			unique_id;
1442	int				status;
1443
1444	extended_type = diag_register->ExtendedType;
1445	buffer_type = diag_register->BufferType;
1446	buffer_size = diag_register->RequestedBufferSize;
1447	unique_id = diag_register->UniqueId;
1448
1449	/*
1450	 * Check for valid buffer type
1451	 */
1452	if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) {
1453		*return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1454		return (MPR_DIAG_FAILURE);
1455	}
1456
1457	/*
1458	 * Get the current buffer and look up the unique ID.  The unique ID
1459	 * should not be found.  If it is, the ID is already in use.
1460	 */
1461	i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1462	pBuffer = &sc->fw_diag_buffer_list[buffer_type];
1463	if (i != MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1464		*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1465		return (MPR_DIAG_FAILURE);
1466	}
1467
1468	/*
1469	 * The buffer's unique ID should not be registered yet, and the given
1470	 * unique ID cannot be 0.
1471	 */
1472	if ((pBuffer->unique_id != MPR_FW_DIAG_INVALID_UID) ||
1473	    (unique_id == MPR_FW_DIAG_INVALID_UID)) {
1474		*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1475		return (MPR_DIAG_FAILURE);
1476	}
1477
1478	/*
1479	 * If this buffer is already posted as immediate, just change owner.
1480	 */
1481	if (pBuffer->immediate && pBuffer->owned_by_firmware &&
1482	    (pBuffer->unique_id == MPR_FW_DIAG_INVALID_UID)) {
1483		pBuffer->immediate = FALSE;
1484		pBuffer->unique_id = unique_id;
1485		return (MPR_DIAG_SUCCESS);
1486	}
1487
1488	/*
1489	 * Post a new buffer after checking if it's enabled.  The DMA buffer
1490	 * that is allocated will be contiguous (nsegments = 1).
1491	 */
1492	if (!pBuffer->enabled) {
1493		*return_code = MPR_FW_DIAG_ERROR_NO_BUFFER;
1494		return (MPR_DIAG_FAILURE);
1495	}
1496        if (bus_dma_tag_create( sc->mpr_parent_dmat,    /* parent */
1497				1, 0,			/* algnmnt, boundary */
1498				BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1499				BUS_SPACE_MAXADDR,	/* highaddr */
1500				NULL, NULL,		/* filter, filterarg */
1501                                buffer_size,		/* maxsize */
1502                                1,			/* nsegments */
1503                                buffer_size,		/* maxsegsize */
1504                                0,			/* flags */
1505                                NULL, NULL,		/* lockfunc, lockarg */
1506                                &sc->fw_diag_dmat)) {
1507		device_printf(sc->mpr_dev, "Cannot allocate FW diag buffer DMA "
1508		    "tag\n");
1509		return (ENOMEM);
1510        }
1511        if (bus_dmamem_alloc(sc->fw_diag_dmat, (void **)&sc->fw_diag_buffer,
1512	    BUS_DMA_NOWAIT, &sc->fw_diag_map)) {
1513		device_printf(sc->mpr_dev, "Cannot allocate FW diag buffer "
1514		    "memory\n");
1515		return (ENOMEM);
1516        }
1517        bzero(sc->fw_diag_buffer, buffer_size);
1518        bus_dmamap_load(sc->fw_diag_dmat, sc->fw_diag_map, sc->fw_diag_buffer,
1519	    buffer_size, mpr_memaddr_cb, &sc->fw_diag_busaddr, 0);
1520	pBuffer->size = buffer_size;
1521
1522	/*
1523	 * Copy the given info to the diag buffer and post the buffer.
1524	 */
1525	pBuffer->buffer_type = buffer_type;
1526	pBuffer->immediate = FALSE;
1527	if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) {
1528		for (i = 0; i < (sizeof (pBuffer->product_specific) / 4);
1529		    i++) {
1530			pBuffer->product_specific[i] =
1531			    diag_register->ProductSpecific[i];
1532		}
1533	}
1534	pBuffer->extended_type = extended_type;
1535	pBuffer->unique_id = unique_id;
1536	status = mpr_post_fw_diag_buffer(sc, pBuffer, return_code);
1537
1538	/*
1539	 * In case there was a failure, free the DMA buffer.
1540	 */
1541	if (status == MPR_DIAG_FAILURE) {
1542		if (sc->fw_diag_busaddr != 0)
1543			bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map);
1544		if (sc->fw_diag_buffer != NULL)
1545			bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer,
1546			    sc->fw_diag_map);
1547		if (sc->fw_diag_dmat != NULL)
1548			bus_dma_tag_destroy(sc->fw_diag_dmat);
1549	}
1550
1551	return (status);
1552}
1553
1554static int
1555mpr_diag_unregister(struct mpr_softc *sc,
1556    mpr_fw_diag_unregister_t *diag_unregister, uint32_t *return_code)
1557{
1558	mpr_fw_diagnostic_buffer_t	*pBuffer;
1559	uint8_t				i;
1560	uint32_t			unique_id;
1561	int				status;
1562
1563	unique_id = diag_unregister->UniqueId;
1564
1565	/*
1566	 * Get the current buffer and look up the unique ID.  The unique ID
1567	 * should be there.
1568	 */
1569	i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1570	if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1571		*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1572		return (MPR_DIAG_FAILURE);
1573	}
1574
1575	pBuffer = &sc->fw_diag_buffer_list[i];
1576
1577	/*
1578	 * Try to release the buffer from FW before freeing it.  If release
1579	 * fails, don't free the DMA buffer in case FW tries to access it
1580	 * later.  If buffer is not owned by firmware, can't release it.
1581	 */
1582	if (!pBuffer->owned_by_firmware) {
1583		status = MPR_DIAG_SUCCESS;
1584	} else {
1585		status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code,
1586		    MPR_FW_DIAG_TYPE_UNREGISTER);
1587	}
1588
1589	/*
1590	 * At this point, return the current status no matter what happens with
1591	 * the DMA buffer.
1592	 */
1593	pBuffer->unique_id = MPR_FW_DIAG_INVALID_UID;
1594	if (status == MPR_DIAG_SUCCESS) {
1595		if (sc->fw_diag_busaddr != 0)
1596			bus_dmamap_unload(sc->fw_diag_dmat, sc->fw_diag_map);
1597		if (sc->fw_diag_buffer != NULL)
1598			bus_dmamem_free(sc->fw_diag_dmat, sc->fw_diag_buffer,
1599			    sc->fw_diag_map);
1600		if (sc->fw_diag_dmat != NULL)
1601			bus_dma_tag_destroy(sc->fw_diag_dmat);
1602	}
1603
1604	return (status);
1605}
1606
1607static int
1608mpr_diag_query(struct mpr_softc *sc, mpr_fw_diag_query_t *diag_query,
1609    uint32_t *return_code)
1610{
1611	mpr_fw_diagnostic_buffer_t	*pBuffer;
1612	uint8_t				i;
1613	uint32_t			unique_id;
1614
1615	unique_id = diag_query->UniqueId;
1616
1617	/*
1618	 * If ID is valid, query on ID.
1619	 * If ID is invalid, query on buffer type.
1620	 */
1621	if (unique_id == MPR_FW_DIAG_INVALID_UID) {
1622		i = diag_query->BufferType;
1623		if (i >= MPI2_DIAG_BUF_TYPE_COUNT) {
1624			*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1625			return (MPR_DIAG_FAILURE);
1626		}
1627	} else {
1628		i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1629		if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1630			*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1631			return (MPR_DIAG_FAILURE);
1632		}
1633	}
1634
1635	/*
1636	 * Fill query structure with the diag buffer info.
1637	 */
1638	pBuffer = &sc->fw_diag_buffer_list[i];
1639	diag_query->BufferType = pBuffer->buffer_type;
1640	diag_query->ExtendedType = pBuffer->extended_type;
1641	if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) {
1642		for (i = 0; i < (sizeof(diag_query->ProductSpecific) / 4);
1643		    i++) {
1644			diag_query->ProductSpecific[i] =
1645			    pBuffer->product_specific[i];
1646		}
1647	}
1648	diag_query->TotalBufferSize = pBuffer->size;
1649	diag_query->DriverAddedBufferSize = 0;
1650	diag_query->UniqueId = pBuffer->unique_id;
1651	diag_query->ApplicationFlags = 0;
1652	diag_query->DiagnosticFlags = 0;
1653
1654	/*
1655	 * Set/Clear application flags
1656	 */
1657	if (pBuffer->immediate) {
1658		diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_APP_OWNED;
1659	} else {
1660		diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_APP_OWNED;
1661	}
1662	if (pBuffer->valid_data || pBuffer->owned_by_firmware) {
1663		diag_query->ApplicationFlags |= MPR_FW_DIAG_FLAG_BUFFER_VALID;
1664	} else {
1665		diag_query->ApplicationFlags &= ~MPR_FW_DIAG_FLAG_BUFFER_VALID;
1666	}
1667	if (pBuffer->owned_by_firmware) {
1668		diag_query->ApplicationFlags |=
1669		    MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS;
1670	} else {
1671		diag_query->ApplicationFlags &=
1672		    ~MPR_FW_DIAG_FLAG_FW_BUFFER_ACCESS;
1673	}
1674
1675	return (MPR_DIAG_SUCCESS);
1676}
1677
1678static int
1679mpr_diag_read_buffer(struct mpr_softc *sc,
1680    mpr_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf,
1681    uint32_t *return_code)
1682{
1683	mpr_fw_diagnostic_buffer_t	*pBuffer;
1684	uint8_t				i, *pData;
1685	uint32_t			unique_id;
1686	int				status;
1687
1688	unique_id = diag_read_buffer->UniqueId;
1689
1690	/*
1691	 * Get the current buffer and look up the unique ID.  The unique ID
1692	 * should be there.
1693	 */
1694	i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1695	if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1696		*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1697		return (MPR_DIAG_FAILURE);
1698	}
1699
1700	pBuffer = &sc->fw_diag_buffer_list[i];
1701
1702	/*
1703	 * Make sure requested read is within limits
1704	 */
1705	if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead >
1706	    pBuffer->size) {
1707		*return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1708		return (MPR_DIAG_FAILURE);
1709	}
1710
1711	/*
1712	 * Copy the requested data from DMA to the diag_read_buffer.  The DMA
1713	 * buffer that was allocated is one contiguous buffer.
1714	 */
1715	pData = (uint8_t *)(sc->fw_diag_buffer +
1716	    diag_read_buffer->StartingOffset);
1717	if (copyout(pData, ioctl_buf, diag_read_buffer->BytesToRead) != 0)
1718		return (MPR_DIAG_FAILURE);
1719	diag_read_buffer->Status = 0;
1720
1721	/*
1722	 * Set or clear the Force Release flag.
1723	 */
1724	if (pBuffer->force_release) {
1725		diag_read_buffer->Flags |= MPR_FW_DIAG_FLAG_FORCE_RELEASE;
1726	} else {
1727		diag_read_buffer->Flags &= ~MPR_FW_DIAG_FLAG_FORCE_RELEASE;
1728	}
1729
1730	/*
1731	 * If buffer is to be reregistered, make sure it's not already owned by
1732	 * firmware first.
1733	 */
1734	status = MPR_DIAG_SUCCESS;
1735	if (!pBuffer->owned_by_firmware) {
1736		if (diag_read_buffer->Flags & MPR_FW_DIAG_FLAG_REREGISTER) {
1737			status = mpr_post_fw_diag_buffer(sc, pBuffer,
1738			    return_code);
1739		}
1740	}
1741
1742	return (status);
1743}
1744
1745static int
1746mpr_diag_release(struct mpr_softc *sc, mpr_fw_diag_release_t *diag_release,
1747    uint32_t *return_code)
1748{
1749	mpr_fw_diagnostic_buffer_t	*pBuffer;
1750	uint8_t				i;
1751	uint32_t			unique_id;
1752	int				status;
1753
1754	unique_id = diag_release->UniqueId;
1755
1756	/*
1757	 * Get the current buffer and look up the unique ID.  The unique ID
1758	 * should be there.
1759	 */
1760	i = mpr_get_fw_diag_buffer_number(sc, unique_id);
1761	if (i == MPR_FW_DIAGNOSTIC_UID_NOT_FOUND) {
1762		*return_code = MPR_FW_DIAG_ERROR_INVALID_UID;
1763		return (MPR_DIAG_FAILURE);
1764	}
1765
1766	pBuffer = &sc->fw_diag_buffer_list[i];
1767
1768	/*
1769	 * If buffer is not owned by firmware, it's already been released.
1770	 */
1771	if (!pBuffer->owned_by_firmware) {
1772		*return_code = MPR_FW_DIAG_ERROR_ALREADY_RELEASED;
1773		return (MPR_DIAG_FAILURE);
1774	}
1775
1776	/*
1777	 * Release the buffer.
1778	 */
1779	status = mpr_release_fw_diag_buffer(sc, pBuffer, return_code,
1780	    MPR_FW_DIAG_TYPE_RELEASE);
1781	return (status);
1782}
1783
1784static int
1785mpr_do_diag_action(struct mpr_softc *sc, uint32_t action, uint8_t *diag_action,
1786    uint32_t length, uint32_t *return_code)
1787{
1788	mpr_fw_diag_register_t		diag_register;
1789	mpr_fw_diag_unregister_t	diag_unregister;
1790	mpr_fw_diag_query_t		diag_query;
1791	mpr_diag_read_buffer_t		diag_read_buffer;
1792	mpr_fw_diag_release_t		diag_release;
1793	int				status = MPR_DIAG_SUCCESS;
1794	uint32_t			original_return_code;
1795
1796	original_return_code = *return_code;
1797	*return_code = MPR_FW_DIAG_ERROR_SUCCESS;
1798
1799	switch (action) {
1800		case MPR_FW_DIAG_TYPE_REGISTER:
1801			if (!length) {
1802				*return_code =
1803				    MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1804				status = MPR_DIAG_FAILURE;
1805				break;
1806			}
1807			if (copyin(diag_action, &diag_register,
1808			    sizeof(diag_register)) != 0)
1809				return (MPR_DIAG_FAILURE);
1810			status = mpr_diag_register(sc, &diag_register,
1811			    return_code);
1812			break;
1813
1814		case MPR_FW_DIAG_TYPE_UNREGISTER:
1815			if (length < sizeof(diag_unregister)) {
1816				*return_code =
1817				    MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1818				status = MPR_DIAG_FAILURE;
1819				break;
1820			}
1821			if (copyin(diag_action, &diag_unregister,
1822			    sizeof(diag_unregister)) != 0)
1823				return (MPR_DIAG_FAILURE);
1824			status = mpr_diag_unregister(sc, &diag_unregister,
1825			    return_code);
1826			break;
1827
1828		case MPR_FW_DIAG_TYPE_QUERY:
1829			if (length < sizeof (diag_query)) {
1830				*return_code =
1831				    MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1832				status = MPR_DIAG_FAILURE;
1833				break;
1834			}
1835			if (copyin(diag_action, &diag_query, sizeof(diag_query))
1836			    != 0)
1837				return (MPR_DIAG_FAILURE);
1838			status = mpr_diag_query(sc, &diag_query, return_code);
1839			if (status == MPR_DIAG_SUCCESS)
1840				if (copyout(&diag_query, diag_action,
1841				    sizeof (diag_query)) != 0)
1842					return (MPR_DIAG_FAILURE);
1843			break;
1844
1845		case MPR_FW_DIAG_TYPE_READ_BUFFER:
1846			if (copyin(diag_action, &diag_read_buffer,
1847			    sizeof(diag_read_buffer)) != 0)
1848				return (MPR_DIAG_FAILURE);
1849			if (length < diag_read_buffer.BytesToRead) {
1850				*return_code =
1851				    MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1852				status = MPR_DIAG_FAILURE;
1853				break;
1854			}
1855			status = mpr_diag_read_buffer(sc, &diag_read_buffer,
1856			    PTRIN(diag_read_buffer.PtrDataBuffer),
1857			    return_code);
1858			if (status == MPR_DIAG_SUCCESS) {
1859				if (copyout(&diag_read_buffer, diag_action,
1860				    sizeof(diag_read_buffer) -
1861				    sizeof(diag_read_buffer.PtrDataBuffer)) !=
1862				    0)
1863					return (MPR_DIAG_FAILURE);
1864			}
1865			break;
1866
1867		case MPR_FW_DIAG_TYPE_RELEASE:
1868			if (length < sizeof(diag_release)) {
1869				*return_code =
1870				    MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1871				status = MPR_DIAG_FAILURE;
1872				break;
1873			}
1874			if (copyin(diag_action, &diag_release,
1875			    sizeof(diag_release)) != 0)
1876				return (MPR_DIAG_FAILURE);
1877			status = mpr_diag_release(sc, &diag_release,
1878			    return_code);
1879			break;
1880
1881		default:
1882			*return_code = MPR_FW_DIAG_ERROR_INVALID_PARAMETER;
1883			status = MPR_DIAG_FAILURE;
1884			break;
1885	}
1886
1887	if ((status == MPR_DIAG_FAILURE) &&
1888	    (original_return_code == MPR_FW_DIAG_NEW) &&
1889	    (*return_code != MPR_FW_DIAG_ERROR_SUCCESS))
1890		status = MPR_DIAG_SUCCESS;
1891
1892	return (status);
1893}
1894
1895static int
1896mpr_user_diag_action(struct mpr_softc *sc, mpr_diag_action_t *data)
1897{
1898	int			status;
1899
1900	/*
1901	 * Only allow one diag action at one time.
1902	 */
1903	if (sc->mpr_flags & MPR_FLAGS_BUSY) {
1904		mpr_dprint(sc, MPR_USER, "%s: Only one FW diag command "
1905		    "allowed at a single time.", __func__);
1906		return (EBUSY);
1907	}
1908	sc->mpr_flags |= MPR_FLAGS_BUSY;
1909
1910	/*
1911	 * Send diag action request
1912	 */
1913	if (data->Action == MPR_FW_DIAG_TYPE_REGISTER ||
1914	    data->Action == MPR_FW_DIAG_TYPE_UNREGISTER ||
1915	    data->Action == MPR_FW_DIAG_TYPE_QUERY ||
1916	    data->Action == MPR_FW_DIAG_TYPE_READ_BUFFER ||
1917	    data->Action == MPR_FW_DIAG_TYPE_RELEASE) {
1918		status = mpr_do_diag_action(sc, data->Action,
1919		    PTRIN(data->PtrDiagAction), data->Length,
1920		    &data->ReturnCode);
1921	} else
1922		status = EINVAL;
1923
1924	sc->mpr_flags &= ~MPR_FLAGS_BUSY;
1925	return (status);
1926}
1927
1928/*
1929 * Copy the event recording mask and the event queue size out.  For
1930 * clarification, the event recording mask (events_to_record) is not the same
1931 * thing as the event mask (event_mask).  events_to_record has a bit set for
1932 * every event type that is to be recorded by the driver, and event_mask has a
1933 * bit cleared for every event that is allowed into the driver from the IOC.
1934 * They really have nothing to do with each other.
1935 */
1936static void
1937mpr_user_event_query(struct mpr_softc *sc, mpr_event_query_t *data)
1938{
1939	uint8_t	i;
1940
1941	mpr_lock(sc);
1942	data->Entries = MPR_EVENT_QUEUE_SIZE;
1943
1944	for (i = 0; i < 4; i++) {
1945		data->Types[i] = sc->events_to_record[i];
1946	}
1947	mpr_unlock(sc);
1948}
1949
1950/*
1951 * Set the driver's event mask according to what's been given.  See
1952 * mpr_user_event_query for explanation of the event recording mask and the IOC
1953 * event mask.  It's the app's responsibility to enable event logging by setting
1954 * the bits in events_to_record.  Initially, no events will be logged.
1955 */
1956static void
1957mpr_user_event_enable(struct mpr_softc *sc, mpr_event_enable_t *data)
1958{
1959	uint8_t	i;
1960
1961	mpr_lock(sc);
1962	for (i = 0; i < 4; i++) {
1963		sc->events_to_record[i] = data->Types[i];
1964	}
1965	mpr_unlock(sc);
1966}
1967
1968/*
1969 * Copy out the events that have been recorded, up to the max events allowed.
1970 */
1971static int
1972mpr_user_event_report(struct mpr_softc *sc, mpr_event_report_t *data)
1973{
1974	int		status = 0;
1975	uint32_t	size;
1976
1977	mpr_lock(sc);
1978	size = data->Size;
1979	if ((size >= sizeof(sc->recorded_events)) && (status == 0)) {
1980		mpr_unlock(sc);
1981		if (copyout((void *)sc->recorded_events,
1982		    PTRIN(data->PtrEvents), size) != 0)
1983			status = EFAULT;
1984		mpr_lock(sc);
1985	} else {
1986		/*
1987		 * data->Size value is not large enough to copy event data.
1988		 */
1989		status = EFAULT;
1990	}
1991
1992	/*
1993	 * Change size value to match the number of bytes that were copied.
1994	 */
1995	if (status == 0)
1996		data->Size = sizeof(sc->recorded_events);
1997	mpr_unlock(sc);
1998
1999	return (status);
2000}
2001
2002/*
2003 * Record events into the driver from the IOC if they are not masked.
2004 */
2005void
2006mprsas_record_event(struct mpr_softc *sc,
2007    MPI2_EVENT_NOTIFICATION_REPLY *event_reply)
2008{
2009	uint32_t	event;
2010	int		i, j;
2011	uint16_t	event_data_len;
2012	boolean_t	sendAEN = FALSE;
2013
2014	event = event_reply->Event;
2015
2016	/*
2017	 * Generate a system event to let anyone who cares know that a
2018	 * LOG_ENTRY_ADDED event has occurred.  This is sent no matter what the
2019	 * event mask is set to.
2020	 */
2021	if (event == MPI2_EVENT_LOG_ENTRY_ADDED) {
2022		sendAEN = TRUE;
2023	}
2024
2025	/*
2026	 * Record the event only if its corresponding bit is set in
2027	 * events_to_record.  event_index is the index into recorded_events and
2028	 * event_number is the overall number of an event being recorded since
2029	 * start-of-day.  event_index will roll over; event_number will never
2030	 * roll over.
2031	 */
2032	i = (uint8_t)(event / 32);
2033	j = (uint8_t)(event % 32);
2034	if ((i < 4) && ((1 << j) & sc->events_to_record[i])) {
2035		i = sc->event_index;
2036		sc->recorded_events[i].Type = event;
2037		sc->recorded_events[i].Number = ++sc->event_number;
2038		bzero(sc->recorded_events[i].Data, MPR_MAX_EVENT_DATA_LENGTH *
2039		    4);
2040		event_data_len = event_reply->EventDataLength;
2041
2042		if (event_data_len > 0) {
2043			/*
2044			 * Limit data to size in m_event entry
2045			 */
2046			if (event_data_len > MPR_MAX_EVENT_DATA_LENGTH) {
2047				event_data_len = MPR_MAX_EVENT_DATA_LENGTH;
2048			}
2049			for (j = 0; j < event_data_len; j++) {
2050				sc->recorded_events[i].Data[j] =
2051				    event_reply->EventData[j];
2052			}
2053
2054			/*
2055			 * check for index wrap-around
2056			 */
2057			if (++i == MPR_EVENT_QUEUE_SIZE) {
2058				i = 0;
2059			}
2060			sc->event_index = (uint8_t)i;
2061
2062			/*
2063			 * Set flag to send the event.
2064			 */
2065			sendAEN = TRUE;
2066		}
2067	}
2068
2069	/*
2070	 * Generate a system event if flag is set to let anyone who cares know
2071	 * that an event has occurred.
2072	 */
2073	if (sendAEN) {
2074//SLM-how to send a system event (see kqueue, kevent)
2075//		(void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS",
2076//		    "SAS", NULL, NULL, DDI_NOSLEEP);
2077	}
2078}
2079
2080static int
2081mpr_user_reg_access(struct mpr_softc *sc, mpr_reg_access_t *data)
2082{
2083	int	status = 0;
2084
2085	switch (data->Command) {
2086		/*
2087		 * IO access is not supported.
2088		 */
2089		case REG_IO_READ:
2090		case REG_IO_WRITE:
2091			mpr_dprint(sc, MPR_USER, "IO access is not supported. "
2092			    "Use memory access.");
2093			status = EINVAL;
2094			break;
2095
2096		case REG_MEM_READ:
2097			data->RegData = mpr_regread(sc, data->RegOffset);
2098			break;
2099
2100		case REG_MEM_WRITE:
2101			mpr_regwrite(sc, data->RegOffset, data->RegData);
2102			break;
2103
2104		default:
2105			status = EINVAL;
2106			break;
2107	}
2108
2109	return (status);
2110}
2111
2112static int
2113mpr_user_btdh(struct mpr_softc *sc, mpr_btdh_mapping_t *data)
2114{
2115	uint8_t		bt2dh = FALSE;
2116	uint8_t		dh2bt = FALSE;
2117	uint16_t	dev_handle, bus, target;
2118
2119	bus = data->Bus;
2120	target = data->TargetID;
2121	dev_handle = data->DevHandle;
2122
2123	/*
2124	 * When DevHandle is 0xFFFF and Bus/Target are not 0xFFFF, use Bus/
2125	 * Target to get DevHandle.  When Bus/Target are 0xFFFF and DevHandle is
2126	 * not 0xFFFF, use DevHandle to get Bus/Target.  Anything else is
2127	 * invalid.
2128	 */
2129	if ((bus == 0xFFFF) && (target == 0xFFFF) && (dev_handle != 0xFFFF))
2130		dh2bt = TRUE;
2131	if ((dev_handle == 0xFFFF) && (bus != 0xFFFF) && (target != 0xFFFF))
2132		bt2dh = TRUE;
2133	if (!dh2bt && !bt2dh)
2134		return (EINVAL);
2135
2136	/*
2137	 * Only handle bus of 0.  Make sure target is within range.
2138	 */
2139	if (bt2dh) {
2140		if (bus != 0)
2141			return (EINVAL);
2142
2143		if (target > sc->max_devices) {
2144			mpr_dprint(sc, MPR_XINFO, "Target ID is out of range "
2145			   "for Bus/Target to DevHandle mapping.");
2146			return (EINVAL);
2147		}
2148		dev_handle = sc->mapping_table[target].dev_handle;
2149		if (dev_handle)
2150			data->DevHandle = dev_handle;
2151	} else {
2152		bus = 0;
2153		target = mpr_mapping_get_tid_from_handle(sc, dev_handle);
2154		data->Bus = bus;
2155		data->TargetID = target;
2156	}
2157
2158	return (0);
2159}
2160
2161static int
2162mpr_ioctl(struct cdev *dev, u_long cmd, void *arg, int flag,
2163    struct thread *td)
2164{
2165	struct mpr_softc *sc;
2166	struct mpr_cfg_page_req *page_req;
2167	struct mpr_ext_cfg_page_req *ext_page_req;
2168	void *mpr_page;
2169	int error, msleep_ret;
2170
2171	mpr_page = NULL;
2172	sc = dev->si_drv1;
2173	page_req = (void *)arg;
2174	ext_page_req = (void *)arg;
2175
2176	switch (cmd) {
2177	case MPRIO_READ_CFG_HEADER:
2178		mpr_lock(sc);
2179		error = mpr_user_read_cfg_header(sc, page_req);
2180		mpr_unlock(sc);
2181		break;
2182	case MPRIO_READ_CFG_PAGE:
2183		mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK | M_ZERO);
2184		error = copyin(page_req->buf, mpr_page,
2185		    sizeof(MPI2_CONFIG_PAGE_HEADER));
2186		if (error)
2187			break;
2188		mpr_lock(sc);
2189		error = mpr_user_read_cfg_page(sc, page_req, mpr_page);
2190		mpr_unlock(sc);
2191		if (error)
2192			break;
2193		error = copyout(mpr_page, page_req->buf, page_req->len);
2194		break;
2195	case MPRIO_READ_EXT_CFG_HEADER:
2196		mpr_lock(sc);
2197		error = mpr_user_read_extcfg_header(sc, ext_page_req);
2198		mpr_unlock(sc);
2199		break;
2200	case MPRIO_READ_EXT_CFG_PAGE:
2201		mpr_page = malloc(ext_page_req->len, M_MPRUSER,
2202		    M_WAITOK | M_ZERO);
2203		error = copyin(ext_page_req->buf, mpr_page,
2204		    sizeof(MPI2_CONFIG_EXTENDED_PAGE_HEADER));
2205		if (error)
2206			break;
2207		mpr_lock(sc);
2208		error = mpr_user_read_extcfg_page(sc, ext_page_req, mpr_page);
2209		mpr_unlock(sc);
2210		if (error)
2211			break;
2212		error = copyout(mpr_page, ext_page_req->buf, ext_page_req->len);
2213		break;
2214	case MPRIO_WRITE_CFG_PAGE:
2215		mpr_page = malloc(page_req->len, M_MPRUSER, M_WAITOK|M_ZERO);
2216		error = copyin(page_req->buf, mpr_page, page_req->len);
2217		if (error)
2218			break;
2219		mpr_lock(sc);
2220		error = mpr_user_write_cfg_page(sc, page_req, mpr_page);
2221		mpr_unlock(sc);
2222		break;
2223	case MPRIO_MPR_COMMAND:
2224		error = mpr_user_command(sc, (struct mpr_usr_command *)arg);
2225		break;
2226	case MPTIOCTL_PASS_THRU:
2227		/*
2228		 * The user has requested to pass through a command to be
2229		 * executed by the MPT firmware.  Call our routine which does
2230		 * this.  Only allow one passthru IOCTL at one time.
2231		 */
2232		error = mpr_user_pass_thru(sc, (mpr_pass_thru_t *)arg);
2233		break;
2234	case MPTIOCTL_GET_ADAPTER_DATA:
2235		/*
2236		 * The user has requested to read adapter data.  Call our
2237		 * routine which does this.
2238		 */
2239		error = 0;
2240		mpr_user_get_adapter_data(sc, (mpr_adapter_data_t *)arg);
2241		break;
2242	case MPTIOCTL_GET_PCI_INFO:
2243		/*
2244		 * The user has requested to read pci info.  Call
2245		 * our routine which does this.
2246		 */
2247		mpr_lock(sc);
2248		error = 0;
2249		mpr_user_read_pci_info(sc, (mpr_pci_info_t *)arg);
2250		mpr_unlock(sc);
2251		break;
2252	case MPTIOCTL_RESET_ADAPTER:
2253		mpr_lock(sc);
2254		sc->port_enable_complete = 0;
2255		uint32_t reinit_start = time_uptime;
2256		error = mpr_reinit(sc);
2257		/* Sleep for 300 second. */
2258		msleep_ret = msleep(&sc->port_enable_complete, &sc->mpr_mtx,
2259		    PRIBIO, "mpr_porten", 300 * hz);
2260		mpr_unlock(sc);
2261		if (msleep_ret)
2262			printf("Port Enable did not complete after Diag "
2263			    "Reset msleep error %d.\n", msleep_ret);
2264		else
2265			mpr_dprint(sc, MPR_USER, "Hard Reset with Port Enable "
2266			    "completed in %d seconds.\n",
2267			    (uint32_t)(time_uptime - reinit_start));
2268		break;
2269	case MPTIOCTL_DIAG_ACTION:
2270		/*
2271		 * The user has done a diag buffer action.  Call our routine
2272		 * which does this.  Only allow one diag action at one time.
2273		 */
2274		mpr_lock(sc);
2275		error = mpr_user_diag_action(sc, (mpr_diag_action_t *)arg);
2276		mpr_unlock(sc);
2277		break;
2278	case MPTIOCTL_EVENT_QUERY:
2279		/*
2280		 * The user has done an event query. Call our routine which does
2281		 * this.
2282		 */
2283		error = 0;
2284		mpr_user_event_query(sc, (mpr_event_query_t *)arg);
2285		break;
2286	case MPTIOCTL_EVENT_ENABLE:
2287		/*
2288		 * The user has done an event enable. Call our routine which
2289		 * does this.
2290		 */
2291		error = 0;
2292		mpr_user_event_enable(sc, (mpr_event_enable_t *)arg);
2293		break;
2294	case MPTIOCTL_EVENT_REPORT:
2295		/*
2296		 * The user has done an event report. Call our routine which
2297		 * does this.
2298		 */
2299		error = mpr_user_event_report(sc, (mpr_event_report_t *)arg);
2300		break;
2301	case MPTIOCTL_REG_ACCESS:
2302		/*
2303		 * The user has requested register access.  Call our routine
2304		 * which does this.
2305		 */
2306		mpr_lock(sc);
2307		error = mpr_user_reg_access(sc, (mpr_reg_access_t *)arg);
2308		mpr_unlock(sc);
2309		break;
2310	case MPTIOCTL_BTDH_MAPPING:
2311		/*
2312		 * The user has requested to translate a bus/target to a
2313		 * DevHandle or a DevHandle to a bus/target.  Call our routine
2314		 * which does this.
2315		 */
2316		error = mpr_user_btdh(sc, (mpr_btdh_mapping_t *)arg);
2317		break;
2318	default:
2319		error = ENOIOCTL;
2320		break;
2321	}
2322
2323	if (mpr_page != NULL)
2324		free(mpr_page, M_MPRUSER);
2325
2326	return (error);
2327}
2328
2329#ifdef COMPAT_FREEBSD32
2330
2331struct mpr_cfg_page_req32 {
2332	MPI2_CONFIG_PAGE_HEADER header;
2333	uint32_t page_address;
2334	uint32_t buf;
2335	int	len;
2336	uint16_t ioc_status;
2337};
2338
2339struct mpr_ext_cfg_page_req32 {
2340	MPI2_CONFIG_EXTENDED_PAGE_HEADER header;
2341	uint32_t page_address;
2342	uint32_t buf;
2343	int	len;
2344	uint16_t ioc_status;
2345};
2346
2347struct mpr_raid_action32 {
2348	uint8_t action;
2349	uint8_t volume_bus;
2350	uint8_t volume_id;
2351	uint8_t phys_disk_num;
2352	uint32_t action_data_word;
2353	uint32_t buf;
2354	int len;
2355	uint32_t volume_status;
2356	uint32_t action_data[4];
2357	uint16_t action_status;
2358	uint16_t ioc_status;
2359	uint8_t write;
2360};
2361
2362struct mpr_usr_command32 {
2363	uint32_t req;
2364	uint32_t req_len;
2365	uint32_t rpl;
2366	uint32_t rpl_len;
2367	uint32_t buf;
2368	int len;
2369	uint32_t flags;
2370};
2371
2372#define	MPRIO_READ_CFG_HEADER32	_IOWR('M', 200, struct mpr_cfg_page_req32)
2373#define	MPRIO_READ_CFG_PAGE32	_IOWR('M', 201, struct mpr_cfg_page_req32)
2374#define	MPRIO_READ_EXT_CFG_HEADER32 _IOWR('M', 202, struct mpr_ext_cfg_page_req32)
2375#define	MPRIO_READ_EXT_CFG_PAGE32 _IOWR('M', 203, struct mpr_ext_cfg_page_req32)
2376#define	MPRIO_WRITE_CFG_PAGE32	_IOWR('M', 204, struct mpr_cfg_page_req32)
2377#define	MPRIO_RAID_ACTION32	_IOWR('M', 205, struct mpr_raid_action32)
2378#define	MPRIO_MPR_COMMAND32	_IOWR('M', 210, struct mpr_usr_command32)
2379
2380static int
2381mpr_ioctl32(struct cdev *dev, u_long cmd32, void *_arg, int flag,
2382    struct thread *td)
2383{
2384	struct mpr_cfg_page_req32 *page32 = _arg;
2385	struct mpr_ext_cfg_page_req32 *ext32 = _arg;
2386	struct mpr_raid_action32 *raid32 = _arg;
2387	struct mpr_usr_command32 *user32 = _arg;
2388	union {
2389		struct mpr_cfg_page_req page;
2390		struct mpr_ext_cfg_page_req ext;
2391		struct mpr_raid_action raid;
2392		struct mpr_usr_command user;
2393	} arg;
2394	u_long cmd;
2395	int error;
2396
2397	switch (cmd32) {
2398	case MPRIO_READ_CFG_HEADER32:
2399	case MPRIO_READ_CFG_PAGE32:
2400	case MPRIO_WRITE_CFG_PAGE32:
2401		if (cmd32 == MPRIO_READ_CFG_HEADER32)
2402			cmd = MPRIO_READ_CFG_HEADER;
2403		else if (cmd32 == MPRIO_READ_CFG_PAGE32)
2404			cmd = MPRIO_READ_CFG_PAGE;
2405		else
2406			cmd = MPRIO_WRITE_CFG_PAGE;
2407		CP(*page32, arg.page, header);
2408		CP(*page32, arg.page, page_address);
2409		PTRIN_CP(*page32, arg.page, buf);
2410		CP(*page32, arg.page, len);
2411		CP(*page32, arg.page, ioc_status);
2412		break;
2413
2414	case MPRIO_READ_EXT_CFG_HEADER32:
2415	case MPRIO_READ_EXT_CFG_PAGE32:
2416		if (cmd32 == MPRIO_READ_EXT_CFG_HEADER32)
2417			cmd = MPRIO_READ_EXT_CFG_HEADER;
2418		else
2419			cmd = MPRIO_READ_EXT_CFG_PAGE;
2420		CP(*ext32, arg.ext, header);
2421		CP(*ext32, arg.ext, page_address);
2422		PTRIN_CP(*ext32, arg.ext, buf);
2423		CP(*ext32, arg.ext, len);
2424		CP(*ext32, arg.ext, ioc_status);
2425		break;
2426
2427	case MPRIO_RAID_ACTION32:
2428		cmd = MPRIO_RAID_ACTION;
2429		CP(*raid32, arg.raid, action);
2430		CP(*raid32, arg.raid, volume_bus);
2431		CP(*raid32, arg.raid, volume_id);
2432		CP(*raid32, arg.raid, phys_disk_num);
2433		CP(*raid32, arg.raid, action_data_word);
2434		PTRIN_CP(*raid32, arg.raid, buf);
2435		CP(*raid32, arg.raid, len);
2436		CP(*raid32, arg.raid, volume_status);
2437		bcopy(raid32->action_data, arg.raid.action_data,
2438		    sizeof arg.raid.action_data);
2439		CP(*raid32, arg.raid, ioc_status);
2440		CP(*raid32, arg.raid, write);
2441		break;
2442
2443	case MPRIO_MPR_COMMAND32:
2444		cmd = MPRIO_MPR_COMMAND;
2445		PTRIN_CP(*user32, arg.user, req);
2446		CP(*user32, arg.user, req_len);
2447		PTRIN_CP(*user32, arg.user, rpl);
2448		CP(*user32, arg.user, rpl_len);
2449		PTRIN_CP(*user32, arg.user, buf);
2450		CP(*user32, arg.user, len);
2451		CP(*user32, arg.user, flags);
2452		break;
2453	default:
2454		return (ENOIOCTL);
2455	}
2456
2457	error = mpr_ioctl(dev, cmd, &arg, flag, td);
2458	if (error == 0 && (cmd32 & IOC_OUT) != 0) {
2459		switch (cmd32) {
2460		case MPRIO_READ_CFG_HEADER32:
2461		case MPRIO_READ_CFG_PAGE32:
2462		case MPRIO_WRITE_CFG_PAGE32:
2463			CP(arg.page, *page32, header);
2464			CP(arg.page, *page32, page_address);
2465			PTROUT_CP(arg.page, *page32, buf);
2466			CP(arg.page, *page32, len);
2467			CP(arg.page, *page32, ioc_status);
2468			break;
2469
2470		case MPRIO_READ_EXT_CFG_HEADER32:
2471		case MPRIO_READ_EXT_CFG_PAGE32:
2472			CP(arg.ext, *ext32, header);
2473			CP(arg.ext, *ext32, page_address);
2474			PTROUT_CP(arg.ext, *ext32, buf);
2475			CP(arg.ext, *ext32, len);
2476			CP(arg.ext, *ext32, ioc_status);
2477			break;
2478
2479		case MPRIO_RAID_ACTION32:
2480			CP(arg.raid, *raid32, action);
2481			CP(arg.raid, *raid32, volume_bus);
2482			CP(arg.raid, *raid32, volume_id);
2483			CP(arg.raid, *raid32, phys_disk_num);
2484			CP(arg.raid, *raid32, action_data_word);
2485			PTROUT_CP(arg.raid, *raid32, buf);
2486			CP(arg.raid, *raid32, len);
2487			CP(arg.raid, *raid32, volume_status);
2488			bcopy(arg.raid.action_data, raid32->action_data,
2489			    sizeof arg.raid.action_data);
2490			CP(arg.raid, *raid32, ioc_status);
2491			CP(arg.raid, *raid32, write);
2492			break;
2493
2494		case MPRIO_MPR_COMMAND32:
2495			PTROUT_CP(arg.user, *user32, req);
2496			CP(arg.user, *user32, req_len);
2497			PTROUT_CP(arg.user, *user32, rpl);
2498			CP(arg.user, *user32, rpl_len);
2499			PTROUT_CP(arg.user, *user32, buf);
2500			CP(arg.user, *user32, len);
2501			CP(arg.user, *user32, flags);
2502			break;
2503		}
2504	}
2505
2506	return (error);
2507}
2508#endif /* COMPAT_FREEBSD32 */
2509
2510static int
2511mpr_ioctl_devsw(struct cdev *dev, u_long com, caddr_t arg, int flag,
2512    struct thread *td)
2513{
2514#ifdef COMPAT_FREEBSD32
2515	if (SV_CURPROC_FLAG(SV_ILP32))
2516		return (mpr_ioctl32(dev, com, arg, flag, td));
2517#endif
2518	return (mpr_ioctl(dev, com, arg, flag, td));
2519}
2520